
HAL Id: hal-01206820
https://telearn.hal.science/hal-01206820

Submitted on 14 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Smart Device Specification for Remote Labs
Christophe Salzmann, Sten Govaerts, Wissam Halimi, Denis Gillet

To cite this version:
Christophe Salzmann, Sten Govaerts, Wissam Halimi, Denis Gillet. The Smart Device Specification
for Remote Labs. 12th International Conference on Remote Engineering and Virtual Instrumentation
(REV 2015), Feb 2015, Bangkok, Thailand. �hal-01206820�

https://telearn.hal.science/hal-01206820
https://hal.archives-ouvertes.fr

PAPER
THE SMART DEVICE SPECIFICATION FOR REMOTE LABS

The Smart Device Specification for Remote Labs
http://dx.doi.org/10.3991/ijoe.v11i4.4571

Christophe Salzmann, Sten Govaerts, Wissam Halimi, and Denis Gillet
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Abstract—This paper presents the Smart Device specifica-
tion to interface with remote labs. To encourage the
broader sharing of remote labs, the Smart Device para-
digm decouples the client from the server and provides
well-defined interfaces between client and server. Such
Smart Device services are exposed on the Internet and
enable interoperability with client applications, other
Smart Devices and external services (e.g. a booking service).
This paper presents the extensible and platform-agnostic
specification of the Smart Device services and internal func-
tionalities. The Smart Device specification contains sufficient
service metadata to enable the automatic generation of
basic client applications. The specification is illustrated
through an example and first implementations of the
specification are presented.

Index Terms—Remote labs, Smart Device, Specification,
Remote control, Web Service, Websockets

I. INTRODUCTION
The Smart Device paradigm originates from the RFID

and sensor world, where one adds information to a static
sensor to enhance its functionality. Thus, instead of a
thermometer just returning a voltage, a sensor provides
additional information such as the sensor ID, a
timestamp or a data range. Thomson [1] defines that
smart objects connected to the Internet need some or all of
the following capabilities: i) communication, ii) sensing
and actuating, iii) reasoning and learning, iv) identity and
kind, and v) memory and status tracking.

We extended Thomson’s proposition to support more
complex devices that are using web-based technologies,
namely to support remote labs [2]. We used this para-
digm to specify on one hand the remote lab interfaces
exposed on the Internet and on the other hand its inter-
nal functionalities[3]. Since the Smart Device interfaces
are well-defined, a Smart Device becomes interoperable
with other Smart Devices, external services and client
applications. Such interoperability fosters reuse of applica-
tions and external services, and can provide extra function-
ality to any Smart Device (e.g. booking and authentica-
tion), simplifying the development of remote labs. The
specification is designed to enable any client application
developer to easily interface with a remote lab. Moreover,
the specification of the services is machine readable, ena-
bling the automatic generation of a skeleton of the client
application. The actual implementation of the specifica-
tion, as well as the remote lab software and hardware
implementation, is left to the lab owner’s discretion.

This paper presents the Smart Device specification to-
gether with an example and multiple software packages
demonstrating implementations on different software and
hardware platforms. The specification uses open protocols,
is easily extensible and makes use of a slightly modified

version of the Swagger [4] web service description lan-
guage to support WebSockets. Note that the specification
was first documented in deliverable D4.1 of the Europe-
an FP7 project, Go-Lab [5].1

This paper is organized as follows: first we summarize
the Smart Device as a paradigm for remote labs. Then,
we discuss the architecture and interoperability features
enabled by the Smart Device. The next section is dedi-
cated to describing the Smart Device specification for
remote labs in detail. Examples and extensions are pro-
vided in the last section.

II. SMART DEVICES PARADIGM
The Smart Device paradigm revisits the traditional cli-

ent- server architecture, on which many remote lab im-
plementations rely. The main differences between exist-
ing implementations and the Smart Devices’ are first the
complete decoupling between the server and the client,
and second the server representation as a set of well-
defined services and functionalities that enable interop-
erability [3], [6], [7]. Similar approaches were proposed
at the sensor/actuator level to enable the plug and play
mechanism for Smart Electronic Transducers, which
provides electronic data sheets describing themselves [8].
This paper proposes a specification that handles the inter-
action between clients and servers at the service level.

The decoupling removes the umbilical cord between
the client and the server so that they can live their own
separate lives. While in a traditional client-server archi-
tecture [9], the server and client share a specification that
is often uniquely used by them. On the contrary, the
Smart Device paradigm defines one common specifica-
tion that is shared by all Smart Devices. This reuse of a
common specification and the client- server decoupling
alleviates most of the problems developers are facing
when the client application needs to be adapted to
new OS/platforms, or if the client application is to be
integrated in other environments such as learning man-
agement systems (LMS), or simply if additional fea-
tures are added to the server. Furthermore, interopera-
bility with, and reuse of existing applications and ser-
vices becomes possible when labs share a common spec-
ification.

Smart Devices mainly provide web services to access
sensors and actuators. Traditional solutions often provide
a monolithic interface without the possibility to specifi-
cally access a given sensor or actuator [10]. The Smart
Device specification fully describes the Smart Device
from a client point of view by specifying only the inter-
faces, not the inner working of the lab, which is left to
the lab owner’s discretion. The Smart Device specifica-
tion is agnostic about the server- side hardware, but re-

1 The Go-Lab project, http://www.go-lab- project.eu

20 http://www.i-joe.org

PAPER
THE SMART DEVICE SPECIFICATION FOR REMOTE LABS

engineers the software component by adding ‘intelligence’
to handle complex tasks through the API.

There is no assumption regarding the communication
channels for Smart Devices [11]. The Internet is the de
facto choice for online labs [2], [12]. In addition, open
Web technologies enable a broader compatibility and adop-
tion, while proprietary technologies break the core ubiqui-
tous access requirement.

The Smart Device may not necessarily provide a User
Interface (UI), but often proposes a minimal client UI.
Thanks to the interoperability provided by the Smart De-
vice specification, client applications can be developed to
operate with different Smart Devices promoting reuse. Due
to their ubiquity, web browsers are the preferred environ-
ments to render the client UI. There is often a direct rela-
tion between the Smart Device sensors and actuators,
and the client app rendering their information. For
example, an oscilloscope app renders the voltage evolu-
tion measured by a sensor of the Smart Device. In general,
the Smart Device paradigm defines an ideal autonomous
device which provides internal functionalities and that can
be accessed through well-defined services.

