
HAL Id: hal-01201989
https://telearn.hal.science/hal-01201989

Submitted on 18 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Release of Personalisation Features and Inquiry Learning
Apps – Initial Dissemination Level Public Status Final

Sten Govaerts

To cite this version:
Sten Govaerts. Release of Personalisation Features and Inquiry Learning Apps – Initial Dissemination
Level Public Status Final. [Research Report] Go-Lab Project. 2014. �hal-01201989�

https://telearn.hal.science/hal-01201989
https://hal.archives-ouvertes.fr

Go-Lab

Global Online Science Labs for Inquiry Learning at School

Collaborative Project in European Union’s Seventh Framework Programme
Grant Agreement no. 317601

Deliverable D5.3

Release of Personalisation Features and
Inquiry Learning Apps – Initial

Editor Sten Govaerts (EPFL)
Date 29th April, 2014
Dissemination Level Public
Status Final

c©2013, Go-Lab consortium

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

Go-Lab 317601 2 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

The Go-Lab Consortium

Beneficiary
Number

Beneficiary Name Beneficiary
short
name

Country

1 University Twente UT The Nether-
lands

2 Ellinogermaniki Agogi Scholi
Panagea Savva AE

EA Greece

3 École Polytechnique Fédérale de
Lausanne

EPFL Switzerland

4 EUN Partnership AISBL EUN Belgium

5 IMC AG IMC Germany

6 Reseau Menon E.E.I.G. MENON Belgium

7 Universidad Nacional de Edu-
cación a Distancia

UNED Spain

8 University of Leicester ULEIC United King-
dom

9 University of Cyprus UCY Cyprus

10 Universität Duisburg-Essen UDE Germany

11 Centre for Research and Technol-
ogy Hellas

CERTH Greece

12 Universidad de la Iglesia de Deusto UDEUSTO Spain

13 Fachhochschule Kärnten -
Gemeinnützige Privatstiftung

CUAS Austria

14 Tartu Ulikool UTE Estonia
15 European Organization for Nuclear

Research
CERN Switzerland

16 European Space Agency ESA France

17 University of South Wales USW United King-
dom

18 Institute of Accelerating Systems
and Applications

IASA Greece

19 Núcleo Interactivo de Astronomia NUCLIO Portugal

Go-Lab 317601 3 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

Contributors

Name Institution
Sten Govaerts, Adrian Holzer, Andrii Vozniuk, Na Li,
Wissam Halimi, Denis Gillet

EPFL

Lars Bollen, Jakob Sikken, Anjo Anjewierden UT

Sven Manske UDE

Legal Notices
The information in this document is subject to change without notice. The Mem-
bers of the Go-Lab Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. The Members of the Go-Lab Consortium
shall not be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing, perfor-
mance, or use of this material. The information and views set out in this deliver-
able are those of the author(s) and do not necessarily reflect the official opinion
of the European Union. Neither the European Union institutions and bodies nor
any person acting on their behalf may be held responsible for the use which
may be made of the information contained therein.

Go-Lab 317601 4 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

Executive Summary
This deliverable presents the initial release of the personalisation features and
the inquiry learning apps developed following the specifications presented in
D5.1. In terms of personalisation, we present the first release of international-
isation features in Go-Lab. The language of the ILS platform (Graasp) is now
propagated to the inquiry learning spaces (ILS) and apps when the apps sup-
port the language. To achieve this, the apps make use of the OpenSocial in-
ternationalisation specification (see D5.1). Furthermore, through an early pro-
totype of the App Composer, missing translations of apps can be added. This
app composer prototype has been integrated with Graasp and is currently being
tested before evaluating it with teachers. The design of the recommender sys-
tem has started, but the implementation did not commence yet. We focused on
internationalisation in this early state of the project, since it affects both students
and teachers involved in the Phase A evaluations.

Next to the work on personalisation, several Inquiry Learning Apps have been
designed and implemented, of which some were specified in D1.1 by the ped-
agogical cluster and in D5.1. We functionally and technically describe the fol-
lowing apps: the Concept Mapper, the Hypothesis Scratchpad, the Questioning
Scratchpad, the Experiment Design Tool, the Data Viewer, the Drop File tool,
the Resource View app and the Wiki app. Additionally, work has started on the
Conclusion Tool. WP3 is currently evaluating several of these apps and is ex-
pected to provide insights and feedback on their design and usefulness in D3.2
in M24. Moreover, the pedagogical cluster is refining the theoretical definitions
of scaffolding and guidance apps (documented in the internal deliverable G1.3)
and together with the pedagogical cluster we are designing new inquiry learning
apps that will be documented in D5.5.

In order for these apps to communicate with each other we have extended the
OpenApp library to enable drag and drop between apps and have implemented
the Vault space to allow data storage and exchange between apps. Access to
the Vault space is enabled using a JavaScript library that also supports func-
tions for easy user activity logging using the ActivityStreams format (see D5.1).
Finally, to integrate Learning Analytics services with the inquiry learning apps,
we have devised an activity logging architecture and library. The work of de-
scribed in this deliverable will continue and the release of the personalisation
features and inquiry learning apps will be finalised in D5.5 (M32).

Go-Lab 317601 5 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

Table of Contents

1 Introduction 8

2 Personalisation 9
2.0.1 Apps . 9
2.0.2 Inquiry learning spaces 9
2.0.3 Integration with the App Composer Prototype 10

3 Supporting inquiry learning apps 12
3.1 The Inter-app Communication library 12
3.2 The ILS library . 13
3.3 User activity logging library . 15
3.4 Artefact storage library . 16

4 Inquiry learning apps 18
4.1 Concept Mapper . 18
4.2 Hypothesis Scratchpad . 19
4.3 Questioning Scratchpad . 20
4.4 Experiment Design Tool . 21
4.5 Data Viewer . 23
4.6 Drop File Tool . 24
4.7 Resource View app . 25
4.8 Wiki app . 26
4.9 Conclusion tool . 28

5 Conclusion 30
References . 31

6 Appendix A 32
6.1 Technical details of the Experiment Design Tool 32
6.2 Technical details of the Data Viewer 33

7 Appendix B 35
7.1 Documentation of the Inter-app Communication Library 35

7.1.1 How to start . 35
7.1.2 Description . 35
7.1.3 Example 1: send data from one widget to another 35
7.1.4 Example 2: drag&drop from one widget to another 36
7.1.5 APIs . 36
7.1.6 Thanks . 37

7.2 Documentation of the ILS library 37
7.2.1 API . 37
7.2.2 How to Use . 43

7.3 Documentation of the User Activity Logging Library 45
7.3.1 Creating an ActionLogger 46
7.3.2 Logging Targets . 46
7.3.3 API . 46

Go-Lab 317601 6 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

7.4 Documentation of the Artefact Storage Library 46
7.4.1 What is a resource? . 47
7.4.2 Creating a StorageHandler 47
7.4.3 API . 47
7.4.4 Usage example . 48
7.4.5 Notes . 48

7.5 Documentation of the Metadata Handler Library 49
7.5.1 Technical representation 49
7.5.2 Creating a MetadataHandler 49
7.5.3 API . 49

7.6 Documentation of the Metadata Handler Library 50
7.6.1 What’s in the metadata? 50
7.6.2 Technical representation 51
7.6.3 Creating a MetadataHandler 51
7.6.4 API . 51

7.7 Documentation of the Notification Handler Library 52
7.8 NotificationClient . 52

7.8.1 API . 52
7.8.2 Example notification . 53
7.8.3 Usage Example . 53

Go-Lab 317601 7 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

1 Introduction
This deliverable presents the initial release of the personalisation features and
the inquiry learning apps developed following the specifications presented in
D5.1. The main product of this deliverable is the developed software. The ac-
companying text in this deliverable describes the software development related
to personalisation and inquiry learning apps. This deliverable is structured as
follows.

Chapter 2 presents the implemented internationalisation features. The lan-
guage of the ILS platform (Graasp) is now propagated to ILS and apps when
the language is supported. In the future, we want to allow teachers to configure
the language on ILS level. This will be useful in schools that teach in multiple
languages and will not require a translation of the ILS platform. Furthermore
through an early prototype of the App Composer, missing translations of apps
can be added. Translations in the App Composer can be done not only in dif-
ferent languages, but also in different language levels to support varying levels
of language proficiency among students (see D5.2). Currently, we are testing
this early app composer prototype and after stress tests, we plan to evaluate
its usability with teachers before releasing a production version. Further details
on the app composer will be documented in D5.4 (M24). In this deliverable,
we have focused on internationalisation, since this affects both teachers and
students and is essential for conduction Phase A evaluations in schools around
Europe. The design and implementation of the recommender system will be
documented in D5.5 (M32). Then, Chapter 3 describes the mechanisms used
to support inquiry learning apps, such as inter-app communication, the Vault
and user activity logging for integration with the Learning Analytics infrastruc-
ture (see D4.2). Chapter 4 describes the inquiry apps that have been designed
and implemented, namely the Concept Mapper, the Hypothesis Scratchpad,
the Questioning Scratchpad, the Experiment Design Tool, the Data Viewer, the
Drop File tool, the Resource View app, the Wiki app and the Conclusion Tool.
Finally, Chapter 5 wraps up with a conclusion and points to the future deliver-
ables following this document. Appendix B, see Section 7, provide a snapshot
of the documentation of the developed libraries. The live library documentation
can be found on GitHub.1

1Go-Lab GitHub repository, https://github.com/orgs/go-lab/

Go-Lab 317601 8 of 53

https://github.com/orgs/go-lab/

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

2 Personalisation
Hereafter, we present the first release of the personalisation features in Go-Lab
focusing on internationalisation. Search and recommendation will be included in
the final release of the personalisation features on M32 in D5.5. Currently, find-
ing relevant material on the Go-Lab portal1 can be done using keyword filtering
through the metadata fields defined in D2.1 and D5.2.

