N

N

Specifications of the Lab Owner and Cloud Services
(initial) — M21 revision

Sten Govaerts

» To cite this version:

Sten Govaerts. Specifications of the Lab Owner and Cloud Services (initial) — M21 revision. [Research
Report] Go-Lab Project. 2014. hal-01201938

HAL Id: hal-01201938
https://telearn.hal.science/hal-01201938

Submitted on 18 Sep 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://telearn.hal.science/hal-01201938
https://hal.archives-ouvertes.fr

Go-Lab

Global Online Science Labs for Inquiry Learning at School

Collaborative Project in European Union’s Seventh Framework Programme
Grant Agreement no. 317601

i\

LAB

Deliverable D4.1

Specifications of the Lab Owner and
Cloud Services (initial) — M21 revision

Editor Sten Govaerts (EPFL)
Date 30" July, 2014
Dissemination Level Public

Status Final

EEEEEEEEEEEEEEEEE
RRRRRRRRR

©2014, Go-Lab consortium

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Go-Lab 317601 2 oflﬂl

Go-Lab

D4.1 Specifications of the Lab Owner and Cloud Services (revision)

The Go-Lab Consortium

Beneficiary | Beneficiary Name Beneficiary | Country
Number short
hame
1 University Twente uT The Nether-
lands
2 Ellinogermaniki ~ Agogi Scholi | EA Greece
Panagea Savva AE
3 Ecole Polytechnique Fédérale de | EPFL Switzerland
Lausanne
4 EUN Partnership AISBL EUN Belgium
5 IMC AG IMC Germany
6 Reseau Menon E.E.I.G. MENON Belgium
7 Universidad Nacional de Edu- | UNED Spain
cacion a Distancia
8 University of Leicester ULEIC United King-
dom
9 University of Cyprus ucy Cyprus
10 Universitat Duisburg-Essen UDE Germany
11 Centre for Research and Technol- | CERTH Greece
ogy Hellas
12 Universidad de la Iglesia de Deusto | UDEUSTO | Spain
13 Fachhochschule Kéarnten - | CUAS Austria
Gemeinnutzige Privatstiftung
14 Tartu Ulikool UTE Estonia
15 European Organization for Nuclear | CERN Switzerland
Research
16 European Space Agency ESA France
17 University of Glamorgan UoG United King-
dom
18 Institute of Accelerating Systems | IASA Greece
and Applications
19 Nucleo Interactivo de Astronomia | NUCLIO Portugal

Go-Lab 317601

Soflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Contributors
Name Institution
Sten Govaerts, Christophe Salzmann, Denis Gillet, | EPFL
Wissam Halimi
Pablo Ordufia UDEUSTO
Danilo Garbi Zutin CUAS
Anjo Anjewierden (internal reviewer) uTt
Simon Schwantzer (internal reviewer) IMC

Legal Notices

The information in this document is subject to change without notice. The Mem-
bers of the Go-Lab Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. The Members of the Go-Lab Consortium
shall not be held liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing, perfor-
mance, or use of this material. The information and views set out in this deliver-
able are those of the author(s) and do not necessarily reflect the official opinion
of the European Union. Neither the European Union institutions and bodies nor
any person acting on their behalf may be held responsible for the use which

may be made of the information contained therein.

Go-Lab 317601

4of|ﬂ|

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Executive Summary

This deliverable elaborates on the Go-Lab vision for the integration of exist-
ing and new remote laboratories, with the Go-Lab infrastructure. For instance,
remote labs could integrate with the Go-Lab booking system (see D4.2), the
learning analytics services (see D4.2) or specific apps (e.g., a data viewer app
could read from sensors and actuators of any remote lab).

For new remote laboratories, this deliverable provides a client-server architec-
ture, based on the Smart Device paradigm, with specifications that detail the
required services, protocols and data formats. Next to that, additional services
are suggested that can ease integration with the Go-Lab infrastructure or sup-
port required services. Furthermore, we provide guidelines for functionalities
internal to the Smart Device. The Smart Device paradigm conceptualizes and
embeds the lab-owner services.

On the other hand, for already existing labs, Go-Lab proposes the Smart Gate-
way paradigm, which aims to make legacy labs compatible with the Smart De-
vice paradigm. Through this compatibility, such legacy labs can be integrated
in the Go-Lab infrastructure. Due to the wide technical variety of legacy remote
labs, we provide different levels of compatibility through the Smart Gateway.
The Smart Gateway paradigm conceptualizes and embeds the cloud services.

This deliverable is a revised version of the D4.1 deliverable submitted in M12
and contains improved, extended and more detailed specifications. The ‘part-
ner’ deliverable D4.3 provides implementation examples and documentation of
the software packages to develop remote labs using the Smart Device and
Smart Gateway paradigms. An update of the specifications presented in this
deliverable will be provided in D4.5 (M30).

Go-Lab 317601 5 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Table of Contents

1__Introduction| 8
1 Remotelabsl, 8
(1.2 Value Proposition|. 9
(1.3 Integrationlevels|. 11

2 Lab Owner or Plug Services| 13
2.1 _The Smart Device Architecturel 14

2.1.1 _The Smart Device in the Go-Lab Infrastructure| 14
2.2__Smart Device Protocols and lecnnical detalls| 16
2. mart Devi rvi nd Functionalities| 17

2.3.1 Intr ON| e e e e e 17

2.3.2 List of Servi nd Functionalities| 18

I 21
37
42

2.3.6 User Activity Logging Service — getLogginginfo| 44

2.3.7 lent Application Service —getClients| 45

2.3.8 Models service —getModels|. 46
2.4 Smart Device Interactions 47

[2.4.1 Authentication and Booking| 47

2.4.2 InteractionMoges| 48

2.4.3 WebSocket Channelingl 50

2.4.4 Lab Instruments as Complex Sensors| 51
2.5 The Revised Smart Device Specification Compared to the M12 |

I VErsIon| o e e e e e e e e e 52

B3__Cloud Services| 53

A __Intr ION| . . o o e e e e e e e e e e e 53
(3.2 Requirements for the Smart Gateway| 54

3.2.1 Functional Requirements for the Smart Gateway| 54

[3.2.2 Non-functional Requirements for the Smart Gateway|. . . 55
(3.3 Review of Legacy Lab Platforms| 55
[3.4 Requirements for the Smart Gateway and Comparison with Other |

| Systems|. 57

[3.5 Specification and Architecture of the Smart Gateway| 58
3.5.1 Architecturel. 60
[3.5.2 Specitications of the Plug-in System| 65
3.5.3 The Protocol Translatod 71

.6 _Benefits for L WNErS| o e e e e e e 73

4__Standardisation 75

5 __Conclusion| 76

6 Appendix A: Smart Device metadata specification details| 77

Go-Lab 317601 6 ofM

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

.1__Extensions for W ketsl 77

[6.2 Extensions for Concurrency mechanisms| 78
6.3 Additional Minimal Extensionsl. 79
[6.3.1 Datalypes| 79

[/ Appendix B: The Metadata Specification for an Example Smart De- |
[vicel 80
.......................... 80
[7.1.1 Metadata Specification| 80

[7.1.2 Example Requests and Responses to the Smart Device |

I Services!. e 97
[7.2 Running example Smart Device|. 101
/.2.1 etagata Specification|]o Lo L 101

[7.2.2 Example Requests and Responses to the Smart Device |

[Services|. 121

8 Appendix C: Value-proposition Canvas for Lab owner and Cloud |

[Services| 129
[8.1 The value-proposition canvas methodology| 129

2 DetalledBesults| 131
.21 Customerd 131

B.2.2 Productl 133

[8.3 Analysisoftheresults|, 134
8.3.1 Customer 134

832 Product 136
nclusionl 137

9 Appendix D: Lab Owner Workshop| 139
[9.1 Value Proposition|. 139
9.2 Smart Device and Interfacing| 140

) mart Gateway and Federation| 140
References| 142

Go-Lab 317601 7 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

1 Introduction

Within the Go-Lab project, online laboratories (referred hereafter as online labs)
have been divided into three general categories (see Deliverable D2.1 & DoW):

e Virtual labs, which are simulations with animations of scientific experi-
ments available on the Web.

e Remote labs, which have real physical equipment with their instrumenta-
tion accessible at distance (such remote labs are also called rigs).

e Data sets, which contain measurements gathered using real scientific in-
struments such as telescopes. Data sets can be analysed and visualised
using dedicated online tools.

Task 4.1 and Task 4.2 are focusing on remote labs, which is the category for
which there are significant challenges in terms of plugging and sharing. To
plug remote labs online, Go-Lab is proposing in this deliverable the Smart De-
vice paradigm, which conceptualises and embeds the lab owner services (see
Section[2). To share remote labs online, Go-Lab is proposing the Smart Gate-
way paradigm, which conceptualises and embeds the cloud services (see Sec-
tion 3).

1.1 Remote labs

Remote labs typically rely on a client-server architecture (see Figure [). The
services of the lab server are enabling communication through the Internet with
the real equipment and its instrumentation. The physical lab is typically con-
nected through a hardware interface with the lab server thanks to analog and
digital inputs (connected to sensors) and outputs (connected to actuators). The
lab server can be a microcontroller, a computer or a remote laboratory man-
agement system (RLMS). The lab server has to ensure on one hand that no
ungranted access is possible and on the other hand that the lab is in a proper
operational state. The client is enabling remote user interaction as a standalone
application or as a component in a Web environment. The client typically en-
ables the observation of the lab (e.g. through a live video stream), configuration
at distance, setting of parameters and visualization of data or measurement (in
batch or in real-time while the lab is operated).

Hardware Physical
Interface Lab
Web

Environment Lab Server

Figure 1: Typical client-server remote lab architecture

Go-Lab 317601 8 of|ﬂ|

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Up to now, tightly coupled client-server solutions have been designed and im-
plemented to enable interaction with and management of remote labs. This
strong coupling and the lack of standardisation is impairing the ability for lab
owners to easily plug and share their remote labs with different platforms, and
for users to interact with these labs and with their peers in their preferred envi-
ronment. Lab owners cannot easily adapt solutions developed by others to their
own infrastructures. Teachers or students interested to exploit remote labs from
various providers have to install a different solution for each of them and cannot
personalize it to their needs.

While the interfacing of a remote lab will always rely on ad hoc solutions be-
cause of the large variety of the physical equipment and the associated instru-
mentation (orange part in Figure[1)), the way remote labs are made accessible
through the Internet can be standardised (green part in Figure [1). This deliver-
able describes how new remote labs or legacy labs can be made accessible in
a standardised way, directly as Smart Devices or through the Smart Gateway.
Such standardisation enables a decoupling of the client and the server and a
decoupling of the interaction and management services. In other words, users
can develop the clients they need to be integrated in the environments they
want. In Go-Lab, the clients are developed as OpenSocial apps (see D5.1) that
can be integrated in social media platforms or learning management systems
supporting this Web application standard.

1.2 Value Proposition

Following the recommendations of the reviewers during the first review, Go-Lab
has carried out activities to clarify its value proposition for lab owners in order
to foster adoption of the Go-Lab technology and/or to integrate their labs in the
Go-Lab infrastructure.

Two main events have been organised. First, an internal workshop has been
organised after the General Assembly in Madrid (March 17-19, 2014) with the
members of the technical cluster to define the value proposition from their own
perspective and discuss the Smart Device specification. Then, a discussion
was held with selected lab owners during the Smart Device and Smart Gateway
workshop (also held in Madrid, June 4-6, 2014). See Appendix D for more de-
tails and the objectives of this workshop. These value propositions were created
using the value-proposition canvas methodology (see Section[8.1]for details). In
the two events, the core Go-Lab features have been introduced and then dis-
cussed. They can be summarised as follows:

1. Go-Lab is promoting science education through inquiry learning with on-
line labs (coupling in an optimal way a proven learning methodology and
engaging learning resources).

2. Go-Lab is supporting inquiry learning activities with inquiry learning spaces
(ILS), which can be created freely by teachers and used in their regular ac-
tivities (teachers are still in control of their learning scenarios and they can
integrate Go-Lab resources in their usual classroom activities).

Go-Lab 317601 9 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

3. Go-Lab is enabling, through the ILS Platform, the creation of inquiry learn-
ing spaces that combine a rich set of content and services (including sup-
port applications), as well as structure (through tabs enforcing typical in-
quiry learning phases).

4. Go-Lab is offering, through its Lab Repository, a social scheme for sharing
online labs freely, support apps and inquiry learning spaces.

5. Go-Lab is providing scaffolding applications and services which rely on
learning analytics and support interoperability while enforcing privacy.

From a Go-Lab technical partner perspective, the major impacts of Go-Lab are
the following for teachers:

e a standardised interface for booking labs;

e interoperability between labs and apps, thus enabling richer user experi-
ence and better integration of the lab with the pedagogical approaches;

e support for learning analytics.
and for lab owners:

e a robust and secure implementation of the specification to build their lab,
resulting in faster development and more robust and secure deployment;

o specification and software packages enabling an easy plug of existing labs
online to enable reuse of existing labs in Go-Lab;

e reuse of client apps thanks to standardisation;

e easy addition of extra functionality provided by the Go-Lab infrastructure
which can make the lab more user-friendly and can speed up develop-
ment, e.g. a booking mechanism or learning analytics services;

¢ interoperability with existing apps (e.g. a data viewer app can visualise
data of any Smart Device), which again can speed up development and
increase the attractiveness of the lab for users;

e integration of the labs in various platforms and environments thanks to
open standards (e.g. OpenSocial, WebSockets & HTML5).

A more detailed analysis of the value-proposition canvas completed by Go-Lab
partners can be found in Appendix C.

From the lab owner perspective, the main Go-Lab value proposition is the pos-
sibility to combine technical resources and pedagogical structure in an ILS (bul-
let[3]above), and to make visible their own labs in the Go-Lab repository (bullet[4]
above). The motivation for the latter is to attract funding to support the develop-
ment of their resources and the exploitation of their facilities. As a consequence,
the Smart Gateway is seen as an effective means to make their labs available
in the Go-Lab repository and compatible with the ILS Platform, with a minimal
adaptation on their side. Figure [2|illustrates the result of the value-proposition
canvas exercise with lab owners.

Go-Lab 317601 10 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

R

i / By peds
5] walve
£ 8 v

g v o>

ke,

R of o
A ‘_gy/ Wﬂm% G Natk,,
PﬁGﬂUC)T +/ Selort;
i 71 % = =
g SERVICES reris e—— €
- v

| " ’hjfrm’w:'*fr .
nhnloo? xt T
(,(V \nbs ‘ \ | |V o les2l?

L
oo 1o

o Peovrda I ~ Bop Joache
Y?{r ;7 online anslyhes i ,\{Ef,(mﬁf;mms

(qokinbal e

Sushamehdy
g nhwene

S(A‘hlv-]vlf

Figure 2: The value-proposition canvas as filled by lab owners

1.3 Integration Levels

To broaden the adoption of the proposed paradigms and ease the integration of
new or legacy labs in inquiry learning activities, Go-Lab enables various levels
of integration which can be chosen according to the possible resources a lab
owner can invest.

Full integration: A lab owner implements the Smart Device specification (see
Section [2) on a chosen lab server and makes the necessary adaptation to in-
terface it with the real equipment and its instrumentation. An OpenSocial client
app is developed, which can be fully integrated in inquiry learning spaces, ex-
ploits the available Go-Lab services and the lab interoperates with the available
Go-Lab support apps.

Intermediary integration: A lab owner exploiting a legacy remote laboratory
management system implements a plug-in to interface an existing remote lab
through the Smart Gateway (see Section[3). An OpenSocial client is developed,
which can be fully integrated in inquiry learning spaces, exploits the available
Go-Lab services and the lab can interoperate with the available Go-Lab sup-
port apps. Different sublevels of integration are possible for this intermediary
integration, for more details see Section[3

Low integration: A lab owner exploiting a legacy remote laboratory manage-
ment system integrates its existing client as an iFrame wrapped in an OpenSo-
cial app. This app can be integrated in inquiry learning spaces, but cannot
exploit the available GoLab services, neither interoperate with support apps.

This deliverable is split in two major parts: first, it introduces the Smart De-
vice specification for the lab owner services in Section [2, and afterwards, it

Go-Lab 317601 11 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

elaborates on the Smart Gateway for the cloud services in Section[3] Further-
more, Section 4| reports on the progress of the standardisation efforts so far,
and Section [5| summarises and concludes this deliverable. Additionally, several
appendices are provided to further detail some of the work described in this
deliverable, i.e., details on the extension of the metadata description language
in Appendix A, an example of Smart Device metadata for a lab in Appendix B,
a detailed report of the value-proposition canvas created by Go-Lab partners in
Appendix C, and a report on the lab owner workshop in Appendix D.

Go-Lab 317601 12 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

2 Lab Owner or Plug Services

Through the Smart Device specification, lab owners can plug their labs eas-
ily into the Go-Lab infrastructure (as described in Task 4.1 of the DoW). The
Smart Device paradigm revisits the traditional client-server approach on which
many remote lab implementations rely. The main differences between exist-
ing implementations and the Smart Devices are the complete decoupling of the
server and the client. This decoupling removes the umbilical cord between the
two so that they can live their own separate life. While in a traditional client-
server service-oriented architecture (SOA), the service and client share a spec-
ification that is often unique to them, the Smart Device defines one common
specification for all Smart Devices. This Smart Device specification describes
well-defined communication and interfaces between client-server and sufficient
information is provided by the server to generate the client applications or reuse
existing client applications based on this Smart Device specification. Since the
specification is common to many Smart Devices, client apps are not thighly
coupled to one server, which encourages interoperability and reuse.

This document specifies both the interface and the communication specifica-
tion so that a Smart Device-based solution can easily be plugged in the Go-
Lab infrastructure. Similarly client applications can be reused or automatically
designed and plugged in the GoLab infrastructure. This paradigm can be ex-
tended to the Smart Gateway (see Section [3) where a dedicated proxy extends
the functionality of an existing solution that does not yet have the required ca-
pabilities.

Smart Devices mainly provide services to access the real world through actua-
tors and sensors (Thompson, 2005). The Smart Device interface or API differs
from traditional solutions that often provide a monolithic interface without the
possibility to access a specific service. There is no assumption regarding the
communication channels for Smart Devices (Cascado et al., 2011). The Inter-
net is the de facto choice for online labs (Auer, Pester, Ursutiu, & Samoila, 2003;
Salzmann & Gillet, 2008). In addition, in Go-Lab the specific choice of open Web
technologies to enable a broader compatibility and adoption has been made.
Proprietary technologies will specifically be avoided since they break the core
ubiquitous access requirement.

The Smart Device may not necessarily provide a User Interface (Ul), but often
propose minimal Ul that can be rendered at the client side. This means that the
client device may render Uls from different providers. Since the Smart Device
fosters and promotes the reuse of existing client applications. Web browsers
are the preferred environments to render the Ul at the client side. There is often
a direct relation between a Smart Device service and the app to render the
information within the client Ul. For example, an oscilloscope app renders the
Voltage evolution measured by a sensor of the Smart Device.

The Smart Device provides services and functionalities. A service represents,
for instance, a sensor or an actuator that is made available to the outside world
(i.e., the client) through the API. Services are fully described and documented

Go-Lab 317601 13 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

so that a client can use them without further explanation. A functionality is an in-
ternal behavior provided by the Smart Device, there may be exchange between
functionalities and the client application through services but not necessarily.
While the required services are fully described through the API, the function-
alities are only recommended and best practice guidelines are provided. For
example, there can be an actuator service that enables the client application
to set the voltage of a motor connected to the server and a functionality that
checks that the maximum voltage is not exceeded (and corrects it if needed).
The actuator service is well described by the Smart Device metadata, on the
other hand the internal validation mechanism is left to the lab owner’s discretion
since it will be mainly ad-hoc. Still, such a mechanism has to be implemented
to ensure that client applications will not break the server and the connected
equipment.

2.1 The Smart Device Architecture

As mentioned, the Smart Device specification provides a well-defined set of
interfaces that enables communication between the remote lab and external
services and applications. Figure [3| provides a basic architecture with a few
examples of interactions with the Smart Device. The Figure illustrates a Smart
Device that provides a set of interfaces (Section[2.3|describes the interfaces de-
fined as services in more detail). Some interfaces are required, some optional
(see Section[2.3). The Smart Device abstracts the implementation of the remote
lab. Hence, the specification does not define the communication between the
Smart Device and the Remote Lab component in Figure[3] The communication
in the left part of Figure [3|is what the Smart Device specifies, namely the proto-
cols and data formats of the interfaces of the Smart Device (i.e., the ‘metadata’,
‘client’, ‘sensor’, ‘actuator’ and ‘logging’ interface in Figure [3). For instance, a
metadata repository can retrieve the metadata of any Smart Device, index it
and provide a lab search engine. Because the interfaces are well-defined, client
apps can be reused among Smart Devices. For example, one Data Viewer
Client or Learning Analytics Client could retrieve data from any Smart Device
and present it to the user.

Additionally, the Smart Device specifies a metadata format that describes the
Smart Device, its functionalities and its services. In the remainder of this chap-
ter, we will explain this metadata and each service and functionality.

2.1.1 The Smart Device in the Go-Lab Infrastructure

As described above, the well-defined interfaces of the Smart Device, ensure that
a client app and a service can communicate with any Smart Device, if needed.
This section will discuss the Go-Lab platforms and services that interact with
the Smart Device. The overview component UML diagram is shown in Figure 4]
In addition to enabling user interaction with the remote lab, the Smart Device
interacts and enables the following features in the Go-Lab infrastructure:

e Publishing labs on the Lab Repository: A lab owner can publish any lab on

Go-Lab 317601 14 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Metadata Repository & | Smart Device & |

tadata

-

Lab Client &}~ .
. ‘
L =l client
~. 2T s Remote lab &
v T L emo
£ % -

Data Viewer Client g]F--~"""~ RN sensor | """~ >
. -

actuator

Learning Analytics Client&]

Figure 3: UML Component diagram of different clients making use of the
most common Smart Device services (arrows represent calls).

the Go-Lab Lab Repository' (see D5.2). If a lab supports the Smart De-
vice specification, the metadata of the Smart Device can be retrieved and
parts of the required metadata (see D2.1) can be automatically filled in.
Additionally, the client apps to control the lab can be added automatically.
In step 1.1 in Figure [}, the Metadata Annotator of the Lab Repository can
retrieve the metadata of the Smart Device and the client apps provided by
the lab owner in step 1.2.

e Retrieving lab metadata: The automatically created metadata can then
be retrieved by the Learning Analytics backend services for analysis pur-
poses (see D4.2). Step 2 illustrates how the lab metadata can be retrieved
from the Metadata Manager in the Lab Repository by the Artefact Man-
ager, as documented in D4.2.

e Tracking user activity: The Smart Device contains a user activity logging
service that enables the delivery of learning analytics. Step 3.1 shows
how an app on the ILS Platform (see D5.2) can retrieve user activity infor-
mation from the Smart Device and passes it to Shindig (step 3.2), to the
ILS Tracking Agent (step 3.3) and then to the Action Logging Service of
the Learning Analytics Backend Services where the user activity is stored.
This process is explained in more detail in D4.2.

e Booking a lab: The Smart Device itself does not contain a booking mech-
anism, but makes use of existing booking mechanisms. If a Smart Device
requires booking, a user retrieves a booking authentication token from the
Booking System and with this authentication token, the user can authen-
ticate with the Smart Device, as described in D4.2. The Smart Device
itself only contains logic to validate the authentication token provided by
the user. Step 4 illustrates that the Smart Device has an Authentication
component that validates authentication tokens with the Booking System

'Golabz, http://www.golabz.eu

Go-Lab 317601 15 oflﬂl

http://www.golabz.eu

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

cmp

Lab Repository =]
Metadata Annotator 2 |
% 1.1
Metadata Manager 5 Smart Device E
1.2 ()
L metallata Authenticator J |
é .\
- J client
retriever
z O—
sensor
Learning Analytics Backend Services g]
Artefact Manager g | actuator
'd
CO
3.1 logging

Action Logging Service E

logger

3.4 4

ILS Platform 8] Booking System 2

\s App E Booking Manager g |
bookingValiddto

o~ Shindig & 3.3

OpenSocial API

ILS Tracking Agent &]

collector

Figure 4: UML Component diagram of the interactions between different
Go-Lab services and the Smart Device.

(see D4.2 and Section|2.4.1).

Note, the above features will only be available if the corresponding Smart Device
services are implemented. Publishing and retrieving lab metadata will work for
any Smart Device because the metadata service is required, but the tracking
of user activity makes use of an optional logging service and the booking will
obviously only be available when booking is needed. In Section [2.3, we will
further elaborate on the different Smart Device services and whether they are
required.

2.2 Smart Device Protocols and Technical details

Since, we want to enable access to remote laboratories via the Internet and
use a Web-based ILS Platform (see D5.2), the Smart Device should enable

Go-Lab 317601 16 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Web clients to connect to its interfaces. Therefore, we will rely on standardised
Web protocols to provide the data transfer between the Smart Device and ex-
ternal services and applications. Typically, widely used candidates are HTTP
and recently also WebSockets. There are different types of HTTP-based Web
Services available, such as SOAP and REST. The problem with most HTTP-
based Web Services is that they are synchronous and follow a request-response
schema. In such solutions, data can often only be ‘pulled’ from the server and
the server cannot initiate a ‘push’ of information to the clients (Push technol-
ogy)?. Remote laboratory experiments, often require asynchronous data trans-
fer. For instance, an experiment that takes a long, unknown time to complete,
should preferably be able to push its results to the clients. This is possible using
HTTP-based solutions, but the solutions are often very inefficient, since they
use the underlying synchronous methods, e.g. long polling®.

WebSockets* on the other hand are asynchronous by nature and allow both
pulling and pushing. This provides a bi-directional, full-duplex communication
channel between the server and the browser. WebSockets are a recent technol-
ogy, but are currently supported by all modern browsers®. Since WebSockets
enable both push and pull technology in an efficient way and with less program-
ming effort than for instance REST and SOAP, we have selected WebSockets as
the protocol for the Smart Device services. Only the metadata service, which
just requires text retrieval, will be provided via HTTP GET, so it is very easily
accessible and can just be hosted as a file on a Web server.

In addition to these two decisions, we make the following recommendations for
the protocols of the Smart Device:

e The Web server for the metadata best runs on port 80 or 443 to ensure
access behind institutional and corporate firewalls.

e The WebSocket server preferably also runs on port 80 for the same rea-
sons.

2.3 Smart Device Services and Functionalities

2.3.1 Introduction

As mentioned above, a Smart Device consists of a set of well-defined services
that enable interoperability with external applications and internal functionalities.
In this section, we will elaborate on the Smart Device’s services and functional-
ities. First, we provide an overview of all services and functionalities. Then, we
will elaborate on each service and functionality separately.

