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Learning from Explanations: Extending One’s Own
Knowledge during Collaborative Problem Solving by
Attempting to Understand Explanations Received from
Others

Rolf Ploetzner, Eric Fehse, Department of Psychology University of Freiburg 79085 Freiburg,
Germany

Abstract. On the basis of an experimental study, we propose a cognitive simulation model of
collaborative problem solving and learning. In the experimental study, we investigated how
qualitative and quantitative problem representations in classical mechanics are acquired and
successively interrelated during collaborative problem solving. Two students, who were taught
different aspects of classical mechanics, collaborated on problems which were beyond the
competence of each of them individually. Students successfully learned to interrelate qualitative
and quantitative problem representations. Furthermore, students who initially were taught
qualitative aspects of classical mechanics gained significantly more from the information
provided by their quantitatively instructed partners than the other way round. The model
simulates collaborative problem solving and learning under the conditions set up in the
experimental study. On the basis of the model it was possible to reconstruct the main results of
the experimental study.

INTRODUCTION

Two important questions in research on collaborative problem solving and learning are the
questions of (a) which arrangements make collaboration both instructive and efficient and (b)
which interaction processes underlie collaboration (for a recent overview see Dillenbourg,
Baker, Blaye & O’Malley, 1996). Two factors which correspond to these questions and which
seem to positively influence collaborative problem solving and learning are (a) task structures
that promote mutual interdependence among the collaborating students and (b) communication
structures that promote the construction of high-level questions and explanations.

With respect to the first factor, it has been demonstrated that students’ understanding
advances the most during collaboration if the students initially possess different pre-knowledge
about or conceptual perspectives on the application domain under scrutiny (e.g., Howe, Tolmie
& Rodgers, 1990, 1992; for an overview see Knight & Bohlmeyer, 1990). Therefore, students
are sometimes taught different but complementary aspects of the application domain before
collaborative problem solving takes place (e.g., Aronson, Balney, Stephan, Sikes & Snapp,
1978; Slavin, 1995). Subsequently, problems are posed to the students which are designed in
such a way that the students mutually depend upon each other’s competencies in order to be
successful. Because this approach demands that each student contributes to the solution of a
posed problem, it gives the students various opportunities to learn from each other during the
collaboration.

With respect to the second factor, Webb (1989) revealed by means of a meta-analysis that
the success of collaborative problem solving and learning depends largely on the level of
elaboration of the information exchanged between the collaborating students. It may range from
the mere exchange of achieved results, over the exchange of single specific or general pieces of
information, to the exchange of detailed and coherent specific or general explanations, for
example.



Ploetzner and Fehse

194

While learning on the basis of the mere exchange of achieved results seems not to be very
far reaching, the exchange of detailed and coherent explanations might considerably improve
learning under the conditions that (a) the explanations are relevant to the explainees questions,
(b) the explanations match the level of help needed, (c) the explanations are provided without
major delay, (d) the explanations match the explainees level of understanding and (e) the
explainee has the opportunity to apply the information provided by the explanations to the
posed problem.

In accord with these findings, Graesser and Person (1994) observed that successfully
learning students predominantly raise questions during collaborative problem solving which ask
for detailed explanations. Less successfully learning students, in contrast, ask mostly questions
which result in rather uninformative answers.

In this paper, we propose a cognitive simulation model of collaborative problem solving
and learning that takes both factors described above into account. The model has been
developed on the basis of an experimental study (cf. Ploetzner, Fehse, Spada, Vodermaier &
Wolber, 1996). In the experimental study, we investigated how qualitative and quantitative
problem representations in classical mechanics are acquired and successively interrelated during
collaborative problem solving. The study was made up of two main phases. In the first phase,
students were taught either qualitative or quantitative aspects of classical mechanics by means
of two different instructional units.

By teaching different aspects of classical mechanics to the students, we intentionally gave
rise to a systematic variation in the students’ pre-knowledge about the application domain. In
the second phase, dyads were formed with students who had received different instructional
units and therefore possessed systematically different pre-knowledge. The dyads collaboratively
worked on problems which were beyond the competence of each student individually.

Before and after the instruction as well as after the collaborative problem solving, students
had to work individually on multi-component tests. An analysis of variance of the multi-
component tests revealed that the students successfully learned to interrelate qualitative and
quantitative problem representations during collaborative problem solving. Furthermore,
students who initially were taught qualitative aspects of classical mechanics gained significantly
more from the information provided by their quantitatively instructed partners than the other
way round.

The model simulates selected aspects of collaborative problem solving and learning under
the conditions set up in the experimental study. It rests on three basic assumptions. The first
assumption is that collaboration is especially beneficial to the collaborating partners if they
initially possess different pre-knowledge about the application domain. The second assumption
is that the ability to direct felicitous questions to one’s partner frequently depends on adequate
self-diagnoses of shortcomings of one’s own competence. The third assumption is that
explanations received from one’s partner provide a valuable source of information for extending
one’s own knowledge.

The model comprises a cognitive as well as a meta-cognitive level. The cognitive level was
realised by taking advantage of a cognitive simulation model of individual problem solving in
classical mechanics (cf. Ploetzner, 1995). In correspondance to the first assumption described
above, the simulation model of individual problem solving was duplicated. While the
knowledge available to one copy was restricted to knowledge about qualitative aspects of
classical mechanics, the knowledge available to the other copy was restricted to knowledge
about quantitative aspects.

The meta-cognitive level was implemented by making use of meta-programming
techniques. It comprises two domain-independent mechanisms. The first mechanism
corresponds to the second assumption described above. It simulates the construction of
questions directed to one’s partner on the basis of deductive self-diagnoses. The second
mechanism corresponds to the third assumption described above. It simulates learning by
attempting to understand explanations received from one’s partner on the basis of one’s own
pre-knowledge. By means of the model it was possible to reconstruct the main results of the
experimental study.
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The paper is organized as follows. In the following section, the distinction between
knowledge about qualitative and quantitative aspects of classical mechanics is set forth. A
summary of the cognitive simulation model of individual problem solving is provided next.
Afterwards, the design and the results of the experimental study are described. Thereafter, the
cognitive simulation model of collaborative problem solving and learning as well as the results
of a simulation study are delineated. A discussion and conclusion complete the paper.

KNOWLEDGE ABOUT QUALITATIVE AND QUANTITATIVE ASPECTS OF
CLASSICAL MECHANICS

The considered application domain is made up of standard textbook physics problems which
involve one-dimensional motion with constant acceleration (e.g., Halliday & Resnick, 1988).
The focus is on problems which ask for a precise quantitative problem solution. For example:

A block of mass m = 15 kg starts from rest (initial velocity v = 0 m/s) down a
frictionless (coefficient of friction f = 0) plane inclined at an angle α = 30° with the
horizontal. What is the block’s velocity v after the time t = 2 s?

The knowledge under scrutiny is knowledge about qualitative and quantitative aspects of
various concepts in dynamics (e.g., gravitational force, normal force and friction force) and
kinematics (e.g., time, position, displacement, velocity and acceleration). Knowledge about
qualitative aspects encodes information such as the conditions under which concepts can
legitimately be applied, the attributes possessed by concepts and the values concept attributes
might have. It might specify, for example, that there is a kinetic friction force Ff on an object,
whenever there is a normal force Fn on the object and the object is moving on a surface which is
not frictionless.

Knowledge about quantitative aspects encodes information about interaction and motion
laws. It relies on mathematical formalisms to describe definitions of and functional relationships
between concepts by means of algebraic and vector-algebraic equations. It might specify, for
instance, that the magnitude of the kinetic friction force Ff on an object equals the magnitude of
the normal force Fn on the same object times the coefficient of friction f: Ff = Fn ∗  f. As de
Kleer (1975) points out, knowledge about qualitative and quantitative aspects cannot be
separated at a clear-cut boundary. Rather, this distinction refers to the ends of a continuum with
a considerable body of knowledge between them (e.g., Ploetzner, Spada, Stumpf & Opwis,
1990; van Joolingen, 1994; White & Frederiksen, 1990).