III. SMART DEVICES FOR REMOTE LABS
A generic Smart Device can already be seen as an au-

tonomous online lab. On the other hand, it does not target
a specific purpose and therefore the expected requirements
may not be satisfied. The principal aim of remote labs is to
represent its partial or full state, at the client side, and to
enable real-time interaction. For example, it could be im-
plemented in the form of a simple oscilloscope depicting
the temporal evolution of a given sensor or a full 3D rep-
resentation of the system. Inter- acting with the physical
lab by directly controlling actuators or indirectly through
a supervision stage (local controller or other logic) should
also be possible. When considering remote labs, the client
side that renders the server information needs also to be
taken into account. Remote lab client applications are
typically running in a Web browser. This specific choice
of open Web technologies enables a broader compatibility
and favors adaptation as well as adoption. Proprietary
technologies (e.g. Java or Flash) should be avoided since
they limit the ubiquity of the solution. The Smart Device
paradigm enables the rethinking of such an interface into
a Web 2.0 interface.

The Smart Device provides interfaces to remote labs for
clients and external services through well-defined services
and internal functionalities. A precise definition of these
services and functionalities permits the decoupling be-
tween the client and the server. Some of these services and
functionalities are meant for the client application, while
others are meant for the Smart Device. The Smart De-
vice’s additional intelligence and agility mainly comes
from these internal functionalities. The services and func-
tionalities definition enables anyone to design his/her own
interface for accessing the Smart Devices for any remote
lab.

A service represents, for instance, a sensor or an actua-
tor exposed to the outside world (e.g. a client) through the
API. Services are fully described through metadata, so that
a client can use them without further explanation. A func-
tionality is an internal behavior of the Smart Device. There
may be communication between internal functionalities and
client applications or external services through Smart De-

vice services. While the required services are fully speci-
fied, the functionalities are only recommended and best
practice guidelines are provided.

For example, imagine an actuator service that enables
the client application to set the voltage of a motor, and a
functionality that checks if the maximum voltage is not
exceeded. The actuator service is well described by the
Smart Device metadata (see Subsection V-C). The inter-
nal validation is left to the lab owner’s discretion, since it
will be mainly ad- hoc. Still, such a mechanism has to be
implemented to ensure the protection of the server and
the connected equipment.

Figure 1. UML Component diagram of different clients making use
of the most common Smart Device services (arrows represent calls).

The Smart Device specification (see Section V) de-
fines the communication and interfaces between the client
and server, and sufficient information is provided to gen-
erate client applications or reuse existing client applica-
tions. Since the specification is common to many
Smart Devices, client apps are not tightly coupled to one
server, encouraging interoperability and reuse.

IV. THE SMART DEVICE ARCHITECTURE
The Smart Device specification provides a set of

well- defined interfaces that enable communication be-
tween the re- mote lab, external services and applications.
Figure 1 illustrates a basic architecture with interaction
examples that abstract the implementation of a remote
lab, by providing a set of required and optional interfac-
es. The specification does not define the communication
between the Smart Device and the Remote Lab equip-
ment in Figure 1. The communication on the left side
of Figure 1 is what the Smart Device specifies, namely
the protocols and data formats of the interfaces of the
Smart Device (i.e., the ‘metadata’, ‘client’, ‘sensor’,
‘actuator’ and ‘logging’ interface in Figure 1). For in-
stance, a metadata repository can retrieve the metadata of
any Smart Device, index it and provide a lab search en-
gine. Because the interfaces are well-defined, client apps
can be reused among Smart Devices. For example, one
Data Viewer Client or Learning Analytics Client could
retrieve data from any Smart Device and present it to the
user. Additionally, a metadata format that describes the
Smart Device, its functionalities and its services is speci-
fied. Section V will elaborate on this metadata and
each service and functionality in detail. Below, we will
discuss how Smart Devices enable interoperability in the
Go-Lab infrastructure.

1) The Smart Device in the Go-Lab Infrastructure: As
de- scribed above, the well-defined interfaces of the
Smart Device, ensure that a client app and a service can
communicate with any Smart Device. This section will
discuss such a concrete scenario with the Go-Lab plat-
forms [13] that interact with the Smart Device. Of
course, any other service, platform or client could make
use of these interfaces to create features beyond what is

iJOE ‒ Volume 11, Issue 4, 2015 21

PAPER
THE SMART DEVICE SPECIFICATION FOR REMOTE LABS

presented below. The Go-Lab overview component dia-
gram is shown in Figure 2. It depicts: (1) the Lab Reposi-
tory [13], which is a portal where teachers can find online
labs and resources to use in combination with these labs in
their courses; (2) the Inquiry Learning Space (ILS) Plat-
form [13] that provides a collaborative editor to assemble
a learning activity for students with the Lab Repository
resources; (3) the Learning Analytics Services [14], which
are collecting tracked user activities and analytics results;
and (4) the Booking System that provides a common UI
for teachers to reserve remote labs. In addition to enabling
user interaction with the remote lab equipment, the Smart
Device enables the following features in infrastructures
such as the Go-Lab infrastructure:

a) Publishing labs on the Lab Repository: A lab owner
can publish any lab on the Go-Lab Lab Repository [13]2 ,
which provides a searchable catalogue of online labs. If
a lab supports the Smart Device specification, its metadata
can be retrieved and parts of the lab registration form
can be automatically completed. Additionally, the client
apps to control the lab can be added automatically, see
step 1.1 & 1.2 in Figure 2. The annotated lab metadata can
then be exploited for search, but also to support the learn-
ing analytics services.

b) Tracking user activity: The Smart Device contains a
user activity logging service that enables the delivery
of learning analytics. Step 2.1 shows how the Inquiry
Learning Space (ILS) Platform [13] retrieves Smart Device
user activity logs and passes them to the Learning Analyt-
ics Services where the user activity is stored and can be
further analyzed.

c) Booking a lab: The Smart Device itself does not
necessarily contain a booking mechanism, but can use
existing booking mechanisms. When booking is required,
a user retrieves an authentication token from the Booking
System with which she can authenticate to the Smart De-
vice. The Smart Device only contains logic to validate
tokens. Step 3 illustrates that the Smart Device has an
Authentication component that validates tokens with the
Booking System.

Note that the above features will only be available if the
corresponding Smart Device services are implemented.
Publishing and retrieving lab metadata will work for any
Smart Device because the metadata service is required, but
the other features depend on optional services. In Sec-
tion V, we will further elaborate on the optional and
required Smart Device services.

Figure 2. UML Component diagram of the interactions between differ-

ent Go- Lab services and the Smart Device.

2 Golabz, http://www.golabz.eu

V. THE SMART DEVICE SPECIFICATION
This section presents selected parts of the Smart De-

vice specification in more detail. The complete Smart
Device specification is available at https://github.com/go-
lab/smart-device-metadata/raw/master/smart-device-
specification/Smart Device specification.pdf.