First, we will introduce some terminology:

o We use the terms sensors and actuators to reflect the information direction

2Push Technology — Wikipedia, http://en.wikipedia.org/wiki/Push_technology

3Long Polling — Wikipedia, http://en.wikipedia.org/wiki/Push_technology#Long
_polling

*Websocket specification — Wikipedia, http://tools.ietf.org/html/rfc6455

5Can | use Web Sockets?, http://caniuse.com/websockets

Go-Lab 317601 17 oflﬂl

http://en.wikipedia.org/wiki/Push_technology
http://en.wikipedia.org/wiki/Push_technology#Long_polling
http://en.wikipedia.org/wiki/Push_technology#Long_polling
http://tools.ietf.org/html/rfc6455
http://caniuse.com/websockets

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

relative to the Smart Device. In this section, the various representations of
sensors and actuators will be defined. For example, a sensor enables the
reading of a value from a thermometer. An actuator enables the setting of
a value, for example setting a motor voltage.

e Sensors and actuators can be physical (temperature sensor), virtual (com-
puted speed derived from a position measurement) or complex that repre-
sents an aggregation of sensors/actuators (knobs that form the front panel
of an oscilloscope).

e Both the sensor and the actuator can be configured, see the metadata
service in Section[2.3.3

2.3.2 List of Services and Functionalities

This section lists required and optional services, and functionalities of a Smart
Device. We will elaborate on each one in the next sections.

Required Services:

Metadata service: This service returns a description of the lab, its mechanisms
and external services. The information provided by this service should be suffi-
cient to programmatically define a Ul and the related client-server communica-
tion.

Sensor service: This service returns data from a ‘sensor’ of the remote lab.
Actuator service: This service allows to control an ‘actuator’ of the remote lab.
Optional Services:

Client app service: a list of lab client applications may be provided by the Smart
Device.

User activity logging service: This optional service provides a method to retrieve
logged user actions. This service can be based on the ‘Logging and Alarms’
functionality discussed below.

Models service: Various information about the connected equipment can be
sent to the client application. For example, a 3D (or 2D) graphical model de-
scribing the connected equipment could be defined in the form of a VRML file.
Similarly, a mathematical model describing the connected equipment can be
sent in the form of dynamical equations, these equations could be used to sim-
ulate the equipment at the client side. Both these models could be read or
modified through the means of virtual sensors/actuators.

Functionalities — Best Practices:

Internal functionalities are suggestions to be implemented in the Smart Device.
Therefore, we provide only best practices. These functionalities are often ad-
hoc and strongly related to the connected equipment, it is thus difficult to give a
precise specification.

Authentication functionality: The Smart Device does not comprise a booking
system. It can make use of an external booking system, such as the Go-Lab

Go-Lab 317601 18 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

booking system (see D4.2). As described in D4.2, the Go-Lab booking system
will provide an authentication token upon the creation of a booking. With this
authentication token, a user can connect to the Smart Device. The Smart De-
vice then needs to contact the booking system to validate whether the user is
currently allowed to access the Smart Device. Thus, the Smart Device imple-
mentation requires limited effort, compared to providing its own authentication
and booking mechanisms. We will briefly summarise the D4.2 specification in
Section2.41]

Self and known state functionality: This functionality is recommended and its
precise implementation is left to the lab owner’s discretion. This functionality
ensures that the remote lab is left in a proper state after the current experimen-
tation session is completed so that the next user will be able to use it. Similarly,
after a power outage the system should be able to come back to a predefined
state. Remote experiments are supposed to be conducted remotely and thus
no one is expected to be in the neighbourhood of the experiment to put it back
in a known state. In addition, connections could occur anytime during the day
or night. Thus, the system should be as autonomous as possible. This implies
an adequate design of the experiment and a defensive software design that is
able to adapt to ‘any’ situation. The lab owner should implement the following
procedures in the Smart Device and its hardware:

e automatic initialization at startup (regular or power outage)
e reset to a known state after the last client disconnect
e calibration after some time if it makes sense

Security and local control: This functionality is recommended and its precise
implementation is left to the lab owner’s discretion. At all time the security of the
server and its connected equipment must be ensured. All commands received
or computed should be validated before being applied to the connected equip-
ment. This step may require the addition of a local controller to track the state of
the connected equipment, for example a speed increase may need to follow a
ramp before being applied to a motor. The controller parameters could be read
or modified through the means of virtual sensors and actuators. Experienced
lab owners know that users will try to put the system to its limits. These limits
are not only the physical limit of a given sensor/actuator, but the pattern of the
applied signal to a given sensor over time may also need to be considered. For
example applying 5V to a 10V motor is without risk if it is applied once. On the
other hand, applying a +/- 5V square pattern to the same motor for an hour may
destroy it. Since the Smart Device may be connected to the real world via its
actuators, it is essential to validate all values applied the actuators considering
potential external constraints. This validation process could be simplified by an
adequate design of the experiment itself, this may include an additional sen-
sor to measure the environments in which the Smart Device operates. The lab
owner should implement the following procedures in the Smart Device:

e value validation before applying them to the actuator, considering actuator
range and other temporal considerations.

Go-Lab 317601 19 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

e actuator state validation to check if the command to be applied is safe for
the outside world.

Logging and alarms: This functionality provides a way to log session information
as well as user interactions. In addition, it can also include logging information
specific to the lab itself. In case of problems (e.g. malfunction or power outage)
alarms may be automatically triggered by this functionality. The Smart Device
will be online unattended for an extended period of time. It is primordial to
have a method to perform post mortem (after the problem occured) analysis.
The user action is the first information to be logged, this information can be
accessible via the user activity logging service (see Section [2.3.6). But extra
information should also be logged, for example the state of the system via the
available sensors and the environment (for example room temperature) if there
is @ method to measure it. Note that sensors may be available internally to the
Smart Device but not necessarily accessible via the sensor service. The lab
owner could implement the following information in the Smart Device:

e log user actions
¢ log the complete system state
¢ log its surrounding state

Also, by definition the Smart Device is connected to the Internet and has no
knowledge of the client device, thus it needs to take proper action to save itself
from abuse. A firewall or a DMZ® may protect it from external intruders or men-
aces. While some hostile actions may be reduced using such mechanisms, the
Smart Device should add internally additional measures:

¢ validate the requests sent by the client even though the client is correctly
identified

e throttle continuous requests of a malicious client application

¢ log all internet connections and request for later analysis

If an unexpected event occurs, its potential danger should be assessed by the
Smart Device and eventually an alarm may be triggered (and the logger). This
alarm may follow a completely different path than the other information path. An
alarm concerning the lack of the Internet connection should not be sent to the
lab owner through the internet but via for example SMS.

Local simulation: a local simulation might be proposed to the client if the equip-
ment is used by someone else. The simulation data and parameters could be
read or modify through virtual sensors/actuators. A mathematical model de-
scribing the state of the physical equipment connected may be available. This
model can be made available to the client via the Models service and the client
application designer may decide to use this model to simulate the connected
physical equipment. This simulation requires computational resources that may
not be available at the client device. Thus it is possible to perform this computa-

6Demilitarized Zone (DMZ), http://en.wikipedia.org/wiki/DMZ_(computing)

Go-Lab 317601 20 of[144)

http://en.wikipedia.org/wiki/DMZ_(computing)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

tion at the server side and send the result to the client application using virtual
sensors and actuators.

2.3.3 Metadata Service

The metadata service is a required service that is at the core of the interoper-
ability provided by the Smart Device specification. This service provides on the
one hand a general description of the lab, which is useful for publishing a Smart
Device lab into the lab repository as discussed in Section [2.1.1] On the other
hand the metadata provides technical details of the lab. This technical informa-
tion creates the interoperability features of a Smart Device and can be used to
generate user interfaces automatically.

First, this section will elaborate on different, existing web service description
languages and explain which description language we have chosen. Second,
we explain the design choices behind the metadata specification. Afterwards,
the metadata for the required services is described and we explain how one can
add metadata for extra services. Finally, we specify how the metadata should
be made accessible from a Smart Device.

Comparison of Web Service Description Languages

To describe the metadata of a Smart Device we investigated several options
to describe Web service specifications. The main goal was not to reinvent the
wheel and use robust and complete specifications if possible. Furthermore,
some specifications allow the automatic generation of client applications. Since
we did not find Web service description languages specific to the WebSocket
protocol, we have considered SOAP and REST-based description languages for
inspiration.

One of the most popular Web service description languages is WSDL’, which
originally focused strongly on SOAP Web services and provides better support
for RESTful Web services since version 2.0. However, currently software sup-
port for WSDL 2.0 is often poor®. WSDL is also XML-based and in all other
specifications we have opted for JSON. On request of the JavaScript commu-
nity, JSON-WSP ° was created. Nonetheless, the JSON-WSP specification did
not gain traction.

There are also description languages dedicated to RESTful services. WADL (Hadley,
2009) is an XML-based description language which can be considered as the
REST equivalent of the original WSDL specification for SOAP. Similar to WADL

is RSDL'?, also an XML-based language but more focused on the structure of

the Web service URIs. Another option is RAML'! that uses the YAML format

and also relies on markdown for descriptions and JSON Schema'?.

"Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl

8Web Services Description Language — Wikipedia, http://en.wikipedia.org/wiki/Web
_Services_Description_Language

YJSON-WSP — Wikipedia, http://en.wikipedia.org/wiki/Jsonwsp

ORESTT{ul Service Description Language (RSDL), http://en.wikipedia.org/wiki/RSDL

""RESTful API Modeling Language (RAML), http://raml.org/

12JSON Schema specification — JSON Schema: core definitions and terminology json-

Go-Lab 317601 21 oflﬂl

http://www.w3.org/TR/wsdl
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://en.wikipedia.org/wiki/Jsonwsp
http://en.wikipedia.org/wiki/RSDL
http://raml.org/

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

For the Smart Device specification, we have opted for Swagger'. Swagger
is a JSON-based description language meant for RESTful APIs, but we have
easily extend it to WebSockets. Swagger aims to describe a web service for
both humans and computers. Therefore, it is strongly focused on automatically
generating user interfaces', which is one of our goals. Swagger is based on
JSON Schema to specify the data format of requests and responses. Due to
the large and growing list of supporting tools, Swagger is getting good uptake.
As mentioned, to achieve the requirements of the Smart Device specification,
we had to extend the Swagger specification in a limited way, so our adapted
Swagger version still holds all of the Swagger qualities. This was achieved by
adding support for WebSockets as a protocol and included some extra metadata
blocks as well as some extra values for Swagger fields to fit our needs. In
the remainder of this section, we will elaborate on how we have applied and
extended Swagger for the Smart Device Specification.

Smart Device Metadata Concepts
As stated above, the goal of the Smart Device metadata is manifold:

e describe the lab (e.g., who is the contact person and describe what the
aims of the lab are)

e describe integration with other Go-Lab services (e.g., authentication de-
tails with the booking service)

e describe concurrency mechanisms of the lab (e.g., how does the lab allow
observations, while someone is doing an experiment?)

e describe and define the services that the Smart Device provides (e.g.,
specify the format of the requests and responses of a service)

Additional requirements are that the metadata specification should be easily
extendable if the Smart Device developer wants to add services. Furthermore,
for a simple Smart Device, it would be good if the developer does not have to
learn details of the Swagger specification. Based on these requirements, we
have made the following design choices:

e Sensor & actuator metadata service: The metadata that describes the
available sensors and actuators is provided by a service. In this way a
developer of a simple Smart Device needs to edit just a few lines in the
metadata and does not need to add complex descriptions of actuators and
sensors. The Smart Device software packages provided by Go-Lab can
already implement these services so the developer just has to add the
return values in the code. This also enables the developer to keep the
sensor and actuator metadata very close to the actual implementation of

schema-core, http://json-schema.org/latest/json-schema-core.html

13Swagger website, http://swagger .wordnik.com/

4To showcase the automatic user interface generation in Swagger, they have a demo avail-
able that allows anyone through a simple user interface to interact with a sample Web service,
see http://petstore.swagger.wordnik.com/. This Ul is completely generated solely based
on the Swagger description

Go-Lab 317601 22 oflﬂl

http://json-schema.org/latest/json-schema-core.html
http://swagger.wordnik.com/
http://petstore.swagger.wordnik.com/

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

the logic that measures sensors and controls actuators.

e Service names: Each service needs to have a method name (‘nickname’
in Swagger parlance) (e.g., the service for the sensor metadata is called
‘getSensorMetadata’) and each request and response of a service needs
to pass the method name. By adding this extra metadata to the service
communication data format, it is possible to channel calls to different ser-
vices over one WebSocket (see Section for more details). Further-
more, the nicknames are used to control access to services (more on this
below).

There are other small design choices made that do not have global impact.
These will be discussed in the following sections where needed.

General Smart Device Metadata Specification

The official Swagger RESTful APl documentation specification can be found on
https://github.com/wordnik/swagger-spec/blob/master/versions/1.2.md.
The Swagger specification is typically split over multiple files. The file with
the general metadata is physically located in the root path of the service (e.g.
http://smartlab.golab.eu/service). Then there are different files for each
separate service (e.g. if the sensor service is located at http://smartlab
.golab.eu/service/sensor then there will be a Swagger file with the specifica-
tion of the sensor service). In the case of WebSockets this makes less sense,
since there is not necessarily an HTTP path available. So we have opted to
provide one specification file, containing the general metadata and all service-
specific metadata. Appendix A contains a full Swagger specification for a Smart
Device. This example is also available on GitHub.'®

This section will introduce the general structure of the adapted Swagger file.
The example code snippet below (Listing [2.3.3), demonstrates five parts: (1)
Swagger related metadata, (2) a list of APIs, (3) the authorisation mechanisms,
(4) the Smart Device concurrent access mechanisms and (5) information of the
service in general.

Listing 2.1: The general structure of the Smart Device metadata based on

Swagger.
{
"apiVersion": "1.0.0",
"swaggerVersion": "1.2",
"basePath": "http://redlab.epfl.ch/smartdevice",
"apis": [
{
"path": "/client",
"description": "Operations about clients for the lab",
},

5The Swagger specification for an example Smart Device, https://github.com/Go-Lab/
smart-device-metadata

Go-Lab 317601 23 oflﬂl

https://github.com/wordnik/swagger-spec/blob/master/versions/1.2.md
http://smartlab.golab.eu/service
http://smartlab.golab.eu/service/sensor
http://smartlab.golab.eu/service/sensor
https://github.com/Go-Lab/smart-device-metadata
https://github.com/Go-Lab/smart-device-metadata

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

{

"path": "/sensor",

"description": "Operations about sensors",
1,
{

"path": "/actuator",

"description": "Operations about actuators",
+s
{

llpathll . II/II ,

"description": "A general endpoint that allows to access any

operation of any service",

}

1,
"authorizations": {
"goLabBooking": {
"type": "apiKey",
"passAs": "query",
"keyName": "authToken",
"authServiceUrl": "http://booking.golabz.eu/auth"

}

1,

"concurrency": { /* Swagger extension: */
"interactionMode": "synchronous",
"concurrencyScheme": "roles",
"roleSelectionMechanism": ["race", "interruptor"],
"roles": [

{
"role": "observer",
"selectionMechanism": ["race"],
"availableApis": ["getSensors"]
3,
{
"role": "controller",
"selectionMechanism": ["race"]
1,
{
"role": "admin",
"selectionMechanism": ["interruptor"]
}
]
1,
"info": {
"title": "RED Lab Smart Device",
"description": "This is an example implementation of the Go-Lab

Smart Device in LabView and demonstrates a mechatronics

Go-Lab 317601 24 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

remote lab running at EPFL",
"termsOfServiceUrl": "http://helloreverb.com/terms/",
"contact": "christophe.salzmann@epfl.ch",
"license": "Apache 2.0",
"licenseUrl": "http://www.apache.org/licenses/LICENSE-2.0.html"

Swagger-related Metadata: Looking closer at the sample snippet, the Swag-
ger specification requires the following fields to declare the version of Swagger
and the API. The version of Swagger should not be changed by the developer.

Listing 2.2: Swagger-related metadata example

"apiVersion": "1.0.0",

"swaggerVersion": "1.2",

API Metadata: The abridged snippet below lists all APl endpoints of the Smart
Device and the root URL path of the service in the ‘basePath’ field. Each API
endpoint has a path and a basic description. The other fields will be discussed
in the sections specific to each service. We can also provide a general API
endpoint, with the path /', where a WebSocket can connect to any service of
the Smart Device. This is useful to channel calls in one WebSocket (see Sec-

tion for more details).

Listing 2.3: APl metadata example
"basePath": "http://redlab.epfl.ch/smartdevice",

"apis": [
{
"path": "/client",
"description": "Operations about clients for the lab",
s
{
Ilpathll . II/II s
"description": "A general endpoint that allows to access any
operation on any service"
b

Authorisation Metadata: Swagger supports common REST-based authenti-
cation and authorisation mechanisms, e.g., OAuth. For the Go-Lab booking
system (see D4.2), we have decided to use token-based authorisation, which is
very similar to the ‘apikey’ type that Swagger supports by default, but it is a tem-
porary API key for the duration of the booking. The snippet below also defines
the authorisation service endpoint of the booking system. If future implementa-

Go-Lab 317601 25 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

tions prove that this is insufficient, we will provide a custom Go-Lab solution in
D4.5.

Listing 2.4: Authorisation metadata example

"authorizations": {
"goLabBooking": {
"type": "apiKey",
"passAs": '"query",
"keyName": "authToken",
"authServiceUrl": "http://booking.golabz.eu/auth"

Concurrent Access Metadata: We have extended Swagger to be able to
model the concurrency models of remote labs, so client applications can han-
dle the different mechanisms appropriately. Different concurrency mechanisms
exist and it is up to the lab owner to decide upon the appropriate scheme for his
lab. The ‘concurrency’ metadata field is meant to describe such mechanisms,
as shown in the following example snippet:

Listing 2.5: Concurrent access metadata example

"concurrency": { /* Swagger extension: */
"interactionMode": "synchronous", /* can also be ’asynchronous’ */
"concurrencyScheme": "roles", /* can also be ’concurrent’ then all
users have access at the same time */
"roleSelectionMechanism": ["race", "interruptor"], /* can also be
’queue’, ’fixed role’, ’dynamic role’ */
"roles": [

{

"role": "observer",

"selectionMechanism": ["race"],

"availableApis": ["getSensors"] /* a list of paths or
operation nicknames */

},
{
"role": "controller",
"selectionMechanism": ["race"]
},
{
"role": "admin",
"selectionMechanism": ["interruptor"]
}

One can interact with a lab in a synchronous or asynchronous way. If the lab
is synchronous, the users are interacting directly with the lab. If there are other

Go-Lab 317601 26 oflml

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

people using the lab concurrently the user is aware of their actions. If the lab is
asynchronous, the user typically prepares an experiment, submits it to the lab
and waits to get results back. Users are not aware of other users in this case.

The rest of this metadata is for synchronous labs, since asynchronous labs
can internally deal with concurrency issues. There are typically two concur-
rency schemes possible ‘concurrent’ and ‘roles’ (modelled in the ‘concurren-
cyScheme’ field). Either the lab allows users to operate the experiment at the
same time or provides different user roles to control access to the experiment.
Like in other computer access control mechanisms, user roles limit the control
to the system, in our case the services. Different mechanisms (modelled in
the ‘roleSelectionMechanism’) are used to switch roles, we have identified the
following options:

e fixed role: The user cannot be promoted from one role to another, e.g. the
teacher can control the Smart Device but the students can only observe.

e dynamic role: The user’s role can change during the session, e.g. a user
who is observing an experiment can at a later point control it.

e race: The user who tries to access the Smart Device at the time no other
user is using it, gets access. If the Smart Device is busy, the user has to
retry until it is available.

e queue: When a user accesses the Smart Device, she is added to a waiting
queue and she will get access when the others before her have finished.

e interruptor: The user has the ability to abort the session of the currently
active user and take control of the Smart Device.

Finally, each role can be described in the ‘roles’ field. Each role has a name (in
the ‘role’ field) and the role selection mechanisms that this role has are listed in
‘selectionMechanism’. Furthermore, the role can declare which services will be
accessible if you are assigned that role in the ‘availableApis’ field. This concur-
rency related metadata will be validated in future Smart Device implementations
and will be updated if needed in D4.5.

General metadata: The general metadata provides information about the lab,
such as the name, a short description, a contact person, and licensing informa-
tion. These are default Swagger fields that can be useful when publishing a lab
on the Lab Repository. The snippet below provides an example:

Listing 2.6: General metadata example

"info": {
"title": "RED Lab Smart Device',
"description": "This is an example implementation of the Go-Lab

Smart Device in LabVIEW, it demonstrates a mechatronics remote
lab running at EPFL",

"termsOfServiceUrl": "http://redlab.epfl.ch/terms/",

"contact": "christophe.salzmann@epfl.ch",

"license": "Apache 2.0",

Go-Lab 317601 27 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"licenseUrl": "http://www.apache.org/licenses/LICENSE-2.0.html"

Service Metadata Specification

As mentioned each Smart Device service needs to be declared in the Swagger
specification. To do this, a JSON object needs to be added to the ‘apis’ field
of Swagger and optionally new data models need to be added to the ‘models’
field (see below). However, we have tried to design the specification, so that for
simple Smart Devices developers do not need to learn how to describe a service
in the metadata. Go-Lab provides reusable service metadata descriptions for
the sensor, actuator and logging services. In this section we will present a
simple example of a service Swagger specification, namely the user activity
logging service. Afterwards we will elaborate on the metadata for the sensor
and actuators.

User activity logging service — getLogginginfo:

The user activity logging service is described in Section in more detail. But
essentially, we want to return ActivityStream objects (see D5.1) of the user ac-
tivity, to the client. The following snippet provides the description of the service
and its data models:

Listing 2.7: An example of a service declaration — the user activity logging
service.

"apis": [
{
"path": "/logging",
"description": "Returns the user activity of the current user in
ActivityStream format",
"protocol": "WebSocket",
"operations": [
{
"method": "Send",
"nickname": "getLoggingInfo",
"summary": "Streams the current logging information of
the user activities and the lab activities",
"notes": "Returns a JSON array of Activity Stream
objects, see http://activitystrea.ms/",
"type": "LoggingInfoResponse",
"webSocketType": "text",

"produces": "application/json",
"parameters": [
{
"name": "message",
"description": "the payload for the getLoggingInfo
service",

"required": true,
"paramType": "message",

"type": "SimpleRequest",

Go-Lab 317601 28 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"allowMultiple": false

b
]
}
1,
"responseMessages": [
{
"code": 401,
"message": "Unauthorised access. The authentication token
is not valid"
3,
{
"code": 402,
"message": "Too many users"
3,
{
"code": 405,
"message'": "Method not allowed. The requested method is
not allowed by this server."
3,
{
"code": 422,
"message": "The request body is unprocessable"
b
]
}
1,
"models": {
"LoggingInfoResponse": {
"id": "LoggingInfoResponse",
"required": [
"method", "logs"
1,
"properties": {
"method": {
"type": "string"
3,
"logs": {
"type": "array",
"items": {

"type": "object",

"description": "An Activity Stream object. This JSON
object should follow the ActivityStreams 1.0 JSON
specification described at
http://activitystrea.ms/specs/json/1.0/"

b
3
b
1,

Go-Lab 317601 29 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"SimpleRequest": {
"id": "SimpleRequest",
"required": [
"method"
1,
"properties": {
"authToken": {
"type": "string"

3,
"method": {
"type": "string",
"description": "The method should be equal to the
nickname of one of the provided services."
3

To add a service one needs to add a JSON object to the ‘apis’ array (here only
the discussed element is shown for brevity) and add JSON objects describing
the necessary data models to the ‘models’ array (if applicable).

The API object contains the path and description as mentioned before, and also
an optional ‘protocol’ field to express that the service uses WebSockets. This
is our extension to Swagger to support WebSockets and it could also have the
value ‘HTTP’ in case REST services are needed. Then the Swagger specifica-
tion declares a list of ‘operations’ that contain all services and ‘responseMes-
sages’ that contain all error messages that the service can return (relying on
HTTP status codes (Hypertext Transfer Protocol (HTTP) Status Code Registry
(RFC7231), 2014)). In this case, there is only one service with the nickname
‘getLoggingInfo’. Then one can specify the protocol method, in case of Web-
Sockets this is ‘Send’'®. If the HTTP protocol would be used, the methods can
be GET, PUT, POST, DELETE, etc. Another Go-Lab extension to support Web-
Sockets is ‘WebSocketType’ to enable the configuration of ‘text’ or ‘binary’ Web-
Sockets. Binary WebSockets can make the transmission of binary data much
more efficient, e.g. this is useful for video streaming. Additional documentation
can be provided in the ‘summary’ and ‘notes’ fields. Next, the service argu-
ments and results can be configured. The ‘type’ field contains either a JSON
Schema primitive data type'”-'® or the ID of a model in the ‘models’ list. In this
case it refers to the ‘LoggingIinfoResponse’ data model, which we will elabo-
rate on below. Then one can also model the response media type using the

8When WebSockets are used, the ‘Send’ method can be omitted since there typically is only
one WebSocket method. However in some WebSocket dialects other methods can be available
that have to be defined, e.g Socket.io also has a ‘emit’ method (see http://socket.io/docs/).

7Swagger RESTful APl Documentation Specification, https://github.com/wordnik/
swagger-spec/blob/master/versions/1.2.md

8JSON Schema specification — JSON Schema: core definitions and terminology json-
schema-core, http://json-schema.org/latest/json-schema-core.html

Go-Lab 317601 30 oflﬂl

http://socket.io/docs/
https://github.com/wordnik/swagger-spec/blob/master/versions/1.2.md
https://github.com/wordnik/swagger-spec/blob/master/versions/1.2.md
http://json-schema.org/latest/json-schema-core.html

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

‘produces’ field, which can contain any Internet Media Type (Freed, Baker, &
Hoehrmann, 2014). This can be particularly useful for a service that returns
for example images or structured text. The ‘parameters’ field contains a list of
arguments that can be passed to the service. Typically this is only one field and
it is a request data model. We have provided a simple request model, namely
‘SimpleRequest’. More complex request models can of course be defined by
the developer when needed.

Both the request and response data models are available in the ‘models’ array.
The models used by other services have been omitted in Listing [2.7] for brevity.
These models are expressed in JSON Schema. JSON Schema models have an
‘id’, ‘required’ and ‘properties’ fields. The ‘id’ field is required and is used to ref-
erence the model, e.g. in the ‘type’ fields. The ‘properties’ field contains a list of
fields of the data model. The ‘required’ field lists all fields of the ‘properties’ field
that must be provided in the data model. The elements of the ‘properties’ array
express the data type of each of the data model fields. For example, the ‘Sim-
pleRequest’ model has an ‘authToken’ field of the type ‘string’ and a ‘method’
field of the type ‘string’. As mentioned before, this ‘method’ field should contain
the nickname of the service, i.e., ‘getLoggingInfo’. Looking at the ‘LoggingIn-
foResponse’ data model, one notices again the ‘method’ field and the ‘logs’
field which is an array with JSON objects that should be ActivityStream objects.
We did not express the whole ActivityStream data model here.

