
HAL Id: lirmm-00123731
https://telearn.hal.science/lirmm-00123731

Submitted on 10 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploratory and Experimental Learning ? For Teachers
and Researchers too !

Ruddy Lelouche

To cite this version:
Ruddy Lelouche. Exploratory and Experimental Learning ? For Teachers and Researchers too !.
CELDA: Conference on Cognition and Exploratory Learning in Digital Age, Dec 2005, Porto, Portugal.
pp.167-174. �lirmm-00123731�

https://telearn.hal.science/lirmm-00123731
https://hal.archives-ouvertes.fr

Version sent on 25 October 2005, updated on 23 April 2006

Proc. of the IADIS International Conference Cognition and Exploratory Learning in Digital Age (CELDA 2005),
Porto, Portugal, 14 -16 December 2005, p. 167-174. (ISBN 972-8924-05-4 © 2005 IADIS)

EXPLORATORY AND EXPERIMENTAL LEARNING...
FOR TEACHERS AND RESEARCHERS TOO!

Ruddy Lelouche
Département d'Informatique et de Génie Logiciel Laboratoire d'Informatique, de Robotique

Université Laval, Québec, CANADA et de Microélectronique (LIRMM), Montpellier, FRANCE
Ruddy.Lelouche@ift.ulaval.ca Ruddy.Lelouche@lirmm.fr

ABSTRACT

The term “exploratory learning” usually denotes some type of activity used by students, with or without a teacher’s
supervision, to facilitate the learning and mastery of a predefined and relatively circumscribed domain. That explora-
tion may be more or less guided, according to the domain structure and the teacher's pedagogical goals and strategies.
But there is also another way to use exploratory and even experimental learning, which may be used inside or outside
an educational setting: rather than students, the actors would be researchers and research-minded teachers, and their
goal would be to discover and structure a new, unexplored or ill-structured domain. Using two existing computer
systems as examples, this paper attempts to show how this is possible, and compares the proposed exploratory and
experimental learning by teachers and researchers with the more traditional exploratory learning by students.

KEYWORDS

Constructivist approach, structured exploration, researcher learning, user-centred learning, unstructured domain.

1. INTRODUCTION: TWO APPROACHES TO LEARNING

There are two main approaches to learning, especially for problem-solving domains. One is based on the
how-to-do question; it uses essentially imitation, and consists in working out examples similar to those
presented in a manual or by a teacher; in our opinion, this leads to a surface understanding of the method or
procedure to be learned. The other approach is based on what and why questions; it uses a more constructivist
approach: the learner first studies the procedure or method to be learned, and then verifies her understanding of
the procedure by working out a variety of examples, some very dissimilar to the ones known; in our opinion,
that leads to a deeper understanding and a better learning. The former approach reflects what students have a
tendency to do more and more often, because it is less time-consuming, and more efficient for quickly preparing
exams or quizzes. The latter is what teachers (in the broadest sense: from assistants or coaches to university
professors) would like students to do for a more permanent learning. In that perspective, “Think then code!” is
Koffman and Wolfgang’s [2005] motto to present their well-known textbook on programming.

This paper is concerned essentially with the second approach to learning. More specifically, the question it
addresses is: since both approaches rely on working out examples, what makes the difference between an
imitative exploration and a constructivist one? The answer is what we shall call structured exploration.

Section 2 deals with the traditional students’ understanding and learning processes, using as an example the
ALGORITHMIK system for acquiring elementary programming skills. Section 3 deals with the discovery and
construction of knowledge (another form of learning) by teachers and researchers, and it uses as an example
PILÉFACE, a system to tackle the pragmatics of language exchanges. Section 4 bundles up these two facets to
present a more general view of exploratory and experimental learning by students, teachers and researchers.

2. STUDENTS’ LEARNING: KNOWLEDGE ACQUISITION

In this section, we first briefly present the experimental setup of ALGORITHMIK, and then show how this
setup facilitates students learning and what this learning consists of.

Ruddy Lelouche : Exploratory and experimental learning ? for teachers and researchers too !