First, the communication protocol and the terminology
used are described. Then, we will elaborate on the Smart
Device well-defined services and internal functionalities.

A. Data Transfer Protocol
The goal of the Smart Device is to enable access to

remote laboratories via the Internet. The targeted client
application is a Web enabled client, which can run on a
tablet. We rely on open, standardised Web protocols to
provide the data transfer between the Smart Device,
external services, and applications to avoid dedicated
plug-ins or customer lock-in. Typically, widely used
candidates are HTTP and recently WebSockets. The
problem with most HTTP-based Web Services is that
they follow a synchronous request-response schema.
Hence, data can often only be ‘pulled’ from the server,
and the server cannot initiate a ‘push’ of information to
the clients. However, remote laboratory experiments
often require asynchronous data transfer, e.g. a lengthy
experiment should be able to push its results to the cli-
ents upon completion. HTTP solutions are often ineffi-
cient, e.g. via long polling [15].

WebSockets [16] on the other hand are asynchronous
by nature and allow both pushing and pulling. This pro-
vides a bidirectional, full-duplex and efficient communi-
cation channel. Although WebSockets is a recent tech-
nology, they are supported by all modern browsers3.
Since WebSockets suppport both push and pull technol-
ogies efficiently and often with less programming effort
than HTTP-based services, the Smart Device specifica-
tion uses the WebSocket protocol. Only the metadata
service that defines the other services (see Subsection V-
C) will be provided via HTTP GET to enable easy text
retrieval.

B. Terminology and Concepts
The following terminology and concepts are used:
• The terms sensors and actuators reflect the travel-

ling direction of information relative to the Smart
Device. For example, a sensor enables the reading of
a thermometer. An actuator enables the setting of a
value, e.g. setting a motor voltage.

• Sensors and actuators can be physical (temperature
sensor), virtual (computed speed derived from a
position measurement) or complex, i.e. an aggrega-
tion of sensors/actuators (the front panel buttons of
an oscilloscope or a 3D accelerometer).

• Both sensors and actuators can be configured, see
the metadata service in Subsection V-C.

C. Metadata Service
The metadata service is a required service that is at

the core of the interoperability provided by the Smart
Device specification.

The requirements of the metadata are:

3 Can I use Web Sockets?, http://caniuse.com/websockets

22 http://www.i-joe.org

PAPER
THE SMART DEVICE SPECIFICATION FOR REMOTE LABS

• Describe the lab (e.g., the contact person and the
goals), which can be useful to allow automatic index-
ing by search engines (see Subsection IV-1).

• Describe the integration with external services (e.g.,
authentication with a booking service)

• Describe the concurrency mechanisms (e.g., are lab
observations allowed, while someone is doing an ex-
periment?)

• Describe and define the provided services (e.g., spec-
ify the service requests and responses formats)

• Be easily extensible to enable adding extra services

First, we survey different Web service description lan-
guages and highlight our choice. Afterwards, the metadata
design choices and the metadata for the services are de-
scribed, and then we describe how metadata can be added
for additional services.

1) Comparison of Web Service Description Lan-
guages: Several options to describe Web service speci-
fications have been surveyed with the goal not to rein-
vent the wheel, but to use open, robust and complete
specifications. Furthermore, some specifications already
allow the automatic generation of client applications. Since
no Web service description languages specific to the
WebSocket protocol were found, SOAP and REST-
based description languages were considered.

One of the most popular Web service description lan-
guages is WSDL4 , which originally strongly focuses on
SOAP, and provides support for REST since version 2.0.
However, currently limited software is available for
WSDL 2.05 . Other description languages are dedicated to
RESTful services. WADL [17] can be considered as the
REST equivalent of the original SOAP-only WSDL.
RSDL6 is more focused on the structure of the Web ser-
vice URIs. While RAML7 relies on markdown and JSON
Schema8 .

Since all above-mentioned languages were hard to use
WebSockets with, we have opted for Swagger v1.29.
Swagger is a JSON-based description language meant for
RESTful APIs, but it was easily extensible to WebSock-
ets, while conserving all of Swagger’s features. Since
Swagger aims to describe web services for both humans
and computers, it strongly focuses on automatically gener-
ating user interfaces, which is one of our goals. Using
JSON Schema, Swagger specifies the data format of re-
quests and responses. Due to its large and growing list of
supporting software, Swagger is growing in popularity.
The specification is open and the community is currently
finalizing an updated version. In the remainder of this
section, we will elaborate on how we have applied and
extended Swagger for the Smart Device Specification.

4 Web Services Description Language (WSDL) 1.1,
http://www.w3.org/TR/
wsdl
5 Web Services Description Language – Wikipedia,
http://en.wikipedia.org/wiki/Web Services Description Language
6 RESTful Service Description Language (RSDL),
http://en.wikipedia.org/wiki/RSDL
7 RESTful API Modeling Language (RAML), http://raml.org/
8 JSON Schema specification – JSON Schema: core definitions and
termi- nology json-schema-core, http://json-schema.org/latest/json- sche-
ma-core.html
9 Swagger website, http://swagger.wordnik.com/

2) Smart Device Metadata Design Choices: Based on
the requirements elicited above, the following main de-
sign choices were made:
• Sensor & actuator metadata service: The metadata

that describes the available sensors and actuators is
provided by separate services. In this way a devel-
oper of a simple Smart Device needs just to edit a
few lines of metadata and does not need to add
complex descriptions and models of actuators and
sensors. The Smart Device software packages pro-
vided by Go-Lab (see Section VII) already imple-
ment these services, so the developer can just edit
this implementation, which also keeps this metadata
very close to the actual sensor and actuator imple-
mentation.

• Service names: Each service requires a method
name, and each request and response of a service
needs to pass this method name (e.g. the service for
the sensor metadata is called ‘getSensorMetadata’).
By passing this name, a WebSocket can be chan-
neled (concatenated) by different services since the
requests and responses can be identified by method
name. Additionally, the method names are used to
control access to services.