For more information on how to add a new service we refer to the Swagger spec-
ification (Swagger RESTful APl Documentation Specification, |n.d.), the JSON
Schema specification and Appendix A, which lists how we have extended Swag-
ger.

Sensor Metadata Service — getSensorMetadata:

As mentioned above, the metadata that describes the Smart Device sensors
and actuators are provided via a service and not in the metadata description
itself. In this section we will elaborate on the sensor metadata. We will describe
how one can call the service and the responses returned. The Swagger sensor
service specification can be found in Appendix B.

The service is called ‘getSensorMetadata’ and can be called with a ‘SimpleRequest’
data model, which is just a JSON object with a ‘method’ field and an optional
authentication token (which is not needed to retrieve metadata):

Listing 2.8: Request example of getSensorMetadata service.

"method": "getSensorMetadata"

This returns an array of sensors describing each sensor made available to the
outside world (i.e., a client or external service). The following example shows
two sensors: a 3D acceleration sensor and a video stream.

Go-Lab 317601 31 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Listing 2.9: Response example from getSensorMetadata service.

{
"method": "getSensorMetadata",
"sensors": [
{
"sensorId": "3Dacc",
"fullName": "3D acceleration",
"description": "the 3D acceleration of the robot handle",
"webSocketType": "text",
"produces": "application/json",
"values": [
{
"name": "X",
"unit": "mxs"-2",
"lastMeasured": "2014-06-23T18:25:43.511Z",
"rangeMinimum": -100.00,
"rangeMaximum": 100.00,
"rangeStep": 0.10,
"updateFrequency": 10 /* in Hertz */
3,
/* Repeat for ’Y’ and ’Z’ acceleration */
{
"name": "Y",
3,
{
"name": "Z",
}
]

Several sensor or actuator configurations may be required. In the ‘configuration’
field, the different parameters to configure the sensor can be described using
JSON Schema compliant primitive types or models.

"configuration": [

{

"parameter": "precision",

"description": "The precision is expressed as a power
of 10, e.g. to allow a precision of 0.01 the value
will be -2 (from 10°-2).",

"type": "int"

X

1,

The accelerometer will continuously stream information to the client. The ‘user-
ModifiableFrequency’ field describes if the interval can be modified or not.

Go-Lab 317601 32 oflml

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"accessMode": {
"type": "push",
"nominalUpdateInterval": 100, /* in ms */
"userModifiableFrequency": true

+s

Streaming video to the client is an essential service that a Smart Device should
provide through a sensor. Actually the video image could either be seen as
a pixmap (array of pixel values) or as an encoded image, for example JPEG
encoded. The later being 10% to 90% smaller in size. The example below
shows the image encoded as a JPEG image (specified as a media type in the
‘produces’ field). The JPEG encoding results in binary data that may contain
specific characters that could be interpreted as control characters, thus either
the JPEG data is transmitted through a binary WebSocket (recommended) or it
is BinHex prior to be sent using a textual WebSocket (defined in the ‘webSock-
etType’ field). The metadata also describes which configuration parameters are
exposed to the client.

Listing 2.10: Example of a video stream sensor and its configuration

{
"sensorId": "video",
"fullName": "video stream",
"description": "front camera video stream",

"webSocketType": "binary",
"singleWebSocketRecommended": true,

"produces": "image/jpeg",
"values": [
{
"name": "front",

"lastMeasured": "2014-06-23T19:25:43.511Z",
"updateFrequency": 10

3
1,
"configuration": [
{
"parameter": "width",
"type": "int"
3,
{
"parameter": "height",
"type": "int"
3,
{
"parameter": "compression",
"description": "The JPEG compression quality, ranging

from O (lowest quality) to 100 (highest quality).",

Go-Lab 317601 33 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"type": "float"

3,
{
"parameter": "colourFilter",
"description": "The colour value in an array of 3
decimal RGB values",
"type": "array",
"items": "int"
X

1,

"accessMode": {
"type": "stream",
"nominalUpdateInterval": 10,
"userModifiableFrequency": true

Each sensor carries the following information:

sensorld: the ID that will be used to identify the sensor, ‘3D-acc’.
fullName: the sensor full name, ex. ‘3D acceleration’.

description: a more detailed description of the sensor, ‘the 3D acceleration
of the robot handle’.

webSocketType: the type of WebSocket, it can either be ‘text’ or ‘binary’,
the default is ‘text’. ‘binary’ WebSockets are mainly used for video stream-
ing. Using binary WebSockets is more efficient, since the data does not
need to be BinHex-ed.

produces: defines the Internet media type (Freed et al., 2014) of the re-
sponse provided by the sensor service, it is typically application/json
for a JSON encoded response. However for a video streaming sensor that
supports JPEG compression, it should be image/ jpeg.

values[]: describes the array of values for a given sensor. For a single
value sensor like a temperature sensor the ‘values’ array contains only
one element. For a complex sensor like an accelerometer, the ‘values’
array contains several elements, for example 3 elements, one for each in-
dividual X-Y-Z acceleration of the arm handle. Values contain a name and
unit, and can additionally have the last measured time stamp and a range
minimum, maximum and iteration step of the range in which the values
safely operate. Furthermore, if the value is automatically or continuously
measured the rate at which the measurement is updated can be defined
in Hertz (s~!) in the ‘updateFrequency’ field.

configuration[]: describes the possible configuration parameters that are
applicable to the sensor. When requesting a sensor value, the here de-

Go-Lab 317601 34 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

fined configuration parameters can be used to adjust the sensor. These
parameters are described by providing a name (in the ‘parameter’ field)
and the data type using JSON Schema data types. One can also model
array types, as demonstrated in the ‘colorFilter’ configuration parameter of
the video stream sensor. For complex configuration parameters it would
also be possible to refer to a JSON Schema data model.

e accessMode: provides more information on how the sensor can be ac-
cessed. Some sensors can only measure once and others provide a
continuous stream of data. Such differences can be modelled using the
access mode ‘type’, which can be ‘pull’ for sensors that only measure
once, and ‘push’ for sensors who keep on providing measurements over
time. For ‘push’ sensors, one can specify the nominal update interval and
whether the measurement frequency can be modified by the user (using
respectively the ‘nominalUpdatelnterval’ and ‘userModifiableFrequency’).
The access mode type can also be ‘stream’, for instance for streaming
video if more complex mechanisms are used then push technology.

As mentioned, both sensors and actuators can be configured, which means that
the information goes both ways even for the sensor. For example, the image
resolution of a webcam can be set through such configuration. Similarly for
actuators some aspects may be set through configuration while the actual value
is set through the actor value itself. For example the gain of a power amplifier
can be specified through configuration while the actual value that needs to be
amplified is set via the actuator value variable. It is expected that sensors and
actuators are rarely configured, if a configuration is constantly changed this
might indicate that the configuration should be better expressed as a virtual
sensor/actuator.

Each sensor value carries the following information when it makes sense:

e name (required): the sensor value name, for example ‘X’ for the accelera-
tion toward the X axis. for a single value sensor, the name can be omitted.

e unit: the unit of the sensor value, for example ms=2 for the X acceleration.
The set of possible units is almost infinite and each lab owner has probably
his prefered set of units. Thus it is difficult to impose units. As a best
practice, we recommend to use the Sl units (Taylor & Thompson, 2008)
and the Sl derived units'®.

e lastMeasured: the timestamp when the sensor was last measured.

e rangeMinimum: the measurement of a sensor can have a lower and upper
bound. This field presents the minimum of the interval, if there is one.

e rangeMaximum: the maximum of the measurement interval.

e rangeStep: The precision of the sensor can be limited or it can only mea-
sure at certain points. This field allows to model the discrete steps that a
sensor supports.

19SI Derived Units — Wikipedia, http://en.wikipedia.org/wiki/SI_derived_unit

Go-Lab 317601 35 oflﬂl

http://en.wikipedia.org/wiki/SI_derived_unit

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

e updateFrequency: how many times per second the sensor is refreshed.
This field is expressed in Hertz (s1).

Actuator Metadata Service — getActuatorMetadata:

Similar to the sensor metadata, the actuator metadata is also provided via a
service, named ‘getActuatorMetadata’. The service is very similar to the sensor
metadata service, so we will only provide examples and discuss the differences.

The service can be called with a ‘SimpleRequest’ data model, which is just a
JSON object with a ‘method’ and an optional ‘authToken’ field:

Listing 2.11: Request example of getActuatorMetadata service.

"method": "getActuatorMetadata"

The response is structured as in the following example (see Appendix A & B for
details):

Listing 2.12: Response example of getActuatorMetadata service.

"method": "getActuatorMetadata",
"actuators":

[

"actuatorId": "motor",
"fullName": "Wheel motor",
"description": "operate the motor of the wheel",
"webSocketType": "text",
"produces": "application/json",
"consumes": "application/json",
"values": [
{
"name": "left",
"unit": "radian",
"rangeMinimum": 0.00,
"rangeMaximum": 3.14,
"rangeStep": 0.10,
"updateFrequency": 10,
"lastMeasured": "2014-06-23T19:25:43.511Z"

"name": "right",

"unit": "radian",

"rangeMinimum": 0.00,

"rangeMaximum": 3.14,

"rangeStep": 0.10,

"updateFrequency": 10,

"lastMeasured": "2014-06-23T19:25:43.511Z"

Go-Lab 317601 36 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

b
1,
"configuration": [
{
"parameter": "precision",
"description": "The precision is expressed as a power
of 10, e.g. to allow a precision of 0.01 the value
will be -2 (from 107-2).",
"type": "int"
b

1,

"accessMode": {
"type": "push",
"nominalUpdateInterval": 100,
"userModifiableFrequency": true

As one can see the actuator metadata is almost identical to the sensor meta-
data. The following differences can be found:

e actuatorld: The identifier field has a different name, but identical purpose
as for a sensor.

e consumes: The ‘consumes’ field models what data type can be input into
the actuator. By default this is JSON, as modelled here ‘application/json’.
But identical to the ‘produces’ field, one can set it to any Internet Media
Type (Freed et al., 2014).

2.3.4 Sensor Service — getSensorData

The sensor and the actuator services are at the core of the Smart Device inter-
action and they share many elements. The data exchange between clients and
the Smart Device is mainly done using these two services.

It is envisioned that for each sensor or actuator there is an equivalent method to
render the information at the client side. Typically a client app could render the
sensor/actuator information transmitted via a WebSocket. By parsing the Smart
Device metadata information these apps could partially adapt to the Smart De-
vice service, this will enable app reuse with other Smart Devices. Similarly, a
basic app could be replaced by a more advanced one. For example, let us as-
sume that the Smart Device provides a temperature measurement ‘S1’, every
second. The metadata provides the required information for the app to connect
to the corresponding WebSocket. The basic app will just update a text field in
the browser (see Figure [5).

The lab user may be interested in having the temperature evolution over time.
Another app may provide the mechanism to locally store the last minutes of

Go-Lab 317601 37 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

S1:344

Figure 5: The basic app that renders the temperature sensor S1

100 [v]

AN

100 [v]

4000 [s] 0.0 [s]

Figure 6: The advanced app, which locally stores the temperature and dis-
plays them as a curve.

measurements and display it as a curve (see Figure[6). There is absolutely no
change made on the Smart Device service, the ‘advanced’ app uses the same
metadata information and connects to the same WebSocket. The app design is
left to the app developer. The examples in Figure [5] and [f] illustrate a possible
scenario of the metadata use reflected in app design.

The sensors and actuators can be:

e real: represents a physical sensor on the Smart Device, for example a
temperature sensor or an angular position measurement.

e virtual: represents a computed sensor, for example a speed measurement
derived from a position measurement. Virtual sensors and actuators are
also used to interface internal functionalities when required.

e complex: represents the aggregation of sensors/actuators, for example
buttons on the front panel of an oscilloscope.

The data structure returned by a sensor or sent to an actuator may vary de-
pending on the number of values and the measurement data structures (see
Figure [7). The data structure contains three fields to enable flexibility. In the
‘valueNames' field, the names of the sensor or actuator value is listed as re-
turned by the sensor or actuator metadata services, getSensorMetadata and
getActuatorMetadata (see Section [2.3.3). Then the actual data for each value
is listed. The data as well as the ‘lastMeasured’ timestamps are listed at the

Go-Lab 317601 38 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

;E
1 [
(1]

valueNames

data

[D.,D.,D]
[,]

lastMeasured

|:| = the name of the value as a string
|:| = the measured data can be represented in different formats

|:| = timestamps when the data was measured

Figure 7: Sensor and actuator data structures.

same position as the value name. So all information of one value is at the same
array index as indicated by the dashed lines in Figure [7 Finally, the ‘lastMea-
sured’ array contains the timestamps related to when the value name with the
same index was measured. This timestamp array is optional and should not be
included when sending data to set an actuator. The elements in the data array
can be of different formats. It can be:

e a single value, for example temperature

e an array of values representing a set of single values over time, for exam-
ple temperatures over the last minute

e aggregated values representing a sensor or actuator value that returns
more than 1 value, for example a 3D accelerometer (which is not split in
separate values).

e an array of aggregated values representing a set of aggregated values
over time, for example 3D acceleration over the last minute. Here the data
structure can be modelled in two different ways. In the first case, each
value measured at one second is modelled as a value. In the second
case, it is a single value that contains a data array with 60 elements (one
for each second) and there is an additional ‘lastMeasured’ array containing
the timestamps.

e complex data structures can be used when sensors and actuators require
input and output that is not definable in primitive variables or arrays. For
instance complex JSON objects or binary data might be required in some
cases.

As a complex data structure, a video camera can be seen as a single value
sensor that returns a compressed image, but it can also be seen as an array of
values when considering each pixel of the image bitmap or it can be seen binary
value with JPEG encoded data. The choice between the three representations
is left to the lab owner.

Listing shows an example request to the getSensorData service. Option-
ally, an access role from the concurrency role list (see Section [2.3.3) can be

Go-Lab 317601 39 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

added to express the access rights the client wants to have. If no accessRole is
available, the Smart Device can decide the role. The Smart Device will decide
whether these rights can be given and react accordingly.

Listing 2.13: Request example of getSensorData service.

"authToken": "dskds909ds8a76as675sab4",
"method": "getSensorData",
"accessRole": "controller",
"sensorId": "3D-pos",
"updateFrequency": 20,
"configuration": [
{
"parameter": "precision",
"value": 2

The getSensorData could return the response in Listing It might be more
efficient to handle data at the client in the form of arrays of values than to han-
dle complex data structures interleaved with timestamps. Therefore, the Smart
Device will place the measured data of its ‘valueNames’ in the ‘data’ array and
the timestamps in another ‘lastMeasured’ array at the same index as the corre-
sponding sensor value in the ‘valueNames’ array. For instance, sensor value ‘X’
has measurement 12.37 at time 2014-06-23T718:28:43.511Z'.

Listing 2.14: An example response of Listing[2.13/for a 3D position sensor
with multidimensional data.

{
"method": "getSensorData",
"sensorId": "3D-pos",
"accessRole": "controller",
"responseData": {
"valueNames": ["X", "Y', "Z"],
"data": [12.37, 23.51, 43.18],
"lastMeasured": [
"2014-06-23T18:28:43.511Z",
"2014-06-23T18:28:43.5117Z",
"2014-06-23T18:28:43.511Z"
]
}
}

Listing illustrates the response if the access role is ‘controller’. Imagine that
there is a reason for the Smart Device not to provide access to this sensor by
another role, e.g. the ‘observer’ role. In this case, the Smart Device returns the

Go-Lab 317601 40 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Listing response. Now an ‘observerMode’ field is returned that provides
extra info with waiting information that can be used to display to the user how
long he has to wait and how many people are in front of him (see Section [2.4.2]
for details). The ‘queueSize’ and ‘queuePosition’ field enable to display the
position in the queue and the ‘estimatedTimeUntilControl’ provides the waiting
time in seconds until the user can take control of the lab.

Listing 2.15: An example response of Listing 2.13|for an ‘observer’ role.
{

"method": "getSensorData",
"sensorId": "3D-pos",
"accessRole": "observer",
"observerMode": {
"queueSize": 4,
"queuePosition": 3,
"estimatedTimeUntilControl": 190

The Smart Device may offer the possibility to configure the video sensor (see
Listing [2.16), if there is a ‘configuration’ field with the necessary parameters
present in the sensor metadata as for example described in Listing [2.10] This
option can be very useful to adapt for example to the client screen by reducing
the transmitted image size, thus reducing the amount of data sent to a smart-
phone compared to the amount sent to a desktop computer. Similarly the image
compression level might be controlled. The sensor metadata tells which settings
are exposed to the client (see Listing [2.10]for an example).

Listing 2.16: Request example of the getSensorData service for a ‘video’
sensor with configuration.

"authToken": "dskds909ds8a76as675sab4",
"method": "getSensorData",
"accessRole": "controller",

"sensorId": "video",

"updateFrequency": 25,

"configuration": [

{
"parameter": "width",
"value": 640

3,

{
"parameter": "height",
"value": 480

3,

{
"parameter": "compression",

"value": 92.3

Go-Lab 317601 41 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

3,

{
"parameter": "colorFilter",
"value": [60, 27, 229]

}

The pace at which the data (e.g. video images) are sent can also be controlled.
If for some reason, the user temporarily needs to throttle the video stream, the
client application can ask the Smart Device to reduce the number of images per
second sent via the ‘updateFrequency’ field, assuming the ‘userModifiableFre-
quency’ field in the ‘accessMode’ field is true. The sending may also be halted
for some period of time by setting the ‘updateFrequency’ field to 0, and then
setting the updateFrequency larger than 0 will resume the sending. It is up to
the client application designer to decide if she wants to take advantage of these
features.

Listing 2.17: An example request to stop sending data.

{
"method": "getSensorData",
"sensorId": "video",
"accessRole": "controller",
"updateFrequency": 0

b

2.3.5 Actuator Service — sendActuatorData

The actuator service is very similar to the sensor service (see Section [2.3.4),
hence most of the fields are equivalent. The actuator may be simple, virtual or
complex. Each value carries the needed information about its representation.
The actuator could also be configured (for example the gain of the amplifier
could be set using the configuration, similarly the firmware of an embedded
controller could be updated after validation of course). The main difference with
the sensor service is the fact that the sendActuatorData method allows the user
to actually set the desired actuator value. As the following example shows:

Listing 2.18: An example response for the sendActuatorData service.

{
"authToken": "dskds909ds8a76as675sab4",
"method": "sendActuatorData",
"accessRole": "controller",
"actuatorId": "motor",
"valueNames": ["left"],
"data": [17.90]

}

Go-Lab 317601 42 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

The internal functionality of the Smart Device should first validate the value
sent (see the Security and local control functionality in Section prior to
applying it to the actuator itself. The actuator may also be controlled by another
client. While there is no concurrency issue for the sensor, the access to the
actuator needs to be moderated. Various schemas can be implemented by the
lab owner to internally manage the actuator access (see Section 2.4.2). In the
following examples, we will assume one of the most common scenarios, a user
can either control the lab or can observe what others are doing (respectively
using the controller and observer role). Given that the user has a controller role,
the actuator may acknowledge the value sent via the payload. The payload is
optional and the format is not specified. As a good practice we recommend to
return the data of the actuator in the same format as the request data format.
The returned actuator data in the payload can be used to update the actuator
value representation on the client application (see Section[2.4.2]for an example).
Or it can also be useful to provide more information about the status of the
actuator or lab that can be useful to share with the users. The client can assume
that the actuator has fulfilled the request when no errors are returned.

Listing 2.19: An example response for the sendActuatorData service to a
user with the controller role.

{
"method": "sendActuatorData",
"accessRole": "controller",
"lastMeasured": "2011-07-14 19:43:37 +0100",
"payload": {
"actuatorId": "motor",
"valueNames": ["left"],
"data": [17.90]
}
}

If the actuator is currently used by another client, a specific payload, ‘observer-
Mode’, will return some information regarding the time the user has to wait prior
to get access to the actuator, similar to the example in Section [2.3.4]

Listing 2.20: An example response for the sendActuatorData service to a
user with the observer role.

"method": "sendActuatorData",
"accessRole": "observer",
"observerMode": {

"queueSize": 7,

"queuePosition": 4,

"estimatedTimeUntilControl": 736

Go-Lab 317601 43 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Furthermore, the client app of a user with the ‘interruptor’ role can abort the
actuator control of another user. The way the conflict is resolved is defined
by the lab owner and/or the client application. There could be constant user
interruptions or this role could only be granted to a few users.

Listing 2.21: Interrupting an on-going session of another user

{
"authToken": "dskds909ds8a76as675sab4",
"method": "sendActuatorData",
"actuatorId": "3D-pos",
"accessRole": "interrupt",
"valueNames": ["X", "y", "z"],
"data": [12.34, 48.39, 83.92]

}

2.3.6 User Activity Logging Service — getLogginginfo

The user activity logging service has been discussed in the metadata service,
where it was used as an example of adding an optional service to the spec-
ification (see Section [2.3.3). The user activity logging service returns logged
user actions or lab info in the ActivityStream JSON format. In D5.1, we decided
on this format for the exchange of user interaction data. In this section we will
provide examples how one can access the service and its reponses.

The service can be called with a ‘SimpleRequest’ data model, which is just a
JSON object with a ‘method’ field and an optional ‘authToken’ field to authenti-
cate the user (which is used here since this can be privacy sensitive data):

Listing 2.22: A request example to the getLogginginfo service

"authToken": "dskds909ds8a76as675sab4;",
"method": "getLoggingInfo"

The service then returns a response similar to the following sample snippet:

Listing 2.23: A response example to the getLogginginfo service

{
"method": "getLoggingInfo",
"logs": [
{
"verb": "access",
"published": "2011-02-10T15:04:55Z",
"language": "en",

"actor": {
"objectType": "person",
"id": "urn:utwente:person:anjo:anjewierden",
"displayName": "Anjo Anjewierden",

Go-Lab 317601 44 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"url":
"http://www.utwente.nl/gw/ist/medewerkers/wetenschappelijke_staf/
anjo_anjewierden/",
"image": {
"url":
"http://www.utwente.nl/gw/ist/medewerkers/wetenschappelijke_staf/
anjo_anjewierden/anjo_anjewierden-1. jpg",
"mediaType": "image/jpeg",
"width": 133,
"height": 177

b
1,
"object" : {
"objectType": "sensor",
"id": "urn:redlab:epfl:ch/3D-pos"
"url": "http://redlab.epfl.ch/smartdevice/sensors/3D-pos",
"displayName": "3D position"
3,
"target" : {
"objectType": "lab",
"id": "urn:redlab:epfl:ch/smartdevice",
"displayName": "RED Lab",
"url": "http://redlab.epfl.ch/smartdevice/"
}

Again, the method name is returned and a list of ActivityStream objects. The
ActivityStream objects will be pushed to the client as they become available.

2.3.7 Client Application Service — getClients

This required service provides links to the client applications that are provided
by the lab owner to operate the lab. The service is called ‘getClients’. The
implementation technology of the clients is not strongly specified, but Go-Lab
advocates OpenSocial gadgets (Marum, |n.d.), since they effortlessly run on the
Go-Lab ILS platform (see D5.1 and D5.2).

A list of client applications can be requested using the following ‘PublicRequest’
call for the method ‘getClients’.

Listing 2.24: A request example to the getClients service

"method": "getClients"

Upon which a list like in the following example snippet can be returned:

Go-Lab 317601 45 oflml

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Listing 2.25: A response example to the getClients service

{
"method": "getClients",
"clients": [
{
"type": "OpenSocial gadget",
"url": "http://superlab.epfl.ch/client/dataviewer.xml"
1,
{
"type": "OpenSocial gadget",
"url": "http://superlab.epfl.ch/client/video.xml"
1,
{
"type": "OpenSocial gadget",
"url":
"http://superlab.epfl.ch/client/experiment-operator.xml"
}
]
}

Each element in the ‘clients’ list contains a ‘type’ and a ‘url’. The client type
declares which type of application it is. In the current version of the Smart De-
vice specification, we have identified the following types: ‘OpenSocial Gadget,
‘W3C widget’, ‘Web page’, ‘Java WebStart’ and ‘Desktop application’. This can
be extended in the future. Within Go-Lab, we advocate the use of OpenSocial
Gadgets to ensure interoperability (see D5.2).

2.3.8 Models service — getModels

This service is optional and can provide several models of the physical lab (i.e.
the instrumentation) and the theory behind the experiment. For instance, a 3D
graphical model of the lab instrumentation can be provided. With this graphical
model, a client app can generate a GUI that provides a 3D scale object that
student can manipulate to understand the whole setup. Together with a theo-
retical or mathematical model of the experiment, a client app could be build that
provides a simulation of the lab. This is useful to provide an interactive version
of a remote lab, which could be used by students when the lab is already in use
(i.e. to provide a better observer mode).

Due to the wide range of existing formats to express graphical and theoretical
models (e.g. VRML?, X3D?' & MathML?2), we do not limit the Smart Device
specification to one specific option. The choice of the model language is up to
the lab owner. However the lab owner should define in the service definition
which format is returned by the getModels service. This can be done through
the ‘produces’ field and a media type. We do not provide an example definition

20Virtual Reality Modeling Language (VRML), http://en.wikipedia.org/wiki/VRML
21X3D, http://en.wikipedia.org/wiki/X3D
22MathML, http://www.w3.org/Math/

Go-Lab 317601 46 of[144)

http://en.wikipedia.org/wiki/VRML
http://en.wikipedia.org/wiki/X3D
http://www.w3.org/Math/

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

sd Use a Smart Device lab

)

ILSPlatform BookingSystem lab:SmartDevice
I

! authenticate(student) |

teacher =
getTeacherUser(student)

useILS(Iab)‘ :I

validateBooking(teacher, date)

reserved =
checkBooking(teacher, user)

[reserved=true] token, deviceUrl

[reserved=false] error
< ___________________

[reserved=true] aythenticate(token, deviceUrIL_

: »
' verifyToken(token, lab)

|:1 accessGranted
accessGranted g
S T e
[accessGranted=false] |
showLoginError() '
[accessCiranted=true] useLab(token)

»
!

Figure 8: UML sequence diagram of the interaction between the Go-Lab
booking system and a Smart Device.

for the getModels service, but we refer to Section for more information on
how to define such a service for the Smart Device.

2.4 Smart Device Interactions

In this section, we elaborate on several interaction scenario’s between client
apps, external services and the Smart Device.