2.1 The experimental setup of ALGORITHMIK

The ALGORITHMIK system [Dion, 1988; Lelouche, 1999] is an intelligent tutoring system aimed at learning
algorithmics and programming, designed for college students in an introductory programming class. Its main
objective is to help the student to learn to use in an appropriate fashion basic control structures (IF THEN, IF
THEN ELSE, WHILE DO, ITERATE n TIMES) and procedure calls. To that effect, ALGORITHMIK uses a micro-
world called “Karel the robot” [Pattis, 1981], in which the student must program a robot to make it achieve
various tasks that require using the control structures under study. As a major advantage, this micro-world
requires no data structure, thus separating two difficulty types commonly felt by beginners: data structures and
control structures. Besides, this environment favours a top-down and user-centred design, thus leading the
student into applying, from the start, sound software engineering principles: at any point while developing her
program, she can freely name any intermediate subtask (a cognitive act) for later development, thus keeping her
focus at the abstraction level most meaningful at that stage of the problem-solving process.

2.1.1 Tutor roles

To help the student solve her problem, the system includes an intelligent tutor. However, that one intervenes
only at the student’s request. The student keeps absolute control over the progress of the learning session: if she
wants, she may develop, test and correct her program without having to call or to be interrupted by the tutor.
That tutor has in fact three circumscribed roles:

1º Problem selection. The first role of the tutor is to choose the next problem to be submitted to the stu-
dent. The available problems are categorised according to their assumed difficulty: decision structures, iterative
structures, or all control structures. When starting a session, the student may choose a category, then her first
problem in that category; afterwards, she is guided into working on more difficult problems. Alternatively, she
may relinquish the use of the tutor altogether and devise her own problem. In that case however, since the
system “knows” nothing about the task to be performed by the robot, the student is left alone (no tutoring).

2º Advice. During her programming activity, the student who is stuck may ask the tutor a hint (Hint
command) so that she may complete the program part being worked on. Depending on the adopted
programming model, that hint will be higher-level (corresponding to higher level goals) when the student begins
the development, and closer and closer to the final code as the student gets nearer the leaves of the functional
decomposition tree. If the tutor-given hint is insufficient, the student may further ask for a certain part of the
code (Help out command), which will allow her to continue developing her program.

3º Verdict. At any time during the session, but especially when her program is nearly completed, the
student may ask the tutor to verify her solution, whether it is final or only partial (Check program command).
In this case, the tutor will give one of the four following verdicts:

(1) your program is correct;
(2) the part of your program presently coded is correct;

 (3) your program is incorrect
(at the student’s request,
the tutor may reveal the
error location, then its
description);

 (4) your program seems to
be correct, but I do not
understand the strategy
used (this verdict, only
possible for a completed
program, is not aimed at
helping the student, but
at possibly improving
later the knowledge base
of the solving strategies
known to the system,
i.e. the system cognitive
effectiveness).

Figure 1. — ALGORITHMIK environment interface.

Ruddy Lelouche : Exploratory and experimental learning ? for teachers and researchers too !

2.1.2 Graphical components

Besides the tutor, ALGORITHMIK also provides the student with three interactive components: a structure
editor for code entry, a graphic situation editor for setting and modifying Karel’s environment, and a graphic
simulator for executing and tracing the program (see figure 1).

2.1.3 Using the system

Let us assume that the student decides to use the tutor and to work on the first of the “all control structures”
category, the super-steeplechase problem [Lelouche, 1999]. She is then presented with the following task
description (here translated into English):

Karel must run a super-steeplechase. The hurdles have a variable height and a zero width. The end of the run
is marked by a beeper. Karel begins its run facing east; at the end of the run, it must also face east and is
supposed to have picked up the beeper ending the run.

and with a display like that laid out on figure 1, showing a program window in which she can work on her
program using the structure editor, and an example of an initial situation.

If the student is not happy with the proposed situation, she may modify it using the
graphic situation editor, which allows her to place the robot at the desired intersection
and with the desired orientation, and to place bippers and wall sections or move them
around as she wishes. The structure editor and the situation editor are convenient
interactive graphic tools to use, especially to vary the program situation parameters
through experimentation. The execution simulator, which can be activated using the
Execution menu (figure 2), is used to visualise, on the active situation, the execution of
the active program window. In addition, the instruction currently being executed is
simultaneously highlighted in the program text; thus, at all times, the cognitive
relationship between the active program instruction and the result of its execution is
visible. Besides, at any time during execution, the student can change the execution
mode (Fast speed, Slow speed, or Stepwise), or can activate the Pause and Abort
execution commands (see figure 2).

Execution
 Execute •E
√ Fast speed
 Slow speed
 Stepwise
 Pause
 Abort execution

Figure 2. —
ALGORITHMIK

Execution menu.