We conceptualize qualitative and quantitative problem representations as complementary
representations based on knowledge about qualitative and quantitative aspects, respectively.
Qualitative problem representations include information about essential problem features to be
taken into account and important distinctions to be drawn. While quantitative problem
representations help to resolve ambiguities frequently inherently involved in qualitative problem
representations, qualitative problem representations seem to be a necessary prerequisite for the
appropriate construction and use of quantitative problem representations.

A COGNITIVE SIMULATION MODEL OF INDIVIDUAL PROBLEM SOLVING

The development of the cognitive simulation model of individual problem solving started from
the assumption that successful and efficient problem solving in formal sciences such as physics
demands the construction and coordination of qualitative and quantitative problem
representations. The simulation model and its implementation is described in detail in Ploetzner
(1995). It has been realised with two main goals in mind. The first goal was to investigate the
knowledge structures which underlie qualitative and quantitative problem representations in
classical mechanics. The second goal was to examine the reasoning mechanisms which allow
one to construct and coordinate both kinds of problem representations.
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The model has been implemented in Prolog as a knowledge-based system. It comprises
four major components: (1) an interpreter, (2) a knowledge base for knowledge about
qualitative and quantitative aspects of classical mechanics, (3) a knowledge base for qualitative
and quantitative vector-algebraic knowledge and (4) a knowledge base for geometric and
algebraic knowledge.

The interpreter employs domain-independent as well as domain-specific control knowledge
to enable the construction of qualitative and quantitative problem representations during
problem solving. The domain-specific control knowledge includes, for instance, a procedure
made up of six steps to construct so-called free-body diagrams: (1) identify the object whose
motion has to be analysed, (2) determine all the forces on the object, (3) draw an arrow for each
force on the object, (4) choose a suitable coordinate system as a reference frame, (5) resolve the
forces for their components along each coordinate axis and (6) apply Newton’s second law to
the resultant force along each axis. Though this procedure aims at the construction of more and
more complete qualitative problem representations, it leaves nevertheless unspecified which
knowledge actually needs to be applied to achieve each step.

In the model, knowledge about qualitative and quantitative aspects of classical mechanics
concepts has been implemented by means of an equation-based, relational representation
language similar to the representation language employed by VanLehn, Jones and Chi (1992).
Each expression which encodes knowledge about qualitative or quantitative aspects of classical
mechanics concepts is made up of a left- (i.e., the condition) and a right-hand side (i.e., the
conclusion). An expression’s left-hand side is a conjunction of a possibly empty set of atomic
sentences {S1 ... Sk}. An expression’s right-hand side consist of exactly one atomic sentence S
which is always an equation. The left-hand side and the right-hand side of an expression are
connected by the implication operator: S1 ∧  ... ∧  Sk ⇒  S.

In the case of knowledge about qualitative aspects, arithmetic operators must not occur in
the expression’s left- or right-hand side. Knowledge about qualitative aspects of classical
mechanics is formalized by means of two kinds of expressions. The first kind of expression
states the conditions under which a concept can legitimately be applied. The second kind of
expression constrains the values of the various attributes a concept has. Knowledge about
quantitative aspects of classical mechanics is formalized by means of expressions which
describe algebraic equations. Time-dependency of concepts is represented by means of an
extensional temporal operator ″value(S, P)″ which denotes the value of a parameter ″P″ in
situation ″S″. The situation might refer to a point in time or an interval of time (cf. Davis, 1990).

Table 1. How knowledge about qualitative and quantitative aspects
of the kinetic friction force has been formalized

Knowledge about qualitative aspects:
Ff1: Value(S, instance(Object1, body)) = true ∧

value(S, instance(force(Object1, Object2, fn), normal_force)) = true ∧
Value(S, instance(Object2, plane)) = true ∧
Value(S, moves_on(Object1, Object2)) = true ∧
¬  (value(S, frictionless(Object2)) = true) ⇒
value(S, instance(force(Object1, Object2, ff), friction_force)) = true

Ff2: Value(S, instance(force(Object1, Object2, ff), friction_force)) = true ∧
Value(S, instance(Object2, plane)) = true ⇒
Value(S, inclination(force(Object1, Object2, ff))) =
Value(S, inclination(velocity(Object1)))

Ff3: Value(S, instance(force(Object1, Object2, ff), friction_force)) = true ∧
Value(S, instance(Object2, plane)) = true ⇒
Value(S, sense(force(Object1, Object2, ff)) =
Opposite(value(S, sense(velocity(Object1))))

Knowledge about quantitative aspects:
Eq: Value(S, magnitude(force(Object1, Object2, ff))) =

value(S, magnitude(force(Object1, Object2, fn))) *
Value(S, friction(Object1, Object2))
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Table 1 shows how knowledge about qualitative and quantitative aspects of the kinetic
friction force is formalized in the model. Whenever there is an object which is an instance of a
body and there is a normal force on the object due to a plane and the object is moving on the
plane which is not frictionless, then there is a kinetic friction force on the object due to the plane
(cf. Expression Ff1 in Table 1). If there is a kinetic friction force on an object due to a plane, then
the inclination of the kinetic friction force equals the inclination of the object’s velocity (cf.
Expression Ff2 in Table 1) and the sense of the kinetic friction force is opposite to the sense of
the object’s velocity (cf. Expression Ff3 in Table 1). The algebraic equation states that the
magnitude of the kinetic friction force on an object equals the magnitude of the normal force on
the same object times the coefficient of friction (cf. Expression Eq in Table 1).

The model is applied to problem descriptions encoded in the same representation language
which has been employed to formalize qualitative and quantitative aspects of classical
mechanics. How the problem described above is encoded is shown in Table 2.

Table 2. How problem descriptions are encoded

Problem description:
A block of mass m = 15 kg starts from rest (intitial velocity
v = 0 m/s) down a frictionless (coefficient of friction f = 0) plane inclined at an
angle α = 30° with the horizontal. What is the block’s velocity v after the time t =
2 s?
Encoded problem description:
given(value(1,instance(block_1, block)) = true)
given(value(1,instance(plane_1, plane)) = true)
given(value(1,moves_on(block_1, plane_1)) = true)
given(value(1,mass(block_1)) = 15::kg)
given(value(1,magnitude(velocity(block_1))) = 0::m/s)
given(value(1,sense(velocity(block_1))) = down)
given(value(1,inclination(plane_1)) = 30)
given(value(1,frictionless(plane_1)) = true)
given(value(1 → 2, duration(displacement(block_1))) = 2::s)
sought(value(2, magnitude(velocity(block_1))))

Table 3 summarises - in a more familiar notation - how the problem is solved by the model.
Initially, qualitative reasoning ascertains that there are two different forces on the block.
Subsequently, a free-body diagram is constructed. The model constructs such a free-body
diagram only in terms of symbolic descriptions. Graphical elements are not involved.

The free-body diagram enables the resultant force on the block to be specified in qualitative
terms. Afterwards, this specification is expressed in algebraic terms by applying vector-
algebraic knowledge and knowledge about Newton’s second law. The resulting algebraic
expressions extend the quantitative information available to the model. Additional qualitative
reasoning further restricts the knowledge about quantitative aspects to be applied. Finally, the
problem’s solution is derived by successively applying the relevant dynamics and kinematics
laws.

The entire knowledge formalized in the model makes up a general domain model. If the
model is applied to a specific problem description, a qualitative and a quantitative problem
representation are constructed by copying and instantiating parts of the general domain model.
Both problem representations are successively constructed, coordinated and modified until they
yield the problem’s solution. In the model, the main emphasis is on how the information
included in a qualitative problem representation can be utilized to enable and to guide the
subsequent construction of an appropriate quantitative problem representation.