2.4.1 Authentication and Booking

A Smart Device can require booking. To support this, Go-Lab provides its own
simple booking system, as specified in D4.2. In this section, we will briefly
summarise the D4.2 specification related to the booking system and the Smart
Device. The booking use case itself is not recapitulated here, since it solely
involves the booking system.

Since we decided in D4.2 that the Go-Lab booking system will manage the
complete booking calendar of a Smart Device, the Smart Device only needs
to validate the booking token with the Go-Lab booking system. Figure |8]illus-
trates how a client app with a reservation can use a Smart Device. The student
can use the Smart Device with the teacher’s reservation for a specific date.
The booking has to be validated with the Booking System. If the booking is
available, a token will be returned. This is the authentication token that can
be used to access the Smart Device services and this is the token that was

Go-Lab 317601 47 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

~
L] By - Craasp & - Space, RED ws *

« C' N £ https://graasp.epfl.ch/#item=space_2185 4 I]DI-] =

¥ Favorites ¥ Clipboard L4 ¥ Notifications T&
\ el L a Sign in | Sign up (M :

11

guest RED smart RED ws

100 [v]

~—1

-10.0 [v]

400 [s] 00 [s]

WS sliders Btn
Waiting time about 3:50 min Nbr. Users waiting
i H 2
Ref Kp Ti v

Figure 9: Ul mockup of a waiting queue visualisation.

modelled as the Swagger API key in Section [2.3.3] The Smart Device then
validates this token with the Booking System. This is the only functionality that
a Smart Device needs to implement to enable booking, as discussed in Sec-
tion[2.3.2] Essentially this means connecting securely to the Booking System to
validate the authentication token. When the token is valid, the user can access
the Smart Device. Note, that in this updated Smart Device specification, the
authenticateToken(token, deviceUrl) and useLab(token) calls are actually
integrated in the calls to the different services, which can require an authenti-
cation token, e.g. for the user activity logging service (see Section the
request itself contains the authentication token:

Listing 2.26: An example request to the getLogginginfo service using an
authentication token

"authToken": "dskds909ds8a76as675sab4;",
"method": "getLoggingInfo"

2.4.2 Interaction Modes

One of the challenges when dealing with remote labs is to handle concurrent
connections (see Section[2.3.3). While this issue can be resolved through book-
ing, additional measures can be taken to enhance the user experience. In some
scenarios these features might also be desirable from a pedagogical point of
view.

Go-Lab 317601 48 oflml

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Controller mode Cbserver mode

Through these slicers you can act an the systern You can anly abserve what is going on
You shoulkd have exglusive accets (o pantral the system Shcears are grayved aut |/ removed

Figure 10: Ul mockups of potential client apps used with an observer and
controller role.

The default mode of interaction is one-to-one where one client is connected to
the Smart Device. A given time slot could have been negotiated via the booking
mechanism. In addition to the booking mechanism, or when no booking mech-
anism is present, the Smart Device can implement a queue with a priority or a
FIFO access policy. In the case of a FIFO queue, the client should be informed
about the number of users ahead and the estimated waiting time (see Figure[9).
It is up to the Ul designer to decide how to present this information, but the
Smart Device will provide the information. The client application developer may
decide to implement support for the different access roles of the Smart Device
(as discussed in Section [2.3.3). All the needed information is provided by the
Smart Device.

Figure [9] illustrates that the client app is waiting another 3:50 min prior to get
access to the experiment. If an observer role is available (see Section [2.3.3),
s/he can observe actions made by others in the meantime.

As described in Section [2.3.3] different roles can be defined for a Smart Device
that supports concurrency. For instance, a controller role that allows the client
to act on the remote equipment which translates basically to setting an actuator
value. In the observer role the client could visualize the information returned by
the sensors. In this mode the actuator values may also be updated to reflect the
modifications made by the user that currently controls the Smart Device, but the
user with the observer role cannot modify them.

The developer of the client application can take advantage of the information
returned by the Smart Device to for example show/hide (or gray-out) the sliders
that permits to change the actuator values according to the current state, see

Figure[10]

Go-Lab 317601 49 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

sd smartfdevi(efusefwithfmuItiplefwebsockets)

% client : App | wsl : WebSocket | | ws2 : WebSocket |
: User

1: loadApp(‘ |
L‘”D’*l.l‘ wsl = createWebSocket() |

|
| [
| I
| | I
| | I
1.2: send({'method" | | |
| I
I

- 'getSensorData’, |

'sensorld": 's1')
1.2.1: getSenjsorData('s1")

DL‘ I
ﬂ< ,,,,,,,,, e gl
s1_data |

1.3: ws2 = createWebSocket()

o

1.4: send({'method":
'getSensorData’,
‘sensorld": 'video'})

video_sfream
« _sk

i 1.5: visualiseData(s1_data)
1.6: play(video_stream)

Figure 11: UML Sequence diagram on the use of multiple WebSockets for
connecting to multiple Smart Device services.

2.4.3 WebSocket Channeling

There is some concern that opening many (>10) WebSockets?®® can impact
browser performance. This could be the case if a Smart Device has many
services, or if one would use a separate WebSocket for each sensor or actu-
ator. Figure [11]illustrates this scenario with two Web Sockets (adding more is
identical). The app in Figure [{1] calls two Smart Device services and for each a
separate Web Socket is created, once the data is returned, it is visualised and
presented to the user. This is a typical example of a lab client opening multiple
WebSockets.

As mentioned opening many WebSockets may cause browser performance is-
sues, however in the use case of Figure it actually makes sense. The first
WebSocket retrieves JSON sensor data over a textual WebSocket. The sec-
ond WebSocket needs to retrieve a video stream, which is a binary stream of
data and hence uses a binary WebSocket to increase performance. Common

23Microsoft Internet Explorer 10 sets the maximum open WebSockets to 6. After editing
the Windows Registry this can be increased to 128, see http://msdn.microsoft.com/en-us/
library/ie/ee330736%28v=vs.85%29.aspx#websocket_maxconn. For most browsers (except
Microsoft Internet Explorer) this issue should be resolved, e.g. Firefox has set the maximum
number of open WebSockets to 200 in recent versions, see https://developer.mozilla.org/
pl/docs/WebSockets. However, we need to take this technical limitation still into account due
to default-configured Internet Explorer clients.

Go-Lab 317601 50 of[144

http://msdn.microsoft.com/en-us/library/ie/ee330736%28v=vs.85%29.aspx#websocket_maxconn
http://msdn.microsoft.com/en-us/library/ie/ee330736%28v=vs.85%29.aspx#websocket_maxconn
https://developer.mozilla.org/pl/docs/WebSockets
https://developer.mozilla.org/pl/docs/WebSockets

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

sd smart-device-use-with-single-websoc keu

client : App ws : WebSocket SmartDevice

. User T

|
1: loadApp() |
l P 1.1: ws = createWebSocket()

I

|

|

; |
|

1.2: send({'method" |

|

o 'getSensorData’,
'sensorld" 's1'})

DL‘ 1.2.1: getSensorData('s1")

1.3 send({'method"
'getSensorData’,
'sensorld’: 's2'}) |

D—‘ 1.3.1: getSensorData('s2’)_ |
}<____52__d_at£___
|
1.4: visualiseData(s1_data, s2_data)

Figure 12: UML Sequence diagram on the use of a single WebSocket for
connecting to multiple Smart Device services.

sense should be used to channel different service calls into one WebSocket if
performance is affected. The fact that they are textual or binary WebSockets
and whether it is recommended to create a new WebSocket can be expressed
in the Smart Device metadata of the sensors (see Section[2.3.3).

Figure illustrates an app that creates just one WebSocket to access two
different Smart Device sensors. Of course, this WebSocket could be reused by
other services that require a textual WebSocket.

2.4.4 Lab Instruments as Complex Sensors

A complex sensor/actuator represents a collection of related sensors/actuators.
The idea is to aggregate sensor/actuator when it make sense. This aggregation
is left to the lab owner. Typically such a collection represents a set of sen-
sor/actuator that form an instrument (during the Madrid meeting with external
experts, see Section [1.2] such aggregation was requested by the experts). An
instrument is for example an oscilloscope, in this case all the knobs of the os-
cilloscope’s front panel will be aggregated as one actuator with different values
(similarly to the 3D accelerometer sensor). This actuator will be accessible
through one WebSocket instead of one WebSocket for each knob (assuming

Go-Lab 317601 51 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

that WebSocket are not channeled).

2.5 The Revised Smart Device Specification Compared to the

M12 Version

This section briefly highlights the differences and additions of this revised spec-
ification compared to the M12 D4.1 specification.

Metadata: More detailed and well-defined metadata descriptions using
and extending the Swagger specification.

Protocol: More detailed and well-defined Smart Device interfaces and data
exchange formats for all required services.

Concurrency: More detailed metadata on concurrency mechanisms sup-
ported by the Smart Device.

Authentication: The authentication mechanisms are well-defined and based
on the specifications of D4.2.

Sensor types: Different types of sensors have been defined which make
the Smart Device specification more flexible and extendable.

Configuration: Sensors and actuators can be configured per client and per
call. This can be very useful for mobile devices.

WebSocket channeling: Mechanisms to improve WebSocket use have
been defined.

Terminology: Some terminology has changed since M12. This list pro-
vides an overview, but is not exhaustive:

— Service: a software component to exchange data between the Smart
Device and external clients or services.

— functionality: a software feature that is used internally in the Smart
Device

— sensor: provides output information to the client
— actuator: allows input from the client to operate the Smart Device

— instrument: bundles a given set of sensors or actuators and can be
exposed through the smart device as one complex sensor or actuator.

Go-Lab 317601 52 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

3 Cloud Services

As Cloud Services (see Go-Lab DoW and Task 4.2), we understand a set of
services designed to enable access to the Go-Lab infrastructure to lab owners
of legacy lab systems. In the scope of this deliverable, legacy lab systems are all
online labs not designed according to the Smart Device specification described
in Section 2,

3.1 Introduction

In order to plug an existing legacy lab system into the Go-Lab infrastructure, we
have identified the following possibilities (see Section[1.3):

e Redesign of the online lab system according to the Smart Device specifi-
cation

¢ Integration of a lab client app via an iFrame in the ILS Platform
e Integration via the Smart Gateway

The first approach was described in detail in the previous section of this doc-
ument. It is the recommended approach if lab owners are developing a new
system from scratch (or are willing to redesign it) and want to plug it into Go-
Lab since it would ensure full compatibility. The second approach is simple
to implement since it basically consists of embedding the existing client app in
the ILS Platform via an iFrame (for details about the ILS Platform: see deliv-
erable D5.2). In this approach there is absolutely no communication between
the lab and the ILS Platform. The third approach is the integration of the legacy
lab system via the Smart Gateway. It ensures a higher degree of compatibil-
ity, compared to the second approach (iFrame), since the Smart Gateway will
already provide Go-Lab services. For example, by relying on the Smart Gate-
way, the lab owner will not need to implement the integration with the Go-Lab
portal for the Go-Lab booking system, for metadata services or in general for
any service defined in Go-Lab, since the Smart Gateway will implement them.
This approach is the recommended option if the lab owner is not willing or has
no resources to redesign the legacy lab system according to the Smart Device
specification.

The Smart Gateway is the core of the Cloud Services. It can be added as a
proxy between the legacy lab system and the Go-Lab infrastructure to ensure a
higher level of compatibility and compliance with the Smart Device specification.
The level of compatibility offered by this approach will be described in detail in
the following sections.

Due to the high heterogeneity of online lab systems it was decided that the
Smart Gateway should be as flexible and generic as possible to support a va-
riety of these systems. Following these requirements, we opted for a plug-in
architecture. Each plug-in should implement the communication with the legacy
lab platform and its implementation is dependent on the desired level of inte-
gration (as defined in Figure [13). Thus, the Smart Gateway relies on plug-ins
to bridge the communication with the legacy lab system. Plug-ins for specific

Go-Lab 317601 53 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

legacy lab systems shall be developed by the lab owners with support from the
Go-Lab team. For online laboratories managed by a Remote Lab Management
System (RLMS) a single plug-in can be developed: if a plug-in for an RLMS
is provided, all the laboratories managed by this RLMS will automatically be
available under the Go-Lab infrastructure. Plug-ins for well-known RLMS such
as WebLab-Deusto or iLab Shared Architecture are provided by Go-Lab (see
D4.3).

This chapter is structured as follows. First the functional and non-functional re-
quirements of the Smart Gateway are described, followed by a comparison with
existing projects and well known Remote Lab Management Systems (RLMS).
The following sections describe in detail the architecture of the Smart Gate-
way and the different options to integrate legacy lab systems into to Go-Lab
ILS platform using the plug-in architecture of the Smart Gateway along with the
advantages and disadvantages of each approach. Next, the different possibili-
ties to deploy the Smart Gateway are described. The last section describes an
optional component of the the Smart Gateway, called Protocol Translator.

3.2 Requirements for the Smart Gateway

Legacy lab platforms are very heterogeneous since they were developed to
meet different requirements. For example, some platforms require the user to
authenticate for the purpose of tracking user actions, while others do not care
about the user’s identity. Some legacy platforms support lab session booking
while others use a queuing mechanism or even a merged schema combining
booking and queuing. The Smart Gateway should make no assumptions about
the legacy lab system in terms of their own functional requirements. In this
section we will present the functional and non-functional requirements of the
Smart Gateway.

3.2.1 Functional Requirements for the Smart Gateway

Based on the previous considerations we identified the following functional re-
quirements of the Smart Gateway:

e R1: Publishing user interfaces in an OpenSocial container. In order to
ensure integration with the ILS Platform (see D5.2) the legacy client app
should be packaged in an OpenSocial container so that it can easily be
embedded (like any other Go-Lab app) into an ILS. This process should
be completely transparent for teachers: in the sense that they do not need
to know if a lab app is being served by the Smart Gateway or by a native
Go-Lab Smart Device.

e R2: Support existing legacy laboratory authentication mechanisms, if present.
If the legacy lab system requires users to authenticate prior to launching
a lab client app, the Smart Gateway should be able to bridge this authen-
tication and provide valid credentials to the legacy lab system to authorise
the launch of a specific lab client.

e R3: Connect to existing legacy laboratories scheduling mechanisms, if

Go-Lab 317601 54 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

present. If the legacy lab requires some scheduling mechanism (e.g.
queueing or calendar-based booking), it should be managed by the Smart
Gateway, so other Go-Lab components are not aware of it or they integrate
these mechanisms.

e R4: Support external Go-Lab add-on services, such as the Go-Lab book-
ing system. This support is optional for each remote laboratory. The Smart
Gateway should provide a bridge between the Go-Lab booking system and
the legacy booking system, provided that the lab requires this functional-
ity. This is different from R3 since the legacy system might for instance
provide a queue for each individual session which is covered by R3, and
for R4 it optionally could be managed at group level with a calendar guar-
anteeing exclusivity for that group.

e R5: Retrieve metadata from the legacy lab (if available) or provide forms
to author metadata content. Part of mimicking the behaviour of a Smart
Device consists in providing the metadata services described by the Smart
Device specification.

e R6: Provide basic management tools for the Smart Gateway administrator.
The lab owner should be able to add, remove, and list supported labora-
tories and provide public links to be added to the Go-Lab portal. The lab
owner should also be able to take individual decisions on each supported
laboratory, such as when it is available for booking at Go-Lab level (see
D4.2).

3.2.2 Non-functional Requirements for the Smart Gateway
Additionally we were able to identify the following non-functional requirements:

e R1: Extensible architecture to support a wide variety of remote labora-
tories. A measure of success of the Smart Gateway is supporting a wide
range of existing remote laboratories, remote laboratory management sys-
tems and virtual laboratories.

e R2: Provide technical incentives to laboratory owners to be willing to adopt
the Smart Gateway. By providing further technical incentives to laboratory
owners, they might want to support the integration in the Smart Gateway
for additional reasons to the ones provided by Go-Lab directly. The incen-
tives mentioned are described in detail in D4.3.

e R3: Documentation. Provide documentation for lab owners on how to
integrate their lab system in the Smart Gateway.

e R4: Administration. Flexible deployment and easy maintainability of the
Smart Gateway. We make no assumptions on where the Smart Gateway
should be deployed and we do not foresee a centralized deployment.

3.3 Review of Legacy Lab Platforms

Remote Lab Management Systems (RLMS) are software frameworks that ag-
gregate common functionalities to manage online laboratories. For example,

Go-Lab 317601 55 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

these functionalities can include user and lab session management, storage of
experimental data, scheduling of lab session, user activity tracking and sup-
port for resources federation. The need for RLMSs arose when the number
of online lab systems began to increase and scalability became an important
issue. Managing several online lab installations around a single framework al-
lowed for a reuse of common functionalities and separation of tasks, namely
the actual laboratory development (e.g. interface with the lab equipment and
the experiment logic) and the management part (authentication, authorization,
lab booking, etc). Thanks to the functionality provided by the RLMS, online lab
developers could concentrate on the actual experiment logic and pedagogical
aspects of the client application while the other management functionality was
delegated to the RLMS. Any new features included in the RLMS would be auto-
matically available to all labs managed by this system. Today there are a few of
these systems available.

WebLab-Deusto: is an open source remote laboratory management system
(Orduna et al.,[2011), originally developed in the University of Deusto and used
to develop laboratories in other institutions in Slovakia', Brazil?>, France and
Colombia, as well as a number of schools in Europe.

The main scheduling mechanism is a priority queue. It supports a federa-
tion model (Orduna, 2013) where one institution can share their laboratories
with other institutions, without exchanging users or credentials. This federation
model is both transitive (if university A shares lab X with university B, then uni-
versity B can share lab X with C) and supports load balancing among copies of
the same laboratory in the same institution and cross-institution (federated load
balance). At the time of this writing, it does not support any booking mechanism.
It provides administration panels to support the inclusion of these federated lab-
oratories.

Regarding interoperability, bidirectional bridges with the iLab Shared Architec-
ture (Orduna, Bailey, DeLong, Lopez-de Ipina, & Garcia-Zubia, 2014) and UNR
FCEIA (Orduna et al., [2013) have been built. This way, WeblLab-Deusto can
manage local users and permissions on these federated laboratories and vice
versa.

iLab Shared Architecture: The iLab project started at MIT in 1998, with the goal
to develop a distributed software toolkit and middleware service infrastructure to
support online laboratories, and promote sharing among schools and universi-
ties on a worldwide scale (Harward et al., [2008|; Hardison & Garbi Zutin, 2011;
Sancristobal et al., |2010). Therefore, MIT implemented the iLab Shared Ar-
chitecture (ISA), focusing on fast platform-independent laboratory development,
scalable access for students, and efficient management for lab providers, while
preserving the autonomy of the faculty actually teaching the students. It de-
fines two types of laboratories: Batched and Interactive. Batched labs are those
where experiments are completely specified prior to submission and execution

'http://weblab.chtf.stuba.sk
2http://weblabduino.pucsp.br/weblab/

Go-Lab 317601 56 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

without human intervention, where the student specifies the entire course of the
experiment before the experiment begins. Interactive labs, on the other hand re-
quire taking control of the laboratory, therefore, an interactive experiment must
commit the laboratory hardware to a single user for the duration of the session
— typically 20 minutes to an hour — and this may require scheduling.

Labshare Sahara: Led by the University of Technology, Sydney, Labshare Sa-
hara is a joint initiative of the Australian Technology Network: Curtin Univer-
sity of Technology, Queensland University of Technology, RMIT University, Uni-
versity of South Australia, and the University of Technology, Sydney (http://
www.labshare.edu.au/). This project aims at creating a national network of
shared remotely accessible laboratories. To do this, they have developed a
framework for setting up a heterogeneous remote laboratory of physical appa-
rati containing many labs of many types called SAHARA (Lindsay, Stumpers,
& others, 2014}, D. B. Lowe, Berry, Murray, & Lindsay, 2009; D. Lowe, Murray,
Lindsay, & Liu, [2009).

Library of Labs — LiLa is an initiative of eight universities and three enterprises
for the mutual exchange of and access to virtual and remote laboratories.(Bellido,
Villagra, & Mateos| 2010; |Tetour, Boehringer, & Richter, [2011) To accomplish
this task, the SCORM (SCORM - Home, |n.d.) standard has been modified to
communicate with remote online labs. LiLa also builds a portal through which
the access to virtual labs and remote experiments is granted. It includes ser-
vices like a scheduling system, connection to library resources, a tutoring sys-
tem, 3D-environment for online collaboration. Although the LiLa project bundles
labs in SCORM packages, proper interoperability among the different labs is not
always possible since SCORM has not been designed for interactive labs and
there is lack of support of the latest versions of SCORM (see deliverable D5.2).

ViSHub: As part of the Global Excursion European project, the Virtual Science
Hub (ViSHub) portal has been developed. All the contents are publicly avail-
able, becoming a portal where different types of virtual and remote laboratories
(with no authentication, authorization or scheduling mechanism) are available
altogether with other resources (such as documentation, links, etc.). Advanced
APls are provided, so it is possible to search for custom resources and embed
them in other frameworks. However, these APIs are not intended to easily inte-
grate virtual and remote laboratories that are not already open and no federation
protocol is used with those laboratories.

3.4 Requirements for the Smart Gateway and Comparison with
Other Systems

As shown in Table [1] the design goals of the Smart Gateway are completely
different from those of the existing remote lab management systems or legacy
labs available. It is designed to be a bridge between a legacy lab system and
the Go-Lab ILS Platform.

Go-Lab 317601 57 of[144)

http://www.labshare.edu.au/
http://www.labshare.edu.au/

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Table 1: Comparison between existing platforms and the Smart Gateway
functional requirements. Legend: requirement supported (+), par-
tially supported (~) & not supported (-)

Smart Gatewa

Functional | webLab ISA LabShare) ; ViSHub

Reguirements Deusto Sahara

q

R1 -

R2 ~a

R3 ~a

R4 ~3

R5 - - -

R6 + ~ ~

=
BhE b

+ + +
+

aThrough ad hoc interoperability bridges (WebLab - ISA, ISA - WebLab, Labshare - ISA), not
with other laboratories. These bridges support authentication and scheduling, and they do not
support the Go-Lab add-on services but they support their own services including authorization
or scheduling.

b1t does not support the Go-Lab add-on services, but it supports the LiLa services, which
included a booking mechanism.

3.5 Specification and Architecture of the Smart Gateway

The Smart Gateway aims to support the integration of existing laboratories, as if
they were fulfilling the Smart Device specifications described in Section 2] Ide-
ally, even legacy lab owners will be willing to develop their remote laboratories
using the Smart Device specification to benefit from the features provided by it,
such as reusability of client code, simplicity or interaction with other services.
However, this ideal situation will not always be the case, and the more complex
the legacy labs are, the more likely lab owners will be willing to find a straight-
forward solution that enables them to integrate their laboratory in Go-Lab even
if they drop support of certain features. A tradeoff between those features and
the implementation efforts will always be present.

For this reason, the Smart Gateway encompasses different integration levels for
existing legacy laboratories. These integration levels are illustrated in Figure[13]

As shown in the figure, the levels are:

1. iFrame in Smart Gateway. If the laboratory does not require any authenti-
cation mechanism, it can be directly integrated as an enhanced iframe: it
technically would be an iframe but when added, the administrator can fill
basic metadata about the laboratory, and it will be provided as an OpenSo-
cial application. Interoperability with the rest of the Go-Lab infrastructure
will be provided by the Smart Gateway. For example, the Smart Gate-
way will provide metadata services for other Go-Lab components. This
metadata can be added to the Smart Gateway for that particular lab client
application, so the Go-Lab portal consumes it. The Smart Gateway will be
integrated with the booking system provided by the Go-Lab Portal, so tech-

Go-Lab 317601 58 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

1
WORK LOAD i LEVEL OF SMART GATEWAY INTEGRATION ' FEATURES :
1 1
T
N H gl |
T hy = W P ol
" o leo|l 2| m)
1 HEllag| 3 Zl
TRANSLATE ALL |!! — HSB(52(mm |
COMMUNICATIONS |11 Full plug-in with o3 ms(ES| Ef
1 protocol translator (4) | 8 o|93 |2 Al =l
t s B b
i =
" M 9l=xF 05| 2
I [m|m m m i) I
1 h SZ|Eh|sml
" " s |To|
BRIDGE ¥ . H 1252w ol
AUTHENTICATION | }! Full plug-in (3) I] PR fegul
AND RESERVATION | i1 . T2|8o|za|
PROTOCOL |1} i ~Z|32|
f i 27| m=|
WRITE ' :. it
CUSTOM " Simple plug-in (2) " =5
METADATA " 1 1 By
AND UI : : : : & ; :
T T al
: : h O
NO CODE 1 IFrame in Smart Gateway (1) ;! .
REQUIRED ' " o,
i i :
I T |

Figure 13: Levels of Smart Gateway integration

nically any web application managed through the Smart Gateway could
optionally be booked, while it would still be accessible from the Internet.

. A simple version of the plug-in. Can be implemented by simply submitting

a custom request to the laboratory to be loaded. For example, a remote
laboratory that requires authentication could easily be integrated by al-
ways logging in with a guest / demo account within the Smart Gateway.
The plug-in might have all the credentials hardcoded. Another laboratory
which does not provide any authentication mechanism will always redirect
the user to the final laboratory, using a given URL.

. A full version of the plug-in, where all the required reservation features

by the remote laboratory are matched. For example, a remote laboratory
may require that users are identified with a unique identifier, or support a
custom protocol that finally generates a URL that is directly loaded by the
client.

. A full version of the plug-in with a protocol translator, where in addition to

the full version of the plug-in, it generates a metadata URL that matches
the Smart Device specification, so different clients can connect to the pro-
vided services. This requires a big effort, since all the communications
to the client must be rewritten or an alternative communication channel
must be provided to access the sensors and actuators by the particular
laboratory.

In this way, the lab owner can decide on the trade-off of efforts and provided
features. If it is possible, the lab owner can provide a very simple plug-in that
only creates a redirection to the final laboratory, or even it can use the existing
iframe plug-in to provide certain basic metadata. If this is not possible (since the

Go-Lab 317601 59 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Go-Lab Portal\
Inquiry Learning Space Platform\
|]
App Learning Space
| 7
\\O OpenSocial Optional Component
Smart Gateway\ v\
gateway4labs \ V
]]]]

Plug-in 2 Plug-in 1 Lab Manager Protocol Translator

1
N)“ Authenticate)
Q Lab_interface_2 T Lab_Interface_1 Reserve

Get list of labs

AN €] o

Legacy communication i J} Legacy

protocol(HTTP,WS, etc) Client-Server_Interface

Figure 14: Cloud services architecture

remote laboratory requires some authentication, for instance), then a full version
of the plug-in is required. These plug-ins only manage the reservation process
or the metadata. Finally, if the lab owner wants to embrace the full specification,
the lab owner must implement a protocol translator, which is essentially a ser-
vice that takes all the requests in the format defined by the Smart Device and
converts them to the original format used by the remote laboratory.