2.2 Learning by students

The ALGORITHMIK tutoring strategy is based on the constructivist paradigm [Boder & Cavallo, 1990; Harel
& Papert, 1990; Papert, 1980]: the learning process is not a passive one where the student stores new informa-
tion, but an active one where the student modifies and reconstructs her vision of the world. Under these
conditions, a programming tutor is not to give out ready-made solutions. Instead it should ease the student’s
apprenticeship of program development, admittedly following some method, but nevertheless allowing the
student to experiment, using a trial and error approach. It is thus necessary to guard against offering feedback
too quickly and instead to give the student enough time to make mistakes, discover them and repair them. In
this context, the tutor is there essentially for helping out the student (if the need arises), or for signalling her
unnoticed errors.

Moreover, one learns through developing one’s own viewpoint [Papert, 1980] much more than through
adopting someone else’s. Thus a tutoring system should allow the student:

• to express what she thinks and what she wants to do,
• to formulate hypotheses, and if necessary correct these hypotheses,
• to adopt several viewpoints and try various solution methods.
In that perspective, immediate feedback prevents exploration and negates the constructivist approach to

learning. Certainly a directive style, with immediate unconditional feedback, because of its “bullying” the
student, gives the fastest results, as verified by the ACT-R team itself [Anderson & al., 1995]. But that does
not mean that the student has better integrated the programming abilities on which she has been trained, and,
above all, she still will not have learned how to debug a program that proves erroneous, especially if someone
else’s!

In that context, the ALGORITHMIK facilities help the student follow the program execution, both on the
situation field and in the program code. In addition, by slowing down or even stopping the execution at any
program point that she may find unclear, she is able to gather some information, possibly to modify the local

Ruddy Lelouche : Exploratory and experimental learning ? for teachers and researchers too !

situation (Karel’s location and orientation, bippers, and wall sections), in order to understand better how the
program really works, and thus to correct her errors eventually. The execution simulator capabilities are
particularly useful for problems invented by the student or by the teacher, as part of exploration and
experimentation, where the help of the tutor is not available.

The ALGORITHMIK system has later been extended to incorporate various data about the characteristics of
the programs being worked on by the learners and about the learners’ actions. The system thus modified, called
TIRPA (Tuteur Intelligent pour la Résolution de problèmes en Algorithmique), was used to make experiments
with actual students. Jacques Malouin, a student of ours, conducted these experiments, and their results are
reported in his Ph.D. dissertation [Malouin, 1993]. However, detailing them is outside the scope of this paper.

The ALGORITHMIK-TIRPA software thus appears to be an interesting alternative to more complex tools (like
using a more realistic robot). Indeed, it is easy to learn and to master, because only what is important is
displayed and included in the controls available to the learner. These simple controls allow her to concentrate on
the algorithm cognitive design and development, rather than play around with more sophisticated tools.

3. TEACHERS’ LEARNING: KNOWLEDGE DISCOVERY AND BUILDING

We now study a quite different learning domain: second or foreign language acquisition. In that domain,
increasing emphasis has been placed on the use of a given speech act in a given situation [Austin, 1962; Searle,
1969] and on the importance and variety of sociolinguistic factors affecting message and form [Coste & al.,
1976]. Nowadays, teachers refer not only to the correctness of the linguistic form (linguistic code), but also to
the appropriateness of the message it conveys in a given social context (social code). Learners are now being
encouraged to take these factors into account as they respond to and express themselves in second language;
mastery of these factors constitute a major hurdle for foreign language learners.

3.1 Rationale and experimental setup of PILÉFACE

PILÉFACE (Programme Intelligent pour les Langues Étrangères Facilitant l’Approche Communicative de
l’Enseignement — Intelligent Program for Foreign Languages Fostering a Teaching Communicative Approach)
is a computer program initially aimed at providing language learners with the necessary knowledge to select or
recognise the language forms considered to be the most appropriate for receptive and expressive use, and to fulfil
a language function in a given communicative situation. We summarise what problems the system was to
address and what difficulties had to be tackled in its design; we then show a couple of examples of its use.

3.1.1 Communicative situation variables and rules in language acquisition

When transmitting a message to somebody else, we generally have a communication intention or goal
[Austin,1962; Searle, 1969, 1979]. A communicative goal is realised through a message which, in the oral
setting, is an utterance. In general, various utterances may convey the intended meaning, but with a different
effect. However only a few of them (and sometimes only one) are usually appropriate, i.e. adapted to the context
in which the exchange takes place, or communicative situation. That situation can be characterised in terms of
variables, as well as rules binding them, which we call the communicative situation variables and rules.