Since the audience of Go-Lab crosses language borders, internationalisation
is a key issue. We have integrated internationalisation into apps and ILS, and
have implemented the translation module of the App Composer.

2.0.1 Apps

As described in D5.1, apps in Go-Lab are implemented using the OpenSocial
Gadget specification. OpenSocial provides an internationalisation specification
that is used in the Go-Lab apps and the translator component of the App Com-
poser (see D5.2). Essentially, the developer of the app provides a list of key-
value pairs for each language. The keys are used in the source code of the app
where a text string is needed in the UI. The OpenSocial container then replaces
these keys with the values for a specific language.2 These key-value pair-based
language lists can be described in the app source code or separate XML files
per language can be referenced in the source code. Most of the inquiry learning
apps described in Section 4 have already implemented OpenSocial-compliant
internationalisation.

2.0.2 Inquiry learning spaces

To enable internationalization of inquiry learning spaces, we use the built-in lo-
cale feature of OpenSocial 3. From the implementation perspective, this is done
through three steps. First, the Shindig container in Graasp configures the lan-
guage based on the choice of the ILS author. Second, the ILS metawidget
includes the language bundles in its ModulePrefs. Each language bundle is
a XML file that contains the translated strings for a given language, as men-
tioned above. When the ILS metawidget is rendered, it will automatically use
the strings available in the language bundle corresponding to the language con-
figured by the Shindig container. Third, as the ILS metawidget contains other
apps inside, it should pass the current language to the apps inside so that they
can also be internationalised in the same way as described in the second step.

Currently, to choose a language for an ILS, the teacher selects from the lan-
guage list in the top right corner of Graasp page, as shown in Figure 1. In the
future, we plan to add the language option in the ILS creation window to im-
prove the usability for teachers teaching in multiple languages and to limit the
translation work only to the ILS UI and requiring a full translation of Graasp. Fur-
thermore, at ILS creation time, the teacher can enter the target age group of his

1Go-Lab portal, www.golabz.eu
2see D5.1 or http://opensocial.github.io/spec/2.5.1/Core-Gadget.xml#rfc.section

.C.13 for more details.
3OpenSocial /ModulePrefs/Locale, http://opensocial-resources.googlecode.com/svn/

spec/2.0/Core-Gadget.xml#Locale

Go-Lab 317601 9 of 53

www.golabz.eu
http://opensocial.github.io/spec/2.5.1/Core-Gadget.xml#rfc.section.C.13
http://opensocial.github.io/spec/2.5.1/Core-Gadget.xml#rfc.section.C.13
http://opensocial-resources.googlecode.com/svn/spec/2.0/Core-Gadget.xml#Locale
http://opensocial-resources.googlecode.com/svn/spec/2.0/Core-Gadget.xml#Locale

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

students to indicate their language proficiency. After choosing a language, the
ILS metawidget will be rendered in the corresponding language. Figure 2 shows
an ILS in French. Note that we only translate the strings of the user interface of
the ILS (e.g. the tool bar and the welcome message), the content of the ILS will
be translated by its creator (i.e. the teacher).

Figure 1: Screenshot of setting the language for an ILS in the top right
corner of the Graasp user interface.

2.0.3 Integration with the App Composer Prototype

We have implemented a first prototype of the App Composer of which the spec-
ifications were described D5.2. Although the prototype is premature, a basic
version of the translator component is working and has been connected with
Graasp. A major design choice was to store the translations of an app in the
app composer. Since inserting a translation in the source code of an OpenSo-
cial gadget requires to download the gadget XML file, to change the XML file
and to host the changed file. And because OpenSocial gadgets can consist of
different files, it is complicated to find the path to all these files and download
them, because files hosted on different domains can conflict with the same-
origin browser security policy.4

Figure 3 describes the architecture of this integration in more detail. When an
ILS is run on Graasp, each app in this ILS is rendered by Shindig. The language
of Graasp is passed to Shindig together with the target group (as described in
D5.2). Shindig evaluates whether the app contains the required language, if this
is not the case, then the app composer is contacted to check if someone has
translated the app for the required language and target group. If there is such a
translation, it is returned to Shindig and is dynamically added to the app logic.
After this, Shindig can render the app and Graasp can show it to the user.

We allow languages for different target groups to support different levels of lan-
guage proficiency (see D5.1 & D5.2). In case that the app composer does not
have a translation for a specific target group, but does have a general trans-
lation of the requested language, the general language is returned. Note, we
are currently testing the app composer and therefore this mechanism is not yet
available on the production server of Graasp.

4Same-origin policy, http://en.wikipedia.org/wiki/Same-origin_policy

Go-Lab 317601 10 of 53

http://en.wikipedia.org/wiki/Same-origin_policy

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

Figure 2: Screenshot of an ILS in French.

ShindigGraasp App Composer

runILS(ils, language, targetGrp)

runApp(url, language, targetGrp)
transAvailable = checkTranslation
(url, language, targetGrp)

[!transAvailable]
getTranslation(url, language, targetGrp)

translation

[translation != null]
addTranslation(url, translation)

renderedApp = renderApp(url)
show(renderedApp)

Figure 3: Sequence diagram of the translation retrieval process of the App
Composer.

Go-Lab 317601 11 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

3 Supporting inquiry learning apps
As mentioned, inquiry learning apps are implemented as OpenSocial gadgets.
Such apps provide limited interaction possibilities with other apps. In this sec-
tion, we highlight the work done to improve data communication and exchange
between different apps and the ILS platform.

3.1 The Inter-app Communication library
URL of the source code repository: https://github.com/go-lab/iwc

Library documentation: https://github.com/go-lab/iwc

Figure 4: A prototype implementation of the drag and drop inter-app com-
munication. The ‘Drag me!’ button can be dragged from the
Source to the Destination widget or by pressing the ‘Send out’
button, one can send a regular event.

Different approaches to achieve inter-app communication exist. We use the
OpenApp approach introduced by (Isaksson & Palmér, 2010) for app-to-app
communication, as described in D5.1. However, we have extended the Ope-
nApp library to enable drag and drop between apps within an app container.
More specifically, the library enables the user to drag an object from one app
and drop it in another app within the same web page. In the back, the library
broadcasts messages to other apps on the same web page when an object is
dragged from one app to the other.

To demonstrate and test the implementation, we have created two testing apps1,
illustrated in Figure 4. These two apps allow the user to send an image as an
event by entering the URL of the image and pressing the ‘Send out’ button. This
functionality was already implemented by Isaksson and Palmér. The lower part,
IWC as drag and drop, showcases the new drag-and-drop functionality. One
can drag the Drag me! image from the Source widget to the Destination widget.

1This prototype can be used in the following Graasp space: http://graasp.epfl.ch/#url=
iwc

Go-Lab 317601 12 of 53

https://github.com/go-lab/iwc
https://github.com/go-lab/iwc
http://graasp.epfl.ch/#url=iwc
http://graasp.epfl.ch/#url=iwc

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

Figure 5: The vault in an ILS.

3.2 The ILS library
URL of the source code repository: https://github.com/go-lab/ils

Library documentation: https://github.com/go-lab/ils/wiki/ILS-Library

The Inter-app Communication library allows apps to communicate with each
other within only one space. In most situations this is sufficient. But sometimes,
apps in a given space might want to communicate with apps in different ones.
In the case of an ILS, this becomes important, since an ILS consists of multiple
phases, which are modelled as spaces (see D5.2). The same app can be used
in different phases and data exchange between those two app instances might
be a desirable functionality. For instance, the Hypothesis Scratchpad (see Sec-
tion 4.2) can be added to the Conceptualisation phase to create a hypothesis,
and can be added to the Conclusion phase as an aid to compare the hypothe-
ses and the empirical data. Furthermore, the data collected by different apps in
the Vault can be very useful to be exploited by the learning analytics backend
services (see D4.2).

The Vault is a hidden subspace of an ILS (this structure is described in detail
in D5.2). The main functionality of the ILS library is to allow apps to save files
to, and to read files from the Vault subspace, as shown in Figure 5. To support
this, the library provides four basic functions: (i) to create a new resource (i.e. a
file), (ii) to read a resource, (iii) to update an existing resource and (iv) to list all
resources in the Vault. When a resource is created some metadata is attributed
to it, which could hold information specifying which app and which user has
saved this resource from which space. These functions provide a basic interface
for apps to interact with the Vault. Those basic functions could be extended in
the future to support more advanced requirements of app developers, who wish
to gain more exposure to the learning data kept in the Vault.

Go-Lab 317601 13 of 53

https://github.com/go-lab/ils
https://github.com/go-lab/ils/wiki/ILS-Library

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

In addition to this data IO functionality of the Vault, the library also contains some
help functions to expose information about the ILS and its phases. Currently, it
includes a function to retrieve information about the current user, the current
inquiry phase, and the current ILS. In the near future, access to the notification
client and action logger of the ILS will be added. Note that having a common
action logging client and a notification client on ILS level, lowers the burden for
developers to create these clients and can improve performance.

Having some user info of the students who are anonymously logged in with a
nickname (without having a personal Graasp account (see D5.2)) is important
for many apps and learning analytics (see D4.2), especially those asking for
input from the student user. For example, apps can provide a better user expe-
rience by saving personal data in the Vault per student, when they have access
to the user info.

Apps might also behave differently based on the inquiry phase they are in. For
instance, the Hypothesis Scratchpad might not allow the editing of the hypothe-
ses if it is in the Conclusion phase (note: this is an example and such function-
ality is not implemented).

The library requirements can be perceived as very simple, but they were com-
plicated to handle with the Graasp privacy management, which made it a more
laborious task then initially estimated. To be more specific, users should be
able to write and read data from the Vault, while the Vault is a hidden subspace
of the ILS. Because it is a hidden subspace, any access or modification of the
properties/content of the Vault is denied, since this is the privacy policy for hid-
den spaces in Graasp. The solution to this problem, should respect the Graasp
privacy policy for hidden spaces and should satisfy the Vault requirements. So
the following modifications were done:

• Spaces API: We exposed through Graasp’s implementation of the OpenSo-
cial API the retrieval of a space that is of the type Hidden-Vault, and in-
cluding a Hidden-Vault subspace in the list when getting an enumeration
of the subspaces of an ILS.

