
HAL Id: hal-01201969
https://telearn.hal.science/hal-01201969

Submitted on 18 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Releases of the Lab Owner and Cloud Services -Initial
Irene Lequerica Zorrozua

To cite this version:
Irene Lequerica Zorrozua. Releases of the Lab Owner and Cloud Services -Initial. [Research Report]
Go-Lab Project. 2014. �hal-01201969�

https://telearn.hal.science/hal-01201969
https://hal.archives-ouvertes.fr

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Página 1 de 57

Go-Lab

Global Online Science Labs for Inquiry Learning at School

Collaborative Project in European Union’s Seventh Framework Programme

Grant Agreement no. 317601

Deliverable D4.3

Releases of the Lab Owner and Cloud
Services - Initial

Editor Irene Lequerica Zorrozua (UNED)
Date 30th July, 2014
Dissemination Level Public
Status Final

© 2014, Go-Lab consortium

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 2 of 57

The Go-Lab Consortium

Beneficiary
Number

Beneficiary name Beneficiary
short name

Country

1 University Twente UT The Netherlands

2 Ellinogermaniki Agogi Scholi Panagea Savva AE EA Greece

3 École Polytechnique Fédérale de Lausanne EPFL Switzerland

4 EUN Partnership AISBL EUN Belgium

5 IMC AG IMC Germany

6 Reseau Menon E.E.I.G. MENON Belgium

7 Universidad Nacional de Educación a Distancia UNED Spain

8 University of Leicester ULEIC United Kingdom

9 University of Cyprus UCY Cyprus

10 Universität Duisburg-Essen UDE Germany

11 Centre for Research and Technology Hellas CERTH Greece

12 Universidad de la Iglesia de Deusto UDEUSTO Spain

13 Fachhochschule Kärnten – Gemeinnützige
Privatstiftung

CUAS Austria

14 Tartu Ulikool UTE Estonia

15 European Organization for Nuclear Research CERN Switzerland

16 European Space Agency ESA France

17 University of Glamorgan UoG United Kingdom

18 Institute of Accelerating Systems and
Applications

IASA Greece

19 Núcleo Interactivo de Astronomia NUCLIO Portugal

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 3 of 57

Contributors

Name Institution

Sten Govaerts, Christophe Salzmann, Wissam
Halimi, Denis Gillet

EPFL

Irene Lequerica Zorrozua, Elio San Cristóbal,
Germán Carro

UNED

Danilo Garbi Zutin CUAS

Pablo Orduña UDEUSTO

Lars Bollen (internal reviewer) UT

Alexandros Trichos (internal reviewer) CERTH

Legal Notices
The information in this document is subject to change without notice.

The Members of the Go-Lab Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. The Members of the Go-Lab Consortium shall not be held liable for errors
contained herein or direct, indirect, special, incidental or consequential damages in connection
with the furnishing, performance, or use of this material.
The information and views set out in this deliverable are those of the author(s) and do not
necessarily reflect the official opinion of the European Union. Neither the European Union
institutions and bodies nor any person acting on their behalf may be held responsible for the use
which may be made of the information contained therein.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 4 of 57

Executive Summary
This deliverable is a companion document to the initial releases of the Lab Owner and Cloud
services (Smart Device and Smart Gateway) that have been delivered at M21. These first
releases implement the revised version of the Smart Device and Smart Gateway specifications
as defined in the revised version of D4.1 (M21).The deliverable describes the software
components available on GitHub together with their documentation and provides all related
links. Next to that, this deliverable provides some additional background information and
explains to choices made.
In this initial release of the lab-owner services dedicated to new remote labs, we consider 4
alternative Lab Server implementations. A dedicated Lab Server is considered as a plug
solution combining hardware and software layers linking a physical lab to the Internet. These
four solutions target implementation on either desktop or embedded computers. The former
corresponds to typically lab-owner implementation in academic institutions and scientific
organizations. The latter corresponds to an emerging scheme enabling large scale deployment
of remote labs at low cost. Two software alternatives are proposed to expose the lab server to
various clients following the Smart Device specifications (D4.1). The first alternative is based on
LabVIEW and corresponds to the mainstream solution. The second one is based on JavaScript
and enables implementation on compact embedded computers. Examples of physical labs
plugged using the proposed solutions are provided as templates to enable new remote lab
implementations by lab owners.

As defined in D4.1, the Smart Device specification is meant for implementing new remote labs,
while the Smart Gateway on the other hand as a cloud service is meant for integrating legacy
labs shared through existing third parties remote lab management systems (RLMS) within the
Go-Lab infrastructure. This deliverable discusses the implementation details of the Smart
Gateway and its plug-in architecture. The initial release of the Smart Gateway offers five plug-
ins to exploit legacy labs from the following RLMS: WebLab-Deusto, iLab, UNR-FCEIA, PhET,
and ViSH.
The final specifications and releases of the lab-owner and cloud services will be documented in
the deliverables D4.5 and D4.7.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 5 of 57

Table of Contents
The Go-Lab Consortium ... 2	

Executive Summary .. 4	

Table of Contents .. 5	

List of Figures ... 7	

List of Tables ... 9	

1	
 Introduction ... 10	

1.1	
 Lab-owner services released as smart device plug solutions 11	

1.2	
 Cloud Services released as a smart gateway with dedicated plug-ins 12	

1.3	
 Software repository .. 13	

2	
 Lab owner (plug) services (smart devices) ... 14	

2.1	
 Desktop computer with LabVIEW: Desktop plug .. 14	

2.1.1	
 Short description .. 14	

2.1.2	
 Services and functionalities implemented ... 14	

2.1.3	
 Guideline for developers .. 15	

2.2	
 myRIO embedded computer with Javascript: myRIO Plug .. 15	

2.2.1	
 Short description .. 15	

2.2.2	
 Services and functionalities implemented ... 16	

2.2.3	
 Guideline for developers .. 16	

2.3	
 BeagleBone Black embedded computer with Javascript: BB-B Plug 16	

2.3.1	
 Short description .. 17	

2.3.2	
 Services and functionalities implemented ... 17	

2.3.3	
 Guideline for developers .. 18	

2.4	
 Raspberry Pi embedded computer with Javascript: R-Pi Plug 18	

2.4.1	
 Short description .. 18	

2.4.2	
 Services and functionalities implemented ... 20	

2.4.3	
 Guideline for developers .. 20	

3	
 Prototypes of Cloud Services .. 22	

3.1	
 Introduction ... 22	

3.2	
 Smart Gateway Architecture .. 22	

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 6 of 57

3.3	
 The Smart Gateway software ... 24	

3.3.1	
 Support for standards .. 25	

3.3.2	
 Support for remote laboratories. The plug-in system. ... 26	

3.3.3	
 Demo and Software Repository ... 30	

3.3.4	
 Summary of the benefits for integrated remote laboratories 31	

3.4	
 Prototypes ... 32	

3.4.1	
 WebLab-Deusto ... 32	

3.4.2	
 iLab Shared Architecture (ISA) .. 34	

3.4.3	
 PhET .. 37	

3.4.4	
 ViSH .. 38	

3.4.5	
 UNR-FCEIA ... 39	

4	
 Conclusion and future work ... 41	

5	
 Apendix .. 42	

5.1	
 Appendix A: Lab owner survey results .. 42	

5.2	
 Appendix B: Brief history of gateway4labs .. 44	

5.3	
 Appendix C: Smart Gateway plug-ins size ... 46	

5.4	
 Appendix D: Smart Gateway Support for advanced features on top of OpenSocial . 48	

5.5	
 Appendix F: Lab Owner’s Survey ... 52	

5.6	
 Appendix G: Ongoing Smart Gateway Work .. 52	

5.7	
 Appendix H: Management features of the Smart Gateway ... 53	

6	
 References ... 57	

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 7 of 57

List of Figures
Figure 1. The remote lab architecture (taken from D4.1) .. 10	

Figure 2. Plug Solutions for Lab Owners .. 11	

Figure 3. The three simple client apps (current position, video, set position) 14	

Figure 4. The simple client apps (current speed, set speed) .. 16	

Figure 5. Client application is succesfully connected to the websocket application 17	

Figure 6. Turning on the PWM control (servo motor control) and changing the position of the
motor’s shaft .. 17	

Figure 7. Turning off the PWM: disabling the control .. 17	

Figure 8. Robotic Arm deployment architecture .. 19	

Figure 9. The simple client app integrated in Graasp (video and actuators controls) 20	

Figure 10: Cloud Services Architecture ... 23	

Figure 11: Gateway4Labs overall architecture .. 24	

Figure 12: Configuration process in Python plug-ins .. 28	

Figure 13: HTTP plug-in configuration stored in the plug-in side .. 30	

Figure 14: Federation algorithm in WebLab-Deusto ... 33	

Figure 15: Two of the four balls in the Archimedes laboratory .. 34	

Figure 16: Gateway4labs plug-in for ISA workflow ... 35	

Figure 17: Radioactivity Lab embedded in an ILS .. 37	

Figure 18: A PhET simulation included in the ILS platform ... 38	

Figure 19: A ViSH resource included in the ILS platform .. 39	

Figure 20: A ViSH resource included in the ILS platform .. 40	

Figure 21: Development of the labmanager .. 45	

Figure 22: Development of the WebLab-Deusto plug-in ... 46	

Figure 23: Development of the iLab Shared Architecture plug-in ... 46	

Figure 24: Development of the PhET plug-in .. 46	

Figure 25: Percent of each of the plug-ins and the Labmanager .. 47	

Figure 26: Comparing a single laboratory with the rest of the Labmanager code 48	

Figure 27: Registering the school in the Labmanager .. 49	

Figure 28: Log in as a school user .. 49	

Figure 29: School users .. 50	

Figure 30: Laboratories available for being requested .. 50	

Figure 31: Laboratories registered for the school ... 50	

Figure 32: Register parent spaces .. 51	

Figure 33: List of registered spaces .. 51	

Figure 34: List of permissions on registered spaces ... 51	

Figure 35: List of plug-in instances ... 53	

Figure 36: Example of registration of a RLMS .. 54	

Figure 37: List of laboratories provided by one of the plug-ins ... 54	

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 8 of 57

Figure 38: Making laboratories public so they can be accessed by anyone 55	

Figure 39: List of publicly available laboratories ... 55	

Figure 40: List of widgets of a particular laboratory, including the necessary link and a preview
of the widget .. 56	

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 9 of 57

List of Tables
Table 1. Description of the launchLabClient service ... 36	

Table 2: Results of Lab Owner’s Survey ... 44	

Table 3: Lines of code of the plug-ins and shared components (Labmanager) 47	

Table 4: Overview of survey’s answers ... 52	

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 10 of 57

1 Introduction
Enabling the access to and the interaction with a Physical Lab at distance to turn it into a remote
lab relies on a client-server architecture as described in Figure 1. This deliverable discusses
alternative ways of implementing the Lab Server to easily plug a Physical Lab online and
exposing it to various clients as a Smart Device through standardized Internet Services (as
defined in D4.1).