In the classroom, the teacher’s primary role is to transmit language knowledge to the students. Amongst
various pedagogical acts, the teacher may formulate usage rules to be used in a given communicative situation.
However, (s)he does this only occasionally, on demand.

When using a computer, the teacher’s aim is to “transmit language knowledge” to the computer system, in
this case a knowledge-based system, so that the system can subsequently transmit that knowledge to the targeted
computer user, i.e. the language learner. For the design of such a system, this yields the following duality:

• for the language teacher, the computer is a particular kind of learner, namely one who needs to be
provided with variables and rules in an exhaustive way;

• for the knowledge engineer, the system must exhibit two kinds of competence, in this case one in the
French language and another in teaching French.

The latter refers to the double competence traditionally found in any intelligent tutoring system [Wenger, 1987].
Thus we needed to provide our system with two kinds of knowledge: the native speaker’s linguistic knowledge,
and the language teacher’s pedagogical knowledge [Lelouche & Huot, 1998].

Ruddy Lelouche : Exploratory and experimental learning ? for teachers and researchers too !

3.1.2 The system modelling approach

In order to tune better the representation model simulating the native speaker, we decided to limit our work
first to the face-to-face greeting intention: it is one of the first communication intentions expressed by an
individual, and it conditions the climate of any subsequent exchange. We thus had to build a computer program
“expert” in the various linguistic realisations, or utterances, expressing the face-to-face greeting intention, and
that program would then be able to recognise and to produce linguistic realisations expressing that intention.

When trying to provide a computer program with some everyday life or common sense knowledge, a general
modelling problem is to distinguish between explicit and implicit knowledge. Explicit knowledge is defined
and described explicitly in readily available material such as books, courses, movies, etc. When referring to
human communication, implicit knowledge is not formally described in any written or visual material, but is
nevertheless easily manipulated or processed by native speakers. And that is what makes knowledge transfer
from the native speaker to the computer so difficult! In the greeting function case, amidst explicit knowledge,
we find greeting forms like “Bonjour”, “Salut”, “Good morning” or “Hello” (we can find them in dictionaries or
in language textbooks), or terms of address like the first name, the last name, or a title (they are quite presented
and explained in [Braun, 1988], for example). However, the rules guiding a native speaker when (s)he combines
these various forms to produce a linguistic realisation (here an utterance) fitting into a given situation are not
formulated explicitly; these rules are thus implicit knowledge, as is most pragmatic knowledge.

In order to get a better understanding of these rules and to make them explicit, we took an approach which
can be computerised [Hayes-Roth & al., 1983], and adapted it to build the PILÉFACE system [Lelouche &
Huot, 1998]. That approach involves five stages: (1) identifying and structuring the communicative situation
variables (that task is hard and still under progress, since previous authors like Preston [1986] had identified
some fifty factors influencing the linguistic form, but without making any reference to which factors have a
higher priority than others, or which are consequences of others, or — even less — in which way), (2)
identifying the rules connecting these variables, (3) defining a hierarchy for these rules, (4) defining a hierarchy
of variables, and finally (5) validating the resulting model.

3.1.3 Examples from the PILÉFACE system

Recall that PILÉFACE [Lelouche & Huot, 1998], as well as the learner, must be able to generate linguistic
forms, and also to recognise them. In either case, using communicative situation variables and rules (see section
3.1.1), the system first performs some “non linguistic” analysis of the communicative situation at hand. This is
carried out by two inference engines [Lelouche, 1994], called Extracteur and Formaliseur respectively, which
yields what we call the exchange style. The latter describes linguistic characteristics of a production (a particular
form) supposed to meet the pragmatic constraints resulting from the given situation; it consists of five variables,
called level of the exchange style, personalization index, tonality, insistence, and “tu/vous”. Using that exchange
style, the third engine of the reasoning chain differs, depending on whether the system is to generate suitable
productions or to diagnose the situational appropriateness of a student’s production. We now examine each case.

 PILÉFACE 3:08:26
RÉALISEUR (moteur 3)

STYLE D'ÉCHANGE
Niveau du

style d'échange
Indice de

personnalisation Tonalité Insistance Tutoiement

ANNULER OK

respectueux

poli

familier

impersonnel

nominatif

affectueux

sérieuse

décontractée

folklorique

soulignée

normale

réduite

tu

vous

intime

RÉALISATIONS LINGUISTIQUES CORRESPONDANTES
bonjour, monsieur !
bonjour !