• Documents API: We allow through Graasp’s implementation of the OpenSo-
cial API to retrieve a resource, and create a resource in Hidden-Vault sub-
spaces of an ILS

Additionally, to identify students who do not have a Graasp account but log
in with their nicknames, we had to extend the user management in Graasp to
support temporary users. Please note that for the moment, the library allows
saving metadata (student name only for now) per resource only. The storage of
the app metadata will be implemented in the next version.

To sum up, the list of available methods of data read/write and some helper
methods that are implemented are provided below.

• readResource: reads a resource in the Vault

• createResource: creates a resource in the Vault

Go-Lab 317601 14 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

Figure 6: A demo widget showing how to use the library.

• listVault: lists all resources in the Vault

• getVault: get the Vault of the ILS in which the widget is running

• getIls: get the ILS in which the widget is running

• getParent: get the parent space in which the widget is running

• getParentInquiryPhase: get the type of phase in which the widget is run-
ning

• getCurrentUser: get the nickname of the current student who is using the
ILS

A demo widget showing how to use the library is implemented, see Figure 6
(available at http://graasp.epfl.ch/gadget/prod/ils_lib/vaul_demo.xml).
In this widget, all the available methods in the library are invoked and the re-
turned results are displayed. The objective of this widget is to demonstrate an
example for app developers of how to use this library and it can be used as aid
while developing apps that make use of the Vault.

The library is still under development and additional help functions will be added
based on the requirements of the Go-Lab developers. The Vault functionality
might in the future also support the App Composer Adaptor module (see D5.2)
to configure apps in an ILS. Furthermore, more high-level functionality to read
and write to the Vault subspace can be added. For example, higher-level func-
tions could be added to write key-value pairs to share data between apps or
help functions to deal with configuration data of apps can be useful.

3.3 User activity logging library
URL of the source code repository: https://github.com/go-lab/ils

Go-Lab 317601 15 of 53

http://graasp.epfl.ch/gadget/prod/ils_lib/vaul_demo.xml
https://github.com/go-lab/ils

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

Library documentation: https://github.com/go-lab/ils/wiki/ActionLogger
and https://github.com/go-lab/ils/wiki/MetadataHandler

To integrate the Learning Analytics services (see D4.2) with the inquiry learning
apps, it is vital to provide a user activity logging architecture. As an exam-
ple, with the help of the Learning Analytics services, a learner might be hinted
to return to his concept map in the Conceptualisation phase, after he is stuck
with the experiments in the Experimentation phase. This hint would be de-
duced from the learner’s activities in the various phases, where he uses different
tools and creates multiple artefacts. This example scenario is pictured in more
details in D4.2 - Specifications of Learning Analytics, Scaffolding and add-on
services. To this end, the inquiry learning apps have access to a JavaScript
Activity Logging library, that allows app developers to integrate an easy but
flexible logging of user actions. As described in D4.2, the activity logging in
Go-Lab is based on OpenSocial’s ActivityStreams approach, which is based on
an actor-verb-object approach, describing who (actor) did what (verb) with
which object. Additional information describes the target of an action (which
can be seen as the context of an object), the "generator" (which denotes the
application that generated the action) and the provider (which describes the
context of the application, i.e. the Inquiry Learning Space).

The Activity Logging API tries to relieve the app (developer) from keeping track
of the information mentioned above, by providing a so-called MetadataHandler.
This MetadataHandler administrates and provides access to this (mostly static)
information, like target, generator and provider, and is used to enrich the activity
log entries with this contextual information. More details on the API and the
implementation of the ActionLogger and the MetadataHandler can be found in
the source code repository and its documentation.

As an example, if the Concept Mapper application wants to publish the user
action of a newly created concept, it is sufficient to create the information of the
object and to provide a verb:

logObject = {
"objectType": "concept",
"id": "4e0eb010-9d65-11e3-a5e2-0800200c9a66",
"content": "new concept"

};
actionLogger("add", logObject);

The Action Logging API propagates this action log item to the OpenSocial Ac-
tivityStream API, where it is relayed to the Learning Analytics backend.

3.4 Artefact storage library
URL of the source code repository: https://github.com/go-lab/ils

Library documentation: https://github.com/go-lab/ils/wiki/StorageHandler

The so-called StorageHandler provides a wrapper to access different storage

Go-Lab 317601 16 of 53

https://github.com/go-lab/ils/wiki/ActionLogger
https://github.com/go-lab/ils/wiki/MetadataHandler
https://github.com/go-lab/ils
https://github.com/go-lab/ils/wiki/StorageHandler

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

implementations for client-side (guidance) apps in Go-Lab. Currently, a Memo-
ryStorageHandler (storing resources in memory), a LocalStorageHandler (stor-
ing resources in the browser’s local storage) and the Vault storage (see above,
storing resources in a hidden space in an ILS) are implemented. A resource in
Go-Lab consists of a metadata section, which is based on the metadata speci-
fied in the OpenSocial ActivityStream API, and a content section, which stores
arbitrary content (in particular for the various inquiry learning apps, see below)
in JSON. To this end, the StorageHandler makes use of the MetaHandler as
well, comparable to the ActionLogger. More details on the API and the imple-
mentation can be found in the source code repository and its documentation.

Go-Lab 317601 17 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

4 Inquiry learning apps
Along the inquiry learning process, inquiry learning apps can be used to sup-
port learners. Hereafter we present several guidance apps, which are currently
available on the Go-Lab portal, namely the Concept Mapper, the Hypothesis
Tool, the Experimental Designer, the Data Viewer app, the Drop File app, the
Wiki app and the Resource View app. An additional app, the Conclusion Tool,
which displays input form the other tools is currently in early development stage
as it is dependent on various apps in this initial release and shall be described
only conceptually here.

4.1 Concept Mapper
URL on the lab repository: http://www.golabz.eu/content/go-lab-concept
-mapper

Supported languages: English, German

Predominant phase(s): Orientation, Conceptualisation

Figure 7: Initial release of the concept mapping tool.

Short description: The Concept Mapper provides features to view, create
and edit concept maps with the help of a drag-and-drop user interface. The
user can create concept nodes, edit them and create labelled relations between
the concept nodes, see Figure 7. The Concept Mapper and its integration as
a guidance tool have been inspired by previous experiences (de Jong et al.,

Go-Lab 317601 18 of 53

http://www.golabz.eu/content/go-lab-concept-mapper
http://www.golabz.eu/content/go-lab-concept-mapper

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

2010).

Usage: Concepts can be created by dragging a template from the toolbar to
the map. There, a concept can be changed through free-text editing or by choos-
ing a label from a given set of terms. A concept can be deleted by dragging it to
the trashcan icon or through a context menu. Alternatively, concepts can be cre-
ated by selecting and dragging terms from arbitrary application into the concept
map, e.g. from a Wikipedia page in a browser or from a Word document. After
clicking the link icon, new relations between concepts can be created through
dragging from the source to the target node, or by clicking the source and target
node (which is more convenient for touch-based interfaces). A relation can be
deleted by creating the same relation again, or by deleting attached concepts.
Concept maps can be stored and retrieved using the buttons in the toolbar,
where the user will be prompted to select from existing concept maps for re-
trieval or to name his new concept map for storing.

Integration: The Concept Mapper can be configured, while creating an ILS,
with the help of the AppComposer Adaptor. The set of pre-defined terms for
the concepts and the labels of the relations can be configured, as well as the
availability of a number of features, e.g. creating concepts by dragging terms
from external applications.

The Concept Mapper is fully integrated with the Learning Analytics backend, by
providing detailed user action logs and reacting to notifications. The user action
logging tracks each modification of the concept map, i.e. the creation, modifica-
tion and deletion of concepts and labels. The Learning Analytics backend can
control the Concept Mapper through the Notification Service, by changing its
configuration at runtime, similar to the configuration through the AppComposer
Adapter at authoring time (see above), or by sending textual messages which
are displayed in the form of prompts to the user.

The Concept Mapper stores its artefacts through the Vault in a plain JSON for-
mat, making it easily accessible and readable for other tools, e.g. the Hypothe-
sis Scratchpad (to propose concepts as parts of hypotheses) or to the Conclu-
sion Tool (to include a concept map as part of the report). A stored artefact is
enriched with metadata information about the author and contextual data, e.g.
about the Inquiry Learning Space in which it has been created.

4.2 Hypothesis Scratchpad
URL on the lab repository: http://www.golabz.eu/app/hypothesis-tool

Supported languages: English, German

Predominant phase(s): Orientation, Conceptualisation

Short description: The Hypothesis Scratchpad, see Figure 8, helps learners
to create and manage their hypotheses. It provides textual building blocks, like

Go-Lab 317601 19 of 53

http://www.golabz.eu/app/hypothesis-tool

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

Figure 8: Initial release of the Hypothesis Scratchpad.

‘If’, ‘then’, ‘increases’ etc., as well as domain-dependent terms that are related
to the topic of the current learning activity (e.g. ‘mass’, ‘volume’, ‘density’).
These building blocks can be used in a drag-and-drop fashion to create and edit
hypotheses. The Hypothesis Scratchpad has been inspired by preceding works
(van Joolingen & de Jong, 1991).

Integration: Similar to the Concept Mapper tool (see above), the Hypothesis
Scratchpad is integrated with the Learning Analytics backend by providing user
action logs and by accepting notifications to change the configuration (e.g. to
change the given domain terms) or to display prompts to the learner. Created
research questions and hypothesis are stored through the Vault in JSON format,
enriched with metadata information as described above.

