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Abstract. The Bayesian framework offers a number of techniques for inferring an individual’s knowledge state
from evidence of mastery of concepts or skills. A typical application where such a technique can be useful is Com-
puter Adaptive Testing (CAT). A Bayesian modeling scheme, POKS, is proposed and compared to the traditional
Item Response Theory (IRT), which has been the prevalent CAT approach for the last three decades. POKS is based
on the theory of knowledge spaces and constructs item-to-item graph structures without hidden nodes. It aims to
offer an effective knowledge assessment method with an efficient algorithm for learning the graph structure from
data. We review the different Bayesian approaches to modeling student ability assessment and discuss how POKS
relates to them. The performance of POKS is compared to the IRT two parameter logistic model. Experimental
results over a 34 item UNIX test and a 160 item French language test show that both approaches can classify
examinees asmasteror non-mastereffectively and efficiently, with relatively comparable performance. However,
more significant differences are found in favor of POKS for a second task that consists in predicting individual
question item outcome. Implications of these results for adaptive testing and student modeling are discussed, as
well as the limitations and advantages of POKS, namely the issue of integrating concepts into its structure.

Keywords. Bayesian inference, adaptive testing, student models, CAT, IRT, POKS

INTRODUCTION

Computer Adaptive Testing (CAT) applications are probably the earliest examples of the use of intelligent
user modeling techniques and adaptive interfaces in educational applications. The principle behind CAT
is to adjust the test items presented to the user’s knowledge, or, using CAT terminology, to adjust the item
characteristics to the examinee’s ability level. Akin to the architectures of adaptive systems, CAT systems
analyze the behaviour of the user to build a dynamic model of his/her knowledge state and choose the
next item that is most appropriate for this state. In the specific context of CAT, the most appropriate items
are the ones that will allow the system to determine, with the least number of test items administered,
if the examinee is a “master” or a “non-master” with respect to the measured ability. In the context
of adaptive interfaces in general, it could imply, for example, adapting a tutor’s didactic content and
strategy, adapting hyperlinks of a documentation system, or even adapting some query retrieval results.
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The original theory behind CAT is the Item Response Theory (IRT), a framework introduced by
Birnbaum (1968) and by Lord and Novick (1968). This theory was later refined by a number of other
researchers since its introduction (see van der Linden & Hambleton, 1997). More recently, the Bayesian
modeling approach has also been applied to model an examinee’s ability based on test item responses.
This interest in Bayesian modeling has come not only from researchers in educational testing, such as
Rudner (2002) and Mislevy and Gitomer (1995), but also from researchers in adaptive interfaces and
user modeling (see, for example, Conati, Gertner, & VanLehn, 2002). It has now become one of the
major probabilistic user modeling techniques. This paper focuses on the link between these two fields,
namely IRT and the Bayesian graph models student modeling techniques. We compare each approach
and conduct a comparative performance evaluation between IRT and one such Bayesian modeling ap-
proach named POKS (Partial Order Knowledge Structures).

POKS (Desmarais, Maluf, & Liu, 1995) is particularly well suited for this comparison because, akin
to the IRT approach, it does not necessarily require a knowledge engineering effort to build the model
but, instead, relies on statistical techniques to build and calibrate the model. Indeed, by relying solely
on observable nodes to build a graph model of item-to-item relations, there is no need to define latent
skills behind each test item. The process then becomes very similar to IRT for which no knowledge
engineering effort is required as a single latent skill (hidden node) is assumed for every test item.

By building links between items themselves, POKS differs from most Bayesian graph models and
Bayesian networks developed for student modeling, which rely on hidden nodes such as concepts or
abilities. However, in order to provide the detailed diagnostic capabilities required by most intelli-
gent learning environments, concepts and skills must be included within POKS. Exploration of POKS
structures that include concepts is provided in Desmarais, Meshkinfam, and Gagnon (2005). The in-
troduction of concept nodes and abilities in POKS and how it compares with other Bayesian models or
multidimensional-IRT (MIRT) approaches will be revisited in the section entitledAutomated learning
constraint. For the purpose of comparing POKS with IRT, we limit POKS structures to item-to-item
nodes only. Doing so puts both methods on the same footing, namely that of being entirely driven from
empirical data. It also allows the proper evaluation of the strength of item-to-item structures for knowl-
edge assessment.

The next two sections provide a basic overview of the IRT and Bayesian modeling approaches. It is
followed by a more detailed description of the specific techniques involved, IRT and POKS.

COMPUTER ADAPTIVE TESTING AND IRT

The prevalent means of conducting CAT is based on the Item Response Theory (IRT). In IRT, the prob-
ability that an examinee correctly answers a given test item is modeled by an ‘S’ shaped curve such as
the one in Figure 1. This curve is named Item Characteristic Curve (ICC) and it is meant to represent
the probability of an item as a function of the student’s ability level. The more skilled the individual
is, the more likely the item will be mastered by this person. The shape of the probability distribution is
modeled by two parameters: the item’sdifficulty level and the item’sdiscriminationfactor. This is the so
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Fig.1. Item characteristic curve (a = 1, b = 0).

called “two-parameter model”1. These two parameters,difficulty anddiscrimination, can be estimated
from data of each test item. Typically, parameters are estimated by a maximum likelihood approach or
by a least square fit (Baker, 1992). Figure 1 illustrates the typical ‘S’ curve corresponding to an item of
difficulty b = 0 (average difficulty) and discriminationa = 1.

Once the parameters of the ICC curve are determined for all test items, it becomes possible to derive
the examinee’s most likely ability level given a set of item responses. Typically, the ability is estimated
with a maximum likelihood model (see the section onIRT-2PL model); however, a number of methods
have been proposed and investigated for this task (Baker, 1992).

The CAT process loop

The ability level is updated after each response obtained from the examinee during the CAT process loop:

1. Estimate the most likely ability level given by the previous responses (if no previous response, take
the sample’s average score as the initial examinee’s ability estimate).

2. Stop if the probability that the examinee is a master falls above or below given boundaries, other-
wise continue to step 3.

3. Find the most informative item given the estimated ability level.

4. Present and evaluate the answer to this item. Return to step 1.

In addition to step 1 (ability estimation) the current study investigates the influence of different
strategies in step 3, namely the means to identify the most informative item. Two means of choosing
the most informative item are investigated for the Bayesian modeling approach: theinformation gain
approach and the Fisher information measure. However, we do not focus on step 2, the criteria for

1A three parameter model is also defined and it includes an additional chance factor parameter, whereas the “one parameter
model” omits the discrimination factor.
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deciding on mastery or not. Instead, we simply look at the accuracy of the ability estimation as a function
of the number of items posed. This allows us to determine, after every number of items presented, the
ratio of correctly classified examinees, for example.

Item selection

There are numerous measures for finding the most informative questions, such as (1) theitem information
function (Birnbaum, 1968), also known as the Fisher information, (2) theminimum information cost
(Lewis & Sheehan, 1990; Vos, 1999), (3) theinformation gain, or, finally, (4) the relative entropy, also
known as the Kullback-Leibler distance. The reader is referred to Rudner (2002) for a comparative study
of some of these measures. We describe later the two measures used in this study, namely theFisher
informationand theinformation gain.

Effective adaptation of the items presented allows the system to determine the examinee’s ability
level with the least number of items, or, in accordance to the objective of CAT, to make a decision on
whether the test subject has achieved mastery or not.

Note that choosing the most informative item is only one of many alternative strategies. The choice
could also be determined using other considerations, such as the need to randomize and diversify the
items presented across examinees, or to adapt item difficulty to ability level. Moreover, the choice of the
items administered could be outside the control of the system. For example, the system could be in a
non-intrusive, observational mode, as it is often the case in advice giving interfaces. Regardless of the
means by which the item responses are chosen or collected, the underlying IRT ability assessment model
can always be used to adapt some other aspect of the user interface, akin to the purpose of any user
modeling module and such as those used for adaptive hypertext and courseware (Brusilovsky, Eklund, &
Schwarz, 1998). However, in the context of the current study, we will follow the usual CAT goal of
assessing ability with the least number of questions.

