
HAL Id: hal-00257107
https://telearn.hal.science/hal-00257107

Submitted on 18 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Logic-ITA in the classroom: a medium scale
experiment

Kalina Yacef

To cite this version:
Kalina Yacef. The Logic-ITA in the classroom: a medium scale experiment. International Journal of
Artificial Intelligence in Education, 2005, 15, pp.41-62. �hal-00257107�

https://telearn.hal.science/hal-00257107
https://hal.archives-ouvertes.fr

The Logic-ITA in the classroom: a medium scale
experiment

Kalina Yacef. School of Information Technologies, University of Sydney, NSW 2006,
Australia

kalina@it.usyd.edu.au

Abstract. This paper presents the experiment and consequent evaluation of introducing the Logic-ITA in a

second year tertiary undergraduate class. The Logic-ITA is a web-based Intelligent Teaching Assistant
system, aimed at alleviating some of the problems caused by large classes or distance learning. Its domain

of application is the construction of formal proofs in logic. The system acts as an intermediary between
teacher and students: on one hand, it provides students with an environment to practice formal proofs with

feedback and on the other hand it allows teachers to monitor the class's progress and mistakes. It is
complementary in the sense that it does not aim to replace any of the existing interactions between teachers

and students. Since its introduction, over 600 students have used the tool. Evaluation shows a significant
improvement in students' assessment results with an effect size of around 1 sigma.

Keywords. Intelligent teaching assistant, Evaluation of ITS, Student data analysis, web-based ITS

INTRODUCTION

The AIED community has devoted a lot of work over the past four decades to inventing
principles and tools to assist learners, in particular through individualised learning. Whereas

learners have generally been the focus, much less attention has been paid to teachers, who are

generally perceived as the administrative managers of the tutoring system and/or one of the
designers of the system. The approach followed in the work presented here is slightly different.

Rather than solely helping learners, our approach is to also help teachers to teach better and more

efficiently. This is particularly needed when teachers are a scarce resource, such as in classes
with large numbers of students or in distance education. The pedagogical expertise and the face-

to-face interactions they provide are invaluable but there are not enough of them. In this sense,

our work is part of the growing interest in the teacher's role and his/her integration as a target
user in AIED (Jean 2000; Kinshuk 2001; Leroux, Vivet & Brezillon 1996; Van Labeke 1999;

Virvou & Moundridou 2001; Vivet 1992; Yacef 1999; Yacef 2002).
Studies show that students and teachers experience problems induced by large classes

(Habeshaw, Gibbs & Habshaw 1992) and by web-based teaching (Hara & Kling 1999; Pittinsky

2003). Some of the problems identified in the literature are the students' frustration of feeling lost
in the mass, of not receiving appropriate and timely feedback on their work, of feeling isolated.

On the teachers' side, time consuming tasks, poor visibility of students' progress and problems

seem to be dominant. The Logic-ITA is an experiment to try to reinforce the fragile and crucial

relationship between teachers and students in the context of online or large class teaching and

bring them a lot closer together, modelling some aspects of the valuable direct contact that can
occur when the ratio between teachers/ facilitators and students is low.

The Logic-ITA is a web-based Intelligent Teaching Assistant (ITA) system. ITAs are

dedicated both to learners and teachers (Yacef 2002) . Their purpose is to support the educational
or training process in an intelligent way by assisting the teacher in his/her tasks as well as

helping learners to learn. They can take a significant load off the teachers, assist them in tedious

or complex tasks, keep track of the students' results, report problems whilst helping learners to
practice at their own pace in an adapted environment, receiving feedback and tailored exercises.

Assisting the whole learning process and treating the teacher as a target user rather than replacing

him/her is the key philosophy of an ITA. Teachers remain in control of the teaching and are
supported by the ITA.

We wanted to conduct an experiment on a small domain to investigate the benefits an ITA
could bring to large classroom teaching. The domain of application of the Logic-ITA is formal

proofs of propositional logic. The tool was introduced in 2001 at the University of Sydney in an

undergraduate course. Students in 2001, 2002 and 2003 significantly outperformed students in
2000 on various tests that required them to perform logic proofs.

This paper is organised as follows. In the next section we describe the Logic-ITA: after a

summary of its history and the overview of the system, we explain each of its components in
turn. In the following section we present the experiment, describing the student and teacher

population as well as the context in which the system was used. We then report and discuss the

results of the quantitative and qualitative evaluations, before presenting our conclusion.

