
HAL Id: hal-01274997
https://telearn.hal.science/hal-01274997

Submitted on 16 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Go-Lab Specifications of the Lab Owner and Cloud
Services (Final) – M30
Wissam Halimi, Sten Govaerts

To cite this version:
Wissam Halimi, Sten Govaerts. Go-Lab Specifications of the Lab Owner and Cloud Services (Final)
– M30. [Research Report] Go-Lab Project. 2015. �hal-01274997�

https://telearn.hal.science/hal-01274997
https://hal.archives-ouvertes.fr

Go-Lab

Global Online Science Labs for Inquiry Learning at School

Collaborative Project in European Union’s Seventh Framework Programme
Grant Agreement no. 317601

Deliverable D4.5

Specifications of the Lab Owner and
Cloud Services (Final) – M30

Editors Wissam Halimi (EPFL)
Sten Govaerts (EPFL)

Date 29th April, 2015
Dissemination Level Public
Status Final

c©2015, Go-Lab consortium

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Go-Lab 317601 2 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

The Go-Lab Consortium

Beneficiary
Number

Beneficiary Name Beneficiary
short
name

Country

1 University Twente UT The Nether-
lands

2 Ellinogermaniki Agogi Scholi
Panagea Savva AE

EA Greece

3 École Polytechnique Fédérale de
Lausanne

EPFL Switzerland

4 EUN Partnership AISBL EUN Belgium

5 IMC AG IMC Germany

6 Reseau Menon E.E.I.G. MENON Belgium

7 Universidad Nacional de Edu-
cación a Distancia

UNED Spain

8 University of Leicester ULEIC United King-
dom

9 University of Cyprus UCY Cyprus

10 Universität Duisburg-Essen UDE Germany

11 Centre for Research and Technol-
ogy Hellas

CERTH Greece

12 Universidad de la Iglesia de Deusto UDEUSTO Spain

13 Fachhochschule Kärnten -
Gemeinnützige Privatstiftung

CUAS Austria

14 Tartu Ulikool UTE Estonia
15 European Organization for Nuclear

Research
CERN Switzerland

16 European Space Agency ESA France

17 University of Glamorgan UoG United King-
dom

18 Institute of Accelerating Systems
and Applications

IASA Greece

19 Núcleo Interactivo de Astronomia NUCLIO Portugal

Go-Lab 317601 3 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Contributors

Name Institution
Wissam Halimi, Sten Govaerts, Christophe Salzmann,
Denis Gillet

EPFL

Pablo Orduña UDEUSTO
Danilo Garbi Zutin CUAS
Irene Lequerica UNED

Legal Notices
The information in this document is subject to change without notice. The Mem-
bers of the Go-Lab Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. The Members of the Go-Lab Consortium
shall not be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing, perfor-
mance, or use of this material. The information and views set out in this deliver-
able are those of the author(s) and do not necessarily reflect the official opinion
of the European Union. Neither the European Union institutions and bodies nor
any person acting on their behalf may be held responsible for the use which
may be made of the information contained therein.

Go-Lab 317601 4 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Executive Summary
This deliverable details the final specifications of the solutions devised for inte-
grating remote labs in the Go-Lab infrastructure. The infrastructure comprises
many services supporting students and instructors for inquiry learning with on-
line labs. Using the Specifications of Lab Owner and Cloud Services presented
in this document, lab providers should be able to create/adapt and smoothly
deploy their labs in the Go-Lab infrastructure.

In this document, a decoupled Client-Server architecture is proposed for remote
laboratories, where the Client is the user application enabling to operate the lab
at distance and the Server offers services enabling communication through the
Internet with the physical lab and its instrumentation. This architecture topol-
ogy is based on the Smart Device paradigm presented in later sections of the
deliverable. Relying on this schema, the specifications provide lab owners with
a way to build new labs or adapt existing ones in conformity with the Go-Lab
requirements. The resulting labs are able to interact with the Go-Lab booking
system (see D4.2 of M18, and the final version D4.6 upcoming in M33), the
learning analytics services (see D4.2 of M18, and the final version D4.6 upcom-
ing in M33), and specific applications provided by Go-Lab (for example the Data
Viewer App which displays data from the sensors of a lab).

The core of the deliverable is divided in two main parts: sections 2 & 3 which
respectively detail the specifications for new and legacy (or existing) labs.

For new remote labs, the required services, protocols, and data formats for
communication between the Client and the Server are presented, together with
guidelines for internal functionalities. The Smart Device paradigm on which
relies the Client-Server architecture conceptualizes and embeds the lab-owner
services.

Compared to the initial version D4.1(R2), the main changes in this deliverable
affecting the Smart Device specifications deal with the modification of the meta-
data, and adding more recommendations for lab providers developing labs for
Go-Lab.

In section 2.3.3, a new field is added to the metadata describing a sensor:
the type field. This modification is meant to make sensor representation more
descriptive. Additionally, lab owners are advised to require an authToken even
for observers when they are accessing labs. This modification was the result of
many use cases discussed with members of the Go-Lab project. Additionally,
a compact version1 of the specifications was accepted and presented at the
REV20152 conference.

1http://infoscience.epfl.ch/record/204622/files/REV2014___Smart_Device_Specification.pdf
2http://rev-conference.org/REV2015/

Go-Lab 317601 5 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

For existing labs, the Smart Gateway paradigm is proposed, which aims at mak-
ing legacy labs compatible with the Go-Lab requirements. Due to the large
technological variety of legacy remote labs, the Smart Gateway approach offers
different compatibility levels through its different adaptation mechanisms. The
Smart Gateway paradigm conceptualizes and embeds the cloud services.

A double goal of this deliverable is to maximize the number of remote labs avail-
able for teachers by federating external laboratories as well as to maximize the
performance of the usage of these laboratories. This leads to an important
trade-off: the more labs supported, the smaller is the subset of common fea-
tures or requirements which can be imposed on them to be integrated with the
rest of the ecosystem. This is the reason for providing two complementary ap-
proaches (Smart Device and Smart Gateway). The Smart Device paradigm is
implemented by any new laboratory and requires particular formats and tech-
nologies that guarantee a high integration with the rest of the project. The Smart
Gateway provides different tools to integrate existing labs in Go-Lab, with differ-
ent levels of integration. These labs are called legacy labs in this deliverable to
emphasize that this is applied to external existing laboratories rather than to new
laboratories that should use as much as possible the Smart Device paradigm.

In regards to the Cloud Services section, the main addition compared to the ini-
tial version D4.1(R2) is the support of a new logging mechanism for user actions
(Section 3.6). Essentially, the Smart Gateway previously provided two levels of
integration: a full integration and a low level integration. The full integration is
supported by a protocol translator, which requires significant development ef-
forts: the remote lab developer would re-implement the user interfaces and pro-
tocols. For the low level of integration, a simple Smart Gateway plug-in needs
to be developed, and the lab provider only needs to secure the connection be-
tween the user and the laboratory. The second integration level was found more
attractive for lab owners, since it is more convenient in time constraints. How-
ever, its main drawback is its lack of support for integration with the rest of the
Go-Lab ecosystem. For example, it is not possible to benefit from the Learning
Analytics features developed in other tasks of the project. In this final version of
the specifications, we introduce a lightweight approach to support the user ac-
tion logging feature without requiring to support the rest of the protocol translator
or the Smart Device paradigm.

The final release of the Go-Lab specifications as provided in this deliverable is
used as a draft standardization document for the IEEE P1876 Working Group
on Networked Smart Learning Objects for Online Laboratories and will be dis-
cussed in the upcoming meeting, which will be held at the Exp.at’15 Conference
on June 1st, 2015.

Go-Lab 317601 6 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Table of Contents

1 Introduction 9
1.1 Remote labs . 9
1.2 Value Proposition . 10
1.3 Integration Levels . 12

2 Lab Owner or Plug Services 13
2.1 The Smart Device Architecture 14

2.1.1 The Smart Device in the Go-Lab Infrastructure 14
2.2 Smart Device Protocols and Technical details 16
2.3 Smart Device Services and Functionalities 17

2.3.1 Introduction . 17
2.3.2 List of Services and Functionalities 18
2.3.3 Metadata Service . 21
2.3.4 Sensor Service – getSensorData 37
2.3.5 Actuator Service – sendActuatorData 42
2.3.6 User Activity Logging Service – getLoggingInfo 44
2.3.7 Client Application Service – getClients 45
2.3.8 Models service – getModels 46

2.4 Smart Device Interactions . 47
2.4.1 Authentication and Booking 47
2.4.2 Interaction Modes . 48
2.4.3 WebSocket Channeling 50
2.4.4 Lab Instruments as Complex Sensors 51

3 Cloud Services 54
3.1 Introduction . 54
3.2 Requirements for the Smart Gateway 55

3.2.1 Functional Requirements for the Smart Gateway 55
3.2.2 Non-functional Requirements for the Smart Gateway . . . 56

3.3 Review of Legacy Lab Platforms 57
3.4 Comparison with Other Systems 59
3.5 Specifications and Architecture of the Smart Gateway 59

3.5.1 Architecture . 61
3.5.2 Specifications of the Plug-in System 67
3.5.3 The Protocol Translator 74

3.6 Logging management without the protocol translator 77
3.7 Benefits for Lab Owners . 78

4 Conclusion 79

5 Appendix A: Smart Device metadata specification details 80
5.1 Extensions for WebSockets . 80
5.2 Extensions for Concurrency mechanisms 81
5.3 Additional Minimal Extensions . 82

5.3.1 Data Types . 82

Go-Lab 317601 7 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

6 Appendix B: The Metadata Specification for an Example Smart De-
vice 83
6.1 RED Smart Device . 83

6.1.1 Metadata Specification . 83
6.1.2 Example Requests and Responses to the Smart Device

Services . 100
6.2 Running example Smart Device 105

6.2.1 Metadata Specification . 105
6.2.2 Example Requests and Responses to the Smart Device

Services . 124
References . 133

Go-Lab 317601 8 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

1 Introduction
Within the Go-Lab project, online laboratories (referred hereafter as online labs)
have been divided into three general categories (see Deliverable D2.1 & DoW):

• Virtual labs, which are simulations with animations of scientific experi-
ments available on the Web.

• Remote labs, which have real physical equipment with their instrumenta-
tion accessible at distance (such remote labs are also called rigs).

• Data sets, which contain measurements gathered using real scientific in-
struments such as telescopes. Data sets can be analysed and visualised
using dedicated online tools.

Task 4.1 and Task 4.2 are focusing on remote labs, which is the category for
which there are significant challenges in terms of plugging and sharing. To
plug remote labs online, Go-Lab is proposing in this deliverable the Smart De-
vice paradigm, which conceptualises and embeds the lab owner services (see
Section 2). To share remote labs online, Go-Lab is proposing the Smart Gate-
way paradigm, which conceptualises and embeds the cloud services (see Sec-
tion 3).

1.1 Remote labs
Remote labs typically rely on a client-server architecture (see Figure 1). The
services of the lab server are enabling communication through the Internet with
the real equipment and its instrumentation. The physical lab is typically con-
nected through a hardware interface with the lab server thanks to analog and
digital inputs (connected to sensors) and outputs (connected to actuators). The
lab server can be a microcontroller, a computer or a remote laboratory man-
agement system (RLMS). The lab server has to ensure on one hand that no
ungranted access is possible and on the other hand that the lab is in a proper
operational state. The client is enabling remote user interaction as a standalone
application or as a component in a Web environment. The client typically en-
ables the observation of the lab (e.g. through a live video stream), configuration
at distance, setting of parameters and visualization of data or measurement (in
batch or in real-time while the lab is operated).

Up to now, tightly coupled client-server solutions have been designed and im-
plemented to enable interaction with and management of remote labs. This
strong coupling and the lack of standardisation is impairing the ability for lab
owners to easily plug and share their remote labs with different platforms, and
for users to interact with these labs and with their peers in their preferred envi-
ronment. Lab owners cannot easily adapt solutions developed by others to their
own infrastructures. Teachers or students interested in exploiting remote labs
from various providers have to install a different solution for each of them and
cannot personalize it to their needs(Tawfik et al., 2014).

While the interfacing of a remote lab will always rely on ad hoc solutions because
of the large variety of the physical equipment and the associated instrumenta-

Go-Lab 317601 9 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

User

Web'
Environment'

!
!

Physical  
Lab

Client

!
Lab'Server'

Hardware'
Interface

Internet Services

Figure 1: Typical client-server remote lab architecture

tion (orange part in Figure 1), the way remote labs are made accessible through
the Internet can be standardised (S. H. W. G. D. Salzmann Christophe; Gov-
aerts, 2015) (green part in Figure 1). This deliverable describes how new re-
mote labs or legacy labs can be made accessible in a standardised way, directly
as Smart Devices or through the Smart Gateway. Such standardisation enables
a decoupling of the client and the server and a decoupling of the interaction
and management services. In other words, users can develop the clients they
need to be integrated in the environments they want. In Go-Lab, the clients are
developed as OpenSocial apps (see D5.1) that can be integrated in social me-
dia platforms or learning management systems supporting this Web application
standard.

1.2 Value Proposition
Go-Lab has carried out activities to clarify its value proposition for lab owners, in
order to foster adoption of the Go-Lab technology and/or to integrate their labs
in the Go-Lab infrastructure.

Two main events have been organised. First, an internal workshop took place
after the General Assembly in Madrid (March 17-19, 2014), with the members of
the technical cluster to define the value proposition from their own perspective
and discuss the Smart Device specifications. Second, a workshop was held
with selected lab owners for the Smart Device and Smart Gateway specifica-
tions, also in Madrid, June 4-6, 2014. See Appendix D of D4.1 R2 for more de-
tails regarding this workshop. The value-proposition canvas methodology was
used in both workshops (see Appendix C of D4.1 R2 for details regarding the
methodology).
In the two events, the core Go-Lab features have been introduced and then
discussed. They can be summarised as follows:

1. Go-Lab is promoting science education through inquiry learning with on-
line labs (coupling in an optimal way a proven learning methodology and
engaging learning resources).

2. Go-Lab is supporting inquiry learning activities with inquiry learning spaces
(ILS), which can be created freely by teachers and used in their regular ac-
tivities (teachers are still in control of their learning scenarios and they can

Go-Lab 317601 10 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

integrate Go-Lab resources in their usual classroom activities).

3. Go-Lab is enabling, through the ILS Platform, the creation of inquiry learn-
ing spaces that combine a rich set of content and services (including sup-
port applications), as well as structure (through tabs enforcing typical in-
quiry learning phases).

4. Go-Lab is offering, through its Lab Repository, a social scheme for sharing
online labs freely, support apps and inquiry learning spaces.

5. Go-Lab is providing scaffolding applications and services which rely on
learning analytics and support interoperability while enforcing privacy.

From a Go-Lab technical partner perspective, the major impacts of Go-Lab are
the following for teachers:

• a standardised interface for booking labs;

• interoperability between labs and apps, thus enabling richer user experi-
ence and better integration of the lab with the pedagogical approaches;

• support for learning analytics.

and for lab owners:

• a robust and secure implementation of the specifications to build their lab,
resulting in faster development and more robust and secure deployment;

• specifications and software packages enabling an easy plug of existing
labs online to enable reuse of existing labs in Go-Lab;

• reuse of client apps thanks to standardisation;

• easy addition of extra functionality provided by the Go-Lab infrastructure
which can make the lab more user-friendly and can speed up develop-
ment, e.g. a booking mechanism or learning analytics services;

• interoperability with existing apps (e.g. a data viewer app can visualise
data of any Smart Device), which again can speed up development and
increase the attractiveness of the lab for users;

• integration of the labs in various platforms and environments thanks to
open standards (e.g. OpenSocial, WebSockets & HTML5).

A more detailed analysis of the value-proposition canvas completed by Go-Lab
partners can be found in Appendix C of D4.1 R2.

From the lab owner perspective, the main Go-Lab value proposition is the pos-
sibility to combine technical resources and pedagogical structure in an ILS (bul-
let 3 above), and to make visible their own labs in the Go-Lab repository (bullet 4
above). The motivation for the latter is to attract funding to support the develop-
ment of their resources and the exploitation of their facilities. As a consequence,
the Smart Gateway is seen as an effective means to make their labs available
in the Go-Lab repository and compatible with the ILS Platform, with a minimal
adaptation on their side.

Go-Lab 317601 11 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

1.3 Integration Levels
To broaden the adoption of the proposed paradigms and ease the integration of
new or legacy labs in inquiry learning activities, Go-Lab enables various levels
of integration which can be chosen according to the possible resources a lab
owner can invest.

Full integration: A lab owner implements the Smart Device specifications
(see Section 2) on a chosen lab server and makes the necessary adaptation
to interface it with the real equipment and its instrumentation. An OpenSocial
client app is developed, which can be fully integrated in inquiry learning spaces,
exploits the available Go-Lab services and the lab interoperates with the avail-
able Go-Lab support apps.

Intermediary integration: A lab owner exploiting a legacy remote laboratory
management system implements a plug-in to interface an existing remote lab
through the Smart Gateway (see Section 3). An OpenSocial client is developed,
which can be fully integrated in inquiry learning spaces, exploits the available
Go-Lab services and the lab can interoperate with the available Go-Lab sup-
port apps. Different sublevels of integration are possible for this intermediary
integration, for more details see Section 3.

Low integration: A lab owner exploiting a legacy remote laboratory manage-
ment system integrates its existing client as an iFrame wrapped in an OpenSo-
cial app. This app can be integrated in inquiry learning spaces, but cannot
exploit the available GoLab services, neither interoperate with support apps.

This deliverable is split in two major parts: first, it introduces the Smart Device
specifications for the lab owner services in Section 2, and afterwards, it elabo-
rates on the Smart Gateway for the cloud services in Section 3. And Section 4
summarises and concludes this deliverable. Additionally, two appendices are
provided to further detail some of the work described in this deliverable, i.e.,
details on the extension of the metadata description language in Appendix A,
and an example of Smart Device metadata for a lab in Appendix B.

Go-Lab 317601 12 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

2 Lab Owner or Plug Services
Through the Smart Device specifications, lab owners can plug their labs easily
into the Go-Lab infrastructure (as described in Task 4.1 of the DoW). The Smart
Device paradigm revisits the traditional client-server approach on which many
remote lab implementations rely. The main differences between existing imple-
mentations and the Smart Devices are the complete decoupling of the server
and the client. This decoupling removes the umbilical cord between the two
so that they can live their own separate life. This Smart Device specifications
describe well-defined communication and interfaces between the client and the
server. Sufficient information is provided by the server to generate the client
applications, or reuse existing client applications based on this Smart Device
specifications. Since the specifications are common to many Smart Devices,
client apps are not tightly coupled to one server, which encourages interoper-
ability and reuse (S. H. W. G. D. Salzmann Christophe; Govaerts, 2015).

This document specifies both the interface and the communication specifica-
tions so that Smart Device-based solutions can easily be plugged into the Go-
Lab infrastructure. Similarly client applications can be reused or automatically
designed and plugged in the GoLab infrastructure. This paradigm can be ex-
tended to the Smart Gateway (see Section 3), where a dedicated proxy extends
the functionality of an existing solution that does not yet have the required ca-
pabilities.

Smart Devices mainly provide services to access the real world through actua-
tors and sensors (Thompson, 2005). The Smart Device interface or API differs
from traditional solutions that often provide a monolithic interface without the
possibility to access a specific service. There is no assumption regarding the
communication channels for Smart Devices (Cascado et al., 2011). The Internet
is the de facto choice for online labs (Auer, Pester, Ursutiu, & Samoila, 2003;
C. Salzmann & Gillet, 2008)(Tawfik et al., 2013). In addition, in Go-Lab the
specific choice of open Web technologies to enable a broader compatibility and
adoption has been made. Proprietary technologies will specifically be avoided
since they break the core ubiquitous access requirement.

The server implemented according to the Smart Device specifications may not
necessarily provide a User Interface (UI), but often proposes a minimal UI that
can be rendered at the client side. This means that the client device may render
UIs from different providers, since the Smart Device specifications foster and
promote the reuse of existing client applications. Web browsers are the pre-
ferred environments to render the UI at the client side. There is often a direct
relation between a Smart Device service and the app to render the informa-
tion within the client UI. For example, an oscilloscope app renders the Voltage
evolution measured by a sensor of the Smart Device.

The Smart Device provides services and functionalities. A service represents,
for instance, a sensor or an actuator that is made available to the outside world
(i.e., the client) through the API. Services are fully described and documented
so that a client can use them without additional explanation. A functionality is

Go-Lab 317601 13 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

an internal behavior provided by the Smart Device, there may be communica-
tion between functionalities and the client application through services but not
necessarily. While the required services are fully described through the API,
the functionalities are only recommended, and best practice guidelines are pro-
vided. For example, there can be an actuator service that enables the client
application to set the voltage of a motor connected to the server, and a function-
ality that checks that the maximum voltage is not exceeded (and corrects it if
needed). The actuator service is well described by the Smart Device metadata,
on the other hand the internal validation mechanism is left to the lab owner’s
discretion since it will be mainly ad-hoc. Still, such a mechanism has to be im-
plemented to ensure that client applications will not break the server and the
connected equipment.

2.1 The Smart Device Architecture
As mentioned, the Smart Device specifications provide a well-defined set of
interfaces that enable communication between the remote lab and external ser-
vices and applications. Figure 2 provides a basic architecture with a few exam-
ples of interactions with the Smart Device. The Figure illustrates a Smart Device
that provides a set of interfaces, (Section 2.3 describes the interfaces defined as
services in more detail). Some interfaces are required, some are optional (see
Section 2.3). The Smart Device abstracts the implementation of the remote lab.
Hence, the specifications do not define the communication between the Smart
Device and the Remote Lab component in Figure 2. The communication in the
left part of Figure 2 is what the Smart Device specifies, namely the protocols and
data formats of the interfaces of the Smart Device (i.e., the ‘metadata’, ‘client’,
‘sensor’, ‘actuator’ and ‘logging’ interface in Figure 2). For instance, a metadata
repository can retrieve the metadata of any Smart Device, index it and provide a
lab search engine. Because the interfaces are well-defined, client apps can be
reused among Smart Devices. For example, one Data Viewer Client or Learn-
ing Analytics Client could retrieve data from any Smart Device and present it to
the user.

Additionally, the Smart Device specifies a metadata format that describes the
Smart Device, its functionalities and its services. In the remainder of this chap-
ter, we will explain this metadata and each service and functionality.

2.1.1 The Smart Device in the Go-Lab Infrastructure

As described above, the well-defined interfaces of the Smart Device ensure that
a client app and a service can communicate with any Smart Device, if needed.
This section will discuss the Go-Lab platforms and services that interact with
the Smart Device. The overview component UML diagram is shown in Figure 3.
In addition to enabling user interaction with the remote lab, the Smart Device
interacts and enables the following features in the Go-Lab infrastructure:

• Publishing labs on the Lab Repository: A lab owner can publish any lab on
the Go-Lab Lab Repository1 (see D5.2). If a lab supports the Smart Device

1Golabz, http://www.golabz.eu

Go-Lab 317601 14 of 135

http://www.golabz.eu

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Figure 2: UML Component diagram of different clients making use of the
most common Smart Device services (arrows represent calls)

specifications, the metadata of the Smart Device can be retrieved and
parts of the required metadata (see D2.1) can be automatically filled in.
Additionally, the client apps to control the lab can be added automatically.
In step 1.1 in Figure 3, the Metadata Annotator of the Lab Repository can
retrieve the metadata of the Smart Device and the client apps provided by
the lab owner in step 1.2.

• Retrieving lab metadata: The automatically created metadata can then
be retrieved by the Learning Analytics backend services for analysis pur-
poses (see D4.2). Step 2 illustrates how the lab metadata can be retrieved
from the Metadata Manager in the Lab Repository by the Artefact Man-
ager, as documented in D4.2.

• Tracking user activity: The Smart Device contains a user activity logging
service that enables the delivery of learning analytics. Step 3.1 shows
how an app on the ILS Platform (see D5.2) can retrieve user activity infor-
mation from the Smart Device and passes it to Shindig (step 3.2), to the
ILS Tracking Agent (step 3.3) and then to the Action Logging Service of
the Learning Analytics Backend Services where the user activity is stored.
This process is explained in more detail in D4.2.