Figure 1. The remote lab architecture (taken from D4.1)

Lab servers always combine hardware and software components. To ease the selection of such
interdependent components for lab owners, we propose in this deliverable four Smart Device
plug solutions for new remote labs and one Smart Gateway with five plug-ins for legacy remote
lab management systems (RLMS) in line with the current lab owner’s practices and new best
practices promoted by Go-Lab.
Because of the large variety of Physical Labs, the implementation of the Smart Device plug
solutions and the Smart Gateway plug-ins always combines standardized (green part in Figure
1) and ad hoc (orange part in Figure 1) components. So, no API can easily be provided. At this
stage, we provide implementation examples on simple physical labs that can be used as
templates for implementation with other labs by lab owners.

The Lab Server provides the following functionalities:

• The Hardware Interface (orange box): This interface provides access to the real world
via the Hardware interface. The hardware interface ensures that the measurements and
actuations are available at the Lab Server level. Depending on the hardware
configuration, these accesses can be done through a DAQ board, a built-in general
purpose input-output (GPIO) interface or through a connection bus (USB, thunderbolt,
serial, etc.). The hardware access is really ad-hoc and depends on the connected
Physical Lab.

• The Smart Devices Services (green box): These services are defined in D4.1 and are
mainly accessible through WebSockets. A WebSocket server needs to be in place to
answer the client applications requests. The same server or an extra web server can
also serve static information such as metadata.

• The Internal Management (blue box): The internal management is the Lab Server
orchestrator. Its main task is to manage the connection between the client request and
measurements/actuations made on the Physical Lab. It also decodes and validates
client requests, accesses the appropriate sensors/actuators, formats the replies,
manages concurrent access, etc. A lot of the Lab Owner know-how will be translated
into the Lab Server’s internal management.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 11 of 57

Selected software packages
We focused on two main software packages to implement the software component of the Lab
Server: LabVIEW and Javascript.
LabVIEW is a language dedicated to data acquisition and control1 but not only, it supports a
wide range of high-level libraries including network related ones. Over the years, LabVIEW
became the de-facto language/environment to access Physical Labs through hardware
interfaces. LabVIEW comes with an extended set of drivers to interface hardware. This means
that, for example, a sensor measurement can be displayed in oscilloscope window in a matter of
minutes. LabVIEW is cross platform, which means the same source code can be run on OSX,
Windows and Linux (although some features are platform specific). Once completed, the
LabVIEW code can be saved as an executable and deployed so that the complete LabVIEW
environment does not need to be installed.

JavaScript is one of the main Web programming languages. Since the advent of Node.js2,
developers can develop the complete client-server stack only in JavaScript. This can enable
faster development and less investment in learning new technologies. The Node.js community
has grown very fast in the recent years and the available software packages for Node.js are
surpassing Java and PHP3. For our purpose, the interface to the Internet via WebSockets is
natively supported by JavaScript. Node.js runs on both desktop computers and different
embedded computers due to its efficiency and low memory footprint. Numerous libraries exist to
support communication via GPIO, USB and other IO ports on desktop and embedded
computers.

1.1 Lab-owner services released as Smart Device plug solutions
In this initial release of the lab-owner services dedicated to new remote labs, we consider 4
alternative Lab Server implementations. As such, the Lab Server can be considered as a plug
solution combining hardware and software layers linking a physical lab to the Internet. These
four solutions are described below (Figure 2) and detailed in Section 2.

Figure 2. Plug Solutions for Lab Owners

1 http://www.ni.com/labview/
2 http://nodejs.org/
3 http://www.modulecounts.com/

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 12 of 57

The analysis of the contributions to the REV Conference in 20144 related to remote lab
implementation (19 papers) shows that 85% of Lab owners use desktop computers as Lab
Server hardware, while 15% are implementing it on embedded computers. 53% of the lab
owners rely on LabVIEW as Lab Server software, while the rest rely on various alternative
software packages. Considering that embedded computers are gaining popularity due to their
increasing performance and decreasing price, the four proposed plug solutions are:

• The Desktop Plug, i.e. a Mac or a PC with software implemented in LabVIEW. The
rationale here is to support the mainstream lab owner solution.

• The myRIO Plug, i.e. a myRIO embedded computer with software implemented in
LabVIEW5. The rationale here is to enable the port of a mainstream lab owner solution
(Desktop Plug) on a modern all-in-one embedded computer without any software
adaptation.

• The BB-B Plug, i.e. a BeagleBone Black embedded computer with software
implemented in Javascript6. The rationale here is to promote one of the leading
embedded computers in a compact form factor the equivalent of a desktop computer
combined with a set of input and output interfaces to connect with the sensors and
actuators of a physical lab with a low cost.

• The R-Pi Plug, i.e. a Raspberry Pi embedded computer with software implemented in
Javascript7. The rationale here is to offer a solution compatible with a low-cost and well-
spread embedded computer supported by a large developer community. It should
however be often combined with additional hardware such as Arduino8 to enable
complex data acquisition and control, due to the limited number of GPIO pins that the
Raspberry Pi board provides.

1.2 Cloud Services released as a Smart Gateway with dedicated plug-
ins

In this initial release of the cloud services dedicated to existing remote labs, we propose one
Smart Gateway with five plug-ins for legacy remote lab management systems (RLMS) enabling
integration in the Go-lab infrastructure. The Smart Gateway and the plug-ins are detailed in
section Error! Reference source not found.. The RLMS currently supported through plug-ins
are described below.

• WebLab-Deusto: The RLMS of the University of Deusto used by academic engineering
institutions and secondary schools from different countries worldwide, as well as in
multiple research projects9.

• iLab: A shared architecture created by MIT and developed in collaboration with partners
from the Global Online Laboratory Consortium (GOLC) with implementations in
developed and developing countries10.

• UNR-FCEIA. LabRem-FCEIA is a remote lab management system of the University of
Rosario in Argentina11.

4 http://www.rev-conference.org/REV2014/
5 http://www.ni.com/myrio/
6 http://www.ti.com/tool/beaglebk
7 http://www.raspberrypi.org/product/model-b/
8 http://store.arduino.cc/product/A000066
9 http://www.weblab.deusto.es
10 http://ilab.mit.edu/wiki
11 http://labremf4a.fceia.unr.edu.ar

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 13 of 57

• PhET12. A project at the University of Colorado to deliver fun, interactive, research-based
simulations of physical phenomena. The corresponding plug-in generating links to the
PhET simulation.

• ViSH: Virtual Science Hub13. ViSH indexes open resources such as simulations and
freely available remote laboratories embedded in Excursions similar to Go-Lab Inquiry
Learning Spaces. The corresponding plug-in generating links to the simulation.

1.3 Software repository
The templates for the Smart Device plug solutions and the associated examples are provided
on GitHub14. These solutions are updated continuously to follow the evolution of the Smart
Device specifications and to ease the exploitation of the examples as templates for further
deployment of remote labs by lab owners. For each solution, a description wiki, examples,
source code, instructions and guidelines are provided.
Smart Device plug solutions:

• Desktop plug: https://github.com/go-lab/smart-device/tree/master/Desktop
• myRIO plug: https://github.com/go-lab/smart-device/tree/master/myRIO
• BB-B plug: https://github.com/go-lab/smart-device/tree/master/BeagleBoneBlack
• R-Pi plug: https://github.com/go-lab/smart-device/tree/master/RaspberryPi

The Smart Gateway component and its plug-ins are also available on GitHub.

Component

• LabManager: https://github.com/gateway4labs/labmanager

Plug-ins

• WebLab-Deusto: https://github.com/gateway4labs/rlms_weblabdeusto
• iLab Shared Architecture: https://github.com/gateway4labs/rlms_ilabs/
• UNR-FCEIA: https://github.com/gateway4labs/rlms_unr
• PhET: https://github.com/gateway4labs/rlms_phet
• ViSH: https://github.com/gateway4labs/rlms_vish

The software provided by Go-Lab and listed above is shared under the Open Source MIT
license and the external libraries are shared with their respective licenses.
https://github.com/go-lab/smart-device/blob/master/LICENSE.md

12 http://phet.colorado.edu
13 http://vishub.org
14 https://github.com/go-lab/smart-device

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 14 of 57

2 Lab owner (plug) services (Smart Devices)
This chapter details the plug solutions listed in section 1.1. Each plug solution is implemented
as an example to remotely operate a simple physical lab. The idea is to illustrate how the plug
solutions can be deployed. The associated code is intended be used as a template with parts to
be adapted by lab owners to interface their own labs. The example labs have been chosen to
enable a simple implementation and to illustrate in a simple way how to implement the Smart
Device specifications. They are not all dedicated to be exploited as such for educational
purposes.

2.1 Desktop computer with LabVIEW: Desktop plug
Source code: https://github.com/go-lab/smart-device/tree/master/Desktop

Documentation Wiki: https://github.com/go-lab/smart-device/wiki/Desktop-wiki

Hardware: desktop computer (Mac, PC) with DAQ card (NI PCIe 6259)
Software: LabVIEW (2013)

2.1.1 Short description
The proposed template illustrates the angular position control of an electrical drive. It reads the
motor axle position and control the motor voltage to reach a reference position. In addition, it
shows how to interface an USB Video Class (UVC) webcam.