During problem solving, qualitative and quantitative problem representations can be
coordinated in two different ways. Firstly, by drawing on vector-algebraic knowledge, the
information included in a qualitative problem representation is partially expressed in algebraic
terms to construct additionally required quantitative information not available to the model
beforehand. Secondly, the information included in a qualitative problem representation is
exploited to constrain the use of already available quantitative information. A similar
mechanism for coordinating qualitative, conceptual information and quantitative, numerical
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information has been employed earlier by Ohlsson and Rees (1991) in the domain of arithmetic
problem solving, for example.

Table 3. How qualitative and quantitative problem representations are coordinated

Qualitative Reasoning Quantitative Reasoning
the object whose motion has to be analysed is the block
the forces on the block are Fg and Fn

Fgx

Fg

Fn

Fgy
X

+

-

-

Y
+

direction of Fgx equals direction of v
Magnitude of resultant force ΣFx equals magnitude of Fgx ΣFx = Fgx = m ∗  a
direction of Fgy is opposite to direction of Fn

magnitude of resultant force ΣFy equals difference between
magnitude of Fn and magnitude of Fgy

ΣFy = Fn – Fgy = m ∗  ay

motion with constant acceleration and without initial
velocity

v = a ∗  ∆t

magnitude of ay equals zero ay  = 0 m/s2
ax = a = Fgx / m
    = (m ∗  g ∗  sin α) / m
    = g ∗  sin α
v = g ∗  sin α ∗  ∆t

EXPERIMENT

Design

The design of the experimental study is shown in Table 4. Two experimental groups and one
control group were formed. Twentyfour students from two different schools were equally
distributed among the three groups. Each group was made up of eight students. All students had
to work on a pretest, an intermediate test and a posttest.

Table 4. The design of the experimental study

qualitative

quantitative

PretestGroup Instruction Intermediate Collaborative Posttest

Quantitative
group

Qualitative
group

Control
group

test problem solving
Intro-
duction
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Between the pretest and the intermediate test, the students in the experimental groups
worked on instructional units. While the students in the first experimental group worked on an
instructional unit on qualitative aspects of classical mechanics, the students in the second
experimental group worked on an instructional unit on quantitative aspects of classical
mechanics.

Between the intermediate test and the posttest, dyads were formed with students who had
received different instructional units. They worked collaboratively on five classical mechanics
problems which were beyond the competence of each of them individually and which demanded
the coordinated use of knowledge about qualitative and quantitative aspects of classical
mechanics.

By teaching different aspects of classical mechanics to the students, we intentionally gave
rise to a systematic variation in the students’ pre-knowledge about the application domain. In
various earlier studies, it has been demonstrated that students’ understanding advances the most
during collaboration if they initially possess different pre-knowledge about the application
domain under scrutiny (e.g Howe, Tolmie & Rodgers, 1990, 1992; Knight & Bohlmeyer, 1990).
Because this approach demands that each student contributes to the solution of a posed problem,
it gives the students various opportunities to learn from each other during the collaboration.

Materials

Instructional Units

By taking advantage of the knowledge encoded in the simulation model of individual problem
solving, two instructional units on classical mechanics were constructed (cf. Ploetzner, Fehse,
Spada, Vodermaier & Wolber, 1996). One unit described qualitative aspects of classical
mechanics and one unit described quantitative aspects of classical mechanics. Both units
comprised sections on (a) coordinate systems and vectors, (b) resolution and addition of vectors,
(c) velocity and acceleration and (d) forces. The qualitative and quantitative aspects of the
addressed concepts were described by means of concept maps (e.g., Novak, 1990). One or more
concept maps were followed by several examples and exercises. The solutions to the exercises
were also presented.

Problems

On the basis of the simulation model of individual problem solving described, five different
classical mechanics problems for collaborative problem solving were set up. They are shown in
Table 5. In order to necessitate collaboration during problem solving, the problems were
designed in such a way that their solutions require the coordinated application of knowledge
about both qualitative and quantitative aspects of classical mechanics.

Table 5. Problems for collaborative problem solving

Problem 1: A coin of mass m = 0.03 kg is tossed straight up into the air with the velocity v = 7 m/s. After
which distance r is the coin’s velocity reduced to
v = 3 m/s?
Problem 2: A block of mass m = 15 kg starts from rest (initial velocity v = 0 m/s) down a frictionless
(coefficient of friction f = 0) plane inclined at an angle α = 30° with the horizontal. What is the block's velocity
v after the time t = 2 s?
Problem 3: What is the minimum stopping distance for a car of mass m = 820 kg travelling along a flat
horizontal road with the velocity v = 12 m/s, if the coefficient of friction f between tires and road equals 0.8?
Problem 4: A block of mass m = 10 kg is projected up an inclined plane with the velocity v = 5 m/s. The plane
is inclined at an angle α = 15°. Which distance r up the plane does the block go, if the coefficient of friction f
between block and plane equals 0.3?
Problem 5: A block of mass m = 72 kg moves down an inclined plane with constant velocity v. What is the
coefficient of friction f between block and plane, if the plane is inclined at an angle α = 20°?



Ploetzner and Fehse

200

Multi-Component Tests

Before and after the instruction as well as after the collaborative problem solving, students had
to work on parallel tests. The tests were made up of two components which assess knowledge
about qualitative and quantitative aspects of classical mechanics. Six items of the first
component assessed knowledge about qualitative aspects and six items assessed knowledge
about quantitative aspects. On the basis of the simulation model of individual problem solving,
the items were designed in such a way that the solution to each item required the use of
information presented in the instructional unit on qualitative or quantitative aspects,
respectively.

The six items of the second component were designed in such a way that the solution to
each item required the interrelation of information presented in both instructional units. These
items required the ability to coordinate the application of knowledge about qualitative and
quantitative aspects of classical mechanics. Thus, while half of the items of the first test
component should be solvable after the instruction took place, items of the second test
component should only be solvable to a larger extent after the collaborative problem solving
took place.

The pretest, the intermediate test and the posttest were made up of parallel items. In order
to avoid the assessment of abilities which are specific to the use of concept maps, concept maps
were not included in the tests. Parallel items were designed in such a way that the same
knowledge needed to be applied to solve them. However, surface features such as the objects
involved and the numerical values were varied across parallel items. Within each test, items
were arranged in random order.

Students

Twentyfour female tenth graders from two different high schools volunteered for the study. The
students were between 16 and 17 years old. They were paid for their participation. All of the
students had attended classes on basic aspects of mechanics. In these classes, the concepts of
time, position, displacement, velocity, acceleration and force had been introduced. The
interrelations between these concepts had been described by means of position-time-, velocity-
time- and acceleration-time-diagrams, for example. However, none of the students had attended
classes on more advanced, Newtonian aspects of mechanics as they were in the foreground of
this study.

Procedure

The students in the two experimental groups were investigated in pairs. Each pair was
composed of students from different schools and was investigated for four days running. On the
first day, the students worked on the pretest, an introduction into the structure of concept maps
and the first sections of the instructional units. While one student received instruction on
qualitative aspects of classical mechanics, the other student received instruction on quantitative
aspects. While they worked on the pretest and the instructional units, students had to work on
their own and were not allowed to exchange information. However, they were allowed to work
collaboratively on the introduction into the structure of concept maps.

On the second day, the students worked on the remaining sections of the instructional units
and on the intermediate test. Again, students had to work on their own and were not allowed to
exchange information. On the third day, the students had to solve three problems (Problem 1,
Problem 2 and Problem 3 as shown in Table 5) which demand the coordinated use of
knowledge about qualitative and quantitative aspects.

Problem solving took place in two phases. In the first phase, the students had to work
individually on a problem. In the second phase, starting from their individual problem solving
attempts, the students were allowed to work collaboratively on the same problem. During
collaborative problem solving, students were allowed to exchange information at their will.