BAYESIAN MODELING APPROACHES TO CAT AND STUDENT MODELING

We will return to the IRT approach in the next section to provide the details on the specific algorithms
used in this study. Let us now turn to the Bayesian approach to student modeling and describe how this
approach is applied to CAT.

Bayesian modeling and Bayesian networks

Bayesian modeling provides a mathematical framework by which we can compute the probability of
a certain event given the occurrence of a set of one or more events. For example, in CAT, one could
compute the conditional probability of mastery of a test item given the previous responses by using sam-
ples where such a response pattern was found. This simple but impractical approach relies on the full
joint conditional probability table. The problem with this straightforward approach is, obviously, that the
number of conditional probabilities grows exponentially with the number of items. The approach quickly
becomes impractical because of limited data. For example, computing the probability of correctly an-
swering a specific test item given the answers to the last 10 items would entail constructing a conditional
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probability table of210 entries, if we assume each item can take two values,{success, failure} .
A reliable empirical estimate of this set of conditional probabilities would require thousands of data
cases, whereas a subjective estimate is deemed too tedious and unreliable.

There exists a number of means to avoid relying on the full joint conditional probability distribution
to perform Bayesian inference. These means will vary according to their assumptions, or according to
the constraints they impose on the conditional probabilities in a model.

The Bayesian graph models, and in particular the Bayesian Networks (BN) framework, are amongst
the most prevalent approaches to Bayesian modeling. They allows the modeling of only the relevant
conditional probabilities and they can rest on a sound mathematical scheme to update the probabilities
upon the occurrence of an event in the network (see Heckerman, 1995). Furthermore, the identification
of the relevant subset of conditional probabilities, the topology of the network itself, can be derived from
empirical data (Heckerman, 1995; Cheng et al., 2002; Liu & Desmarais, 1997).

To reduce the number of conditional probabilities to only the relevant ones while maintaining con-
sistent probability updates from new evidence, BN structures define clear semantics of conditional prob-
abilities and independence relations between nodes in the network. It states that the probability of a
nodeXi, given the evidence from the nodes’ parentspa(Xi), is independent of all nodes except its de-
scendants. Assuming that the vectorX1, ..., Xi represents a specific combination of responses to test
items and concept mastery for a given individual, it follows from the above definition of a BN that the
probability of this vector is:

P (X1, . . . , Xk) =
k∏

i=1

P (Xi|pa(Xi)) (1)

wherepa(Xi) represents the set ofparent nodesof Xi in the BN.
For CAT and student modeling, the application of BN and graph models generally consists in mod-

eling the conditional probabilities as a hierarchy of concepts with items as leaf nodes. Figure 2 illustrates
a very simple graph structure that, in fact, represents an IRT model. It contains a unique concept node,
θ, and a set of item nodes,X1, ..., Xn. The semantics of this networks would state, for example, that the
probability of nodeX1 is independent of the probability of nodeX2 given the abilityθ. This definition
translates into:

P (X1|θ, X2) = P (X1|θ)P (X2) (2)

However, the probability that skillθ is mastered depends on the responses to all item nodes. We return
with more details on the IRT model in the section detailing theIRT-2PL model.

One of the major advantages of graph models over IRT is that the assessment of the probability of
mastery to a test item does not rely on a single trait, namely the examinee’s ability level. High level
concepts embedded in a graph model constitute a powerful mean of representing a variety of ability di-
mensions. For example, Figure 2 can be augmented by defining multipleθ over a set of test items, which,
in turn, can be organized as a hierarchy or as a directed graph structure with high levelθ representing
global skills. Moreover, misconceptions can also be included in the structure.

The flexibility and representational power of graph models and their derivatives have been recog-
nized and applied to student modeling by a number of researchers in the last decade (Reye, 2004; Conati
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Fig.2. BN structure of an IRT model, whereθ is the examinee’s ability and{X1, X2, ..., Xn} are the test
items.

et al., 2002; Jameson, 1995; Millán et al., 2000; Mislevy & Gitomer, 1995; Desmarais et al., 1995; Mar-
tin & Vanlehn, 1995; Zapata-Rivera & Greer, 2004). They have also been applied more specifically to
CAT systems (Vomlel, 2004; Millán & Pérez-de-la-Cruz, 2002; Collins, Greer, & Huang, 1996; Van-
Lehn & Martin, 1997). We will review some of this work in the remainder of this section. The specific
Bayesian modeling approach used in the current study will be further described below.

Student Graph Models

Vanlehn, Martin, Conati and a number of collaborators were amongst the most early and active users of
BN for student assessment (Martin & Vanlehn, 1995). In the latest of a series of tutors embedding a BN,
the Andes tutor (VanLehn, Lynch, Schulze, Shapiro, Shelby, Taylor, Treacy, Weinstein, & Wintersgill,
2005; Conati et al., 2002; VanLehn & Niu, 2001) incorporates a BN composed of a number of different
types of nodes (rules, context-rules, fact, and goal nodes). Each node can take a value of “mastered” or
“non-mastered” with a given probability. Probabilities can be computed from Bayes posterior probability
rule, or in a deterministic binary form (e.g.P (X = 1) ⇒ P (Y = 1)), or according to what is known as
leaky-orandnoisy-andrelations (see Neapolitan, 1998). Most conditional probabilities in the network
are subjectively assessed.

In Hydrive, Mislevy and Gitomer (1995) used a BN for assessing a student’s competence at trou-
bleshooting an aircraft hydraulics system. The BN is knowledge engineered. Careful modeling of the
domain knowledge results is a hierarchy of abilities. Nodes can take multiple values such as{weak,
strong} or {expert,good,ok,weak} . Conditional probabilities are first posited by expert judg-
ment and further refined with empirical data from 40 subjects.

The work of Collins et al. (1996) is amongst the first to create a CAT with a Bayesian network.
They use the notion ofgranularity hierarchiesto define the BN. Granularity hierarchies are essentially
aggregations of concepts or skills into a hierarchy, akin to Mislevy and Gitomer (1995), where the leaves
are test items and the root represents the whole subject domain. The BN tested are knowledge engineered
from expert knowledge and different topologies are compared. Since the system is a CAT, the choice of
the next item is adapted to optimize ability assessment. It is based on a utility measure that yields the
item with highest discrimination factor, that is, the item whose difference in ability estimate,P (θ|Xi), is
the highest between a correct and an incorrect answer.

In his unpublished Master thesis, Collins (1996) compares a BN model with an IRT model. He
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calibrates a BN model with conditional probabilities obtained from an extensive pool of 6000 data cases
for a test of 440 items, which in fact corresponds to 44 items replicated 10 times to simulate a large test2.
Comparison of the BN approach with an IRT model revealed that, after approximately 20 items, the BN
approach is more effective in classifying examinees asmasteror non-masterthan the two IRT-based
algorithms they compared it with, namely EXPSRT and EXPSRT-2 (Collins, 1996). However, it is not
clear what impact the replication of the original 44 items can have on these results and how much this
could favor one approach over the other. For example, the non-adaptive paper and pencil test proved
more accurate than the IRT and BN approaches, which is unexpected and could be explained by this
replication3.

In a more recent CAT system, Millán and Pérez-de-la-Cruz (2002) defined a hierarchical BN with
three layers: concepts, topics, and subjects. A fourth layer links test items to concepts. They used
different means of computing the updated probabilities according to the layer. The concepts, topics,
and subjects layers use a summative formula to yield an updated probability. New probabilities are a
function of weights assigned to evidence nodes according to their importance, which can be a factor of
time devoted to a certain topic in a course, for example. At the items level, the probabilities that a concept
is mastered is a function of test items. That probability is computed from a conditional probability with
parameters modeled from an ICC function such as the one in Figure 1. They tested the accuracy of their
approach with simulated students and a test of 60 questions. They found a relatively good performance
for assessing mastery of each of 17 different concepts with error rates varying from 3% to 10%.