Hardware: Standard Mac or PC with dedicated PCIe slot (or via thunderbolt extension). The
DAQ hardware is a PCIe 6259 DAQ card. This card is available for both Mac and PC15.
Software: The software is the Full LabVIEW Development package (2013). The provided
hardware drivers are obviously platform specific.

IO: One quadrature encoder to read the encoder mounted on the motor axle. This encoder
position decoding is handled in hardware on the PCIe 6259. One output (DA) to control the
motor voltage. The DAQ card carries many more I/O.

Demo: https://github.com/go-lab/smart-device/wiki/Desktop-wiki
The provided client apps are depicted in Figure 3.

Figure 3. The three simple client apps (current position, video, set position)

2.1.2 Services and functionalities implemented
The proposed LabVIEW template provides:

• an example of sensor and actuators access (including video access)
• a combined web and WebSocket server that handles the Smart Device services
• a mechanism to link the sensor/actuator to their respective services
• an example of internal management (request validation, controller, etc)

15 http://sine.ni.com/nips/cds/view/p/lang/en/nid/201814

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 15 of 57

• concurrent users access with race policy for the controller mode (refer to D 4.1 to get
more information about concurrency)

The proposed LabVIEW template interfaces an electrical drive (RED Servo) where the user can
set and read the angular position of the drive axle, the client application can:

• access the axle position (sensor 1)
• access a video image of the disk connected to the drive axle (sensor 2)
• set the axle position (actuator 1)

In addition the LabVIEW template provides:

• simple web apps (HTML client applications) for the above sensors/actuators
• internal controller to track the desired axle position

2.1.3 Guideline for developers
To adapt the template to other physical lab one needs to:

• provide a virtual instruments (VI) that read new sensors and place the values into
LabVIEW queue

• provide a virtual instruments (VI) that write actuator value taken from a LabVIEW queue
• Extend the existing VIs that validates user request
• Enable/disable the internal controller
• Specify the linkage for the various services <-> sensors/actuators queues
• Update/extend the existing metadata

2.2 myRIO embedded computer with Javascript: myRIO Plug
Source code: https://github.com/go-lab/smart-device/tree/master/myRIO
Documentation Wiki: https://github.com/go-lab/smart-device/wiki/myRIO-wiki

Hardware: NI myRIO 1900

Software: LabVIEW (2013)

2.2.1 Short description
The proposed template illustrates the angular speed control of an electrical drive (BLACK
Servo). It read the motor axle speed and control the motor voltage to reach a reference speed.
The myRIO and the desktop templates are very similar. At this stage it remains as 2 differents
templates due to the myRIO specific hardware access. Eventually the two templates will be
merged.
Hardware: The embedded computer myRIO 1900

http://sine.ni.com/nips/cds/view/p/lang/en/nid/211694
Contains: Arm processor + FPGA + Customizable I/O

Software: The software is the Full LabVIEW Development package (2013) + myRIO extention
(come with the myRIO). Note: The LabVIEW code is cross-compiled to the myRIO, an external
PC/Mac is required during the development stage.

IO: One AD to read the motor speed. One output (DA) to control the motor voltage. The DAQ
card carries many more I/O.
Demo: https://github.com/go-lab/smart-device/wiki/myRIO-wiki

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 16 of 57

Figure 4. The simple client apps (current speed, set speed)

2.2.2 Services and functionalities implemented
The proposed LabVIEW template provides:

• an example of sensor and actuators access
• a combined web and WebSocket server that handles the Smart Device services
• a mechanism to link the sensor/actuator to their respective services
• an example of internal management (request validation, controller, etc)
• concurrent users access with race policy for the controller mode (refer to D 4.1 to get

more information about concurrency)
The proposed LabVIEW template interfaces an electrical drive where the user can set and read
the angular position of the drive axle, the client application can:

• access the axle speed (sensor 1)
• set the axle speed (actuator 1)

In addition the LabVIEW template provides:

• simple web apps (HTML client applications) for the above sensors/actuators
• internal controller to track the desired axle position

2.2.3 Guideline for developers
To adapt the template to other physical lab one needs to:

• provide a virtual instruments (VI) that read new sensors and place the values into
LabVIEW queue

• provide a virtual instruments (VI) that write actuator value taken from a LabVIEW queue
• Extend the existing VIs that validates user request
• Enable/disable the internal controller
• Specify the linkage for the various services <-> sensors/actuators queues
• Update/extend the existing metadata

2.3 BeagleBone Black embedded computer with Javascript: BB-B
Plug

Source code:
https://github.com/go-lab/smart-device/tree/master/BeagleBoneBlack/servo-beaglebone-black

Documentation Wiki:
• Main documentation:

https://github.com/go-lab/smart-device/tree/master/BeagleBoneBlack/servo-beaglebone-
black#servo-beaglebone-black

• Installation documentation:
https://github.com/go-lab/smart-device/wiki/BeagleBone-Black-for-Servo-Motor

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 17 of 57

Hardware: BeagleBone Black embedded computer

Software: WebSockets with Node.js

2.3.1 Short description
The proposed template illustrates the control of a servo motor (MINI Servo). Thanks to the web
client, the user knows the status of the lab and the position of the motor’s shaft. The user can
change the position of the motor’s arm by moving a slider to the left or right. The motor of the
lab provides the controlling endpoint.
Hardware: The BeagleBone Black embedded computer.

Software: The complete software application is built according to the Node.Js framework and is
using the WebSocket library to implementing the WebSocket technology. Needed drivers for
installing the BeagleBone Black (BBB) on different operating systems can be found here:
https://learn.adafruit.com/ssh-to-beaglebone-black-over-usb/overview

IO: Header pins of the BBB configured for PWM control
Demo: https://github.com/go-lab/smart-device/wiki/BeagleBone-wiki

URL: http://graasp.epfl.ch/#item=widget_8388

Figure 5. Client application is successfully connected to the WebSocket application

Figure 6. Turning on the PWM control (servo motor control) and changing the position of

the motor’s shaft

Figure 7. Turning off the PWM: disabling the control

2.3.2 Services and functionalities implemented
• Metadata Service
• Sensor Service
• Actuator Service

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 18 of 57

2.3.3 Guideline for developers
• How to use the example as a template:

https://github.com/go-lab/smart-device/wiki/How-to-use-Servo-with-BBB-example-as-
template

• Installation guide on GitHub:
https://github.com/go-lab/smart-device/wiki/BeagleBone-Black-for-Servo-Motor

2.4 Raspberry Pi embedded computer with Javascript: R-Pi Plug
Source code:

https://github.com/go-lab/smart-device/tree/master/RaspberryPi/robotic_arm-raspberry-pi
Documentation Wiki:

• Main documentation:
https://github.com/go-lab/smart-device/wiki/Robotic-Arm-Laboratory

• Installation documentation:
https://github.com/go-lab/smart-device/wiki/How-to-use-Node.js-and-Socket.io-
labratories-with-Raspberry-Pi-and-Arduino

Hardware: Raspberry Pi B16 embedded computer, Arduino UNO17 microcontroller board

Software: Raspbian O.S., node.js, socket.io, serialport, Apache, bootstrap
Demo URL: http://graasp.epfl.ch/#item=space_15624

2.4.1 Short description
The proposed template illustrates the use of the R-Pi plug to control a robotic arm in order to
simulate usual human arm movements like: move right/left, move backwards/onwards, grabbing
an object, etc.

Hardware: Raspberry Pi B embedded computer, Arduino UNO microcontroller board.
Software:

• Raspbian Operating System18
• Apache web server19
• Bootstrap20: it is a very popular HTML, CSS, and JS framework for developing

responsive projects on the web. It has been selected in order to build the user interface
• Node.js21: it is a JavaScript framework that works as a web server, serving the html files

to the user through http. Its event-driven, non-blocking I/O model makes it fit for real-time
applications suitable for communicating with the remote laboratory It makes use of
Socket.io.

• Socket.io22: it enables real-time bidirectional event-based communication between the
client applicacion and the web server thought WebSockets. It is used by Node.js in order
to make use of WebSockets technology.

• Serialport library: it allows the connection between the Raspberry Pi and the Arduino
boards through an USB port.

16 http://www.raspberrypi.org/
17 http://www.arduino.cc/
18 http://www.raspbian.org/
19 http://www.apache.org
20 http://getbootstrap.com/
21 http://nodejs.org/
22 http://socket.io/

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 19 of 57

The architecture must allow a final user, having access to Internet through a navigator, to
control the Robotic Arm. The following figure represents the final implemented hardware and
software architecture:

Figure 8. Robotic Arm deployment architecture

IO: An Arduino UNO board is used to connect the Raspberry PI to the Physical Lab. It is
connected to the Robotic Arm actuators as follow:

• wrist: ports I1 and I2
• elbow: ports I3 and I4
• shoulder: ports I5 and I6
• base: ports I7 and I8
• clamp: ports I9 and I10
• led: port I12

Demo: http://graasp.epfl.ch/#item=space_15624

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 20 of 57

Figure 9. The simple client app integrated in Graasp (video and actuators controls)

2.4.2 Services and functionalities implemented
Sensors:

• A webcam service.
Actuators:

• A service for each of the motors involved in the Robotic Arm motion: clamp, wrist, elbow,
shoulder and base.

• A service to switch on and off a simple blue LED.
Each of the actuators is independently controlled. The movements allowed are: (1) from left to
right and vice versa for the base, (2) from backwards onwards and vice versa for the wrist,
elbow and shoulder and (3) open and close the clamp. DC motors have an endless rotation
either in one direction or the opposite, meaning that this movement must be controlled in order
not to break the physical instrumentation. For the base, shoulder, elbow, wrist and clamp motors
5 decimal values can be selected: 20, 40, 60, 80 and 100 both, in one direction and in the
opposite. A 150 milliseconds time slot interval is also defined. Any other values, instead of 20,
40, 60, 80 and 100, could have been chosen since they just represent for how long the DC
motor is going to rotate. This is implemented as 1, 2 3, 4 or 5 times the time slot interval, which
is translated into a value from 1 to 12 before sending it to the Arduino board. Each or the
numbers represents a different movement.