3) General Smart Device Metadata Specification:
The official Swagger RESTful API documentation spec-
ification can be found on
https://github.com/wordnik/swagger-spec/blob/ mas-
ter/versions/1.2.md. The Swagger specification is typical-
ly split over multiple files per service and served in
the path of a REST service. Since WebSockets are not
hierarchically organized in different URLs, we have
opted to provide one specification file, containing the
general metadata and all service-specific metadata10.
This section will introduce the general structure of the
adapted Swagger file. However, code samples and exact
field names are omitted for brevity, but are available in
the full specification11. The metadata consists of six
parts:

a) Swagger-Related Metadata: Swagger requires to de-
clare the version of Swagger and the API. The version of
Swagger should not be changed by the developer.

b) General Metadata: These default Swagger fields
provide information about the lab, such as the name, a
short description, a contact person, and licensing infor-
mation.

c) API Metadata: The root URL path of the Smart
Device services is described and all services are defined.
Each service will be described from Subsection V-F to
V-J.

d) Authorisation Metadata: Swagger supports common
REST-based authentication and authorisation mecha-
nisms, e.g. OAuth. All these mechanisms can be used in
the Smart Device. For instance, in the Go-Lab booking
system, we are using a token-based authorisation, which
can be modeled with Swagger’s apikey type since the
booking token is a sort of temporary API key for the
duration of the booking.

10 Metadata specification examples for Smart Devices are available on
GitHub: https://github.com/Go-Lab/smart- device-metadata
11 The full Smart Device specification is available at
https://github.com/ go- lab/smart- device-metadata/raw/master/smart-
device-specification/Smart Device specification.pdf.

iJOE ‒ Volume 11, Issue 4, 2015 23

PAPER
THE SMART DEVICE SPECIFICATION FOR REMOTE LABS

e) Concurrent Access Metadata: We have extended
Swagger to model the concurrency models of remote labs.
Different concurrency schemes exist and it is up to the lab
owner to decide on an appropriate scheme. One can inter-
act with a lab in a synchronous or asynchronous way.

In a synchronous lab, the users are interacting directly
with the experiment and are aware of actions of other
concurrent users. When in the asynchronous mode, the
user typically prepares an experiment, submits it, waits
to get results back, and is not aware of other users. The
rest of this metadata is for synchronous labs, since asyn-
chronous labs can deal internally with concurrency issues.
Typically two concurrency schemes are possible: ‘concur-
rent’ and ‘roles’. Either users are allowed to use the exper-
iment at the same time or different user roles control the
access. Each role has a name, can declare which services
will be accessible for a user with that role and a mecha-
nism to select the role. Different mechanisms have been
identified to switch roles:

Fixed role: The user cannot be promoted from one
role to another, e.g. the teacher can control the remote lab
but the students can only observe.

Dynamic role: The role can change during the ses-
sion, e.g. a user observing can later control.

Race: The first user who accesses when nobody is us-
ing it, gets control. When occupied, the user has to retry.

Queue: Upon access, the user is added to a first-come-
first-served waiting queue.

Interruptor: The user can abort the session of another
user and take control of the Smart Device.

f) Models: This section lists all data models in JSON
Schema used in the service requests and responses.

4) Service Metadata Specification: This section dis-
cusses how a service can be added as a JSON object in the
API metadata on a high level (for details, refer to the full
specification). Optionally, new data models need to be
declared in the models section. However, we have tried to
design the specification so that for simple Smart Devices,
developers do not need to learn how to describe a service
in Swagger. The specification provides reusable service
metadata descriptions and models for the sensor, actuator
and logging services.

A new API object needs to contain the path, description,
and also an optional ‘protocol’ field that the Smart Device
specification has been extended to support the WebSocket
protocol. Then a list of all operations of the service is spec-
ified and its response messages that describe the error
messages (relying on HTTP status codes [18]). Each oper-
ation can specify the protocol method, in case of Web-
Sockets this is typically ‘Send’, and one can define the
type of WebSocket: text or binary. Binary WebSockets
can make the transmission of binary data much more
efficient, e.g. for video streaming. Additional documenta-
tion can be provided in the ‘summary’ and ‘notes’ fields.
Next, the service arguments and results can be config-
ured using JSON Schema primitives12 , or the ID of a
model from the models metadata section. One can also
model the response format using any Internet Media
Type [19], e.g. for a service that returns images. The
service input arguments are typically represented as a

12 JSON Schema specification – JSON Schema: core definitions and
terminology json-schema-core, http://json-schema.org/latest/json- sche-
ma-core.html

data model. Simple request models are provided, but
more complex models can be defined when needed.
More information on adding a new service can be found
in the Swagger specification [4], the JSON Schema speci-
fication and the available GitHub examples which illus-
trate how we have extended Swagger.11

D. Sensor Metadata Service – getSensorMetadata
As mentioned, the sensor and actuator metadata are

pro- vided via separate services and not in the metadata
description itself. In this section we will elaborate on the
sensor metadata.

The service is called ‘getSensorMetadata’, and can be
called like most Smart Device services with a JSON
object by specifying the ‘method’ field, and an optional
authentication token in case booking is required. As
mentioned before this method field enables the reuse of
one WebSocket to channel multiple services. The service
returns an array describing each sensor exposed to the
outside world. Each sensor contains:
• The ID to identify the sensor, e.g. ‘3D-acc’.
• The full name, e.g. ‘3D acceleration’.
• The description, e.g. ‘the robot arm 3D accelera-

tion’.
• The WebSocket type is ‘text’ or ‘binary’ (e.g. for

video).
• The response type of the sensor service for the sen-

sor defined as an Internet media type [19], e.g. a
webcam sensor using JPEG compression uses im-
age/jpeg.

• The measurement value array will contain a single
value for a simple sensor like a thermometer, but
for a complex sensor like an accelerometer, the ar-
ray contains for example 3 elements for the X-Y-Z
acceleration. Values are described with a name
and unit. Since the set of possible units is almost
infinite, we recommend to use the SI units [20] and
the SI derived units13. Optionally, a last measured
time stamp and a range minimum, maximum and it-
eration step of the range in which the values safely
operate, can be added. Furthermore, for continuous-
ly measured values the frequency at which the
measurement is updated can be provided in Hertz
(s!1).

• The configuration parameters can be used to adjust
the sensor when requesting a sensor value (see Sec-
tion V-F). Each parameter has a name and data type
as a JSON Schema primitive, array or data model
for complex parameters, e.g. to configure the video
resolution.

• The access mode describes how the sensor can be
accessed, e.g. some sensors can be measured once
(pull) while others provide a continuous data stream
(push or stream). For ‘push’ sensors, one can speci-
fy the nominal update interval and whether the user
can modify the measurement frequency.

Both sensors and actuators can be configured, which
means that the information can be sent and received even
for the sensor. For example, the image resolution of a
webcam sensor can be configured. Similarly, for actua-

13 SI Derived Units – Wikipedia, http://en.wikipedia.org/wiki/SI
derived unit

24 http://www.i-joe.org

PAPER
THE SMART DEVICE SPECIFICATION FOR REMOTE LABS

tors some aspects may be set through configuration (e.g.
the gain of a power amplifier could be configured), while
the actual value is set through the actuator value itself (see
Subsection V-G). Typically sensors and actuators are rare-
ly configured.