3.5.1 Architecture

The Smart Gateway is composed of two main components. The first one is
gateway4labs (G4L), the second one is the protocol translator. Gateway4labs
manages the reservation and integration process of the remote or virtual labo-
ratory into the ILS platform, providing some of the services (such as metadata
or exporting lab client apps as OpenSocial gadgets). The protocol translator is
an independent and optional component which translates all the communica-
tions of the remote laboratory converting them to the specifications of the Smart
Device.

Therefore, to integrate an existing remote laboratory, the lab owner must either
adopt the Smart Device paradigm (previous sections in this deliverable, which
requires redeveloping most of the communications and rely on third party gad-
gets or implement them if they do not exist or they are not suitable for the lab-
oratory) or develop a plug-in in gateway4labs (which only acts as a bridge that

Go-Lab 317601 60 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

% RLMS /

J ILS platform Smart Gateway g4l plug-in Remote Laboratory
ser

| display space |

= I | I
[| ' 1 | |
-

]
' load widget
L Z- 1]]
]]
load reserve screen _ !
1
]]]
| T | |
[]
L L L 1 1
loop /) | | | |
| reserve ! - | |
-
! ! reserve > !
reserve -
>
B []
- |
= |
]]]]
| ur| 1 | |
I{ T 1 1
]]]]]
i load{url) i i | o
]]] 1 ’| |
-
I-- 1 1 | |
| loop / !
[1 1]]
, Interact g -
| | >}
I'{ T
I 1 1 I I
1
. load reserve screen >
]
I{ T I|| | |

sy ILS platform Smart Gateway g4l plug-in RLMS /

% Remote Laboratory

Figure 15: UML sequence diagram of the reservation process via the
Smart Gateway

redirects the user to the final laboratory, so a smaller effort is required). If the
latter is selected, the lab owner can optionally implement the protocol translator
to bridge also all the communications.

As shown in Figure [14] gateway4labs consists of a middle component (called
LabManager) that supports OpenSocial (used in the ILS platform, see D5.2)
and a plug-in system. Using this plug-in system, every online laboratory can be
integrated by developing a custom plug-in that makes requests to the remote
laboratory. This plug-in does not manage the communications or internals of
the remote laboratory; instead it redirects the ILS Platform user to the remote
laboratory.

To describe this process, the sequence diagram in Figure [15 shows how each
component interacts to provide lab access to the user. Basically, the user uses
the ILS platform, which loads an OpenSocial app generated by the Smart Gate-

Go-Lab 317601 61 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

R Legacy
e emmmmmmmmmm—-{-=-o-TIIITIZEEEEET laboratory 1

~— Smart Device

representation of
Laboratory 1

I

0
>

Laboratory 1

Smart Device

OXoMe___________l P / representation of
Laboratory 2
/ L o Legacy
S e e afutainiabe kit mini i laboratory 2
Laboratory 2 T
Location 2
F representation of
X0 A8l 2] / Laboratory 3 A
E R Legacy
laboratory 3
Laboratory 3 M

Figure 16: Example scenario of gateway4labs

way (gateway4labs LabManager). Whenever the user starts the reservation pro-
cess, the Smart Gateway (gateway4labs LabManager) calls the reserve method
of the particular plug-in. This plug-in knows how to interact with the final remote
laboratory, so it will create the request using the protocol of the remote labora-
tory, and a URL to the final system will be returned. This URL should contain
some kind of token or unique identifier to identify the current reservation, if the
remote laboratory needs such system. Once the final location is opened, the
user will interact directly with the final remote laboratory, using whatever tech-
nology is used by the remote laboratory.

Regarding the deployment, Figure [16| shows an example scenario, where two
lab owners have three legacy laboratories (blue boxes in Figure and two
gateway4labs deployments (yellow circles in Figure [16). Location 1 has two
legacy laboratories, managed with two different plug-ins (P1 and P2) in the
same gateway4labs instance, which provides different Smart Device represen-
tations. Location 2 has its own gateway4labs instance with another plug-in for
its own laboratory. This aims to represent that gateway4labs is not a component
that aims to be centralized, while it can be centralized, as discussed later.

However, different deployment schemas are supported. As shown in Figure[16]
one scheme would be to locate all components into one location (as illustrated
in Figure focused on a single location). Given that gateway4labs is Open
Source, it is possible to deploy it in the same location as the Legacy Laboratory.
This requires deploying the whole gateway4labs infrastructure (Python, MySQL,
web server, public IP address, etc.). The advantages are that the latency in the
reservation is low (the plug-in connects to the Legacy laboratory in the same

Go-Lab 317601 62 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

[OPTION 1: Everything in the same organization]

X ol | I . _ Legacy
L |ooccemecmom--==--f---=zzzZZzZEEEEE507 laboratory 1
O / f N\ T Smart Devi
mart Device
o] representation of
Laboratory 1
T
A Smart Device
4RO) / representation of
T Laboratory 2
F
/ ______ Legacy
NN Sy, o --------------------------- laboratory 2
R
Laboratory 2 M

Figure 17: Smart Gateway deployment: first option: gateway4labs, plug-in
and legacy laboratory in the same location.

network), it is independent from other actors (such as other providers), and
upgrades in the plug-ins (such as changes in the Legacy laboratories) can be
made without contacting third parties.

A second option is to have gateway4labs deployed in a different location. For ex-
ample, gateway4labs could be deployed and maintained on the servers of one
of the Go-Lab partners, including the plug-in, and the plug-in would connect
to the Legacy laboratory located elsewhere. This is represented in Figure [18]
The advantage of this option is that the deployment and maintenance of gate-
way4labs is not required by the laboratory owner. However, there is a slightly
higher latency in the reservation process (since the requests have to go to one
more institution), and the potential failures are doubled: the system will not be
accessible when the legacy laboratory is down, but also when the gateway4labs
location is down. Additionally, updates in the plug-in must be synchronized be-
tween both institutions. If a parameter is modified in the legacy laboratory and
it must be changed in the plug-in, both must perform this change.

A third option (see Figure is to decouple the gateway4labs plug-in from
the gateway4labs deployment. By using a RESTful API, gateway4labs in the
first location might not contain the plug-in itself, and it would be maintained in
the same location where the legacy laboratory is. This way, while the latency
would still need to cross through both institutions in the reservation process,
the maintenance of the plug-in is held in the same location where the legacy
laboratory is. If one parameter is going to be changed, it can be synchronized
automatically without contacting the gateway4labs server.

Table [2| describes the different advantages and drawbacks from the three de-
ployment options described above. As just described, regarding the deployment
at the legacy laboratory location, Option 2 requires no maintenance, while Op-
tion 1 requires the full deployment and Option 3 requires the deployment and
maintenance of the plug-in. Option 1 benefits from not relying on other actors

Go-Lab 317601 63 oflﬂl

Go-Lab

D4.1 Specifications of the Lab Owner and Cloud Services (revision)

[OPTION 2: GAL + plug-in in different organization J

4% Ll =

cnf—

Laboratory 1 || '~

12, SoT | I

~
N
.

N
Laboratory 2 .

S 20$30TM—-H>»r o

Smart Device
representation of
Laboratory 1

1

Smart Device
representation of
Laboratory 2

» A Deusto

Location 1
Example:

Legacy
laboratory 1

Figure 18: Shared deployment of gateway4labs: gateway4labs deployed
in a location different to the legacy laboratory.

and getting a minimum latency in the reservation process since the request
does not need to go through two different institutions. Regarding the mainte-
nance of the plug-in for updates in the legacy laboratory that could affect the
plug-in, in Options 1 and 3 the plug-in is deployed in the same location, so it is

not a problem.

Table 2: Advantages and disadvantages of the different deployment op-

tions.
Option 1 Option 2 Option 3
Deployment at lab side Full None Plug-in deployment
Maintenance required? Yes No Plug-in maintenance
Latency in No Yes Yes
reservation?
Multiple actors No Yes Yes
Update management Lab side Intermediate side Lab side

Go-Lab 317601

64 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

| OPTION 3: G4L in different organization |

4% Ll =

g @ h ‘\T‘\ L Smart Devi
~ N mart Device
htS .. S i representation of
Tk Laboratory 1
Laboratory 1 N
RS 4L Location 1
N q Example:
N Smart Device
. . Deusto
OXCAB—— B / representation of
. Laboratory 2
> ~ N ~
~ S

Ol B

Laboratory 2 N

S00TNMHY>»r o

Figure 19: Plug-ins located in the same location as the legacy laborato-
ries.

3.5.2 Specifications of the Plug-in System

The Plug-in system adds flexibility to the Smart Gateway since it allows lab
owners to integrate their legacy online labs without the need to modify the gate-
way4labs software. A plug-in for a particular lab can be developed either by
implementing its interface with the native gateway4labs API using the program-
ming language of gateway4labs or by exposing its methods via an HTTP inter-
face. This HTTP interface will be described in this section. For the methods
described below basic HTTP Authentication is used.

A common argument in all the calls is the context_id argument. A particular
plug-in (e.g., the ISA plug-in) could be used in more than one location (e.g., the
ISA server in MIT and the ISA server in the University of Queensland in Aus-
tralia (UQ)). Therefore, the Smart Gateway must allow that one plug-in supports
more than one context, so the same plug-in stores the settings for each context,
where one context could be MIT with certain credentials and other UQ with other
credentials. The following HTTP request includes all necessary information and
returns the current version of the supported APlIs:

HTTP request: GET BASE_URL/test_plugin?context_id=IDENTIFIER

The Labmanager will call first this method, to determine which methods are sup-
ported by this version and can thus be used. If one method in the future requires

Go-Lab 317601 65 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Table 3: Parameters of the test_plugin method

Parameter Description Parameter | Model
Type
context_id Can be used to Identify a | URL string
specific lab or RLMS

Table 4: Parameters of the capabilities method

Parameter Description Parameter | Model
Type
context_id Can be used to Identify a | URL string
specific lab or RLMS

an additional argument, a different version will be returned. The parameters are
listed in Table [3and an example response is shown in the following listing.

Listing 3.1: Test-plugin Response Example

{
"valid": true,
"g4l_api_version": "1.0"

¥

HTTP request: GET BASE_URL/capabilities?context_id=IDENTIFIER

This HTTP call returns a list of optional capabilities provided by the plug-in. The
only supported case at the time of this writing is the support for splitting the user
interface in different apps. If this is not supported by the laboratory, there will
be two methods less, and the labmanager will simply load the standard URL in
the OpenSocial gadget. The parameters are listed in Table 4| and an example
response in the listing below.

Listing 3.2: Capabilities Response Example

"capabilities": ["widget"]

HTTP request: GET BASE_URL/labs?context id=IDENTIFIER

Go-Lab 317601 66 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Table 5: Parameters of the 1abs method

Parameter Description Parameter | Model
Type
context_id Can be used to Identify a | URL string
specific lab or RLMS

This HTTP request returns the list of available laboratories. In many plug-ins
that support a single laboratory, this will be a fixed list with a single element. In
other cases, it will call the remote laboratory to retrieve the list. For example, in
the case of iLab or WebLab-Deusto, it actually lists the available laboratories for
the credentials provided in the plug-in configuration. The parameters are listed
in Table [5]and an example response is available in the listing below.

Listing 3.3: Labs Response Example

{
"labs": [
{
"laboratory_id": "Sample_lab_1",
"autoload": false,
"name": "Sample Laboratory 1",
"description": "This is an example of a laboratory"
3,
{
"laboratory_id": "Sample_lab_1",
"autoload": true,
"name": "Sample Laboratory 2",
"description": "This is an example of a laboratory"
}
]
}

HTTP request:
GET BASE_URL/widgets?context_id=IDENTIFIER&laboratory_id=LAB_ID

This returns a list of the available widgets (in our case OpenSocial apps). The
parameters are listed in Table [6|and a response example in the listing below.

Listing 3.4: Widgets Response Example

{
"widgets": [
{
"name": "Cameral",
"description": "Left camera"

Go-Lab 317601 67 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Table 6: Parameters of the widgets method

Parameter Description Parameter | Model
Type
context_id Can be used to Identify a | URL string
specific lab or RLMS
laboratory_id | ldentifies the labs for which | URL string
the widgets should be re-
trieved
1,
{
"name": "Camera2",
"description": "Right camera"
}

HTTP request:
GET BASE_URL/widget?context_id=IDENTIFIER&widget name=WIDGET
X-G4L-reservation-id: (reservation identifier obtained in /reserve)

This HTTP request returns a URL to be loaded, given an existing reservation
identifier, and a widget name. This URL should include enough information to
enable the remote laboratory to display only the target fragment of the website.
The parameters are listed in Table /| and an example response with URL is
illustrated in the listing below.

Listing 3.5: Widget Response Example

"url": "BASE_URL/Cameral/7reservation_id=12345"

HTTP request: GET BASE_URL/test_config?context_id=IDENTIFIER

This request checks if the provided configuration works correctly. The parame-
ters are listed in Table [8and an example response is shown in the listing below.

Listing 3.6: Test-Config Response Example

"valid": true,

Go-Lab 317601 68 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Table 7: Parameters of the widget method

Parameter Description Parameter | Model
Type

context_id Can be used to Identify a | URL string
specific lab or RLMS

widget_name Name of the widget for | URL string
which the URL should be
returned

X-G4L-reservation-id | Reservation ID header string

Table 8: Parameters of the test_config method

Parameter Description Parameter | Model
Type
context_id Can be used to Identify a | URL string
specific lab or RLMS

/* If false:
"error_messages": ["Error message 1", "Error message 2"]

*/

HTTP request: POST BASE URL/reserve?context_ id=IDENTIFIER

This request performs a reservation and it returns both: a reservation identifier
and a URL to be loaded. It receives generic information such as the user name
(if available), the institution (if available), certain user properties (if available),
and other arguments, such as the language used in the ILS platform or the
URL that it should be loaded when finished so the Labmanager performs a new
request. A complete list is presented in the data model of Listing The
method parameters are listed in Table[9)and an example response can be seen
in the listing below.

Listing 3.7: Request Model Schema

request {
laboratory_id (string): unique identifier for the lab,
username (string),
institution (string, optional),
general configuration_str (string, optional),
particular_configurations (string, optional),
request_payloa (string, optional),
user_properties (string, optional),

Go-Lab 317601 69 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Table 9: Parameters of the reserve method

Parameter | Description Parameter | Model
Type
context_id | Can be used to Identify | URL string
a specific lab or RLMS
request A dictionary of terms to | Body Request model
create a reservation schema

locale (string) : language used in the ILS platform,
back (string, URL): address to send back the user once finished,

}
Listing 3.8: Reserve Response Example
{
"load_url": "BASE_URL/Lab/url_bo_be_loaded",
"reservation_id": "12345"
}

HTTP request: GET BASE_URL/setup?context_id=IDENTIFIER&back_url=ADDRESS

Additionally, certain systems require configuration settings. For example, many
remote laboratories require a set of authentication credentials. In those cases,
the plug-in must store these credentials somewhere, and the Smart Gateway
administrator must configure them in a web application. This web application
must be provided by the plug-in, so it can store the data in a local database.

So to implement this, the HTTP specification provides this method, which must
return a URL that will be used to redirect the Smart Gateway administrator to it.
In that URL, the plug-in is expected to provide the forms and required steps to
configure the plug-in itself. This method also receives a back_url parameter to
redirect the Smart Gateway administrator back to wherever he was before being
redirected to the plug-in.

The plug-in developer must make sure that the URL contains some kind of se-
cret so only authenticated users can change the settings of the plug-in. The
parameters are listed in Table [0

Listing 3.9: Setup Response Example

"url": "http://somewhere-else/#secret=asecret"

Go-Lab 317601 70 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Table 10: Parameters of the setup method

Parameter | Description Parameter | Model
Type
context_id | Can be used to Identify | URL string
a specific lab or RLMS
back_url Address to redirect the | URL string

Smart Gateway admin-
istrator once the plug-in
has been configured

3.5.3 The Protocol Translator

The protocol translator is an additional and optional component of the Smart
Gateway that mainly repackages legacy communication (legacy lab specific)
and expose them as services compliant with the Smart Device specification
(using WebSockets & JSON) (see Figure [20). Its implementation is lab specific
and will usually serve one single legacy lab since the messages exchanged by
these systems are often different and domain-specific.

.
f

‘ app in

B ILS Platform

——————

Services

|

1

I

Metadata g .

s) 3 |

I -

X o

Sensor 1 (] I
1=

Sensor 2 o :

E |

L2

1

1

Actuator 1

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 20: Protocol translator.

For example, remote laboratory management systems such as WebLab-Deusto,
ISA or Labshare Sahara manage all the laboratory reservations in the same
way, but the communication of each laboratory is different. ISA could have a
radioactivity laboratory and an electronics laboratory, and while both are man-
aged with the same authentication and scheduling mechanisms, the number
and type of sensors and actuators are completely different. For this reason,
while a single plug-in for ISA is needed for all the ISA laboratories, a specific
protocol translator for each particular laboratory must be implemented. This is
detailed in Figure 21 where two RLMS require only one plug-in each, while
each of the laboratories managed by each RLMS require its own protocol trans-
lator. In the case of Remote Laboratories not managed by a RLMS but by their
own management system, the cardinality is different, since both a plug-in and a
protocol translator would be required.

Go-Lab 317601 71 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Plug-in and Protocol Translator cardinality

N N
Plug-in 1 Plug-in 2

/,_
e,] (Lab4

RLMS 1 RLMS 2
q n';ﬁg;)grlz I l Lab 2 l (eg |SA) :11 Tr:nmstI‘;IDg:S I Lab 5 (eg VlSH)
c'|j T§E°J|3?§r's I | Lab 3 I TI“Z:::I‘;[:S:B

Remote Lab Remote Lab
without RLMS 1 (Lab8] without RLMS 2

(e.g. UNR) (e.g. UFSC)
Plug-in 3 I Plug-in 4
vV %

Figure 21: Plug-in and Protocol Translator Cardinality

From the Smart Device specification (see Section|2) the protocol translator must
implement at least the following required services:

o Metadata service
e Sensor service

e Actuator service

Integrating a legacy lab with a protocol translator ensures a full compatibility
with the Smart Device specification, however this approach is costly in terms
of implementation effort since all messages exchanged between legacy client
and server should be mapped to fit the sensor and actuator model of a Smart
Device. The implementation efforts also vary depending on the legacy lab char-
acteristics. For example, some legacy labs run asynchronously (or in batch
mode), what poses constraints regarding the access to each sensor and actu-
ator individually. A prototype and proof of concept of a batched online lab with
protocol translator will be implemented and reported in D4.5 and D4.7.

Additionally, this approach assumes the use of a different protocol, so legacy
client applications will not be reusable with the protocol translator, and the com-
munications must be rewritten to be provided as Smart Device compliant ser-
vices. One of the benefits of the Smart Device paradigm is that laboratory own-
ers can reuse existing clients for other laboratories if they are complimentary to
their services, so the whole client does not need to be reimplemented. However,
those client pieces that have not been previously implemented by third parties

Go-Lab 317601 72 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

[OPTION 4: G4L + plug-in + protocol translator J

4% & [=

\\\ ‘\\
Location 1

Laboratory 1 S N
o~ N Example:
N Smart Device ple:
. . Deusto
OXCAB—— B / representation of »
~ ~
> ~ N ~
~ ~

Laboratory 2
@\\
\\

Laboratory 2 .

Smart Device
representation of
Laboratory 1

cn/u——

Protocol |
| translator |
. (optional)

U

Legacy
laboratory 1

S 000mTM-+H>»Irmo

N
\\
\\\
‘\
Legacy
laboratory 2

Figure 22: Smart Gateway deployment with a protocol translator

do need a reimplementation.

The most likely deployment configuration of the protocol translator is depicted
in Figure Since it is very specialized software and it is tightly coupled with
the legacy lab system, it is likely to reside at the lab owner’s side. This way, the
latency would be minimal since the communication between the protocol trans-
lator and the legacy system would be local. The gateway4labs component could
be deployed in any of the three options presented. As previously mentioned it is
an optional component that requires a dedicated development for each legacy
lab system. Its implementation efforts are comparable with the efforts necessary
to redesign the legacy lab system according to the Smart Device specifications.
Furthermore the use of a protocol translator would add a latency to the commu-
nication between the client app and legacy lab system since, even if it is in a
local network, it needs to translate all the existing communications.

3.6 Benefits for Lab Owners

As previously outlined the main goal of the Go-Lab Cloud Services is attracting
laboratory owners to the Go-Lab ecosystem.

e Easy integration: A flexible, pragmatic approach to integrate existing re-
mote laboratories into gateway4labs through the plug-in mechanism and
the management panels. The amount of code required is rather small,
since it only acts as an initial bridge, and two interfaces (native API and
HTTP API) are provided, so the Laboratory owner can support one or the

Go-Lab 317601 73 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

other. Multiple deployment schemas are supported, and many methods
are optional.

e Additional Go-Lab incentives: Go-Lab will provide the laboratory owners
several benefits. The most important one is the visibility of the labora-
tories. Thousands of students and teachers will be able to easily find
the federated laboratories. Other benefits include the support of Go-Lab
Add-on mechanisms, such as the booking mechanism. Certain remote
laboratories might have a queue for managing students, which does not
scale up to large amount of users. However, if the laboratory is integrated
in gateway4labs and gateway4labs supports the booking mechanism of
the Go-Lab portal, then the laboratory will be only available to students of
groups which have booked the laboratory, reducing the amount of concur-
rent students.

e Use afederated approach: gateway4labs plug-ins support federation mech-
anisms if these are provided by the integrated systems. For example,
WebLab-Deusto provides a federation protocol so one WeblLab-Deusto
system with 4 laboratories can share a subset of them to other WebLab-
Deusto system. The plug-in of this WebLab-Deusto benefits of this feature
so it translate requests from gateway4labs (which come from the ILS plat-
form) as if it was an external WebLab-Deusto system requesting a labora-
tory for a local user. This federated approach enables remote laboratories
to be also provided through their original portals or be integrated in other
tools, while increasing their visibility by sharing them with Go-Lab.

Go-Lab 317601 74 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

4 Standardisation

To trigger and strengthen the adoption of the proposed standardisation of the
lab-owner services as a Smart Device, WP4 and WP9 representatives are in-
volved in the IEEE Working Group P1876"' on Networked Smart Learning Ob-
jects for Online Laboratories. This group is sponsored by the IEEE Education
Society. Institutions and projects cannot be represented in such a group. How-
ever, EPFL, UNED, CUAS and UD representatives are core members of this
group and are contributing effectively thanks to the competencies and the solu-
tions incubated, prototyped, implemented and validated in the Go-Lab project.

In addition to online meetings, two face-to-face meetings have already been
held; one during the IEEE EDUCON conference 2013 in Berlin and one dur-
ing the IEEE EDUCON conference 2014 in Istanbul. In the latter, it has been
discussed to define the standard at three levels: A pedagogical level, a service
level, and a communication protocol level. The pedagogical level is describ-
ing how to package resources in a standardised way and to enable their inte-
gration in learning environments (e.g. LMS, MOOC platforms or social media
platforms). The ILS as defined in Go-Lab are instrumental at this level to con-
ceptualize the pedagogical packaging. The service level is standardizing the
way a client communicates with a remote lab. The abstraction layer provided
by the Smart Device paradigm was well received as a proposal and has the
potential to become the seed of the final IEEE specifications still to be drafted
and finalised. Finally, the communication protocol level is standardizing the way
all the loosely coupled services and platforms supporting the usage of remote
labs could interoperate. The Smart Gateway proposal is showing directions and
scheme for effective interoperability.

The draft structure of the IEEE P1876 has been discussed with lab owners
during the Madrid workshop (see appendix D) and useful feedback has been
collected. This feedback will be shared with the Work Group and contribute to
align the standard with the Go-Lab vision and the lab owners’ expectations.

'IEEE Working Group P1876, http://ieee-sa.centraldesktop.com/1876public/

Go-Lab 317601 75 of[144)

http://ieee-sa.centraldesktop.com/1876public/

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

5 Conclusion

In this deliverable, we have provided revised specifications of the Smart Device
(used for the lab owner services) and the Smart Gateway (used for the cloud
services). Based on the recommendations of the reviewers, together with the
outcome of continuous discussions among the Go-Lab partners and by collect-
ing valuable feedback of external lab owners (see Section and Appendix C),
we have extended the Smart Device specifications in several areas (e.g. the
metadata description or the configuration of sensors and actuators) (see Sec-
tion[2). Apart from extending the specification, we put a lot of effort on more
precisely defining the Smart Device services, the data formats and protocols to
enable more well-defined interoperability between a Smart Device and a client
app or external service. Furthermore, we have described our Smart Device us-
ing an existing, popular web service description language, Swagger, and added
some Go-Lab specific extensions for our specific metadata needs (see Sec-
tion[2.3.3). We have also showed various use cases of how the Smart Device
specification can be used (see Section [2.4).

From our experience integrating RLMS in the Smart Gateway, we have also
updated the specifications and architecture. Furthermore, different deployment
options were discussed to optimise performance and management. Due to the
implementation work involved for legacy labs to achieve full Smart Device com-
patibility, we have defined four integration levels, so lab owners can have a basic
integration with the Go-Lab infrastructure with little effort.

Furthermore, in parallel with the work on the specifications, we have imple-
mented several Smart Device prototypes and integrated multiple RLMS with
the Smart Gateway. These prototypes are the first software release of the lab
owner and cloud services and are documented in D4.3. In the future, we aim
to integrate more labs in Go-Lab using either the Smart Device or the Smart
Gateway. More specifically, we are collaborating with the external lab owners
from our workshop (see Appendix D) to integrate their labs in Go-Lab, which
will be documented in D4.7. These new labs will test our specifications and
where weaknesses are found we will update them in D4.5.

Go-Lab 317601 76 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

6 Appendix A: Smart Device metadata specification details

The Swagger Web service description language supports REST Web services
by default. To describe the Smart Device, we had to extend the Swagger speci-
fication as mentioned in Section The two main reasons for this extension
were:

e WebSocket support: Since Swagger only supports REST out of the box,
we needed to extend Swagger to support WebSockets and the channeling
of WebSockets.

e Smart Device concurrency: The concurrency mechanisms of the Smart
Device needed to be described in its metadata. This was not supported in
Swagger since this is typically not a feature of regular Web services.

We were able to limit further changes to the Swagger specification by provid-
ing some of the metadata via services, e.g. to retrieve the sensor and actuator
metadata services are used. This section highlights what we have changed
in the Swagger specification to support the Smart Device metadata. First, the
changes needed for WebSockets will be described and then we will elaborate
on the concurrency, to finalise with some small tidbits that were added for con-
venience and improved expression power. Overall, these limited adaptations
show that the Swagger specification was an appropriate choice for the Smart
Device.