Learning Graph Models from Data

In contrast with most Bayesian student model approaches, Vomlel (2004) has conducted experiments
with empirically derived BN. This work is, to our knowledge, the only experiment using empirical data
to construct BN, although it does involve some knowledge engineering effort for categorizing concepts
and test items into a hierarchy. Vomlel used HUGIN’s PC algorithm (Jensen, Kjærul, Lang, & Madsen,
2002) to calibrate a number of network topologies from 149 data cases of a 20 questions arithmetic tests
administered to high school students. The basic topology of the network was constrained based on a
knowledge engineering of the domain with experts, but HUGIN was used to refine or define parts of
the BN’s structure. The BN was composed of a few skills and student misconceptions. Some of the
different BN structures tested incorporated hidden nodes that were created by HUGIN’s BN induction
algorithm. Conditional probabilities were all calibrated from empirical data. The results show that an
adaptive test with such BN can correctly identify the skills with an accuracy of approximately 90% after
the 9th question and performs significantly better than a fixed question order test.

2Note that the BN only contained the 44 original nodes, not 440.
3The POKS approach used in the current study would be highly influenced by the replication of items. Replicated items

would be aggregated into fully connected nodes, in effect merging them into the equivalent of a single node.
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MODELING CONSIDERATIONS FOR THE COMPARISON OF IRT VS. BAYESIAN
APPROACHES

When comparing IRT with Bayesian modeling, the question of how the model is built and calibrated (or
learned) is a crucial one, as the two approaches differ significantly on that issue. IRT modeling is entirely
based on calibration from data and has limited modeling flexibility, whereas Bayesian modeling offers
much more flexibility but it involves knowledge engineering efforts that can also be limiting for many
applications. These issues are central to the practical utility of student modeling and we discuss them in
more details in this section.

Automated Approach Considerations

The IRT models are empirically derived from test data and student expertise is solely defined by a set of
observable test items, which usually take on two possible values: mastered or non-mastered4. IRT does
not rely on any subjective assessment, nor on the ability of a domain expert knowledge engineer, as it
requires no human intervention to build the model. The same can be said about POKS with item only
node structures.

Such algorithmic techniques, for which the model is learned or induced from empirical data, have
important advantages that stem from their amenability to complete automation:

• It avoids the so called “domain expert bottleneck” and is thus more scalable.

• It is not subject to human biases and expert ability to build domain models.

• It lends itself to automated updates when new items are added to a test (a very common situation
for qualification tests where items need to be regularly renewed).

• It allows dynamic recalibration of the model as new data is gathered.

The last two features are highly regarded by practitioners since test content is often subject to frequent
updates which impose a strong burden for the maintenance of CAT test content.

Graph Model Considerations

What IRT lacks is the ability to make detailed cognitive assessment such as identifying specific concepts
or misconceptions. In the original IRT, there is no provision for dividing the knowledge domain into
different concepts that can be assessed individually, except by segmenting a large test into smaller ones,
or by using what is known as multidimensional IRT (MIRT) models (Reckase, 1997; McDonald, 1997).
But as we move towards MIRT, then some knowledge engineering effort is required to identify the
dimensions and to classify items according to each of these dimensions. It becomes a graph model with
multiple hidden nodes.

4Besides mastered and non-mastered, a third category is often used,undecided. In theory, any number of categories can be
defined.
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Our review of Bayesian student modeling revealed that the prevalent approach is to follow knowl-
edge engineering techniques to build sophisticated graphical models with multiple levels of hidden nodes.
Such models are often structured into a hierarchical decomposition of concepts into more and more spe-
cific skills, with items as leaf nodes. In some variants, misconceptions, multi-parents nodes, and sibling
links can add yet more cognitive assessment and representation power to such structures. This is an
essential feature of many intelligent learning environments that rely on fine grained student modeling.

However, this flexibility comes at the cost of modeling efforts to define the structure by domain ex-
perts, who must also be knowledgeable in Bayesian modeling. Beyond the structural definition, the prob-
lem of calibrating hidden node relations and nodes with multiple parent relations is paramount because
of the lack of sufficient data cases (Jameson, 1995). Complex graph models often involve simplifications
and approximations, such as leaky-AND/OR gates (Martin & Vanlehn, 1995; Conati et al., 2002) and
weighted means (Millán & Pérez-de-la-Cruz, 2002), thereby weakening the validity and accuracy of the
model.

As a consequence of the above obstacles, complex graph models leave little room for automation and
its benefits. Although recent developments have shown that small networks of a few tens of nodes can be
reliably derived from empirical data of a few thousand cases (Cheng, Greiner, Kelly, Bell, & Liu, 2002),
this is still impractical in student modeling and the automated construction of a BN network remains a
difficult problem that involves complex algorithms and considerable computing resources. In practice,
heuristics and some degree of expert intervention are required for building a BN. With the exception of
Vomlel (2004) who has used the combination of a network topology induction system with knowledge
engineered adjustments to the structure, Bayesian student models do not allow automated model building.
When used, empirical data serves the sole purpose of calibrating conditional probabilities, and yet, many
also use subjectively estimated parameters.

Item Node Structures

Item node structures are particularly subject to the difficulties of using Bayesian graph models because
the number of nodes can be large (e.g. in the French language test used for this study, we have 160 item
nodes) and their structure is not as apparent as when dealing with concepts. Nevertheless, the theory
of knowledge spaces (Falmagne, Koppen, Villano, Doignon, & Johannesen, 1990) states that items do
have a structure and that it can be used for making knowledge assessments. But the obstacles to using a
knowledge engineering approach and the amount of data required for the precise calibration of Bayesian
networks make such an approach impractical.

We will see that POKS addresses these obstacles by reverting to binary relations, which allows
calibration with small data sets, and using strong assumptions. That approach makes POKS amenable
to algorithmic model construction and calibration. However, the issue of detailed cognitive assessment
remains since concepts have to be included to provide fine grained assessment.
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COMPARISON BETWEEN THE IRT-2PL MODEL AND THE POKS MODELING
TECHNIQUES

The previous sections cover the general background theory and the issues that surround this study. We
now describe in the next two sections the specific methods used for the experiment, namely IRT 2PL
model and the POKS approach.

The IRT-2PL model

The “2PL” IRT model stands for “two parameter logistic” model. The two parameters in question are
item difficulty anddiscrimination. As mentioned before, these parameters control the shape of the ICC
function (Figure 1). The 1PL model drops the discrimination factor, whereas the 3PL adds the additional
“chance factor” parameter that accounts for lucky guesses. Because chance factor is relatively small in
our data and because its use does not necessarily lead to better results (see Baker, 1992), we use the 2PL
model. The details of the 2PL model follows.

Let Xi be the examinee’s response to itemi on a test ofk items that can either be succeeded,
Xi = 1, or failed,Xi = 0. Then, assuming item independence according to equation (2), the likelihood
of a sequence of response values given an abilityθ is:

P (Xk | θ) =
k∏

i=1

P (Xi|θ) (3)

whereXk is the vector of response valuesX1, X2, . . . , Xk.
In the logistic IRT model, the probability of an examinee of ability levelθ to answer itemi correctly

is:

P (Xi | θ) =
1

1 + e−ai(θ−bi)
(4)

wherebi is the difficulty parameter for itemi, andai is its discrimination parameter. This function defines
the ICC function of Figure 1. Note that a constant of1.7 is often embedded in equation (4) as a factor of
ai to bring the shape of the ICC function closer to what is known as thenormal ogive model, which was
the prevalent IRT model until recently. This is not necessary for our purpose.

Equations (3) and (4) provide the basis of examinee ability estimation: it is possible to estimate
the most probable ability level,θ, given the sequence of previous answers by maximizing the likelihood
function in equation (3). This procedure is usually done by using a log likelihood function maximization
model. Baker (1992) reviews the different algorithms that are used for this estimation procedure.

The POKS Bayesian modeling approach

We now turn to a short description of the POKS Bayesian modeling approach used for this study.
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Fig.3. Simple knowledge structure example.

Item to item node structures and the theory of knowledge spaces

Probably the most distinctive characteristic of POKS is that it permits the inference of the structure
among item nodes. However, it is not the sole attempt in this direction as Falmagne et al. (1990) and a
number of followers (e.g. Kambouri, Koppen, Villano, & Falmagne, 1994) have worked towards using
the structural characteristics of item-to-item structures to infer an individual’s knowledge state. POKS
also derives from this framework.

Item to item relations have their cognitive grounding in the theory ofknowledge spaces(Falmagne
et al., 1990; Kambouri et al., 1994) and they are termed assurmise relations. The meaning of such
relation is essentially that we expect people to master these items in the reverse order of these relations.