Streaming video of the experiment is an essential ser-
vice that a Smart Device should provide through a sensor.
We recommend that such sensor treats the video image as
an encoded image, for example JPEG encoded. Using
JPEG encoding results in binary data, which either should
be transmitted through a binary WebSocket (recommend-
ed), or it is BinHex’ed prior to sending it using a textual
WebSocket. If further processing is required at the client
side, a pixmap (pixel array) could be used, this at the cost
of being 10% to 90% larger in size [21].

Figure 3. Sensor and actuator data structures.

E. Actuator Metadata Service – getActuatorMetadata
As mentioned, the actuator metadata is also provided

via a service, named ‘getActuatorMetadata’. The service
is very similar to the sensor metadata service, so we will
only discuss the difference in the service response: the
input type expresses what data type can be used for a spe-
cific actuator in the actuator service. By default this is
JSON, but it can be set to any Internet Media Type [19].
This replaces the response type of the sensor metadata
service.

F. Sensor Service – getSensorData
The sensor and the actuator data services are at the

core of the Smart Device interaction and both are quite
similar. They handle the main data exchange between cli-
ents and the Smart Device. Both services in combination
with their metadata services enable developers to create
apps that can adapt to different Smart Devices, enabling
app reuse and interoperability. Similarly, different apps
could be developed for a Smart Device. For example, for a
Smart Device that provides a temperature measurement
every second, one app could just update a text field, while
another app could visualize the temperature evolution over
time. This difference in app functionality requires abso-
lutely no change on the Smart De- vice services. Further-
more, using the sensor metadata service, these two pro-
posed apps could be made interoperable and reusable with
any Smart Device.

Different sensors and actuators exist:
• Real: represents a physical sensor, e.g. a thermome-

ter.
• Virtual: represents a computed sensor, e.g. a speed

measurement derived from a position measurement.
• Complex: represents the aggregation of sen-

sors/actuators, e.g. buttons on the front panel of an
oscilloscope.

The data structure returned by a sensor or sent to an ac-
tuator may vary depending on the number of values and
the measurement data structures. The data structure (see
Figure 3) contains three fields to enable flexible data
representation. In the ‘valueNames’ field, the names of
the sensor or actuator measurement value are listed as
returned by the sensor or actuator metadata services (see
Subsection V-D). Then, the actual data for each value is
listed. Finally, the optional ‘lastMeasured’ array contains
the timestamps when a value was measured. This
timestamp array should not be included when sending
data to set an actuator. The data as well as the
‘lastMeasured’ timestamps are listed at the same array
index as the value name, as indicated by the dashed lines
in Figure 3. The elements in the data array can be in
different formats: (1) a single value, e.g. temperature;
(2) an array of values representing a set of single values
over time, e.g temperatures over the last minute; (3) ag-
gregated values representing a sensor or actuator that
returns multiple values, e.g. a 3D accelerometer; (4) an
array of aggregated values representing a set of aggre-
gated values over time, e.g. the 3D acceleration over the
last minute; and (5) complex data structures are used
when sensors and actuators require input and output not
definable with primitive variables or arrays, e.g. for com-
plex JSON objects or binary data. This data representa-
tion was chosen, because flat array based data can be
more efficient to process than complex data structures
interleaved with timestamps.

As an example of a complex data structure, a
webcam can be modeled as a single value sensor that
returns a compressed image, as an array of values
based on the image bitmap or as a binary value with
JPEG encoded data. The choice between the three rep-
resentations is up to the lab owner.

A request to the getSensorData service is more com-
plex than the previous services due to possible authenti-
cation, concurrency and configuration settings. Optional-
ly, an access role from the concurrency role list (see V-
C3e) can be passed. If no accessRole is available, the
Smart Device can decide the role. The Smart Device
will decide whether these rights can be granted and
reacts accordingly.

The getSensorData service will return the data in the
above described data format (see Figure 3) together with
the method name, sensor ID and access role to foster
possible WebSocket reuse. This is in case the user has
the controller role. But when the user is an observer and
does not have access to the measured data the service can
optionally provide extra waiting information that can be
used to display how long the user has to wait and how
many people are in front of her (e.g. the queue size,
position and waiting time left). Furthermore, the sensor
configuration might be used (e.g. for a video sensor), if it
is described in the sensor metadata. For example, this can
be very useful to adapt to the client screen size and net-
work speed by reducing the transmitted image resolution
and compression (if configurable). Similarly, the data
transmission pace could also be controlled. If the user
temporarily needs to throttle the video stream, the client
can ask the Smart Device to reduce the number of
images sent per second by setting the update frequency
(see Subsection V-D). The sending may even be inter-
rupted by setting the update frequency to 0 Hz. It is up to

iJOE ‒ Volume 11, Issue 4, 2015 25

PAPER
THE SMART DEVICE SPECIFICATION FOR REMOTE LABS

the application developer to take advantage of these fea-
tures.

G. Actuator Service – sendActuatorData
The actuator service is very similar to the sensor service

(see Subsection V-F). The main difference with the sensor
service is the fact that the sendActuatorData service allows
the user to actually set the desired actuator value. Meaning
that the data model of Figure 3 is sent in the request.

The internal functionality of the Smart Device should
first validate the sent value (see V-K0c) prior to applying it
to the actuator itself. While sensors often do not have con-
currency issues, the actuator access needs to be moderated.
Various schemas can be implemented by the lab owner to
internally manage the actuator access (see V-C3e). In the
following examples, we will assume one of the most
common scenarios: a user can either control the lab or can
observe what others are doing. Given that the user has a
controller role, the actuator may set the value and
acknowledge the actuator change by returning the set val-
ues in the payload of the response. The payload is optional
and the format is not specified. As a good practice we
recommend to return the data of the actuator in the same
format as the request data format. This returned actuator
data in the payload can be used to update the client appli-
cation UI with the actual value. The client can assume
that the actuator has fulfilled the request when no errors
are returned. If the actuator is currently in use, a more
specific payload, detailing some information regarding
the time the user has to wait prior to control the actuator,
similar to the example in Subsection V-F.

Furthermore, a user with the ‘interruptor’ role can
abort the actuator control of current user. The way the
conflict is resolved and the policy to grant this role is
defined by the lab owner and/or the client application.