6.1 Extensions for WebSockets

The extensions related to WebSockets are limited to the API JSON object in the
main apis field. Listing illustrates an example service description with the
WebSocket extension.

Listing 6.1: Example API service description to illustrate the WebSocket
extension

"apis": [
{
"path": "/logging",
"protocol": "WebSocket",
"produces": [
"application/json"
1,
"operations": [
{
"method": "Send",
"nickname": "getLoggingInfo",
"summary": "Streams the current logging information of
the user activities and the lab activities",
"notes": "Returns a JSON array of Activity Stream
objects, see http://activitystrea.ms/",
"type": "LoggingInfoResponse",
"webSocketType": "text",
"produces": "application/json",

Go-Lab 317601 77 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"parameters": [
{
"name": "message",
"description": "the payload for the getLogginglnfo
service",
"required": true,
"paramType": "message",
"type": "SimpleRequest",
"allowMultiple": false

}
1,

"responseMessages": [...]

We have extended Swagger with the following fields:

e protocol: This field allows to specify whether the service is accessible via
HTTP REST or WebSockets. This can also be used for other protocols,
e.g. non HTTP-based streaming protocols or Tor.

e webSocketType: This field is used to express the type of WebSocket the
service uses to support regular and binary WebSockets. The possible
values are: ‘text’ & ‘binary’.

e method (repurposed & extended): The method field is normally used to
express which HTTP method is used (e.g. GET or POST). It can be used
to express the WebSocket method. Normally, this is ‘Send’ but Socket.io'
provides additionally also an ‘emit’ method.

e paramType (repurposed & extended): The paramType field is reused but
we have added the ‘message’ value to support WebSocket messages.
6.2 Extensions for Concurrency mechanisms

A root field was added to the Swagger specification, namely ‘concurrency’. List-
ing provides an example of the concurrency field. All sub-fields of this con-
currency field are Go-Lab extensions and were extensively discussed in Sec-
tion[2.3.3] thus we will not recapitulate it here.

Listing 6.2: Example of a concurrency field

"concurrency": {
"interactionMode": "synchronous",
"concurrencyScheme": "roles",
"roleSelectionMechanism": ["race", "interruptor"],
"roles": [

{

'Socket.io, http://socket.io/

Go-Lab 317601 78 of[144)

http://socket.io/

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"role": "observer",
"selectionMechanism": ["race"],
"availableApis": ["getSensorData"]

},
{
"role": "controller",
"selectionMechanism": ["race"]
},
{
"role": "admin",
"selectionMechanism": ["interruptor"]
+

6.3 Additional Minimal Extensions

6.3.1 Data Types

For some reason, the Swagger specification does not support all JSON Schema
data types for the data models described in the ‘models’ field. To improve flexi-
bility and expressiveness, we have added all JSON Schema data types and one
for binary data. More specifically the following fields have been added:

e object: a JSON object

e any: any possible data type, e.g. a primitive JSON Schema type, null or a
JSON object

e binary: for binary data

Go-Lab 317601 79 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

7 Appendix B: The Metadata Specification for an Example
Smart Device

This appendix provides examples of the metadata for two Smart Devices. One
example contains the metadata for the RED lab (see D4.3) and another example
is from a fictitious lab that is used to illustrate some mechanisms and interaction
possibilities in more detail. The latter has been mainly used as the running ex-
ample throughout this deliverable. Both examples are available on GitHub and
this appendix contains an exact copy to illustrate the status at the time this de-
liverable is submitted. This latest updated version of this specification can also
be found on GitHub at https://github.com/Go-Lab/smart-device-metadata.

Both examples contain the metadata specification and a set of example calls
that a client app makes to the Smart Device, and the respective responses of
the Smart Device.

7.1 RED Smart Device

7.1.1 Metadata Specification

Listing [7.1] presents the metadata for the RED Lab Smart Device. As defined in
this deliverable, the metadata of the actuators and sensors are provided through
the getSensorMetadata and getActuatorMetadata services.

Listing 7.1: The RED Lab Smart Device metadata

{

"apiVersion": "2.0.0",

"swaggerVersion": "1.2",

"basePath": "http://128.178.5.201:8080",

"info": {
"title": "RED 2.0 ws",
"description": "Control the speed and the position of the disc.",
"contact": "christophe.salzmann@epfl.ch",

"license": "Apache 2.0",

"licenseUrl": "http://www.apache.org/licenses/LICENSE-2.0.html"
3,
"authorizations": {},
"concurrency": {

"interactionMode": "synchronous",
"concurrencyScheme": "roles",
"roleSelectionMechanism": ["race", "fixed role"],
"roles": [
{
"role": "controller",
"selectionMechanism": ["race"]
}
]
1,
"apis": [

Go-Lab 317601 80 of[144

https://github.com/Go-Lab/smart-device-metadata

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"path":

"/client",

"protocol": "WebSocket",
"produces": [
"application/json"

"operations": [

1,
{
}
]
1,
{
"path":

"method": "Send",

"nickname": "getClients",
"summary": "Return a list of all available clients",
"notes": "Returns a JSON array with all the available
clients",
"type": "ClientResponse",
"parameters": [
{
"name": "message",

"description": "the payload for the getClients
service.",

"required": true,

"paramType": '"message",

"type": "SimpleRequest",

"allowMultiple": false

3
1,
"authorizations": { },
"responseMessages": [
{
"code": 402,
"message": "Too many users"
3,
{
"code": 404,
"message": "Clients not found"
3,
{
"code": 405,
"message": "Method not allowed. The requested
method is not allowed by this server."
3,
{
"code": 422,
"message": "The request body is unprocessable"
b
]

"/sensor/",

Go-Lab 317601

81 ofM

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"protocol": "WebSocket",

"produces": [
"application/json"
1,
"operations": [
{
"method": "Send",
"nickname": "getSensorMetadata",
"summary": "List all sensors and their metadata",
"type": "SensorMetadataResponse",
"parameters": [
{
"name": "message",

"description": "the payload for the
getSensorMetadata service",

"required": true,

"paramType": "message",

"type": "SimpleRequest",

"allowMultiple": false

b
1,
"responseMessages": [
{
"code": 402,
"message": "Too many users"
3,
{
"code": 404,
"message": "No sensors found"
3,
{
"code": 405,
"message": "Method not allowed. The requested
method is not allowed by this server."
3,
{
"code": 422,
"message": "The request body is unprocessable"
b
1,
"authorisations": {}
3,
{
"method": "Send",
"nickname": "getSensorData",
"summary": "Get data from the sensor with the given
sensor identifier",
"type": "SensorDataResponse",
"parameters": [

Go-Lab 317601 82 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

{
"name": "message",
"description": "The payload for the
getSensorData service",
"required": true,
"type": "SensorDataRequest",
"paramType": "message",
"allowMultiple": false
X
1,
"responseMessages": [
{
"code": 401,
"message": "Unauthorised access. The
authentication token is not valid"
3,
{
"code": 402,
"message": "Too many users"
3,
{
"code": 404,
"message": "No sensors found"
3,
{
"code": 405,
"message": "Method not allowed. The requested
method is not allowed by this server."
3,
{
"code": 422,
"message": "The request body is unprocessable"
X
]
b
]
1,
{

"path": "/actuator/",
"protocol": "WebSocket",
"produces": [

"application/json"
1,
"operations": [
{
"method": "Send",
"nickname": "getActuatorMetadata",
"summary": "List all actuators and their metadata",

"type": "ActuatorMetadataResponse",

Go-Lab 317601 83 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"parameters": [
{
"name": "message",
"description": "the payload for the
getActuatorMetadata service",
"required": true,
"paramType": "message",
"type": "SimpleRequest",
"allowMultiple": false

b
1,
"responseMessages": [
{
"code": 404,
"message": "No actuators found"
3,
{
"code": 405,
"message": "Method not allowed. The requested
method is not allowed by this server."
3,
{
"code": 422,
"message": "The request body is unprocessable"
3
1,
"authorizations": {}
3,
{
"method": "Send",
"summary": "Send new data to the actuator with the
given actuator identifier",
"notes": "The parameters go into a JSON object send

over the WebSocket",
"type": "ActuatorDataResponse",

"nickname": "sendActuatorData",
"parameters": [
{
"name": "message",

"description": "The payload for the
sendActuatorData service",

"required": true,

"type": "ActuatorDataRequest",

"paramType": "message",

"allowMultiple": false

1,
"responseMessages": [

{

Go-Lab 317601 84 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"code": 401,
"message": "Unauthorised access. The
authentication token is not valid"
3,
{
"code": 402,
"message": "Too many users"
3,
{
"code": 404,
"message": "No actuator not found"
3,
{
"code": 405,
"message": "Method not allowed. The requested
method is not allowed by this server."
3,
{
"code": 422,
"message": "The request body is unprocessable"
b
]
b
]
}
1,
"models": {
"Client": {
"id": "Client",
"properties": {
"type": {
"type": "string",
"description": "The type of client application",
"enum": [
"OpenSocial Gadget",
"W3C widget",
"Web page",
"Java WebStart",
"Desktop application"
]
3,
"url": {
"type": "string",
"description": "The URI where the client application
resides"
}
3
1,

"ClientResponse": {

Go-Lab 317601 85 ofM

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"id": "ClientResponse",
"properties": {
"method": {
"type": "string"
},
"clients": {
"type": "array",
"items": {
"$ref": "Client"
}
}
}
},
"Sensor": {
"id": "Sensor",

"required": [
"sensorId", "fullName"
1,
"properties": {
"sensorId": {
"type": "string"
3,
"fullName": {
"type": "string"
3,
"description": {
"type": "string"
3,
"webSocketType": {
"type": "string",
"description": "the type of WebSocket. WebSockets can
either be binary or textual.",

"enum": [
"text",
"binary"
1,
"defaultValue": "text"
3,
"singleWebSocketRecommended": {
"type": "boolean",
"description": "If this field is set to true it means
that the smart device expects that a client opens
a dedicated websocket for to read from this value",
"defaultValue": false
3,
"produces": {

Iltypell . n Strlngll s
"description": "The mime-type of the data that is
produced by this sensor. A list of mime types can

Go-Lab 317601 86 OfM

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

be found at
http://en.wikipedia.org/wiki/Internet_media_type",
"defaultValue": "application/json"
1,
"values": {
"type": "array",
"items": {
"$ref": "Value"

b
3,
"configuration": {

"type": "array",

"description": "The configuration consists of an
array of JSON objects that consist of parameter
and type",

"items": {

"$ref": "ConfigurationMetadataltem"

X

3,

"accessMode": {
"type": "AccessMode"

},

"Value": {
"id": "Value",
"required": [

"name"

1,
"properties": {

"name": {

"type": "string"

3,

"unit": {

"type": "string"

3,

"rangeMinimum": {
"type": "number",
"format": "double"

3,

"rangeMaximum": {
"type": "number",
"format": "double"

3,

"rangeStep": {

"type": "number",
"format": "double"

+s

"lastMeasured": {

Go-Lab 317601 87 of[144)

Go-Lab

D4.1 Specifications of the Lab Owner and Cloud Services (revision)

T,

"ConfigurationMetadataltem": {
"id": "ConfigurationMetadataltem",

"type": "date-time"

3,

"updateFrequency": {
"type": "number",

"description": "The frequency in Hertz of which the

"required":

"parameter", "type"

1,

sensor value updates",
"format":

L

"properties": {

"parame

Iltypell . n stringll s
"description": "The name of the configuration

+s

ter": {

parameter"

"description": {

"type": "string",

n int n

"description": "This field can provide some more
information on how this parameter should be used."

+s
Iltypell :

"type": "string",
"description": "The data type of that this

{

configuration parameters expects, e.g. number or

string",

"enum": [

1,

"integer",
n longll s
"float",
"double",
"string",
Ilbyte n s
"boolean",
"date" ,
"dateTime",
"object",
" a.I.I.ayn ,

n anyll s
"binary"

"items": {

Iltypell : n Strll’lg" s

Go-Lab 317601

88 ofM

Go-Lab

D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"description": "This field should only be used when

the type is ’array’. It describes which types are

present within the array",

"enum": [
"integer",
"long",
"float",
"double",
"string",
"byte",
"boolean",
"date",
"dateTime",
"object",
"any",
"binary"
]
X
b
1,
"AccessMode": {
"id": "AccessMode",
"properties": {
"type": {
"type": "string",
"enum": [
"push",
"pull",
"stream"
]
3,
"nominalUpdateInterval": {
"type": "number",
"format": "float"
3,
"userModifiableFrequency": {
"type": "boolean",
"defaultValue": false
b
X
+,

"SimpleRequest": {

"id": "SimpleRequest",

"required": [
"method"

1,

"properties": {
"authToken": {

"type": "string"

Go-Lab

317601

89 ofM

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)
3,
"method": {
"type": "string",
"description": "The method should be equal to the
nickname of one of the provided services."
b
3
1,
"SensorMetadataResponse": {
"id": "SensorMetadataResponse",
"required": [
"method", "sensors"
1,
"properties": {
"method": {
"type": "string",
"description": "The method should be equal to the
nickname of one of the provided services."
3,
"sensors": {
"type": "array",
"items": {
"$ref": "Sensor"
b
3
}
3,
"SensorDataRequest": {
"id": "SensorDataRequest",

"required": [
"authToken", "method", "sensorId"
1,
"properties": {
"authToken": {
"type": "string"

3,
"method": {
"type": "string",
"description": "The method should be equal to the
nickname of one of the provided services."
3,

"sensorId": {
"type": "string"

3,
"updateFrequency": {
"type": "number",
"description": "The frequency in Hertz of which the

sensor value updates",
"format": "int"

Go-Lab 317601 90 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

3,
"configuration": {
"type": "array",
"items": {
"$ref": "ConfigurationItem"
b
3,

"accessRole": {

"type": "string",

"description": "This field contains one of the roles
defined in the concurrency roles list. If
accessRole is not defined, the controller role is
assumed."

3,
"ConfigurationItem": {
"id": "ConfigurationItem",
"required": [
"parameter", "value"
1,
"properties": {
"parameter": {
"type": "string",
"description": "The name of the configuration
parameter"
3,
"value": {
"type": "any",
"description": "The value to set the configuration
parameter to. The type should equal the type given
in the metadata for this sensor."

1,
"SensorDataResponse": {
"id": "SensorDataResponse",
"required": [
"method", "sensorId"
1,
"properties": {
"method": {
"type": "string",
"description": "The method should be equal to the
nickname of one of the provided services."
3,
"sensorId": {
"type": "string"
3,

Go-Lab 317601 91 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"accessRole": {

"type": "string",

"description": "This field contains one of the roles
defined in the concurrency roles list. If no roles
are defined controller is returned. If the
observer is returned, the observerMode field will
be available with extra info on the status of the

lab."
3,
"responseData": {
"type": "SensorResponseData",
"description": "The data as measured by this sensor"
3,
"payload": {

"type": "any",

"description": "This optional payload field can
contain any JSON object that provides extra
information on this sensor or the current
measurement."

3,

"observerMode": {
"type": "ObserverMode",
"description": "This field is only available if the
accessRole field returns observer."

3,
"SensorResponseData": {
"id": "SensorResponseData",
"required": [],
"properties": {
"valueNames": {
"type" . Ilarray" s
"description": "An ordered array with all the value
names of this sensor. The same order will be
applied to the data array and lastMeasured array.",

"items": {

"type": "string"

b

3,
"data": {

"type": "array",

"description": "An ordered array with all the data
values of this sensor. Each data element in the
array should be ordered in the same position of
its corresponding value elements in the values
array.",

"items": {

"type": "any"

Go-Lab 317601 92 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

3,
"lastMeasured": {

"type": "array",

"description": "An ordered array with all the data
values of this sensor. Each data element in the
array should be ordered in the same position of
its corresponding value elements in the values
array.",

"items": {

"type": "date-time"

1,
"Actuator": {
"id": "Actuator",
"required": [
"actuatorId", "fullName"
1,
"properties": {
"actuatorId": {
"type": "string"
3,
"fullName": {
"type": "string"
3,
"description": {
"type": "string"
3,
"webSocketType": {
"type": "string",
"description": "the type of WebSocket. WebSockets can
either be binary or textual.",
"enum": [
"text",
"binary"
1,
"defaultValue": "text"
3,
"singleWebSocketRecommended": {
"type": "boolean",
"description": "If this field is set to true it means
that the smart device expects that a client opens
a dedicated websocket for to read from this value"
"defaultValue": false
3,
"consumes": {
"type": "string",

Go-Lab 317601 93 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"description": "The mime-type of the data that is
consumed by this actuator. A list of mime types
can be found at
http://en.wikipedia.org/wiki/Internet_media_type",

"defaultValue": "application/json"

3,
"produces": {

"type": "string",

"description": "The mime-type of the data that is
produced by this actuator. A list of mime types
can be found at
http://en.wikipedia.org/wiki/Internet_media_type",

"defaultValue": "application/json"

3,
"values": {

"type": "array",

"items": {

"$ref": "Value"

3,
"configuration": {

"type": "array",

"description": "The configuration consists of an
array of JSON objects that consist of parameter
and type",

"items": {

"$ref": "ConfigurationMetadataltem"

3,
"accessMode": {
"type": "AccessMode"

}:
"ActuatorMetadataResponse": {
"id": "ActuatorMetadataResponse",
"required": [
"method", "actuators"
1,
"properties": {
"method": {
"type": "string",
"description": "The method should be equal to the
nickname of one of the provided services."

},
"actuators": {
Iltypell : Ilarrayll s
"items": {
"$ref": "Actuator"

Go-Lab 317601 94 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

s
"description": "The list of actuator metadata
elements"

+,
"ActuatorDataRequest": {
"id": "ActuatorDataRequest",
"required": [
"method", "actuatorId"
1,
"properties": {
"authToken": {
"type": "string"

1,
"method": {
"type": "string",
"description": "The method should be equal to the
nickname of one of the provided services."
3,

"actuatorId": {

"type": "string"

3,
"valueNames": {

"type": "array",

"description": "An ordered array with all the value
names of this sensor. The same order will be
applied to the data array and lastMeasured array.",

"items": {

"type": "string"

3,
"data": {

"type": "array",

"description": "An ordered array with all the data
values of this sensor. Each data element in the
array should be ordered in the same position of
its corresponding value elements in the valueNames
array.",

"items": {
"type": "any"

3,
"configuration": {

"type": "array",

"items": {

"$ref": "ConfigurationItem"

Go-Lab 317601 95 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"accessRole": {
"type": "string",
"description": "This field contains one of the roles
defined in the concurrency roles list. If
accessRole is not defined the controller role is

assumed. "
X
b
1,
"ActuatorDataResponse": {
"id": "ActuatorDataResponse",
"required": [
"method"
1,
"properties": {
"method": {

"type": "string",

"description": "The method should be equal to the
nickname of one of the provided services."

3,
"lastMeasured": {

"type": "date-time"

3,
"accessRole": {

"type": "string",

"description": "This field contains one of the roles
defined in the concurrency roles list. If no roles
are defined controller is returned. If the
observer is returned, the observerMode field will
be available with extra info on the status of the
lab."

3,
"payload": {

"type": "any",

"description": "The payload can be useful for
describing a result that is returned, for instance
by using the SensorResponseData model. Since
results can differ from acknowledgements to result
data, the field is optional and can contain any
JSON object."

3,
"observerMode": {

"type": "ObserverMode",

"description": "This field is only available if the
accessRole field returns observer."

b
3

+,

"ObserverMode": {

Go-Lab 317601 96 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"id": "ObserverMode",

"required": [],

"properties": {
"queueSize": {

"type": "integer",

"description": "Provides the length of the user
waiting queue that want to get control of the lab"

3,
"queuePosition": {

"type": "integer",

"description": "Provides the position of the client
who made this call in the user waiting queue. This
value should be positive and smaller or equal to
queueSize."

3,

"estimatedTimeUntilControl": {
"type": "integer",
"description": "The estimated waiting time from now
on until the client will get controllerMode
access. The time is expressed in seconds."

7.1.2 Example Requests and Responses to the Smart Device Services

In this section, we will present a few example requests and responses that can
be made to the RED Lab Smart Device.

getClients

Listing [7.2] and [7.3] illustrate respectively a request and response to the get-
Clients service. Note, the URLs in the getClients response can differ.

Listing 7.2: Request to get all client apps

{
"method": "getClients"
}
Listing 7.3: Response to get all client apps
{

"method": "getClients",
"clients": [
{
"type": "OpenSocial gadget",
"url": "http://redlab.epfl.ch/client/sl.xml"
3,

Go-Lab 317601 97 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

{
"type": "OpenSocial gadget",
"url": "http://redlab.epfl.ch/client/s2.xml"
1,
{
"type": "OpenSocial gadget",
"url": "http://redlab.epfl.ch/client/al.xml"
}
]
}
getSensorMetadata

Listing [7.4] and [7.5] provide the request and response to get sensor metadata.
Listing [7.5) shows the sensor metadata itself.

Listing 7.4: Request to get the sensor metadata

{
"method": "getSensorMetadata"
3
Listing 7.5: Response to get the sensor metadata
{

"method": "getSensorMetadata",
"sensors": [
{
"sensorId": "position",
"fullName": "position",
"description": "the angular position of the wheel",
"webSocketType": "text",
"singleWebSocketRecommended": true,
"produces": "application/json",
"values": [
{
"name": "angularPosition",
"unit": "degree",
"lastMeasured": "2014-06-23T18:25:43.511Z",
"rangeMinimum": 30,
"rangeMaximum": 330,
"updateFrequency": 10

1,

"accessMode": {
Iltypell . Ilpushll s
"nominalUpdateInterval": 100,
"userModifiableFrequency": false

Go-Lab 317601 98 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"sensorId": "video",
"fullName": "video feed",
"description": "front camera video stream",
"webSocketType": "binary",
"singleWebSocketRecommended": true,
"produces": "image/jpeg",
"values": [
{
"name": "video",
"lastMeasured": "2014-06-23T18:28:43.617Z2",
"updateFrequency": 10

1,

"accessMode": {
Iltypell . Ilpushll ,
"nominalUpdateInterval": 100,
"userModifiableFrequency": false

getSensorData

Listing [7.6| and [7.7] show two requests for sensor data of the position and video
sensor using the optional ‘accessRole’ field, which could be dropped here.

Listing 7.6: The request to get data for the ‘position’ sensor

{
"method": "getSensorData",
"sensorId": "position",
"accessRole": "controller"
b
Listing 7.7: The request to get data for the ‘video’ sensor
{
"method": "getSensorData",
"sensorId": "video",
"accessRole": "controller"
3

Listing provides an example response for the position sensor.

Listing 7.8: The response to get data for the ‘position’ sensor

"method": "getSensorData",

Go-Lab 317601 99 of[144

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"sensorId": "position",
"accessRole": "controller",
"responseData": {
"valueNames": ["angularPosition"],
"data": [54],
"lastMeasured": ["2014-06-23T18:28:43.511Z"]

Listing[7.9illustrates how the continuous stream of measurements can be stopped,
by setting the ‘updateFrequency’ field to 0.

Listing 7.9: The request to interrupt the sensor measurement data flow
{

"method": "getSensorData",
"sensorId": "position",
"updateFrequency": O

getActuatorMetadata

Listing[7.70/and [7.11] show how the actuator metadata can be retrieved and the
later presents the actuator metadata of the RED Lab Smart Device.

Listing 7.10: The request to get actuator metadata

"method": "getActuatorMetadata"

Listing 7.11: The response to get actuator metadata

"method": "getActuatorMetadata",
"actuators": [
{
"actuatorId": "ref",
"fullName": "reference",
"description": "set the wheel position",
"webSocketType": "text",
"produces": "application/json",
"consumes": "application/json",
"values": [
{
"name": "angularRef",
"unit": "degree",
"rangeMinimum": 30,
"rangeMaximum": 330

Go-Lab 317601 100 of[144]

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

1,
"accessMode": {
"type": "push",
"nominalUpdatelInterval": 100,
"userModifiableFrequency": false
b
}
]
3
getActuatorData

Listing|7.12)and|/.13]illustrated how an actuator can be set.

Listing 7.12: The request to set the reference actuator

{
"method": "sendActuatorData",
"accessRole": "controller",
"actuatorId": "ref",
"valueNames": ["angularRef"],
"data": [84]
}
Listing 7.13: The response to set the reference actuator
{
"method": "sendActuatorData",
"lastMeasured": "2014-06-23T20:25:43.7412",
"accessRole": "controller",
"payload": {
"actuatorId": "ref",
"valueNames": ["angularRef"],
"data": [84]
}
}

7.2 Running example Smart Device
7.2.1 Metadata Specification

Listing presents the metadata for the running example Smart Device used
throughout this deliverable.

Listing 7.14: The Example Smart Device metadata

{
"apiVersion": "1.0.0",
"swaggerVersion": "1.2",
"basePath": "http://redlab.epfl.ch/smartdevice",
"info": {

Go-Lab 317601 101 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"title":

"RED Lab smart device",

"description": "This is an example implementation of the Go-Lab
smart device in LabView and demonstrates an mechatronics
remote lab running at EPFL",

"termsOfServiceUrl": "http://redlab.epfl.ch/terms/",

"contact": "christophe.salzmann@epfl.ch",
"license": "Apache 2.0",
"licenseUrl": "http://www.apache.org/licenses/LICENSE-2.0.html"
1,
"apis": [
{
"path": "/client",
"protocol": "WebSocket",
"produces": [
"application/json"
1,
"operations": [
{

"method": "Send",

"nickname": "getClients",
"summary": "Return a list of all available clients",
"notes": "Returns a JSON array with all the available
clients",
"type": "ClientResponse",
"parameters": [
{
"name": "message",

"description": "the payload for the getClients
service.",

"required": true,

"paramType": "message",

"type": "SimpleRequest",

"allowMultiple": false

3
1,
"authorizations": { },
"responseMessages": [
{
"code": 402,
"message": "Too many users"
3,
{
"code": 404,
"message": "Clients not found"
3,
{
"code": 405,
"message": "Method not allowed. The requested

method is not allowed by this server."