Figure 3 illustrates such type of relations with a simple example. It can be seen that the example
comprises of the following surmise relations:a → b → d anda → c → d. However, no relation exists
betweenb andc. For example, if a pupil succeeds itema, it will increase the estimated probability of
success to itemsb, c, d. Conversely, failure to itemd will decrease the estimated probability of success
to itemsa, b, c. Finally, failure or success between itemsb andc will not affect the estimated probability
of success to the node according to theknowledge spacestheory5.

However, POKS does not strictly conform to the knowledge spaces theory because it uses partial
orders such as Figure 3, whereasknowledge structuresuse AND/OR graph. The difference is that partial
orders define possible knowledge states closed under unionand intersection whereas AND/OR graphs
define possible knowledge states closed under union only. Indeed, defining the knowledge state of an
individual as a subset of a global set of knowledge items, Falmagne and his colleagues established that
the set of possible knowledge states from global set of items is constrained by closure under union: if we
join two individuals’ knowledge state, this is also a possible knowledge state (for details, see Falmagne
et al., 1990). If, for example, we defineXb andXc as two items that test different methods of solving
a problem and that any one of these methods can be used in solving a third itemXa (at least one must
be used), this would be reflected in knowledge structures theory as an OR relation binding the three
nodes and clearly expressing the alternative found in the relation. It is also clear that the intersection of
two individuals, each mastering a single alternative method betweenXb andXc, would yield an invalid

5Note that this is not the case for the IRT theory, nor of the Bayesian modeling techniques reviewed in this paper which
links every test item to a global ability.



12 Desmarais, Pu / Comparison of POKS with Item Response Theory

knowledge state: Someone who mastersXa but none ofXb andXc (we ignore probabilistic issues here).
In POKS, we would likely find weak surmise relationsXa → Xb andXb → Xa, capturing some of the
information but not as accurately as with an OR relation.

Nevertheless, because partial orders do capture to a large extent the constraints on possible knowl-
edge states and because the probabilistic nature of POKS makes it more flexible and robust to noise, the
use of partial orders remains a powerful means of making knowledge assessment. Moreover, because
OR relations are tertiary or higher n-ary relations, they impose larger data sets to discover and are thus
more limited in their applications.

Local independence

Another characteristic of POKS is that it makes the assumption of local independence among evidence
nodes. In POKS, we essentially make the assumption that we can limit the modeling solely to binary
conditional probability relations. More formally, we make the assumption that for any nodeX having
parentspa(X) = {Xp1, . . . , Xpn}, all parents’ influence is independent of each other:

P (X|Xp1, . . . , Xpn) =
n∏
i

P (X|Xpi) (5)

Although this assumption is obviously violated in most contexts, the question of whether it is leads to
significant errors is an empirical question that will be assessed and discussed further6. The great benefit
of making this assumption is that it allows the induction of the network from a very small number of data
cases. Only the analysis of binary relations data is needed to create the model. In the current experiment,
less than 50 data cases were used to build the model.

POKS network induction

Knowledge structures such as the example in Figure 3’s example are learned from data. The POKS graph
model and induction technique is briefly reviewed here.

Nodes:
As mentioned above, and akin to other user modeling graph models, POKS structures can include

nodes that represent concepts or test items. However, for the purpose of comparing IRT and POKS, the
nodes are limited to representing test items. There are no other types of nodes; each node is a test item,
and each test item is a node. All items have equal weight for this experiment.

Each node,Xi, is assigned a probability that represents an examinee’s chances of mastery of that
item, P (Xi). Contrary to the IRT model,P (Xi) is not a function ofθ, the ability level. It is a direct
function of the probability of other items from which it is linked with. The details of how to compute
P (Xi) in POKS is described in theItem probability updatesection.

Relations:
6Note that the local independence assumption is also an issue in CAT (Mislevy & Chang, 2000).
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Relations in POKS have the same meaning as knowledge spaces’surmiserelations; they indicate
the (partial) order in which people learn to master knowledge items (see the section onItem to item
node structures). Although surmiserelations are different from causality relations found in Bayesian
networks, they allow the same type of inferences7. For example, letXa andXb be two items in an item
bank, a relationXa → Xb, means that observing an examinee succeed in itemXa will increase the
estimated probability of success in itemXb by a certain amount. Conversely, a failure in itemXb will
decrease the estimated probability of success to itemXa.

Networks structure:
In accordance with the assumption of local independence, the network construction process consists

in comparing items pairwise to look for a relation. To determine if there is a directed link,Xa → Xb,
the three following conditions must hold:

P ([P (Xb|Xa) ≥ pc] |D) > (1− αc) (6)

P ([P (¬Xa|¬Xb) ≥ pc] |D) > (1− αc) (7)

P (Xb|Xa) 6= P (Xb) (p < αi) (8)

where:

pc is the minimal conditional probability forP (Xb|Xa) andP (¬Xa|¬Xb); an single value is chosen for
the test of all relations in the network, generally0.5.

αc is the alpha error of the conditional probability tests (6 and 7); it determines the proportions of
relations that can erroneously fall belowpc; common values range from0.2 and0.5.

p < αi expresses the alpha error tolerance of the interaction test (8).

D is the joint frequency distribution ofXa andXb in the calibration sample. This joint distribution is a
2 × 2 contingency table with four frequency numbers,{xab, xa¬b, x¬ab, x¬a¬b}, representing the
number of examinees in the sample data broken down into these four situations:

1. xab: success forXa andXb

2. xa¬b: success forXa and failure forXb

3. x¬ab: failure forXa and success forXb

4. x¬a¬b: failure forXa andXb

The first condition (inequality (6)) states that the conditional probability of a success forXb given a
success forXa must be above a minimal value,pc, and that we can derive such conclusion from a sample
data set,D, with an error rate smaller thanαc. The second condition (inequality (7)) is analogous to the
first and states that the probability of failure forXa given a failure forXb must be greater thanpc, with
a maximal error rate ofαc given distributionD.

7In fact, causality also has the property of ordering events in time, and it is a non trivial philosophical endeavor to determine
that it has any other property!
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These first two conditions are computed from the cumulative Binomial distribution function. In
inequality (6), the value ofP ([P (Xb|Xa)]|D) is obtained by the summation of the Binomial probability
function for all distributions wherexa¬b are less than the number actually observed inD, that is:

P ([P (Xb|Xa)]|D) = P (x ≤ xa¬b |Xa)

=
xa¬b∑
i=0

Bp(i, xa, pc)

=
xa¬b∑
i=0

(
xa

i

)
p[xa−i]

c (1− pi
c)

wherexa = xab + xa¬b. The conditional probability of the second condition (inequality (7)) rests on the
same function but uses Bp(i, x¬b, pc) in place of Bp(i, xa, pc).

The third condition (inequality (8)) is an independence test and it is verified by aχ2 distribution test
on the2× 2 contingency table of distributionD:

P (χ2) < αc

For small samples, the independence test used is replaced by the Fisher exact test.
The choice of value for thepc indicates the strength of thesurmiserelations we want to keep. For

example, if the order in which one learns to master two items is highly constrained, in accordance with
the theory ofknowledge spaces, then we would expect to find thatP (B|A) ≈ 1 for a strongsurmise
relationXa → Xb. The value ofpc represents the lower limit for which we accept asurmiserelation.
The choice of a value is somewhat arbitrary, but we generally usepc = 0.5 in our experiments.

The two valuesαc andαi represent the alpha error we are willing to tolerate when concluding the
corresponding tests. For very small samples, these values can be as high as0.5 in order to keep as many
relations as possible. In our experiments they are set between0.2 and0.1.

Item probability update

When an item’s probability of mastery in the network changes, either through observation or through a
change in the probability of a neighboring node, evidence is propagated through the connected items in
the network. If the probability increases, the update will follow links forward, whereas if the probability
decreases, the update will follow links backward. We use the algorithm for evidence propagation from
Giarratano and Riley (1998). This algorithm is consistent with the Bayesian posterior probability com-
putation in single layered networks and corresponds to the posterior probability update. However, for
multilayered networks, in which indirect evidence gets propagated (transitive evidence from non-directly
connected nodes), an interpolation scheme is used. This is explained in a numerical example given later.