H. User Activity Logging Service – getLoggingInfo
The optional user activity logging service returns logged

user actions or lab status info in the ActivityStream 1.0
JSON format14. The ActivityStreams format is a JSON-
based specification to describe a sequence of user actions
with a timestamp and it is often used in social media plat-
forms. To retrieve a continuous stream of real time user
activities of the Smart Devices, the getLoggingInfo service
can be called with an optional authentication token to
validate access (which is recommended due to the privacy
sensitive data).

I. Client Application Service – getClients
This optional service provides links to the client applica-

tions to operate the Smart Device. The client technology is
not strongly specified. The Go-Lab project advocates
OpenSocial gadgets [22], since they effortlessly run on the
Go-Lab ILS platform [13]. Upon sending a request to the
getClients service, a client app list will be returned, with
for each item a type that specifies the kind of application
and a URL. The current version of the Smart Device speci-
fication contains the following extensible list of types:
‘OpenSocial Gadget, ‘W3C widget’, ‘Web page’, ‘Java
WebStart’ and ‘Desktop application’.

14 The ActivityStreams specification is available at
http://activitystrea.ms/
specs/json/1.0/

J. Models Service – getModels
This optional service can provide several models of the

physical lab (i.e. the instrumentation) and its theoretical
background. For instance, a 3D graphical model of the
lab instrumentation can enable a client app to generate a
GUI with a 3D-scale object that student can manipulate.
With a mathematical model of the experiment, a client
app can be built with a local simulation. This can pro-
vide an interactive simulated version of a remote lab that
can be used by students when the lab is already in use
(i.e. to provide a better observer mode). Due to the
wide range of existing formats to express graphical and
theoretical models (e.g. VRML15, X3D16 & MathML17),
we do not limit the specification and leave the model
language choice up to the lab owner.

K. Functionalities – Best Practices:
Internal functionalities are implementation suggestions

for the Smart Device. They are provided as best prac-
tices, since the implementation of these functionalities
are often ad-hoc and strongly related to the connected
equipment.

a) Authentication functionality: The Smart Device does
not need to contain a booking system. It can make use of
an external booking system, such as the Go-Lab booking
system (currently under development). When a user
reserves a lab, the Go-Lab booking system provides an
authentication token. At the booked time the user can
connect to the Smart Device with this authentication
token. The Smart Device then contacts the booking sys-
tem to validate whether the user is currently allowed to
access the Smart Device. Thus, integrating the booking
service in the Smart Device requires little effort, com-
pared to providing its own authentication and booking
mechanisms.

b) Self and known state functionality: The precise im-
plementation of this recommended functionality is left
to the lab owner’s discretion. This functionality ensures
that the remote lab is reset to a proper state after an ex-
perimentation session is completed or a system outage
occurred, so that the next user can properly use it. Since
remote experiments are supposed to be conducted from
faraway, nobody is expected to be around the experiment
to put it back in a known state. Thus, the system should
be as autonomous as possible, which implies an adequate
and defensive software and hardware design that is able
to adapt to ‘any’ situation. We suggest to implement
the following procedures in the Smart Device: (1) auto-
matic initialization at startup, (2) reset to a known state
after the last client disconnects, and (3) potentially
hardware calibration.

c) Security and local control: This functionality is
recommended and its implementation is left to the lab
owner’s discretion. At all time the security of the server
and its connected equipment must be ensured. All com-
mands should be validated before being forwarded to the
connected equipment. This step may require the addi-
tion of a local controller to track the connected equip-
ment’s state, e.g. a speed increase may need to follow a

15 Virtual Reality Modeling Language (VRML),
http://gun.teipir.gr/VRML-amgem/spec/index.html
16 X3D, http://www.web3d.org/standards
17 MathML, http://www.w3.org/Math/

26 http://www.i-joe.org

PAPER
THE SMART DEVICE SPECIFICATION FOR REMOTE LABS

ramp before being applied to a motor. Users often try to
take the system to its limits, i.e. not only the physical
limit of a given sensor/actuator, but also signal patterns on
a sensor over time may also need to be considered. Since
the actuators may be connected to the Internet, it is essen-
tial to validate all applied values and to consider potential
external constraints. The lab owner should implement the
following procedures in the Smart Device: (1) value
validation before applying data to actuators, and (2)
actuator state validation to check if the command to be
applied is safe.

d) Logging and alarms: This functionality logs session
and lab information, as well as user interactions. In case of
problems, alarms may be automatically triggered by this
functionality. Since a Smart Device will be typically
online unattended for an extended period of time, it is
essential to monitor it and have a method to perform
post hoc analysis. The user action should be logged, and
can be made accessible via the user activity logging
service (see Subsection V-H). But extra information
should also be logged, e.g. the system state and the envi-
ronment (e.g. room temperature). Note that some sensors
may be available internally to the Smart Device, but not
necessarily accessible via the sensor service. We suggest
tracking the following information: (1) user actions, (2)
the complete system state, and (3) its environment state.
Additionally, by definition the Smart Device is connect-
ed to the Internet and has no knowledge of its clients.
Proper action is required to prevent abuse. A firewall or a
DMZ18 may protect it from attacks. While some hostile
actions may be reduced using such mechanisms, the Smart
Device should add internally additional measures: (1) vali-
date the requests sent by clients, (2) throttle continuous
requests of a malicious client, and (3) log all Internet
connections for later analysis. If an unexpected event
occurs, its potential danger should be assessed by the
Smart Device and an alarm may be triggered.

e) Local simulation: When the experiment is busy or
unavailable, a local simulation might be a useful alternative
for waiting users. The simulation data could be read or
modified through virtual sensors/actuators. A mathemati-
cal model de- scribing the physical equipment can be
made available to the client via the models service, which
the client developer can use to simulate the hardware.
Such simulations can require computational resources
unavailable at the client. However, this computation can
be done server side and the results can be sent to the
client using virtual sensors and actuators.

VI. A DETAILED SMART DEVICE EXAMPLE
This section illustrates how a Web client interacts

with a simple Smart Device, with one sensor and one
actuator. Both the Smart Device and the Web client are
available on GitHub19 . The full JSON messages are
omitted for brevity, but similar examples can be found in
the full specification.11

The first step taken by the Web client is to ask the
Smart Device about its general capabilities using the
metadata service. This is done with a regular HTTP GET

18 Demilitarized Zone (DMZ), http://en.wikipedia.org/wiki/DMZ (com-
puting)
19 https://github.com/go-lab/smart- device/tree/master/Desktop/ Simple-
examples

request to http://serverIP/metadata. The Smart
Device returns JSON containing the metadata (see Figure
4). Then, the client requests the available sensors from
the Sensor Metadata Service. This request is performed
via a WebSocket. A JSON object containing {"meth-
od": "getSensorMetadata"} is sent to the server.
Upon which the Smart Device replies with another
JSON object containing an array of avail- able sensors
{…["sensorID":"discPos",…]} and related infor-
mation such as range, etc. The next step is to ask about
available actuators with a similar request (see Figure 5).
The Smart Device replies that there is one actuator: a
motor, with "actuatorID":"motor", "rangeMi-
numum":"-5" and "rangeMaximum":"5". The client
app has now enough information to build a basic UI.
In this case two UI fields: one to display the discPos
sensor value and one to set the motor actuator value.