2.4.3 Guideline for developers
The elements that could be reused are:

• The programming framework: apache web server, node.js, server.js, socket.io, bootstrap
and serialport libraries. The serialport library allows connecting the Raspberry Pi with the

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 21 of 57

Arduino board through USB, but it should be possible to use a wireless communication
protocol or even the Ethernet protocol by making use of the respective libraries.

• The UI html files. Though customized UIs, using JavaScript technologies or building an
Opensocial application to be fully integrated in Go-Lab platform, could be implemented
as far as they comply with the specifications.

• The WebSocket used for receiving the data from the client and send them to the Arduino
board through the serial port.

Reusing the software could imply some programming modifications, which could be the case of
deciding not to use the Arduino board. In this case, the Raspberry Pi would be the responsible
of interacting with a limited version of the robotic arm, due to the insufficient number of GPIO a
Raspberry Pi board has. In the case of the “Robotic_arm.io” file installed in the Arduino board is
very likely to be modified since it is responsible of controlling the hardware through a very low-
level programming. The program must comply with the end user requirements and therefore
must be able to send and receive the data from and to the physical instrumentation as
requested.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 22 of 57

3 Prototypes of Cloud Services
As defined in D4.1, by Cloud Services we understand a set of services designed to extend the
functionalities of the Go-Lab infrastructure to lab owners of legacy lab systems. In the scope of
this document, legacy lab systems are all online lab platforms not designed according to the
Smart Device specifications. This section will detail the implementation of the Smart Gateway -
the core interoperability component of the Cloud Services- in different contexts and online labs.

3.1 Introduction
In D4.1, the requirements and the design of the Smart Gateway are presented. The Smart
Gateway is presented as an approach to integrate legacy laboratories composed by two main
components:

1. gateway4labs, as a management tool for integrating the reservation process of the
legacy laboratories, which might require wrapping authentication, authorization,
scheduling and providing additional services (such as metadata or Go-Lab level
booking).

2. protocol translator, as an optional tool for translating the existing communications to
Smart Device compliant services.

As already discussed in D4.1, there is a tradeoff between the development effort for both
components and the features provided.

This chapter is organized as follows. Section 3.2 provides an overview of the Smart Gateway
architecture, its components and the different options to integrate a legacy lab into Go-Lab
(details have been provided in D4.1). Section 3.3 focuses on the Smart Gateway software. It
shortly describes its functionalities and how the support for heterogeneous online laboratories
was implemented. Section 3.4 focuses on the developed prototypes for some RLMSs and other
legacy lab systems. Furthermore, appendix 5.5 and 5.6 present the results of a survey carried
out with lab owners that aimed to collect more detailed information about the community and
their lab systems and an overview about the future work regarding the integration of new online
lab systems.

3.2 Smart Gateway Architecture
The main purpose of the Smart Gateway is to allow for the integration of legacy lab systems
with the Go-Lab ILS Platform by making them fully or partially compliant with the Smart Device
specifications. The level of compatibility depends on the implementation strategy adopted (see
D4.1 for a description of the different integration levels). Figure 10 below shows the Smart
Gateway architecture in detail.
The gateway4labs is the core of the architecture. It provides a core component (a web
application called LabManager), and different approaches for including external resources. It
provides metadata services and exports the legacy lab clients as OpenSocial gadgets so that
these gadgets can be embedded into inquiry learning spaces. The Smart Gateway supports
different legacy lab systems via different plug-ins. In this architecture the plug-ins are
responsible to bridge the communication between the LabManager and the legacy lab system.
The functionalities that a plug-in should implement depend on the level of integration that is
desired to achieve (see D4.1 for details). For online labs managed by a Remote Laboratory
Management System (RLMS) (an RLMS is a system that provides a management layer for
multiple remote laboratories, optionally including authentication, authorization, scheduling or
user tracking), a single plug-in is necessary to integrate all labs managed by the same RLMS.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 23 of 57

Plug-ins for some well-known RLMSs like WebLab-Deusto and iLabs Shared Architecture are
provided. The detailed implementation of each one will be discussed in the following sections.

Figure 10: Cloud Services Architecture

Lab owners can choose from four different options to plug their system into the Smart Gateway
that will affect and the development of the plug-in and the features supported. Therefore there is
a tradeoff between the supported features and the implementation efforts. These options were
described in detail in D4.1, but we will briefly recapitulate it here:

1. iFrame in Smart Gateway: This can be implemented if authentication is not required by
the legacy system. This option consists in providing the legacy client as an OpenSocial
application, so technically it is an enhanced iFrame. Additionally, by including a lab, the
Smart Gateway administrator has the possibility to author some metadata content for the
lab that the Smart Gateway will use to provide the metadata services (part of the Smart
Device specification).

2. A simple version of the plug-in: If the legacy lab requires authentication the plug-in
can be implemented in such a way that it will log into the legacy system with a fixed user
account. In this approach the legacy lab administrator will not be able to uniquely identify
the user, so some features like the possibility of tracking used actions in the context of
an experiment would be unavailable.

3. A full version of the plug-in: In this case all reservation features provided by the
legacy system are bridged by the plug-in. Users can be uniquely identified. Parts of
these features also depend on implementations at the legacy lab side. It should return a
URL that will be loaded by the client.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 24 of 57

4. A full version of the plug-in plus a protocol translator: Additionally to implementing a
full version of the plug-in this option requires all messages exchanged between client
and server to be translated according to the Smart Device specification. It requires
potentially a large implementation effort and an individual solution for each legacy
system.

3.3 The Smart Gateway software
The Smart Gateway is consists of gateway4labs (which manages the authentication, scheduling
mechanisms) and the protocol translator. The following diagram describes the overview of the
gateway4labs software components:

Figure 11: Gateway4Labs overall architecture

One can identify two main layers on Figure 11: the left side is client side and the right side is lab
side. On the left side, different learning tools can be integrated through the support of existing
standards by the core component of gateway4labs, which is called Labmanager. On the right
side, different remote laboratories can be integrated through a set of plug-ins. In the middle, the

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 25 of 57

Labmanager performs all the management operations and conversions between the different
actors of the left side and the right side.

In this way, we can split the functionality of the gateway4labs in three parts:

1. The support for standards, and OpenSocial in particular since it is the one being
supported by the ILS platform. This is detailed in section 3.3.1.

2. The support for remote laboratories, through the plug-in mechanism, detailed in Section
3.3.2.

3. The management side of the core component (Labmanager). This is explained in an
appendix in section 5.7.

The remainder of the section focuses on each of the parts above. Additionally, the benefits of
integrating the remote laboratories in the Smart Gateway are explained in section 3.3.4.
Additionally, section 5.2 covers the brief history of gateway4labs project since its origins before
Go-Lab.

3.3.1 Support for standards
In gateway4labs, the core component (labmanager) natively supports three different systems:

• OpenSocial: described in this section.

• IMS LTI: Learning Tools Interoperability, it is a standard supported by the main LMS
environments, which supports integrating external tools natively. Since the labmanager
implements this standard, every laboratory supported can be automatically integrated in
any LMS, which supports it.

• HTTP-based plug-ins: A custom HTTP interface is provided, so external tools not
supporting IMS LTI or OpenSocial can consume this interface to connect to
gateway4labs. This includes plug-ins in systems such as Joomla23 or an LMS not
supporting LTI, such as dotLRN24.

Since the interface between gateway4labs and the ILS platform is based on OpenSocial, this
section is focused on this implementation.

3.3.1.1 Context information management
When a user (teacher or student) is using the ILS platform, there is certain context information
which could be useful for gateway4labs, such as: who is the user (if identified), where is the
user accessing from (ILS) or what language is using in the ILS platform (e.g., French, German,
Spanish, etc.). This contextual information is useful to provide feedback to the laboratory about
who is using the laboratory.

3.3.1.2 Public laboratories
Once the administrator registers a laboratory, by default gateway4labs does not make it publicly
available for unregistered users. This is the default behaviour in remote laboratory management
systems. However, the administrator can configure that a particular laboratory is openly
available for everyone.
This way, in the OpenSocial version it is possible to provide the laboratory to certain ILSs, or it
can be available for every space, as it will be the common case.

3.3.1.3 Other features
Additionally, gateway4labs supports other optional features, such as enabling the laboratory to
restart the widget whenever it is required. In WebLab-Deusto, for example, whenever the user

23 https://github.com/gateway4labs/cms_joomla
24 https://github.com/gateway4labs/lms4labs/tree/master/lms/dotLRN

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 26 of 57

performs a reservation, the user will be able to use a single reservation. Whenever the
reservation is over (and the student is not using the laboratory anymore), a message is
submitted to the labmanager to restart the widget and be able to perform a new reservation if
desired.

So as to support this optional mechanism, gateway4labs provides a URL that will force a reload
of all the widgets of the same laboratory. This URL is passed to the laboratory plug-in, so it can
optionally load this URL when finished. Certain laboratories (like the iLab radioactivity
laboratory, where the user can perform more operations once using it) do not require these
features.

3.3.2 Support for remote laboratories. The plug-in system.
The core functionality of gateway4labs is to provide an API to support a wide range of
laboratories. This API aims to be simple so as to encourage laboratory owners to develop their
plug-ins, by avoiding strict requirements other than a link to the final laboratory crossing the
reservation processes of the final laboratory. This API is described in detail in D4.1.

3.3.2.1 Implementations of the plug-in system
The base of the plug-in system is that the laboratory must support some mechanism to provide
a link that identifies the current reservation. There are different ways to approach this:

• Using federation protocols: in the case of WebLab-Deusto, a federation mechanism is
used to access a WebLab-Deusto server as if it was another WebLab-Deusto server
requesting a reservation. WebLab-Deusto returns a URL which includes a reservation
identifier, and the labmanager can use this link to redirect the user to that location. From
that point, all the communications do not cross the gateway4labs infrastructure.