THE LOGIC-ITA

History of the Logic-ITA

The research motivation behind the creation of the Logic-ITA was to discover ways to
compensate for the low amount of interactions between teachers and students in large classes.

Propositional logic was a good candidate for applying our concept: whilst formal proofs can be

considered amusing once the concept is grasped, reaching that stage can take time and many
trials. Practice is the key to understanding the concept of formal proofs, and answers must be

checked by an expert, such as the lecturer or the tutor
1
. However checking and marking them are

quite tedious and very error prone for a human and, unfortunately, the face-to-face contact is not
what it should be, due to the high volume of students.

Formal logic proofs are taught in a computer science theory course (2
nd

 year undergraduate)

covering formal languages and logic. In 2000, the lecturer in charge at the time and I, who was
about to take over, had observed that many students make common mistakes; hence tutors and

lecturer found themselves repeating the same explanations to every student. The lack of time and

opportunity was making this task very inefficient. Automating some of the teaching team's

1
 In Australia, students have lectures and small problem-solving sessions called tutorials, in groups of up to

20. The person who facilitates these tutorials is called a tutor.

expertise and making it accessible to every student at anytime was the motivation behind the

Logic Tutor (Abraham, Crawford, Lesta, Merceron & Yacef 2001).
With the Logic Tutor, students had access to a substitute tutor, but the teacher had no idea

how the class was progressing. The other direction was missing. One way to partly rectify this

was to follow a teaching assistant model, where the lecturer is in charge of the curriculum
decisions, relies on teaching assistants to help students and also receives feedback from them

about progress, problems and so on.

This is what led to the Logic-ITA. Besides the addition of a student model component and
delivery of tailored exercises, the Logic-ITA comprises the LT-Configurator, a teacher version of

the Logic Tutor, with authoring functionalities such as the configuration of the exercise levels

and the progression of students through these levels, and the LT-Analyser, a database of all
student models, which the teacher can query to find out about the class's results, progress and

problems (Lesta & Yacef 2002).
Its web-based version was released soon after (Abraham & Yacef 2002), as the Unix version

was too constraining for the users. The Logic-ITA obviously requires regular access to the

student models in order to keep the database of the LT-Analyser up to date. In 2001, the only
way to centralise the student models in order to analyse their data was to ask students to use a

server version under their Unix undergraduate account. We used this method during the teaching

weeks and released the independent Windows version during the exam study week. The web
version solved these inconveniences. It brought geographical and time freedom for the students

and the indispensable centralisation of the student models.

Overview

The role of the Logic-ITA is to help students practice as much as possible with feedback and

report to the teacher about the class's stages of learning, problems and so on. Figure 1 illustrates
the various processes involved.

The teacher (right) first sets up the various parameters in the Logic-ITA to define the high-

level curriculum, using the LT-Configurator. S/he can set up, for example, the number and
characteristics of the teaching levels and the criteria for progressing through these levels. S/he

can also add (or delete) exercises to the exercise database. As a result, the exercise database will
be indexed using these criteria.

Then the students use the Logic Tutor. They can either practice on exercises that are tailored

to their needs and suggested by the system, select any existing exercise or create their own
exercise. If they choose a tailored exercise, the system will use the high-level curriculum criteria

combined with the student's history to define training goals. For example, the high level

curriculum, which is defined by the teacher and common to all students, may recommend
exercises using rules A, B or C and a difficulty level d. The current student has used rule A with

no mistake, has a history of problems using rule B and never used rule C. The exercise retrieved

will therefore be more likely to involve the use of rules B and C with a level of difficulty d.
For each student, the history of usage, along with various statistics and a copy of all

exercises attempted is saved in their respective student model. The LT-Analyser then constructs

or updates a database collating all of the student models. The teacher can query this database to
find out how the class is performing, where the main difficulties are and so on.

Fig. 1. Logic-ITA's role as an intermediary between teacher and students.

The teacher can then use this information to adapt the content of his/her lectures and

interactions with the students. S/he may also discover individuals who are not progressing at all
and decide to intervene.

Description of the components

The Logic-ITA comprises of three components: the Logic Tutor, the LT-Configurator and the

LT-Analyser. Let us explain each of these in turn.