4.3 Questioning Scratchpad
URL on the lab repository: http://www.golabz.eu/apps/questioning-scratchpad

Supported languages: English, German

Predominant phase(s): Orientation, Conceptualisation

Short description: The Questioning Scratchpad (see Figure 9) is a variant of
the Hypothesis Scratchpad that allows a more flexible way of creating research
questions and hypotheses. The building blocks and domain terms can be used
in a similar way as mentioned above, but the learner can freely edit the questions
and hypotheses in a text field.

Integration: The implementation is identical to the Hypothesis scratchpad, but
the user interface differs.

Go-Lab 317601 20 of 53

http://www.golabz.eu/apps/questioning-scratchpad

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

Figure 9: Variant of the Hypothesis Scratchpad: the Questioning Scratch-
pad.

4.4 Experiment Design Tool
URL in the lab repository: http://www.golabz.eu/apps/experiment-design
-tool

Supported languages: English, Dutch

Predominant phase(s): Conceptualisation, Investigation

Figure 10: Planning a set of experiments in the Experiment Design Tool.
The student has dragged the properties on the left to their roles
in the experiment plan (vary, keep the same, observe.

Short description: The Experiment Design Tool, EDT for short, (see Fig-
ure 10 & 11) helps students to plan experiments in a laboratory. Normally,

Go-Lab 317601 21 of 53

http://www.golabz.eu/apps/experiment-design-tool
http://www.golabz.eu/apps/experiment-design-tool

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

Figure 11: Creating a detailed design of the experiments. The student has
selected a single value of the “keep the same” variables and
multiple values for mass.

the EDT is started after the student has defined a hypothesis using the Hy-
pothesis Tool. The main purpose of the EDT is to encourage students to think
about designing a set of experiments that lets them test the hypothesis. There
are three tabs in the EDT for planning experiments, creating a detailed design
of the experiments and running and recording the results of the experiments,
respectively.

Usage: In the planning tab students select, for each of the properties in the
domain of experimentation, which role the property plays in the experiment.
Properties can act as a dependent, independent or control variable, or be an
observable in an experiment. During planning the student is presented with a
list of properties relevant for the domain. For a given hypothesis the student
has to decide for each property whether it plays the role of dependent variable
(vary), independent variable (keep the same), or as an observable. For exam-
ple, in the buoyancy domain, if a student hypothesises that objects sink because
they are heavy, the student could select the Volume and Shape object proper-
ties as independent variables, Mass as a dependent variable and Sink or float
as an observable. Once all properties have been assigned a role, the student
moves to the design tab. The design tab, is used to specify the detailed design
of the experiments. For the independent variables the student selects a single
value, Volume is 300 cm3, and Shape is sphere for example. And for the de-
pendent variables the student selects several values. The EDT shows a row
for each experiment specification corresponding to the values selected for the
variables. The row possibly also includes control variables the student cannot
change, for example the fluid in the aquarium, and a column for the outcomes

Go-Lab 317601 22 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

of the experiment (the observables). The run tab is mainly used to record the
outcome of the experiments by filling in the observed value of the property to
be measured (e.g., sink or float). The experiments themselves are conducted
in the laboratory.

Further technical details are available in Appendix A, see section 6.

4.5 Data Viewer
URL on the lab repository: http://www.golabz.eu/apps/data-viewer

Supported languages: English, Dutch

Predominant phase(s): Investigation, Conclusion

Figure 12: Initial version of the Data Viewer

Short description: The Data Analyser (see Figure 12) allows students to cre-
ate various types of visualisations of data produced by remote (physical) or
virtual online labs. Visualisations may consist of e.g. (numerical) tables, graph
plots, bar charts or scatter plots. With the help of the Smart Device integration
of remote labs (see deliverable D4.1 for more details on the Smart Device and
Smart Gateway paradigm), the Data Viewer constitutes a generic approach to
data visualisation in Go-Lab.

Usage: The student can use the Data Viewer to create graph type visualisa-
tion of the data sets. These data sets can have been created in real or virtual
labs. The Data Viewer is then used independent of the lab. The Data Viewer

Go-Lab 317601 23 of 53

http://www.golabz.eu/apps/data-viewer

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

can also be used in direct connection with a lab, to show a real time visualisation
of the data produced by the lab.

The Data Viewer make use of drag and drop to let the user select what part
of the data should be shown. The student can drag variables of the data in
the data sets to the X and Y axis and use a simple pop-up menu to select the
desired visualisation or use the Chart Editor select an other visualisation and/or
the customize the visualisation.

As a detailed example, the following steps will create a data visualisation as
shown in the screenshot above:

• First, select a category of available data sets (1). Then, select one of the
data sets (2), and click the button (3) to load the dataset. (In this initial
release, you can choose from a set of pre-defined data sets. In future,
these data sets will be created from the experiments learners conducted
in a lab.)

• The data set is depicted by showing the available variables (4), in this
example “power”, “amp 1”, “volt 1”, and “power 1”. These variables corre-
spond to what has been measured and recorded in a lab.

• Available variables from the data set can then be dragged to the data
graph (5), where they will be plotted automatically. You can drag only one
variable to the X-axis, but multiple variables to the Y-axis.

• You can choose from different types of visualisation (6), e.g. a bar chart,
a scatter chart or a line chart. Choosing Â´Â´table” will display the values
of the selected variables in a data table.

• Details of the visualisation (such as labels, ranges, colors) can be config-
ured in the graph editor dialog (7).

Further technical details are available in Appendix A, see section 6.

4.6 Drop File Tool
URL on the lab repository: http://www.golabz.eu/apps/file-drop

Supported languages: English

Predominant phase(s): Discussion, Conclusion

Short description: The Drop File tool, illustrated in Figure 13, allows students
to upload their documents into the ILS by drag-and-drop. It also enables the
teacher to download and view the uploaded files.

Usage: Typically, a teacher can add the Drop File tool in the Discussion or
Conclusion phases of the ILS. Then, the students will be able to upload their
assignment reports into the ILS. The teacher can download student reports
through this tool as well.

Go-Lab 317601 24 of 53

http://www.golabz.eu/apps/file-drop

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

Figure 13: The screenshot of the drop file tool

Technical details: This app uses the document APIs of OpenSocial to create
resources in the space where the app has been added. To allow drag-and-drop
on the user interface, it uses the Dropzone.js javascript library.1

Integration: Currently the Drop File tool stores the uploaded files in the ILS
in the name of the ILS creator (i.e., the teacher). In the future, we plan to store
the files in the Vault, making it accessible by other apps using the ILS library.
Additionally, the student’s nickname will be saved in the metadata of the file that
she uploads so that the apps in the same ILS will be aware of the author of each
report.

4.7 Resource View app
URL on the lab repository: http://www.golabz.eu/apps/resource-view-app

Supported languages: English

Predominant phase(s): Orientation, Conceptualisation, Investigation, Discus-
sion & Conclusion

Short description: This app allows to view the resources in a space as a list,
as shown in Figure 14. Resources can be files (e.g. slides or a video) but also
links. It is possible to download individual resources as well as all of the space
resources as a single zip archive. Additionally, a user can enable previews to
see content of the resource before downloading.

Usage: A teacher can add the Resource View tool into the inquiry phase,
where she has few pictures and reading material. Students can use the Re-

1Dropzone.js, http://www.dropzonejs.com/

Go-Lab 317601 25 of 53

http://www.golabz.eu/apps/resource-view-app
http://www.dropzonejs.com/

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

Figure 14: The screenshot of the resource view app

source View tool to preview and download the pictures and the material.

Technical details: The app uses the space API of OpenSocial to get a list of
resources in the space where it has been placed.

4.8 Wiki app
URL on the lab repository: http://www.golabz.eu/apps/wiki-app

Supported languages: English, German

Predominant phase(s): Conceptualisation, Investigation, Discussion & Con-
clusion

Short description: This app allows writing or editing texts in the common
notion of wiki tools. Students can create new documents or links to other docu-
ments. Figure 15 shows a screenshot of an edited page with mark-up.

Usage: The main use of this app is to serve as a text editor, where students
create text based learning objects. Students can use this free-notation app for

Go-Lab 317601 26 of 53

http://www.golabz.eu/apps/wiki-app

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

Figure 15: A document with mark-up created through the wiki app.

Figure 16: Comparision of two revisions of a document.

several purposes, e.g. answering teacher questions, writing summaries of ob-
servations or as a simple reporting tool. Thus, it can be used as an alternative
to some more dedicated apps, such as the Hypothesis Scratchpad or the Con-
clusion tool. This is obviously needed in such inquiry-based learning scenarios
in Go-Lab.

Besides the capabilities of a text editor, this tool can be used for reflection
and awareness. Wikis create an explicit history of revisions of a document,

Go-Lab 317601 27 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

which can be used in a learning scenario to reflect on the learning process and
progress. On the one hand, a history of revisions can be viewed as a list, on
the other hand, different revisions can be compared in the sense of a diff view,
which is a tool to visualise the differences of two files graphically. Figure 16
shows the comparison of two revisions in the diff view of the wiki app.

Integration: The wiki app is integrated into the Go-Lab infrastructure: it uses
the Go-Lab JavaScript libraries for handling storage, metadata, notifications and
logs actions to the back end services. Besides the communication with the back
end services it uses the proposed way of internationalisation.

4.9 Conclusion tool
URL of the mockup: http://go-lab.gw.utwente.nl/experiments/2014-04
-D5.3/conclusionTool/build/conclusionTool.html

Supported languages: English

Predominant phase(s): Conclusion

Short description: The Conclusion tool serves to collect, summarise and
present the results and findings from an inquiry learning activity. It is integrated
with the previously described tools and can include results from other inquiry
phases, e.g. a concept map, hypotheses, or data plots. Learners can elabo-
rate on their results, approve or reject hypotheses and discuss their research
questions. Teachers can configure the Conclusion tool by preparing guiding
questions to the students.