Learning from Explanations

201

The individual problem solving phase served to encourage the students to seriously
approach a problem, to identify their own knowledge gaps and to come up with reasonable
questions to be raised during the subsequent collaborative problem solving phase. After the
students finished their collaborative problem solving attempts, they were given feedback about
the correctness of their solution. In the case that the solution was incorrect, they were told where
an error was made. The solution to the problem, however, was not told to the students. At the
end of the collaborative problem solving, students were allowed to reread selected sections in
the unit which they had received during instruction.

On the fourth day, the students collaborated on the remaining two problems (Problem 4 and
Problem 5 as shown in Table 5) under the same conditions as described above. Finally, each
student worked individually on the posttest.

The students in the control group were investigated in groups. They worked on three
different days on the pretest, the intermediate test and the posttest. Between two days of testing
there was one day without testing. During the study, all students were allowed to use a ruler and
a calculator. The students were not given feedback about their answers to the different tests.

Results

The average relative solution frequencies of all groups in the first test component of the pretest,
intermediate test and posttest are shown in Figure 1. A two-way analysis of variance with
repeated measurements Group x Test was computed. Across groups, the students improved
significantly from the pretest to the posttest (F(2, 42) = 70.57, p < .001). The students in the
experimental groups gained significantly more from the pretest to the posttest than the students
in the control group (F(4, 42) = 13.05, p < .001). At this level of analysis, the students in the
experimental groups did not differ significantly in their gains (F(2, 28) = .68, p = .51).

In their tendency, however, the students who initially were taught qualitative aspects of
classical mechanics gained more from the information provided by their quantitatively
instructed partners during collaborative problem solving than the other way round. While the
correctness of the qualitatively instructed students increased on average by 36% from the
intermediate test to the posttest, the correctness of the quantitatively instructed students
increased only by 25%.
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Figure 1. The average relative solution frequencies of all groups in the first test component of
the pretest, intermediate test and posttest
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To make this difference between the students in the experimental groups even more visible,
the items which assess knowledge about qualitative aspects of classical mechanics and the items
which assess knowledge about quantitative aspects of the first test component were analysed
separately. Again, a two-way analysis of variance with repeated measurements was computed.
The corresponding average relative solution frequencies are shown in Figure 2.

The students did not differ significantly with respect to how well they were able to
consolidate and to extend the knowledge about qualitative or quantitative aspects they had
acquired during the instruction. However, as predicted, the students differed significantly with
respect to how well they were able to take advantage of the information provided by their
partners during collaborative problem solving (F(1, 14) = 5.3, p < .05). The students who
initially were taught qualitative aspects of classical mechanics gained significantly more from
the information provided by their quantitatively instructed partners than the other way round.

The average relative solution frequencies of all groups in the second test component of the
pretest, intermediate test and posttest are shown in Figure 3. As expected, the items of the
second test component were only solvable to a larger extent after the collaborative problem
solving took place.
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Figure 2. The average relative solution frequencies of the experimental groups in the first test
component of the intermediate test and posttest with respect to the test items which assess either

knowledge about qualitative or knowledge about quantitative aspects

A further two-way analysis of variance with repeated measurements Group x Test was
computed. Because in the pretest there was no variance at all observable, we did not compute
such an analysis with respect to the pretest and the intermediate test. Students in both
experimental groups were able to solve a few items of the second test component in the
intermediate test. This might be due to pre-knowledge in connection with knowledge acquired
during the instruction, for example. The students in the experimental groups improved
significantly from the intermediate test to the posttest (F(1, 14) = 9.6, p < .01).
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Figure 3. The average relative solution frequencies of all groups in the second test component
of the pretest, intermediate test and posttest

Summary of the Empirical Results

The experimental study described above yielded two main results. The first result is that
students with initially different but complementary representations of the domain under scrutiny
learned to appropriately interrelate their representations during collaborative problem solving
when the students were confronted with problems which required such an interrelation. Because
the initially different domain representations demanded that each student contributes to the
solution of a problem, students were given various opportunities to exchange information and to
learn from each other’s explanations.

The second result is that during collaborative problem solving, qualitatively instructed
students gained more from their quantitatively instructed partners than the other way round. In
accord with research on differences between novices and experts (for overviews see Chi, Glaser
& Rees, 1982; VanLehn, 1996), this result indicates that qualitative problem representations
form not only a good starting point for the subsequent construction of quantitative problem
representations during problem solving but also a beneficial starting point for learning
quantitative problem representations.

A COGNITIVE SIMULATION MODEL OF COLLABORATIVE PROBLEM SOLVING
AND LEARNING

To better understand which interaction and learning processes might account for the results of
the experimental study, we developed a further cognitive simulation model. The model
simulates selected aspects of collaborative problem solving and learning under the conditions
set up in the experimental study. With respect to the interaction processes, the model rests on
the assumption, that the success of collaborative problem solving and learning largely depends
on the questions and explanations exchanged between the collaborating students (cf. Webb,
1989).

It is especially assumed that the ability to direct felicitous questions to one’s partner
frequently depends on adequate self-diagnoses of shortcomings of one’s own competence. With
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respect to the learning processes, the model rests on the assumption that explanations received
from one’s partner provide a valuable source of information for extending one’s own
knowledge. It is especially assumed that attempting to understand explanations on the basis of
one’s own pre-knowledge encourages learning.

Architecture

The model comprises two simulated problem solvers (cf. Figure 4). Each problem solver is
made up of a cognitive level, a meta-cognitive level and a communication level. The cognitive
level was realised by taking advantage of the cognitive simulation model of individual problem
solving. Essentially, the simulation model of individual problem solving was duplicated. This
lead to two problem solvers. They differ only with respect to the physics knowledge they
embody on the cognitive level.

While the physics knowledge available to one problem solver was restricted to knowledge
about qualitative aspects of classical mechanics, the physics knowledge available to the other
problem solver was restricted to knowledge about quantitative aspects. Both problem solvers
were equipped with the same knowledge about geometry, algebra and vector-algebra. In
addition, both problem solvers make use of the same mechanisms to interpret the knowledge
available to them.

The meta-cognitive level operates on the cognitive level. It comprises two domain-
independent mechanisms. The first mechanism has been implemented by making use of meta-
programming techniques. It simulates the construction of explanations as well as the
construction of questions by means of deductive self-diagnoses (cf. Ploetzner, Fehse, Hermann
& Kneser, 1997). The second mechanism simulates learning by attempting to understand
explanations. Between the cognitive level and the meta-cognitive level a domain-specific filter
was set up to specify which parts of the cognitive level are to be interpreted on the meta-
cognitive level and which are not.
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Figure 4. The components of the cognitive simulation model

The exchange of information between the two problem solvers takes place on the
communication level. If one of the two problem solvers is not able to solve a posed problem, a
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question is constructed on the meta-cognitive level. Subsequently, the question is forwarded to
the other problem solver. The other problem solver attempts to answer the question. If the other
problem solver is able to construct an answer to the question, not only the answer but also an
explanation is sent back to the problem solver which raised the question.

Implementation

The cognitive, meta-cognitive and communication level of the two simulated problem solvers
were implemented in Prolog, a logic-oriented programming language (cf. Shoham, 1994;
Sterling & Shapiro, 1994). The implementation of the cognitive level is described in detail in
Ploetzner (1995). In this section, the implementation of the meta-cognitive and communication
level is delineated.

The Construction of Explanations and the Construction of Questions by Means of
Deductive Self-Diagnoses

If a student possesses only incomplete knowledge with respect to a posed problem, he or she
commonly reaches impasses during an attempt to solve the problem (cf. VanLehn, 1988a). We
conceptualise those cognitive processes as self-diagnoses which lead to (a) the identification
where one reaches an impasse during the attempt to solve a posed problem and (b) the
determination of which information would allow one to overcome the impasse and possibly to
resume problem solving. Obviously, such processes provide an informative basis for posing
questions to one’s partner during collaborative problem solving.