Figure 3. — PILÉFACE generation example
(Réaliseur development interface).

 PILÉFACE 5:09:45

ANALYSEUR (moteur 3)

RÉALISATION DE SALUTATION À ANALYSER

Niveau du
style d'échange

Indice de
personnalisation Tonalité Insistance Tutoiement

ANNULER OK

respectueux

poli

familier

impersonnel

nominatif

affectueux

sérieuse

décontractée

folklorique

soulignée

normale

réduite

tu

vous

intime

DIAGNOSTIC CORRESPONDANT
Analyse de la forme de salut.
Le mot lapin est [affectueux,anime].
Le niveau de langue du mot lapin est [familier].

STYLE D'ÉCHANGE

bonjour mon lapin

Figure 4. — PILÉFACE analysis example
(Analyseur development interface).

In the generation case, the problem is the following. Given a particular communicative situation and a
particular communication intention, one (i.e. the student, or the computer) is to produce one or several
appropriate linguistic forms. We call Réaliseur the third engine in this case, i.e. the system module responsible

Ruddy Lelouche : Exploratory and experimental learning ? for teachers and researchers too !

for generating linguistic forms on the basis of the exchange style provided it. The Réaliseur interface shown in
figure 3 displays the five “linguistic” variables making up the current exchange style (“style d’échange”) and
their possible values, as well as the values retained through check boxes. Using the information shown, the
Réaliseur generated the possible productions “Bonjour, monsieur!” and “Bonjour”, which are rather conservative
forms, because of the exchange style of the situation.

In the case of production analysis, the system must be able to analyse a given linguistic form (e.g.
submitted by a language learner) in order to diagnose whether it is or is not an acceptable expression of the
given intention in the given situation. We call Analyseur the third engine in this case. Using a different
situation example, figure 4 gives an idea of the Analyseur capabilities. The communicative situation is supposed
to have led to the shown exchange style (checked values), and the user submitted the greeting realisation
“Bonjour, mon lapin!” (Hello, my dove! Actually, “lapin” means “rabbit”, but it is unlikely that this term
would be used in English as a term of address; this is why we suggested “Hello, my dove!” as an approximate
English equivalent). Giving its diagnosis to comment on this realisation, the Analyseur found inappropriate the
use of “lapin”, considering it to be unduly “familier” for an exchange style level defined simply as “poli”.

It is worth stressing that the screen
snapshots shown in figures 3 and 4 are
not the ones presented to the student
(such an interface would be more like the
one shown on figure 5, and would not
refer to any communicative or
intermediate variable like the ones
describing the exchange style). Indeed,
they are interfaces presented to the
developers to check the internal working
of the Réaliseur and of the Analyseur.
Similar interfaces exist to demonstrate
and assess the capabilities of the first two
inference engines [Lelouche, 1994].

3.2 Learning by teachers
and researchers

 PILÉFACE 5:09:45

SALUTATION EN FACE À FACE

QUE DITES-VOUS?

ANNULER OK

MES COMMENTAIRES
Vous avez dit: «Salut, Monsieur!».
«Monsieur», c'est joli, mais «Salut», c'est trop familier.
Essayez encore!

MISE EN SITUATION

Salut, Monsieur!

Je suis Ruddy Lelouche, un de vos professeurs, français, sévère et
distant. Vous êtes un étudiant de première année, relativement
timide. Vous me croisez à l'Université Laval, dans un corridor du
pavillon Pouliot, fin septembre, un après-midi de congé. Vous êtes
avec des amis que vous voulez épater. Je suis le professeur que vous
aimeriez bien saluer pour montrer à vos amis que vous me connaissez
déjà bien et que je vous connais déjà. Que dites-vous?

Réponse de PILÉFACE

Figure 5. — Student–PILÉFACE interface example.

The main interest of these interfaces is that they deal with only one module, were it the Extracteur, the
Formaliseur, the Réaliseur, or the Analyseur, which allows the developers to concentrate on one module at a
time. That is why we chose this system as exemplary. Indeed, in every case, such an interface allows the
developers (good French speakers and language teachers and researchers) to experiment with the input parameters
of the module being tested, e.g. by varying one input parameter at a time, and to observe the corresponding
changes in the output parameters of that module (in the case of figures 3 and 4, those are respectively the
linguistic forms generated and the diagnostic of the form given as additional input).