At the moment of writing this document, only a mock-up version of the Conclu-
sion tool is available. Figure 17 serves to demonstrate the basic idea.

Usage: The student can load the hypothesis he or she wants to validate, along
with data from conducted experiments. These experiment data is created by the
Data Viewer and can be visualised as a graph plot. The student can enter why
the experiment result supports or falsifies the hypothesis or why it does not
support or falsifies the hypothesis. When all arguments have been collected,
the student must decide what the experiment result says about the hypothesis
and enter the result.

After all available experiment results have been scored, the student must draw
the final conclusion about the hypothesis. The student gets the summed score
of all experiment results and can now enter the arguments for supports, falsifies
and unclear. When all arguments have been entered, the final validation result
of the hypothesis can be made and entered.

Go-Lab 317601 28 of 53

http://go-lab.gw.utwente.nl/experiments/2014-04-D5.3/conclusionTool/build/conclusionTool.html
http://go-lab.gw.utwente.nl/experiments/2014-04-D5.3/conclusionTool/build/conclusionTool.html

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

Figure 17: Mockup of the Conclusion tool

Go-Lab 317601 29 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

5 Conclusion
In this deliverable, we have presented the implementation work completed for
the initial release of the personalisation features of the Go-Lab portal and the
inquiry learning apps. The requirements for this initial release were based on
supporting the Phase A evaluations. Therefore, for personalisation, internation-
alisation had a high priority.

We elaborated on the implementation of internationalisation in apps and ILS
and the procedure of how new translations made on the app composer can be
used by the ILS. This is an experimental feature and will be further documented
in D5.4.

Additionally, we have described the different mechanisms that allow commu-
nication between apps to create a richer user experience. The main mecha-
nisms are inter-app communication, which now also works with drag and drop
of objects between apps, and the Vault space for data exchange between apps.
Additionally, the user activity logging library is described that enables apps to
easily save user activity traces to the learning analytics service.

Finally, the deliverable presented the current state of development of several
inquiry-learning apps, namely the Concept Mapper, the Hypothesis Tool, the
Experimental Designer, the Conclusion Tool, the Data Viewer app, the Drop File
app, the Wiki app and the Resource View app. WP3 is currently evaluating
several of these apps and is expected to provide insights and feedback on their
design and usefulness in D3.2 in M24.

The release of the personalisation features and inquiry learning apps will be
finalised in D5.5 (M32).

Go-Lab 317601 30 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

References
de Jong, T., van Joolingen, W., Giemza, A., Girault, I., Hoppe, U., Kindermann,

J., . . . van der Zanden, M. (2010). Learning by creating and exchanging
objects: The SCY experience. British Journal of Educational Technology ,
41(6), 909–921. doi: 10.1111/j.1467-8535.2010.01121.x

Isaksson, E., & Palmér, M. (2010, September). Usability and inter-widget com-
munication in PLEs. In Proceedings of the 3rd workshop on mashup per-
sonal learning environments.

van Joolingen, W., & de Jong, T. (1991). Supporting hypothesis generation by
learners exploring an interactive computer simulation. Instructional Sci-
ence, 20, 389–404. doi: 10.1007/BF00116355

Go-Lab 317601 31 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

6 Appendix A
This appendix provides some more technical details of certain inquiry learning
apps, namely the Experiment Design Tool (see Section 4.5) and Data Viewer
(see Section 4.4).

6.1 Technical details of the Experiment Design Tool
The experiment design tool is itself domain independent and therefore has to
be configured for each domain or sub-domain. A specification of such a config-
uration for the floating and sinking sub-domain of buoyancy is given in the figure
below (using JavaScript object literal notation). So far, specifications have been
constructed for several other domains (e.g., Methyl orange, Archimedes’ prin-
ciple, and Electricity). The AppComposer (see D5.2) can assist ILS authors to
create and edit the domain specifications.

{ domain: "buoyancy",
name: "Floating or sinking,
description: "Simulation-based version of the buoyancy experiment",
object_property_selection: ["mass", "volume", "shape"],
object_measure_selection: ["sink_or_float", "water_displacement"],
system_property_selection: ["fluid_aquarium"],
object_property_specification: [

{ property: "mass",
initial: 300,
unit: "gram",
range: { minimum: 50,

maximum: 500,
increment: 50

}
},
{ property: "volume",

initial: "200",
unit: "cm_3",
range: { minimum: 50,

maximum: 500,
increment: 50

}
},
{ property: "shape",

initial: "sphere",
values: ["sphere", "cube"]

}
],
system_property_values: [

{ property: "fluid_aquarium",
value: "water"

},
{ property: "density",

value: 1.0
}

]
}

Go-Lab 317601 32 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

6.2 Technical details of the Data Viewer
The Data Viewer works independent of the labs, it only visualises data. The
Data Viewer is not aware of the meaning of the data or any possible relations in
the data.

The Data Viewer uses Google Charts1 as visualisation engine. Google Charts
was chosen because it makes use of HTML5 and SVG (Scalable Vector Graph-
ics), which results in high quality graphics for all devices and all screen res-
olutions and pixel densities. And Google Charts also offers a format to store
data sets, including an interface (Chart Tools Datasource protocol) to access
data from outside (such as Google spreadsheets). The data set format makes
use of the Google Charts data format and adds a thin wrapper with additional
information. Here is an example of a data set:

"dataSourceColumns" : [
"imageInformation": "type": "commonImage", "value": "DC.png", "unit": "V",
"imageInformation": "type": "commonImage", "value": "A.png", "unit": "A",
"imageInformation": "type": "commonImage", "value": "A.png", "unit": "A"

],
"dataTable" :

"cols" : [
"id": "dcVoltageSource", "label": "power", "pattern": "", "type": "number",
"id": "amp1", "label": "amp 1", "pattern": "", "type": "number",
"id": "amp2", "label": "amp 2", "pattern": "", "type": "number"

],
"rows" : [

"c": [
"v": 0, "f": "0.000 V",
"v": 0, "f": "0.000 µA",
"v": 0, "f": "0.000 mA"

],
"c": [

"v": 1, "f": "1.000 V",
"v": 0.01, "f": "10.00 mA",
"v": 0.02, "f": "20.00 mA"

],
...

],
"p" : null

The Data Viewer is created in a modular way, in order to make it easy for the labs
to use the Data Viewer. The Data Viewer has a framework independent data set
model, which labs can use create data sets. There is also a simple protocol to
transfer data "real-time" from the lab running in the browser to the Data Viewer.
Currently the Data Viewer can be used together with the Circuit Simulator. The
Circuit Simulator makes use of model components of the Data Viewer. As both

1Google Charts, https://developers.google.com/chart/

Go-Lab 317601 33 of 53

https://developers.google.com/chart/

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

the Data Viewer and the Circuit Simulator are using AngularJS2, the Circuit
Simulator is actually using HTML/JavaScript code from the Data Viewer.

2AngularJS, http://angularjs.org/

Go-Lab 317601 34 of 53

http://angularjs.org/

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

7 Appendix B
This appendix describes the documentation of the software libraries presented
in Section 3. The following sections contain a copy of the documentation avail-
able on GitHub to reflect the development stage in the Go-Lab project at the
time this deliverable was submitted to the European Commission.

7.1 Documentation of the Inter-app Communication Library
This section contains the documentation of the Inter-app Communication Li-
brary available on https: / / github .com/ go -lab/ iwc on April 30, 2014.

Enables the inter widget communication and drag and drop between widgets
within a widget container.

7.1.1 How to start

• See two widgets in action here: https://graasp.epfl.ch/#url=iwc
• Source code of these widgets: http://graasp.epfl.ch/gadget/iwc/src

.xml and http://graasp.epfl.ch/gadget/iwc/dest.xml

7.1.2 Description

Widgets are often rendered as iframes inside a widget container. The library
allows a widget to broadcast messages to other widgets open on the page. In
addition, an object can be brought from one widget to another with drag and
drop.

7.1.3 Example 1: send data from one widget to another

// require the iwc library in both src and dest widgets
<script type="text/javascript" src="http://graasp.epfl.ch/gadget/
libs/iwc.min.js"></script>

// ------- Source gadget --------
// send some data
iwc.publish({

event: "select",
type: "json",
message: {

data: "some text"
}

})

// ------- Destination gadget --------
// start listenning on incoming events
iwc.connect(function (envelope, message) {

var data = message.data
console.log(data)

}

Go-Lab 317601 35 of 53

https://github.com/go-lab/iwc
https://graasp.epfl.ch/#url=iwc
http://graasp.epfl.ch/gadget/iwc/src.xml
http://graasp.epfl.ch/gadget/iwc/src.xml
http://graasp.epfl.ch/gadget/iwc/dest.xml

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

7.1.4 Example 2: drag&drop from one widget to another

// require the iwc library in both src and dest widgets
<script type="text/javascript" src="http://graasp.epfl.ch/gadget/
libs/iwc.min.js"></script>

// ------- Source gadget --------
// ’dragme’ - id of the DOM node that can be dragged
iwc.draggable(’dragme’, {

// function should return the data that you want to transfer
dragstart: function () {

return "my data"
}

})

// ------- Destination gadget --------
// ’droparea’ - id of the DOM node that accepts draged elements
iwc.droppable(’droparea’, {

drop: function (data) {
// data - that was passed during the drop

}
})

7.1.5 APIs

Inter Widget Communication

// start listenning on incoming events
iwc.connect(function (envelope, message) {

// envelope - contains extra info about the event
// message - object passed from one widget to another

})

// broadcasts event to other widgets
iwc.publish({

event: "select", // type of event: select, click, etc.
type: "json",
message: { // message object passed

data: "some text"
}

})

Drag and drop

// turns a DOM element into a draggable object
iwc.draggable(elemId, opts)

opts.dragstart = function (drag) {

Go-Lab 317601 36 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

// drag - object on which dragstart is executed
return {data: "data"} // this data passed to droppable object

}

// turns a DOM element into a droppable object
iwc.droppable(elemId, opts)

opts.drop = function (data, drop, drag) {
// data - that was passed to droppable object
// drop - object on where the drop occured
// drag - object that was dropped

}

opts.dragover = function (drop) {
// drop - object on where the drop occured

}

7.1.6 Thanks

The initial code of inter-widget communication is based on the openapp library
by Erik Isaksson and Matthias Palmér.