In Prolog, problem solving corresponds to the attempt to construct a formal proof by means
of the knowledge available on the cognitive level. Such a proof delineates how a problem
solving goal can be derived from the knowledge available. A proof tree forms an externalisation
of a proof. It can serve as an explanation of how a problem solving goal can be derived from the
knowledge available.

The first purpose of complementing the cognitive level with a meta-cognitive level was to
provide a domain-independent means that enables the construction of explanations on the basis
of proof trees. The second purpose was to provide a domain-independent means that enables the
construction of questions on the basis of deductive self-diagnoses (cf. Ploetzner, Fehse,
Hermann & Kneser, 1997).

Table 6. A standard meta-interpreter for “pure” Prolog programs

interpreter((Goal, Goals)) :-

!,

interpreter(Goal),

interpreter(Goals).

interpreter(Goal) :-

system_predicate(Goal),

!,

call(Goal).

interpreter(Goal) :-

clause(Goal, Goals),

interpreter(Goals).

The meta-cognitive level was implemented by taking advantage of meta-programming
techniques which have been developed in the framework of student modelling (Beller & Hoppe,
1993; Hoppe, 1994). Its implementation started from a standard meta-interpreter for so-called
″pure″ Prolog programs (cf. Table 6). Pure Prolog comprises only those aspects of the Prolog
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system which are in accord with formal logic. Within such an interpreter, it has to be ensured
that built-in system-predicates are not processed by the meta-interpreter but by the Prolog-
interpreter (cf. the second rule in Table 6).

By labelling predicates on the cognitive level as system-predicates, it is possible to specify
which parts of the cognitive level are to be processed on the meta-cognitive level and which are
not. For instance, on the cognitive level, the two problem solvers comprise various predicates
for solving algebraic equations. Because the emphasis of the model is on physics problem
solving but not on algebraic problem solving, these predicates were labelled as system-
predicates.

By extending a standard meta-interpreter with two more arguments, it is possible to
construct and externalise generalised proof trees (cf. Table 7). While the first argument is
always instantiated with problem specific goals, the second argument is always instantiated with
generalised goals. Because generalised goals are copied (for an implementation of the copy
mechanism see Kedar-Cabelli & McCarty, 1987) before instantiation with problem specific
information takes place (cf. the third rule in Table 7), generalised proof trees are constructed
and externalised in the third argument.

A generalised proof tree is available for further processing after a problem solving goal has
been derived from the knowledge available on the cognitive level. However, if the knowledge
available on the cognitive level is incomplete with respect to a posed problem, no proof tree can
be constructed and problem solving fails. To allow for the construction of (partial) proof trees
even when only incomplete knowledge is available on the cognitive level, the meta-interpreter
was further extended to simulate deductive self-diagnoses. The functionality of the extended
meta-inter-preter can be summarised as follows:

Given

•  a problem solving goal and

•  a knowledge base,

do the following:

•  if the knowledge base is complete with respect to the problem solving goal, then
construct a complete proof tree;

•  otherwise construct a partial proof tree in which maximally specific subgoals which
cannot be derived from the knowledge base are labelled as unprovable.

Table 7. A meta-interpreter for constructing generalised proof trees

interpreter((Goal, Goals), (G_Goal, G_Goals), (G_Proof, G_Proofs)) :-

!,

interpreter(Goal, G_Goal, G_Proof),

interpreter(Goals, G_Goals, G_Proofs).

interpreter(Goal, G_Goal, system_predicate(G_Goal)) :-

system_predicate(Goal),

!,

call(Goal).

interpreter(Goal, G_Goal, (G_Goal :- G_Proof)) :-

clause(G_Goal, G_Goals),

copy((G_Goal, G_Goals), (Goal, Goals)),

interpreter(Goals, G_Goals, G_Proof).
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To achieve this functionality, the meta-interpreter was extended by additional rules and a
fourth argument turning the meta-interpreter into a ″fail-safe meta-interpreter″ (cf. Table 8). The
most important additional rule succeeds whenever the proof of a goal fails (cf. the last rule in
Table 8). If no complete proof tree can be constructed, then, in general, the notion of a goal that
cannot be proved is ambiguous: if the proof of a certain goal fails, then the proof of every goal
in the (partial) proof tree that is ″above″ the failing goal fails too. However, there exist always
″lowest″, maximally specific goals within the (partial) ordering of failing goals. These
maximally specific goals form the ″leaves″ of the partial proof tree which cannot be proved.
They allow for the construction of maximally specific questions.

Table 8. A fail-safe meta-interpreter for constructing complete as well as maximally specific
partial generalised proof trees

interpreter((Goal, Goals), (G_Goal, G_Goals), (G_Proof, G_Proofs), provable) :-

interpreter(Goal, G_Goal, G_Proof, provable),

interpreter(Goals, G_Goals, G_Proofs, provable).

interpreter((Goal, Goals), (G_Goal, G_Goals), (G_Proof, G_Proofs), unprovable) :-

interpreter(Goal, G_Goal, G_Proof, provable),

interpreter(Goals, G_Goals, G_Proofs, unprovable).

interpreter((Goal, Goals), (G_Goal, G_Goals), (G_Proof, terminated(G_Goals)),

unprovable) :-

interpreter(Goal, G_Goal, G_Proof, unprovable).

interpreter(Goal, G_Goal, system_predicate(G_Goal), provable) :-

system_predicate(Goal),

!,

call(Goal).

interpreter(Goal, G_Goal, (provable(G_Goal) :- G_Proof), provable) :-

not(conjunction(Goal)),

clause(G_Goal, G_Goals),

copy((G_Goal, G_Goals), (Goal, Goals)),

interpreter(Goals, G_Goals, G_Proof, provable).

interpreter(Goal, G_Goal, (unprovable(G_Goal) :- G_Proof), unprovable) :-

not(conjunction(Goal)),

not(system_predicate(Goal)),

clause(G_Goal, G_Goals),

copy((G_Goal, G_Goals), (Goal, Goals)),

interpreter(Goals, G_Goals, G_Proof, unprovable).

interpreter(Goal, _, unprovable(Goal), unprovable) :-

not(conjunction(Goal)),

not(system_predicate(Goal)),

not(clause(Goal,_)).

The fourth argument ensures the completeness of the meta-interpreter with respect to the
construction of complete proof trees: if it is possible to construct complete proof trees, then all
of them are constructed before any partial proof tree is constructed. However, to avoid
nonterminating computations, the meta-interpreter is not complete with respect to the



Ploetzner and Fehse

208

construction of partial proof trees (cf. the third rule in Table 8). That is, there might exist partial
proof trees which cannot be constructed by the meta-interpreter.

Learning from Explanations

We conceptualise those cognitive processes as learning from explanations by means of which
one attempts to understand explanations received from others on the basis of one’s own pre-
knowledge. Learning from explanations aims at (a) identifying new information in explanations
and (b) extending and complementing one’s own pre-knowledge by taking advantage of the new
information. Learning from explanations can in part be considered as being inverse to deductive
self-diagnosis:

Given

•  a complete or partial proof tree and

•  a knowledge base,

do the following:

•  identify information in the proof tree which cannot be derived from the knowledge base
and complement the knowledge base with the identified information.

That is, in order to simulate learning from explanations, a possibly partial proof tree is
successively decomposed and components which cannot be derived from the knowledge
available on the cognitive level are added to the knowledge base. To achieve this functionality,
the meta-cognitive level was extended by additional rules which determine components of a
proof tree which are not already included in the knowledge base and complement the
knowledge base with the new information.

Communication

Questions and generalised proof trees are exchanged between the two problem solvers on the
communication level. If a problem solver cannot solve a posed problem, the meta-interpreter
passes a partial proof tree to the communication interpreter. The communication interpreter
filters out those leaves of the partial proof tree which were unprovable and forwards them as
questions via TCP/IP (Transmission Control Protocol/Internet Protocol) to the other problem
solver. The problem solver which receives questions considers them as new problems and
attempts to solve them. If solutions to the problems can be found, the problem solver sends the
solutions as well as generalised proof trees back to the problem solver which raised the
questions. If no solutions to the problems can be found, the problem solver nevertheless sends
partial generalised proof trees back to the problem solver which raised the questions.