The fields of the generated skeleton UI need to be
populated with the data coming from the Smart Device.
In other words, we need to tell the Smart Device to start
sending measured values to the client via a WebSocket.
This is done by sending the request {"method": "get-
SensorData", "sensorID":"discPos",…}. The
Smart Device will start pushing the measured values
continuously to the client (see Figure 6). The client ap-
plication needs to parse the received JSON objects and
update the sensor field in its UI with the received val-
ue.

Figure 4. The web client asks the Smart Device about the available

sensors.

Figure 5. The web client asks the Smart Device about the available

actuators

When the user modifies the actuator value in the client
UI, a WebSocket request is sent to the Smart Device
with the new actuator value, {"authToken" :
"42FE36" , "method": "SendActua-

iJOE ‒ Volume 11, Issue 4, 2015 27

PAPER
THE SMART DEVICE SPECIFICATION FOR REMOTE LABS

torData","actuatorID":"motor", "values" :
[…]}. This request carries an authentication token, which
will be used by the Smart Device to verify that access to
the actuator is granted to the client application (e.g. based
on a lab booking of a user at a given time). To control
the access to the actuator, the Smart Device will contact the
booking service with the provided token. If the booking
service confirms the token, the new actuator value will
first be internally validated (e.g. within a specified
range), and then applied to the motor. If the token is
invalid or if the value is out of range, the value will not
be applied to the motor and an error message may be
returned to the client application. Upon completion of
the remote experiment, the client closes the WebSocket
connections. Internally, the Smart Device should go back
to a known state and wait for the next user to connect, e.g.
set the motor voltage to ‘0’ to save energy.

Figure 6. The Smart Device pushes the measured values to the client.
It also receives and validates the actuator value prior to apply it to the

motor

VII. IMPLEMENTATION EXAMPLES
To illustrate that the Smart Device specification is soft-

ware and hardware platform agnostic, we have imple-
mented the specification on various platforms and with
different programming languages. These examples are
publicly available on GitHub20 .

A. LabVIEW
The LabVIEW examples are designed for both desktop

computers and embedded hardware, i.e. the National
Instruments myRIO. LabVIEW is a development environ-
ment well known by many lab owners. A complete im-
plementation is available21 and executable on Windows,
OSX and Linux.

B. Javascript
The Javascript examples are designed for small embed-

ded computers such as the Raspberry Pi or BeagleBone
Black. They rely on Node.js and Socket.IO to implement
the services. Hardware access is possible by either using
on-board pins or by interfacing other I/O modules via
USB (e.g. Arduino).

C. The Smart Gateway
In some situations, it will not be possible to modify the

server of already existing labs, e.g. due to the lack of re-
sources. In this scenario, a Smart Gateway [23] that lies
between the client and the remote lab does the necessary

20 https://github.com/go-lab/smart- device
21 https://github.com/go-lab/smart-device/tree/master/Desktop

translation to make the remote lab behave like a Smart
Device from a user point of view. This translation is
performed by the Gateway4Labs22 , a software orchestra-
tor that relies on plug-ins to adapt the different exist-
ing labs to the Smart Device specifications. The Smart
Gateway internal definition is beyond the scope of this
paper, but further reference can be found in [23].

VIII. STANDARDIZATION EFFORTS

To encourage and strengthen the adoption of the pro-
posed Smart Device specification, several partners of the
Go-Lab project are involved in the IEEE Working Group
P187623 on Networked Smart Learning Objects for
Online Laboratories. This group is sponsored by the
IEEE Education Society. The standardisation work is at
an initial phase, however several meetings were held to
define the standard at three levels: a pedagogical level, a
service level, and a communication protocol level. The
pedagogical level describes how to package resources in
a standardised way and how to enable their integration in
learning environments (e.g. LMS, MOOC platforms or
social media platforms). The service level standardizes
how clients communicate with a remote lab. The abstrac-
tion layer provided by the Smart Device specification was
well received as a proposal and has the potential to be-
come the seed of the final IEEE specification, still to be
drafted and finalised. Finally, the communication proto-
col level standardizes the way all the loosely coupled
services and platforms supporting the usage of remote
labs could interoperate. Several Smart Device services
can enable such interoperability, with for example a
booking system or learning analytics services. Due to the
early stage of this standardization effort, it is hard at the
time of writing to assess the impact of the Smart Device
specification on the finalized standard. However, we
believe that the Smart Device characteristics are essential
for the standard.

IX. CONCLUSION
In this paper, we presented the detailed Smart Device

specification for remote experiments. We first summa-
rized the Smart Device paradigm and its application to
remote labs. From a client or external service point of
view, the Smart Device is described through well-defined
services and functionalities. Services permit to access the
inputs and outputs of the Smart Device, such as sensors
and actuators. Functionalities refer to internal behavior
such as range validation for an actuator. The main goal of
this paper is to define the services and functionalities of a
Smart Device using Swagger, a JSON-based description
language. This specification is sufficiently detailed,
thanks to the properties of Swagger, that a code skeleton
for the client application can be machine generated with-
out additional information from the lab owner. Further-
more, this shared specification enables a complete client-
server decoupling by enabling interoperability, thus al-
lowing the integration of Smart Devices in any environ-
ment, OS or device. Additionally, we have shown that
implementing the specification is feasible by providing
several examples and templates for developers to get

22 https://github.com/gateway4labs
23 IEEE Working Group P1876, http://ieee-
sa.centraldesktop.com/1876public/

28 http://www.i-joe.org

PAPER
THE SMART DEVICE SPECIFICATION FOR REMOTE LABS

started. In the future, we plan to develop more Smart De-
vice enabled remote labs to further assess the power of the
specification. Some technical assumptions are made when
considering the client application for remote labs. The first
one implies that the client resides typically in a recent Web
browser that runs on a tablet, this implies a plug-in free
solution. In addition the means to exchange information
between the client and the server is made using JSON
encoded messages that are transmitted using asynchronous
WebSockets. Finally, the proposed specification is open
and can be extended at will.