• Booking a lab: The Smart Device itself does not contain a booking mech-
anism, but makes use of existing booking mechanisms. If a Smart Device
requires booking, a user retrieves a booking authentication token from the
Booking System and with this authentication token, the user can authen-
ticate with the Smart Device, as described in D4.2. The Smart Device
itself only contains logic to validate the authentication token provided by
the user. Step 4 illustrates that the Smart Device has an Authentication
component that validates authentication tokens with the Booking System
(see D4.2 and Section 2.4.1).

Go-Lab 317601 15 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Figure 3: UML Component diagram of the interactions between different
Go-Lab services and the Smart Device

Note, the above features will only be available if the corresponding Smart Device
services are implemented. Publishing and retrieving lab metadata will work for
any Smart Device because the metadata service is required, but the tracking
of user activity makes use of an optional logging service and the booking will
obviously only be available when booking is needed. In Section 2.3, we will
further elaborate on the different Smart Device services and whether they are
required.

2.2 Smart Device Protocols and Technical details
Since, we want to enable access to remote laboratories via the Internet and
use a Web-based ILS Platform (see D5.2), the Smart Device should enable
Web clients to connect to its interfaces. Therefore, we will rely on standardised
Web protocols to provide the data transfer between the Smart Device and ex-

Go-Lab 317601 16 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

ternal services and applications. Typically, widely used candidates are HTTP
and recently also WebSockets. There are different types of HTTP-based Web
Services available, such as SOAP and REST. The problem with most HTTP-
based Web Services is that they are synchronous and follow a request-response
schema. In such solutions, data can often only be ‘pulled’ from the server and
the server cannot initiate a ‘push’ of information to the clients (Push technol-
ogy)2. Remote laboratory experiments, often require asynchronous data trans-
fer. For instance, an experiment that takes a long, unknown time to complete,
should preferably be able to push its results to the clients. This is possible using
HTTP-based solutions, but the solutions are often very inefficient, since they
use the underlying synchronous methods, e.g. long polling3.

WebSockets4 on the other hand are asynchronous by nature and allow both
pulling and pushing. This provides a bi-directional, full-duplex communication
channel between the server and the browser. WebSockets are a recent technol-
ogy, but are currently supported by all modern browsers5. Since WebSockets
enable both push and pull technology in an efficient way and with less program-
ming effort than for instance REST and SOAP, we have selected WebSockets as
the protocol for the Smart Device services. Only the metadata service, which
just requires text retrieval, will be provided via HTTP GET, so it is very easily
accessible and can just be hosted as a file on a Web server.

In addition to these two decisions, we make the following recommendations for
the protocols of the Smart Device:

• The Web server for the metadata best runs on port 80 or 443 to ensure
access behind institutional and corporate firewalls.

• The WebSocket server preferably also runs on port 80 for the same rea-
sons.

2.3 Smart Device Services and Functionalities
2.3.1 Introduction

As mentioned above, a Smart Device consists of a set of well-defined services
that enable interoperability with external applications and internal functionalities.
In this section, we will elaborate on the Smart Device’s services and functional-
ities. First, we provide an overview of all services and functionalities. Then, we
will elaborate on each service and functionality separately.

First, we will introduce some terminology:

• We use the terms sensors and actuators to reflect the information direction
relative to the Smart Device. In this section, the various representations of
sensors and actuators will be defined. For example, a sensor enables the

2Push Technology – Wikipedia, http://en.wikipedia.org/wiki/Push_technology
3Long Polling – Wikipedia, http://en.wikipedia.org/wiki/Push_technology#Long

_polling
4Websocket specification – Wikipedia, http://tools.ietf.org/html/rfc6455
5Can I use Web Sockets?, http://caniuse.com/websockets

Go-Lab 317601 17 of 135

http://en.wikipedia.org/wiki/Push_technology
http://en.wikipedia.org/wiki/Push_technology#Long_polling
http://en.wikipedia.org/wiki/Push_technology#Long_polling
http://tools.ietf.org/html/rfc6455
http://caniuse.com/websockets

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

reading of a value from a thermometer. An actuator enables the setting of
a value, for example setting a motor voltage.

• Sensors and actuators can be physical (temperature sensor), virtual (com-
puted speed derived from a position measurement) or complex that repre-
sents an aggregation of sensors/actuators (knobs that form the front panel
of an oscilloscope).

• Both the sensor and the actuator can be configured, see the metadata
service in Section 2.3.3.

2.3.2 List of Services and Functionalities

This section lists required and optional services, and functionalities of a Smart
Device. We will elaborate on each one in the next sections.

Required Services:

Metadata service: This service returns a description of the lab, its mechanisms
and external services. The information provided by this service should be suffi-
cient to programmatically define a UI and the related client-server communica-
tion.

Sensor service: This service returns data from a ‘sensor’ of the remote lab.

Actuator service: This service allows to control an ‘actuator’ of the remote lab.

Optional Services:

Client app service: a list of lab client applications may be provided by the Smart
Device.

User activity logging service: This optional service provides a method to retrieve
logged user actions. This service can be based on the ‘Logging and Alarms’
functionality discussed below.

Models service: Various information about the connected equipment can be
sent to the client application. For example, a 3D (or 2D) graphical model de-
scribing the connected equipment could be defined in the form of a VRML file.
Similarly, a mathematical model describing the connected equipment can be
sent in the form of dynamical equations, these equations could be used to sim-
ulate the equipment at the client side. Both these models could be read or
modified through the means of virtual sensors/actuators.

Functionalities – Best Practices:

Internal functionalities are suggestions to be implemented in the Smart Device.
Therefore, we provide only best practices. These functionalities are often ad-
hoc and strongly related to the connected equipment, it is thus difficult to give
precise specifications.

Authentication functionality: The Smart Device does not comprise a booking
system. It can make use of an external booking system, such as the Go-Lab
booking system (see D4.2). As described in D4.2, the Go-Lab booking system
will provide an authentication token upon the creation of a booking. With this

Go-Lab 317601 18 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

authentication token, a user can connect to the Smart Device. The Smart De-
vice then needs to contact the booking system to validate whether the user is
currently allowed to access the Smart Device. Thus, the Smart Device imple-
mentation requires limited effort, compared to providing its own authentication
and booking mechanisms. We will briefly summarise the D4.2 specifications in
Section 2.4.1.

Self and known state functionality: This functionality is recommended and its
precise implementation is left to the lab owner’s discretion. This functionality
ensures that the remote lab is left in a proper state after the current experimen-
tation session is completed so that the next user will be able to use it. Similarly,
after a power outage the system should be able to come back to a predefined
state. Remote experiments are supposed to be conducted remotely and thus
no one is expected to be in the neighbourhood of the experiment to put it back
in a known state. In addition, connections could occur anytime during the day
or night. Thus, the system should be as autonomous as possible. This implies
an adequate design of the experiment and a defensive software design that is
able to adapt to ‘any’ situation. The lab owner should implement the following
procedures in the Smart Device and its hardware:

• automatic initialization at startup (regular or power outage)

• reset to a known state after the last client disconnect

• calibration after some time if it makes sense

Security and local control: This functionality is recommended and its precise
implementation is left to the lab owner’s discretion. At all time, the security
of the server and its connected equipment must be ensured. All commands
received or computed should be validated before being applied to the connected
equipment. This step may require the addition of a local controller to track the
state of the connected equipment, for example a speed increase may need
to follow a ramp before being applied to a motor. The controller parameters
could be read or modified through the means of virtual sensors and actuators.
Experienced lab owners know that users will try to take the system to its limits.
These limits are not only the physical limit of a given sensor/actuator, but the
pattern of the applied signal to a given sensor over time may also need to be
considered. For example applying 5V to a 10V motor is without risk if it is
applied once. On the other hand, applying a +/- 5V square pattern to the same
motor for an hour may destroy it. Since the Smart Device may be connected
to the real world via its actuators, it is essential to validate all values applied
the actuators considering potential external constraints. This validation process
could be simplified by an adequate design of the experiment itself, this may
include an additional sensor to measure the environment in which the Smart
Device operates. The lab owner should implement the following procedures in
the Smart Device:

• value validation before applying them to the actuator, considering actuator
range and other temporal considerations.

Go-Lab 317601 19 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

• actuator state validation to check if the command to be applied is safe for
the environment.

Logging and alarms: This functionality provides a way to log session information
as well as user interactions. In addition, it can also include logging information
specific to the lab itself. In case of problems (e.g. malfunction or power outage)
alarms may be automatically triggered by this functionality. The Smart Device
will be online unattended for an extended period of time. It is primordial to
have a mechanism to perform post mortem (after the problem occured) analysis.
The user action is the first information to be logged, this information can be
accessible via the user activity logging service (see Section 2.3.6). But extra
information should also be logged, for example the state of the system via the
available sensors and the environment (for example room temperature) if there
is a method to measure it. Note that sensors may be available internally to the
Smart Device but not necessarily accessible via the sensor service. The lab
owner could implement the following information in the Smart Device:

• log user actions

• log the complete system state

• log its surrounding state

By definition the Smart Device is connected to the Internet and has no knowl-
edge of the client device, thus it needs to take proper action to save itself from
abuse. A firewall or a DMZ6 may protect it from external intruders or menaces.
While some hostile actions may be reduced using such mechanisms, the Smart
Device should add internally additional measures:

• validate the requests sent by the client even though the client is correctly
identified

• throttle continuous requests of a malicious client application

• log all internet connections and request for later analysis

If an unexpected event occurs, its potential danger should be assessed by the
Smart Device and eventually an alarm may be triggered (and the logger). This
alarm may follow a completely different path than the other information path. An
alarm concerning the lack of the Internet connection should not be sent to the
lab owner through the internet but via for example SMS.

Local simulation: a local simulation might be proposed to the client if the equip-
ment is used by someone else. The simulation data and parameters could be
read or modify through virtual sensors/actuators. A mathematical model de-
scribing the state of the physical equipment connected may be available. This
model can be made available to the client via the Models service and the client
application designer may decide to use this model to simulate the connected
physical equipment. This simulation requires computational resources that may
not be available at the client device. Thus it is possible to perform this computa-

6Demilitarized Zone (DMZ), http://en.wikipedia.org/wiki/DMZ_(computing)

Go-Lab 317601 20 of 135

http://en.wikipedia.org/wiki/DMZ_(computing)

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

tion at the server side and send the result to the client application using virtual
sensors and actuators.

2.3.3 Metadata Service

The metadata service is a required service that is at the core of the interoper-
ability provided by the Smart Device specifications. This service provides on
the one hand a general description of the lab, which is useful for publishing a
Smart Device lab into the lab repository as discussed in Section 2.1.1. On the
other hand the metadata provides technical details of the lab. This technical
information creates the interoperability features of a Smart Device and can be
used to generate user interfaces automatically.

First, this section will elaborate on different, existing web service description lan-
guages and justify the choice of the adopted description language. Second, we
explain the metadata specifications. Afterwards, the metadata for the required
services is described and we explain how one can add metadata for extra ser-
vices. Finally, we specify how the metadata should be made accessible from a
Smart Device.

Comparison of Web Service Description Languages

To describe the metadata of a Smart Device we investigated several options
to describe Web service specifications. The main goal was not to reinvent the
wheel, but to use robust and complete specifications if possible. Furthermore,
some specifications allow the automatic generation of client applications. Since
we did not find Web service description languages specific to the WebSocket
protocol, we have considered SOAP and REST-based description languages for
inspiration.

One of the most popular Web service description languages is WSDL7, which
originally focused strongly on SOAP Web services and provides better support
for RESTful Web services since version 2.0. However, currently software sup-
port for WSDL 2.0 is often poor8. WSDL is also XML-based and in all other
specifications we have opted for JSON. On request of the JavaScript commu-
nity, JSON-WSP 9 was created. Nonetheless, the JSON-WSP specification did
not gain traction.

There are also description languages dedicated to RESTful services. WADL (Hadley,
2009) is an XML-based description language which can be considered as the
REST equivalent of the original WSDL specification for SOAP. Similar to WADL
is RSDL10, also an XML-based language but more focused on the structure of
the Web service URIs. Another option is RAML11 that uses the YAML format
and also relies on markdown for descriptions and JSON Schema12.

7Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl
8Web Services Description Language – Wikipedia, http://en.wikipedia.org/wiki/Web

_Services_Description_Language
9JSON-WSP – Wikipedia, http://en.wikipedia.org/wiki/Jsonwsp

10RESTful Service Description Language (RSDL), http://en.wikipedia.org/wiki/RSDL
11RESTful API Modeling Language (RAML), http://raml.org/
12JSON Schema specification – JSON Schema: core definitions and terminology json-

Go-Lab 317601 21 of 135

http://www.w3.org/TR/wsdl
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://en.wikipedia.org/wiki/Jsonwsp
http://en.wikipedia.org/wiki/RSDL
http://raml.org/

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

For the Smart Device specifications, we have opted for Swagger13. Swagger is a
JSON-based description language meant for RESTful APIs, but we have easily
extend it to WebSockets. Swagger aims at providing a web service description
for both humans and computers. Therefore, it is strongly focused on automati-
cally generating user interfaces14, which is one of our goals. Swagger is based
on JSON Schema to specify the data format of requests and responses. Due to
the large and growing list of supporting tools, Swagger is getting good uptake.
As mentioned, to achieve the requirements of the Smart Device specifications,
we had to extend the Swagger specification in a limited way, so our adapted
Swagger version still holds all of the Swagger qualities. This was achieved by
adding support for WebSockets as a protocol and included some extra meta-
data blocks as well as some extra values for Swagger fields to fit our needs.
In the remainder of this section, we will elaborate on how we have applied and
extended Swagger for the Smart Device Specifications.

Smart Device Metadata Concepts

As previously stated, the goal of the Smart Device metadata is manifold:

• describe the lab (e.g., who is the contact person and describe what the
aims of the lab are)

• describe integration with other Go-Lab services (e.g., authentication de-
tails with the booking service)

• describe concurrency mechanisms of the lab (e.g., how does the lab allow
observations, while someone is doing an experiment?)

• describe and define the services that the Smart Device provides (e.g.,
specify the format of the requests and responses of a service)

Additional requirements are that the metadata specification should be easily
extendable if the Smart Device developer wants to add services. Furthermore,
for a simple Smart Device, it would be good if the developer does not have to
learn details of the Swagger specification. Based on these requirements, we
have made the following design choices:

• Sensor & actuator metadata service: The metadata that describes the
available sensors and actuators is provided by a service. This way the
developer of a simple Smart Device needs to edit just a few lines in the
metadata and does not need to add complex descriptions of actuators and
sensors. The Smart Device software packages provided by Go-Lab can
already implement these services so the developer just has to add the
return values in the code. This also enables the developer to keep the
sensor and actuator metadata very close to the actual implementation of

schema-core, http://json-schema.org/latest/json-schema-core.html
13Swagger website, http://swagger.io/
14To showcase the automatic user interface generation in Swagger, they have a demo avail-

able that allows anyone through a simple user interface to interact with a sample Web ser-
vice, see http://petstore.swagger.io/. This UI is completely generated solely based on the
Swagger description

Go-Lab 317601 22 of 135

http://json-schema.org/latest/json-schema-core.html
http://swagger.io/
http://petstore.swagger.io/

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

the logic that measures sensors and controls actuators.

• Service names: Each service needs to have a method name (‘nickname’
in Swagger parlance) (e.g., the service for the sensor metadata is called
‘getSensorMetadata’) and each request and response of a service needs
to pass the method name. By adding this extra metadata to the service
communication data format, it is possible to channel calls to different ser-
vices over one WebSocket (see Section 2.4.3 for more details). Further-
more, the nicknames are used to control access to services (more on this
below).

There are other small design choices made that do not have global impact.
These will be discussed in the following sections where needed.

General Smart Device Metadata Specification

The official documentation for the Swagger RESTful API specification can be
found on https://github.com/wordnik/swagger-spec/blob/master/versions/
1.2.md.
The Swagger specification is typically split over multiple files. The file with
the general metadata is physically located in the root path of the service (e.g.
http://smartlab.golab.eu/service). Then there are different files for each
separate service (e.g. if the sensor service is located at http://smartlab
.golab.eu/service/sensor then there will be a Swagger file with the specifica-
tion of the sensor service). In the case of WebSockets this makes less sense,
since there is not necessarily an HTTP path available. So we have opted to
provide one specification file, containing the general metadata and all service-
specific metadata. Appendix A contains a full Swagger specification for a Smart
Device. This example is also available on GitHub.15

This section introduces the general structure of the adapted Swagger file. The
example code snippet below (Listing 2.3.3), demonstrates five parts: (1) Swag-
ger related metadata, (2) a list of APIs, (3) the authorisation mechanisms, (4)
the Smart Device concurrent access mechanisms and (5) information of the
service in general.

Listing 2.1: The general structure of the Smart Device metadata based on
Swagger.

{
"apiVersion": "1.0.0",
"swaggerVersion": "1.2",
"basePath": "http://redlab.epfl.ch/smartdevice",
"apis": [

{
"path": "/client",
"description": "Operations about clients for the lab",

...

15The Swagger specification for an example Smart Device, https://github.com/Go-Lab/
smart-device-metadata

Go-Lab 317601 23 of 135

https://github.com/wordnik/swagger-spec/blob/master/versions/1.2.md
https://github.com/wordnik/swagger-spec/blob/master/versions/1.2.md
http://smartlab.golab.eu/service
http://smartlab.golab.eu/service/sensor
http://smartlab.golab.eu/service/sensor
https://github.com/Go-Lab/smart-device-metadata
https://github.com/Go-Lab/smart-device-metadata

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

},
{

"path": "/sensor",
"description": "Operations about sensors",

...
},
{

"path": "/actuator",
"description": "Operations about actuators",

...
},
{

"path": "/",
"description": "A general endpoint that allows to access any

operation of any service",
...

}
],
"authorizations": {

"goLabBooking": {
"type": "apiKey",
"passAs": "query",
"keyName": "authToken",
"authServiceUrl": "http://booking.golabz.eu/auth"

}
},
"concurrency": { /* Swagger extension: */

"interactionMode": "synchronous",
"concurrencyScheme": "roles",
"roleSelectionMechanism": ["race", "interruptor"],
"roles": [

{
"role": "observer",
"selectionMechanism": ["race"],
"availableApis": ["getSensors"]

},
{

"role": "controller",
"selectionMechanism": ["race"]

},
{

"role": "admin",
"selectionMechanism": ["interruptor"]

}
]

},
"info": {

"title": "RED Lab Smart Device",
"description": "This is an example implementation of the Go-Lab

Go-Lab 317601 24 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Smart Device in LabView and demonstrates a mechatronics
remote lab running at EPFL",

"termsOfServiceUrl": "http://helloreverb.com/terms/",
"contact": "christophe.salzmann@epfl.ch",
"license": "Apache 2.0",
"licenseUrl": "http://www.apache.org/licenses/LICENSE-2.0.html"

}
}

Swagger-Related Metadata: Looking closer at the snippet, the Swagger spec-
ification requires the following fields to declare the version of Swagger and the
API. The version of Swagger should not be changed by the developer.

Listing 2.2: Swagger-related metadata example
"apiVersion": "1.0.0",
"swaggerVersion": "1.2",

API Metadata: The abridged snippet below lists all API endpoints of the Smart
Device and the root URL path of the service in the ‘basePath’ field. Each API
endpoint has a path and a basic description. The other fields will be discussed
in the sections specific to each service. We can also provide a general API
endpoint, with the path ‘/’, where a WebSocket can connect to any service of
the Smart Device. This is useful to channel calls in one WebSocket (see Sec-
tion 2.4.3 for more details).

Listing 2.3: API metadata example
"basePath": "http://redlab.epfl.ch/smartdevice",
"apis": [

{
"path": "/client",
"description": "Operations about clients for the lab",
...

},
...
{

"path": "/",
"description": "A general endpoint that allows to access any

operation on any service"
...

}
]

Authorisation Metadata: Swagger supports common REST-based authenti-
cation and authorisation mechanisms, e.g., OAuth. For the Go-Lab booking
system (see D4.2), we have decided to use token-based authorisation, which is
very similar to the ‘apikey’ type that Swagger supports by default, but it is a tem-
porary API key for the duration of the booking. The snippet below also defines

Go-Lab 317601 25 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

the authorisation service endpoint of the booking system. If future implementa-
tions prove that this is insufficient, we will provide a custom Go-Lab solution in
D4.5.

Listing 2.4: Authorisation metadata example
"authorizations": {

"goLabBooking": {
"type": "apiKey",
"passAs": "query",
"keyName": "authToken",
"authServiceUrl": "http://booking.golabz.eu/auth"

}
}

Concurrent Access Metadata: We have extended the Swagger API to be able
to model the concurrency models of remote labs, so client applications can han-
dle the different mechanisms appropriately. Different concurrency mechanisms
exist and it is up to the lab owner to decide on the appropriate scheme for his
lab. The ‘concurrency’ metadata field is meant to describe such mechanisms,
as shown in the following example snippet:

Listing 2.5: Concurrent access metadata example
"concurrency": { /* Swagger extension: */

"interactionMode": "synchronous", /* can also be ’asynchronous’ */
"concurrencyScheme": "roles", /* can also be ’concurrent’ then all

users have access at the same time */
"roleSelectionMechanism": ["race", "interruptor"], /* can also be

’queue’, ’fixed role’, ’dynamic role’ */
"roles": [

{
"role": "observer",
"selectionMechanism": ["race"],
"availableApis": ["getSensors"] /* a list of paths or

operation nicknames */
},
{

"role": "controller",
"selectionMechanism": ["race"]

},
{

"role": "admin",
"selectionMechanism": ["interruptor"]

}
]

}

One can interact with a lab in a synchronous or asynchronous way. If the lab

Go-Lab 317601 26 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

is synchronous, the users are interacting directly with the lab. If there are other
people using the lab concurrently the user is aware of their actions, if supported
by the lab owner. If the lab is asynchronous, the user typically prepares an
experiment, submits it to the lab and waits to get results back. Users are not
aware of other users’ activity in this case.

The rest of this metadata is for synchronous labs, since asynchronous labs can
internally deal with concurrency issues. There are typically two possible concur-
rency schemes ‘concurrent’ and ‘roles’ (modelled in the ‘concurrencyScheme’
field). Either the lab allows users to operate the experiment at the same time, or
provides different user roles to control access to the experiment. Like in other
computer access control mechanisms, user roles limit the control to the system,
in our case the services. We identify two types of user roles:

• fixed role: The user cannot be promoted from one role to another, e.g. the
teacher can control the Smart Device but the students can only observe.

• dynamic role: The user’s role can change during the session, e.g. a user
who is observing an experiment can at a later point control it.

Different mechanisms (modelled in the ‘roleSelectionMechanism’) are used to
switch between roles. We identify the following options:

• race: The user who tries to access the Smart Device at the time no other
user is using it, gets access. If the Smart Device is busy, the user has to
retry until it is available.

• queue: When a user accesses the Smart Device, she is added to a waiting
queue and she will get access when the others before her have finished.

• interruptor: The user has the ability to abort the session of the currently
active user and take control of the Smart Device.

Finally, each role can be described in the ‘roles’ field. Each role has a name (in
the ‘role’ field), and the role selection mechanisms that this role has are listed
in ‘roleSelectionMechanism’. Furthermore, the role can declare which services
are accessible if the user is assigned a particular role, in the ‘availableApis’ field.

General metadata: The general metadata provides information about the lab,
such as the name, a short description, a contact person, and licensing informa-
tion. These are default Swagger fields that can be useful when publishing a lab
on the Lab Repository. The snippet below provides an example:

Listing 2.6: General metadata example
"info": {

"title": "RED Lab Smart Device",
"description": "This is an example implementation of the Go-Lab

Smart Device in LabVIEW, it demonstrates a mechatronics remote
lab running at EPFL",

"termsOfServiceUrl": "http://redlab.epfl.ch/terms/",
"contact": "christophe.salzmann@epfl.ch",
"license": "Apache 2.0",

Go-Lab 317601 27 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"licenseUrl": "http://www.apache.org/licenses/LICENSE-2.0.html"
}

Service Metadata Specification

As mentioned, each Smart Device service needs to be declared in the Swagger
specification. To do this, a JSON object needs to be added to the ‘apis’ field
of Swagger and optionally new data models need to be added to the ‘models’
field (see below). However, we have tried to design the specification, so that for
simple Smart Device developers do not need to learn how to describe a service
in the metadata. Go-Lab provides reusable service metadata descriptions for
the sensor, actuator and logging services. In this section we will present a
simple example of a service Swagger specification, namely the user activity
logging service. Afterwards we will elaborate on the metadata for the sensor
and actuators.