Actually, such interfaces can be, and have been, used and exploited in more powerful ways. Indeed, in the
validation stage mentioned in section 3.1.2, one is to explore the model currently implemented by submitting it
to a number of tests: for every test, one is to imagine a different communicative situation (experimentation), and
to provide the system with the values of the variables which suitably characterise that situation. By “running the
program”, one can then assess whether the values of the variables which have been derived according to the
model are still consistent with the situation. For every set of tests, the nature of the variables in question and
the precision of their values depend on the refinement state of the model when that particular set of tests is
performed. That refinement state naturally applies to the variables provided to the system as input data, and also
to the output variables derived from them.

The validation stage always yields a positive result, i.e. a meaningful research outcome. Indeed, either the
system “passes” all tests or it does not. If it does, that gives us (teachers and researchers) a chance to model
more complex or more detailed situations, i.e. to refine our model, and therefore the system cognitive
capabilities (ability to express and to deal with such situations). Otherwise, some tests uncover situations where
the system-provided results are inconsistent with what a native speaker would do or understand; in that case, it
means that some rules are not properly specified, and/or that some variables are not appropriately modelling the
intended communicative situation; whatever the outcome, that gives us a chance to correct our model. In either
case, this is a win-win situation, and we always learn!

Ruddy Lelouche : Exploratory and experimental learning ? for teachers and researchers too !

4. THE EXPLORATORY AND EXPERIMENTAL LEARNING PROCESS

With two different systems as examples, we have shown how exploratory learning can take place. The main
difference between the two systems, is indeed between the two learning domains they address. In the first
system, the learning domain, elementary programming, is well known and well circumscribed. That allows the
developers, mainly teachers and their possible computer helpers, to offer the students a well-designed system,
completely tested, in which the student can use exploration (if working on her own problems) and even guided
exploration (if using the embedded programming tutor) as a learning activity. In the second system, the targeted
domain, pragmatic aspects of language exchanges, has been extensively described in language research, but never
structured, and has not been submitted to the computer assessment and validation. As a result, computer
technology, although initially aimed at guiding students working on various communicative situations, turned
out in fact to be mainly used by teachers and researchers to design, develop and check the system “in progress”.
Besides, the system is “condemned” to remain under construction, because that is the state of the domain itself!

Table 1. — Comparing learning by students and by researchers when using computer technology.

For the student For the researcher

Type of
learning domain

Well known and circumscribed domain
(e.g. elementary know and know-how
domains, like programming, physics,
mathematics, engineering).

Possibly well described, but largely unstructured
or ill-structured domain (e.g. most know-how-to-
be domains, like psychology, interpersonal
relationships, or... language usage rules).

Characterisation
of such a domain

Concepts and relations are well
established, and have been organised in a
structured curriculum.

Concepts are at least partly fuzzy,
and their precise relationships are largely
unknown.

Role of exploration Acquisition of known knowledge. Discovery and building of unknown knowledge.

Type of questions
addressed through

exploration

What if?
How to?
Check me!

What?
Why?
What if?

User’s motivation
and expectation

To get results that lead to a good grade
and/or a congratulation message.

To get results that lead to a good representation
of the domain to be structured and modelled.

Type of cognitive
task performed by

using the technology

Guided exploration or experimentation
(discovery guided by the teacher
through technology)

Structured exploration:
Exploration for discovering the domain,
Experimentation for assessing the current model,
Exploration for refining the current model.

Final role of
computer technology

Helping the student to go through a given
(piece of) curriculum (incidental role).

Enabling the researcher to structure and model
the domain (vital role).

The similarities and differences between student learning and researcher learning are more developed in
table 1, although in a concise form. In this table, we do not mention the teacher, because, depending on his/her
goals and expertise, s/he can either mimic the role of a student (to test some pedagogical acts, or some problems
to be worked on by students, for example, even in a known domain), or play the role of a researcher, in
particular in an unstructured domain like the rules governing language exchanges. Indeed, in a domain which has
never been structured before, computer technology can be used as an exploratory and discovery tool in itself.
Such was the case in the 70’s for the first expert systems like Mycin, Dendral or Prospector (see [Hayes-Roth &
al., 1983] for a synthesis). Certainly, pragmalinguistics and in particular language variation have been
extensively studied and described (Preston [1986] cites several authors), but Preston’s fifty categories of
language variation have never been linked together by way of priority or causality rules. The use of exploration
and experimentation with a knowledge-based system has indeed allowed us [Lelouche & Huot, 1998] to start
uncovering such priorities, causalities, and rules (see section 3.1.2). This discovery has been made possible
thanks to a systematic structured exploration approach, a 3-stage process summarised in table 1.