• Creating users dynamically: in the case of the iLab Shared Architecture, the plug-in
creates a new user (if it was not previously made) and grants this user permission to use
that laboratory (if he did not have that permission), and finally the user is redirected to
the final system. There, the user can start using the laboratory he has access to.

• Using encryption to sign messages: in the case of the UNR (explained in Section 3.4.5),
a secret is stored in the plug-in, and a message that includes the username, the current
timestamp, and the laboratory is signed. The message and the signature are returned to
the labmanager in the form of a URL. When the user is redirected to that URL, the
laboratory at UNR verifies whether this message is valid and if it is, it enables the user to
access the laboratory until the timestamp expires.

• Simple redirection: in the case of PhET (explained in Section 3.4.3), the plug-in just
generates the public link to the PhET simulation. This way, the user is redirected to the
public link directly.

• Federated search: in the case of ViSH (explained in Section 3.4.4), the plug-in must
forward the query provided by the user to the ViSH repository, and then generate a link.

Other mechanisms could be employed, since this depends completely on how the final
laboratory enables users to access.
Additionally, the plug-in must provide a way to define the initial configuration. In the case of
WebLab-Deusto or iLab, this includes the particular server and credentials of this server. In the
case of UNR, the secret key must be configured. In most cases, a default height is provided to
establish a default height of the widget unless the iframe resizer feature is implemented by the
particular internal laboratory.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 27 of 57

3.3.2.2 Python version
Since gateway4labs is developed in Python, the basic plug-in structure is based on Python. The
developer only needs to develop a module or a package called g4l_rlms_{{ name }}, and then in
the configuration file of the Labmanager, the developer must add the name of the plug-in to the
RLMS variable (which is a list, as shown below). For example, if we create a plug-in called “foo”,
we just need to create a file called g4l_rlms_foo.py (or a package called g4l_rlms_foo, with
different files inside), and in the config.py add:

RLMS = [‘weblabdeusto’,’ilabs’,’foo’]

Then, it can provide a function called get_module(version), so it could support different versions
through having different modules. For example, iLab could have two independent modules that
fulfill the Python API in the same plug-in, namely “g4l_rlms_ilab.py”, “ilab_3_1.py” and
“ilab_3_5.py”, and in the first one it could provide the get_module(version) function. Whenever
version was 3.1, it could rely on one module, and whenever the version was 3.5, it could rely on
the other one.
The module used must provide an instance FORM_CREATOR, which creates the required
forms. In the case of the Python version, the configuration is managed by subclassing a set of
classes based on WTForms25. In these classes, the developer can select how to convert these
values into a single JSON document. This JSON document will be stored in the database, and it
will be used with all the instances of the plug-in (e.g., different instances of WebLab-Deusto).
This process is detailed in Figure 12.

25 http://wtforms.readthedocs.org/

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 28 of 57

Figure 12: Configuration process in Python plug-ins

Finally, the module must create a class called RLMS. This class will be instantiated with the
JSON configuration, and it is expected to use that configuration to perform each of the tasks
mentioned in the previous subsection.

The following are examples of Python plug-ins:

• WebLab-Deusto plug-in.
o Repository: https://github.com/gateway4labs/rlms_weblabdeusto

o Notes: three files are used in a single package g4l_rlms_weblabdeusto. Two of
them (weblabdeusto_client.py and weblabdeusto_data.py) are taken from
WebLab-Deusto directly, while the third one (__init__.py) specifies the rest.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 29 of 57

• iLab Shared Architecture plug-in.

o Repository: https://github.com/gateway4labs/rlms_ilabs/

o Notes: there is a single g4l_rlms_ilabs.py file which matches the specification
explained above. There is also a ASPX file to be optionally added to the iLab
server.

• UNR-FCEIA plug-in.

o Repository: https://github.com/gateway4labs/rlms_unr
o Notes: there is a single g4l_rlms_unr.py file. In this case, there is no

communication between the plug-in and the final server, since it’s based on a
cryptographic solution where the plug-in generates and signs tokens that the
user will forward to the final server.

• PhET plug-in.

o Repository: https://github.com/gateway4labs/rlms_phet
o Notes: this represents a set of simulations. There is no reservation process, so

the reserve method is focused on generating links to the simulation.

• ViSH plug-in.

o Repository: https://github.com/gateway4labs/rlms_vish
o Notes: this represents a set of simulations. There is no reservation process, so

the reserve method is focused on generating links to the simulation.

3.3.2.3 HTTP version
The HTTP version relies on a RESTful interface that can be implemented in any language to
support the development of plug-ins in other technologies. It also makes it possible to decouple
the Labmanager maintenance and the plug-in maintenance, since the plug-in could be deployed
in another institution, as discussed in D4.1. Furthermore, a Python server supporting this
RESTful interface will be implemented to make it possible to distribute the existing plug-ins in
other institutions if desired.
In the approach selected (and explained in D4.1), the plug-in stores information of the final
system such as credentials or URLs. To configure the plug-in and add this information, the
Smart Gateway administrator will be redirected to a website provided by the plug-in. This
workflow is described in Figure 13.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 30 of 57

Figure 13: HTTP plug-in configuration stored in the plug-in side

This approach provides a considerably wider flexibility to the HTTP plug-in developer, since he
can provide and upgrade in the future the configuration variables without interacting with the
Labmanager. The panel can be very simple or very sophisticated, depending on the complexity
of the remote laboratory. The model becomes much simpler, since it does not need to agree the
available constraints. Additionally, the configuration secrets are kept on the HTTP plug-in side.
On the other hand, this requires the HTTP plug-in to be publicly available to the Internet, while
previously it could be just available in the Labmanager. It also requires the HTTP plug-in to be
responsible of more roles, such as storing the configuration information.
A list of examples is provided in the following repository:

https://github.com/gateway4labs/labmanager/tree/master/examples/http_plugins/

3.3.3 Demo and Software Repository
A demo is provided with the following details. Take into account that for the sake of security, the
whole database might be restored frequently, so changes might be discarded:

• URL: https://www.weblab.deusto.es/golab/labmanager_review/

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 31 of 57

• Username: admin
• Password: reviewerspassword

The details of the administration tools used for managing the Labmanager are available in
Section 5.7. The remainder operations are detailed in Section 5.4.

Additionally, all the source code of the labmanager is in the following GitHub repository and
documented in the following readthedocs site:

• http://github.com/gateway4labs/labmanager/
• http://gateway4labs.readthedocs.org/

3.3.4 Summary of the benefits for integrated remote laboratories
The focus of gateway4labs is attracting laboratory owners to the Go-Lab ecosystem, so they
can share their labs in Go-Lab. To achieve this goal, the following incentives are provided:

1. Easy integration: A flexible, pragmatic approach to integrate existing remote
laboratories into gateway4labs through the plug-in mechanism and the management
panels. The amount of code required is not relevant, since it only acts as an initial
bridge, and two interfaces (native Python API and HTTP API) are provided. Multiple
deployment schemas are supported, as specified in the Architecture section of D4.1.

2. Additional Go-Lab incentives: Go-Lab will provide the laboratory owners with several
benefits. The most important one is the visibility of the laboratories. Thousands of
students and teachers will be able to easily find the federated laboratories. Other
benefits include the support of Go-Lab Add-on services, such as the booking system.
Certain remote laboratories might have a queue for managing students, which does not
scale well. However, if the laboratory is integrated in gateway4labs and gateway4labs
supports the booking mechanism of the Go-Lab portal, then the laboratory will be only
available to students of groups which have booked the laboratory, reducing the amount
of concurrent students.

3. Keep control of the laboratories: The Go-Lab project requires that the laboratories are
open and no registration is needed, and the Smart Gateway will encourage developers
to keep their laboratories open. However, gateway4labs provides mechanisms to enable
that a remote laboratory is only available to a particular ILS (see Section 5.4). This would
require those interested schools to register in the gateway4labs server used by that
laboratory owner, and then the laboratory owner could provide the laboratory only to that
school. The visibility of the laboratory would be consequently decreased. However,
guaranteeing this type of control to the laboratory owner, it is possible that certain
laboratory owners could have fewer rejections to participate in the integration, and once
integrated; they can consider if they finally open their laboratories.

4. Use a federated approach: gateway4labs plug-ins support federation mechanisms if
these are provided by the integrated systems. For example, WebLab-Deusto provides a
federation protocol so one WebLab-Deusto system with 4 laboratories can share a
subset of them to other WebLab-Deusto system. The plug-in of this WebLab-Deusto
benefits of this feature so it translates requests from gateway4labs (which come from the
ILS platform) as if it was an external WebLab-Deusto system requesting a laboratory for
a local user. This federated approach enables remote laboratories to be also provided
through their original portals or be integrated in other tools, while increasing their
visibility by sharing them with Go-Lab.

5. Incentives outside Go-Lab: gateway4labs does not only support OpenSocial, but also
other specifications, such as IMS LTI, and a HTTP interface to be deployed in custom
systems (such as CMS as Joomla). If a laboratory owner aims to integrate a remote

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 32 of 57

laboratory in a Moodle LMS or a Joomla CMS, then gateway4labs is a tool that makes
this process easy, so the laboratory owner only needs to develop the plug-in for the
remote laboratory. Once this plug-in is developed, intended for supporting an LMS or a
CMS, this remote laboratory is, from a technical perspective, available and compatible
for the Go-Lab context.

3.4 Prototypes
In this section we will introduce the Smart Gateway plug-in prototypes developed for well-known
remote lab management systems and other legacy online lab systems. For any legacy remote
lab managed by one of these RLMS the Smart Gateway will offer out of the box support for its
integration in the Go-Lab infrastructure. Depending on the RLMS and the integration level
desired (see D4.1 for details on the different integration levels) the support for the plug-in might
require some implementation also at the RLMS or lab owner’s side. In cases like this, not all
versions of the RLMS will be supported.