User activity logging service – getLoggingInfo:
The user activity logging service is described in Section 2.3.6 in more detail. But
essentially, we want to return ActivityStream objects (see D5.1) of the user ac-
tivity, to the client. The following snippet provides the description of the service
and its data models:

Listing 2.7: An example of a service declaration – the user activity logging
service.

"apis": [
{

"path": "/logging",
"description": "Returns the user activity of the current user in

ActivityStream format",
"protocol": "WebSocket",
"operations": [

{
"method": "Send",
"nickname": "getLoggingInfo",
"summary": "Streams the current logging information of

the user activities and the lab activities",
"notes": "Returns a JSON array of Activity Stream

objects, see http://activitystrea.ms/",
"type": "LoggingInfoResponse",
"webSocketType": "text",
"produces": "application/json",
"parameters": [

{
"name": "message",
"description": "the payload for the getLoggingInfo

service",
"required": true,
"paramType": "message",
"type": "SimpleRequest",

Go-Lab 317601 28 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"allowMultiple": false
}

]
}

],
"responseMessages": [

{
"code": 401,
"message": "Unauthorised access. The authentication token

is not valid"
},
{

"code": 402,
"message": "Too many users"

},
{

"code": 405,
"message": "Method not allowed. The requested method is

not allowed by this server."
},
{

"code": 422,
"message": "The request body is unprocessable"

}
]

}
],
"models": {

"LoggingInfoResponse": {
"id": "LoggingInfoResponse",
"required": [

"method", "logs"
],
"properties": {

"method": {
"type": "string"

},
"logs": {

"type": "array",
"items": {

"type": "object",
"description": "An Activity Stream object. This JSON

object should follow the ActivityStreams 1.0 JSON
specification described at
http://activitystrea.ms/specs/json/1.0/"

}
}

}
},

Go-Lab 317601 29 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"SimpleRequest": {
"id": "SimpleRequest",
"required": [

"method"
],
"properties": {

"authToken": {
"type": "string"

},
"method": {

"type": "string",
"description": "The method should be equal to the

nickname of one of the provided services."
}

}
}

}

To add a service one needs to add a JSON object to the ‘apis’ array (here only
the discussed element is shown for brevity), and add JSON objects describing
the necessary data models to the ‘models’ array (if applicable).

The API object contains the path and description as mentioned before, and also
an optional ‘protocol’ field to express that the service uses WebSockets. This
is our extension to Swagger to support WebSockets and it could also have the
value ‘HTTP’ in case REST services are needed. Then the Swagger specifica-
tion declares a list of ‘operations’ that contain all services and ‘responseMes-
sages’ that contain all error messages that the service can return (relying on
HTTP status codes (Hypertext Transfer Protocol (HTTP) Status Code Registry
(RFC7231), 2014)). In this case, there is only one service with the nickname
‘getLoggingInfo’. Then one can specify the protocol method, in case of Web-
Sockets this is ‘Send’16. If the HTTP protocol would be used, the methods can
be GET, PUT, POST, DELETE, etc. Another Go-Lab extension to support Web-
Sockets is ‘WebSocketType’ to enable the configuration of ‘text’ or ‘binary’ Web-
Sockets. Binary WebSockets can make the transmission of binary data much
more efficient, e.g. this is useful for video streaming. Additional documentation
can be provided in the ‘summary’ and ‘notes’ fields. Next, the service argu-
ments and results can be configured. The ‘type’ field contains either a JSON
Schema primitive data type17,18 or the ID of a model in the ‘models’ list. In this
case it refers to the ‘LoggingInfoResponse’ data model, which we will elabo-
rate on below. Then one can also model the response media type using the

16When WebSockets are used, the ‘Send’ method can be omitted since there typically is only
one WebSocket method. However in some WebSocket dialects other methods can be available
that have to be defined, e.g Socket.io also has a ‘emit’ method (see http://socket.io/docs/).

17Swagger RESTful API Documentation Specification, https://github.com/wordnik/
swagger-spec/blob/master/versions/1.2.md

18JSON Schema specification – JSON Schema: core definitions and terminology json-
schema-core, http://json-schema.org/latest/json-schema-core.html

Go-Lab 317601 30 of 135

http://socket.io/docs/
https://github.com/wordnik/swagger-spec/blob/master/versions/1.2.md
https://github.com/wordnik/swagger-spec/blob/master/versions/1.2.md
http://json-schema.org/latest/json-schema-core.html

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

‘produces’ field, which can contain any Internet Media Type (Freed, Baker, &
Hoehrmann, 2014). This can be particularly useful for a service that returns
for example images or structured text. The ‘parameters’ field contains a list of
arguments that can be passed to the service. Typically this is only one field and
it is a request data model. We have provided a simple request model, namely
‘SimpleRequest’. More complex request models can of course be defined by
the developer when needed.

Both the request and response data models are available in the ‘models’ array.
The models used by other services have been omitted in Listing 2.7 for brevity.
These models are expressed in JSON Schema. JSON Schema models have an
‘id’, ‘required’ and ‘properties’ fields. The ‘id’ field is required and is used to ref-
erence the model, e.g. in the ‘type’ fields. The ‘properties’ field contains a list of
fields of the data model. The ‘required’ field lists all fields of the ‘properties’ field
that must be provided in the data model. The elements of the ‘properties’ array
express the data type of each of the data model fields. For example, the ‘Sim-
pleRequest’ model has an ‘authToken’ field of the type ‘string’ and a ‘method’
field of the type ‘string’. As mentioned before, this ‘method’ field should contain
the nickname of the service, i.e., ‘getLoggingInfo’. Looking at the ‘LoggingIn-
foResponse’ data model, one notices again the ‘method’ field and the ‘logs’
field which is an array with JSON objects that should be ActivityStream objects.
We did not express the whole ActivityStream data model here.

For more information on how to add a new service we refer to the Swagger spec-
ification (Swagger RESTful API Documentation Specification, n.d.), the JSON
Schema specification and Appendix A, which lists how we have extended Swag-
ger.

Sensor Metadata Service – getSensorMetadata:

As previously mentioned, the metadata that describe the Smart Device sensors
and actuators are provided via a service and not in the metadata description
itself. In this section we will elaborate on the sensor metadata. We will describe
how one can call the service, and catch the response. The Swagger sensor
service specification can be found in Appendix B.

The service is called ‘getSensorMetadata’ and can be called with a ‘SimpleRequest’
data model, which is just a JSON object with a ‘method’ field and an optional
authentication token (which is not needed to retrieve metadata):

Listing 2.8: Request example of getSensorMetadata service.
{

"method": "getSensorMetadata"
}

This returns an array of sensors describing each sensor made available to the
outside world (i.e., a client or external service). The following example shows
two sensors: a 3D acceleration sensor and a video stream.

Go-Lab 317601 31 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Listing 2.9: Response example from getSensorMetadata service.
{

"method": "getSensorMetadata",
"sensors": [

{
"sensorId": "3Dacc",
"fullName": "3D acceleration",
"description": "the 3D acceleration of the robot handle",
"webSocketType": "text",
"produces": "application/json",
"values": [

{
"name": "X",
"unit": "m*s^-2",
"type": "double",
"lastMeasured": "2014-06-23T18:25:43.511Z",
"rangeMinimum": -100.00,
"rangeMaximum": 100.00,
"rangeStep": 0.10,
"updateFrequency": 10 /* in Hertz */

},
/* Repeat for ’Y’ and ’Z’ acceleration */
{

"name": "Y",
...

},
{

"name": "Z",
...

}

]

Several sensor or actuator configurations may be required. In the ‘configuration’
field, the different parameters to configure the sensor can be described using
JSON Schema compliant primitive types or models.

"configuration":[
{

"parameter": "precision",
"description": "The precision is expressed as a power

of 10, e.g. to allow a precision of 0.01 the value
will be -2 (from 10^-2).",

"type": "int"
}

],

The accelerometer will continuously stream information to the client. The ‘user-

Go-Lab 317601 32 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

ModifiableFrequency’ field describes if the interval can be modified or not.

"accessMode": {
"type": "push",
"nominalUpdateInterval": 100, /* in ms */
"userModifiableFrequency": true

}
},

Streaming video to the client is an essential service that a Smart Device should
provide through a sensor. Actually the video image could either be seen as
a pixmap (array of pixel values), or as an encoded image, for example JPEG
encoded. The later being 10% to 90% smaller in size. The example below
shows the image encoded as a JPEG image (specified as a media type in the
‘produces’ field). The JPEG encoding results in binary data that may contain
specific characters that could be interpreted as control characters, thus either
the JPEG data is transmitted through a binary WebSocket (recommended) or it
is BinHex prior to be sent using a textual WebSocket (defined in the ‘webSock-
etType’ field). The metadata also describes which configuration parameters are
exposed to the client.

Listing 2.10: Example of a video stream sensor and its configuration
{

"sensorId": "video",
"fullName": "video stream",
"description": "front camera video stream",
"webSocketType": "binary",
"singleWebSocketRecommended": true,
"produces": "image/jpeg",
"values": [

{
"name": "front",
"lastMeasured": "2014-06-23T19:25:43.511Z",
"updateFrequency": 10

}
],
"configuration":[

{
"parameter": "width",
"type": "int"

},
{

"parameter": "height",
"type": "int"

},
{

"parameter": "compression",
"description": "The JPEG compression quality, ranging

Go-Lab 317601 33 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

from 0 (lowest quality) to 100 (highest quality).",
"type": "float"

},
{

"parameter": "colourFilter",
"description": "The colour value in an array of 3

decimal RGB values",
"type": "array",
"items": "int"

}
],
"accessMode": {

"type": "stream",
"nominalUpdateInterval": 10,
"userModifiableFrequency": true

}
}

]
}

Each sensor carries the following information:

• sensorId: the ID that will be used to identify the sensor, ‘3D-acc’.

• fullName: the sensor full name, eg. ‘3D acceleration’.

• description: a detailed description of the sensor, ‘the 3D acceleration of
the robot handle’.

• webSocketType: the type of WebSocket, it can either be ‘text’ or ‘binary’,
the default is ‘text’. ‘binary’ WebSockets are mainly used for video stream-
ing. Using binary WebSockets is more efficient, since the data does not
need to be BinHex-ed.

• produces: defines the Internet Media Type (Freed et al., 2014) of the re-
sponse provided by the sensor service, it is typically application/json
for a JSON encoded response. However for a video streaming sensor that
supports JPEG compression, it should be image/jpeg.

• values[]: describes the array of values for a given sensor. For a single
value sensor like a temperature sensor the ‘values’ array contains only
one element. For a complex sensor like an accelerometer, the ‘values’
array contains several elements, for example 3 elements, one for each in-
dividual X-Y-Z acceleration of the arm handle. Values contain a name and
unit, and can additionally have the last measured time stamp and a range
minimum, maximum and iteration step of the range in which the values
safely operate. Furthermore, if the value is automatically or continuously
measured the rate at which the measurement is updated can be defined
in Hertz (s−1) in the ‘updateFrequency’ field.

• configuration[]: describes the possible configuration parameters that are

Go-Lab 317601 34 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

applicable to the sensor. When requesting a sensor value, the here de-
fined configuration parameters can be used to adjust the sensor. These
parameters are described by providing a name (in the ‘parameter’ field)
and the data type using JSON Schema data types. One can also model
array types, as demonstrated in the ‘colorFilter’ configuration parameter of
the video stream sensor. For complex configuration parameters it would
also be possible to refer to a JSON Schema data model.

• accessMode: provides more information on how the sensor can be ac-
cessed. Some sensors can only measure once and others provide a
continuous stream of data. Such differences can be modelled using the
access mode ‘type’, which can be ‘pull’ for sensors that only measure
once, and ‘push’ for sensors who keep on providing measurements over
time. For ‘push’ sensors, one can specify the nominal update interval and
whether the measurement frequency can be modified by the user (using
respectively the ‘nominalUpdateInterval’ and ‘userModifiableFrequency’).
The access mode type can also be ‘stream’, for instance for streaming
video if more complex mechanisms are used then push technology.

As mentioned, both sensors and actuators can be configured, which means
that the information goes both ways even for the sensor. For example, the
image resolution of a webcam can be set with such a configuration. Similarly for
actuators some aspects may be set through configuration while the actual value
is set through the actor value itself. For example the gain of a power amplifier
can be specified through configuration while the actual value that needs to be
amplified is set via the actuator value variable. It is expected that sensors and
actuators are rarely configured. If a configuration is constantly changed, this
might indicate that the configuration should be better expressed as a virtual
sensor/actuator.

Each sensor value carries the following information when it makes sense:

• name (required): the sensor value name, for example ‘X’ for the accelera-
tion toward the X axis. for a single value sensor, the name can be omitted.

• unit: the unit of the sensor value, for example ms−2 for the X acceleration.
The set of possible units is almost infinite and each lab owner has probably
his prefered set of units. Thus it is difficult to impose units. As a best
practice, we recommend to use the SI units (Taylor & Thompson, 2008)
and the SI derived units19.

• type: the type of data following Swagger’s data types.20

• lastMeasured: the timestamp when the sensor was last measured.

• rangeMinimum: the measurement of a sensor can have a lower and upper
bound. This field presents the minimum of the interval, if there is one.

19SI Derived Units – Wikipedia, http://en.wikipedia.org/wiki/SI_derived_unit
20Swagger Data Types, https://github.com/swagger-api/swagger-spec/blob/master/

versions/2.0.md#data-types

Go-Lab 317601 35 of 135

http://en.wikipedia.org/wiki/SI_derived_unit
https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md#data-types
https://github.com/swagger-api/swagger-spec/blob/master/versions/2.0.md#data-types

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

• rangeMaximum: the maximum of the measurement interval.

• rangeStep: The precision of the sensor can be limited or it can only mea-
sure at certain points. This field allows to model the discrete steps that a
sensor supports.

• updateFrequency: how many times per second the sensor is refreshed.
This field is expressed in Hertz (s−1).

Actuator Metadata Service – getActuatorMetadata:

Similar to the sensor metadata, the actuator metadata is also provided via a
service, named ‘getActuatorMetadata’. The service is very similar to the sensor
metadata service, so we will only provide examples and discuss the differences.

The service can be called with a ‘SimpleRequest’ data model, which is just a
JSON object with a ‘method’ and an optional ‘authToken’ field:

Listing 2.11: Request example of getActuatorMetadata service.
{

"method": "getActuatorMetadata"
}

The response is structured as in the following example (see Appendix A & B for
details):

Listing 2.12: Response example of getActuatorMetadata service.
{

"method": "getActuatorMetadata",
"actuators":
[

{
"actuatorId": "motor",
"fullName": "Wheel motor",
"description": "operate the motor of the wheel",
"webSocketType": "text",
"produces": "application/json",
"consumes": "application/json",
"values": [

{
"name": "left",
"unit": "radian",
"type": "float",
"rangeMinimum": 0.00,
"rangeMaximum": 3.14,
"rangeStep": 0.10,
"updateFrequency": 10,
"lastMeasured": "2014-06-23T19:25:43.511Z"

},
{

Go-Lab 317601 36 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"name": "right",
"unit": "radian",
"type": "float",
"rangeMinimum": 0.00,
"rangeMaximum": 3.14,
"rangeStep": 0.10,
"updateFrequency": 10,
"lastMeasured": "2014-06-23T19:25:43.511Z"

}
],
"configuration":[

{
"parameter": "precision",
"description": "The precision is expressed as a power

of 10, e.g. to allow a precision of 0.01 the value
will be -2 (from 10^-2).",

"type": "int"
}

],
"accessMode": {

"type": "push",
"nominalUpdateInterval": 100,
"userModifiableFrequency": true

}
}

]
}

As one can see the actuator metadata is almost identical to the sensor meta-
data. The following differences can be found:

• actuatorId: The identifier field has a different name, but identical purpose
as for a sensor.

• consumes: The ‘consumes’ field models what data type can be input into
the actuator. By default this is JSON, as modelled here ‘application/json’.
But identical to the ‘produces’ field, one can set it to any Internet Media
Type (Freed et al., 2014).

2.3.4 Sensor Service – getSensorData

The sensor and the actuator services are at the core of the Smart Device inter-
action and they share many elements. The data exchange between clients and
the Smart Device is mainly done using these two services.

It is envisioned that for each sensor or actuator there is an equivalent method to
render the information at the client side. Typically a client app could render the
sensor/actuator information transmitted via a WebSocket. By parsing the Smart
Device metadata information these apps could partially adapt to the Smart De-
vice service, this will enable app reuse with other Smart Devices. Similarly, a

Go-Lab 317601 37 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Figure 4: The basic app that renders the temperature sensor S1

Figure 5: The advanced app which locally stores the temperature and dis-
plays them as a curve

basic app could be replaced by a more advanced one. For example, let us as-
sume that the Smart Device provides a temperature measurement ‘S1’, every
second. The metadata provides the required information for the app to connect
to the corresponding WebSocket. The basic app will just update a text field in
the browser (see Figure 4).

The lab user may be interested in having the temperature evolution over time.
Another app may provide the mechanism to locally store the last minutes of
measurements and display it as a curve (see Figure 5). There is absolutely no
change made on the Smart Device service, the ‘advanced’ app uses the same
metadata information and connects to the same WebSocket. The app design is
left to the app developer. The examples in Figure 4 and 5 illustrate a possible
scenario of the metadata use reflected in app design.

The sensors and actuators can be:

• real: represents a physical sensor on the Smart Device, for example a
temperature sensor or an angular position measurement.

• virtual: represents a computed sensor, for example a speed measurement
derived from a position measurement. Virtual sensors and actuators are
also used to interface internal functionalities when required.

• complex: represents the aggregation of sensors/actuators, for example
buttons on the front panel of an oscilloscope.

Go-Lab 317601 38 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

valueNames

data

lastMeasured

=

=

=
][,,

[
[

]
]

,
, ,

,

= the name of the value as a string

= the measured data can be represented in different formats

= timestamps when the data was measured

Figure 6: Sensor and actuator data structures

The data structure returned by a sensor or sent to an actuator may vary de-
pending on the number of values and the measurement data structures (see
Figure 6). The data structure contains three fields to enable flexibility. In the
‘valueNames’ field, the names of the sensor or actuator value is listed as re-
turned by the sensor or actuator metadata services, getSensorMetadata and
getActuatorMetadata (see Section 2.3.3). Then the actual data for each value
is listed. The data as well as the ‘lastMeasured’ timestamps are listed at the
same position as the value name. So all information of one value is at the same
array index as indicated by the dashed lines in Figure 6. Finally, the ‘lastMea-
sured’ array contains the timestamps related to when the value name with the
same index was measured. This timestamp array is optional and should not be
included when sending data to set an actuator. The elements in the data array
can be of different formats. It can be:

• a single value, for example temperature

• an array of values representing a set of single values over time, for exam-
ple temperatures over the last minute

• aggregated values representing a sensor or actuator value that returns
more than 1 value, for example a 3D accelerometer (which is not split in
separate values).

• an array of aggregated values representing a set of aggregated values
over time, for example 3D acceleration over the last minute. Here the data
structure can be modelled in two different ways. In the first case, each
value measured at one second is modelled as a value. In the second
case, it is a single value that contains a data array with 60 elements (one
for each second) and there is an additional ‘lastMeasured’ array containing
the timestamps.

• complex data structures can be used when sensors and actuators require
input and output that is not definable in primitive variables or arrays. For
instance complex JSON objects or binary data might be required in some
cases.

Go-Lab 317601 39 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

As a complex data structure, a video camera can be seen as a single value
sensor that returns a compressed image, but it can also be seen as an array of
values when considering each pixel of the image bitmap or it can be seen binary
value with JPEG encoded data. The choice between the three representations
is left to the lab owner.

Listing 2.13 shows an example request to the getSensorData service. Option-
ally, an access role from the concurrency role list (see Section 2.3.3) can be
added to express the access rights the client wants to have. If no accessRole is
available, the Smart Device can decide the role. The Smart Device will decide
whether these rights can be given and react accordingly.

Listing 2.13: Request example of getSensorData service.
{

"authToken": "dskds909ds8a76as675sa54",
"method": "getSensorData",
"accessRole": "controller",
"sensorId": "3D-pos",
"updateFrequency": 20,
"configuration": [

{
"parameter": "precision",
"value": 2

}
]

}

The getSensorData could return the response in Listing 2.14. It might be more
efficient to handle data at the client in the form of arrays of values than to han-
dle complex data structures interleaved with timestamps. Therefore, the Smart
Device will place the measured data of its ‘valueNames’ in the ‘data’ array and
the timestamps in another ‘lastMeasured’ array at the same index as the corre-
sponding sensor value in the ‘valueNames’ array. For instance, sensor value ‘X’
has measurement 12.37 at time ‘2014-06-23T18:28:43.511Z’.

Listing 2.14: An example response of Listing 2.13 for a 3D position sensor
with multidimensional data.

{
"method": "getSensorData",
"sensorId": "3D-pos",
"accessRole": "controller",
"responseData": {

"valueNames": ["X", "Y", "Z"],
"data": [12.37, 23.51, 43.18],
"lastMeasured": [

"2014-06-23T18:28:43.511Z",
"2014-06-23T18:28:43.511Z",
"2014-06-23T18:28:43.511Z"

Go-Lab 317601 40 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

]
}

}

Listing 2.14 illustrates the response if the access role is ‘controller’. Imagine that
there is a reason for the Smart Device not to provide access to this sensor by
another role, e.g. the ‘observer’ role. In this case, the Smart Device returns the
Listing 2.15 response. Now an ‘observerMode’ field is returned that provides
extra info with waiting information that can be used to display to the user how
long he has to wait and how many people are in front of him (see Section 2.4.2
for details). The ‘queueSize’ and ‘queuePosition’ field enable to display the
position in the queue and the ‘estimatedTimeUntilControl’ provides the waiting
time in seconds until the user can take control of the lab.

Listing 2.15: An example response of Listing 2.13 for an ‘observer’ role.
{

"method": "getSensorData",
"sensorId": "3D-pos",
"accessRole": "observer",
"observerMode": {

"queueSize": 4,
"queuePosition": 3,
"estimatedTimeUntilControl": 190

}
}

The Smart Device may offer the possibility to configure the video sensor (see
Listing 2.16), if there is a ‘configuration’ field with the necessary parameters
present in the sensor metadata as for example described in Listing 2.10. This
option can be very useful to adapt for example to the client screen by reducing
the transmitted image size, thus reducing the amount of data sent to a smart-
phone compared to the amount sent to a desktop computer. Similarly the image
compression level might be controlled. The sensor metadata tells which settings
are exposed to the client (see Listing 2.10 for an example).

Listing 2.16: Request example of the getSensorData service for a ‘video’
sensor with configuration.

{
"authToken": "dskds909ds8a76as675sa54",
"method": "getSensorData",
"accessRole": "controller",
"sensorId": "video",
"updateFrequency": 25,
"configuration": [

{
"parameter": "width",
"value": 640

Go-Lab 317601 41 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

},
{

"parameter": "height",
"value": 480

},
{

"parameter": "compression",
"value": 92.3

},
{

"parameter": "colorFilter",
"value": [60, 27, 229]

}
]

}

The pace at which the data (e.g. video images) are sent can also be controlled.
If for some reason, the user temporarily needs to throttle the video stream, the
client application can ask the Smart Device to reduce the number of images per
second sent via the ‘updateFrequency’ field, assuming the ‘userModifiableFre-
quency’ field in the ‘accessMode’ field is true. The sending may also be halted
for some period of time by setting the ‘updateFrequency’ field to 0, and then
setting the updateFrequency larger than 0 will resume the sending. It is up to
the client application designer to decide if she wants to take advantage of these
features.