Go-Lab 317601

1020f|ﬂ|

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

1,

{

"code": 422,
"message": "The request body is unprocessable"

"path": "/sensor/",

"protocol":

"produces":
"application/json"

1,

"operations":

{

"WebSocket",

[

"method": "Send",
"nickname": "getSensorMetadata",
"summary": "List all sensors and their metadata",

Iltype n

: "SensorMetadataResponse",

"parameters": [

{

"name": "message",

"description": "the payload for the
getSensorMetadata service",

"required": true,

"paramType": "message",

"type": "SimpleRequest",

"allowMultiple": false

b
1,
"responseMessages": [
{
"code": 402,
"message": "Too many users"
3,
{
"code": 404,
"message": "No sensors found"
3,
{
"code": 405,
"message": "Method not allowed. The requested
method is not allowed by this server."
3,
{

"code": 422,
"message": "The request body is unprocessable"

Go-Lab 317601

1030f|ﬂ|

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

3
1,
"authorisations": {}
3,
{
"method": "Send",
"nickname": "getSensorData",
"summary": "Get data from the sensor with the given
sensor identifier",
"type": "SensorDataResponse",
"parameters": [
{
"name": "message",
"description": "The payload for the
getSensorData service",
"required": true,
"type": "SensorDataRequest",
"paramType": "message",
"allowMultiple": false
b
1,
"responseMessages": [
{
"code": 401,
"message": "Unauthorised access. The
authentication token is not valid"
3,
{
"code": 402,
"message": "Too many users"
3,
{
"code": 404,
"message": "No sensors found"
3,
{
"code": 405,
"message": "Method not allowed. The requested
method is not allowed by this server."
3,
{
"code": 422,
"message": "The request body is unprocessable"
b
]
b
]
1,
{

Go-Lab 317601 104 ofM

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"path":

"/actuator/",

"protocol": "WebSocket",
"produces": [
"application/json"

1,

"operations": [

{

"method": "Send",
"nickname": "getActuatorMetadata",
"summary": "List all actuators and their metadata",
"type": "ActuatorMetadataResponse",
"parameters": [
{
"name": "message",
"description": "the payload for the
getActuatorMetadata service",
"required": true,
"paramType": '"message",
"type": "SimpleRequest",
"allowMultiple": false

b
1,
"responseMessages": [
{
"code": 404,
"message": "No actuators found"
3,
{
"code": 405,
"message": "Method not allowed. The requested
method is not allowed by this server."
3,
{
"code": 422,
"message": "The request body is unprocessable"
X
1,

"authorizations": {}

"method": "Send",

"summary": "Send new data to the actuator with the
given actuator identifier",
"notes": "The parameters go into a JSON object send

over the WebSocket",
"type": "ActuatorDataResponse",

"nickname": "sendActuatorData",
"parameters": [
{

Go-Lab 317601

1050f|ﬂ|

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"name": "message",

"description": "The payload for the
sendActuatorData service",

"required": true,

"type": "ActuatorDataRequest",

"paramType": "message",

"allowMultiple": false

b
1,
"responseMessages": [
{
"code": 401,
"message": "Unauthorised access. The
authentication token is not valid"
3,
{
"code": 402,
"message": "Too many users"
3,
{
"code": 404,
"message": "No actuator not found"
T,
{
"code": 405,
"message": "Method not allowed. The requested
method is not allowed by this server."
3,
{
"code": 422,
"message": "The request body is unprocessable"
b
]
3
]
1,
{

"path": "/logging“,
"protocol": "WebSocket",
"produces": [

"application/json"
1,
"operations": [
{
"method": "Send",
"nickname": "getLoggingInfo",
"summary": "Streams the current logging information

of the user activities and the lab activities",
"notes": "Returns a JSON array of Activity Stream

Go-Lab 317601 106 of[144]

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

objects, see http://activitystrea.ms/",
"type": "LoggingInfoResponse",
"webSocketType": "text",

"produces": "application/json",
"parameters": [
{
"name": "message",

"description": "the payload for the
getLoggingInfo service",

"required": true,

"paramType": "message",

"type": "SimpleRequest",

"allowMultiple": false

X
]
3
1,
"responseMessages": [
{
"code": 401,
"message": "Unauthorised access. The authentication
token is not valid"
T,
{
"code": 402,
"message": "Too many users"
3,
{
"code": 405,
"message": "Method not allowed. The requested method
is not allowed by this server."
3,
{
"code": 422,
"message": "The request body is unprocessable"
3
]
3
1,
"authorizations": {3},
"concurrency": { /* Swagger extension: */
"interactionMode": "synchronous", /* can also be ’asynchronous’
*/
"concurrencyScheme": "roles", /* can also be ’concurrent’ then

all users have access at the same time */
"roleSelectionMechanism": ["race", "interruptor"], /* can also

be ’queue’, ’fixed role’, ’dynamic role’ */
"roles": [
{

Go-Lab 317601 107 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"role": "observer",

"selectionMechanism": ["race"],

"availableApis": ["getSensorData"] /* a list of paths or
operation nicknames */

"role": "controller",
"selectionMechanism": ["race']

"role": "admin",
"selectionMechanism": ["interruptor"]

1,
"models": {
"Client": {
"id": "Client",
"properties": {
"type": {
"type": "string",
"description": "The type of client application",
"enum": [
"OpenSocial Gadget",
"W3C widget",
"Web page",
"Java WebStart",
"Desktop application"

+s
"url": {
"type": "string",
"description": "The URI where the client application
resides"

},
"ClientResponse": {
"id": "ClientResponse",
"properties": {
"method": {
"type": "string"
}’
"clients": {
"type": "array",
"items": {
"$ref": "Client"

Go-Lab 317601 108 of[144]

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

1,
"Sensor": {
"id": "Sensor",
"required": [
"sensorId", "fullName"
1,
"properties": {
"sensorId": {
"type": "string"
3,
"fullName": {
"type": "string"
3,
"description": {
"type": "string"
3,
"webSocketType": {
"type": "string",
"description": "the type of WebSocket. WebSockets can
either be binary or textual.",

"enum": [
"text",
"binary"

1,

"defaultValue": "text"

3,
"singleWebSocketRecommended": {

"type": "boolean",

"description": "If this field is set to true it means
that the smart device expects that a client opens
a dedicated websocket for to read from this value",

"defaultValue": false

3,
"produces": {

"type": "string",

"description": "The mime-type of the data that is
produced by this sensor. A list of mime types can
be found at
http://en.wikipedia.org/wiki/Internet_media_type",

"defaultValue": "application/json"

3,

"values": {
"type": "array",
"items": {
"$ref": "Value"

+s

"configuration": {

Go-Lab 317601 109 ofM

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"type": "array",

"description": "The configuration consists of an
array of JSON objects that consist of parameter
and type",

"items": {

"$ref": "ConfigurationMetadataltem" /* extended

Swagger with object type */

3,
"accessMode": {
"type": "AccessMode"

3
b
3,
"Value": {
"id": "Value",
"required": [

"name"

1,
"properties": {

"name": {

"type": "string"

3,

"unit": {

"type": "string"

3,

"rangeMinimum": {
"type": "number",
"format": "double"

3,

"rangeMaximum": {
"type": '"number",
"format": "double"

3,

"rangeStep": {

"type": "number",
"format": "double"

3,

"lastMeasured": {
"type": "date-time"

3,

"updateFrequency": {
"type": "number",
"description": "The frequency in Hertz of which the

sensor value updates",
"format": "int"
3
}
3,

Go-Lab 317601 110 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"ConfigurationMetadataltem": {
"id": "ConfigurationMetadataltem",
"required": [
"parameter", "type"
1,
"properties": {
"parameter": {

"type": "string",

"description": "The name of the configuration
parameter"

3,
"description": {

"type": "string",

"description": "This field can provide some more
information on how this parameter should be used."

3,
"type": {

"type": "string",

"description": "The data type of that this
configuration parameters expects, e.g. number or
string",

"enum": [

"integer",

"long",

"float",

"double",

"string",

"byte",

"boolean",

"date",

"dateTime",

"object", /* extended Swagger with JSON
object type */

"array",

"any", /* extended Swagger with any
type -- this represents any possible type */

"binary" /* extended Swagger with binary
type —— support for large binary config files
*/

3,
"items": {

"type": "string",

"description": "This field should only be used when
the type is ’array’. It describes which types are
present within the array",

"enum": [

"integer",
"long",

Go-Lab 317601 111 ofM

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"float",

"double",

"string",

"byte",

"boolean",

"date",

"dateTime",

"object", /* extended Swagger with JSON
object type */

"any", /* extended Swagger with any
type —-- this represents any possible type */

"binary" /* extended Swagger with binary

type —— support for large binary config files
*/

},
"AccessMode": {
"id": "AccessMode",
"properties": {
"type": {
"type": "string",
"enum": [
"push",
|Ipu11 n s
"stream"

3,

"nominalUpdateInterval": {
"type": "number",
"format": "float"

3,

"userModifiableFrequency": {
"type": "boolean",
"defaultValue": false

},
"SimpleRequest": {
"id": "SimpleRequest",
"required": [
"method"
1,
"properties": {
"authToken": {
"type": "string"
1,
"method": {

Go-Lab 317601 112 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"type": "string",
"description": "The method should be equal to the
nickname of one of the provided services."

+,
"SensorMetadataResponse": {
"id": "SensorMetadataResponse",
"required": [
"method", "sensors"
1,
"properties": {
"method": {
"type": "string",
"description": "The method should be equal to the
nickname of one of the provided services."
3,
"sensors": {
"type": "array",
"items": {
"$ref": "Sensor"

1,
"SensorDataRequest": {
"id": "SensorDataRequest",
"required": [
"authToken", "method", "sensorId"
1,
"properties": {
"authToken": {
"type": "string"

3,
"method": {
"type": "string",
"description": "The method should be equal to the
nickname of one of the provided services."
3,

"sensorId": {
"type": "string"

3,
"updateFrequency": {
"type": "number",
"description": "The frequency in Hertz of which the
sensor value updates",
"format": "int"
3,

"configuration": {

Go-Lab 317601 113 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"type": "array",

"items": {

"$ref": "ConfigurationItem"

}

3,
"accessRole": {

"type": "string",

"description": "This field contains one of the roles
defined in the concurrency roles list. If
accessRole is not defined, the controller role is
assumed."

3
b
3,
"ConfigurationItem": {
"id": "ConfigurationItem",
"required": [
"parameter", "value"
1,
"properties": {
"parameter": {

"type": "string",

"description": "The name of the configuration
parameter"

3,
"value": {

"type": "any", /* extended Swagger with any
type -- this represents any possible type */

"description": "The value to set the configuration

parameter to. The type should equal the type given
in the metadata for this sensor."
b
b
1,
"SensorDataResponse": {
"id": "SensorDataResponse",
"required": [
"method", "sensorId"
1,
"properties": {
"method": {
"type": "string",
"description": "The method should be equal to the
nickname of one of the provided services."
3,
"sensorId": {
"type": "string"
3,

"accessRole": {

Go-Lab 317601 114 ofM

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"type": "string",

"description": "This field contains one of the roles
defined in the concurrency roles list. If no roles
are defined controller is returned. If the
observer is returned, the observerMode field will
be available with extra info on the status of the

lab."
3,
"responseData": {
"type": "SensorResponseData",
"description": "The data as measured by this sensor"
3,
"payload": {

"type": "any",

"description": "This optional payload field can
contain any JSON object that provides extra
information on this sensor or the current
measurement."

3,

"observerMode": {
"type": "ObserverMode",
"description": "This field is only available if the
accessRole field returns observer."

1,
"SensorResponseData": {
"id": "SensorResponseData",
"required": [],
"properties": {
"valueNames": {
"type": "array",
"description": "An ordered array with all the value
names of this sensor. The same order will be
applied to the data array and lastMeasured array.",

"items": {

"type": "string"

X

3,
"data": {

"type": "array",

"description": "An ordered array with all the data
values of this sensor. Each data element in the
array should be ordered in the same position of
its corresponding value elements in the values
array.",

"items": {

"type": "any" /* extended Swagger with any

type -- this represents any possible type */

Go-Lab 317601 115 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

3,
"lastMeasured": {

"type": "array",

"description": "An ordered array with all the data
values of this sensor. Each data element in the
array should be ordered in the same position of
its corresponding value elements in the values
array.",

"items": {

"type": "date-time"

1,
"Actuator": {
"id": "Actuator",
"required": [
"actuatorId", "fullName"
1,
"properties": {
"actuatorId": {
"type": "string"
3,
"fullName": {
"type": "string"
3,
"description": {
"type": "string"
3,
"webSocketType": {
"type": "string",
"description": "the type of WebSocket. WebSockets can
either be binary or textual.",
"enum": [
"text",
"binary"
1,
"defaultValue": "text"
3,
"singleWebSocketRecommended": {
"type": "boolean",
"description": "If this field is set to true it means
that the smart device expects that a client opens
a dedicated websocket for to read from this value"
"defaultValue": false
3,
"consumes": {
"type": "string",

Go-Lab 317601 116 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"description": "The mime-type of the data that is
consumed by this actuator. A list of mime types
can be found at
http://en.wikipedia.org/wiki/Internet_media_type",

"defaultValue": "application/json"

3,
"produces": {

"type": "string",

"description": "The mime-type of the data that is
produced by this actuator. A list of mime types
can be found at
http://en.wikipedia.org/wiki/Internet_media_type",

"defaultValue": "application/json"

3,
"values": {

"type": "array",

"items": {

"$ref": "Value"

3,
"configuration": {

"type": "array",

"description": "The configuration consists of an
array of JSON objects that consist of parameter
and type",

"items": {

"$ref": "ConfigurationMetadataltem" /* extended
Swagger with object type */

1,
"accessMode": {
"type": "AccessMode"

1,
"ActuatorMetadataResponse": {
"id": "ActuatorMetadataResponse",
"required": [
"method", "actuators"
1,
"properties": {
"method": {
"type": "string",
"description": "The method should be equal to the
nickname of one of the provided services."
3,
"actuators": {
Iltype" . |Iarrayll s
"items": {

Go-Lab 317601 117 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"$ref": "Actuator"

3,

"description": "The list of actuator metadata
elements"

},
"ActuatorDataRequest": {
"id": "ActuatorDataRequest",
"required": [
"method", "actuatorId"
])
"properties": {
"authToken": {
Iltype" . n Strlng"

3,
"method": {
"type": "string",
"description": "The method should be equal to the
nickname of one of the provided services."
3,

"actuatorId": {

"type": "string"

3,
"valueNames": {

"type": "array",

"description": "An ordered array with all the value
names of this sensor. The same order will be
applied to the data array and lastMeasured array.",

"items": {

"type": "string"

b
3,
"data": {

"type": "array",

"description": "An ordered array with all the data
values of this sensor. Each data element in the
array should be ordered in the same position of
its corresponding value elements in the valueNames
array.",

"items": {

"type": "any" /* extended Swagger with any
type -- this represents any possible type */

b

I

"configuration": {
"type": "array",
"items": {

"$ref": "ConfigurationItem"

Go-Lab 317601 118 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

3,
"accessRole": {
"type": "string",
"description": "This field contains one of the roles
defined in the concurrency roles list. If
accessRole is not defined the controller role is

assumed. "
X
b
1,
"ActuatorDataResponse": {
"id": "ActuatorDataResponse",
"required": [
"method"
1,
"properties": {
"method": {

"type": "string",

"description": "The method should be equal to the
nickname of one of the provided services."

3,
"lastMeasured": {

"type": "date-time"

3,
"accessRole": {

"type": "string",

"description": "This field contains one of the roles
defined in the concurrency roles list. If no roles
are defined controller is returned. If the
observer is returned, the observerMode field will
be available with extra info on the status of the
lab."

3,
"payload": {

"type": "any",

"description": "The payload can be useful for
describing a result that is returned, for instance
by using the SensorResponseData model. Since
results can differ from acknowledgements to result
data, the field is optional and can contain any
JSON object."

3,
"observerMode": {

"type": "ObserverMode",

"description": "This field is only available if the
accessRole field returns observer."

}
}

Go-Lab 317601 119 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

3,
"ObserverMode": {
"id": "ObserverMode",
"required": [],
"properties": {
"queueSize": {

"type": "integer",

"description": "Provides the length of the user
waiting queue that want to get control of the lab"

3,
"queuePosition": {

"type": "integer",

"description": "Provides the position of the client
who made this call in the user waiting queue. This
value should be positive and smaller or equal to
queueSize."

3,
"estimatedTimeUntilControl": {

"type": "integer",

"description": "The estimated waiting time from now
on until the client will get controllerMode
access. The time is expressed in seconds."

b
b
1,

"LoggingInfoResponse": {
"id": "LoggingInfoResponse",
"required": [
"method", "logs"

1,
"properties": {
"method": {
"type": "string"
3,
"logs": {
"type": "array",
"items": {
"type": "object",
"description": "An Activity Stream object. This
JSON object should follow the ActivityStreams
1.0 JSON specification described at
http://activitystrea.ms/specs/json/1.0/"
b
b
}

Go-Lab 317601 120 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

7.2.2 Example Requests and Responses to the Smart Device Services

In this section, we will present a few example requests and responses that can
be made with the running example specification.

getClients
Listing 7.15: The request message to retrieve the client apps.
{
"method": "getClients"
3
Listing 7.16: The response message to retrieve the client apps.
{
"method": "getClients",
"clients": [
{
"type": "OpenSocial gadget",
"url": "http://superlab.epfl.ch/client/dataviewer.xml"
1,
{
"type": "OpenSocial gadget",
"url": "http://superlab.epfl.ch/client/video.xml"
3,
{
"type": "OpenSocial gadget",
"url":
"http://superlab.epfl.ch/client/experiment-operator.xml"
b
]
b
getSensorMetadata
Listing 7.17: The request message to retrieve the sensor metadata.
{
"method": "getSensorMetadata"
3
Listing 7.18: The response message to retrieve the sensor metadata.
{
"method": "getSensorMetadata",
"sensors": [
{
"sensorId": "3D-pos",
"fullName": "3D position",
"description": "the 3D position of the robot arm",

Go-Lab 317601 121 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"webSocketType": "text",

"produces": "application/json",
"values": [
{
Ilnamell . IIXII ,
”unlt n . n cmll s

"lastMeasured": "2014-06-23T18:25:43.511Z",
"rangeMinimum": 0.00,

"rangeMaximum": 100.00,

"rangeStep": 0.10,

"updateFrequency": 10

3,
{
"name": "Y",
"unit": "cm",
"lastMeasured": "2014-06-23T18:25:43.511Z",
"rangeMinimum": 0.00,
"rangeMaximum": 100.00,
"rangeStep": 0.10,
"updateFrequency": 10
3,
{
"name": "Z",
"unit": "cm",
"lastMeasured": "2014-06-23T18:25:43.511Z",
"rangeMinimum": 0.00,
"rangeMaximum": 100.00,
"rangeStep": 0.10,
"updateFrequency": 10
b
1,
"configuration": [
{
"parameter": '"precision",
"description": "The precision is expressed as a power
of 10, e.g. to allow a precision of 0.01 the value
will be -2 (from 107-2).",
"type": "int"
b
1,

"accessMode": {
Iltypell : Ilpushll ,
"nominalUpdateInterval": 100,
"userModifiableFrequency": true

"sensorId": "video",
"fullName": "video stream",

Go-Lab 317601 122 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"description": "front camera video stream",

"webSocketType": "binary",
"singleWebSocketRecommended": true,
"produces": "image/jpeg",

"values": [

{
"name": "front",
"lastMeasured": "2014-06-23T18:28:43.617Z",
"updateFrequency": 10
b
1,
"configuration": [
{
"parameter": "width",
"type": "int"
3,
{
"parameter": "height",
"type": "int"
3,
{
"parameter": "compression",
"description": "The JPEG compression quality, ranging
from 0 (lowest quality) to 100 (highest quality).",
"type": "float"
3,
{
"parameter": "colourFilter",
"description": "The colour value in an array of 3
decimal RGB values",
"type": "array",
"items": "int"
b
1,
"accessMode": {
"type": "stream",
"nominalUpdatelInterval": 10,
"userModifiableFrequency": true
b
}
]
3
getSensorData

Go-Lab 317601

1230f|ﬂ|

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Listing 7.19: The request message to retrieve the sensor data of a 3D po-
sition sensor with a configuration for the precision to be set
to three decimal numbers. The controller access role is as-
sumed and the Smart Device will react accordingly to the ac-
tual user role.

"authToken": "dskds909ds8a76as675sab4",
"method": "getSensorData",
"sensorId": "3D-pos",
"updateFrequency": 20,
"configuration": [
{
"parameter": "precision",
"value": 3

1,

"accessRole": "controller"

Listing 7.20: The request message to gain the controller role of the sensor
data of a 3D position sensor.

"authToken": "dskds909ds8a76as675sab4",
"method": "getSensorData",
"sensorId": "3D-pos",
"updateFrequency": 20,
"accessRole": "interrupt",
"configuration": [
{
"parameter": "precision",
"value": -3

Listing 7.21: The request message to retrieve the sensor data of a video
sensor with a configuration for the dimensions, compression
and colour filter of the video feed.

"authToken": "dskds909ds8a76as675sab4",
"method": "getSensorData",

"sensorId": "video",

"updateFrequency": 25,

"accessRole": "controller",
"configuration": [

{

Go-Lab 317601 124 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"parameter": "width",
"value": 640

3,

{
"parameter": "height",
"value": 480

3,

{
"parameter": "compression",
"value": 92.3

3,

{
"parameter": "colorFilter",
"value": [60, 27, 229]

b

Listing 7.22: The response message to retrieve the sensor data of a 3D
position sensor.

{
"method": "getSensorData",
"sensorId": "3D-pos",
"accessRole": "controller",
"responseData": {
"valueNames": ["X", "y", "Z"],
"data": [12.396, 23.681, 43.303],
"lastMeasured": ["2014-06-23T18:28:43.511Z",
"2014-06-23T18:28:43.511Z2", "2014-06-23T18:28:43.5117Z"]
}
}

Listing 7.23: The request message to stop retrieving the sensor data of a
3D position sensor by setting the update frequency to 0.

{
"method": "getSensorData",
"sensorId": "3D-pos",
"updateFrequency": O

3

getActuatorMetadata

Listing 7.24: The request message to retrieve the actuator metadata.

"method": "getActuatorMetadata"

Go-Lab 317601 125 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Listing 7.25: The response message to retrieve the actuator metadata.

"method": "getActuatorMetadata",

"actuators":
L
{
"actuatorId": "motor",
"fullName": "Wheel motor",
"description": "operate the motor of the wheel",
"webSocketType": "text",
"produces": "application/json",
"consumes": "application/json",
"values": [
{

"name": "left",

"unit": "radian",

"rangeMinimum": 0.00,

"rangeMaximum": 3.14,

"rangeStep": 0.10,

"updateFrequency": 10,

"lastMeasured": "2014-06-23T19:25:43.511Z"

3,
{

"name": "right",

"unit": "radian",

"rangeMinimum": 0.00,

"rangeMaximum": 3.14,

"rangeStep": 0.10,

"updateFrequency": 10,

"lastMeasured": "2014-06-23T19:25:43.511Z"

}
1,
"configuration": [
{

"parameter": "precision",

"description": "The precision is expressed as a power
of 10, e.g. to allow a precision of 0.01 the value
will be -2 (from 10°-2).",

"type": "int"

b
1,

"accessMode": {
Iltypell : Ilpushll ,
"nominalUpdatelInterval": 100,
"userModifiableFrequency": true

Go-Lab 317601 126 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

getActuatorData

Listing 7.26: The request message to set the motor actuator.

"authToken": "dskds909ds8a76as675sab4",
"method": "sendActuatorData",
"accessRole": "controller",
"actuatorId": "motor",

"valueNames": ["left"],

"data": [1.90]

Listing 7.27: The response message to set the motor actuator.

"method": "sendActuatorData",
"lastMeasured": "2014-06-23T20:25:43.741Z",
"accessRole": "controller",
"payload": {
/* could be useful for returning a result, but payload is
optional */
"actuatorId": "motor",
"valueNames": ["left"],
"data": [1.90]

Listing 7.28: In case the user only has an observer role, this response
message is returned. It provides data about how long the
user will have to wait.

{
"method": "sendActuatorData",
"accessRole": "observer",
"observerMode": {
"queueSize": 7,
"queuePosition": 4,
"estimatedTimeUntilControl": 736
}
}
getLogginginfo

Listing 7.29: The request message to retrieve ActivityStreams logging in-
formation.

Go-Lab 317601 127 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

"authToken": "dskds909ds8a76as675sab4;",
"method": "getLoggingInfo"

Listing 7.30: The response message to retrieve ActivityStreams logging
information.

"method": "getLoggingInfo",
"logs": [
{
"verb": "access",
"published": "2014-06-23T18:25:43.511Z",
"language": "en",
"actor": {
"objectType": "person",
"id": "urn:example:person:martin",
"displayName": "Martin Smith",
"url": "http://example.org/martin",
"image": {
"url": "http://example.org/martin/image.jpg",
"mediaType": "image/jpeg",
"width": 250,
"height": 250

3,
"object" : {
"objectType": "sensor",
"id": "urn:redlab:epfl:ch/3D-pos"
"url": "http://redlab.epfl.ch/smartdevice/sensors/3D-pos",
"displayName": "3D position"
3,
"target" : {
"objectType": "lab",
"id": "urn:redlab:epfl:ch/smartdevice",
"displayName": "RED Lab",
"url": "http://redlab.epfl.ch/smartdevice/"

Go-Lab 317601 128 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

8 Appendix C: Value-proposition Canvas for Lab owner and
Cloud Services

During a full-day meeting dedicated to D4.1, on Thursday, March 20 2014, Go-
Lab WP4 partners collaboratively worked on a value-proposition canvas to bet-
ter understand the needs of teachers and lab owners and how the Smart Device
specification can alleviate these. The final result is displayed in Figure 23]

The remainder of this appendix explains the value-proposition canvas method-
ology and shows the results in detail. Furthermore, we provide an analysis of
these results.

8.1 The value-proposition canvas methodology

In order to build a service that will be widely used, we should understand the
needs of potential customers and provide a service that adequately fit these
needs. For the requirement analysis, we rely on the Value Proposition Can-
vas (Osterwalder & Pigneur, 2010), a widely used methodology to think about
this fit. The Value Proposition Canvas is part of the Business Model Canvas',
which is a tool used by major organisations such as General Electric, PWC,
Ernst & Young, Xerox, SAP, 3M, or NASA to reflect on novel products and ser-
vices.

In a nutshell, the Value Proposition Canvas provides a simple yet powerful way
to think how to establish a good fit between user expectations and a tool or
service, which could be offered to users (see Figure [24).

The canvas has two sides. On the right side, the assumptions about the cus-
tomers are listed independently of the tool or service. The jobs-to-be-done are
the tasks that the customer wants to complete. This can be a functional job (e.g.
solving a task), a social job (e.g. gaining status), an emotional job (e.g. feeling
good), or basic needs (e.g. eating).

These jobs are associated with pains and gains. ldentifying the pains and gains
help to have empathy for the users in order to better answer their needs. Pains
can be potential risks associated with the jobs, the costs in time or money,
the things that make customers feel bad or that make them underperform, the
barriers that prevent adoption, etc. Gains describe the benefits that customers
expect, the potential things that would make them happier, make their job easier,
or increase the adoption likelihood.

On the left side, there is the value proposition description. The idea is to list the
features of the products and services that help customers perform their job. In
order to highlight the fit between the features and the customer requirements,
the features are described as gain creator and pain reliever. Gain creators de-
scribe how the product or service generates the gains identified for the cus-
tomers with respect to the jobs to be done and pain relievers describe how the
product or services relief the previously identified pains.