Logic Tutor

The Logic Tutor is a Java-based Intelligent Tutoring System (see (Abraham, Crawford, Lesta,

Merceron & Yacef 2001) for an online multimedia article). It allows students to build formal
proofs in propositional logic whilst receiving step-by-step, contextualised feedback. We should

state that there are already many computer-assisted educational systems for this domain. For

example DEEP THOUGHT (Croy 1999; Croy 1989; Scheines & Sieg 1994) or the CPT
(Scheines & Sieg 1994) are two systems with different styles of interfaces. Studies suggest that

interfaces supporting backward construction of proofs as well as forward construction are more

efficient. In the Logic Tutor, we kept the same style as the one used in previous years for the
course, i.e. a conventional one allowing only forward construction of proofs. The reason behind

this is that our aim was to design an Intelligent Teaching Assistant system and then evaluate its
usefulness using the previous year as a control group. It would have been more difficult to

interpret results if we had changed the style of the interface.

There are often many ways to prove an argument valid. The important aspect is that the
reasoning must be sound. The actual path followed is not important, as long as each step is valid.

In this regard, our approach is less sophisticated than one such as Model-Tracing (Anderson,

Corbett, Koedinger & Pelletier 1995), which identifies the student's reasoning by checking
his/her answers against predetermined solutions. The Logic Tutor instead assesses the validity of

each step on the fly, but not its appropriateness . During the exercise, the system can only assess

whether the line entered by the student is logically valid, and whether or not the conclusion was

reached but does not know how far the conclusion is. However, once the exercise is finished, it

can then evaluate whether all the steps were actually useful. This has two consequences on the
evaluation of the student and on the feedback provided. The feedback provided to the student is

only related to the validity of the current step, not whether the step is moving towards the

solution or not. For example, the Logic Tutor would not give a feedback such as “the step you
entered is valid but it is not going to be of any use in reaching the conclusion”. This means

students have total freedom in the reasoning they choose to follow. The performance of a student

is calculated in terms of whether or not the conclusion was finally reached, whether or not
mistakes were made along the way and whether or not useless steps were entered.

In a nutshell, the underlying principles in the Logic Tutor are that:

- immediate feedback facilitates the learning process (Anderson, Corbett, Koedinger &
Pelletier 1995; Mark & Greer 1995).

- scrutinising one's student model enhances learning (Kay 2000). Students, at any time,
can consult the data saved in their student model, reflecting on their past mistakes and

consult general statistics about their results.

- students are in control of what they want to practice. Whilst the system can suggest
exercises that are adapted to their needs, students can always choose to create their own

exercise (that they may have taken from a book for example), or select an exercise in the

database that will make them practice a particular rule of their choice.
- the curriculum is based on MOST, a model that is described later in the paper.

Interface and system behaviour. Figure 2 shows a screen shot of the interface. In an
exercise, the student is given a set of premises, i.e. a set of well-formed formulae (wff) of

propositional logic, and exactly one wff (the conclusion). The set of premises may be empty, in

which case the conclusion, if proven, is a tautology. The exercise then consists of deriving the
conclusion from the premises, step-by-step, using laws of equivalence and rules of inference (we

will refer to both of these as rules for the rest of this paper). For each step, the student must enter

a formula, choose, from a pre-defined pop-up menu, the rule used to derive this formula from
one or more previous line(s), the references of those previous lines, and the premises the formula

relies on. For example in Figure 2, at line 4, the student would have derived the formula (B&C),

using the rule “Disjunctive Syllogism” using the formulae of lines 0 and 3. Because lines 0 and 3
rely respectively on premises {0} and {1,2} (as can be seen in the first column of the screen),

line 4 therefore relies on premises {0,1,2}.
After each line is entered, the system checks the validity of the formula entered, following a

principle of cascading mistakes. It first checks its syntactical validity (right type of data, syntax

of the formula) then its logical validity. In the latter, the formula, the rule, the references and
premises entered must all be consistent. If not, then the system checks whether altering just one

could be valid. If this is the case, the system will use this substitution to provide hints to the

student. For example, suppose the line entered is invalid as such but by changing the rule from
Modus Ponens to Modus Tollens the line becomes valid. The hint would then be to try applying

Modus Tollens. If this is not the case, then the system looks up the database of common mistakes

and tries to match the line with a common mistake. As these come with remedial hints, the
student receives the corresponding feedback. For example a common mistake is to apply

Simplification before Commutation to derive C from (B&C). The common mistake has an

associated feedback and the student reads “This was an invalid application of Simplification

(Simp). Applying Simplification to (B&C) only lets you deduce the left hand side: B. Try to use

Commutation first”.