Listing 2.17: An example request to stop sending data.
{

"method": "getSensorData",
"sensorId": "video",
"accessRole": "controller",
"updateFrequency": 0

}

2.3.5 Actuator Service – sendActuatorData

The actuator service is very similar to the sensor service (see Section 2.3.4),
hence most of the fields are equivalent. The actuator may be simple, virtual or
complex. Each value carries the needed information about its representation.
The actuator could also be configured (for example the gain of the amplifier
could be set using the configuration, similarly the firmware of an embedded
controller could be updated after validation of course). The main difference with
the sensor service is the fact that the sendActuatorData method allows the user
to actually set the desired actuator value. As the following example shows:

Listing 2.18: An example response for the sendActuatorData service.
{

Go-Lab 317601 42 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"authToken": "dskds909ds8a76as675sa54",
"method": "sendActuatorData",
"accessRole": "controller",
"actuatorId": "motor",
"valueNames": ["left"],
"data": [17.90]

}

The internal functionality of the Smart Device should first validate the value
sent (see the Security and local control functionality in Section 2.3.2) prior to
applying it to the actuator itself. The actuator may also be controlled by another
client. While there is no concurrency issue for the sensor, the access to the
actuator needs to be moderated. Various schemas can be implemented by the
lab owner to internally manage the actuator access (see Section 2.4.2). In the
following examples, we will assume one of the most common scenarios, a user
can either control the lab or can observe what others are doing (respectively
using the controller and observer role). Given that the user has a controller role,
the actuator may acknowledge the value sent via the payload. The payload is
optional and the format is not specified. As a good practice we recommend to
return the data of the actuator in the same format as the request data format.
The returned actuator data in the payload can be used to update the actuator
value representation on the client application (see Section 2.4.2 for an example).
Or it can also be useful to provide more information about the status of the
actuator or lab that can be useful to share with the users. The client can assume
that the actuator has fulfilled the request when no errors are returned.

Listing 2.19: An example response for the sendActuatorData service to a
user with the controller role.

{
"method": "sendActuatorData",
"accessRole": "controller",
"lastMeasured": "2011-07-14 19:43:37 +0100",
"payload": {

"actuatorId": "motor",
"valueNames": ["left"],
"data": [17.90]

}
}

If the actuator is currently used by another client, a specific payload, ‘observer-
Mode’, will return some information regarding the time the user has to wait prior
to getting access to the actuator, similar to the example in Section 2.3.4.

Listing 2.20: An example response for the sendActuatorData service to a
user with the observer role.

{
"method": "sendActuatorData",

Go-Lab 317601 43 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"accessRole": "observer",
"observerMode": {

"queueSize": 7,
"queuePosition": 4,
"estimatedTimeUntilControl": 736

}
}

Furthermore, the client app of a user with the ‘interruptor’ role can abort the
actuator control of another user. The way the conflict is resolved is defined
by the lab owner and/or the client application. There could be constant user
interruptions or this role could only be granted to a few users.

Listing 2.21: Interrupting an on-going session of another user
{

"authToken": "dskds909ds8a76as675sa54",
"method": "sendActuatorData",
"actuatorId": "3D-pos",
"accessRole": "interrupt",
"valueNames": ["X", "Y", "Z"],
"data": [12.34, 48.39, 83.92]

}

2.3.6 User Activity Logging Service – getLoggingInfo

The user activity logging service has been discussed in the metadata service,
where it was used as an example of adding an optional service to the speci-
fications (see Section 2.3.3). The user activity logging service returns logged
user actions or lab info in the ActivityStream JSON format. In D5.1, we decided
on this format for the exchange of user interaction data. In this section we will
provide examples how one can access the service and its reponses.

The service can be called with a ‘SimpleRequest’ data model, which is just a
JSON object with a ‘method’ field and an optional ‘authToken’ field to authenti-
cate the user (which is used here since this can be privacy sensitive data):

Listing 2.22: A request example to the getLoggingInfo service
{

"authToken": "dskds909ds8a76as675sa54;",
"method": "getLoggingInfo"

}

The service then returns a response similar to the following sample snippet:

Listing 2.23: A response example to the getLoggingInfo service
{

"method": "getLoggingInfo",
"logs": [

Go-Lab 317601 44 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

{
"verb": "access",
"published": "2011-02-10T15:04:55Z",
"language": "en",
"actor": {

"objectType": "person",
"id": "urn:utwente:person:anjo:anjewierden",
"displayName": "Anjo Anjewierden",
"url":

"http://www.utwente.nl/gw/ist/medewerkers/wetenschappelijke_staf/
anjo_anjewierden/",
"image": {

"url":
"http://www.utwente.nl/gw/ist/medewerkers/wetenschappelijke_staf/

anjo_anjewierden/anjo_anjewierden-1.jpg",
"mediaType": "image/jpeg",
"width": 133,
"height": 177

}
},
"object" : {

"objectType": "sensor",
"id": "urn:redlab:epfl:ch/3D-pos"
"url": "http://redlab.epfl.ch/smartdevice/sensors/3D-pos",
"displayName": "3D position"

},
"target" : {

"objectType": "lab",
"id": "urn:redlab:epfl:ch/smartdevice",
"displayName": "RED Lab",
"url": "http://redlab.epfl.ch/smartdevice/"

}
}

]
}

Again, the method name is returned and a list of ActivityStream objects. The
ActivityStream objects will be pushed to the client as they become available.

2.3.7 Client Application Service – getClients

This optional service provides links to the client applications that are provided
by the lab owner to operate the lab. The service is called ‘getClients’. The
implementation technology of the clients is not strongly specified, but Go-Lab
advocates OpenSocial gadgets (Marum, n.d.), since they effortlessly run on the
Go-Lab ILS platform (see D5.1 and D5.2).

A list of client applications can be requested using the following ‘PublicRequest’
call for the method ‘getClients’.

Go-Lab 317601 45 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Listing 2.24: A request example to the getClients service
{

"method": "getClients"
}

Upon which a list like in the following example snippet can be returned:

Listing 2.25: A response example to the getClients service
{

"method": "getClients",
"clients": [

{
"type": "OpenSocial gadget",
"url": "http://superlab.epfl.ch/client/dataviewer.xml"

},
{

"type": "OpenSocial gadget",
"url": "http://superlab.epfl.ch/client/video.xml"

},
{

"type": "OpenSocial gadget",
"url":

"http://superlab.epfl.ch/client/experiment-operator.xml"
}

]
}

Each element in the ‘clients’ list contains a ‘type’ and a ‘url’. The client type
declares which type of application it is. In the current version of the Smart De-
vice specifications, we have identified the following types: ‘OpenSocial Gadget,
‘W3C widget’, ‘Web page’, ‘Java WebStart’ and ‘Desktop application’. This can
be extended in the future. Within Go-Lab, we advocate the use of OpenSocial
Gadgets to ensure interoperability (see D5.2).

2.3.8 Models service – getModels

This service is optional and can provide several models of the physical lab (i.e.
the instrumentation) and the theory behind the experiment. For instance, a 3D
graphical model of the lab instrumentation can be provided. With this graphical
model, a client app can generate a GUI that provides a 3D scale object that
students can manipulate to understand the whole setup. Together with a the-
oretical or mathematical model of the experiment, a client app that provides a
simulation of the lab could be built. This is useful to provide an interactive ver-
sion of a remote lab, which could be used by students when the lab is already
in use (i.e. to provide a better observer mode).

Due to the wide range of existing formats to express graphical and theoretical

Go-Lab 317601 46 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

ILSPlatformStudent

sd Use a Smart Device lab

BookingSystem
authenticate(student)

lab:SmartDevice

validateBooking(teacher, date) reserved =
checkBooking(teacher, user)

[reserved=true] token, deviceUrl

[reserved=false] error

[reserved=true] authenticate(token, deviceUrl)

useILS(lab)

teacher =
getTeacherUser(student)

verifyToken(token, lab)

accessGranted
accessGranted

[accessGranted=false]
showLoginError()

[accessGranted=true] useLab(token)

Figure 7: UML sequence diagram of the interaction between the Go-Lab
booking system and a Smart Device

models (e.g. VRML21, X3D22 & MathML23), we do not limit the Smart Device
specifications to one specific option. The choice of the model language is up
to the lab owner. However the lab owner should define in the service definition
which format is returned by the getModels service. This can be done through
the ‘produces’ field and a media type. We do not provide an example definition
for the getModels service, but we refer to Section 2.3.3 for more information on
how to define such a service for the Smart Device.

2.4 Smart Device Interactions
In this section, we elaborate on several interaction scenarios between client
apps, external services and the Smart Device.

2.4.1 Authentication and Booking

A Smart Device can require booking. To support this, Go-Lab provides its own
simple booking system, as specified in D4.2. In this section, we will briefly
summarise the D4.2 specifications related to the booking system and the Smart
Device. The booking use case itself is not recapitulated here, since it solely
involves the booking system.

21Virtual Reality Modeling Language (VRML), http://en.wikipedia.org/wiki/VRML
22X3D, http://en.wikipedia.org/wiki/X3D
23MathML, http://www.w3.org/Math/

Go-Lab 317601 47 of 135

http://en.wikipedia.org/wiki/VRML
http://en.wikipedia.org/wiki/X3D
http://www.w3.org/Math/

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Since we decided in D4.2 that the Go-Lab booking system will manage the
complete booking calendar of a Smart Device, the Smart Device only needs
to validate the booking token with the Go-Lab booking system. Figure 7 illus-
trates how a client app with a reservation can use a Smart Device. The student
can use the Smart Device with the teacher’s reservation for a specific date.
The booking has to be validated with the Booking System. If the booking is
available, a token will be returned. This is the authentication token that can
be used to access the Smart Device services and this is the token that was
modelled as the Swagger API key in Section 2.3.3. The Smart Device then
validates this token with the Booking System. This is the only functionality that
a Smart Device needs to implement to enable booking, as discussed in Sec-
tion 2.3.2. Essentially this means connecting securely to the Booking System to
validate the authentication token. When the token is valid, the user can access
the Smart Device. Note, that in this updated Smart Device specifications, the
authenticateToken(token, deviceUrl) and useLab(token) calls are actually
integrated in the calls to the different services, which can require an authenti-
cation token, e.g. for the user activity logging service (see Section 2.3.6) the
request itself contains the authentication token:

Listing 2.26: An example request to the getLoggingInfo service using an
authentication token

{
"authToken": "dskds909ds8a76as675sa54;",
"method": "getLoggingInfo"

}

2.4.2 Interaction Modes

One of the challenges when dealing with remote labs is to handle concurrent
connections (see Section 2.3.3). While this issue can be resolved through book-
ing, additional measures can be taken to enhance the user experience. In some
scenarios these features might also be desirable from a pedagogical point of
view.

The default mode of interaction is one-to-one where one client is connected to
the Smart Device. A given time slot could have been negotiated via the booking
mechanism. In addition to the booking mechanism, or when no booking mech-
anism is present, the Smart Device can implement a queue with a priority or a
FIFO access policy. In the case of a FIFO queue, the client should be informed
about the number of users ahead and the estimated waiting time (see Figure 8).
It is up to the UI designer to decide how to present this information, but the
Smart Device will provide the information. The client application developer may
decide to implement support for the different access roles of the Smart Device
(as discussed in Section 2.3.3). All the needed information is provided by the
Smart Device.

Figure 8 illustrates that the client app is waiting another 3:50 min prior to get
access to the experiment. If an observer role is available (see Section 2.3.3),

Go-Lab 317601 48 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Figure 8: UI mockup of a waiting queue visualisation

Go-Lab 317601 49 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Figure 9: UI mockups of potential client apps used with an observer and
controller role

s/he can observe actions made by others in the meantime.

As described in Section 2.3.3, different roles can be defined for a Smart Device
that supports concurrency. For instance, a controller role that allows the client
to act on the remote equipment which translates basically to setting an actuator
value. In the observer role the client could visualize the information returned by
the sensors. In this mode the actuator values may also be updated to reflect the
modifications made by the user that currently controls the Smart Device, but the
user with the observer role cannot modify them.

The developer of the client application can take advantage of the information
returned by the Smart Device to for example show/hide (or gray-out) the sliders
that permits to change the actuator values according to the current state, see
Figure 9.

2.4.3 WebSocket Channeling

There is some concern that opening many (>10) WebSockets24 can impact
browser performance. This could be the case if a Smart Device has many
services, or if one would use a separate WebSocket for each sensor or actu-
ator. Figure 10 illustrates this scenario with two Web Sockets (adding more is

24Microsoft Internet Explorer 10 sets the maximum open WebSockets to 6. After editing
the Windows Registry this can be increased to 128, see http://msdn.microsoft.com/en-us/
library/ie/ee330736%28v=vs.85%29.aspx#websocket_maxconn. For most browsers (except
Microsoft Internet Explorer) this issue should be resolved, e.g. Firefox has set the maximum
number of open WebSockets to 200 in recent versions, see https://developer.mozilla.org/
pl/docs/WebSockets. However, we need to take this technical limitation still into account due
to default-configured Internet Explorer clients.

Go-Lab 317601 50 of 135

http://msdn.microsoft.com/en-us/library/ie/ee330736%28v=vs.85%29.aspx#websocket_maxconn
http://msdn.microsoft.com/en-us/library/ie/ee330736%28v=vs.85%29.aspx#websocket_maxconn
https://developer.mozilla.org/pl/docs/WebSockets
https://developer.mozilla.org/pl/docs/WebSockets

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Figure 10: UML Sequence diagram on the use of multiple WebSockets for
connecting to multiple Smart Device services

identical). The app in Figure 10 calls two Smart Device services and for each a
separate Web Socket is created, once the data is returned, it is visualised and
presented to the user. This is a typical example of a lab client opening multiple
WebSockets.

As mentioned opening many WebSockets may cause browser performance is-
sues, however in the use case of Figure 10 it actually makes sense. The first
WebSocket retrieves JSON sensor data over a textual WebSocket. The sec-
ond WebSocket needs to retrieve a video stream, which is a binary stream of
data and hence uses a binary WebSocket to increase performance. Common
sense should be used to channel different service calls into one WebSocket if
performance is affected. The fact that they are textual or binary WebSockets
and whether it is recommended to create a new WebSocket can be expressed
in the Smart Device metadata of the sensors (see Section 2.3.3).

Figure 11 illustrates an app that creates just one WebSocket to access two
different Smart Device sensors. Of course, this WebSocket could be reused by
other services that require a textual WebSocket.

2.4.4 Lab Instruments as Complex Sensors

A complex sensor/actuator represents a collection of related sensors/actuators.
The idea is to aggregate sensor/actuator when it make sense. This aggregation

Go-Lab 317601 51 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Figure 11: UML Sequence diagram on the use of a single WebSocket for
connecting to multiple Smart Device services

Go-Lab 317601 52 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

is left to the lab owner. Typically such a collection represents a set of sen-
sor/actuator that form an instrument (during the Madrid meeting with external
experts, see Section 1.2, such aggregation was requested by the experts). An
instrument is for example an oscilloscope, in this case all the knobs of the os-
cilloscope’s front panel will be aggregated as one actuator with different values
(similarly to the 3D accelerometer sensor). This actuator will be accessible
through one WebSocket instead of one WebSocket for each knob (assuming
that WebSocket are not channeled).

Go-Lab 317601 53 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

3 Cloud Services
As Cloud Services (see Go-Lab DoW and Task 4.2), we understand a set of
services designed to enable access to the Go-Lab infrastructure to lab owners
of legacy lab systems. In the scope of this deliverable, legacy lab systems are all
online labs not designed according to the Smart Device specifications described
in Section 2.

3.1 Introduction
In order to plug an existing legacy lab system into the Go-Lab infrastructure, we
have identified the following possibilities (see Section 1.3):

• Redesign of the online lab system according to the Smart Device specifi-
cations

• Integration of a lab client app via an iFrame in the ILS Platform

• Integration via the Smart Gateway

The first approach was described in detail in the previous section of this doc-
ument. It is the recommended approach if lab owners are developing a new
system from scratch (or are willing to redesign it) and want to plug it into Go-Lab
since it would ensure full compatibility. The second approach is simple to imple-
ment since it basically consists of embedding the existing client app in the ILS
Platform via an iFrame (for details about the ILS Platform: see deliverable D5.2).
In this approach there is absolutely no communication between the lab and the
ILS Platform. The third approach is the integration of the legacy lab system via
the Smart Gateway. It ensures a higher degree of compatibility, compared to
the second approach (iFrame), since the Smart Gateway will already provide
Go-Lab services. For example, by relying on the Smart Gateway, the lab owner
will not need to implement the integration with the Go-Lab portal for the Go-Lab
booking system, for metadata services or in general for any service defined in
Go-Lab, since the Smart Gateway will implement them. This approach is the
recommended option if the lab owner is not willing or has no resources to re-
design the legacy lab system according to the Smart Device specifications. This
approach is even compatible with the previous one (iFrames), since given the
federation nature of the Smart Gateway, it can connect to systems that manage
more than one laboratory. So, in certain systems, such as ViSH or PhET labs
(see deliverable D4.3), the Smart Gateway automatically provides as OpenSo-
cial (through an iFrame) all the laboratories managed by those systems, without
any need for anyone to go to the original page manually.

The Smart Gateway is the core of the Cloud Services. It can be added as a
proxy between the legacy lab system and the Go-Lab infrastructure to ensure
a higher level of compatibility and compliance with the Smart Device specifica-
tions. The level of compatibility offered by this approach will be described in
detail in the following sections.

Due to the high heterogeneity of online lab systems it was decided that the
Smart Gateway should be as flexible and generic as possible to support a va-

Go-Lab 317601 54 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

riety of these systems. Following these requirements, we opted for a plug-in
architecture. Each plug-in should implement the communication with the legacy
lab platform and its implementation is dependent on the desired level of integra-
tion (as defined in Figure 12). Thus, the Smart Gateway and its main compo-
nent, the Gateway4labs (published in (Orduna et al., 2014)), relies on plug-ins
to bridge the communication with the legacy lab system. Plug-ins for specific
legacy lab systems shall be developed by the lab owners with support from the
Go-Lab team. For online laboratories managed by a Remote Lab Management
System (RLMS) a single plug-in can be developed: if a plug-in for an RLMS
is provided, all the laboratories managed by this RLMS will automatically be
available under the Go-Lab infrastructure. Plug-ins for well-known RLMS such
as WebLab-Deusto or iLab Shared Architecture are provided by Go-Lab (see
D4.3).

This chapter is structured as follows. First the functional and non-functional re-
quirements of the Smart Gateway are described, followed by a comparison with
existing projects and well known Remote Lab Management Systems (RLMS).
The following sections describe in detail the architecture of the Smart Gate-
way and the different options to integrate legacy lab systems into to Go-Lab
ILS platform using the plug-in architecture of the Smart Gateway along with the
advantages and disadvantages of each approach. Next, the different possibili-
ties to deploy the Smart Gateway are described. The last sections describe an
optional component of the Smart Gateway, called Protocol Translator, as well
as the trade-off between supporting the Protocol Translator, supporting only the
plug-in system or other options. Finally, the chapter concludes explaining the
benefits of the Smart Gateway for Lab Owners.

3.2 Requirements for the Smart Gateway
Legacy lab platforms are very heterogeneous since they were developed to
meet different requirements. For example, some platforms require the user to
authenticate for the purpose of tracking user actions, while others do not care
about the user’s identity. Some legacy platforms support lab session booking
while others use a queuing mechanism or even a merged schema combining
booking and queuing. The Smart Gateway should make no assumptions about
the legacy lab system in terms of their own functional requirements. In this
section we will present the functional and non-functional requirements of the
Smart Gateway.

3.2.1 Functional Requirements for the Smart Gateway

Based on the previous considerations we identified the following functional re-
quirements of the Smart Gateway:

• R1: Publishing user interfaces in an OpenSocial container. In order to
ensure integration with the ILS Platform (see D5.2) the legacy client app
should be packaged in an OpenSocial container so that it can easily be
embedded (like any other Go-Lab app) into an ILS. This process should
be completely transparent for teachers: in the sense that they do not need

Go-Lab 317601 55 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

to know if a lab app is being served by the Smart Gateway or by a native
Go-Lab Smart Device.

• R2: Support existing legacy laboratory authentication mechanisms, if present.
If the legacy lab system requires users to authenticate prior to launching
a lab client app, the Smart Gateway should be able to bridge this authen-
tication and provide valid credentials to the legacy lab system to authorise
the launch of a specific lab client.

• R3: Connect to existing legacy laboratories scheduling mechanisms, if
present. If the legacy lab requires some scheduling mechanism (e.g.
queueing or calendar-based booking), it should be managed by the Smart
Gateway, so other Go-Lab components are not aware of it or they integrate
these mechanisms.

• R4: Support external Go-Lab add-on services, such as the Go-Lab book-
ing system. This support is optional for each remote laboratory. The Smart
Gateway should provide a bridge between the Go-Lab booking system and
the legacy booking system, provided that the lab requires this functional-
ity. This is different from R3 since the legacy system might for instance
provide a queue for each individual session which is covered by R3, and
for R4 it optionally could be managed at group level with a calendar guar-
anteeing exclusivity for that group.

• R5: Retrieve metadata from the legacy lab (if available) or provide forms
to author metadata content. Part of mimicking the behaviour of a Smart
Device consists in providing the metadata services described by the Smart
Device specifications.

• R6: Provide basic management tools for the Smart Gateway administrator.
The lab owner should be able to add, remove, and list supported labora-
tories and provide public links to be added to the Go-Lab portal. The lab
owner should also be able to take individual decisions on each supported
laboratory, such as when it is available for booking at Go-Lab level (see
D4.2).

• R7: Provide support for logging user activity. This feature is optional and it
is up to the lab owners to implement it in their system. However the Smart
Gateway, as the bridge between legacy labs and the Go-Lab infrastruc-
ture should support it by providing the necessary channels to retrieve user
activity logging data.

3.2.2 Non-functional Requirements for the Smart Gateway

Additionally we were able to identify the following non-functional requirements:

• R1: Extensible architecture to support a wide variety of remote labora-
tories. A measure of success of the Smart Gateway is supporting a wide
range of existing remote laboratories, remote laboratory management sys-
tems and virtual laboratories.

• R2: Provide technical incentives to laboratory owners to be willing to adopt

Go-Lab 317601 56 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

the Smart Gateway. By providing further technical incentives to laboratory
owners, they might want to support the integration in the Smart Gateway
for additional reasons to the ones provided by Go-Lab directly. The incen-
tives mentioned are described in detail in D4.3.

• R3: Documentation. Provide documentation for lab owners on how to
integrate their lab system in the Smart Gateway.

• R4: Administration. Flexible deployment and easy maintainability of the
Smart Gateway. We make no assumptions on where the Smart Gateway
should be deployed and we do not foresee a centralized deployment.

3.3 Review of Legacy Lab Platforms
Remote Lab Management Systems (RLMS) are software frameworks that ag-
gregate common functionalities to manage online laboratories. For example,
these functionalities can include user and lab session management, storage of
experimental data, scheduling of lab session, user activity tracking and sup-
port for resources federation. The need for RLMSs arose when the number
of online lab systems began to increase and scalability became an important
issue. Managing several online lab installations around a single framework al-
lowed for a reuse of common functionalities and separation of tasks, namely
the actual laboratory development (e.g. interface with the lab equipment and
the experiment logic) and the management part (authentication, authorization,
lab booking, etc). Thanks to the functionality provided by the RLMS, online lab
developers could concentrate on the actual experiment logic and pedagogical
aspects of the client application while the other management functionality was
delegated to the RLMS. Any new features included in the RLMS would be auto-
matically available to all labs managed by this system. Today there are a few of
these systems available.

WebLab-Deusto: is an open source remote laboratory management system
(Orduña et al., 2011), originally developed in the University of Deusto and used
to develop laboratories in other institutions in Slovakia1, Brazil2, France and
Colombia, as well as a number of schools in Europe.