3.4.1 WebLab-Deusto
WebLab-Deusto is an Open Source remote laboratory management system. It supports the
development and administration of remote laboratories. In WebLab-Deusto, remote laboratories
are usually managed through a priority queue.

A key feature of WebLab-Deusto in this context is its federation model. A simple scenario where
two WebLab-Deusto instances are using it is presented in Figure 14. On it, a user reserves a
laboratory in the University A, which forwards the request to University B without requiring the
user to be registered in University B. Essentially, the plug-in consists of a client of WebLab-
Deusto (extracted from WebLab-Deusto, since it is also developed in Python). The client only
requires a URL, a username and a password. This username and password represent a
federated node, and each federated node can use it to proxy all their requests.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 33 of 57

Figure 14: Federation algorithm in WebLab-Deusto

While WebLab-Deusto through the different institutions that compound it provides different
remote laboratories for engineering studies, some of them are suitable for secondary
schools. In particular in Go-Lab the Archimedes laboratory will be used:

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 34 of 57

Figure 15: Two of the four balls in the Archimedes laboratory

3.4.2 iLab Shared Architecture (ISA)
The iLab Shared Architecture is a Web services-based software architecture developed at the
Massachusetts Institute of Technology (MIT) that offers online lab developers and users a
common framework to use and share Online Labs. It separates the experiment logic from the
management part like managing users’ accounts, user authentication and other tasks that follow
a lab session. It is middleware architecture with a service broker providing common shared
services for lab servers and lab clients.

3.4.2.1 Smart Gateway Plug-in for ISA
According to the specifications defined in deliverable D4.1 a Full version of the plug-in for the
iLab shared architecture was developed (see levels of integration in D4.1). Since ISA requires a
user to be uniquely identified within a service broker to run an experiment, the developed plug-in
bridges the legacy system authentication. The interaction of the plug-in with the legacy lab
system (iLab service broker) is described in Figure 16. In this diagram it was skipped the
interactions that take place before between user, ILS Platform and Smart Gateway since it was
described in detail in deliverable D4.1.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 35 of 57

Figure 16: Gateway4labs plug-in for ISA workflow

This diagram assumes that the lab gadget was successfully loaded and that Smart Gateway
and iLab Service Broker administrators exchanged the necessary credentials and that Smart
Gateway and iLab RMLS are registered respectively.

ISA exposes its functionalities to external clients and lab servers via a SOAP Web services API.
When a request to reserve a lab is started by the user this causes the plug-in to contact the iLab
service broker by calling its Web method launchLabClient(). The parameters provided are
described below.

Name Type Description

clientGuid string Unique ID of the client to be launched

groupName string Name of the group it belongs to

userName string User requesting access to it

authorityKey string Unique ID of the Smart Gateway (assigned by service broker). This
credential should be exchanged beforehand with system
administrators

start dateTime Reservation starting time

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 36 of 57

duration long Duration of reservation in seconds

Table 1. Description of the launchLabClient service

This service will return a URL that will launch the particular lab client requested. At the user’s
side the lab client will be launched in the OpenSocial container. The interaction that follows
between lab client and server is carried out using the legacy lab’s own protocol.

3.4.2.2 The Radioactivity Laboratory
The radioactivity laboratory was developed and deployed at the University of Queensland in
Australia and it has been used by secondary schools in the USA through the Northwestern
University. This lab allows students to explore how radioactive radiation changes as a function
of distance. The intensity of radiation emitted by Strontium -90 sources is measured by a Geiger
counter at different distances set by the students. This lab was initially designed in compliance
with ISA and runs in batched mode.

In the context of Go-Lab, the Carinthia University of Applied Sciences (CUAS) deploys a MIT
iLab Service Broker, and the Radioactivity laboratory is registered on it. Therefore, using the
g4labs plug-in for ISA, it is possible to have this lab available in the Go-Lab infrastructure. The
figure below shows the radioactivity lab client available to all Go-Lab users via an ILS

ILS URL: http://graasp.epfl.ch/metawidget/1/014683d8d8664a5b95090e668eeb7fbe44aaf59a

The radioactivity lab was chosen as the first ISA compliant lab available via the Smart Gateway
because it is very well suited for secondary schools. It has been successfully deployed in large
scale for secondary school students in the Unites States. However, since the g4l plug-in for ISA
allows any ISA compliant lab to be included in the Go-Lab platform, a large pool of labs could be
easily made via Go-Lab.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 37 of 57

Figure 17: Radioactivity Lab embedded in an ILS

3.4.3 PhET
The PhET Project (Physics Education Technology) created useful simulations for teaching and
learning physics and makes them freely available from the PhET website
(http://phet.colorado.edu). The simulations (sims) are animated, interactive, and game-like
environments in which students learn through exploration [1].
Many of the simulations cover introductory high school and college physics, while others
introduce more advanced topics, e.g., lasers, semiconductors, greenhouse effect, radioactivity,
nuclear weapons, and Fourier analysis. Users, however, have included students from grade
school through graduate school. On the website, the sims are organized under nine loose
categories: Motion; Work, Energy & Power; Sound & Waves; Heat & Thermo; Electricity &
Circuits; Light & Radiation; Quantum Phenomena; Chemistry; Math Tools; and Cutting Edge
Research [1].

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 38 of 57

Figure 18: A PhET simulation included in the ILS platform

3.4.3.1 The gateway4labs PhET Plug-in
The plug-in developed to support PhET laboratories follows option 1 (iFrame in Smart Gateway)
described in section 3.2. Since PhET laboratories do not require any type of authentication the
plug-in development was very simple. It provides the PhET lab via an iFrame in an OpenSocial
container. Furthermore the plug-in harvests the PhET Website to fetch the labs available.

PhET laboratories are simulations that run locally in the client application. Some of these
applications are Java-based that can be downloaded and launched via the Java Web Start
framework.

3.4.4 ViSH
The ViSH project26 is part of the FP7 Global Excursion Project27, which provides a portal that
lists, organizes and displays a wide set of open educational resources including simulations and
remote laboratories among others. All the contents must be open and they are publicly
available, and HTTP APIs are provided for searching resources.

The resources can be listed alone, but they are commonly organized in "Excursions". An
Excursion is similar to a slideshow, but where each slide is a resource. Resources include
embedded pages (e.g., wikipedia), tests, Adobe Flash objects, laboratories and other rich
contents.

26 http://vishub.org/
27 http://www.globalexcursion-project.eu/

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 39 of 57

3.4.4.1 The gateway4labs ViSH Plug-in
The plug-in developed to support ViSH laboratories acts as a federation proxy. It uses the
search API (which is a JSON HTTP interface) to enable the Smart Gateway administrator
searching in the ViSH repository.

This way, the gateway4labs plug-in enables the Smart Gateway administrator to search for
resources, and if it is an excursion, it splits the excursion into multiple apps that can be exported
through gateway4labs to the ILS. The following figure shows a slide of an existing excursion28
displayed in a ILS.

Figure 19: A ViSH resource included in the ILS platform

3.4.5 UNR-FCEIA
The National University of Rosario (Argentina) have developed a physics remote laboratory29.
On it, students can create electronic circuits and test currents. The remote laboratory is a pure
HTML5 application that does not require any external plug-in and internally it has an internal
queue so if multiple students attempt to use the laboratory at the same time, they will be
multiplexed in time. A mechanism for its inclusion in external systems is developed in the
system itself, relying on a cryptography mechanism.

28 http://vishub.org/excursions/162.full
29 http://labremf4a.fceia.unr.edu.ar/

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 40 of 57

Figure 20: A ViSH resource included in the ILS platform

3.4.5.1 The gateway4labs UNR-FCEIA Plug-in
The UNR-FCEIA plug-in takes advantage of this cryptography mechanism. Basically, the plug-in
uses a shared secret stored in the gateway4labs database to sign a message that provides
details such as a timestamp or who is accessing. Then, the user will be redirected to the remote
laboratory with that message. The remote laboratory will take this message and verify that it has
been signed correctly by a valid actor. This way, the plug-in never contacts the remote
laboratory never directly.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 41 of 57

4 Conclusion and future work
The GitHub repositories contain the current software releases of the Smart Device and Smart
Gateway components (lab-owner and cloud services). It also contains a wiki and a set of
readme files that allow lab owners to use the examples provided as templates to add their own
labs online or federate their own remote lab management systems with the Go-Lab
infrastructure.

This repository will be continuously updated to reflect the evolution of the Smart Device and
Smart Gateway specifications and to provide a richer set of templates.

The releases delivered at this initial stage rely on a pragmatic approach to trigger adoption by
lab owners while also promoting innovative practices. Adoption is triggered by offering a set of
alternative but consistent plug solutions for new remote labs following the Smart Device
specifications, as well as a set of Smart Gateway plug-ins enabling various levels of integration
of legacy labs already available in existing remote lab management systems. The usage of
examples as templates is also suitable for lab owners being typically not Web developers. The
innovation is triggered by the implementation of specifications relying on state-of-the-art open
web standards like WebSockets and the recommendation of all-in-one embedded solutions
aiming at simplifying deployment efforts and reducing costs.

One should also highlight that the current version of the Smart Gateway not only enables the
integration of remote lab management systems, but also the federation of selected repositories
with seamless packaging of online labs as open social apps for easy integration in Go-lab
inquiry learning spaces. To be in line with lab-owners requirements and Go-Lab quality control
policy, no automatic harvesting is implemented. The proposed approach enables to select only
the labs relevant for STEM education at school.

The objectives for the final releases of the lab-owner and cloud services due M27 (D4.7) is to
enrich the set of examples with more advanced labs serving not mainly as templates for lab-
owners but also fully as resources for students. Additional remote lab management systems will
be integrated in the Go-Lab infrastructure following a combined top-down and bottom up
approach; i.e. by responding to requests from RLMS owners to get visibility though Go-Lab and
from teachers to access selected labs available in existing RLMS. The implementation of these
examples will contribute to the refining of the Smart Device and Smart Gateway specifications
towards the delivery of their final version (D4.5) at M30.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 42 of 57

5 Apendix

5.1 Appendix A: Lab owner survey results
In this section is is presented the results of the Lab Owner’s survey.
Questions:
1. What laboratories do you have that could fit in the curriculum of primary and secondary
schools?