For computational convenience, the algorithm relies on two odds ratios: thelikelihood of sufficiency
and thelikelihood of necessityrespectively defined as:

LSa→b =
O(Xb|Xa)

O(Xb)
(9)



Desmarais, Pu / Comparison of POKS with Item Response Theory 15

LNa→b =
O(Xa|¬Xb)

O(Xa)
(10)

whereO(X) is the odds function,P (X)/Q(X) (whereQ(X) = P (¬X) = 1 − P (X)), andO(X|Y )
is the conditional form,P (X|Y )/Q(X|Y ).

It follows that if we knowXa to be true (i.e.P (Xa) = 1), then the probability ofXb can be updated
using this form of equation (9):

O(Xb|Xa) = LSa→b O(Xb) (11)

and conversely, ifXa is known false, then:

O(Xa|¬Xb) = LNa→b O(Xa) (12)

The update process recursively propagates forward using equation (11) when a node’s probability in-
creases, and backward using equation (12) when it decreases.

In accordance with the local independence assumption in equation (5), it follows that the odds ratios
are combined as the product of theLS of each parent that is observed:

O(Xj |pao(Xj)) = O(Xj)
∏

Xi∈pao(Xj)

LSi→j (13)

wherepao(Xj) are the observed parents of nodeXj andO(Xj) is the initial odds ratio. Conversely,
theLN odds ratios are also combined for the children nodes:

O(Xk|cho(Xk)) = O(Xk)
∏

Xi∈cho(Xk)

LNk→i (14)

wherecho(Xk) are the observed children of nodeXk. We emphasize again that this strong assumption
is surely violated in most contexts, but it greatly simplifies node updates by relying on functional com-
putations (as opposed to the computations required for optimizing a system of equations) and on the
network’s Markovian property; only the network’s current state is sufficient to make future predictions.
The impact of this assumption’s violation will be assessed in the experimental evaluation.

Evidence propagation directionality

The evidence propagation scheme is unidirectional in the sense that if a node’s probability increases, no
backward propagation is performed, and, conversely, no forward propagation is performed when a node’s
probability decreases. This may look as a breach in standard Bayesian theory since posterior updates can
occur in both directions. In fact, it is not. It follows from POKS principle of pruning non-significant
posterior updates relations with the statistical tests (6), (7), and (8). Let us illustrate this with a simple
example. Assume the following two question items:

a : Examinee is able to solve forx: 3
2x ×

7
4 = 3

8

b : Examinee is able to find the answer to3
7 ×

7
4 =?
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The POKS induction algorithm would readily derivea → b from a data sample taken from the general
population on these two items, indicating that it is worth updatingb’s posterior probability if we ob-
servea. However, the converse relationb → a would probably fail the statistical tests for inequalities (6)
and (7), indicating that the inverse relation is not strong enough. Indeed, it is fairly obvious that a success
for item b does not significantly increase the chances of success ofa because the latter involves algebra
and is significantly more advanced than the former. However, if we replacea with an item of closer
difficulty to b, such as:

a : Examinee is able to find the answer to4+8
11 × 11

12 =?.

then we would probably also deriveb → a. The result would be a symmetric relation (probably with
differentLN andLS values fora → b andb → a). In that case, a probability increase or decrease in any
node would affect the other node’s probability in accordance with Bayes posterior probability update,
and propagation would be bi-directional.

When relations are symmetrical,Xb → Xa andXa → Xb, cycles involving two nodes are created.
There are two solutions to this problem, the first of which consists in grouping symmetrical nodes into a
single one. A second solution, adopted for this study, is simply to keep symmetrical relations but to stop
the propagation of evidence once a node has already been visited during a single propagation run. This
is a standard procedure in message propagation and constraint programming systems.

Numerical example

Let us illustrate numerically the evidence propagation with an example. Assume the following relations
hold:

a → c, b → c

and that in our sample we find:

P (Xc) = 0.3, P (Xc|Xb) = 0.6, P (Xc|Xa) = 0.9

It follows from the above equations that observingXa first (i.e.P ′(Xa) = 1)8 would bringP ′(Xc) =
0.9, which corresponds to the value of the sample’s observed conditional probabilityP (Xc|Xa). Further
observingXb would bringP ′′(Xc) = 0.969, which corresponds toP (Xc|Xb, Xa). Inversion of the order
of observation would bring insteadP ′(Xc) = 0.6 after observingXb (i.e. P (Xc|Xb)) andP ′′(Xc) =
0.969, as expected (i.e.P (Xc|Xb, Xa)).

Although odds are used in the algebra for computing the posterior probabilities, it is equivalent to
using the standard Bayes formula for obtaining the posteriors given the observationX = 1 or X = 0.
However, when the probability of a node increases or decreases, an interpolation scheme is used to
further propagate evidence.

8We use the notationP ′(X) to represent an updated probability and drop the conditional form,P (X|evidence), to better
emphasize the stages of updating.P ′(X) is the value ofP (X) after the first stage of updating, whereasP ′′(X) is the value
after the second stage.
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When the probability of one of a node’s parent nodes changes by some value, without actually being
observed and thus reaching the value of1 or 0, two interpolation formulas are used to update this node’s
probability. Assuming a relationa → b, and an increase inP (Xa) of ∆a (i.e. P ′(Xa) = P (Xa) + ∆a),
whereP (Xa) represents the probability before the update andP ′(Xa) the probability after the update),
then the value ofP ′(Xb) is given by:

P ′(Xb) = P (Xb|Xa) + [P (Xb|Xa)− P (Xb)]
P ′(Xa)− P (Xa)

P (Xa)

whereP (Xb) is the probability ofXb before the update.
Followinga → b in the backward propagation direction and assuming a decreaseP (Xb)−P ′(Xb) =

∆b, the updating formula is:

P ′(Xa|¬Xb) = P (Xa|¬Xb) + [P (Xa)− P (Xa|¬Xb)]
P ′(Xb)
P (Xb)

This interpolation method is a simple approximation ofP (X|E1, E2), whereE1 → X andE2 → E1

are directly linked, butE2 → X are not. Its validity for the field of CAT is a question we investigate
empirically in this study. More details about the interpolation method can be found in Giarratano and
Riley (1998).

Item selection

Common to both the IRT and the BN approaches is the problem of choosing the next question in order
to minimize the number of questions asked. As discussed in theitem selectionsection, there exists a
number of measures to choose the most informative item. We used two for the purpose of this study: The
Fisher information and theinformation gaincriteria. They are described below.

Fisher information

One of the most widely known criteria for choosing the next item is the Fisher information (Birnbaum,
1968). It is an indicator of the sensitivity of an equation, such as a likelihood, to changes in a given
parameter. It is a widely used metric in statistical modeling. In the case of IRT, the principle is to
identify the item which is most likely to induce a change in the estimatedθ.

In the two parameter IRT model, the Fisher information for itemi is given by:

Ii(θ) = a2
i

eai(θ−bi)

[1 + eai(θ−bi)]2
(15)

wherea andb are the two parameters of the ICC function (see the section entitledIRT-2PL model). This
measure will essentially identify the item whose inflexion point of the ICC curve (Figure 1) is closest to
the estimatedθ and with the highest discrimination valuea.
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In POKS,θ is computed from a measure of the estimated mastery level. That measure,m, corre-
sponds to average probability over allk items:

m =
∑k

i P (Xi)
k

Note that we could also have used the expected item success rate as an alternative, but the current measure
is more sensitive as it discriminates between an item with a probability of success.49 and another with
probability.01.

The value ofm varies on a scale[0, 1], whereasθ is on the scale[−∞,+∞]. To bringm onto theθ
scale, we apply thelogit transformation, with parametersa andb:

θm = logit (m)/a + b = log (
m

1−m
)/a + b

For the IRT model, the value ofθ is computed by maximizing equation (3) using maximum likelihood
estimation.

Information gain

The second approach to item selection we investigate is theinformation gainapproach. The principle of
this approach is to choose the item that will maximize the expected reduction of entropy of the test. This
is explained below.