The main scheduling mechanism is a priority queue. It supports a federa-
tion model (Orduña, 2013) where one institution can share their laboratories
with other institutions, without exchanging users or credentials. This federation
model is both transitive (if university A shares lab X with university B, then uni-
versity B can share lab X with C) and supports load balancing among copies of
the same laboratory in the same institution and cross-institution (federated load
balance). At the time of this writing, it does not support any booking mechanism.
It provides administration panels to support the inclusion of these federated lab-
oratories.

Regarding interoperability, bidirectional bridges with the iLab Shared Architec-
ture (Orduña, Bailey, DeLong, López-de Ipiña, & García-Zubia, 2014) and UNR

1http://weblab.chtf.stuba.sk
2http://weblabduino.pucsp.br/weblab/

Go-Lab 317601 57 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

FCEIA (Orduña et al., 2013) have been built. This way, WebLab-Deusto can
manage local users and permissions on these federated laboratories and vice
versa.

iLab Shared Architecture: The iLab project started at MIT in 1998, with the goal
to develop a distributed software toolkit and middleware service infrastructure to
support online laboratories, and promote sharing among schools and universi-
ties on a worldwide scale (Harward et al., 2008; Hardison & Garbi Zutin, 2011;
Sancristobal et al., 2010). Therefore, MIT implemented the iLab Shared Ar-
chitecture (ISA), focusing on fast platform-independent laboratory development,
scalable access for students, and efficient management for lab providers, while
preserving the autonomy of the faculty actually teaching the students. It de-
fines two types of laboratories: Batched and Interactive. Batched labs are those
where experiments are completely specified prior to submission and execution
without human intervention, where the student specifies the entire course of the
experiment before the experiment begins. Interactive labs, on the other hand re-
quire taking control of the laboratory, therefore, an interactive experiment must
commit the laboratory hardware to a single user for the duration of the session
– typically 20 minutes to an hour – and this may require scheduling.

Labshare Sahara: Led by the University of Technology, Sydney, Labshare Sa-
hara is a joint initiative of the Australian Technology Network: Curtin Univer-
sity of Technology, Queensland University of Technology, RMIT University, Uni-
versity of South Australia, and the University of Technology, Sydney (http://
www.labshare.edu.au/). This project aims at creating a national network of
shared remotely accessible laboratories. To do this, they have developed a
framework for setting up a heterogeneous remote laboratory of physical appa-
rati containing many labs of many types called SAHARA (Lindsay, Stumpers,
& others, 2014; D. B. Lowe, Berry, Murray, & Lindsay, 2009; D. Lowe, Murray,
Lindsay, & Liu, 2009).

Library of Labs – LiLa is an initiative of eight universities and three enterprises
for the mutual exchange of and access to virtual and remote laboratories.(Bellido,
Villagra, & Mateos, 2010; Tetour, Boehringer, & Richter, 2011) To accomplish
this task, the SCORM (SCORM - Home, n.d.) standard has been modified to
communicate with remote online labs. LiLa also builds a portal through which
the access to virtual labs and remote experiments is granted. It includes ser-
vices like a scheduling system, connection to library resources, a tutoring sys-
tem, 3D-environment for online collaboration. Although the LiLa project bundles
labs in SCORM packages, proper interoperability among the different labs is not
always possible since SCORM has not been designed for interactive labs and
there is lack of support of the latest versions of SCORM (see deliverable D5.2).

ViSHub: As part of the Global Excursion European project, the Virtual Science
Hub (ViSHub) portal has been developed. All the contents are publicly avail-
able, becoming a portal where different types of virtual and remote laboratories
(with no authentication, authorization or scheduling mechanism) are available
altogether with other resources (such as documentation, links, etc.). Advanced

Go-Lab 317601 58 of 135

http://www.labshare.edu.au/
http://www.labshare.edu.au/

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Table 1: Comparison between existing platforms and the Smart Gateway
functional requirements. Legend: requirement supported (+), par-
tially supported (~) & not supported (-)

Smart Gateway
Functional
Requirements

WebLab
Deusto ISA LabShare

Sahara LiLa ViSHub

R1 - - - - -
R2 ~a ~a ~a - -
R3 ~a ~a ~a - -
R4 ~a ~a ~a +b -
R5 - - - + +
R6 + ~ ~ + +
R7 + + + ~ ~

aThrough ad hoc interoperability bridges (WebLab - ISA, ISA - WebLab, Labshare - ISA), not
with other laboratories. These bridges support authentication and scheduling, and they do not
support the Go-Lab add-on services but they support their own services including authorization
or scheduling.

bIt does not support the Go-Lab add-on services, but it supports the LiLa services, which
included a booking mechanism.

APIs are provided, so it is possible to search for custom resources and embed
them in other frameworks. However, these APIs are not intended to easily inte-
grate virtual and remote laboratories that are not already open and no federation
protocol is used with those laboratories.

3.4 Comparison with Other Systems
As shown in Table 1, the design goals of the Smart Gateway are completely
different from those of the existing remote lab management systems or legacy
labs available. It is designed to be a bridge between a legacy lab system and
the Go-Lab ILS Platform.

3.5 Specifications and Architecture of the Smart Gateway
The Smart Gateway aims to support the integration of existing laboratories, as if
they were fulfilling the Smart Device specifications described in Section 2. Ide-
ally, even legacy lab owners will be willing to develop their remote laboratories
using the Smart Device specifications to benefit from the features provided by
it, such as reusability of client code, simplicity or interaction with other services.
However, this ideal situation will not always be the case, and the more complex
the legacy labs are, the more likely lab owners will be willing to find a straight-
forward solution that enables them to integrate their laboratory in Go-Lab even
if they drop support of certain features. A tradeoff between those features and
the implementation efforts will always be present.

For this reason, the Smart Gateway encompasses different integration levels for
existing legacy laboratories. These integration levels are illustrated in Figure 12.

Go-Lab 317601 59 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Figure 12: Levels of Smart Gateway integration

As shown in the figure, the levels are:

1. iFrame in Smart Gateway. If the laboratory does not require any authen-
tication mechanism, it can be directly integrated as an enhanced iframe:
it technically is an iframe but when added, the administrator can fill basic
metadata about the laboratory, and it will be provided as an OpenSocial
application. Interoperability with the rest of the Go-Lab infrastructure is
provided by the Smart Gateway. For example, the Smart Gateway pro-
vides metadata services for other Go-Lab components. This metadata can
be added to the Smart Gateway for that particular lab client application, so
the Go-Lab portal consumes it. The Smart Gateway will be integrated
with the booking system provided by the Go-Lab Portal, so technically any
web application managed through the Smart Gateway could optionally be
booked, while it would still be accessible from the Internet.

2. A simple version of the plug-in. Can be implemented by simply submitting
a custom request to the laboratory to be loaded. For example, a remote
laboratory that requires authentication could easily be integrated by al-
ways logging in with a guest / demo account within the Smart Gateway.
The plug-in might have all the credentials hardcoded. Another laboratory
which does not provide any authentication mechanism will always redirect
the user to the final laboratory, using a given URL.

3. A full version of the plug-in, where all the required reservation features
by the remote laboratory are matched. For example, a remote laboratory
may require that users are identified with a unique identifier, or support a
custom protocol that finally generates a URL that is directly loaded by the
client. Furthermore, the full version of the plug-in should also support the
logging of user actions for learning analytics. This functionality is optional

Go-Lab 317601 60 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

and can be implemented by the lab owner with the interfaces provided by
the Smart Gateway. The client app should use the Smart Gateway logging
service and log the lab logs in the ILS using the ActivityStream format (see
D4.2). This way the privacy mechanisms of the ILS are ensured, since any
user activity tracking done in the ILS can be enabled and disabled with
AngeLA (see D4.2). This compatibility level is meant to provide a better
integration with Go-Lab platforms and apps. For instance, the logging
service can enable integration of the lab with the data viewer app (see
D5.3) or the learning analytics service (see D4.2).

4. A full version of the plug-in with a protocol translator, where in addition to
the full version of the plug-in, it generates a metadata URL that matches
the Smart Device specifications, so different clients can connect to the
provided services. This requires a big effort, since all the communications
to the client must be rewritten or an alternative communication channel
must be provided to access the sensors and actuators by the particular
laboratory.

In this way, the lab owner can decide on the trade-off of efforts and provided
features. If it is possible, the lab owner can provide a very simple plug-in that
only creates a redirection to the final laboratory, or even it can use the existing
iframe plug-in to provide certain basic metadata. If this is not possible (since the
remote laboratory requires some authentication, for instance), then a full version
of the plug-in is required. These plug-ins only manage the reservation process
or the metadata. Finally, if the lab owner wants to embrace the full specifica-
tions, the lab owner must implement a protocol translator, which is essentially
a service that takes all the requests in the format defined by the Smart Device
and converts them to the original format used by the remote laboratory.

3.5.1 Architecture

The Smart Gateway is composed of two main components. The first one is
gateway4labs (G4L), the second one is the protocol translator. Gateway4labs
manages the reservation and integration process of the remote or virtual labo-
ratory into the ILS platform, providing some of the services (such as metadata
or exporting lab client apps as OpenSocial gadgets). The protocol translator is
an independent and optional component which translates all the communica-
tions of the remote laboratory converting them to the specifications of the Smart
Device.

Therefore, to integrate an existing remote laboratory, the lab owner must either
adopt the Smart Device paradigm (previous sections in this deliverable, which
requires redeveloping most of the communications and rely on third party gad-
gets or implement them if they do not exist or they are not suitable for the lab-
oratory) or develop a plug-in in gateway4labs (which only acts as a bridge that
redirects the user to the final laboratory, so a smaller effort is required). If the
latter is selected, the lab owner can optionally implement the protocol translator
to bridge also all the communications.

As shown in Figure 13, gateway4labs consists of a middle component (called

Go-Lab 317601 61 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Figure 13: Cloud services architecture

Go-Lab 317601 62 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Figure 14: UML sequence diagram of the reservation process via the
Smart Gateway

LabManager) that supports OpenSocial (used in the ILS platform, see D5.2)
and a plug-in system. Using this plug-in system, every online laboratory can be
integrated by developing a custom plug-in that makes requests to the remote
laboratory. This plug-in does not manage the communications or internals of
the remote laboratory; instead it redirects the ILS Platform user to the remote
laboratory.

To describe this process, the sequence diagram in Figure 14 shows how each
component interacts to provide lab access to the user. Basically, the user uses
the ILS platform, which loads an OpenSocial app generated by the Smart Gate-
way (gateway4labs LabManager). Whenever the user starts the reservation pro-
cess, the Smart Gateway (gateway4labs LabManager) calls the reserve method
of the particular plug-in. This plug-in knows how to interact with the final remote
laboratory, so it will create the request using the protocol of the remote labora-
tory, and a URL to the final system will be returned. This URL should contain

Go-Lab 317601 63 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Figure 15: UML sequence diagram of the interaction when retrieving a log-
ging URL

some kind of token or unique identifier to identify the current reservation, if the
remote laboratory needs such system. Once the final location is opened, the
user will interact directly with the final remote laboratory, using whatever tech-
nology is used by the remote laboratory.

Once this process is over, a plug-in can optionally provide a logging URL. This
is a URL which will also include a secret or token, and it will be contacted by
the ILS platform for retrieving results in the ActivityStream format. The process
is equivalent to the getLoggingInfo method of a Smart Device service: if the
URL is a WebSocket, the OpenSocial app generated by the Smart Gateway will
obtain information and interoperate with other apps or services. If it is not a
WebSocket, then the OpenSocial app assumes that it is a REST service calls
it periodically for pulling logging information, using ActivityStream objects. The
reason for supporting both schemas (REST and WebSockets) is that the Smart
Gateway targets developers of legacy laboratories, who may not be familiar with
WebSockets or might be using old technologies which do not support them.

Regarding the deployment, Figure 16 shows an example scenario, where two

Go-Lab 317601 64 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Figure 16: Example scenario of gateway4labs

lab owners have three legacy laboratories (blue boxes in Figure 16) and two
gateway4labs deployments (yellow circles in Figure 16). Location 1 has two
legacy laboratories, managed with two different plug-ins (P1 and P2) in the
same gateway4labs instance, which provides different Smart Device represen-
tations. Location 2 has its own gateway4labs instance with another plug-in for
its own laboratory. This aims to represent that gateway4labs is not a component
that aims to be centralized, while it can be centralized, as discussed later.

However, different deployment schemas are supported. As shown in Figure 16,
one scheme would be to locate all components into one location (as illustrated
in Figure 17 focused on a single location). Given that gateway4labs is Open
Source, it is possible to deploy it in the same location as the Legacy Laboratory.
This requires deploying the whole gateway4labs infrastructure (Python, MySQL,
web server, public IP address, etc.). The advantages are that the latency in the
reservation is low (the plug-in connects to the Legacy laboratory in the same
network), it is independent from other actors (such as other providers), and
upgrades in the plug-ins (such as changes in the Legacy laboratories) can be
made without contacting third parties.

A second option is to have gateway4labs deployed in a different location. For ex-
ample, gateway4labs could be deployed and maintained on the servers of one
of the Go-Lab partners, including the plug-in, and the plug-in would connect
to the Legacy laboratory located elsewhere. This is represented in Figure 18.
The advantage of this option is that the deployment and maintenance of gate-

Go-Lab 317601 65 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Figure 17: Smart Gateway deployment: first option: gateway4labs, plug-in
and legacy laboratory in the same location

way4labs is not required by the laboratory owner. However, there is a slightly
higher latency in the reservation process (since the requests have to go to one
more institution), and the potential failures are doubled: the system will not be
accessible when the legacy laboratory is down, but also when the gateway4labs
location is down. Additionally, updates in the plug-in must be synchronized be-
tween both institutions. If a parameter is modified in the legacy laboratory and
it must be changed in the plug-in, both must perform this change.

A third option (see Figure 19) is to decouple the gateway4labs plug-in from
the gateway4labs deployment. By using a RESTful API, gateway4labs in the
first location might not contain the plug-in itself, and it would be maintained in
the same location where the legacy laboratory is. This way, while the latency
would still need to cross through both institutions in the reservation process,
the maintenance of the plug-in is held in the same location where the legacy
laboratory is. If one parameter is going to be changed, it can be synchronized
automatically without contacting the gateway4labs server.

Table 2 describes the different advantages and drawbacks from the three de-
ployment options described above. As just described, regarding the deployment
at the legacy laboratory location, Option 2 requires no maintenance, while Op-
tion 1 requires the full deployment and Option 3 requires the deployment and
maintenance of the plug-in. Option 1 benefits from not relying on other actors
and getting a minimum latency in the reservation process since the request
does not need to go through two different institutions. Regarding the mainte-
nance of the plug-in for updates in the legacy laboratory that could affect the
plug-in, in Options 1 and 3 the plug-in is deployed in the same location, so it is
not a problem.

Go-Lab 317601 66 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Figure 18: Shared deployment of gateway4labs: gateway4labs deployed
in a location different to the legacy laboratory

Table 2: Advantages and disadvantages of the different deployment op-
tions.

3.5.2 Specifications of the Plug-in System

The Plug-in system adds flexibility to the Smart Gateway since it allows lab
owners to integrate their legacy online labs without the need to modify the gate-
way4labs software. A plug-in for a particular lab can be developed either by
implementing its interface with the native gateway4labs API using the program-

Go-Lab 317601 67 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Figure 19: Plug-ins located in the same location as the legacy laboratories

ming language of gateway4labs or by exposing its methods via an HTTP inter-
face. This HTTP interface will be described in this section. For the methods
described below basic HTTP Authentication is used.

A common argument in all the calls is the context_id argument. A particular
plug-in (e.g., the ISA plug-in) could be used in more than one location (e.g., the
ISA server in MIT and the ISA server in the University of Queensland in Australia
(UQ)). Therefore, the Smart Gateway must allow that one plug-in supports more
than one context, so that the same plug-in stores the settings for each context,
where one context could be MIT with certain credentials and other UQ with other
credentials. The following HTTP request includes all necessary information and
returns the current version of the supported APIs:

HTTP request: GET BASE_URL/test_plugin?context_id=IDENTIFIER

The Labmanager will call first this method, to determine which methods are sup-
ported by this version and can thus be used. If one method in the future requires
an additional argument, a different version will be returned. The parameters are
listed in Table 3 and an example response is shown in the following listing.

Listing 3.1: Test-plugin Response Example
{
"valid": true,

Go-Lab 317601 68 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Table 3: Parameters of the test_plugin method
Parameter Description Parameter

Type
Model

context_id Can be used to Identify a
specific lab or RLMS

URL string

Table 4: Parameters of the capabilities method
Parameter Description Parameter

Type
Model

context_id Can be used to Identify a
specific lab or RLMS

URL string

"g4l_api_version": "1.0"
}

HTTP request: GET BASE_URL/capabilities?context_id=IDENTIFIER

This HTTP call returns a list of optional capabilities provided by the plug-in.
At the time of this writing, two cases are supported: widgets and logging-url.
The former refers to the capability of the plug-in for splitting the user interface
in different apps. If this is not supported by the laboratory, there will be two
methods less, and the labmanager will simply load the standard URL in the
OpenSocial gadget. The latter refers to the capability of the plug-in to provide a
logging URL that the OpenSocial gadget will use to pull logging information from
the laboratory directly. As mentioned above, this way the tracking of lab logs will
be sent to the ILS from the client app ensuring the operation of the Graasp
privacy mechanisms (i.e. AngeLA). The parameters are listed in Table 4 and an
example response in the listing below.

Listing 3.2: Capabilities Response Example
{

"capabilities": ["widget", "logging-url"]
}

HTTP request: GET BASE_URL/labs?context_id=IDENTIFIER

This HTTP request returns the list of available laboratories. In many plug-ins
that support a single laboratory, this will be a fixed list with a single element. In

Go-Lab 317601 69 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Table 5: Parameters of the labs method
Parameter Description Parameter

Type
Model

context_id Can be used to Identify a
specific lab or RLMS

URL string

other cases, it will call the remote laboratory to retrieve the list. For example, in
the case of iLab or WebLab-Deusto, it actually lists the available laboratories for
the credentials provided in the plug-in configuration. The parameters are listed
in Table 5 and an example response is available in the listing below.

Listing 3.3: Labs Response Example
{

"labs": [
{

"laboratory_id": "Sample_lab_1",
"autoload": false,
"name": "Sample Laboratory 1",
"description": "This is an example of a laboratory"

},
{

"laboratory_id": "Sample_lab_2",
"autoload": true,
"name": "Sample Laboratory 2",
"description": "This is an example of a laboratory"

}
]

}

HTTP request:
GET BASE_URL/widgets?context_id=IDENTIFIER&laboratory_id=LAB_ID

This returns a list of the available widgets (in our case OpenSocial apps). The
parameters are listed in Table 6 and a response example in the listing below.

Listing 3.4: Widgets Response Example
{
"widgets": [

{
"name": "Camera1",
"description": "Left camera"

},
{

Go-Lab 317601 70 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Table 6: Parameters of the widgets method
Parameter Description Parameter

Type
Model

context_id Can be used to Identify a
specific lab or RLMS

URL string

laboratory_id Identifies the labs for which
the widgets should be re-
trieved

URL string

Table 7: Parameters of the widget method
Parameter Description Parameter

Type
Model

context_id Can be used to Identify a
specific lab or RLMS

URL string

widget_name Name of the widget for
which the URL should be
returned

URL string

X-G4L-reservation-id Reservation ID header string

"name": "Camera2",
"description": "Right camera"

}
]

}

HTTP request:
GET BASE_URL/widget?context_id=IDENTIFIER&widget_name=WIDGET
X-G4L-reservation-id: (reservation identifier obtained in /reserve)

This HTTP request returns a URL to be loaded, given an existing reservation
identifier, and a widget name. This URL should include enough information to
enable the remote laboratory to display only the target fragment of the website.
The parameters are listed in Table 7 and an example response with URL is
illustrated in the listing below.

Listing 3.5: Widget Response Example
{

"url": "BASE_URL/Camera1/?reservation_id=12345"
}

Go-Lab 317601 71 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Table 8: Parameters of the test_config method
Parameter Description Parameter

Type
Model

context_id Can be used to Identify a
specific lab or RLMS

URL string

HTTP request: GET BASE_URL/test_config?context_id=IDENTIFIER

This request checks if the provided configuration works correctly. The parame-
ters are listed in Table 8 and an example response is shown in the listing below.

Listing 3.6: Test-Config Response Example
{

"valid": true,
/* If false:
"error_messages": ["Error message 1", "Error message 2"]
*/

}

HTTP request: POST BASE_URL/reserve?context_id=IDENTIFIER

This request performs a reservation and it returns both: a reservation identifier
and a URL to be loaded. It receives generic information such as the user name
(if available), the institution (if available), certain user properties (if available),
and other arguments, such as the language used in the ILS platform or the
URL that it should be loaded when finished so the Labmanager performs a new
request. A complete list is presented in the data model of Listing 3.7. The
method parameters are listed in Table 9 and an example response can be seen
in the listing below.

Listing 3.7: Request Model Schema
request {

laboratory_id (string): unique identifier for the lab,
username (string),
institution (string, optional),
general_configuration_str (string, optional),
particular_configurations (string, optional),
request_payloa (string, optional),
user_properties (string, optional),
locale (string) : language used in the ILS platform,
back (string, URL): address to send back the user once finished,

}

Go-Lab 317601 72 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Table 9: Parameters of the reserve method
Parameter Description Parameter

Type
Model

context_id Can be used to Identify
a specific lab or RLMS

URL string

request A dictionary of terms to
create a reservation

Body Request model
schema

Listing 3.8: Reserve Response Example
{

"load_url": "BASE_URL/Lab/url_bo_be_loaded",
"reservation_id": "12345"

}

HTTP request: GET BASE_URL/setup?context_id=IDENTIFIER&back_url=ADDRESS

Additionally, certain systems require configuration settings. For example, many
remote laboratories require a set of authentication credentials. In those cases,
the plug-in must store these credentials somewhere, and the Smart Gateway
administrator must configure them in a web application. This web application
must be provided by the plug-in, so it can store the data in a local database.

So to implement this, the HTTP specification provides this method, which must
return a URL that will be used to redirect the Smart Gateway administrator to it.
In that URL, the plug-in is expected to provide the forms and required steps to
configure the plug-in itself. This method also receives a back_url parameter to
redirect the Smart Gateway administrator back to wherever he was before being
redirected to the plug-in.

The plug-in developer must make sure that the URL contains some kind of se-
cret so only authenticated users can change the settings of the plug-in. The
parameters are listed in Table 11.

Listing 3.9: Setup Response Example
{

"url": "http://somewhere-else/#secret=asecret"
}

HTTP request: GET BASE_URL/logging?context_id=IDENTIFIER&token=TOKEN&
reservation_id=RESERVATION_ID

Go-Lab 317601 73 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Table 10: Parameters of the setup method
Parameter Description Parameter

Type
Model

context_id Can be used to Identify
a specific lab or RLMS

URL string

back_url Address to redirect the
Smart Gateway admin-
istrator once the plug-in
has been configured

URL string

Table 11: Parameters of the logging method
Parameter Description Parameter

Type
Model

context_id Can be used to Identify
a specific lab or RLMS

URL string

token Used to authorize the
agent retrieving the ac-
tion logging information

URL string

reservation_id Identifies the an experi-
ment session for which
the the action log should
be retrieved

URL string

The logging service shall return a URL of a service or websocket from where
the action logs for an specific user and lab session in the ActivityStream JSON
format can be retrieved. The service of the returned URL can be implemented
as part of the HTTP plug-in interface or can be part of the legacy lab system,
therefore, unlike the other plug-in services, it will not be consumed directly by
the Smart Gateway. If implemented as part of the HTTP plug-in it should not be
included in the same authentication realm as the other services. The action log-
ging info shall be retrieved from the legacy lab, if available, but no assumptions
are made regarding how the service contacts the lab.

Listing 3.10: Logging Response Example
{

"logging_url": "ws://somewhere-else/secret=asecret/"
}

3.5.3 The Protocol Translator

The protocol translator is an additional and optional component of the Smart
Gateway that mainly repackages legacy communication (legacy lab specific)

Go-Lab 317601 74 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

and expose them as services compliant with the Smart Device specifications
(using WebSockets & JSON) (see Figure 20). Its implementation is lab specific
and will usually serve one single legacy lab since the messages exchanged by
these systems are often different and domain-specific.