ACKNOW LEDGMENT
This research is partially funded by the European Union

in the context of Go-Lab (grant no. 317601) project under
the ICT theme of the 7th Framework Programme for R&D
(FP7). We would like to thank Anjo Anjewierden, Lars
Bollen, Augustín Caminero, Manuel Castro, German Car-
ro, Gabriel Díaz, Danilo Garbi Zutin, Miguel Latorre, Irene
Lequerica Zorrozua, Pablo Orduña, Antonio Robles, Elio
San Crístobal, and Simon Schwantzer (in alphabetical
order), for their input during the numerous discussions
leading to this specification.

REFERENCES
[1] C. W. Thompson, “Smart devices and soft controllers.” IEEE

Internet Computing, vol. 9, no. 1, pp. 82–85, 2005.
http://dx.doi.org/10.1109/MIC.2005.22

[2] C. Salzmann and D. Gillet, “From online experiments to smart
devices,” International Journal of Online Engineering (iJOE), vol.
Vol 4, no. SPECIAL ISSUE: REV2008, pp. 50–54, 2008.

[3] C. Salzmann and D. Gillet, “Smart device paradigm standardiza-
tion for online labs,” IEEE EDUCON Education Engineering
2013, pp. 1217–1221, 2013. http://dx.doi.org/10.1109/educon.
2013.6530261

[4] “Swagger RESTful API specification.” [Online]. Available:
https://github.com/wordnik/swagger-
spec/blob/master/versions/1.2.md

[5] T. de Jong, S. Sotiriou, and D. Gillet, “Innovations in stem educa-
tion: the go-lab federation of online labs,” Smart Learning Envi-
ronments, vol. 1, no. 1, p. 3, 2014. [Online]. Available:
http://www.slejournal.com/content/1/1/3

[6] D. Gillet, T. de Jong, S. Sotirou, and C. Salzmann, “Personalised
Learning Spaces and Federated Online Labs for STEM Education
at School: Supporting Teacher Communities and Inquiry Learn-
ing,” in Proceedings of the 4th IEEE Global Engineering Education
Conference (EDUCON). IEEE, 2013, pp. 769–773.
http://dx.doi.org/10.1109/educon.2013.6530194

[7] M. Tawfik et al., “Laboratory as a Service (LaaS): a Novel
Paradigm for Developing and Implementing Modular Remote La-
boratories,” Int. Journal of Online Engineering, vol. 10, no. 4, pp.
13–21, 2014. http://dx.doi.org/10.3991/ijoe.v10i4.3654

[8] IEEE, “IEEE Standard for a smart transducer interface for sensors
and actuators wireless communication protocols and transducer
electronic data sheet (TEDS) formats,” IEEE Std 1451.5-2007, 10
2007.

[9] X. Chen, G. Song, and Y. Zhang, “Virtual and remote laboratory
development: A review,” Proceedings of Earth and Space 2010,
vol. 1, no. 1, pp. 3843–3852, 2010.

[10] C. Salzmann and D. Gillet, “Remote labs and social media:agile
aggregation and exploitation in higher engineering education,”
IEEE EDUCON Education Engineering 2011, pp. 307–311, 2011.

[11] D. Cascado et al., Standards and Implementation of Pervasive
Comput- ing Applications. John Wiley & Sons, Ltd, 2011, pp.
135–158.

[12] M. Auer, A. Pester, D. Ursutiu, and C. Samoila, “Distributed
virtual and remote labs in engineering,” in Industrial Technolo-
gy, 2003 IEEE International Conference on, vol. 2, Dec 2003,
pp. 1208–1213 Vol.2. http://dx.doi.org/10.1109/icit.2003.
1290837

[13] S. Govaerts et al., “Towards an online lab portal for inquiry-
based stem learning at school,” in Advances in Web-Based
Learning ICWL 2013, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, vol. 8167, pp. 244–253.

[14] T. Hecking et al., “A flexible and extendable learning analyt-
ics in- frastructure,” in Advances in Web-Based Learning –
ICWL 2014, ser. Lecture Notes in Computer Science. Springer
International Publishing, 2014, vol. 8613, pp. 123–132.

[15] S. Loreto, P. Saint-Andre, S. Salsano, and G. Wilkins, “Known
Issues and Best Practices for the Use of Long Polling and
Streaming in Bidirectional HTTP,” RFC 6202, Internet Engineer-
ing Task Force, Apr. 2011. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc6202.txt

[16] “Websocket specification.” [Online]. Available:
http://tools.ietf.org/html/rfc6455

[17] M. J. Hadley, “Web application description language (WADL),”
Sun Microsystems Inc., Tech. Rep., 2009. [Online]. Available:
http://java.
net/projects/wadl/sources/svn/content/trunk/www/wadl20090202.
pdf

[18] “Hypertext transfer protocol (HTTP) status code registry
(RFC7231),” IETF, Tech. Rep., 2014. [Online]. Available:
http://www.iana.org/ assignments/http-status- codes/http-status-
codes.xhtml

[19] N. Freed, M. Baker, and B. Hoehrmann, “Media types,” Tech.
Rep., 2014. [Online]. Available:
http://www.iana.org/assignments/media- types/media- types.xhtml

[20] B. N. Taylor and A. Thompson, “The international system of
units (SI),” National Institute of Standards and Technology, NIST
Special Publication 330, 2008.

[21] B. Furht, “A survey of multimedia compression techniques and
standards. part i: JPEG standard,” Real-Time Imaging, vol. 1,
no. 1, pp. 49–67, 1995. [Online]. Available:
http://www.sciencedirect.com/ sci-
ence/article/pii/S1077201485710054

[22] M. Marum, “Opensocial 2.5.1 specification.” [Online]. Available:
https://github.com/OpenSocial/spec

[23] P. Orduñ a et al., “Generic integration of remote laboratories in
public learning tools: organizational and technical challenges,”
Proceedings of the IEEE 2014 Fontiers in Education Confer-
ence, Oct. 2014.

AUTHORS
Christophe Salzmann, Sten Govaerts, Wissam

Halimi, and Denis Gillet are with School of Engineer-
ing, Ecole Polytechnique Fédérale de Lausanne (EPFL),
Station 9, 1015 Lausanne, Switzerland (Emails: {chris-
tophe.salzmann, sten.govaerts, wissam.halimi, den-
is.gillet}@epfl.ch)

This article is an extended and modified version of a paper presented
at the International Conference on Remote Engineering & Virtual
Instrumentation (REV2015), held in Bangkok, Thailand, 25 - 28 Febru-
ary 2015. Submitted 24 March 2015. Published as resubmitted by the
authors 25 June 2015.

iJOE ‒ Volume 11, Issue 4, 2015 29