The entropy of a single itemXi is defined as:

H(Xi) = −[P (Xi)log(P (Xi)) + Q(Xi)log(Q(Xi))] (16)

whereQ(X) = 1− P (X). The entropy of the whole test is the sum of all individual item’s entropy:

HT =
k∑
i

H(Xi)

If all item probabilities are close to0 or1, the value ofHT will be small and there will be little uncertainty
about the examinee’s ability score. It follows that we minimize this uncertainty by choosing the item that
maximizes the difference between the current test entropy,HT , and the entropy after the item’s response,
H ′

T . The expected value of the whole test entropy after a response to itemXi is given by:

Ei(H ′
T ) = P (Xi)H ′

T (Xi =1) + Q(Xi)H ′
T (Xi =0)

whereH ′
T (Xi =1) is the entropy after the examinee answers correctly to itemi andH ′

T (Xi =0) is the
entropy after a wrong answer. We then look for the item that will have the maximum difference:

max
i

[HT − Ei(H ′
T )]
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EXPERIMENTAL EVALUATION OF THE APPROACHES

The POKS approach is compared to a 2-parameter IRT model (see sectionIRT-2PL model). Furthermore,
two item selection procedures are investigated, namely the and Fisher information theinformation gain
approaches. A random item selection procedure is also reported for baseline result comparison.

Methodology

The performance comparison rests on the simulation of the question answering process. For each ex-
aminee, we simulate the adaptive questioning process. The answers given by the examinee during the
simulation are based on the actual answers collected in the test data. The classification by the IRT-2PL
and POKS approaches after each item response given is then compared to the actual examinee score in
the test data. An examinee is classified asmasterif the estimated score is above a givencut score, θc,
andnon-masterotherwise. This cut score is expressed as a percentage, but recall that transformation of a
percentage to IRT’sθ score that generally lies between[−4,+4] is done through the logit transformation
(see theFisher informationsection).

The items responded by the examinee are taken as thetrue ability score for the part of the test they
cover, and only the remaining items are estimated. The overall ability estimate is thus a weighted sum
of the probability of success to alreadyrespondeditems andestimateditems. That is, ifIr is the set of
items responded andIe is the set of items estimated, the examinee’s estimated score,S, is:

S =

∑
Xi∈Ir

Xi +
∑

Xj∈Ie
X̂j

n
(17)

whereXi is 1 if the corresponding response to itemi is a success and0 otherwise, and wherêXj

is 1 if the estimated probability of success,P (Xj), with the respective method used, POKS or IRT-
2PL, is above0.5 and0 otherwise. Recall that in the IRT 2PL model, the probability of success to an
item is given by equation (4), whereas in POKS it is computed through the propagation of evidence as
explained previously. This procedure results in a 100% correctly classified examinees after all test items
are observed9.

Test data

The simulations are made on two sets of data: (1) a 34 item test of the knowledge of UNIX shell com-
mands administered to 48 examinees, and (2) a 160 item test of the French language administered to
41 examinees. The first test was designed by the first author and it assesses a wide range of knowledge

9This validation procedure rests on the fact that we do not know the actual ability state of an examinee apart from the test
results. Indeed, contrary to a frequently used approach that consists in generating test response data cases from Monte Carlo
simulations, we use real data to validate the models. This procedure has the obvious advantage of having good ecological
validity. However, it leaves us with the epistemological position of having the test data as the sole indicator of examinee ability.
Performance results, then, should be interpreted as the ability of the models topredict examinee scorefor the given test. If we
assume that a test is a true reflection of ability, then we can extend the interpretation of the models’ performance as a measure
of their accuracy to predict examinee ability.
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Histogram of Unix test examinee scores
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Histogram of French test examinee scores
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Fig.4. Histogram of examinee scores for each test.

of the UNIX commands, from the simple knowledge of ‘cd’ to change directory, to the knowledge of
specialized maintenance commands and data processing (e.g. ‘awk’, ‘sed’). The second is a test used by
the Government of Canada. It is designed by professionals and covers many aspects of the language in
question and a wide range of language skills.

Mean scores for the UNIX and French language tests are respectively 53% and 57%. Figure 4
illustrates the dispersion of scores for each test. A wide distribution of scores is necessary for the proper
calibration of both POKS and the IRT-2PL model.

To avoid sampling bias error, all calibrations of the models’ parameters are done onN − 1 data
cases; we remove from the data set the examinee for which we conduct the simulation. As a result,
simulations are conducted with parameters calibrated from47 data cases for the Unix test and40 data
cases for the French language test.

Parameters estimation

Thediscriminationanddifficulty (respectively parametersa andb in equation (4)) were estimated with a
maximum log-likelihood estimator package of the R application (Venables, Smith, & the R Development
Core Team, 2004) over the two data sets. These same parameters are also used in equation (15) for the
choice of the next item with both the POKS and the IRT-2PL approaches.
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Table1
Graph statistics averaged over allN − 1 structures.

Unix graph French language graph
Total number of relations 587 1160
Symmetric relations 252 131
Transitive relations 229 668
αc 0.25 0.10
pc 0.5 0.5

Graph structures and statistics

Statistics on the graph structures inferred are given in table 1. The number of relations reported represent
the average over the 48 and 41 networks that were used for the simulations (one per simulation to avoid
the over-sampling bias). Note that symmetric relations are in fact two directed relations between a pair
of nodes (dividing the numbers by two gives the actual individual symmetric relations). Note also that,
when counting transitive relations, groups of nodes linked through symmetric relations are merged into
one single node10, to avoid cycling. The numbers represent the transitive relations actually induced by
the algorithm (not the relations that can be derived through transitivity).

The minimal conditional probability,pc, for both tests networks is the same,0.5. The values forαc

andαi are0.25 for the Unix data set and0.10 for the French one. The choice ofαc = 0.10 for the French
language test proved to be more reliable during the preliminary testing. However, values ofαc ranging
from 0.2 to 0.5 showed little effect on the results for the Unix data set, but performance degradation
started to appear aroundαc = 0.1.

Computational resources

Computational resources for building the graph structure and performing inferences is often an issue for
operational systems and thus we report some indicators here. For our test data, time for constructing
a graph structure with the Unix and French language data set is very fast: less than 10ms on a stan-
dard 1.5Ghz PC. Inferences for CAT is also fast. We find that a full cycle involving (1) the update of item
probabilities and (2) determining the next question to ask, varies from 0.03ms for the Unix test with the
Fisher information condition, to a much longer 106ms for the French language test under theinformation
gain condition. Theinformation gaincondition is much slower because it involves simulating correct
and wrong responses to every other test item to find the expected entropy. Moreover, the high number of
connections in the French language network significantly affects the time to compute the entropies for
the information gaintechnique.

10Merging nodes of symmetric relations into one is only for the purpose of counting transitive relations and not for performing
inferences.
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Performance metrics

Measuring the performance of each approach is based on a simple metric: the proportion of correctly
classified examinees after each number of responses to test items. Classification of a single examinee is
determined by comparing the examinee’s estimated score,S (equation (17)), with the passing score,θc.

The percentage of correctly classified examinees is reported as a function of the number of test item
responses given. Figure 5 illustrates an example of a performance graph. The curve starts at 0 item,
i.e. before any items are given, at which point we use the samples’ average to initialize the probabilities
of each test item. Each examinee will thus start with an estimatedθ̂ = X, the sample’s average score
in percentage points. If the sample average is aboveθc, all examinees will be consideredmaster, oth-
erwise they are considerednon-master. As a consequence, the performance at0 item generally starts
around 50% when the cut score is around the sample’s average, and gradually reaches 100% at the end
of the test, when all items are observed. As the cut score departs from the average, the0 item initial
performance (or “blind score”) increases and eventually reaches 100% if everyone is above or below this
score in the sample. For example, at a cut score of 80% this initial score is40/42 for the French language
test because only two examinees score above this level and we start with the estimate that everyone is a
non-master.

The diagonal line in Figure 5 represents a baseline performance used in measuring a global score,
G (see below).

Thus, region C of Figure 5 represents a linear approximation of the “given” (i.e. the proportion
of examinees that are are correctly classified due to gradual observation of responses of test items),
region B represents the “correct inferences” (i.e. the proportion of examinees correctly classified by
the inference method), and region A represents “wrong inferences” (i.e. the proportion that are still
incorrectly classified).