Figure 20: Protocol translator

For example, remote laboratory management systems such as WebLab-Deusto,
ISA or Labshare Sahara manage all the laboratory reservations in the same
way, but the communication of each laboratory is different. ISA could have a
radioactivity laboratory and an electronics laboratory, and while both are man-
aged with the same authentication and scheduling mechanisms, the number
and type of sensors and actuators are completely different. For this reason,
while a single plug-in for ISA is needed for all the ISA laboratories, a specific
protocol translator for each particular laboratory must be implemented. This is
detailed in Figure 21, where two RLMS require only one plug-in each, while
each of the laboratories managed by each RLMS require its own protocol trans-
lator. In the case of Remote Laboratories not managed by a RLMS but by their
own management system, the cardinality is different, since both a plug-in and a
protocol translator would be required.

From the Smart Device specifications (see Section 2) the protocol translator
must implement at least the following required services:

• Metadata service

• Sensor service

• Actuator service

Integrating a legacy lab with a protocol translator ensures a full compatibility
with the Smart Device specifications, however this approach is costly in terms
of implementation effort since all messages exchanged between legacy client
and server should be mapped to fit the sensor and actuator model of a Smart
Device. The implementation efforts also vary depending on the legacy lab char-
acteristics. For example, some legacy labs run asynchronously (or in batch
mode), what poses constraints regarding the access to each sensor and actu-
ator individually. A prototype and proof of concept of a batched online lab with
protocol translator will be implemented and reported in D4.5 and D4.7.

Go-Lab 317601 75 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Figure 21: Plug-in and Protocol Translator Cardinality

Additionally, this approach assumes the use of a different protocol, so legacy
client applications will not be reusable with the protocol translator, and the com-
munications must be rewritten to be provided as Smart Device compliant ser-
vices. One of the benefits of the Smart Device paradigm is that laboratory own-
ers can reuse existing clients for other laboratories if they are complimentary to
their services, so the whole client does not need to be reimplemented. However,
those client pieces that have not been previously implemented by third parties
do need a reimplementation.

The most likely deployment configuration of the protocol translator is depicted
in Figure 22. Since it is very specialized software and it is tightly coupled with
the legacy lab system, it is likely to reside at the lab owner’s side. This way, the
latency would be minimal since the communication between the protocol trans-
lator and the legacy system would be local. The gateway4labs component could
be deployed in any of the three options presented. As previously mentioned it is
an optional component that requires a dedicated development for each legacy
lab system. Its implementation efforts are comparable with the efforts necessary
to redesign the legacy lab system according to the Smart Device specifications.
Furthermore the use of a protocol translator would add a latency to the commu-
nication between the client app and legacy lab system since, even if it is in a
local network, it needs to translate all the existing communications.

Go-Lab 317601 76 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Figure 22: Smart Gateway deployment with a protocol translator

3.6 Logging management without the protocol translator
By implementing the plug-in and the protocol translator, a lab owner can guaran-
tee that the laboratory is compliant with the Smart Device specifications. How-
ever, if implementing the protocol translator is not affordable for time constraints,
the lab owner can still support interaction with other Go-Lab tools by support-
ing the logging URL feature. This way, the lab owner can develop a plug-in
for bridging the authentication, authorization or scheduling mechanisms, and
also provide a WebSocket or REST service so the Smart Gateway can pull
the information from there and push it to other apps or services of the Go-Lab
ecosystem.

As an example, a lab owner has a complex laboratory and wants to use it in
Go-Lab. By developing the plug-in that simply bridges the authentication, au-
thorization and reservation process, the lab owner does not need to be aware
of low level OpenSocial details, publish legacy code as new services and still
publish the lab as it is in Go-Lab. However, no interaction with other tools is
achieved (such as Learning Analytics tools, or other tools interacting with other
labs). So the lab owner can implement the protocol translator. If this is too
complex for the particular laboratory -providing all the functionalities as new
services-, the lab owner can still take its logging structure -if any-, and let the
Smart Gateway to pull that information periodically through a REST service or
as it happens through a WebSocket. This way, by implementing a data transla-

Go-Lab 317601 77 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

tor from the laboratory logs to ActivityStream objects, the lab owner can interact
with those tools. However, by only implementing this, it will not be possible to
benefit from clients developed by third parties which could be beneficial for the
laboratory and other features of the Smart Device, which can only be achieved
by implementing the protocol translator.

To sum up, the lab owner is in charge of the desired level of integration. There
is a trade-off between supporting all the Smart Device features at the cost of
implementing the full protocol translator, only supporting the inclusion in an ILS
by only implementing the plug-in, or a middle way where only the logging info
feature is implemented.

3.7 Benefits for Lab Owners
As previously outlined the main goal of the Go-Lab Cloud Services is attracting
laboratory owners to the Go-Lab ecosystem.

• Easy integration: A flexible, pragmatic approach to integrate existing re-
mote laboratories into gateway4labs through the plug-in mechanism and
the management panels. The amount of code required is rather small,
since it only acts as an initial bridge, and two interfaces (native API and
HTTP API) are provided, so the Laboratory owner can support one or the
other. Multiple deployment schemas are supported, and many methods
are optional.

• Additional Go-Lab incentives: Go-Lab will provide the laboratory owners
several benefits. The most important one is the visibility of the labora-
tories. Thousands of students and teachers will be able to easily find
the federated laboratories. Other benefits include the support of Go-Lab
Add-on mechanisms, such as the booking mechanism. Certain remote
laboratories might have a queue for managing students, which does not
scale up to large amount of users. However, if the laboratory is integrated
in gateway4labs and gateway4labs supports the booking mechanism of
the Go-Lab portal, then the laboratory will be only available to students of
groups which have booked the laboratory, reducing the amount of concur-
rent students.

• Use a federated approach: gateway4labs plug-ins support federation mech-
anisms if these are provided by the integrated systems. For example,
WebLab-Deusto provides a federation protocol so one WebLab-Deusto
system with 4 laboratories can share a subset of them to other WebLab-
Deusto system. The plug-in of this WebLab-Deusto benefits of this feature
so it translate requests from gateway4labs (which come from the ILS plat-
form) as if it was an external WebLab-Deusto system requesting a labora-
tory for a local user. This federated approach enables remote laboratories
to be also provided through their original portals or be integrated in other
tools, while increasing their visibility by sharing them with Go-Lab.

Go-Lab 317601 78 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

4 Conclusion
In this deliverable, we provided the final specifications of the Smart Device (used
for the lab owner services) and the Smart Gateway (used for the cloud services).
Based on continuous discussions among the Go-Lab partners and by collecting
valuable feedback of external lab owners, we have enhanced the initial Smart
Device specifications defined in D4.1(R2). Apart from extending the specifi-
cations, we put a lot of effort on more precisely refined the description of the
Smart Device services, data formats, and protocols to promote interoperability
between a Smart Device and a client app or external services. We described
our Smart Device using an existing, popular web service description language,
Swagger, and added some Go-Lab specific extensions for our respective meta-
data needs (see Section 2.3.3). We have also showed various use cases of
how the Smart Device specifications can be implemented (see Section 2.4).

From our experience integrating RLMS in the Smart Gateway, we have also
updated the system’s architecture and the corresponding specifications. Fur-
thermore, different deployment options were discussed to optimise performance
and management. Due to the implementation work involved for legacy labs to
achieve full Smart Device compatibility, we have defined four integration levels,
so lab owners can benefit from a basic integration with the Go-Lab infrastruc-
ture with little effort. In particular, Section 3.6 we present a new mechanism
that offers a new approach for supporting the Go-Lab logging mechanism by a
lightweight approach, which is a novelty in this deliverable. The goal of this addi-
tion is the support of a better integration with the rest of the Go-Lab ecosystem,
without requiring the implementation of the full protocol translator.

In parallel to the work on the specifications, we have implemented several Smart
Device prototypes and integrated multiple RLMS with the Smart Gateway. These
prototypes are the software release of the lab owner and cloud services. They
are documented in D4.3 and will be augmented and updated in D4.7. We are
working on the integration of more labs in Go-Lab using either the Smart Device
or the Smart Gateway. More specifically, we are collaborating with the external
lab owners from our workshop (see Appendix D of D4.1(R2)) to integrate their
labs in Go-Lab, which will be documented in D4.7.

Go-Lab 317601 79 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

5 Appendix A: Smart Device metadata specification details
The Swagger Web service description language supports REST Web services
by default. To describe the Smart Device, we had to extend the Swagger speci-
fication as mentioned in Section 2.3.3. The two main reasons for this extension
were:

• WebSocket support: Since Swagger only supports REST out of the box,
we needed to extend Swagger to support WebSockets and the channeling
of WebSockets.

• Smart Device concurrency: The concurrency mechanisms of the Smart
Device needed to be described in its metadata. This was not supported in
Swagger since this is typically not a feature of regular Web services.

We were able to limit further changes to the Swagger specification by provid-
ing some of the metadata via services, e.g. to retrieve the sensor and actuator
metadata services are used. This section highlights what we have changed
in the Swagger specification to support the Smart Device metadata. First, the
changes needed for WebSockets will be described and then we will elaborate
on the concurrency, to finalise with some small tidbits that were added for con-
venience and improved expression power. Overall, these limited adaptations
show that the Swagger specification was an appropriate choice for the Smart
Device.

5.1 Extensions for WebSockets
The extensions related to WebSockets are limited to the API JSON object in the
main apis field. Listing 5.1 illustrates an example service description with the
WebSocket extension.

Listing 5.1: Example API service description to illustrate the WebSocket
extension

"apis": [
{

"path": "/logging",
"protocol": "WebSocket",
"produces": [

"application/json"
],
"operations": [

{
"method": "Send",
"nickname": "getLoggingInfo",
"summary": "Streams the current logging information of

the user activities and the lab activities",
"notes": "Returns a JSON array of Activity Stream

objects, see http://activitystrea.ms/",
"type": "LoggingInfoResponse",
"webSocketType": "text",

Go-Lab 317601 80 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"produces": "application/json",
"parameters": [

{
"name": "message",
"description": "the payload for the getLoggingInfo

service",
"required": true,
"paramType": "message",
"type": "SimpleRequest",
"allowMultiple": false

}
]

}
],
"responseMessages": [...]

}
]

We have extended Swagger with the following fields:

• protocol: This field allows to specify whether the service is accessible via
HTTP REST or WebSockets. This can also be used for other protocols,
e.g. non HTTP-based streaming protocols or Tor.

• webSocketType: This field is used to express the type of WebSocket the
service uses to support regular and binary WebSockets. The possible
values are: ‘text’ & ‘binary’.

• method (repurposed & extended): The method field is normally used to
express which HTTP method is used (e.g. GET or POST). It can be used
to express the WebSocket method. Normally, this is ‘Send’ but Socket.io1

provides additionally also an ‘emit’ method.

• paramType (repurposed & extended): The paramType field is reused but
we have added the ‘message’ value to support WebSocket messages.

5.2 Extensions for Concurrency mechanisms
A root field was added to the Swagger specification, namely ‘concurrency’. List-
ing 5.2 provides an example of the concurrency field. All sub-fields of this con-
currency field are Go-Lab extensions and were extensively discussed in Sec-
tion 2.3.3, thus we will not recapitulate it here.

Listing 5.2: Example of a concurrency field
"concurrency": {

"interactionMode": "synchronous",
"concurrencyScheme": "roles",
"roleSelectionMechanism": ["race", "interruptor"],
"roles": [

1Socket.io, http://socket.io/

Go-Lab 317601 81 of 135

http://socket.io/

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

{
"role": "observer",
"selectionMechanism": ["race"],
"availableApis": ["getSensorData"]

},
{

"role": "controller",
"selectionMechanism": ["race"]

},
{

"role": "admin",
"selectionMechanism": ["interruptor"]

}
]

}

5.3 Additional Minimal Extensions
5.3.1 Data Types

For some reason, the Swagger specification does not support all JSON Schema
data types for the data models described in the ‘models’ field. To improve flexi-
bility and expressiveness, we have added all JSON Schema data types and one
for binary data. More specifically the following fields have been added:

• object: a JSON object

• any: any possible data type, e.g. a primitive JSON Schema type, null or a
JSON object

• binary: for binary data

Go-Lab 317601 82 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

6 Appendix B: The Metadata Specification for an Example
Smart Device

This appendix provides examples of the metadata for two Smart Devices. One
example contains the metadata for the RED lab (see D4.3) and another example
is from a fictitious lab that is used to illustrate some mechanisms and interaction
possibilities in more detail. The latter has been mainly used as the running ex-
ample throughout this deliverable. Both examples are available on GitHub and
this appendix contains an exact copy to illustrate the status at the time this de-
liverable is submitted. This latest updated version of this specifications can also
be found on GitHub at https://github.com/Go-Lab/smart-device-metadata.

Both examples contain the metadata specification and a set of example calls
that a client app makes to the Smart Device, and the respective responses of
the Smart Device.

6.1 RED Smart Device
6.1.1 Metadata Specification

Listing 6.1 presents the metadata for the RED Lab Smart Device. As defined in
this deliverable, the metadata of the actuators and sensors are provided through
the getSensorMetadata and getActuatorMetadata services.

Listing 6.1: The RED Lab Smart Device metadata
{

"apiVersion": "2.0.0",
"swaggerVersion": "1.2",
"basePath": "http://128.178.5.201:8080",
"info": {

"title": "RED 2.0 ws",
"description": "Control the speed and the position of the disc.",
"contact": "christophe.salzmann@epfl.ch",
"license": "Apache 2.0",
"licenseUrl": "http://www.apache.org/licenses/LICENSE-2.0.html"

},
"authorizations": {},
"concurrency": {

"interactionMode": "synchronous",
"concurrencyScheme": "roles",
"roleSelectionMechanism": ["race", "fixed role"],
"roles": [

{
"role": "controller",
"selectionMechanism": ["race"]

}
]

},
"apis": [

{

Go-Lab 317601 83 of 135

https://github.com/Go-Lab/smart-device-metadata

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"path": "/client",
"protocol": "WebSocket",
"produces": [

"application/json"
],
"operations": [

{
"method": "Send",
"nickname": "getClients",
"summary": "Return a list of all available clients",
"notes": "Returns a JSON array with all the available

clients",
"type": "ClientResponse",
"parameters": [

{
"name": "message",
"description": "the payload for the getClients

service.",
"required": true,
"paramType": "message",
"type": "SimpleRequest",
"allowMultiple": false

}
],
"authorizations": { },
"responseMessages": [

{
"code": 402,
"message": "Too many users"

},
{

"code": 404,
"message": "Clients not found"

},
{

"code": 405,
"message": "Method not allowed. The requested

method is not allowed by this server."
},
{

"code": 422,
"message": "The request body is unprocessable"

}
]

}
]

},
{

"path": "/sensor/",

Go-Lab 317601 84 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"protocol": "WebSocket",
"produces": [

"application/json"
],
"operations": [

{
"method": "Send",
"nickname": "getSensorMetadata",
"summary": "List all sensors and their metadata",
"type": "SensorMetadataResponse",
"parameters": [

{
"name": "message",
"description": "the payload for the

getSensorMetadata service",
"required": true,
"paramType": "message",
"type": "SimpleRequest",
"allowMultiple": false

}
],
"responseMessages": [

{
"code": 402,
"message": "Too many users"

},
{

"code": 404,
"message": "No sensors found"

},
{

"code": 405,
"message": "Method not allowed. The requested

method is not allowed by this server."
},
{

"code": 422,
"message": "The request body is unprocessable"

}
],
"authorisations": {}

},
{

"method": "Send",
"nickname": "getSensorData",
"summary": "Get data from the sensor with the given

sensor identifier",
"type": "SensorDataResponse",
"parameters": [

Go-Lab 317601 85 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

{
"name": "message",
"description": "The payload for the

getSensorData service",
"required": true,
"type": "SensorDataRequest",
"paramType": "message",
"allowMultiple": false

}
],
"responseMessages": [

{
"code": 401,
"message": "Unauthorised access. The

authentication token is not valid"
},
{

"code": 402,
"message": "Too many users"

},
{

"code": 404,
"message": "No sensors found"

},
{

"code": 405,
"message": "Method not allowed. The requested

method is not allowed by this server."
},
{

"code": 422,
"message": "The request body is unprocessable"

}
]

}
]

},
{

"path": "/actuator/",
"protocol": "WebSocket",
"produces": [

"application/json"
],
"operations": [

{
"method": "Send",
"nickname": "getActuatorMetadata",
"summary": "List all actuators and their metadata",
"type": "ActuatorMetadataResponse",

Go-Lab 317601 86 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"parameters": [
{

"name": "message",
"description": "the payload for the

getActuatorMetadata service",
"required": true,
"paramType": "message",
"type": "SimpleRequest",
"allowMultiple": false

}
],
"responseMessages": [

{
"code": 404,
"message": "No actuators found"

},
{

"code": 405,
"message": "Method not allowed. The requested

method is not allowed by this server."
},
{

"code": 422,
"message": "The request body is unprocessable"

}
],
"authorizations": {}

},
{

"method": "Send",
"summary": "Send new data to the actuator with the

given actuator identifier",
"notes": "The parameters go into a JSON object send

over the WebSocket",
"type": "ActuatorDataResponse",
"nickname": "sendActuatorData",
"parameters": [

{
"name": "message",
"description": "The payload for the

sendActuatorData service",
"required": true,
"type": "ActuatorDataRequest",
"paramType": "message",
"allowMultiple": false

}
],
"responseMessages": [

{

Go-Lab 317601 87 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"code": 401,
"message": "Unauthorised access. The

authentication token is not valid"
},
{

"code": 402,
"message": "Too many users"

},
{

"code": 404,
"message": "No actuator not found"

},
{

"code": 405,
"message": "Method not allowed. The requested

method is not allowed by this server."
},
{

"code": 422,
"message": "The request body is unprocessable"

}
]

}
]

}
],
"models": {

"Client": {
"id": "Client",
"properties": {

"type": {
"type": "string",
"description": "The type of client application",
"enum": [

"OpenSocial Gadget",
"W3C widget",
"Web page",
"Java WebStart",
"Desktop application"

]
},
"url": {

"type": "string",
"description": "The URI where the client application

resides"
}

}
},
"ClientResponse": {

Go-Lab 317601 88 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"id": "ClientResponse",
"properties": {

"method": {
"type": "string"

},
"clients": {

"type": "array",
"items": {

"$ref": "Client"
}

}
}

},
"Sensor": {

"id": "Sensor",
"required": [

"sensorId", "fullName"
],
"properties": {

"sensorId": {
"type": "string"

},
"fullName": {

"type": "string"
},
"description": {

"type": "string"
},
"webSocketType": {

"type": "string",
"description": "the type of WebSocket. WebSockets can

either be binary or textual.",
"enum": [

"text",
"binary"

],
"defaultValue": "text"

},
"singleWebSocketRecommended": {

"type": "boolean",
"description": "If this field is set to true it means

that the smart device expects that a client opens
a dedicated websocket for to read from this value",

"defaultValue": false
},
"produces": {

"type": "string",
"description": "The mime-type of the data that is

produced by this sensor. A list of mime types can

Go-Lab 317601 89 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

be found at
http://en.wikipedia.org/wiki/Internet_media_type",

"defaultValue": "application/json"
},
"values": {

"type": "array",
"items": {

"$ref": "Value"
}

},
"configuration": {

"type": "array",
"description": "The configuration consists of an

array of JSON objects that consist of parameter
and type",

"items": {
"$ref": "ConfigurationMetadataItem"

}
},
"accessMode": {

"type": "AccessMode"
}

}
},
"Value": {

"id": "Value",
"required": [

"name"
],
"properties": {

"name": {
"type": "string"

},
"unit": {

"type": "string"
},
"type": {

"type": "string",
"description": "The data type of this value",
"enum": [

"integer",
"long",
"float",
"double",
"string",
"byte",
"boolean",
"date",
"dateTime",

Go-Lab 317601 90 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"object",
"array",
"any",
"binary"

]
},
"rangeMinimum": {

"type": "number",
"format": "double"

},
"rangeMaximum": {

"type": "number",
"format": "double"

},
"rangeStep": {

"type": "number",
"format": "double"

},
"lastMeasured": {

"type": "date-time"
},
"updateFrequency": {

"type": "number",
"description": "The frequency in Hertz of which the

sensor value updates",
"format": "int"

}
}

},
"ConfigurationMetadataItem": {

"id": "ConfigurationMetadataItem",
"required": [

"parameter", "type"
],
"properties": {

"parameter": {
"type": "string",
"description": "The name of the configuration

parameter"
},
"description": {

"type": "string",
"description": "This field can provide some more

information on how this parameter should be used."
},
"type": {

"type": "string",
"description": "The data type of that this

configuration parameters expects, e.g. number or

Go-Lab 317601 91 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

string",
"enum": [

"integer",
"long",
"float",
"double",
"string",
"byte",
"boolean",
"date",
"dateTime",
"object",
"array",
"any",
"binary"

]
},
"items": {

"type": "string",
"description": "This field should only be used when

the type is ’array’. It describes which types are
present within the array",

"enum": [
"integer",
"long",
"float",
"double",
"string",
"byte",
"boolean",
"date",
"dateTime",
"object",
"any",
"binary"

]
}

}
},
"AccessMode": {

"id": "AccessMode",
"properties": {

"type": {
"type": "string",
"enum": [

"push",
"pull",
"stream"

]

Go-Lab 317601 92 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

},
"nominalUpdateInterval": {

"type": "number",
"format": "float"

},
"userModifiableFrequency": {

"type": "boolean",
"defaultValue": false

}
}

},
"SimpleRequest": {

"id": "SimpleRequest",
"required": [

"method"
],
"properties": {

"authToken": {
"type": "string"

},
"method": {

"type": "string",
"description": "The method should be equal to the

nickname of one of the provided services."
}

}
},
"SensorMetadataResponse": {

"id": "SensorMetadataResponse",
"required": [

"method", "sensors"
],
"properties": {

"method": {
"type": "string",
"description": "The method should be equal to the

nickname of one of the provided services."
},
"sensors": {

"type": "array",
"items": {

"$ref": "Sensor"
}

}
}

},
"SensorDataRequest": {

"id": "SensorDataRequest",
"required": [

Go-Lab 317601 93 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"authToken", "method", "sensorId"
],
"properties": {

"authToken": {
"type": "string"

},
"method": {

"type": "string",
"description": "The method should be equal to the

nickname of one of the provided services."
},
"sensorId": {

"type": "string"
},
"updateFrequency": {

"type": "number",
"description": "The frequency in Hertz of which the

sensor value updates",
"format": "int"

},
"configuration": {

"type": "array",
"items": {

"$ref": "ConfigurationItem"
}

},
"accessRole": {

"type": "string",
"description": "This field contains one of the roles

defined in the concurrency roles list. If
accessRole is not defined, the controller role is
assumed."

}
}

},
"ConfigurationItem": {

"id": "ConfigurationItem",
"required": [

"parameter", "value"
],
"properties": {

"parameter": {
"type": "string",
"description": "The name of the configuration

parameter"
},
"value": {

"type": "any",
"description": "The value to set the configuration

Go-Lab 317601 94 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

parameter to. The type should equal the type given
in the metadata for this sensor."

}
}

},
"SensorDataResponse": {

"id": "SensorDataResponse",
"required": [

"method", "sensorId"
],
"properties": {

"method": {
"type": "string",
"description": "The method should be equal to the

nickname of one of the provided services."
},
"sensorId": {

"type": "string"
},
"accessRole": {

"type": "string",
"description": "This field contains one of the roles

defined in the concurrency roles list. If no roles
are defined controller is returned. If the
observer is returned, the observerMode field will
be available with extra info on the status of the
lab."

},
"responseData": {

"type": "SensorResponseData",
"description": "The data as measured by this sensor"

},
"payload": {

"type": "any",
"description": "This optional payload field can

contain any JSON object that provides extra
information on this sensor or the current
measurement."