7.2 Documentation of the ILS library
This section contains the documentation of the Inter-app Communication Li-
brary available on https: / / github .com/ go -lab/ ils on April 30, 2014.

This javascript library provides APIs to developers, allowing apps to access info
and data in the ILS they are running in. ### The Inquiry Learning Space Struc-
ture An ILS contains by default five phases: Orientation, Conceptualisation, In-
vestigation, Conclusion, Discussion, in addition to a Vault space, and an About
space. Each phase could contain a few apps, and the Vault is used for data
exchange between apps. For instance, one app could save a data file in the
Vault, and another app could read this file from the Vault. This library will allow
apps to exchange data via the APIs.

7.2.1 API

getCurrentUser(callback: function(result: string): void): string Gets the
nickname of the current student, and returns it in the callback. callback: func-
tion(result: string):void a callback function to handle the returned result result: a
String object containing the nickname of the user of the user

Result example on success:

"Mario"

Result example on failure:

{

Go-Lab 317601 37 of 53

https://code.google.com/p/open-app/
https://github.com/erikis
https://github.com/matthiaspalmer
https://github.com/go-lab/ils

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

"error": "cannot find the nickname"
}

getParent(callback: function(result: object): void): object Returns the
parent space of the widget in the callback. callback(result): a callback func-
tion to handle the returned result result: a JSON object containing the parent
space properties

Result example on success:

{
"description": "some text",
"displayName": "Orientation",
"id": "9563",
"metadata": {"type":"Orientation"},
"objectId": 9563,
"parentId": 9562,
"parentType": "@space",
"profileUrl": "http://localhost:3000/#item=space_9563",
"spacetype": "folder",
"updated": "2014-03-17T12:43:28+01:00",
"visibilityLevel": "public"

}

Result example on failure:

{
"error": "cannot get the parent"

}

getIls(callback: function(result: object): void): object Returns the current
Ils in the callback. callback(result): a callback function to handle the returned
result result: a JSON object containing the ILS space properties

Result example on success:

{
"description": "some text",
"displayName": "ils_example",
"id": "9562",
"metadata": "",
"objectId": 9562,
"parentId": 28,
"parentType": "@person",
"profileUrl": "http://localhost:3000/#item=space_9562",

Go-Lab 317601 38 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

"spacetype": "ils",
"updated": "2014-03-17T12:43:28+01:00",
"visibilityLevel": "public"

}

Result example on failure:

{
"error": "cannot get the Ils"

}

getParentInquiryPhase(callback: function(result: object): void): object
Returns the type of the current phase. callback(result): a callback function to
handle the returned result result: a String object containing the name of the
phase the app is running in

Result example on success:

"Orientation"

Result example on failure:

{
"error": "cannot get the parent inquiry phase"

}

getVault(callback: function(result: object): void): object Returns the Vault
space of the current Ils in the callback. callback(result): a callback function to
handle the returned result result: a JSON object containing the Vault space
properties

Result example on success:

{
"description": "some text",
"displayName": "Vault",
"id": "9569",
"metadata": {"type":"Vault"},
"objectId": 9569,
"parentId": 9562,
"parentType": "@space",
"profileUrl": "http://localhost:3000/#item=space_9569",
"spacetype": "group",
"updated": "2014-03-17T12:43:28+01:00",
"visibilityLevel": "hidden"

}

Go-Lab 317601 39 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

Result example on failure:

{
"error": "cannot get the vault"

}

listVault(callback: function(result: object): void): object Returns all the
resources in the Vault in the callback. callback(result): a callback function to
handle the returned result result: an array of JSON objects, each JSON object
containing properties of the respective resource in the Vault

Result example on success:

[
{

"id": 15312,
"displayName": "example",
"name": "example",
"objectId": 15312,
"parentId": "9569",
"parentType": "@space",
"profileUrl": "http://localhost:3000/#item=asset_15312",
"thumbnailUrl": "/asset/picture/15312/thumb/image-0.jpg",
"updated": "2014/03/26 13:26:51 +0100",
"mimeType": "txt",
"metadata": {"username": "Mario"},
"data": "",
"attachment": {}

},
{

"id": 15313,
"displayName": "example2",
"name": "example2",
"objectId": 15313,
"parentId": "9569",
"parentType": "@space",
"profileUrl": "http://localhost:3000/#item=asset_15313",
"thumbnailUrl": "/asset/picture/15313/thumb/image-0.jpg",
"updated": "2014/03/26 13:26:51 +0100",
"mimeType": "txt",
"metadata": {"username": "Luigi"},
"data": "",
"attachment": {}

}
]

Go-Lab 317601 40 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

Result example on failure:

{
"error": "cannot get the resources in the vault"

}

readResource(resourceId: number,callback: function(result: object): void):
object Returns the resource with the resourceId in the callback. callback(result):
a callback function to handle the returned result result: a JSON object contain-
ing the properties of the resource references by resourceId

Result example on success:

{
"id": 15312,
"displayName": "example",
"name": "example",
"description": "some text",
"objectId": 15312,
"parentId": "9569",
"parentType": "@space",
"profileUrl": "http://localhost:3000/#item=asset_15312",
"thumbnailUrl": "/asset/picture/15312/thumb/image-0.jpg",
"updated": "2014/03/26 13:26:51 +0100",
"mimeType": "txt",
"metadata": {"username": "Mario"},
"content": {

"concepts": [
{

"x": 297,
"y": 188,
"content": "energy",
"id": "7f800d79-cd66-2167-724c-6c1cda7abc5e",
"type": "ut_tools_conceptmapper_conceptSelector",
"colorClass": "ut_tools_conceptmapper_blue"

},
{

"x": 652,
"y": 238,
"content": "thermodynamic temperature",
"id": "a1ad6ace-c722-ffa9-f58e-b4169acdb4e3",
"type": "ut_tools_conceptmapper_conceptSelector",
"colorClass": "ut_tools_conceptmapper_blue"

}
],
"relations": [

Go-Lab 317601 41 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

{
"source": "7f800d79-cd66-2167-724c-6c1cda7abc5e",
"target": "a1ad6ace-c722-ffa9-f58e-b4169acdb4e3",
"id": "con_71",
"content": "influences"

}
]

}
"data": "",
"attachment": {}

}

Result example on failure:

{
"error": "cannot get the resource"

}

createResource(resourceName: string, content: object, callback: func-
tion(result: object): void): object Create a resource in the Vault, and returns
the new resource just created.

resourceName example:

"example file"

content should be any JSON, see example below:

{
"concepts": [

{
"x": 297,
"y": 188,
"content": "energy",
"id": "7f800d79-cd66-2167-724c-6c1cda7abc5e",
"type": "ut_tools_conceptmapper_conceptSelector",
"colorClass": "ut_tools_conceptmapper_blue"

},
{

"x": 652,
"y": 238,
"content": "thermodynamic temperature",
"id": "a1ad6ace-c722-ffa9-f58e-b4169acdb4e3",
"type": "ut_tools_conceptmapper_conceptSelector",
"colorClass": "ut_tools_conceptmapper_blue"

Go-Lab 317601 42 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

}
],
"relations": [

{
"source": "7f800d79-cd66-2167-724c-6c1cda7abc5e",
"target": "a1ad6ace-c722-ffa9-f58e-b4169acdb4e3",
"id": "con_71",
"content": "influences"

}
]

}

callback(result): a callback function to handle the returned result result: a JSON
object representing the creating resource in the Vault

Result example on success:

{
"id": 15312,
"displayName": "example",
"name": "example",
"objectId": 15312,
"parentId": "9569",
"parentType": "@space",
"profileUrl": "http://localhost:3000/#item=asset_15312",
"thumbnailUrl": "/asset/picture/15312/thumb/image-0.jpg",
"updated": "2014/03/26 13:26:51 +0100",
"mimeType": "txt",
"metadata": {"username": "Mario"},
"data": "",
"attachment": {}

}

Result example on failure:

{
"error": "cannot create resource in the vault"

}

7.2.2 How to Use

This library relies on Jquery, so Jquery should be included in the widget headers
before the use of this library. Below is an example of how to use the getIls API.
For more information on how to use this library, please refer to the the demo
widget: https://github.com/go-lab/ils/blob/master/demo/vault_demo.xml

Go-Lab 317601 43 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

//include jquery library in your widget source
<script type="text/javascript" src="http://graasp.epfl.ch/gadget/
libs/jquery-1.8.0.min.js"></script>
//include the ILS library in your widget source
<script type="text/javascript" src="http://graasp.epfl.ch/ils_lib/
main/ils.js"></script>

//example of calling the getCurrentUser api
ils.getCurrentUser(function(current_user){

// write your code here to use the current_user
// this line simply prints the current user’s nickname
console.log(current_user);

});

//example of calling the getIls api
ils.getIls(function(ils_space){

// write your code here to use the ils_space
// this line simply prints the ILS space JSON representation
console.log(ils_space);

});

//example of calling readResource api
ils.readResource(15339, function(resource){

// write your code here to use the resource
// this line simply prints the returned resource’s
//JSON representation
console.log(resource);

});

//example of calling createResource api
var example_content = {

"concepts": [
{

"x": 297,
"y": 188,
"content": "energy",
"id": "7f800d79-cd66-2167-724c-6c1cda7abc5e",
"type": "ut_tools_conceptmapper_conceptSelector",
"colorClass": "ut_tools_conceptmapper_blue"

},
{

"x": 652,
"y": 238,
"content": "thermodynamic temperature",
"id": "a1ad6ace-c722-ffa9-f58e-b4169acdb4e3",
"type": "ut_tools_conceptmapper_conceptSelector",

Go-Lab 317601 44 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

"colorClass": "ut_tools_conceptmapper_blue"
}

],
"relations": [

{
"source": "7f800d79-cd66-2167-724c-6c1cda7abc5e",
"target": "a1ad6ace-c722-ffa9-f58e-b4169acdb4e3",
"id": "con_71",
"content": "influences"

}
]

};

// create a resource in the Vault
ils.createResource("test", example_content, function(resource){

// write your code here to use the resource
// this line simply prints the created resource’s
// JSON representation
console.log(resource);

});

7.3 Documentation of the User Activity Logging Library
This section contains the documentation of the User Activity Logging Library
available on https: / / github .com/ go -lab/ ils on April 30, 2014.