2. Would you share your labs with the Go-Lab community?

3. Would you share your labs to increase their visibility?

4. Would you share your labs to get third parties involved to create pedagogical content using
the labs?

5. Would you share your labs without requiring direct economic remuneration?

 6. Under which Remote Laboratory Management System do you have these labs, if any?

7. Which scheduling mechanism does your system use?

8. Does your system support concurrent access by multiple students to the remote laboratory?

For questions 2, 3, 4, 5 a rating scale was used, being 1 = not likely, 6 = very likely.

1 2 3 4 5 6 7 8 Institution

Currently all our labs are for
Universities 4 1 5 2 Labicom Calendar No BMSTU/Labicom

Mobile Remote Experiment
rexlab.ufsc.br 6 6 6 6 None None No

Universidade
Federal de Santa
Catarina

Digital electronics
Analog electronics (under
development) 4 5 4 4

Open
University of
Catalonia
propietrary
access Calendar No

Open University
of Catalonia

At this moment none. Our lab
is more for university (diodes,
BJT, FET, LED) 6 6 6 6

LABREM-
FCEIA linked
to WebLab-
Deusto Queue Yes

FCEIA-UNR
(Argentina)

NetLab - a remote laboratory
for electrical circuit analysis 6 6 6 6

NetLab has
it's own
management
system

NetLab has
it's own
booking
system -
users are
able to book
any time Yes

University of
South Australia

Laboratory with LabVIEW. 4 4 4 5
CompactRIO
in LabVIEW LabVIEW No

"Vasile
Alecsandri"
University of
Bacau

Knowledge Lab 6 6 5 4 None Don't know No Innovindia

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 43 of 57

The Genius Maker
Virtual Physical Laboratory
(VPL)
Virtual Physics 5 5 5 4

Own L/WAN
setup Queue Yes

University of
Ulster

We used to have an on-line
telerobot and operated this
from 1994-2005. However, the
maintenance depended on
volunteers and when research
interests moved on, we had to
close it and restrict access to
our own students which we
have done since then. 1 1 1 1

Out own
LabVIEW
system

Calendar,
Queue Yes

University of
Western Australia

We currently have curriculum
based upon radioactivity (see
link below) and we are
working on curriculum based
on remote access to an X-Ray
Diffractometer and a Nitrogen
Analyzer. We are also working
on developing a new user
interface for our labs which
will be ready for wide use by
Fall 2014. 6 6 6 6

iLabs Shared
Architecture Queue No

Northwestern
University

eLab3D (a remote laboratory
for learning electronics based
on 3D virtual worlds) 5 6 6 4

Technical
University of
Madrid Virtual
Labs Calendar Yes

Technical
University of
Madrid

Engineering experiments.
Showing cause and effect,
stimulus and response, input
and output. Temperature, flow
rate, pressure, water level,
concentration, etc. 6 6 6 6

LabVIEW.
iLabs future None Yes

Univ Tennessee
at Chattanooga

6 5 6 6 elabs FEUP

a booking
system not
compatible
with present
moodle
versions... Yes FEUP

At the moment, None 6 4 5 6 None None No

None. Our remote laboratory
(R-DSP Lab) is focusing in
undergraduate and
postgraduate students of
universities 3 4 4 3

The R-DSP
Lab has its
own
management
system

Queue, It will
be added a
calendar
based
booking
system Yes

University of
Patras, Greece

We have two radioactivity rigs
that are being used by high
school students in the US. 6 6 6 6

iLabs Shared
Architecture Queue No

The University of
Queensland

We are able to characterize 5 5 4 3 iLabs Shared Calendar, No IUL / TU

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 44 of 57

material with highend testing
equipment. This could be
used for studying physics for
example.

Architecture Queue Dortmund
University

Laboratory of Optic and
Quantum Physics 4 3 3 3

RIDS -
BMSTU,
Moscow,
Russia Calendar Yes

Bauman Moscow
State Technical
University

nQuire (notably the nQuire
Moon Rock Demonstrator)
www.nquire.org.uk 6 6 5 6 None None Yes

The Open
University

Laboratorio Remoto de
FCEIA-UNR 6 6 6 6

WebLab-
Deusto Queue Yes

Universidad
Nacional de
Rosario,
Argentina

We plan to re-setup our VISIR
Lab. 5 6 6 5 None Don't know Yes FH Campus Wien

Black Body radiation, Long
Jump , cucumber growth 6 3 4 6

iLabs Shared
Architecture,
None

Queue,
None Yes CUAS

Control reservoir and tank
system 5 6 4 6 None Queue No

elabs in electronic field
elab in industrial computer
field
 6 6 5 4

iLabs Shared
Architecture Calendar Yes ENET'COM

At this moment we do not
have any online laboratory
that would fit for primary and
secondary schools. 6 6 5 5 Custom built Queue Yes

Tesla coil
Converting heat to electricity
(Thermoelectric converter)
Demonstration Solar Cell
String resonance 6 6 4 6

iLabs Shared
Architecture None No

Ilia State
University

Table 2: Results of Lab Owner’s Survey

5.2 Appendix B: Brief history of gateway4labs
In 2012 [2], an integration of the WebLab-Deusto Remote Laboratory Management System
(RLMS) in a Learning Management System (Moodle) and a Content Management System
(Joomla) is described by University of Deusto and UNED. The key concept was that a
federation protocol was used to perform this integration: WebLab-Deusto did not manage the
authentication or authorization of the individual students (managed by the Moodle and Joomla
administrators), but only the connection with the two tools. Both plug-ins for Moodle and Joomla
were developed, so they could connect to WebLab-Deusto using its federation protocol, and
they provided management layers (e.g., which course could access what laboratory).

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 45 of 57

This concept, developed in September 2011, could not scale to other Remote Laboratory
Management Systems: while the concept could be applied, supporting 3 LMS in 3 RLMS would
require 9 plug-ins (3x3), since the plug-in for Moodle for WebLab-Deusto would not work for the
iLab Share Architecture. Furthermore, each of these plug-ins dealt with their own management
panels and database tables.

For this reason, in May 2012 a pet project called lms4labs started being developed between
University of Deusto and UNED, with no associated funded project. Its focus was to avoid the
problems presented in the previous solution, by putting in the middle a core component, called
LabManager. This component supported an HTTP interface designed to be particularly small
and for being consumed by LMS/CMS/PLE. It also supported a plug-in mechanism for
supporting more than one RLMS. On June 2012, a first demo was available of a single LMS
(Moodle) using a single RLMS (WebLab-Deusto, and all its remote laboratories). Now
supporting 3 LMS and 3 RLMS would require only 6 plug-ins (3+3). Additionally the size of each
plug-in is considerably smaller, since all the management was already provided by this core
component. And if RLMS A developed a plug-in for LMS A, then RLMS B would benefit from
that plug-in, too.
MIT (developers of the iLab Remote Laboratory Management System) was interested in this
approach, so they started supporting the project by providing two developers between October
2012 and February 2013, adding support for IMS LTI. This standard is supported by many LMS
systems, including Moodle (since version 2.2), so with this contribution, every RLMS would
automatically support all those LMS, in addition to those supported through plug-ins. A plug-in
was developed for Joomla. The results of this pet project were presented in [3].

Within the context of Go-Lab, lms4labs was chosen to act as an initial codebase for the Smart
Gateway, since it provided a plug-in mechanism for integrating remote laboratories. As such, it
was renamed to gateway4labs30. This way, the project grew, with new developers from other
Go-Lab partners, and major changes in the architecture for supporting OpenSocial (all the plug-
ins had to be changed), with more management layers, supporting public (with no
authentication) laboratories for constraints of the project and becoming more robust and
scalable. Features not previously provided, such as internationalization, which covers the whole
codebase, had to be implemented within Go-Lab. Additionally, new remote laboratories were
supported, including iLab (which required changes in the iLab Shared Architecture) and PhET.
The following screenshots show the commits done in the development of the core component
(labmanager), as well as in the WebLab-Deusto, iLab Shared Architecture and PhET plug-ins.
In the first one, it has been selected (shadowed) the time since the Go-Lab project started.

Figure 21: Development of the labmanager31

30 http://gateway4labs.readthedocs.org/
31 https://github.com/gateway4labs/labmanager/graphs/contributors

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 46 of 57

Figure 22: Development of the WebLab-Deusto plug-in32

Figure 23: Development of the iLab Shared Architecture plug-in33

Figure 24: Development of the PhET plug-in34

5.3 Appendix C: Smart Gateway plug-ins size
As it has been previously explained, the plug-in is only a translator of the reservation process
among different systems (i.e., plug-in) and the Labmanager. The development of each process
is not too complex. Indeed, the percent of code that each of the plug-ins represent is typically
small. In the following table, the lines of code of the Labmanager and each of the plug-ins (in the
case of Weblab-Deusto is splitted in two since the client was taken from the source code of
Weblab-Deusto):

Component LoC

32 https://github.com/gateway4labs/rlms_weblabdeusto/graphs/contributors
33 https://github.com/gateway4labs/rlms_ilabs/graphs/contributors
34 https://github.com/gateway4labs/rlms_phet/graphs/contributors

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 47 of 57

Labmanager (code) 5209

Labmanager (templates) 1834

WebLab-Deusto (client) 693

WebLab-Deusto (integration) 253

iLab Shared Architecture 223

UNR-FCEIA 151

Virtual 93

PhET 153

Table 3: Lines of code of the plug-ins and shared components (Labmanager)

As it can be seen, the amount of code of each plug-in is considerably low, while the
Labmanager (which provides most features) is shared among all of them. Taking this into
account, the following diagram shows graphically this proportion:

Figure 25: Percent of each of the plug-ins and the Labmanager

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 48 of 57

However, when a lab owner develops a plug-in for a particular laboratory, it does not matter the
code of the rest of the plug-ins, since they are not going to be used for the target laboratory. In
that case, if we take the iLab plug-in as an example, the percent of lines of code obtained by the
Labmanager is considerably big compared to the lines required for integrating the laboratory:

Figure 26: Comparing a single laboratory with the rest of the Labmanager code

While measuring a software component in lines of code is not accurate, the values presented do
give an impression of the magnitude of obtained code for the required code.