},
"observerMode": {

"type": "ObserverMode",
"description": "This field is only available if the

accessRole field returns observer."
}

}
},
"SensorResponseData": {

"id": "SensorResponseData",
"required": [],

Go-Lab 317601 95 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"properties": {
"valueNames": {

"type": "array",
"description": "An ordered array with all the value

names of this sensor. The same order will be
applied to the data array and lastMeasured array.",

"items": {
"type": "string"

}
},
"data": {

"type": "array",
"description": "An ordered array with all the data

values of this sensor. Each data element in the
array should be ordered in the same position of
its corresponding value elements in the values
array.",

"items": {
"type": "any"

}
},
"lastMeasured": {

"type": "array",
"description": "An ordered array with all the data

values of this sensor. Each data element in the
array should be ordered in the same position of
its corresponding value elements in the values
array.",

"items": {
"type": "date-time"

}
}

}
},
"Actuator": {

"id": "Actuator",
"required": [

"actuatorId", "fullName"
],
"properties": {

"actuatorId": {
"type": "string"

},
"fullName": {

"type": "string"
},
"description": {

"type": "string"
},

Go-Lab 317601 96 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"webSocketType": {
"type": "string",
"description": "the type of WebSocket. WebSockets can

either be binary or textual.",
"enum": [

"text",
"binary"

],
"defaultValue": "text"

},
"singleWebSocketRecommended": {

"type": "boolean",
"description": "If this field is set to true it means

that the smart device expects that a client opens
a dedicated websocket for to read from this value",

"defaultValue": false
},
"consumes": {

"type": "string",
"description": "The mime-type of the data that is

consumed by this actuator. A list of mime types
can be found at
http://en.wikipedia.org/wiki/Internet_media_type",

"defaultValue": "application/json"
},
"produces": {

"type": "string",
"description": "The mime-type of the data that is

produced by this actuator. A list of mime types
can be found at
http://en.wikipedia.org/wiki/Internet_media_type",

"defaultValue": "application/json"
},
"values": {

"type": "array",
"items": {

"$ref": "Value"
}

},
"configuration": {

"type": "array",
"description": "The configuration consists of an

array of JSON objects that consist of parameter
and type",

"items": {
"$ref": "ConfigurationMetadataItem"

}
},
"accessMode": {

Go-Lab 317601 97 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"type": "AccessMode"
}

}
},
"ActuatorMetadataResponse": {

"id": "ActuatorMetadataResponse",
"required": [

"method", "actuators"
],
"properties": {

"method": {
"type": "string",
"description": "The method should be equal to the

nickname of one of the provided services."
},
"actuators": {

"type": "array",
"items": {

"$ref": "Actuator"
},
"description": "The list of actuator metadata

elements"
}

}
},
"ActuatorDataRequest": {

"id": "ActuatorDataRequest",
"required": [

"method", "actuatorId"
],
"properties": {

"authToken": {
"type": "string"

},
"method": {

"type": "string",
"description": "The method should be equal to the

nickname of one of the provided services."
},
"actuatorId": {

"type": "string"
},
"valueNames": {

"type": "array",
"description": "An ordered array with all the value

names of this sensor. The same order will be
applied to the data array and lastMeasured array.",

"items": {
"type": "string"

Go-Lab 317601 98 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

}
},
"data": {

"type": "array",
"description": "An ordered array with all the data

values of this sensor. Each data element in the
array should be ordered in the same position of
its corresponding value elements in the valueNames
array.",

"items": {
"type": "any"

}
},
"configuration": {

"type": "array",
"items": {

"$ref": "ConfigurationItem"
}

},
"accessRole": {

"type": "string",
"description": "This field contains one of the roles

defined in the concurrency roles list. If
accessRole is not defined the controller role is
assumed."

}
}

},
"ActuatorDataResponse": {

"id": "ActuatorDataResponse",
"required": [

"method"
],
"properties": {

"method": {
"type": "string",
"description": "The method should be equal to the

nickname of one of the provided services."
},
"lastMeasured": {

"type": "date-time"
},
"accessRole": {

"type": "string",
"description": "This field contains one of the roles

defined in the concurrency roles list. If no roles
are defined controller is returned. If the
observer is returned, the observerMode field will
be available with extra info on the status of the

Go-Lab 317601 99 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

lab."
},
"payload": {

"type": "any",
"description": "The payload can be useful for

describing a result that is returned, for instance
by using the SensorResponseData model. Since
results can differ from acknowledgements to result
data, the field is optional and can contain any
JSON object."

},
"observerMode": {

"type": "ObserverMode",
"description": "This field is only available if the

accessRole field returns observer."
}

}
},
"ObserverMode": {

"id": "ObserverMode",
"required": [],
"properties": {

"queueSize": {
"type": "integer",
"description": "Provides the length of the user

waiting queue that want to get control of the lab"
},
"queuePosition": {

"type": "integer",
"description": "Provides the position of the client

who made this call in the user waiting queue. This
value should be positive and smaller or equal to
queueSize."

},
"estimatedTimeUntilControl": {

"type": "integer",
"description": "The estimated waiting time from now

on until the client will get controllerMode
access. The time is expressed in seconds."

}
}

}
}

}

6.1.2 Example Requests and Responses to the Smart Device Services

In this section, we will present a few example requests and responses that can
be made to the RED Lab Smart Device.

Go-Lab 317601 100 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

getClients

Listing 6.2 and 6.3 illustrate respectively a request and response to the get-
Clients service. Note, the URLs in the getClients response can differ.

Listing 6.2: Request to get all client apps
{

"method": "getClients"
}

Listing 6.3: Response to get all client apps
{

"method": "getClients",
"clients": [

{
"type": "OpenSocial gadget",
"url": "http://redlab.epfl.ch/client/s1.xml"

},
{

"type": "OpenSocial gadget",
"url": "http://redlab.epfl.ch/client/s2.xml"

},
{

"type": "OpenSocial gadget",
"url": "http://redlab.epfl.ch/client/a1.xml"

}
]

}

getSensorMetadata

Listing 6.4 and 6.5 provide the request and response to get sensor metadata.
Listing 6.5 shows the sensor metadata itself.

Listing 6.4: Request to get the sensor metadata
{

"method": "getSensorMetadata"
}

Listing 6.5: Response to get the sensor metadata
{

"method": "getSensorMetadata",
"sensors": [

{
"sensorId": "position",
"fullName": "position",
"description": "the angular position of the wheel",

Go-Lab 317601 101 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"webSocketType": "text",
"singleWebSocketRecommended": true,
"produces": "application/json",
"values": [

{
"name": "angularPosition",
"unit": "degree",
"type": "float",
"lastMeasured": "2014-06-23T18:25:43.511Z",
"rangeMinimum": 30,
"rangeMaximum": 330,
"updateFrequency": 10

}
],
"accessMode": {

"type": "push",
"nominalUpdateInterval": 100,
"userModifiableFrequency": false

}
},
{

"sensorId": "video",
"fullName": "video feed",
"description": "front camera video stream",
"webSocketType": "binary",
"singleWebSocketRecommended": true,
"produces": "image/jpeg",
"values": [

{
"name": "video",
"lastMeasured": "2014-06-23T18:28:43.617Z",
"updateFrequency": 10

}
],
"accessMode": {

"type": "push",
"nominalUpdateInterval": 100,
"userModifiableFrequency": false

}
}

]
}

getSensorData

Listing 6.6 and 6.7 show two requests for sensor data of the position and video
sensor using the optional ‘accessRole’ field, which could be dropped here.

Listing 6.6: The request to get data for the ‘position’ sensor

Go-Lab 317601 102 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

{
"method": "getSensorData",
"sensorId": "position",
"accessRole": "controller"

}

Listing 6.7: The request to get data for the ‘video’ sensor
{

"method": "getSensorData",
"sensorId": "video",
"accessRole": "controller"

}

Listing 6.8 provides an example response for the position sensor.

Listing 6.8: The response to get data for the ‘position’ sensor
{

"method": "getSensorData",
"sensorId": "position",
"accessRole": "controller",
"responseData": {

"valueNames": ["angularPosition"],
"data": [54],
"lastMeasured": ["2014-06-23T18:28:43.511Z"]

}
}

Listing 6.9 illustrates how the continuous stream of measurements can be stopped,
by setting the ‘updateFrequency’ field to 0.

Listing 6.9: The request to interrupt the sensor measurement data flow
{

"method": "getSensorData",
"sensorId": "position",
"updateFrequency": 0

}

getActuatorMetadata

Listing 6.10 and 6.11 show how the actuator metadata can be retrieved and the
later presents the actuator metadata of the RED Lab Smart Device.

Listing 6.10: The request to get actuator metadata
{

"method": "getActuatorMetadata"
}

Go-Lab 317601 103 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Listing 6.11: The response to get actuator metadata
{

"method": "getActuatorMetadata",
"actuators": [

{
"actuatorId": "ref",
"fullName": "reference",
"description": "set the wheel position",
"webSocketType": "text",
"produces": "application/json",
"consumes": "application/json",
"values": [

{
"name": "angularRef",
"unit": "degree",
"type": "float",
"rangeMinimum": 30,
"rangeMaximum": 330

}
],
"accessMode": {

"type": "push",
"nominalUpdateInterval": 100,
"userModifiableFrequency": false

}
}

]
}

getActuatorData

Listing 6.12 and 6.13 illustrated how an actuator can be set.

Listing 6.12: The request to set the reference actuator
{

"method": "sendActuatorData",
"accessRole": "controller",
"actuatorId": "ref",
"valueNames": ["angularRef"],
"data": [84]

}

Listing 6.13: The response to set the reference actuator
{

"method": "sendActuatorData",
"lastMeasured": "2014-06-23T20:25:43.741Z",
"accessRole": "controller",
"payload": {

Go-Lab 317601 104 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"actuatorId": "ref",
"valueNames": ["angularRef"],
"data": [84]

}
}

6.2 Running example Smart Device
6.2.1 Metadata Specification

Listing 6.14 presents the metadata for the running example Smart Device used
throughout this deliverable.

Listing 6.14: The Example Smart Device metadata
{

"apiVersion": "1.0.0",
"swaggerVersion": "1.2",
"basePath": "http://redlab.epfl.ch/smartdevice",
"info": {

"title": "RED Lab smart device",
"description": "This is an example implementation of the Go-Lab

smart device in LabView and demonstrates an mechatronics
remote lab running at EPFL",

"termsOfServiceUrl": "http://redlab.epfl.ch/terms/",
"contact": "christophe.salzmann@epfl.ch",
"license": "Apache 2.0",
"licenseUrl": "http://www.apache.org/licenses/LICENSE-2.0.html"

},
"apis": [

{
"path": "/client",
"protocol": "WebSocket",
"produces": [

"application/json"
],
"operations": [

{
"method": "Send",
"nickname": "getClients",
"summary": "Return a list of all available clients",
"notes": "Returns a JSON array with all the available

clients",
"type": "ClientResponse",
"parameters": [

{
"name": "message",
"description": "the payload for the getClients

service.",
"required": true,

Go-Lab 317601 105 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"paramType": "message",
"type": "SimpleRequest",
"allowMultiple": false

}
],
"authorizations": { },
"responseMessages": [

{
"code": 402,
"message": "Too many users"

},
{

"code": 404,
"message": "Clients not found"

},
{

"code": 405,
"message": "Method not allowed. The requested

method is not allowed by this server."
},
{

"code": 422,
"message": "The request body is unprocessable"

}
]

}
]

},
{

"path": "/sensor/",
"protocol": "WebSocket",
"produces": [

"application/json"
],
"operations": [

{
"method": "Send",
"nickname": "getSensorMetadata",
"summary": "List all sensors and their metadata",
"type": "SensorMetadataResponse",
"parameters": [

{
"name": "message",
"description": "the payload for the

getSensorMetadata service",
"required": true,
"paramType": "message",
"type": "SimpleRequest",
"allowMultiple": false

Go-Lab 317601 106 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

}
],
"responseMessages": [

{
"code": 402,
"message": "Too many users"

},
{

"code": 404,
"message": "No sensors found"

},
{

"code": 405,
"message": "Method not allowed. The requested

method is not allowed by this server."
},
{

"code": 422,
"message": "The request body is unprocessable"

}
],
"authorisations": {}

},
{

"method": "Send",
"nickname": "getSensorData",
"summary": "Get data from the sensor with the given

sensor identifier",
"type": "SensorDataResponse",
"parameters": [

{
"name": "message",
"description": "The payload for the

getSensorData service",
"required": true,
"type": "SensorDataRequest",
"paramType": "message",
"allowMultiple": false

}
],
"responseMessages": [

{
"code": 401,
"message": "Unauthorised access. The

authentication token is not valid"
},
{

"code": 402,
"message": "Too many users"

Go-Lab 317601 107 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

},
{

"code": 404,
"message": "No sensors found"

},
{

"code": 405,
"message": "Method not allowed. The requested

method is not allowed by this server."
},
{

"code": 422,
"message": "The request body is unprocessable"

}
]

}
]

},
{

"path": "/actuator/",
"protocol": "WebSocket",
"produces": [

"application/json"
],
"operations": [

{
"method": "Send",
"nickname": "getActuatorMetadata",
"summary": "List all actuators and their metadata",
"type": "ActuatorMetadataResponse",
"parameters": [

{
"name": "message",
"description": "the payload for the

getActuatorMetadata service",
"required": true,
"paramType": "message",
"type": "SimpleRequest",
"allowMultiple": false

}
],
"responseMessages": [

{
"code": 404,
"message": "No actuators found"

},
{

"code": 405,
"message": "Method not allowed. The requested

Go-Lab 317601 108 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

method is not allowed by this server."
},
{

"code": 422,
"message": "The request body is unprocessable"

}
],
"authorizations": {}

},
{

"method": "Send",
"summary": "Send new data to the actuator with the

given actuator identifier",
"notes": "The parameters go into a JSON object send

over the WebSocket",
"type": "ActuatorDataResponse",
"nickname": "sendActuatorData",
"parameters": [

{
"name": "message",
"description": "The payload for the

sendActuatorData service",
"required": true,
"type": "ActuatorDataRequest",
"paramType": "message",
"allowMultiple": false

}
],
"responseMessages": [

{
"code": 401,
"message": "Unauthorised access. The

authentication token is not valid"
},
{

"code": 402,
"message": "Too many users"

},
{

"code": 404,
"message": "No actuator not found"

},
{

"code": 405,
"message": "Method not allowed. The requested

method is not allowed by this server."
},
{

"code": 422,

Go-Lab 317601 109 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"message": "The request body is unprocessable"
}

]
}

]
},
{

"path": "/logging",
"protocol": "WebSocket",
"produces": [

"application/json"
],
"operations": [

{
"method": "Send",
"nickname": "getLoggingInfo",
"summary": "Streams the current logging information

of the user activities and the lab activities",
"notes": "Returns a JSON array of Activity Stream

objects, see http://activitystrea.ms/",
"type": "LoggingInfoResponse",
"webSocketType": "text",
"produces": "application/json",
"parameters": [

{
"name": "message",
"description": "the payload for the

getLoggingInfo service",
"required": true,
"paramType": "message",
"type": "SimpleRequest",
"allowMultiple": false

}
]

}
],
"responseMessages": [

{
"code": 401,
"message": "Unauthorised access. The authentication

token is not valid"
},
{

"code": 402,
"message": "Too many users"

},
{

"code": 405,
"message": "Method not allowed. The requested method

Go-Lab 317601 110 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

is not allowed by this server."
},
{

"code": 422,
"message": "The request body is unprocessable"

}
]

}
],
"authorizations": {},
"concurrency": { /* Swagger extension: */

"interactionMode": "synchronous", /* can also be ’asynchronous’
*/

"concurrencyScheme": "roles", /* can also be ’concurrent’ then
all users have access at the same time */

"roleSelectionMechanism": ["race", "interruptor"], /* can also
be ’queue’, ’fixed role’, ’dynamic role’ */

"roles": [
{

"role": "observer",
"selectionMechanism": ["race"],
"availableApis": ["getSensorData"] /* a list of paths or

operation nicknames */
},
{

"role": "controller",
"selectionMechanism": ["race"]

},
{

"role": "admin",
"selectionMechanism": ["interruptor"]

}
]

},
"models": {

"Client": {
"id": "Client",
"properties": {

"type": {
"type": "string",
"description": "The type of client application",
"enum": [

"OpenSocial Gadget",
"W3C widget",
"Web page",
"Java WebStart",
"Desktop application"

]
},

Go-Lab 317601 111 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"url": {
"type": "string",
"description": "The URI where the client application

resides"
}

}
},
"ClientResponse": {

"id": "ClientResponse",
"properties": {

"method": {
"type": "string"

},
"clients": {

"type": "array",
"items": {

"$ref": "Client"
}

}
}

},
"Sensor": {

"id": "Sensor",
"required": [

"sensorId", "fullName"
],
"properties": {

"sensorId": {
"type": "string"

},
"fullName": {

"type": "string"
},
"description": {

"type": "string"
},
"webSocketType": {

"type": "string",
"description": "the type of WebSocket. WebSockets can

either be binary or textual.",
"enum": [

"text",
"binary"

],
"defaultValue": "text"

},
"singleWebSocketRecommended": {

"type": "boolean",
"description": "If this field is set to true it means

Go-Lab 317601 112 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

that the smart device expects that a client opens
a dedicated websocket for to read from this value",

"defaultValue": false
},
"produces": {

"type": "string",
"description": "The mime-type of the data that is

produced by this sensor. A list of mime types can
be found at
http://en.wikipedia.org/wiki/Internet_media_type",

"defaultValue": "application/json"
},
"values": {

"type": "array",
"items": {

"$ref": "Value"
}

},
"configuration": {

"type": "array",
"description": "The configuration consists of an

array of JSON objects that consist of parameter
and type",

"items": {
"$ref": "ConfigurationMetadataItem" /* extended

Swagger with object type */
}

},
"accessMode": {

"type": "AccessMode"
}

}
},
"Value": {

"id": "Value",
"required": [

"name"
],
"properties": {

"name": {
"type": "string"

},
"unit": {

"type": "string"
},
"type": "type": "string","description": "The data type

of that this configuration parameters expects, e.g.
number or string","enum":
["integer","long","float","double","string","byte","boolean","date","dateTime","object",
/*extended Swagger with JSON object type

Go-Lab 317601 113 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

*/"array","any", /*extended Swagger with any type –
this represents any possible type */"binary"
/*extended Swagger with binary type – support for
large binary config files */],

"rangeMinimum": {
"type": "number",
"format": "double"

},
"rangeMaximum": {

"type": "number",
"format": "double"

},
"rangeStep": {

"type": "number",
"format": "double"

},
"lastMeasured": {

"type": "date-time"
},
"updateFrequency": {

"type": "number",
"description": "The frequency in Hertz of which the

sensor value updates",
"format": "int"

}
}

},
"ConfigurationMetadataItem": {

"id": "ConfigurationMetadataItem",
"required": [

"parameter", "type"
],
"properties": {

"parameter": {
"type": "string",
"description": "The name of the configuration

parameter"
},
"description": {

"type": "string",
"description": "This field can provide some more

information on how this parameter should be used."
},
"type": {

"type": "string",
"description": "The data type of that this

configuration parameters expects, e.g. number or
string",

"enum": [
"integer",

Go-Lab 317601 114 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"long",
"float",
"double",
"string",
"byte",
"boolean",
"date",
"dateTime",
"object", /* extended Swagger with JSON

object type */
"array",
"any", /* extended Swagger with any

type -- this represents any possible type */
"binary" /* extended Swagger with binary

type -- support for large binary config files
*/

]
},
"items": {

"type": "string",
"description": "This field should only be used when

the type is ’array’. It describes which types are
present within the array",

"enum": [
"integer",
"long",
"float",
"double",
"string",
"byte",
"boolean",
"date",
"dateTime",
"object", /* extended Swagger with JSON

object type */
"any", /* extended Swagger with any

type -- this represents any possible type */
"binary" /* extended Swagger with binary

type -- support for large binary config files
*/

]
}

}
},
"AccessMode": {

"id": "AccessMode",
"properties": {

"type": {
"type": "string",

Go-Lab 317601 115 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"enum": [
"push",
"pull",
"stream"

]
},
"nominalUpdateInterval": {

"type": "number",
"format": "float"

},
"userModifiableFrequency": {

"type": "boolean",
"defaultValue": false

}
}

},
"SimpleRequest": {

"id": "SimpleRequest",
"required": [

"method"
],
"properties": {

"authToken": {
"type": "string"

},
"method": {

"type": "string",
"description": "The method should be equal to the

nickname of one of the provided services."
}

}
},
"SensorMetadataResponse": {

"id": "SensorMetadataResponse",
"required": [

"method", "sensors"
],
"properties": {

"method": {
"type": "string",
"description": "The method should be equal to the

nickname of one of the provided services."
},
"sensors": {

"type": "array",
"items": {

"$ref": "Sensor"
}

}

Go-Lab 317601 116 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

}
},
"SensorDataRequest": {

"id": "SensorDataRequest",
"required": [

"authToken", "method", "sensorId"
],
"properties": {

"authToken": {
"type": "string"

},
"method": {

"type": "string",
"description": "The method should be equal to the

nickname of one of the provided services."
},
"sensorId": {

"type": "string"
},
"updateFrequency": {

"type": "number",
"description": "The frequency in Hertz of which the

sensor value updates",
"format": "int"

},
"configuration": {

"type": "array",
"items": {

"$ref": "ConfigurationItem"
}

},
"accessRole": {

"type": "string",
"description": "This field contains one of the roles

defined in the concurrency roles list. If
accessRole is not defined, the controller role is
assumed."

}
}

},
"ConfigurationItem": {

"id": "ConfigurationItem",
"required": [

"parameter", "value"
],
"properties": {

"parameter": {
"type": "string",
"description": "The name of the configuration

Go-Lab 317601 117 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

parameter"
},
"value": {

"type": "any", /* extended Swagger with any
type -- this represents any possible type */

"description": "The value to set the configuration
parameter to. The type should equal the type given
in the metadata for this sensor."

}
}

},
"SensorDataResponse": {

"id": "SensorDataResponse",
"required": [

"method", "sensorId"
],
"properties": {

"method": {
"type": "string",
"description": "The method should be equal to the

nickname of one of the provided services."
},
"sensorId": {

"type": "string"
},
"accessRole": {

"type": "string",
"description": "This field contains one of the roles

defined in the concurrency roles list. If no roles
are defined controller is returned. If the
observer is returned, the observerMode field will
be available with extra info on the status of the
lab."

},
"responseData": {

"type": "SensorResponseData",
"description": "The data as measured by this sensor"

},
"payload": {

"type": "any",
"description": "This optional payload field can

contain any JSON object that provides extra
information on this sensor or the current
measurement."

},
"observerMode": {

"type": "ObserverMode",
"description": "This field is only available if the

accessRole field returns observer."