In its current implementation, the communication interpreter allows only for non-
overlapping problem solving and asymmetric communication. Non-overlapping problem
solving refers to the constraint that only one problem solver can be active at a time. Asymmetric
communication refers to the constraint that a problem solver which attempts to answer a
question cannot ask the other problem solver for further information.

The second constraint especially necessitates that the problem solvers assume defined roles
during collaborative problem solving. While one problem solver attempts to solve a posed
problem, the other problem solver attempts to answer questions raised by the first problem
solver. However, the roles assumed by the problem solvers may be switched when a new
problem has to be solved.

Performance

In Table 9, the performance of the two problem solvers is exemplified with respect to Problem 2
in Table 5. The different problem solving steps shown in Table 9 are traced on the cognitive
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level. The different questions, answers and explanations shown in Table 9 are traced on the
communication level.

Table 9. Performance of the qualitative (white areas) and quantitative (grey-shaded areas) solver

Trying to solve problem ...
Question: value(2, magnitude(velocity(block_1))) = ?

1
2

Trying to solve problem ...
trying equation v=v0+a*t for value(2, magnitude(velocity(block_1)))
trying equation fr=m*a for value(1, magnitude(acceleration(block_1)))
Answer: unprovable
Explanation:
(unprovable(solve_equation(v=v0+a*t,

value(S2, magnitude(velocity(Object))) =
value(S1, magnitude(velocity(Object))) + value(S2, magnitude(acceleration(Object))) *
value(S1 --> S2, duration(displacement(Object))))) :-
(unprovable(solve_equation(fr=m*a,

value(S, magnitude(force(Object, resultant_force, fr))) =
value(S, mass(Object)) * value(S, magnitude(acceleration(Object))))) :-

unprovable(value(1, magnitude(force(block_1, resultant_force, fr)))))

3
4
5
6
7
8
9
10
11
12
13
14
15

New knowledge acquired:
equation(v=v0+a*t, value(S2, magnitude(velocity(Object))) =

value(S1, magnitude(velocity(Object))) + value(S2, magnitude(acceleration(Object))) *
value(S1 --> S2, duration(displacement(Object))))

New knowledge acquired:
equation(fr=m*a, value(S, magnitude(force(Object, resultant_force, fr))) =

value(S, mass(Object)) * value(S, magnitude(acceleration(Object))))
Trying to solve problem ...
trying equation v=v0+a*t for value(2, magnitude(velocity(block_1)))
trying equation fr=m*a for value(1, magnitude(acceleration(block_1)))
derived value(1, instance(mass(block_1), mass)) = true
derived value(1, instance(force(block_1, earth, fg), gravitational_force)) = true
derived value(1, instance(force(block_1, plane_1, fn), normal_force)) = true
...
derived value(1, arrows(block_1)) = [arrow(force(block_1, earth, fg), 90, down),

arrow(force(block_1, plane_1, fn), 120, up), arrow(velocity(block_1), 30, down)]
derived value(1, instance(coordinate_system(block_1, [axis(x, 30), axis(y, 120)]),

coordinate_system)) = true
derived value(1, instance(free_body_diagram(coordinate_system(block_1,

[axis(x,30), axis(y, 120)]), [arrow(force(block_1, earth, fg), 90, down),
arrow(force(block_1, plane_1, fn), 120, up), arrow(velocity(block_1), 30, down)]), fbd)) =
true

derived value(1, magnitude(force(block_1, resultant_force, fr))) =
value(1, magnitude(projection(force(block_1, earth, fg), axis(x, 30))))

derived value(1, magnitude(projection(acceleration(block_1), axis(x, 30)))) *
value(1, mass(block_1)) =
value(1, magnitude(projection(force(block_1, earth, fg), axis(x, 30))))

Question: value(1, magnitude(force(block_1, earth, fg))) = ?

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Trying to solve problem ...
trying equation fg=m*g for value(1, magnitude(force(block_1, earth, fg)))
derived value(1, magnitude(force(block_1, earth, fg))) = 15::kg * c(g)
Answer: value(1, magnitude(force(block_1, earth, fg))) = 15::kg * c(g)
Explanation:
(provable(solve_equation(fg=m*g,

value(1, magnitude(force(Object, earth, fg))) = value(1, mass(Object)) * c(g))) :-
(provable(known_value(value(1, mass(Object)))) :-

system_predicate(given(value(1, mass(Object)) = Value))))

44
45
46
47
48
49
50
51
52

New knowledge acquired:
equation(fg=m*g, value(1, magnitude(force(Object, earth, fg))) =

value(1, mass(Object)) * c(g))
Trying to solve problem ...
...
derived value(1, magnitude(projection(force(block_1, earth, fg), axis(x, 30)))) =

15::kg * c(g) * sin(30)
derived value(1, magnitude(acceleration(block_1))) = sin(30) * c(g)
derived value(2, magnitude(velocity(block_1))) = sin(30) * c(g) * 2::s
Solution: value(2, magnitude(velocity(block_1))) = sin(30) * c(g) * 2::s

53
54
55
56
57
58
59
60
61
62
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The explanations shown in Table 9 comprise only information which results from applying
domain-specific knowledge on the cognitive level. Information which results from applying
interpretation mechanisms on the cognitive level is neglected.

In the following, the problem solver which is initially exclusively equipped with
knowledge about qualitative aspects of classical mechanics is named the ″qualitative solver″.
The problem solver which is initially exclusively equipped with knowledge about quantitative
aspects is named the ″quantitative solver″. The problem solving steps, questions and
explanations of the quantitative solver are grey-shaded in Table 9.

Initially, both problem solvers are initialized with the given and sought quantities of the
posed problem (cf. Table 2). In the arrangement underlying the performance shown in Table 9,
the qualitative solver attempts to solve the problem. The quantitative solver remains waiting for
questions from the qualitative solver. On the cognitive level, problem solving essentially relies
on backward-chaining. Because the qualitative solver has no knowledge available that applies to
the unknown quantity, it asks the quantitative solver for the block’s velocity (cf. Line 2 in Table
9).

In a first step, the quantitative solver considers a kinematic equation to determine the
block’s velocity (cf. Line 4). Because acceleration is a further unknown quantity in this
equation, Newton’s second law is considered next to determine the acceleration (cf. Line 5).
However, because the quantitative solver comprises no knowledge about qualitative aspects, it
cannot determine the resultant force on the block. Because no further kinematic equations are
available, the quantitative solver cannot determine the block’s velocity on its own.

In this case, the ″lowest″ problem solving goal that fails on the cognitive level of the
quantitative solver is the goal that aims at determining the resultant force on the block.
Consequently, the quantitative solver replies to the qualitative solver that it cannot answer the
question (cf. Line 6). In addition, the quantitative solver forwards a partial proof tree to the
qualitative solver (cf. Lines 8 to 15).

After the qualitative solver received the proof tree, it successively decomposes the proof
tree and tries to identify components which cannot be derived from its own knowledge base. As
a result, the qualitative solver extends its own knowledge base with the two equations the
quantitative solver failed to apply (cf. Lines 17 to 22).

Afterwards, the qualitative solver again attempts to solve the problem. It initially makes
use of the newly acquired equations (cf. Lines 24 and 25) and then proceeds to construct a free-
body diagram (cf. Lines 26 to 37) to determine the resultant force on the block. The qualitative
solver establishes that the resultant force on the block is made up of the projection of the
gravitational force on the block onto the x-axis (cf. Lines 38 and 39). Consequently, the
determination of the block’s acceleration demands the determination of the gravitational force
on the block (cf. Lines 40 to 42). Therefore, the qualitative solver again asks the quantitative
solver (cf. Line 43).