'Business Model Generation, http://www.businessmodelgeneration.com

Go-Lab 317601 129 oflﬂl

http://www.businessmodelgeneration.com

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Figure 23: A photograph of the whiteboard with the final value-proposition
canvas.

Gain Creators

22

Products Customer

& Services — Job(s)

[ey

Pain Relievers

>

Figure 24: The Value Proposition Canvas

Go-Lab 317601 130 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

8.2 Detailed Results

The following section contains the transcript of all notes on the whiteboard in
Figure[23] The transcripts are done literally and can contain spelling errors. This
section is structured according to the different zones in the value-proposition
canvas.

8.2.1 Customer
Customer Jobs
e Teachers
— Easy/simple access
— Use lab
He wants to have more labs

One entry point
— He wants students to be able to repeat an experiment
— He wants to know the results of the experiment
— He wants to measure the student progress
— He does not want to be aware of the lab maintenance (if possible)
— Know how to use the lab
— Know pedagogical contents available
— Find practical experiences that fit the CV
— He can define different levels of difficulty
— Different hardware devices can be used
e Lab owners

He wants to have his labs ‘safe’

He want to get more visibility online => more business

‘Remotify lab’

Use Go-Lab booking single sign-on Go-Lab infrastructure
Multi Ul clients
— Sustainability

— Track lab usage: type of users, interests, interactions. ..

Pains
e Teachers
— There is no remote lab for my needs
— The Hw crashes during lab usage

Go-Lab 317601 131 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Complex labs which can not be simplified
No standardisation Ul /SSO/booking
He has to explain several times the same concept

Less experiential learning

Not easy to use

He has to plan the experiment for those who could not attend
Attract the attention of the students

e Lab owners
— He does not want to risk to change
— Low usage
— Only your own pedagogical contents
— Upgrade / sustainability
— He would like to control what is happening
— He needs to send someone to install it
— Give lots of instructions for audience
— Remotify is difficult
— Finding audience

— Funding
- i18n
Gains

e Teachers
— Be involved in defining the space
— Easily use of remote labs in class
— Change the experience every year / for each class
— User-tailored apps
— He can know what other schools in other countries build as an exper-

iment

— Improve quality of teaching and learning

e Lab owner

— More users for the lab

— Less effort when developing
— Interoperability

— Does not start from scratch

Go-Lab 317601 132 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Durability, robust system

Visibility / promotion

Helps to continue in the market
Portability of Ul

8.2.2 Product
Products & Services

e Golabz / Graasp
e Collection of widgets

e Middleware (hw & sw) between the lab and Ul, which can be different
depending on the device, age, etc. Software lib.

e LA dashboard

¢ “Bible of Smart Device” - specifications
e Go-Lab booking system

e Best practices for remote labs

e Catalogs of labs

e Bartering platform

Pain Relievers
e Teachers
— Portal for teachers
— Catalog of labs + ILS
— System for building different ILS
— Lab / ILS tutor list
Build an attractive Ul

Add videos, text, etc.
— Booking system (authentication)
e Lab owner
— Library (sw + hw) + steps to implement it
— App composer -> translation
— Test suite: performance benchmarking
— Open standards
— Publishing lab in Golabz
— Bombproof system
— Community of developers

Go-Lab 317601 133 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

— Good documentation
— Usage data
— Reuse of existing solutions through standardisation

Gain Creators
e Teachers

— Lab catalogue

— App catalogue

ILS catalogue

App composer

Learning analytics
ILS + booking

e Lab owner

— Specifications + best practices
— Go-Lab seal of approval
— Standardised access to lab / infrastructure

8.3 Analysis of the results

In this section, we synthesised (grouped and rephrased) the notes of Sec-
tion [8.20 The idea of this section is to elaborate and clarify the notes on the
whiteboard of Figure [23]

To do this, we have first removed all notes directly related to other systems of
the Go-Lab infrastructure (e.g. the lab repository & ILS platform) as well as
unrelated notes to Smart Device. Second, we labelled the synthesised notes
on different levels. The notes directly related to the Smart Device or Smart
Gateway are in bold and with (A). The notes that show an effect of using the
Smart Device or Smart Gateway but are not directly caused by it are labelled
with a (B).

8.3.1 Customer
Customers Jobs:
e Teachers:

use remote labs in the course in an easy/user-friendly way (the tech-
nical details of the lab should be transparent)

have access to more online labs
— have-one-placeto-gototo-findlabs
allow students to repeat an experiment

— have-access-to-theresults-of student-experiments

Go-Lab 317601 134 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

— wants to use labs on both computers & tablets
e Lab owners:
— get more lab users: by increasing visibility
— (A) make lab secure applying secure software methodologies
- (A) make existing labs remotely accessible
— (A) support multiple Uls for a lab
— make-an-online-tab-sustainable
— (B) track usage of a lab

Pains
e Teachers:
_ . Lot Hobl
— lab hardware crashes
i I bifity-level

— (A) each lab has its own Ul, booking system, etc. (no standardi-
sation/federation)

— {hardtokeep-the-attention-of-students)
e Lab owners:

— (A) maintenance and changing the implementation/upgrading of
a lab is hard

— (A) installation of a remote lab is hard

— (A) it is hard to make a lab remotely accessible

— internationalisation is hard

Gains
e Teachers:

_ Eesil tabs in the-ol

Go-Lab 317601 135 of[144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

— Support for changing the Ul and language for each age group

— (A) Use apps that communicate with the labs for richer user ex-
perience and better integration of the lab with the pedagogical
approaches.

— Share-and-use-tesson-plans-of-otherteachers:

e Lab owner
_c Lo I b hich isibility-8 .
— (A) Develop a remote lab with less effort

— (A) Get interoperability with different services that can enrich/im-
prove your lab or make the development more efficient

— (A) Use an existing, robust, secure framework to build the lab on
_ Getd inabili
— The lab Ul can be used on different devices (portability)
8.3.2 Product
Products & Services
o TheLabrepository:-Golabz
o ThelLSplatform:-Graasp
e Apps

(A) Middleware between lab hardware/software and Go-Lab infras-
tructure: software package and specification

Learning Analytics: dashboard, scaffolds, etc.
e Go-Lab booking system

¢ (A) Best practices for implementing, running and managing remote
labs.

o B . i : .
Pain Relievers
e Teachers:

Go-Lab 317601 136 of[144]

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

— One unified booking system
e Lab owner:

— (A) Software library with middleware to implement a remote lab
together with specifications and best practices

* using open standards and well-documented software libraries
« standardisation of the specifications
— Translation/Internationalisation tool
— Test suite for performance benchmarking
_ Publishinalab-i bii ,
— Development support:
x Developer community
% proper documentation

— Usage data and dashboard

Gain Creators
e Teachers:

_ Lab L 11S | ittt . hi fortt ired
fesourees-to-prepare-a-course:

_ F " I lati
— learning analytics support

_ forinauiryd ,

— unified simple booking mechanism

e Lab owner:

— (A) Clear specifications, documentation and best practices to
ease development

— (A) Standardised way to access a lab and the Go-Lab infrastruc-
ture

8.3.3 Conclusion

Many notes on the value-proposition canvas are not directly related to the Smart
Device and Smart Gateway specification, but are rather the effect of the whole
Go-Lab infrastructure (i.e., the ILS Platform (see D5.2), the Lab Repository (see
D5.2), the App Composer (see D5.2), the Learning Analytics service (see D4.2)
and the Add-on Services (see D4.2)). Of course, since the Smart Device and
Smart Gateway specification enables interoperability with various parts of the
Go-Lab infrastructure, one could consider the specification as supporting or

Go-Lab 317601 137 of [144)

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

even enabling these platforms and services. But when, we focus really on the
specification and the software packages implementing the specification that Go-
Lab provides, the major impacts of it are the following:

e For teachers:
— a standardised Ul for booking and potentially using labs

— interoperability between lab and apps, thus enabling richer user ex-
perience and better integration of the lab with the pedagogical ap-
proaches.

— better support for learning analytics
e For lab owners:

— a robust, secure implementation of the specification to build their lab
on, resulting in faster development and more robust and secure de-
ployment

— the specification and software packages enable a way to easily make
existing labs available online

— due to the shared specification, client Uls can be reused.

— make easily use of extra functionality provided by the Go-Lab infras-
tructure which can make the lab more user-friendly and can speed
up development, e.g. a booking mechanism or learning analytics ser-
vices.

— enable interoperability with existing apps, which again can speed up
development and increase the attractiveness of the lab for users.

— due to a clear specification and use of open standards the labs will
be usable on more software platforms, and devices.

Furthermore, the value-proposition canvas exercise also uncovered the need to
have clear specifications, as well as secure and robust Smart Device software
libraries that enable lab owners to quickly develop and deploy labs with less
effort. To completely achieve this, we also have to provide best practices and
clear documentation. Probably, we will also need to support an online commu-
nity of Go-Lab Smart Device developers and provide common functionality in
the software packages.

In conclusion, teachers benefit of the Smart Device and Smart Gateway spec-
ification through the interoperability it enables with the other Go-Lab platforms
and services, which creates the functionality they want (e.g. learning analyt-
ics and better user experience). On the other hand, the lab owners benefit
from the specifications, because they are able to develop their labs faster on a
secure and robust platform. Furthermore, the interoperability with the Go-Lab
infrastructure enables additional functionality that the lab owners do not have to
provide neither implement, e.g. lab owners do not have to implement their own
booking system and can make use of the Go-Lab booking system.

Go-Lab 317601 138 of[144]

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

9 Appendix D: Lab Owner Workshop

A workshop has been organised with lab-owners from June 3-6 in Madrid in
order to get feedback from external experts (lab owners) on the draft specifica-
tions for the Smart Device (plug technologies) and the Smart Gateway (cloud
services) to contribute to the preparation of this deliverable and to evaluate the
possible adoption level.

Internal participants include 4 representatives of EPFL, one of CUAS, one of
UD and 7 of UNED.

Four external experts have been invited. They have been selected in the frame-
work of the REV conference as leaders of innovative and prominent remote lab
management platforms not part of Go-Lab, and as such active lab owners:

¢ Akassio Miranda Silva from RExLab' Universidade Federal de Santa Cata-
rina (Brazil) and visiting scholar at Edge Hill University (GB)

e Franz Schauer from Tomas Bata University (CZ) and in charge of Rem-
LabNet (Schauer et al., 2014) (ISES?)

e Igor Titov from Labicom?® (RU)
e Rui Pedro Borralho Neto from IST# and Linkare® (PT)

During the first day, the Go-Lab project was presented and external participants
introduced their platforms.

Labicom has a focus on sharing large scientific experiments. Their compe-
tences in interfacing complex instrumentation in LabVIEW is useful for Go-Lab.

Linkare has a focus on a Java framework with various applications, including
remote Labs. Their architecture is based on standardised plug-ins to connect
new labs. The end-user solution is a single Java application in which labs can
be selected.

Rexlab is a non-profit organisation with a focus on offering remote labs to schools
through mobile devices. They have an approach similar to Go-Lab focusing on
HTML5 and Raspberry Pi.

RemLabNet is a remote lab management system (RLMS) exploited to provide
access to a network of remote labs dedicated to secondary schools. They have
about 40 very interesting labs. They rely on a single but essential scaffolding
application: a data collector.

9.1 Value Proposition

An interesting discussion was held regarding the value proposition that Go-Lab
could offer to lab owners. The main request was to provide a strong integration

'RExLab, http://rexlab.ufsc.br/?q=en

2|SES. http://www.ises.info/index.php/en/laboratory
3Labicom, https://labicom.net/home.php

4|ST, http://www.elab.ist.utl.pt/?page_id=118
SLinkare, http://www.linkare.com/en/

Go-Lab 317601 139 oflﬂl

http://rexlab.ufsc.br/?q=en
http://www.ises.info/index.php/en/laboratory
https://labicom.net/home.php
http://www.elab.ist.utl.pt/?page_id=118
http://www.linkare.com/en/

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

between technology and pedagogy (offered by the ILS) and to bring more users
(adoption through demonstration and dissemination thanks to the repository).
The latter being a trigger to additional national funding, customers or sponsors
depending of the business model of the lab owners. The challenge associ-
ated to improving and sustaining remote labs was also mentioned (through user
feedback and natural selection).

Support for authoring end-user interfaces was also mentioned as one of the
most interesting technology to enable seamless integration (App composer and
ILS Platform).

9.2 Smart Device and Interfacing

The Smart Device concept was introduced and the corresponding specifications
were discussed in detail. It is clear that this part would be more interesting for
new lab owners not having yet their own platform (so, the experts present in this
workshop do not really correspond to the target public).

The abstraction of the sensors and actuators with their corresponding metadata
were well received. The experts proposed to add the concept of ‘instruments’
to ease the representation of complex measurement devices that can be found
in complex remote labs. We agreed on the fact that a remote lab is a physical
experiment (the object of the observation) with sensors and actuators, as well
as its instrumentation (also referred altogether as a rig in other frameworks).
So, the Smart Device is the abstraction of this rig (which is a unit which should
be booked as a whole).

The relevant need to add timestamps on all sensors and actuator samples was
raised and accepted.

The parallel standardisation carried out in the framework of the IEEE P1876
work group was also discussed. The participants agreed that the Smart Device
specifications should be integrated. They were however not in favour of hav-
ing IEEE defining dedicated communication protocols for remote labs (which is
not the objective of Go-Lab anyway). The lab owners appreciated the chance
to have Go-Lab partners traveling to IEEE standardisation meetings as repre-
sentatives of the European lab owners as they do not have resources to do
so. The need to standardize remote labs at a pedagogical level was also ques-
tioned. The conclusion was that an ILS could be standardised using the existing
SCORM / LOM standards (to be checked), while a remote lab itself should stay
agnostic with respect to the pedagogy (the same lab can be used in very differ-
ent settings and scenarios).

9.3 Smart Gateway and Federation

The Smart Gateway concepts and solutions were introduced and simple so-
lutions to connect the platforms of the external experts were presented. All
experts but labicom were positive regarding an incremental integration of their
labs through the Smart Gateway, starting first with just the harvesting of their list
of labs and basic schemes enabling authentication. They are also interested by

Go-Lab 317601 140 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

the opportunity to tackle internationalization through the App Composer.

They are however expecting to have Go-Lab sponsoring for such an integration
using schemes to be defined in bilateral negotiations, as they have all trouble
to sustain their developments and platforms. For Linkare, the main idea is to
translate their client application in JavaScript (it would be a meta-client giving
access to various labs). For Rexlab, the main idea is to integrate their lab in
ILS through iframes ands share experience about the hardware implementa-
tion of the Smart Device on embedded boards. They are really willing to show
the Brazilian government that they provide access to more labs through the
collaboration with Go-Lab (to get more funding). For RemLabNet, as they are
developing their own platform, they are not interested by the Go-Lab services
but they are strongly interested to enable interoperability between RLMS. They
are also interested to advertize labs in the Go-Lab repository and continue the
update of their end-user interfaces to Javascript.

As a conclusion, we figured out that we should communicate more about the
Smart Gateway as a way to enable federation of remote labs for dissemina-
tion purpose in a broad collaboration framework between lab owners (it is more
about what will become visible in the repository than what is the enabling tech-
nology). This should be achieved through manual harvesting carried out to-
gether by lab owners and Go-Lab representatives.

Following the discussion on the federation of labs, the metadata devised by
WP2 were presented and discussed for about an hour. This feedback has been
communicated to WP2.

Go-Lab 317601 141 oflﬂl

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

References

Auer, M., Pester, A., Ursutiu, D., & Samoila, C. (2003, Dec). Distributed vir-
tual and remote labs in engineering. In Industrial technology, 2003 IEEE
international conference on (Vol. 2, p. 1208-1213 Vol.2). doi: 10.1109/
ICIT.2003.1290837

Bellido, L., Villagra, V., & Mateos, V. (2010). Federated authentication and
authorization for reusable learning objects. In (p. 1071-1074). IEEE. Re-
trieved 2014-07-01, from http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper . htm?arnumber=5492459 doi: 10.1109/EDUCON.2010.5492459

Cascado, D., Sevillano, J. L., Fernandez-Luque, L., Johan-GrA ttum, K., Vog-
nild, L. K., & Burkow, T. M. (2011). Standards and implementation of
pervasive computing applications. In Pervasive computing and network-
ing (pp. 135—158). John Wiley & Sons, Ltd. Retrieved from http://dx.doi
.org/10.1002/9781119970422.ch9 doi: 10.1002/9781119970422.ch9

Freed, N., Baker, M., & Hoehrmann, B. (2014). Media types (Tech. Rep.).
Retrieved from http://www.iana.org/assignments/media-types/media
-types.xhtml

Hadley, M. J. (2009). Web application description language (WADL) (Tech.
Rep.). Sun Microsystems Inc. Retrieved from http://java.net/
projects/wadl/sources/svn/content/trunk/www/wad120090202.pdf

Hardison, J., & Garbi Zutin, D. (2011). The ilab shared archi-
tecture: A web services infrastructure to build communities of in-
ternet accessible laboratories. IGI Global. Retrieved 2014-07-
01, from http://services.igi-global.com/resolvedoi/resolve.aspx
7d0i1=10.4018/978-1-61350-186-3

Harward, V., del Alamo, J., Lerman, S., Bailey, P., Carpenter, J., DeLong, K.,
... Zych, D. (2008). The iLab shared architecture: A web services infras-
tructure to build communities of internet accessible laboratories. , 96(6),
931-950. Retrieved 2014-07-01, from http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=4527087 doi: 10.1109/JPROC
.2008.921607

Hypertext transfer protocol (HTTP) status code registry (RFC7231) (Tech.
Rep.). (2014). IETF. Retrieved from http://www.iana.org/assignments/
http-status-codes/http-status-codes.xhtml

Lindsay, E., Stumpers, B., & others. (2014). Remote laborato-
ries: enhancing accredited engineering degree programs. Retrieved
2014-07-01, from http://search.informit.com.au/documentSummary;
dn=258335755728695; res=1ELENG

Lowe, D., Murray, S., Lindsay, E., & Liu, D. (2009). Evolving remote laboratory
architectures to leverage emerging internet technologies. , 2(4), 289-294.
Retrieved 2014-07-01, from http://ieeexplore.ieee.org/xpls/abs_all
. Jsp?arnumber=5210092

Lowe, D. B., Berry, C., Murray, S., & Lindsay, E. (2009). Adapting a remote lab-
oratory architecture to support collaboration and supervision. , 5, 51-56.
Retrieved 2014-07-01, from http://espace.library.curtin.edu.au/cgi
-bin/espace.pdf?file=/2010/03/08/file_1/133701

Go-Lab 317601 142 oflﬂl

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5492459
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5492459
http://dx.doi.org/10.1002/9781119970422.ch9
http://dx.doi.org/10.1002/9781119970422.ch9
http://www.iana.org/assignments/media-types/media-types.xhtml
http://www.iana.org/assignments/media-types/media-types.xhtml
http://java.net/projects/wadl/sources/svn/content/trunk/www/wadl20090202.pdf
http://java.net/projects/wadl/sources/svn/content/trunk/www/wadl20090202.pdf
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-61350-186-3
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-61350-186-3
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4527087
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4527087
http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
http://search.informit.com.au/documentSummary;dn=258335755728695;res=IELENG
http://search.informit.com.au/documentSummary;dn=258335755728695;res=IELENG
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5210092
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5210092
http://espace.library.curtin.edu.au/cgi-bin/espace.pdf?file=/2010/03/08/file_1/133701
http://espace.library.curtin.edu.au/cgi-bin/espace.pdf?file=/2010/03/08/file_1/133701

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Marum, M. (n.d.). Opensocial 2.5.1 specification. Retrieved 02/07/2014, from
https://github.com/OpenSocial/spec

Ordufa, P. (2013). Transitive and scalable federation model for remote lab-
oratories (Doctoral dissertation, Universidad de Deusto, Bilbao, Spain).
Retrieved from http://paginaspersonales.deusto.es/porduna/phd/

Orduna, P., Bailey, P, DeLong, K., Lépez-de Ipifa, D., & Garcia-Zubia, J.
(2014, January). Towards federated interoperable bridges for sharing ed-
ucational remote laboratories. Computers in Human Behavior, 30, 389—
395. Retrieved from http://www.sciencedirect.com/science/article/
pii/S0747563213001416/ doi: 10.1016/j.chb.2013.04.029

Orduna, P, Irurzun, J., Rodriguez-Gil, L., Zubia, J. G., Gazzola, F., & de Ip-
ifa, D. L. (2011). Adding new features to new and existing remote
experiments through their integration in weblab-deusto. JOE, 7(S2),
33-39. Retrieved from http://dblp.uni-trier.de/db/journals/ijoe/
1joe7.html#0rdunalRZGL11

Orduna, P, Lerro, F., Bailey, P, Marchisio, S., DeLong, K., Perreta, E., ...
Garcia-Zubia, J. (2013, March). Exploring complex remote laboratory
ecosystems through interoperable federation chains. In 2013 IEEE global
engineering education conference (EDUCON) (pp. 1200-1208). Berlin,
Germany. doi: 10.1109/EduCon.2013.6530259

Osterwalder, A., & Pigneur, Y. (2010). Business model generation: A handbook
for visionaries, game changers, and challengers. Wiley. Retrieved from
http://books.google.ca/books?id=fk1TInjiPQAC

Salzmann, C., & Gillet, D. (2008). From online experiments to smart devices.
International Journal of Online Engineering (iJOE), Vol 4(SPECIAL IS-
SUE: REV2008), 50-54. Retrieved from http://online-journals.org/
index.php/i-joe/

Sancristobal, E., Castro, M., Harward, J., Baley, P, DeLong, K., & Hardison, J.
(2010). Integration view of web labs and learning management systems.
In (p. 1409-1417). IEEE. Retrieved 2014-07-01, from http://ieeexplore
.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5492363 doi: 10
.1109/EDUCON.2010.5492363

Schauer, F., Krbecek, M., Beno, P., Gerza, M., Palka, L., & Spilakova, P. (2014,
Feb). REMLABNET - open remote laboratory management system for e-
experiments. In Remote engineering and virtual instrumentation (REV),
2014 11th international conference on (p. 268-273). doi: 10.1109/REV
.2014.6784273

SCORM - home. (n.d.). Retrieved 2014-07-01, from http://scorm.com/
?7gclid=CLWR461Ypb8CF(IewwodsqQA2w

Swagger RESTful APl documentation specification. (n.d.). Retrieved
30/06/2014, from https://github.com/wordnik/swagger-spec/blob/
master/versions/1.2.md

Taylor, B. N., & Thompson, A. (2008). The international system of units
(SI) (NIST Special Publication No. 330). National Institute of Standards
and Technology. Retrieved from http://physics.nist.gov/Pubs/SP330/
sp330.pdf

Go-Lab 317601 143 oflﬂl

https://github.com/OpenSocial/spec
http://paginaspersonales.deusto.es/porduna/phd/
http://www.sciencedirect.com/science/article/pii/S0747563213001416
http://www.sciencedirect.com/science/article/pii/S0747563213001416
http://dblp.uni-trier.de/db/journals/ijoe/ijoe7.html#OrdunaIRZGL11
http://dblp.uni-trier.de/db/journals/ijoe/ijoe7.html#OrdunaIRZGL11
http://books.google.ca/books?id=fklTInjiPQAC
http://online-journals.org/index.php/i-joe/
http://online-journals.org/index.php/i-joe/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5492363
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5492363
http://scorm.com/?gclid=CLWR46iYpb8CFQIewwodsqQA2w
http://scorm.com/?gclid=CLWR46iYpb8CFQIewwodsqQA2w
https://github.com/wordnik/swagger-spec/blob/master/versions/1.2.md
https://github.com/wordnik/swagger-spec/blob/master/versions/1.2.md
http://physics.nist.gov/Pubs/SP330/sp330.pdf
http://physics.nist.gov/Pubs/SP330/sp330.pdf

Go-Lab D4.1 Specifications of the Lab Owner and Cloud Services (revision)

Tetour, Y., Boehringer, D., & Richter, T. (2011). Integration of virtual and remote
experiments into undergraduate engineering courses. In (p. GOLC1-1-
GOLC1-6). IEEE. Retrieved 2014-07-01, from http://ieeexplore.ieee
.org/lpdocs/epic03/wrapper.htm?arnumber=6143130 doi: 10.1109/FIE
.2011.6143130

Thompson, C. W. (2005). Smart devices and soft controllers. IEEE Internet
Computing, 9(1), 82-85. Retrieved from http://dblp.uni-trier.de/db/
journals/internet/internet9.html#Thompson05

Go-Lab 317601 144 oflﬂl

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6143130
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6143130
http://dblp.uni-trier.de/db/journals/internet/internet9.html#Thompson05
http://dblp.uni-trier.de/db/journals/internet/internet9.html#Thompson05

	Introduction
	Remote labs
	Value Proposition
	Integration Levels

	Lab Owner or Plug Services
	The Smart Device Architecture
	The Smart Device in the Go-Lab Infrastructure

	Smart Device Protocols and Technical details
	Smart Device Services and Functionalities
	Introduction
	List of Services and Functionalities
	Metadata Service
	Sensor Service – getSensorData
	Actuator Service – sendActuatorData
	User Activity Logging Service – getLoggingInfo
	Client Application Service – getClients
	Models service – getModels

	Smart Device Interactions
	Authentication and Booking
	Interaction Modes
	WebSocket Channeling
	Lab Instruments as Complex Sensors

	The Revised Smart Device Specification Compared to the M12 Version

	Cloud Services
	Introduction
	Requirements for the Smart Gateway
	Functional Requirements for the Smart Gateway
	Non-functional Requirements for the Smart Gateway

	Review of Legacy Lab Platforms
	Requirements for the Smart Gateway and Comparison with Other Systems
	Specification and Architecture of the Smart Gateway
	Architecture
	Specifications of the Plug-in System
	The Protocol Translator

	Benefits for Lab Owners

	Standardisation
	Conclusion
	Appendix A: Smart Device metadata specification details
	Extensions for WebSockets
	Extensions for Concurrency mechanisms
	Additional Minimal Extensions
	Data Types

	Appendix B: The Metadata Specification for an Example Smart Device
	RED Smart Device
	Metadata Specification
	Example Requests and Responses to the Smart Device Services

	Running example Smart Device
	Metadata Specification
	Example Requests and Responses to the Smart Device Services

	Appendix C: Value-proposition Canvas for Lab owner and Cloud Services
	The value-proposition canvas methodology
	Detailed Results
	Customer
	Product

	Analysis of the results
	Customer
	Product
	Conclusion

	Appendix D: Lab Owner Workshop
	Value Proposition
	Smart Device and Interfacing
	Smart Gateway and Federation
	References