Ruddy Lelouche : Exploratory and experimental learning ? for teachers and researchers too !

5. CONCLUSION

In this paper, using two existing computer systems as examples, we have shown how exploration and
experimentation can be used in an educational setting. In the traditional setting, the learning domain is well
known, the expected user is a student, and the technology, suitably prepared by the domain specialists and the
teachers, is used to guide her through her learning. In a more research-oriented setting, the learning domain is
widely unstructured, the expected user may be a student in the long run but is immediately a researcher or a
research-minded teacher, and technology is used to enable that user to explore the domain, discover its elements
and structure, and model it as appropriately as possible.

We believe that the second type of setting is presently quite underused, and that technology in general, and
exploratory and experimental learning techniques in particular, could be used more often for such endeavours as
discovering and structuring a new or unexplored domain. Indeed are not learning and discovery permanently
ongoing processes, if not life goals?

REFERENCES

Anderson J. R., A. T. Corbett, K. Koedinger & R. Pelletier (1995) “Cognitive tutors: Lessons learned”. The Journal o f
Learning Sciences, 4,167-207.

Austin J.L. (1962) How to do Things with Words. Clarendon Press (Oxford, England).
Boder A. & D. Cavallo (1990) “An epistemological approach to intelligent tutoring systems”. Intelligent Tutoring

Media, Vol. 1, No. 1, p. 23.
Braun F. (1988) Terms of Address — Problems of Pattern and Usage in Various Languages and Cultures. Mouton de

Gruyter (Berlin).
Coste D., Courtillon J., Ferenczi V., Martins-Baltar M., Papo E. & Roulet E. (1976) Un Niveau–Seuil. Conseil de

l’Europe (Strasbourg, France).
Dion P. (1988) Conception et implantation d’un système de tutorat pour l’enseignement de l’algorithmique. Master’s

thesis. Université Laval (Québec, Canada).
Harel I. & S. Papert (1990) “Software design as a learning environment”. Interactive Learning Environments (E.

Soloway, ed.). Ablex Publ. (Norwood, N.J.).
Hayes-Roth F., Waterman D. A. & Lenat D. B., eds. (1983) Building Expert Systems. Addison-Wesley (Reading, Mass.).
Koffman E. & P. Wolfgang (2005) Objects, Abstraction, Data Structures and Design using Java. J. Wiley & sons

(Hoboken, N.J., USA).
Lelouche R. (1999) “Can a student-controlled environment and the model-tracing methodology go together?”.

Advanced Research in Computers and Communications in Education, Vol. 1 (G. Cummings, T. Okamoto, L. Gomez,
eds.). IOS Press (Amsterdam, Netherlands), p.938-945.

Lelouche R. (1994) “Dealing with pragmatic and implicit information in an ICALL system: the PILÉFACE example”.
Journal of Artificial Intelligence and Education, Vol. 5, No. 4, p. 501-532.

Lelouche R. & D. Huot (1998) “Influence of communicative situation variables on linguistic form”. CALL (Computer-
Assisted Language Learning) Journal, special issue on CALL of French, vol. 11 Nº5, p. 523-541.

Malouin J. (1993) Du système expert au tuteur intelligent: application d'un modèle d'apprentissage au développe-
ment d'un système d'enseignement de l'algorithmique. Ph.D. dissertatiion,. Université Laval (Québec, Canada).

Papert S. (1980) Mindstorms: Children, Computers, and Powerful Ideas. Basic Books (New York).
Pattis R. (1981) Karel the Robot. a Gentle Introduction to the Art of Programming. J. Wiley (New York, U.S.A.).
Preston D. R. (1986) “Fifty some-odd categories of language variation”. International Journal of the Sociology o f

Language, Vol. 57, p. 9-47.
Searle J. (1979). Expression and Meaning: Studies in the Theory of Speech Acts. Cambridge University Press (Oxford,

England).
Searle J. (1969) Speech Acts. Cambridge University Press (Oxford, England).
Wenger É. (1987) Artificial Intelligence and Tutoring Systems. Morgan Kaufmann (Los Altos, CA).