Besides graphically reporting the classification results, a single scalar metric,G, is defined for
characterizing the performance over a complete simulation run. It corresponds to the ratio of surfaces
B/(A + B) in Figure 5 and is computed by:

G =
k∑

i=1

Ci − Cei

n− Cei
(18)

wheren is the number of examinees,k the number of items,Ci is the number of correctly classified
examinees afteri number of item responses (the line with black circles), andCei the expected number of
examinees correctly classified by sole observation of test items (i.e. the diagonal line in the performance
figures).G values can range from −k

2n/[(nCe0)−1] (whereCe0 is the number of correctly classified exam-
inees before any response is given), to1. A value of1 represents a perfect classification throughout the
simulation, a value of0 indicates no gain over observation only, and a negative value indicates a worse
classification than that obtained by combining the 0 item initial classification with the given responses.
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Fig.5. Regions of a performance graph. The global score metric,G (equation (18)), represents a ratio of
surface regionsB/(A + B)

Results

Simulations atθc = 60%

The simulation results for the cut scoreθc = 60% are summarized in Figure 6 for the Unix and French
Language tests. They show the number of correctly classified examinees as a function of the number of
items asked. For better visibility, the French language test data points are plotted every 4 items.

Both theinformation gainand the Fisher information item selection strategy are reported for the
POKS model. However, for IRT-2PL approach, only the Fisher information function is given because of
limitations with the IRT simulation software we are using. The Fisher information is the most widely
used item selection strategy for IRT. We refer the reader to Eggen (1998) for a comparison of different
item selection strategies with IRT.

The simulation shows that both POKS and IRT-2PL approaches yield relatively good classification
after only a few item responses, especially considering the low number of data cases used for calibra-
tion. In the UNIX test, all approaches reach more than 90% correctly classified between 5 and 10 item
responses. However, for the French language test, only the POKS-information gainand POKS-Fisher
information approaches stays above 90% correct classification after about 20 items, whereas the IRT
approach requires about half of the 160 test items to reach and stay above the 90% score.

At this 60% passing score, we can conclude that the POKS-information gainapproach performs
better in general than the two others but, as we see later, this advantage is not maintained for all different
cut scores.
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Fig.6. Results from the Unix (top) and French language (bottom) tests comprised respectively of 48
and 160 items. The percentage of correctly classified examinees, averaged over 48 simulation cases
for the Unix test and 41 for the French language one, are plotted as a function of the number of item
responses. Passing score is 60%.



Desmarais, Pu / Comparison of POKS with Item Response Theory 25

Table2
Performance comparison of theG metric (equation (18)) under different conditions of cut cores andα values (inequalities (6)
and (7)). Three item selection techniques are reported for the POKS approach (information gain, Fisher information, and
random item selection with a 95% confidence interval) , whereas only theFisher informationtechnique is reported for the IRT
framework, which is the most commonly used.

IRT POKS

θc
Fisher
Inf.

Fisher
Inf.

Inf.
Gain

Random
(95% c.i.)

UNIX test α = .25 α = .15 α = .25 α = .15 α = .25
50% 0.93 0.85 0.89 0.86 0.84 0.75(± 4.4)
60% 0.81 0.92 0.89 0.86 0.84 0.77(± 4.8)
70% 0.75 0.80 0.81 0.68 0.67 0.50(± 7.1)
average 0.83 0.86 0.86 0.80 0.78 0.67(± 7.1)

French Language test α = .10 α = .15 α = .10 α = .15 α = .10
50% 0.81 0.72 0.80 0.80 0.85 0.64(± 2.0)
60% 0.68 0.78 0.79 0.74 0.79 0.57(± 5.7)
70% 0.69 0.60 0.60 0.83 0.74 0.48(± 4.9)
average 0.73 0.70 0.73 0.79 0.79 0.54(± 7.1)

Performance under differentθc and item selection strategies

To gain an idea of the general performance of POKS under different conditions, we investigate the
following variations:

• Different cut score, from 50% to 70%11;

• Item selection strategies, including a random selection of items,

• Two different values of theαc andαi parameters for inequalities (6) and (7) (we setα = αc = αi).
One set atα = 0.15 for all conditions, and another one tailored for each test and corresponding to
the graphs of Figure 6.

Table 2 summarizes the results of the simulations under these different conditions. The random selection
represents the average of 9 simulation runs for each cut score. We use theG metric for reporting the
performance of a whole simulation, from the first to the last test item, into a single scalar value.

The G metric at the 60% level reflects what is apparent in the graphs of Figure 6, namely that
POKS has a slight gain over IRT and that all approaches perform better for the UNIX test than the
French language test. However, the POKS advantage is not systematic for all cut scores and across
the two item selection techniques. The averages of cut scores across the tests suggest a relatively similar
performance between POKS and the IRT model. The average score advantage is inverted between POKS-
Fisher information and POKS-information gain, but exploratory work (not reported here) with different

11Scores above 70% and below 50% are not reported because the large majority of examinees are correctly classified initially
(as one can tell from Figure 4) and little performance gain is possible (at least for the French test). Reporting scalar values
within these ranges becomes misleading.
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statistical parameters for the statistical tests (inequalities (6), (7), and (8)) indicates that this inversion is
not systematic. All methods perform better than a random selection of items, as expected.

There is a noticeable decrease of performance for POKS at the 70% cut score where the Fisher infor-
mation method score drops to 60% for the French test, and also drops for the UNIX test, but this time over
the information gainmethod. This suggests that POKS may suffer weaknesses at boundary conditions.
We link these results to a known problem with POKS that is further discussed in the discussion.

Question predictive accuracy

The comparison of IRT and POKS is also conducted at the question level. In the previous sections, we
assessed how accurate each method is at classifying examinees asmasteror non masteraccording to
some passing score. The question predictive evaluation is a more fine grained assessment of the ability
of each method to predict the outcome of each individual question item. In principle, the ability of an
approach to predict individual item outcome offers a means for detailed student assessment, provided
that individual skills and concepts can be related to specific items.

The measure for the question accuracy score is relatively simple. It consists in the ratio of correctly
predicted item outcome and it is reported as a function of the number of items administered. For both
methods, the probability of success of an item,P (Xi), is continuously reassessed after each item is
posed. If that probability is greater than 0.5, then the predicted outcome is for that item is a correct re-
sponse, otherwise it is an incorrect response. Predicted responses are then compared with real responses
for measuring their accuracy. Once an item is administered, the predictive accuracy score is considered 1
for that item and, as a consequence, the question predictive ratio always reaches 1 after all items are
administered. All items are treated with equal weights.

Figure 7 reports the question predictive accuracy score for both tests. Only POKSinformation gain
approach was investigated for this experiment. In addition to the two approaches, IRT-2PL and POKS,
a third line is also displayed, “Fixed”. It represents the score for the simple method of choosing the
most uncertain item remaining, i.e. the item whose sampled success ratio closest to 0.5. This method is
non-adaptive; the sequence of items is fixed for all examinees. It serves as a baseline comparison. We
note that the IRT approach starts at a lower score than the other two. This is due to the fact that the
items probabilities,P (Xi), is computed from the initialθ and that value turns out to be less accurate
than taking the initial probabilities calibrated from the sample.

The standard deviations of the question predictive accuracy ratio is given in Figure 8. They are also
reported as a function of the number of items administered and for the three corresponding curves of
Figure 7.

The obvious finding is that POKS clearly outperforms IRT in the French language test, whose
performance does not even match that of the fixed sequence method. However, it is not significantly
better than the fixed sequence one. For the Unix test, POKS advantage over IRT is only apparent before
the 10th item, but it does perform well above the fixed sequence, contrary to the French test.

These results confirm that the French test does not lend itself as well to adaptive testing as does the
Unix test. This could be due to the smaller sample size (41 vs. 48) and the smaller sampling distribution
(see Figure 4). The wider is the range of abilities, the easier it is to assess someone’s knowledge from
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Fig.7. Individual test item prediction mean results from the Unix (top) and French language (bottom).
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Fig.8. Standard deviations of each test as a function of the number of test item administered.

that sample12. It can also stem from the lower average item discrimination values (medians of 3.3 vs 1.5
for the UNIX and French tests respectively).