The ActionLogger provides an easy mechanism for logging students’ activities in
Go-Lab. Since the Go-Lab portal is built on top of Apache Shindig, an OpenSo-
cial container implementation, and since OpenSocial makes us of the Activity
Streams specifications for activity logging, user action logging in Go-Lab is han-
dled through Acitivity Streams as well. The ActionLogger requires a Metadata-
Handler at construction time, and can be configured towards various “logging
targets”, i.e. endpoints to receive the occurring action log information. The ac-
tual use of the ActionLogger at runtime mostly consists of repeatedly calling
the function log(verb, object) which creates an ActivityStream object from the
given information, and adds information from the MetadataHandler. The Ac-
tivityStream object is then relayed to the specified logging target. The Activity
Streams format utilises an “actor-verb-object” metaphor, with optional additional
elements like target, generator, and provider (see also MetadataHandler). Dur-
ing typical tool usage in Go-Lab, most of these elements remain static (over
the course of an activity), leaving only the “verb” and the “object” to be used as
a parameter in the ActionLogger’s function calls. Typically, each tool instance
creates and uses its own ActionLogger instance, along with its own Metadata-
Handler. An example action log object can be found here.

Go-Lab 317601 45 of 53

https://github.com/go-lab/ils
http://shindig.apache.org
http://activitystrea.ms
http://activitystrea.ms
MetadataHandler

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

7.3.1 Creating an ActionLogger

7.3.2 Logging Targets

In order to conveniently change the loggers behaviour (e.g., for development,
testing or production use), the action logger can be configured towards various
‘targets’ (see API below). Currently, five logging targets are implemented: *
“null”: Discards all incoming action logs, doing nothing. * “console”: Prints the
full Activity Streams object to the JavaScript console. * “consoleShort”: Prints
only the verb, object and object identifier to the console. * “dufftown”: Relays the
Activity Streams objects directly to a Learning Analytics backend server of one
the project consortium’s member. * “opensocial”: Relays the Activity Streams
object to the underlying Go-Lab platform, where it can be processed and relayed
further.

7.3.3 API

setLoggingTarget(loggingTarget: function(activityStreamObject: object):
void): void Sets the logging target in the ActionLogger. The logging target
is a function that processes (and typically relays) an Activity Streams object.
loggingTarget: function(activityStreamObject: object): void A func-
tion that accepts and processes an Activity Streams object. Available implemen-
tations are e.g. consoleLogging() or opensocialLogging(), but you can also pass
custom functions.

setLoggingTargetByName(loggingTargetName: string): void Sets the log-
ging target in the ActionLogger, using a string representation of the implemented
logging targets (see above). This function is convenient to use when the setting
for the logging target is e.g. read from a configuration file. loggingTargetName:
string The name of the logging target to be set. Currently, accepted values are
“null”, “console”, “consoleShort”, “dufftown”, and “opensocial”. Any other value
will be interpreted as “null”.

log(verb: string, logObject: object): void Creates an Activity Streams ob-
ject from the given verb, object and from the information in the MetadataHandler,
and calls the logging target function with this Activity Streams object. verb:
string A textual representation of the activity, in the fashion of a verb. Typi-
cal examples would be “create”, “update”, or “remove”. logObject: object A
JSON object describing the “object” of an activity, following the Activity Streams
specifications. Typical examples would be a concept in a Concept Map, or a
hypothesis from the Hypothesis Scratchpad tool.

7.4 Documentation of the Artefact Storage Library
This section contains the documentation of the Artefact Storage Library avail-
able on https: / / github .com/ go -lab/ ils on April 30, 2014.

The StorageHandler provides a wrapper to access different storage implemen-
tations for client-side (guidance) apps in Go-Lab. Currently, a MemoryStor-

Go-Lab 317601 46 of 53

https://github.com/go-lab/ils

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

ageHandler (storing resources in memory) and a LocalStorageHandler (storing
resources in the browser’s local storage) are implemented; a “vault” storage
(storing resources to Graasp) will follow.

7.4.1 What is a resource?

In Go-Lab, in the context of the StorageHandler, a resource is a data artefact
created by a guidance app or a lab. Examples are a set of hypotheses, a con-
cept map, or a numerical dataset. A resource has a unique identifier, a metadata
section (based on information from the MetadataHandler), and a content sec-
tion, which contains arbitrary, tool specific data in JSON format. An example
resource can be found here.

Using the StorageHandler is closely connected to the MetadataHandler, which
stores and gives access to information like username, object name and type,
id of the current ILS etc., which is needed by the StorageHandler to create the
object’s metadata.

7.4.2 Creating a StorageHandler

When creating a StorageHandler object, you can choose between a Memo-
ryStorageHandler and a LocalStorageHandler (and a VaultStorageHandler in
future). All three handlers require a MetadataHandler at construction time.

or

7.4.3 API

getMetadataHandler(): MetadataHandler Returns the MetadataHandler.

readResource(resourceId: string, callback: function(error: string, resource:
object): void): void Returns a resource through a callback, identified by its
resourceId. resourceId: string The (unique) identifier of the resource to be
retrieved. callback: function(error: string, resource: object):void
A callback function to return the result. On success, ‘error’ is undefined, else
‘resource’ is undefined.

createResource(content: object, callback: function(error: string, resource:
object):void): void Creates a resource by bundling the given content and
metadata, and stores it. content: object An arbitrary JSON representation
of the data to be stored. callback: function(error: string,
resource:object):void A callback function to return the result. On success,
‘error’ is undefined, else ‘resource’ is undefined. The ‘resource’ bundles the
‘content’, metadata from the MetadataHandler, a new resource identifier (a ver-
sion 4 random UUID, accessible through resource.id, see example below)and
the creation date.

updateResource(resourceId: string, content: object, callback: function(error:
string, resource: object): void): void Updates a resource with new content.

Go-Lab 317601 47 of 53

MetadataHandler
MetadataHandler

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

resourceId: string The identifier of the resource to be updated. content:
object The new content of the resource. callback: function(error: string,
resource: object): void A callback function to return the result. On suc-
cess, ‘error’ is undefined, else ‘resource’ is undefined.

listResourceMetaDatas(callback: function(error: string, metadatas: ob-
ject[]): void): void Returns an array with all available resource metadata (in
an ILS). callback(error: string, metadatas: object[]): void A call-
back function to handle the returned result. On success, ‘error’ is undefined,
else ‘metadatas’ is undefined. The returned array contains objects of the form
{id: “. . . ”, metadata: {. . . }}, where the metadata sub-objects correspond with the
metadata sections of the available resources.

listResourceIds(callback: function(error: string, ids: string[]): void): void
Returns an array of all available resource identifiers. callback:
function(error:string, ids: string[]): void A callback function to han-
dle the returned result. On success, ‘error’ is undefined, else ‘ids’ is undefined.
‘ids’ contains all available resource identifiers of the current storage.

resourceExists(resourceId: string, callback: function(error: string, ex-
ists: boolean): void): void Checks if a resource with a given identifier ex-
ists. resourceId: string The identifier of the resource to check. callback:
function(error: string, exists: boolean): void A callback function to
handle the returned result. On a successful call, ‘error’ is undefined, else ‘ex-
ists’ is undefined. ‘exists’ is ‘true’, if a resource with the given resource identifier
exists, ‘false’ otherwise.

readLatestResource(resourceType: string, callback: function(error: string,
resource: object): void): void A convenience function that returns the latest
stored resource of a given type. This function searches for resources where
‘metadata.target.objectType’ equals the parameter ‘resourceType’, and returns
the latest matching resource. If ‘resourceType’ is left ‘undefined’, any type will
match. objectType: string The type of the resource (cf.
metadata.target.objectType). callback: function(error: string, resource:
object): void A callback function to return the result. On success, ‘error’ is
undefined, else ‘resource’ is undefined.

7.4.4 Usage example

7.4.5 Notes

A tool using the StorageHandler is responsible to propagate potential changes
in the metadata to the MetadataHandler. E.g., if the document name (meta-
data.target.displayName) changes during a save operation, the tool needs to
update this information in the MetadataHandler. If a resource is retrieved from
the StorageHandler, and if this resource will be the main working document for

Go-Lab 317601 48 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

a tool, the retrieved metadata has to be set in the MetadataHandler. This is
necessary for a consistent handling of resource metadata (which is also being
used in e.g. the ActionLogger).

7.5 Documentation of the Metadata Handler Library
This section contains the documentation of the Metadata Handler Library avail-
able on https: / / github .com/ go -lab/ ils on April 30, 2014.