The quantitative solver determines the gravitational force on the block by taking advantage
of a force law (cf. Lines 45 and 46). Subsequently, it forwards the answer as well as the
complete proof tree to the qualitative solver (cf. Lines 47 to 52). The qualitative solver
decomposes the proof tree and extends its own knowledge base with the force law the
quantitative solver successfully applied (cf. Lines 54 and 55). On the basis of the extended
knowledge base, the qualitative solver finally determines the problem’s solution (cf. Lines 57 to
62).

SIMULATION STUDY

The performances of the two problem solvers were compared in a simulation study. The study
was made up of two phases: collaborative problem solving and individual testing. During
collaborative problem solving, the problem solvers were applied ″collaboratively″ to five
problem descriptions which encoded the problems posed to the students in the experimental
study (cf. Table 5). Two arrangements were considered. In the first arrangement, the qualitative
solver attempted to solve the problem and the quantitative solver remained waiting for questions
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from the qualitative solver. In this arrangement, the qualitative solver learned from explanations
constructed by the quantitative solver. In the second arrangement, the quantitative solver
attempted to solve the problem and the qualitative solver remained waiting for questions from
the quantitative solver. In this arrangement, the quantitative solver learned from explanations
constructed by the qualitative solver.

If no restrictions are applied to the learning capabilities of the two problem solvers, they
are able to decompose explanations of arbitrary size and to acquire an arbitrary number of new
pieces of knowledge included in these explanations. Because the assumption of unrestricted
learning capabilities appears to be highly implausible, the learning capabilities of the two
problem solvers were restricted in such a way that the problem solvers were capable of
acquiring a maximum of seven new pieces of knowledge included in an explanation. Such new
pieces of knowledge can be any expressions which encode knowledge about qualitative or
knowledge about quantitative aspects of classical mechanics (cf. Table 1 and Table 9).

We do not claim that this restriction adequately reflects restrictions of human learning
capabilities. In a more adequate model, theories about the human working memory and its role
in problem solving and learning (e.g., Sweller, 1994; Sweller & Chandler, 1994) would have to
be taken into account, for example.

With respect to the first arrangement, the number of explanations the qualitative solver
received from the quantitative solver during collaborative problem solving is shown in the upper
part of Table 10. Across all problems, the qualitative solver received 12 explanations from the
quantitative solver. These explanations included 29 pieces of information. Because not all
pieces of information were new to the qualitative solver, six new pieces of knowledge were
acquired.

Table 10. The number of explanations exchanged and the number of pieces of new knowledge
acquired during collaborative problem solving

Problem solver Problem

1 2 3 4 5 All

Qualita-

tive

Explanations

received
1 1 0 7 3 12

Pieces of information

included
3 3 0 17 6 29

Pieces of new knowledge

acquired
2 1 0 3 0 6

Pieces of new knowledge not

acquired
0 0 0 0 0 0

Quanti-

tative

Explanations

received
2 4 4 3 4 17

Pieces of information

included
20 38 35 0 36 129

Pieces of new knowledge

acquired
8 9 7 0 0 24

Pieces of new knowledge not

acquired
4 3 0 0 0 7

With respect to the second arrangement, the number of explanations the quantitative solver
received from the qualitative solver during collaborative problem solving is shown in the lower
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part of Table 10. Across all problems, the quantitative solver received 17 explanations from the
qualitative solver. These explanations included 129 pieces of information. While 24 new pieces
of knowledge were acquired, seven new pieces of knowledge were not acquired due to the
restriction of the learning capabilities.

During individual testing, the problem solvers were applied separately to 18 problem
descriptions which encoded the items of the post-test posed to the students in the experimental
study. Before collaborative problem solving, the qualitative solver solved the six items (33%) of
the first test component which assess knowledge about qualitative aspects of classical
mechanics. Correspondingly, the quantitative solver solved the six items (33%) of the first test
component which assess knowledge about quantitative aspects. The performance of the two
problem solvers after collaborative problem solving is shown in Table 11. While the qualitative
solver solved 16 items (89%), the quantitative solver solved 12 items (67%).

Table 11. The performance of the qualitative and quantitative solver on the multi-component
test after collaborative problem solving

Successfully solved test items

Problem solver

Qualitative 6 (100%) 5 (83%) 5 (83%) 16 (89%)

Quantitative 5 (83%) 6 (100%) 1 (17%) 12 (67%)

The results of the simulation study roughly correspond to the main findings of the
experimental study. However, although the learning capabilities of the two problem solvers
have been restricted, their learning performance is still above the average learning performance
of the students in the experimental study. In the following, we discuss various idealisations
realised in the model which might be responsible for the model’s superior learning performance.

DISCUSSION

In this paper, we described a cognitive model that simulates selected aspects of collaborative
problem solving and learning under the conditions set up in an experimental study. The model
rests on three basic assumptions. The first assumption is that collaboration is especially
beneficial to the collaborating partners if they initially possess different pre-knowledge about
the application domain. The second assumption is that the ability to direct felicitous questions to
one’s partner frequently depends on adequate self-diagnoses of shortcomings of one’s own
competence. The third assumption is that explanations received from one’s partner provide a
valuable source of information for extending one’s own knowledge.

In accord with the conditions identified by Webb (1989), the exchange and use of
explanations as simulated by the cognitive model should lead to successful collaborative
learning, because (a) the explanations are always relevant to the explainees questions, (b) the
explanations commonly match the level of help needed, (c) the explanations are provided
without major delay, (d) the explanations match the explainees level of understanding and (d)
the explainee has the opportunity to apply the information provided by the explanations to the
posed problem.

We made use of the cognitive model in a simulation study. By means of the simulation
study it was possible to roughly reconstruct the main findings of the experimental study,
namely, that qualitatively instructed students gained more from their quantitatively instructed
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partners than the other way round. The results of the simulation study give raise to a potential
account for this finding.

With respect to the problems which were posed to the students in the experimental study as
well as to the qualitative and quantitative solvers in the simulation study, the qualitative solver
constructed not only more but also larger explanations than the quantitative solver. Especially,
the construction of free-body diagrams by the qualitative solver required much knowledge about
qualitative aspects of classical mechanics to be taken into account.

On the one hand, quantitatively instructed students might have constructed rather limited
explanations. Their qualitatively instructed partners were possibly able to understand these
explanations without severe difficulties and to take advantage of them to complement their own
knowledge. On the other hand, because explanations of qualitative reasoning had often to be
extensive, qualitatively instructed students might have constructed either (a) incomplete
explanations which informed their quantitatively instructed partners only partially or (b)
complete explanations which overburdened their quantitatively instructed partners.

This hypothesis is supported by a discourse analysis of the verbal exchange of information
of three selected pairs of students (cf. Kneser, 1997; Ploetzner & Kneser, 1998). Among other
results, the discourse analysis revealed that (a) while the qualitatively instructed students
gradually made fewer requests for information about quantitative aspects, the number of
requests for information about qualitative aspects gradually raised from the first to the last
problem and (b) explanations of qualitative aspects were commonly more extensive than
explanations of quantitative aspects.

Together, the results of the empirical study as well as the results of the simulation study
suggest that qualitative problem representations form not only a good starting point for the
subsequent construction of quantitative problem representations during problem solving (e.g.,
Chi, Feltovich & Glaser, 1981; Larkin, 1983; Ploetzner, 1994) but also a beneficial starting
point for learning quantitative problem representations.

The results also suggest that the complementarity of knowledge about qualitative and
quantitative aspects of classical mechanics is not a symmetric complementarity. While
knowledge of qualitative physics seems to encode a rather expanded and related set of
qualitative aspects, knowledge about quantitative physics seems to encode a rather limited and
only weakly related set of quantitative aspects. Thus, from an instructional point of view,
knowledge about quantitative aspects complements knowledge about qualitative aspects rather
than the other way round.