Fig. 2. Screen shot during an exercise.

Fig. 3. Browsing of mistakes in past exercises.

Architecture of the Logic Tutor. The Logic Tutor has a classical internal architecture
involving an expert module, a pedagogical module, student models and interface. The expert

module contains the expertise of the system in logic. It assesses each step on the fly and produces

corresponding feedback when errors occur. The pedagogical module is the system's engine. It
contains the high-level rules for sequencing exercise training objectives according to the student

model data and then suggests appropriate exercises that the student is free to choose.

Fig. 4 a and b. Two screen shots of the statistics window.

We will now describe the student model data, as it forms the input to the LT-Analyser.

Student model data. The Logic Tutor creates and maintains a student model for each user. In

effect, it is a mix of overlay and error models, but it actually records all the attempted exercises,

along with all the mistakes made. The student can browse through their past questions and view
their past mistakes (via the right bottom button on Figure 2, or via the Question menu). A sample

of screen shot is show below in Figure 3. The student model also stores the student's current

level, the performance obtained for each exercise and basic student information.

Fig. 5. A third screen shot of the statistics window.

Via the Statistics menu, the student can also access general statistics about his/her usage of

the Logic Tutor. This is illustrated in Figure 4 and Figure 5.
The statistics window also tells the student which was the hardest question completed, and

which question gave him/her the most difficulty.

LT-Configurator

The LT-Configurator is an administrative version of the Logic Tutor comprising of a curriculum

sequencing authoring tool and an exercise management tool. The high-level curriculum is

defined through sets and groups of rules, levels of difficulties, and criteria for students to
progress from one level to the next (following the model MOST which is defined in the next

section). This level is used to classify exercises and will be used by the Logic Tutor to select

tailored exercises, with finer grain of training objectives being decided on–the-fly. The Logic
Tutor first delimits a set of exercises matching the level, the number of steps and the potential

rules. This set contains only exercises not yet attempted by the student. Each of these exercises
is given a weighting, equal to the average weight of the rules in the exercise. The rules are given

weights according to the student model data. The weight of a rule is determined by the ratio of

correct to incorrect uses of that rule by the particular student. The formula used to calculate this
is as follows:

Rule weighting = (TUI – TUC)

(TUC is equal to the number of times the rule has been used correctly and
TUI is equal to the number of times the rule has been used incorrectly)

Where a rule has never been used, it is arbitrarily assigned a weight of 3. This means that
the Logic Tutor will try to select exercises which require the unused rule in preference to

exercises which require rules that the user has not repeatedly used incorrectly (“Repeatedly” here

means incorrectly using the rule at least 3 more times than the number of correct usages of that
rule.) However, if a rule has been used incorrectly a significant number of times, then the Logic

Tutor will give preference to questions containing that rule over questions that contain an unused
rule. The exercise obtaining the higher average weight will be selected for the student. For

example, if a student is at level 2 and has made repeated mistakes with, say, the Modus Tollens

and Addition rules, an exercise using these two rules is more likely to be selected next.
Naturally, students always have the freedom to do any exercise they like, regardless of the

difficulty.

LT-Analyser

The LT-Analyser collates all the student information in a database that the teacher can query and

visualise graphically. The student models, all centralized in one place on the server, contain the
history of all exercises attempted and mistakes made. The LT-Analyser scans all the student

models and builds a database collating all that information. Basically the database contains a

table with the details of each mistake made for each question for each student, a table with level
information for each question, a table containing each student's performance for each question

attempted, a table with the rules used correctly by each student, a table with the count of logins

and another with the student levels.
The database is in Microsoft Access and is connected to Microsoft Excel. The teacher has

then the choice of querying the database with either software and to visualise graphics in MS
Excel. Examples of queries and charts are shown in Figure 6: breakdown per rule of incorrect

and correct usage (top left window), associated bar graph showing the proportion of mistakes per

rule (bottom left window), breakdown of type of mistakes for each rule (right top window), and
breakdown of mistakes for one particular rule (right bottom chart, for the rule Indirect Proof).

Other common queries are the exercises producing the most mistakes, or the average

performance for a particular exercise.