Go-Lab 317601 118 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

}
}

},
"SensorResponseData": {

"id": "SensorResponseData",
"required": [],
"properties": {

"valueNames": {
"type": "array",
"description": "An ordered array with all the value

names of this sensor. The same order will be
applied to the data array and lastMeasured array.",

"items": {
"type": "string"

}
},
"data": {

"type": "array",
"description": "An ordered array with all the data

values of this sensor. Each data element in the
array should be ordered in the same position of
its corresponding value elements in the values
array.",

"items": {
"type": "any" /* extended Swagger with any

type -- this represents any possible type */
}

},
"lastMeasured": {

"type": "array",
"description": "An ordered array with all the data

values of this sensor. Each data element in the
array should be ordered in the same position of
its corresponding value elements in the values
array.",

"items": {
"type": "date-time"

}
}

}
},
"Actuator": {

"id": "Actuator",
"required": [

"actuatorId", "fullName"
],
"properties": {

"actuatorId": {
"type": "string"

Go-Lab 317601 119 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

},
"fullName": {

"type": "string"
},
"description": {

"type": "string"
},
"webSocketType": {

"type": "string",
"description": "the type of WebSocket. WebSockets can

either be binary or textual.",
"enum": [

"text",
"binary"

],
"defaultValue": "text"

},
"singleWebSocketRecommended": {

"type": "boolean",
"description": "If this field is set to true it means

that the smart device expects that a client opens
a dedicated websocket for to read from this value",

"defaultValue": false
},
"consumes": {

"type": "string",
"description": "The mime-type of the data that is

consumed by this actuator. A list of mime types
can be found at
http://en.wikipedia.org/wiki/Internet_media_type",

"defaultValue": "application/json"
},
"produces": {

"type": "string",
"description": "The mime-type of the data that is

produced by this actuator. A list of mime types
can be found at
http://en.wikipedia.org/wiki/Internet_media_type",

"defaultValue": "application/json"
},
"values": {

"type": "array",
"items": {

"$ref": "Value"
}

},
"configuration": {

"type": "array",
"description": "The configuration consists of an

Go-Lab 317601 120 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

array of JSON objects that consist of parameter
and type",

"items": {
"$ref": "ConfigurationMetadataItem" /* extended

Swagger with object type */
}

},
"accessMode": {

"type": "AccessMode"
}

}
},
"ActuatorMetadataResponse": {

"id": "ActuatorMetadataResponse",
"required": [

"method", "actuators"
],
"properties": {

"method": {
"type": "string",
"description": "The method should be equal to the

nickname of one of the provided services."
},
"actuators": {

"type": "array",
"items": {

"$ref": "Actuator"
},
"description": "The list of actuator metadata

elements"
}

}
},
"ActuatorDataRequest": {

"id": "ActuatorDataRequest",
"required": [

"method", "actuatorId"
],
"properties": {

"authToken": {
"type": "string"

},
"method": {

"type": "string",
"description": "The method should be equal to the

nickname of one of the provided services."
},
"actuatorId": {

"type": "string"

Go-Lab 317601 121 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

},
"valueNames": {

"type": "array",
"description": "An ordered array with all the value

names of this sensor. The same order will be
applied to the data array and lastMeasured array.",

"items": {
"type": "string"

}
},
"data": {

"type": "array",
"description": "An ordered array with all the data

values of this sensor. Each data element in the
array should be ordered in the same position of
its corresponding value elements in the valueNames
array.",

"items": {
"type": "any" /* extended Swagger with any

type -- this represents any possible type */
}

},
"configuration": {

"type": "array",
"items": {

"$ref": "ConfigurationItem"
}

},
"accessRole": {

"type": "string",
"description": "This field contains one of the roles

defined in the concurrency roles list. If
accessRole is not defined the controller role is
assumed."

}
}

},
"ActuatorDataResponse": {

"id": "ActuatorDataResponse",
"required": [

"method"
],
"properties": {

"method": {
"type": "string",
"description": "The method should be equal to the

nickname of one of the provided services."
},
"lastMeasured": {

Go-Lab 317601 122 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"type": "date-time"
},
"accessRole": {

"type": "string",
"description": "This field contains one of the roles

defined in the concurrency roles list. If no roles
are defined controller is returned. If the
observer is returned, the observerMode field will
be available with extra info on the status of the
lab."

},
"payload": {

"type": "any",
"description": "The payload can be useful for

describing a result that is returned, for instance
by using the SensorResponseData model. Since
results can differ from acknowledgements to result
data, the field is optional and can contain any
JSON object."

},
"observerMode": {

"type": "ObserverMode",
"description": "This field is only available if the

accessRole field returns observer."
}

}
},
"ObserverMode": {

"id": "ObserverMode",
"required": [],
"properties": {

"queueSize": {
"type": "integer",
"description": "Provides the length of the user

waiting queue that want to get control of the lab"
},
"queuePosition": {

"type": "integer",
"description": "Provides the position of the client

who made this call in the user waiting queue. This
value should be positive and smaller or equal to
queueSize."

},
"estimatedTimeUntilControl": {

"type": "integer",
"description": "The estimated waiting time from now

on until the client will get controllerMode
access. The time is expressed in seconds."

}

Go-Lab 317601 123 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

}
},
"LoggingInfoResponse": {

"id": "LoggingInfoResponse",
"required": [

"method", "logs"
],
"properties": {

"method": {
"type": "string"

},
"logs": {

"type": "array",
"items": {

"type": "object",
"description": "An Activity Stream object. This

JSON object should follow the ActivityStreams
1.0 JSON specification described at
http://activitystrea.ms/specs/json/1.0/"

}
}

}
}

}
}

6.2.2 Example Requests and Responses to the Smart Device Services

In this section, we will present a few example requests and responses that can
be made with the running example specifications.

getClients

Listing 6.15: The request message to retrieve the client apps.
{

"method": "getClients"
}

Listing 6.16: The response message to retrieve the client apps.
{

"method": "getClients",
"clients": [

{
"type": "OpenSocial gadget",
"url": "http://superlab.epfl.ch/client/dataviewer.xml"

},
{

"type": "OpenSocial gadget",

Go-Lab 317601 124 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"url": "http://superlab.epfl.ch/client/video.xml"
},
{

"type": "OpenSocial gadget",
"url":

"http://superlab.epfl.ch/client/experiment-operator.xml"
}

]
}

getSensorMetadata

Listing 6.17: The request message to retrieve the sensor metadata.
{

"method": "getSensorMetadata"
}

Listing 6.18: The response message to retrieve the sensor metadata.
{

"method": "getSensorMetadata",
"sensors": [

{
"sensorId": "3D-pos",
"fullName": "3D position",
"description": "the 3D position of the robot arm",
"webSocketType": "text",
"produces": "application/json",
"values": [

{
"name": "X",
"unit": "cm",
"type": "float",
"lastMeasured": "2014-06-23T18:25:43.511Z",
"rangeMinimum": 0.00,
"rangeMaximum": 100.00,
"rangeStep": 0.10,
"updateFrequency": 10

},
{

"name": "Y",
"unit": "cm",
"type": "float",
"lastMeasured": "2014-06-23T18:25:43.511Z",
"rangeMinimum": 0.00,
"rangeMaximum": 100.00,
"rangeStep": 0.10,
"updateFrequency": 10

Go-Lab 317601 125 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

},
{

"name": "Z",
"unit": "cm",
"type": "float",
"lastMeasured": "2014-06-23T18:25:43.511Z",
"rangeMinimum": 0.00,
"rangeMaximum": 100.00,
"rangeStep": 0.10,
"updateFrequency": 10

}
],
"configuration":[

{
"parameter": "precision",
"description": "The precision is expressed as a power

of 10, e.g. to allow a precision of 0.01 the value
will be -2 (from 10^-2).",

"type": "int"
}

],
"accessMode": {

"type": "push",
"nominalUpdateInterval": 100,
"userModifiableFrequency": true

}
},
{

"sensorId": "video",
"fullName": "video stream",
"description": "front camera video stream",
"webSocketType": "binary",
"singleWebSocketRecommended": true,
"produces": "image/jpeg",
"values": [

{
"name": "front",
"lastMeasured": "2014-06-23T18:28:43.617Z",
"updateFrequency": 10

}
],
"configuration":[

{
"parameter": "width",
"type": "int"

},
{

"parameter": "height",
"type": "int"

Go-Lab 317601 126 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

},
{

"parameter": "compression",
"description": "The JPEG compression quality, ranging

from 0 (lowest quality) to 100 (highest quality).",
"type": "float"

},
{

"parameter": "colourFilter",
"description": "The colour value in an array of 3

decimal RGB values",
"type": "array",
"items": "int"

}
],
"accessMode": {

"type": "stream",
"nominalUpdateInterval": 10,
"userModifiableFrequency": true

}
}

]
}

getSensorData

Listing 6.19: The request message to retrieve the sensor data of a 3D po-
sition sensor with a configuration for the precision to be set
to three decimal numbers. The controller access role is as-
sumed and the Smart Device will react accordingly to the ac-
tual user role.

{
"authToken": "dskds909ds8a76as675sa54",
"method": "getSensorData",
"sensorId": "3D-pos",
"updateFrequency": 20,
"configuration": [

{
"parameter": "precision",
"value": 3

}
],
"accessRole": "controller"

}

Listing 6.20: The request message to gain the controller role of the sensor
data of a 3D position sensor.

Go-Lab 317601 127 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

{
"authToken": "dskds909ds8a76as675sa54",
"method": "getSensorData",
"sensorId": "3D-pos",
"updateFrequency": 20,
"accessRole": "interrupt",
"configuration": [

{
"parameter": "precision",
"value": -3

}
]

}

Listing 6.21: The request message to retrieve the sensor data of a video
sensor with a configuration for the dimensions, compression
and colour filter of the video feed.

{
"authToken": "dskds909ds8a76as675sa54",
"method": "getSensorData",
"sensorId": "video",
"updateFrequency": 25,
"accessRole": "controller",
"configuration": [

{
"parameter": "width",
"value": 640

},
{

"parameter": "height",
"value": 480

},
{

"parameter": "compression",
"value": 92.3

},
{

"parameter": "colorFilter",
"value": [60, 27, 229]

}
]

}

Listing 6.22: The response message to retrieve the sensor data of a 3D
position sensor.

{
"method": "getSensorData",

Go-Lab 317601 128 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"sensorId": "3D-pos",
"accessRole": "controller",
"responseData": {

"valueNames": ["X", "Y", "Z"],
"data": [12.396, 23.681, 43.303],
"lastMeasured": ["2014-06-23T18:28:43.511Z",

"2014-06-23T18:28:43.511Z", "2014-06-23T18:28:43.511Z"]
}

}

Listing 6.23: The request message to stop retrieving the sensor data of a
3D position sensor by setting the update frequency to 0.

{
"method": "getSensorData",
"sensorId": "3D-pos",
"updateFrequency": 0

}

getActuatorMetadata

Listing 6.24: The request message to retrieve the actuator metadata.
{

"method": "getActuatorMetadata"
}

Listing 6.25: The response message to retrieve the actuator metadata.
{

"method": "getActuatorMetadata",
"actuators":
[

{
"actuatorId": "motor",
"fullName": "Wheel motor",
"description": "operate the motor of the wheel",
"webSocketType": "text",
"produces": "application/json",
"consumes": "application/json",
"values": [

{
"name": "left",
"unit": "radian",
"type": "float",
"rangeMinimum": 0.00,
"rangeMaximum": 3.14,
"rangeStep": 0.10,
"updateFrequency": 10,

Go-Lab 317601 129 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"lastMeasured": "2014-06-23T19:25:43.511Z"
},
{

"name": "right",
"unit": "radian",
"type": "float",
"rangeMinimum": 0.00,
"rangeMaximum": 3.14,
"rangeStep": 0.10,
"updateFrequency": 10,
"lastMeasured": "2014-06-23T19:25:43.511Z"

}
],
"configuration":[

{
"parameter": "precision",
"description": "The precision is expressed as a power

of 10, e.g. to allow a precision of 0.01 the value
will be -2 (from 10^-2).",

"type": "int"
}

],
"accessMode": {

"type": "push",
"nominalUpdateInterval": 100,
"userModifiableFrequency": true

}
}

]
}

getActuatorData

Listing 6.26: The request message to set the motor actuator.
{

"authToken": "dskds909ds8a76as675sa54",
"method": "sendActuatorData",
"accessRole": "controller",
"actuatorId": "motor",
"valueNames": ["left"],
"data": [1.90]

}

Listing 6.27: The response message to set the motor actuator.
{

"method": "sendActuatorData",
"lastMeasured": "2014-06-23T20:25:43.741Z",

Go-Lab 317601 130 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"accessRole": "controller",
"payload": {

/* could be useful for returning a result, but payload is
optional */

"actuatorId": "motor",
"valueNames": ["left"],
"data": [1.90]

}
}

Listing 6.28: In case the user only has an observer role, this response
message is returned. It provides data about how long the
user will have to wait.

{
"method": "sendActuatorData",
"accessRole": "observer",
"observerMode": {

"queueSize": 7,
"queuePosition": 4,
"estimatedTimeUntilControl": 736

}
}

getLoggingInfo

Listing 6.29: The request message to retrieve ActivityStreams logging in-
formation.

{
"authToken": "dskds909ds8a76as675sa54;",
"method": "getLoggingInfo"

}

Listing 6.30: The response message to retrieve ActivityStreams logging
information.

{
"method": "getLoggingInfo",
"logs": [

{
"verb": "access",
"published": "2014-06-23T18:25:43.511Z",
"language": "en",
"actor": {

"objectType": "person",
"id": "urn:example:person:martin",
"displayName": "Martin Smith",
"url": "http://example.org/martin",

Go-Lab 317601 131 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

"image": {
"url": "http://example.org/martin/image.jpg",
"mediaType": "image/jpeg",
"width": 250,
"height": 250

}
},
"object" : {

"objectType": "sensor",
"id": "urn:redlab:epfl:ch/3D-pos"
"url": "http://redlab.epfl.ch/smartdevice/sensors/3D-pos",
"displayName": "3D position"

},
"target" : {

"objectType": "lab",
"id": "urn:redlab:epfl:ch/smartdevice",
"displayName": "RED Lab",
"url": "http://redlab.epfl.ch/smartdevice/"

}
}

]
}

Go-Lab 317601 132 of 135

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

References
Auer, M., Pester, A., Ursutiu, D., & Samoila, C. (2003, Dec). Distributed vir-

tual and remote labs in engineering. In Industrial technology, 2003 IEEE
international conference on (Vol. 2, p. 1208-1213 Vol.2). doi: 10.1109/
ICIT.2003.1290837

Bellido, L., Villagra, V., & Mateos, V. (2010). Federated authentication and
authorization for reusable learning objects. In (p. 1071-1074). IEEE. Re-
trieved 2014-07-01, from http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5492459 doi: 10.1109/EDUCON.2010.5492459

Cascado, D., Sevillano, J. L., Fernández-Luque, L., Johan-GrÃ¸ttum, K., Vog-
nild, L. K., & Burkow, T. M. (2011). Standards and implementation of
pervasive computing applications. In Pervasive computing and network-
ing (pp. 135–158). John Wiley & Sons, Ltd. Retrieved from http://dx.doi
.org/10.1002/9781119970422.ch9 doi: 10.1002/9781119970422.ch9

Freed, N., Baker, M., & Hoehrmann, B. (2014). Media types (Tech. Rep.).
Retrieved from http://www.iana.org/assignments/media-types/media
-types.xhtml

Hadley, M. J. (2009). Web application description language (WADL) (Tech.
Rep.). Sun Microsystems Inc. Retrieved from http://java.net/
projects/wadl/sources/svn/content/trunk/www/wadl20090202.pdf

Hardison, J., & Garbi Zutin, D. (2011). The ilab shared archi-
tecture: A web services infrastructure to build communities of in-
ternet accessible laboratories. IGI Global. Retrieved 2014-07-
01, from http://services.igi-global.com/resolvedoi/resolve.aspx
?doi=10.4018/978-1-61350-186-3

Harward, V., del Alamo, J., Lerman, S., Bailey, P., Carpenter, J., DeLong, K.,
. . . Zych, D. (2008). The iLab shared architecture: A web services infras-
tructure to build communities of internet accessible laboratories. , 96(6),
931-950. Retrieved 2014-07-01, from http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=4527087 doi: 10.1109/JPROC
.2008.921607

Hypertext transfer protocol (HTTP) status code registry (RFC7231) (Tech.
Rep.). (2014). IETF. Retrieved from http://www.iana.org/assignments/
http-status-codes/http-status-codes.xhtml

Lindsay, E., Stumpers, B., & others. (2014). Remote laborato-
ries: enhancing accredited engineering degree programs. Retrieved
2014-07-01, from http://search.informit.com.au/documentSummary;
dn=258335755728695;res=IELENG

Lowe, D., Murray, S., Lindsay, E., & Liu, D. (2009). Evolving remote laboratory
architectures to leverage emerging internet technologies. , 2(4), 289-294.
Retrieved 2014-07-01, from http://ieeexplore.ieee.org/xpls/abs_all
.jsp?arnumber=5210092

Lowe, D. B., Berry, C., Murray, S., & Lindsay, E. (2009). Adapting a remote lab-
oratory architecture to support collaboration and supervision. , 5, 51-56.
Retrieved 2014-07-01, from http://espace.library.curtin.edu.au/cgi
-bin/espace.pdf?file=/2010/03/08/file_1/133701

Go-Lab 317601 133 of 135

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5492459
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5492459
http://dx.doi.org/10.1002/9781119970422.ch9
http://dx.doi.org/10.1002/9781119970422.ch9
http://www.iana.org/assignments/media-types/media-types.xhtml
http://www.iana.org/assignments/media-types/media-types.xhtml
http://java.net/projects/wadl/sources/svn/content/trunk/www/wadl20090202.pdf
http://java.net/projects/wadl/sources/svn/content/trunk/www/wadl20090202.pdf
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-61350-186-3
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-61350-186-3
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4527087
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4527087
http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
http://search.informit.com.au/documentSummary;dn=258335755728695;res=IELENG
http://search.informit.com.au/documentSummary;dn=258335755728695;res=IELENG
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5210092
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5210092
http://espace.library.curtin.edu.au/cgi-bin/espace.pdf?file=/2010/03/08/file_1/133701
http://espace.library.curtin.edu.au/cgi-bin/espace.pdf?file=/2010/03/08/file_1/133701

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Marum, M. (n.d.). Opensocial 2.5.1 specification. Retrieved 02/07/2014, from
https://github.com/OpenSocial/spec

Orduña, P. (2013). Transitive and scalable federation model for remote lab-
oratories (Doctoral dissertation, Universidad de Deusto, Bilbao, Spain).
Retrieved from http://paginaspersonales.deusto.es/porduna/phd/

Orduña, P., Bailey, P., DeLong, K., López-de Ipiña, D., & García-Zubia, J.
(2014, January). Towards federated interoperable bridges for sharing ed-
ucational remote laboratories. Computers in Human Behavior , 30, 389–
395. Retrieved from http://www.sciencedirect.com/science/article/
pii/S0747563213001416 doi: 10.1016/j.chb.2013.04.029

Orduna, P., Caminero, A., Lequerica, I., Zutin, D. G., Bailey, P., Sancristobal, E.,
. . . Garcia-Zubia, J. (2014, October). Generic integration of remote labo-
ratories in public learning tools: Organizational and technical challenges.
In (pp. 1–7). IEEE. Retrieved 2015-04-27, from http://ieeexplore.ieee
.org/lpdocs/epic03/wrapper.htm?arnumber=7044025 doi: 10.1109/FIE
.2014.7044025

Orduña, P., Irurzun, J., Rodriguez-Gil, L., Zubía, J. G., Gazzola, F., & de Ip-
iña, D. L. (2011). Adding new features to new and existing remote
experiments through their integration in weblab-deusto. iJOE , 7 (S2),
33-39. Retrieved from http://dblp.uni-trier.de/db/journals/ijoe/
ijoe7.html#OrdunaIRZGL11

Orduña, P., Lerro, F., Bailey, P., Marchisio, S., DeLong, K., Perreta, E., . . .
García-Zubia, J. (2013, March). Exploring complex remote laboratory
ecosystems through interoperable federation chains. In 2013 IEEE global
engineering education conference (EDUCON) (pp. 1200–1208). Berlin,
Germany. doi: 10.1109/EduCon.2013.6530259

Salzmann, C., & Gillet, D. (2008). From online experiments to smart devices.
International Journal of Online Engineering (iJOE), Vol 4(SPECIAL IS-
SUE: REV2008), 50–54. Retrieved from http://online-journals.org/
index.php/i-joe/

Salzmann, S. H. W. G. D., Christophe; Govaerts. (2015). The smart device
specification for remote labs. International Journal of Online Engineering.

Sancristobal, E., Castro, M., Harward, J., Baley, P., DeLong, K., & Hardison, J.
(2010). Integration view of web labs and learning management systems.
In (p. 1409-1417). IEEE. Retrieved 2014-07-01, from http://ieeexplore
.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5492363 doi: 10
.1109/EDUCON.2010.5492363

SCORM - home. (n.d.). Retrieved 2014-07-01, from http://scorm.com/
?gclid=CLWR46iYpb8CFQIewwodsqQA2w

Swagger RESTful API documentation specification. (n.d.). Retrieved
30/06/2014, from https://github.com/wordnik/swagger-spec/blob/
master/versions/1.2.md

Tawfik, M., Salzmann, C., Gillet, D., Lowe, D., Saliah-Hassane, H., Sancristobal,
E., et al. (2014). Laboratory as a service (laas): a novel paradigm for
developing and implementing modular remote laboratories. International
Journal of Online Engineering, 10(EPFL-ARTICLE-200122), 13–21.

Go-Lab 317601 134 of 135

https://github.com/OpenSocial/spec
http://paginaspersonales.deusto.es/porduna/phd/
http://www.sciencedirect.com/science/article/pii/S0747563213001416
http://www.sciencedirect.com/science/article/pii/S0747563213001416
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7044025
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7044025
http://dblp.uni-trier.de/db/journals/ijoe/ijoe7.html#OrdunaIRZGL11
http://dblp.uni-trier.de/db/journals/ijoe/ijoe7.html#OrdunaIRZGL11
http://online-journals.org/index.php/i-joe/
http://online-journals.org/index.php/i-joe/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5492363
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5492363
http://scorm.com/?gclid=CLWR46iYpb8CFQIewwodsqQA2w
http://scorm.com/?gclid=CLWR46iYpb8CFQIewwodsqQA2w
https://github.com/wordnik/swagger-spec/blob/master/versions/1.2.md
https://github.com/wordnik/swagger-spec/blob/master/versions/1.2.md

Go-Lab D4.5 Specifications of the Lab Owner and Cloud Services

Tawfik, M., Sancristobal, E., Martin, S., Diaz, G., Peire, J., & Castro, M. (2013).
Expanding the boundaries of the classroom: implementation of remote
laboratories for industrial electronics disciplines. Industrial Electronics
Magazine, IEEE , 7 (1), 41–49.

Taylor, B. N., & Thompson, A. (2008). The international system of units
(SI) (NIST Special Publication No. 330). National Institute of Standards
and Technology. Retrieved from http://physics.nist.gov/Pubs/SP330/
sp330.pdf

Tetour, Y., Boehringer, D., & Richter, T. (2011). Integration of virtual and remote
experiments into undergraduate engineering courses. In (p. GOLC1-1-
GOLC1-6). IEEE. Retrieved 2014-07-01, from http://ieeexplore.ieee
.org/lpdocs/epic03/wrapper.htm?arnumber=6143130 doi: 10.1109/FIE
.2011.6143130

Thompson, C. W. (2005). Smart devices and soft controllers. IEEE Internet
Computing, 9(1), 82-85. Retrieved from http://dblp.uni-trier.de/db/
journals/internet/internet9.html#Thompson05

Go-Lab 317601 135 of 135

http://physics.nist.gov/Pubs/SP330/sp330.pdf
http://physics.nist.gov/Pubs/SP330/sp330.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6143130
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6143130
http://dblp.uni-trier.de/db/journals/internet/internet9.html#Thompson05
http://dblp.uni-trier.de/db/journals/internet/internet9.html#Thompson05

	Introduction
	Remote labs
	Value Proposition
	Integration Levels

	Lab Owner or Plug Services
	The Smart Device Architecture
	The Smart Device in the Go-Lab Infrastructure

	Smart Device Protocols and Technical details
	Smart Device Services and Functionalities
	Introduction
	List of Services and Functionalities
	Metadata Service
	Sensor Service – getSensorData
	Actuator Service – sendActuatorData
	User Activity Logging Service – getLoggingInfo
	Client Application Service – getClients
	Models service – getModels

	Smart Device Interactions
	Authentication and Booking
	Interaction Modes
	WebSocket Channeling
	Lab Instruments as Complex Sensors

	Cloud Services
	Introduction
	Requirements for the Smart Gateway
	Functional Requirements for the Smart Gateway
	Non-functional Requirements for the Smart Gateway

	Review of Legacy Lab Platforms
	Comparison with Other Systems
	Specifications and Architecture of the Smart Gateway
	Architecture
	Specifications of the Plug-in System
	The Protocol Translator

	Logging management without the protocol translator
	Benefits for Lab Owners

	Conclusion
	Appendix A: Smart Device metadata specification details
	Extensions for WebSockets
	Extensions for Concurrency mechanisms
	Additional Minimal Extensions
	Data Types

	Appendix B: The Metadata Specification for an Example Smart Device
	RED Smart Device
	Metadata Specification
	Example Requests and Responses to the Smart Device Services

	Running example Smart Device
	Metadata Specification
	Example Requests and Responses to the Smart Device Services

	References