Though by means of the cognitive model it was possible to roughly reconstruct the findings
of the experimental study, the model is nevertheless based on various simplifications or
idealisations. These idealisations address

•  the exchange of information between the problem solvers,

•  the specifity of questions raised during the collaboration,

•  the generality of the explanations exchanged between the problem solvers,

•  the coherence of the explanations exchanged between the problem solvers,

•  the correctness of the explanations exchanged between the problem solvers,

•  the knowledge representation language available to the problem solvers and

•  the number of partners involved in the collaboration.

Each idealisation and how it might be overcome is briefly discussed in the following.

Exchange of information

In its current implementation, the model allows only for non-overlapping problem solving and
asymmetric exchange of information. Non-overlapping problem solving refers to the constraint
that only one problem solver can be active at a time. Asymmetric exchange of information
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refers to the constraint that a problem solver which attempts to answer a question cannot ask the
other problem solver for further information.

In the empirical study, in contrast, commonly both students were active at a time.
Furthermore, students which were attempting to answer questions very often asked their
partners for further information. In order to allow for a symmetric exchange of information, it is
intended to equip the model in the future with a more flexible communication interpreter based
on a KQML protocol (Knowledge Query and Manipulation Language; Finin, Labrou &
Mayfield, 1997).

Specificity of questions

During collaborative problem solving, the model always begins with the construction of
maximally specific questions by means of deductive self-diagnoses. These questions refer to
problem solving goals which are the ″lowest″ unprovable problem solving goals in a partial
proof tree. Only when no answers to these questions are provided, are new questions
constructed which are ″above″ the ″lowest″ unprovable problem solving goals.

In the empirical study, however, students occasionally began with the construction of
questions which directly referred to a sought quantity. Only when no sufficient answers to these
questions were provided, were more specific questions constructed. By making use of an
additional parameter on the meta-cognitive level, both strategies as well as alternations between
both strategies during problem solving could be simulated by the model.

Generality of explanations

In its current implementation, the model always constructs generalised explanations. As a
consequence, the problem solver which attempts to understand explanations on the basis of its
own pre-knowledge acquires generalised pieces of knowledge. Subsequently, these generalised
pieces of knowledge can be applied to new problems. In the empirical study, however, the
students frequently constructed explanations which were specific to the problems under
consideration. Thus, it was up to the students who received the explanations to successively
generalise the newly acquired pieces of knowledge.

In the model, the construction of problem-specific explanations could be simulated by
means of a minor modification on the meta-cognitive level. The successive generalisation of
specific pieces of knowledge acquired by the problem solver which receives problem-specific
explanations could be simulated by taking advantage of machine learning techniques. The
newly acquired pieces of knowledge could be considered as training examples. Subsequently,
on the basis of an inductive learning mechanism, they would have to be generalised in such a
way that the general pieces of knowledge subsume the training examples (e.g., Michalski,
1983).

Coherence of explanations

Although the model does not only construct complete but also partial explanations, it
nevertheless always constructs coherent explanations. In the empirical study, in contrast, the
students frequently constructed merely fragmentary explanations. To understand and to learn
from fragmentary explanations is possibly much more difficult than to understand and to learn
from coherent explanations.

In some cases, a student who receives fragmentary explanations might nevertheless be able
to understand them. In some cases, fragmentary explanations might lead to further questions in
order to receive clarifying information. In other cases, fragmentary explanations might be
memorised in the hope that later one will be able to take advantage of them. In some cases,
however, fragmentary explanations might completely be ignored, because a student who
receives the explanations might not be able to make any sense of them.
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Correctness of explanations

The simulated problem solvers only comprise correct knowledge about qualitative and
quantitative aspects of classical mechanics. As a consequence, only correct explanations are
constructed and only correct pieces of knowledge are acquired by the problem solver which
receives the explanations.

Humans, however, very often possess incorrect knowledge especially about qualitative
aspects of physics (e.g., Clement, 1982; McCloskey, 1983; for a bibliography see Pfundt &
Duit, 1994). If the simulated problem solvers were to construct explanations on the basis of
incorrect knowledge, these explanations would also be incorrect. As a consequence, in its
current implementation, the simulated problem solver which receives the explanation would
acquire incorrect knowledge.

Even if the simulated problem solver which receives the incorrect explanation were already
to possess the corresponding correct knowledge, it would nevertheless acquire the incorrect
knowledge. In order to overcome this deficiency, the model would have to be equipped with
mechanisms capable of identifying inconsistencies between an explanation and its own pre-
knowledge. The identified inconsistencies could subsequently made use of to oppose an
explanation, for example. Such an opposition could prompt collaboration processes to clarify
which aspects are correct and which are incorrect.

Knowledge representation language

Currently, the simulated problem solvers take advantage of the same knowledge representation
language and the same interpretation mechanisms. This idealisation largely simplifies the
communication between the simulated problem solvers. The information exchanged - at least in
principle - can always be interpreted by both simulated problem solvers. Especially, knowledge
acquired by learning from explanations can straightforwardly be applied to new problems. The
representation languages and interpretation mechanisms used by humans, however, very often
differ from each other.

As a consequence, a human who receives an explanation from another human might (a) be
able to only partially interpret it and (b) interpret it in a completely different way than the
human does who constructed it. Therefore, the human who receives the explanation might ask
for clarifying information, for example. Or the human who constructed the explanation might
realise that he or she has been misunderstood.

The realisation of mutual misunderstandings could subsequently prompt negotiation
processes to clarify the meaning as well as to reach a common understanding of the information
in question (e.g., Baker, 1994). The detailed reconstruction and simulation of the involved
negotiation processes, however, remain serious challenges to research on collaborative problem
solving and learning for the years to come.

Number of partners involved

In its current implementation, the model is restricted to two collaborating problem solvers.
Collaboration, however, frequently involves more than two partners. If more than two simulated
problem solvers were involved, then each individual problem solver would not only require a
(partial) model of the application domain under scrutiny but also adequate models of the
knowledge possessed by its partners, for example.

On the basis of these models, questions can be posed to competent partners and
information can be provided to partners which are in need of them. The construction of models
of the knowledge possessed by one’s partners makes up an inductive learning task of its own. Its
accomplishment could in part be simulated by taking advantage of modelling techniques which
have been developed in the framework of student modelling (e.g., VanLehn, 1988b; Self, 1994).
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CONCLUSIONS

We described a cognitive simulation model of collaborative problem solving and learning. Our
intention was not to present a full-fledged model of how humans mutually exchange
information during collaboration. Instead, our intention was to present two domain-independent
mechanisms which allow for the simulation of (1) constructing questions and (2) learning by
attempting to understand explanations. Both mechanisms were implemented by taking
advantage of meta-programming techniques and are easy to reimplement.

On the basis of the model it was possible to reconstruct the main result of an experimental
study of collaborative problem solving and learning. The qualitative solver gained more from
the quantitative solver than the other way round. In accord with the findings of a discourse
analysis, the model suggests that explanations of qualitative aspects frequently overburden the
receiver of the explanations with new information.

In order to facilitate the acquisition of knowledge about qualitative aspects by the
quantitative solver, the role of a tutor could be assigned to the qualitative solver from time to
time. During tutoring, the foremost goal of the qualitative solver should not be to advance the
solution of a problem but to explicitly teach a small and selected set of qualitative aspects of
classical mechanics to the quantitative solver.

On the one hand, the successful reconstruction of the main results of the experimental
study by the model suggests that the presented mechanisms might indeed be relevant to
collaborative problem solving and learning. On the other hand, we are fully aware of the fact
that the model simulates only a few aspects which might be relevant to collaborative problem
solving and learning. The development of more complete, cognitively adequate and
educationally fruitful simulation models of collaborative problem solving and learning remains
a challenge.

However, we strongly believe that one important aim of research on artificial intelligence
in education is to develop computational methods which can incrementally and flexibly be used
and extended. We hope that the presented mechanisms contribute to this aim.
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