5.4 Appendix D: Smart Gateway Support for advanced features on
top of OpenSocial

As previously stated, every laboratory published in the Go-Lab portal must be publicly available
without requiring teachers to register the school in the laboratory or in the Smart Gateway.
However, mechanisms to grant laboratory owners control the access were implemented. The
target of these mechanisms is to encourage laboratory owners to develop the plug-ins safely
(being in control of the full process), and once they are developed and tested and they can see
the whole process working, so from a technical perspective no further effort is required to
integrate those laboratories in Go-Lab, encourage them to share them in Go-Lab by making
them public. Therefore this process is the establishment of a set of optional steps targeting
laboratory owners who are less receptive to the idea of sharing their resources publicly.

So as to support this, first the school must be registered. This can be done by a teacher:

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 49 of 57

Figure 27: Registering the school in the Labmanager

Once the school is created, the teacher must log in the Labmanager with the credentials just
created:

Figure 28: Log in as a school user

Once logged in, the teacher can create more users, such as other teachers. Some of them can
be added as “teacher”, so they can add spaces, while others as administrators, who can create
more users, request laboratories to the Labmanager administrator, etc.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 50 of 57

Figure 29: School users

From this moment, the Labmanager administrator can select which laboratories are available for
which schools. This requires the teacher to wait for the Labmanager administrator to log in and
establish those permissions. Other option is that the Labmanager administrator selects some
laboratories and makes them visible for all the registered schools. This means that the school
can then request what laboratories are desired, and if the Labmanager administrator has
selected that the laboratory is publicly available for all the registered schools, then the
permission is granted automatically. Otherwise, the school must wait until the Labmanager
administrator grants access on this laboratory.

Figure 30: Laboratories available for being requested

Figure 31: Laboratories registered for the school

Once the laboratories are registered, the teacher can register spaces from the ILS platform. So
as to do this, the teacher only needs to copy the URL of a ILS, or of a parent space that
contains all the ILS of the school, and paste it in the Labmanager:

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 51 of 57

Figure 32: Register parent spaces

A list with the spaces is provided, as well as with the existing permissions, which can be
changed manually during time. The most convenient form to manage these permissions is by
targeting not each individual ILS, but a parent space where all the ILS are. The Labmanager will
explore the space and parents whenever a request arrives to check which school the request is
coming from.

Figure 33: List of registered spaces

Figure 34: List of permissions on registered spaces

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 52 of 57

5.5 Appendix F: Lab Owner’s Survey
In the scope of this deliverable and to improve our knowledge about the external community of
lab owners and their legacy lab systems we have conducted a survey. The main focus of this
survey was to learn about the community’s willingness and constraints regarding lab sharing
schemes envisioned in Go-Lab. Lab Owners were asked general questions about their labs, if
they would be willing to share labs with the Go-Lab community and what incentives they would
consider of relevance. The answers were in a rating scale from 1 (not likely) up to 6 (very likely).
In total 26 responses were received. Below we show the calculated arithmetic mean and
standard deviation of the received answers.

Question Mean Std.
Dev.

Would you share your labs with the Go-Lab community? 5,19 1,23

Would you share your labs to increase their visibility? 5,00 1,52

Would you share your labs to get third parties involved to create pedagogical
content using the labs?

4,88 1,21

Would you share your labs without requiring direct economic remuneration? 4.81 1,47

Table 4: Overview of survey’s answers

In general, lab owners show willingness to share their labs with Go-Lab. They also agree that
increasing visibility of their lab is valid incentive. The individual responses are included in the
appendix section.

Furthermore other more specific technical questions were asked regarding the RLMS they use
to deploy the lab (if any), scheduling mechanism and concurrency lab use. The answers show
that several labs are managed by Smart Gateway supported RLMS (WebLab-Deusto and ISA),
what facilitates their integration into Go-Lab. The detailed list with all responses can be found in
the appendix section.
Link to the survey:

https://docs.google.com/forms/d/1cKP1hguKNdbKTeydTAo9teOf_H-
dZIq6Yi9YluFC3Fw/viewform

5.6 Appendix G: Ongoing Smart Gateway Work
In order to gather feedback from external experts on the draft specifications for Smart Device
and Smart Gateway a workshop for lab owner’s was organized in Madrid from June 4 - 6, 2014.
During this meeting the Smart Device and Smart Gateway concepts were introduced to the
external experts who provided valuable comments and suggestions. The experts who attended
the meeting were representatives from the following projects/initiatives:

Labicom (https://labicom.net)- A Web-based Remote Lab Management System to host and
share remote laboratories. It separates the laboratory server from the management part and
focus in providing solutions implemented in LabVIEW to interface complex equipment. [4]

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 53 of 57

RECLab /e-Lab (http://www.reclab.pt/bin/view/REC/)- REC Lab is a software framework that
enables the control & execution of real scientific experiments over the internet. [5]. It is focused
on a Java Framework to deliver remote experimentation.

RexLab (http://rexlab.net/) - A project that aims at delivering simple remote experiments to
secondary school students in Brazil [6]. At the client-side their experiments are HTML5 based.
The lab systems uses not scheduling or booking mechanism whatsoever.

RemLabNet - A remote lab management system under development [7]. Its client applications
are mostly Java-based but work is being carried out to migrate the implementations to
HTML5/JavaScript.

During this workshop the external experts were given the opportunity to present their systems
and discussed on what would be the most suitable approach to integrate their labs into Go-Lab.
The general consensus was that the Smart Gateway would be the better option since rewriting
their servers and clients to be compliant with the Smart Device specification would require a lot
of effort.

5.7 Appendix H: Management features of the Smart Gateway
In the following screenshots, it will be shown how the Labmanager administrator can add
laboratories through the plug-in system. In the administration panel, there is an option called
“ReLMS Management”, where all the instances of the supported laboratories (through plug-ins)
are listed

It is important to note that one plug-in can be instantiated multiple times. For example, both iLab
and WebLab-Deusto are widely used in several countries by different institutions. With a single
plug-in (e.g., the WebLab-Deusto plug-in), it is possible to create multiple instances
representing different WebLab-Deusto servers (e.g., one in Spain and other in Slovakia).

Figure 35: List of plug-in instances

When clicking on the Create button, it is possible to register a new instance of a plug-in. In the
example below, WebLab-Deusto is used. The first argument (“kind”) lists all the available plug-
ins, and the “location” and “url” arguments are provided by default by gateway4labs. The rest of
the arguments (Login, Password, Base URL and Mappings) are retrieved from the plug-in, and
will differ from plug-in to plug-in.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 54 of 57

Figure 36: Example of registration of a RLMS

Once the plug-in is instantiated, it is possible to list what laboratories are provided for that plug-
in with that configuration. The iLab or WebLab-Deusto plug-ins, for example, will provide
different lists depending on which servers are being contacted and with what permissions. This
feature calls the method “list laboratories” of the plug-in. The list is displayed and the
administrator must select which laboratories wants to register in the Labmanager database.
Only those registered laboratories will be later available to the users.

Figure 37: List of laboratories provided by one of the plug-ins

Once they are registered, it is possible to define them as public laboratories. This means that
anyone, without registering in the Labmanager, will be able to use the laboratory, and therefore
it will be listed as public laboratory. This is the way used by every external laboratory integrated
in Go-Lab. A name which will act as an identifier must be provided.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 55 of 57

Figure 38: Making laboratories public so they can be accessed by anyone

Once done this, it is possible to log out and in the initial screen, click on the “Graasp public labs”
link. Anyone, without registration, can do this and the list of registered public laboratories is
provided. For each of them, the user can list the widgets available for that particular laboratory.

Figure 39: List of publicly available laboratories

When clicking one of these laboratories ("list" button), the list of widgets will be available, as well
as a preview of the laboratory. A permanent link to the OpenSocial XML code is displayed,
which can be copied and pasted in the Go-Lab portal. If the plug-in developer supported
multiple widgets, these would be listed here.

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 56 of 57

Figure 40: List of widgets of a particular laboratory, including the necessary link and a

preview of the widget

Go-Lab D4.3 Releases of the Lab Owner and Cloud Services - Initial

Go-Lab 317601 Page 57 of 57

6 References
	

[1] K. Perkins, W. Adams, M. Dubson, N. Finkelstein, S. Reid y C. &. L. R. Wieman, "Interactive
simulations for teaching and learning physiscs", in The Physics Teacher, vol. 44, nº 1, pp.
18-23, 2006.

[2] P. Orduña, E. Sancristóbal, M. Emaldi, M. Castro y G.-Z. J. López-de-Ipiña, D. &, "Modelling
Remote Laboratories integrations in e-Learning tools through Remote Laboratories
federation protocols", in Frontiers in Education Conference, Seattle, 2012.

[3] P. Orduña, S. Botero Uribe, N. Hock Isaza, E. Sancristóbal, M. Emaldi, A. Pesquera Martin,
K. De Long, P. Bailey, D. López-de-Ipiña, M. Castro y J. García-Zubia, "Generic integration
of remote laboratories in learning and content management systems through federation
protocols", in Frontiers in Education, Oklahoma, 2013.

[4] I. Titov, "Labicom. net-The on-line laboratories platform", in Global Engineering Education
Conference (EDUCON), Berlin, 2013.

[5] REC Lab, [Online]. Available: http://www.reclab.pt/bin/view/REC/. [Last accessed: 04 07
2014].

[6] RexLab, [Online]. Available: http://rexlab.ufsc.br/?q=en. [Last accessed: 04 07 2014].

[7] F. Schauer, M. Krbecek, P. Beno, M. Gerza, L. Palka y P. Spilakova, "REMLABNET - open
remote laboratory management system for e-experiments", in IEEE REV, Porto, 2014.