The MetadataHandler encapsulates and provides access to a set of metadata
items needed by client-side apps in Go-Lab. In particular, these metadata items
are also required by the ActionLogger (to add it to the action log) and by the
StorageHandler (to add it to stored artefacts). Typical metadata items would be
the name and identifier or the current user, name and identifier of the current
working document, the current ILS etc. Every instance of an app creates its own
MetadataHandler, and passes it on to the ActionLogger and StorageHandler. An
app is responsible to update the information in the MetadataHandler in case of
changes. At the moment of writing this, this is only necessary when an artefact
is stored and given a new name (cf. setTargetDisplayName()). ### What’s in the
metadata? The metadata is based on the Activity Streams specification, since
this is used for action logging as well and thus brings consistency by design. The
metadata consists of the following sections: * actor: holds information about the
current user * target: holds information about the current working document *
generator: holds information about the current app * provider: holds information
about the current context (i.e., the ILS)

7.5.1 Technical representation

In the current implementation, the metadata is represented as a JSON object.
Using JSON integrates well with other technologies for the development of web-
based applications, in particular with JavaScript. In addition, JSON can be se-
rialised and parsed easily, while it still remains human-readable. The following
MetadataHandler API returns and accepts the metadata items or metadata sec-
tions in JSON. An example can be found here.

7.5.2 Creating a MetadataHandler

Currently, the MetadataHandler is created with a given set of metadata items.
In future implementations, an increasing number of items will be automatically
set through the ILS Metawidget API. For this reason, the construction of the
MetadataHandler is handled asynchronously, requiring a callback function at
construction time. The following code fragment illustrates this approach:

7.5.3 API

setMetadata(newMetadata: object): void Sets a new, complete set of meta-
data in the MetadataHandler. newMetadata: object The new metadata JSON
object to be set in the MetadataHandler

getMetadata(): object Returns the complete JSON metadata object.

Go-Lab 317601 49 of 53

https://github.com/go-lab/ils
ActionLogger
StorageHandler
http://activitystrea.ms

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

getActor(): object Returns the ‘actor’ sub-section of the metadata.

getGenerator(): object Returns the ‘generator’ sub-section of the metadata.

getProvider(): object Returns the ‘provider’ sub-section of the metadata.

getTarget(): object Returns the ‘provider’ sub-section of the metadata.

setTarget(newTarget: object): void Sets a new ‘target’ sub-section in the
metadata object. newTarget: object The new ‘target’ sub-section JSON ob-
ject to be set in the MetadataHandler Note: Typically, only the ‘target’ metadata
(describing the current working document) changes during a tool’s lifecycle. If
other metadata sections change dynamically in future, more functions like this
will be added.

getTargetDisplayName(): string A convenience function that directly returns
the displayName of the ‘target’ sub-section (i.e. the current document name).

setTargetDisplayName(newName: string): void A convenience function to
directly set a new displayName of the ‘target’ sub-section (i.e. setting a new
document name). newName: string The new target’s displayName to be set
in the MetadataHandler

7.6 Documentation of the Metadata Handler Library
This section contains the documentation of the Metadata Handler Library avail-
able on https: / / github .com/ go -lab/ ils on April 30, 2014.

The MetadataHandler encapsulates and provides access to a set of metadata
items needed by client-side apps in Go-Lab. In particular, these metadata items
are also required by the ActionLogger (to add it to the action log) and by the
StorageHandler (to add it to stored artefacts). Typical metadata items would be
the name and identifier or the current user, name and identifier of the current
working document, the current ILS etc. Every instance of an app creates its own
MetadataHandler, and passes it on to the ActionLogger and StorageHandler. An
app is responsible to update the information in the MetadataHandler in case of
changes. At the moment of writing this, this is only necessary when an artefact
is stored and given a new name (cf. setTargetDisplayName()).

7.6.1 What’s in the metadata?

The metadata is based on the Activity Streams specification, since this is used
for action logging as well and thus brings consistency by design. The metadata
consists of the following sections:

• actor: holds information about the current user

Go-Lab 317601 50 of 53

https://github.com/go-lab/ils
ActionLogger
StorageHandler
http://activitystrea.ms

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

• target: holds information about the current working document

• generator: holds information about the current app

• provider: holds information about the current context (i.e., the ILS)

7.6.2 Technical representation

In the current implementation, the metadata is represented as a JSON object.
Using JSON integrates well with other technologies for the development of web-
based applications, in particular with JavaScript. In addition, JSON can be se-
rialised and parsed easily, while it still remains human-readable. The following
MetadataHandler API returns and accepts the metadata items or metadata sec-
tions in JSON. An example can be found here.

7.6.3 Creating a MetadataHandler

Currently, the MetadataHandler is created with a given set of metadata items.
In future implementations, an increasing number of items will be automatically
set through the ILS Metawidget API. For this reason, the construction of the
MetadataHandler is handled asynchronously, requiring a callback function at
construction time. The following code fragment illustrates this approach:

7.6.4 API

setMetadata(newMetadata: object): void Sets a new, complete set of meta-
data in the MetadataHandler. newMetadata: object The new metadata JSON
object to be set in the MetadataHandler

getMetadata(): object Returns the complete JSON metadata object.

getActor(): object Returns the ‘actor’ sub-section of the metadata.

getGenerator(): object Returns the ‘generator’ sub-section of the metadata.

getProvider(): object Returns the ‘provider’ sub-section of the metadata.

getTarget(): object Returns the ‘provider’ sub-section of the metadata.

setTarget(newTarget: object): void Sets a new ‘target’ sub-section in the
metadata object. newTarget: object The new ‘target’ sub-section JSON ob-
ject to be set in the MetadataHandler Note: Typically, only the ‘target’ metadata
(describing the current working document) changes during a tool’s lifecycle. If
other metadata sections change dynamically in future, more functions like this
will be added.

Go-Lab 317601 51 of 53

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

getTargetDisplayName(): string A convenience function that directly returns
the displayName of the ‘target’ sub-section (i.e. the current document name).

setTargetDisplayName(newName: string): void A convenience function to
directly set a new displayName of the ‘target’ sub-section (i.e. setting a new
document name). newName: string The new target’s displayName to be set
in the MetadataHandler.

7.7 Documentation of the Notification Handler Library
This section contains the documentation of the Notification Handler Library
available on https: / / github .com/ go -lab/ ils on April 30, 2014.

7.8 NotificationClient
Through the notificationClient, ILS apps can register with the Learning Analytics
Backend Services to receive notifications sent by the Notification Broker.

The connection happens over Websockets via socket.io. A combination of the
provider id, actor id and generator id, taken from the metadataHandler you pass
on instantiation identifies the notification client instance on the server.

7.8.1 API

NotificationClient(metadataHandler)

Instantiates the notification client. A websockets connection to the server will
be established. The metadataHandler supplies the data (actor id, generator id
and provider id) that enables the server to identify the socket connection to the
specific instance of the notification client uniquely. Actor is the current user.
Generator is the app. Provider is the ILS in which an app lives.

notificationClient.register(premise, handle)

Registers listeners with the notificationClient to receive notifications.

premise is a function that receives the notification and returns true if the notifi-
cation is of interest, and false if it is not.

handle is a function that receives the notification if premise returned true. This
is where you put the logic that takes action when a notification arrives. If false
is returned from the function, the notification will be passed on to other listeners
registered after this one. If true is returned, the listener is considered greedy,
and the notification is not passed on to following listeners.

notificationClient.processNotification(notification)

The method is called if the client receives a notification. All registered listeners
will be iterated and if the notification is of interest for a listener (determined
by the premise-function as mentioned before), the registered callback will be
performed. The notification will be passed as a parameter to the callback.

Go-Lab 317601 52 of 53

https://github.com/go-lab/ils
http://socket.io
https://github.com/go-lab/ils/tree/master/metadata
https://github.com/go-lab/ils/tree/master/metadata

Go-Lab D5.3 Release of Personalisation Features and Inquiry Learning Apps

7.8.2 Example notification

{
type : "prompt",
// other possible types are "configuration" or "resource."
importance : "8",
// importance level with range [1, ..., 10].
target : {

type : "app",
id : "provider_id-actor_id-generator_id"
// unique id to address a particular app.

},
content : {

text : "This is an example message"
// message content if notification type is "prompt".
url : "http://..."
// url if notification type is "resource".
configuration: { App configuration as property-value list }
}

}

7.8.3 Usage Example

var metadata = {
actor: { id: ’123’ },
generator: { id: ’abc’ },
provider: { id: ’xyz’ },

};
var metadataHandler =

new golab.ils.metadata.GoLabMetadataHandler(metadata);
var notificationClient =

new ude.commons.NotificationClient(metadataHandler);

var premise = function(notification) {
// depends on the format of the notification. This is just an example.
return (notification.target === xyz-123-abc)

&& (notification.importance > 5);
};

var handle = function(notification) {
alert(’The notification I care for:’ + JSON.stringify(notification));

};

notificationClient.register(premise, handle);

Go-Lab 317601 53 of 53

	Introduction
	Personalisation
	Apps
	Inquiry learning spaces
	Integration with the App Composer Prototype

	Supporting inquiry learning apps
	The Inter-app Communication library
	The ILS library
	User activity logging library
	Artefact storage library

	Inquiry learning apps
	Concept Mapper
	Hypothesis Scratchpad
	Questioning Scratchpad
	Experiment Design Tool
	Data Viewer
	Drop File Tool
	Resource View app
	Wiki app
	Conclusion tool

	Conclusion
	References

	Appendix A
	Technical details of the Experiment Design Tool
	Technical details of the Data Viewer

	Appendix B
	Documentation of the Inter-app Communication Library
	How to start
	Description
	Example 1: send data from one widget to another
	Example 2: drag&drop from one widget to another
	APIs
	Thanks

	Documentation of the ILS library
	API
	How to Use

	Documentation of the User Activity Logging Library
	Creating an ActionLogger
	Logging Targets
	API

	Documentation of the Artefact Storage Library
	What is a resource?
	Creating a StorageHandler
	API
	Usage example
	Notes

	Documentation of the Metadata Handler Library
	Technical representation
	Creating a MetadataHandler
	API

	Documentation of the Metadata Handler Library
	What's in the metadata?
	Technical representation
	Creating a MetadataHandler
	API

	Documentation of the Notification Handler Library
	NotificationClient
	API
	Example notification
	Usage Example