The low performance of IRT for the French test is not necessarily a surprise since IRT never claims
to lend itself to fine grained and multidimensional skill assessment. However, it is a surprise that itcan
provide a good performance for the UNIX test, possibly because that test is more uni-dimensional than
the French test, and also because the item success ratio distribution has a wider range. Obviously, an
interesting followup would be to verify if a MIRT approach could yield better results for that test.

Nevertheless, the comparison does demonstrate that POKS has the potential of providing more fine
grained assessment, if we assume that question predictive accuracy is more fine grained. For example,
by segmenting tests items according to different skills, then individual question item prediction could
provide useful information on individual skills. More investigation is required to confirm this hypothesis
but, this is an early indication that supports it.

DISCUSSION

The comparison of the POKS approach with the IRT-2PL one shows that they both can perform correct
classification of examinees under different tests and passing scores, although their performance differs
according to that passing score. However, their ability to predict individual question item outcome varies
considerably between themselves and also between tests. POKS can predict item outcome well above

12For example, a sample whose test score varies only within 5% would be very insufficient since most people are of the same
ability and even the test prediction itself may not be that accurate.
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that of the fixed sequence performance for the UNIX test, but only at about the same level for the French
test. The performance of IRT is distinctively lower for IRT over both test, but it does perform as well as
POKS for the UNIX test after the tenth question.

Given that the POKS approach is computationally much simpler than the IRT approach, which relies
on maximum-likelihood estimation techniques that can prove relatively complex for IRT (see Baker,
1992), these results are encouraging. However, beyond these findings, a number of issues remain. We
discuss some of the major ones below.

Including concepts in POKS structures

Estimating the mastery of concepts is essential to provide the fine grained knowledge assessment that
many learning environments often require. The POKS approach must provide some means of assessing
concepts.

Like other graph modeling techniques, we can include concepts and skills within POKS structures.
However, the manner in which items should be linked to concepts, and how concepts should be linked
among themselves is an open question. Numerous schemes have been proposed for linking items to con-
cepts, such as leaky AND/OR gates (Martin & Vanlehn, 1995; Conati et al., 2002), dynamic Bayesian
networks (Mayo & Mitrovic, 2001), weighted means (Millán & Pérez-de-la-Cruz, 2002), and BN orga-
nized in a number of topologies as can be found in Vomlel (2004).

For POKS structures, one possibility is to treat concepts in exactly the same way as item nodes,
and link them withsurmiserelations. For example, the mastery of a concept by some examinee can be
independently assessed (such as in Vomlel, 2004), and the induction of the structure can proceed in much
the same process as that described in thePOKS network inductionsection. Preliminary exploration of
this simple scheme seems to suggest that the results are not very positive and further investigation is
necessary to confirm and explain such findings.

Another recently explored approach used the data from Vomlel (2004) in which concept mastery
is derived from item responses using a perceptron (a single layered neural network, Desmarais et al.
(2005)). The POKS updating algorithm serves to determine the probability of mastery of each item as
new items are answered, and the new probabilities are, in turn, fed to the perceptron to determine concept
mastery. The approach is compared to Vomlel’s own predictions. The results show that although POKS
is better than the BN constructed by Vomlel for predicting the examinee’s success to individual question
items, it is less accurate for predicting concept mastery. These results suggest that a BN can effectively
take advantage of intra-concept relationships for predicting concept mastery, but that intra-item (item-to-
item) relationships are more effective for predicting the outcome of individual item success. However,
note that such approaches are somewhat impractical because they imply training with independently
assessed concept mastery: in practice, one rarely has the luxury of knowing true examinee concept
mastery.

Finally, the simplest way of including concepts into POKS is to use the traditional breakdown that
teachers do. Subject matters are divided into a hierarchy of more and more specific topics. Items are
the leaves of this hierarchy and a weighted mean is used to estimate mastery of the next level down.
Note that the structure does not need to be a pure hierarchy and that a single item can belong to many
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concept/skill nodes. Exams are often structured this way. The accuracy of this method is directly linked
to the accuracy of the leave nodes mastery estimates (test items) and the validity of the weighted means.
This approach may not have the ability to model misconceptions and non linear combinations of items
and concepts, but it has the quality of being universally used in schools and understood by everyone.

Furthermore, that approach avoids problem of estimating concepts independently for constructing
a graph model and for calibrating conditional probabilities. In fact, in our view, that problem plagues
graph models in general. Modeling with hidden nodes is very difficult to envision by non statisticians.

Automated learning constraint

POKS is an algorithmic learning/calibration approach. Structures such as Figure 3’s are built automati-
cally. This approach shares the same advantages as IRT in that respect. However, as a graphical modeling
approach, it also has the expressiveness of these models, namely that items can be aggregated into con-
cepts and further aggregated into hierarchies of concepts. Techniques such as those of VanLehn, Niu,
Siler, and Gertner (1998) can be used for modeling the “concept” part of the network that stands above
the test items. Alternatively, a concept can be defined as a function of the probability of mastery of a set
of items. For example, it can be a weighted average of the probability of set of items which composes a
concept (Millán & Pérez-de-la-Cruz, 2002).

However, for the purpose of this study, the network is defined solely over the test items and no
concepts nodes are included. Imposing this requirement relieves us from any knowledge engineering
effort to construct the network and thus makes the approach more comparable to IRT than other Bayesian
modeling approaches that would require a knowledge engineering step. The same data can be used for
both approaches, thus allowing a comparison on an equal basis.

POKS’s sensitivity to noise

One of the critical issue with the POKS approach is the problem of correcting errors due to noise. This
is a direct consequence of pruning the bi-directionality of posterior updates, as explained in theEvidence
propagation directionalitysection. This can result in nodes having no incoming, or no outgoing links.
For example, a difficult item can often have many outgoing links, but no incoming links (i.e. no other
item’s success significantly increases its probability). It follows that this node’s probability can only
decrease according to POKS updating scheme. If, for some reason, an expert misses an easy item, these
items with no incoming links (the more difficult ones in general) will see their probability decrease with
no chance of being raised later on, until they are directly observed. Over test with a large density of
relations between items, and tests with a higher chance for guessing, such noisy answers are bound to
create these sticky errors. They will also tend to affect more significantly the performance at the end of
the test when only a few items are not yet observed.

This weakness can explain the fact that, although the score for the French test shown in Figure 6
quickly reaches around 95%, it does not improve afterwards except at the very end, contrary to the UNIX
test which displays a relatively steady improvement throughout the test. That failure to improve its
performance as new evidence is provided is also apparent in the question predictive experiment reported
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in Figure 7, where POKS’ performance drops below that of the fixed sequence performance after around
one hundred items. Again, this is consistent with the fact that sticky errors will accumulate and more
significantly affect the performance at the end of a test.

Why that phenomenom is present only in the French test is unknown and we can only speculate at
this point. It can be related to the amount of “noise” in the data, such as lucky guesses. It can also be
that the French test items are not as well structured as the UNIX ones, resulting in more errors over the
nodes with only incoming or outgoing links. Whatever the reason is, the problem is not insurmountable,
but it does involve developing some means to avoid the accumulation of noise over items that are either
very difficult or very easy.

CONCLUSION

POKS offers a fully algorithmic means of building the model and updating item probabilities among
themselves without requiring any knowledge engineering step. Indeed, the specific POKS approach uses
the same data as the IRT-2PL approach to provide similar accuracy. It shows that a graphical modeling
modeling approach such as POKS can be induced from a small amount of test data to perform relatively
accurate examinee classification. This is an important feature from a practical perspective since the
technique can benefit a large number of application contexts.

The graphical modeling approaches such as POKS or as Bayesian networks are still in their infancy
compared to the IRT techniques developed since the 1960’s, and their potential benefit remains relatively
unexplored. However, applications of CAT techniques to tutoring systems and to different learning envi-
ronments are emerging (see, for example, Millán, Garcia-Herve, Rueda, & de-la Cruz, 2003; Gonçalves,
Aluisio, de Oliveira, & Oliveira, 2004; Conejo, Guzman, Millán, Trella, Pérez-de-la Cruz, & Rios, 2004).
The availability of simple and automated techniques that are both effective and efficient, relying on lit-
tle data and allowing seamless updates of test content, will be critical to their success in commercial
applications.
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