Fig. 6. Various graphs and queries displaying students' results.

A word about the underlying model MOST

The underlying model of learning in the Logic-ITA is based on MOST, a Model for Operational
Skill Training (Yacef 1999) . It was previously used in the prototype of an ITA for Air Traffic

Control training. Cognitive Science provides a number of theories each giving an insight into a

particular aspect of skill acquisition and utilisation. Some focus on how a particular skill is
developed, others on the range of skills exhibited in human performance, yet others on what

characterises expert behaviour or on how expertise takes place and so on. MOST takes into

account major cognitive theories and suggests simple principles to regulate the training
objectives. In short, MOST regulates the type of situations (exercises or part of exercises) that

the learner faces and adapts the workload to the current level of skill acquisition. These two

elements compose the context in which learners will practice their skills. MOST recognizes two
important steps in the learning process: the creation of situation patterns and the development of

automation.

- Situation patterns: Sweller (Sweller 1993) and Boy (Boy 1991) draw attention to the notion

of situation, which is very important in the development of automaticity. Situation patterns
(Boy 1991), also called patterns (Rasmussen 1983) or schemes (Sweller 1993), are

situational structures composed of highly compiled knowledge and are stored in the long-

term memory. They are the result of a long period of learning on similar situations, and are
organised towards a goal. Situation patterns become more complex, dynamic and numerous

as expertise develops. They reduce the amount of information dealt with in short-term

memory and allow faster processing of information.
- Automation: Fitts and Posner (Fitts & Posner 1967) and Anderson (Anderson 1983)

distinguish several learning phases for each skill: the cognitive, associative and autonomous

phases (or declarative, knowledge compilation, procedural in Anderson's model). These
models explain, in a detailed way, the automation of a skill (ie the attainment of the last

phase). Whilst these models were designed for skills that can be automated (such as making
additions), the same principles can be applied to those more complex and risky that cannot

be fully automated (such as air traffic control, or driving a car).

According to MOST, the learner must first practice in various situations that require the

particular skill. This practice must first be carried out at a slow rate so that the learner can build

appropriate situation patterns without being overwhelmed. When the performance measures
indicate that the learner is doing well, and is fast and efficient, it is assumed that the step of

building adequate situational patterns is reached. The workload then increases progressively,

often by introducing other tasks, requiring different skills, so as to challenge the learner without
overwhelming him/her. This is the stage where automation develops. The performance measures

give an indication whether automation is taking place: a constant good level of performance is a

sign that it is occurring. If there is a significant drop in performance, MOST reduces the
workload.

MOST was primarily designed for operational skills, which are defined as the use of

declarative and procedural knowledge in a timely and efficient manner to meet a particular goal
or a set of constraints. They are the skills that allow people to deal with unseen situations and

problems. Naturally, the domain of formal proofs is much simpler and better defined than that of

Air Traffic Control. But it retains the facts that (i) students are not required to automate the
conduction of formal proofs and (ii) they need to assimilate the underlying process of conducting

proofs as opposed to learning about specific rules. In fact the rules themselves do not matter that
much and if they were changed for another set of complete rules, the student should still be able

to conduct the proof. A much simpler version of MOST is integrated in the Logic-ITA. Skills and

tasks have been reduced to the knowledge of how to apply rules and the ability of solving
exercises using minimal steps. As we will see, situations are described here in terms of the set of

rules used in the proof and the workload is defined in terms of number of steps and the variety

and complexity of rules required in the proof.

EXPERIMENT

The aim of this experiment was to investigate whether an intelligent teaching assistant could help

teachers teach better and learners learn better. We will describe how teacher and students used
each component of the Logic-ITA and present the findings of our evaluation.

Population and description of the teaching context

The Logic-ITA was introduced in class in 2001, in an undergraduate course entitled ‘Languages

and Logic' at the School of Information Technologies, University of Sydney. The course
familiarizes 2nd year undergraduate students with important theoretical models underlying

computer science: formal languages (automata, grammars, parsing) and then propositional and

predicate logic. It is one of the most theoretical undergraduate courses offered in the school and
unfortunately many of our computer science students struggle with theory. Hence practice is not

only useful but also fundamental for them to grasp the concepts. The course includes

programming assignments and practical exercises. However the timeframe is quite short: 2 hours
of lectures and 1 hour of tutorial per week, over 13 weeks. The actual logic part is taught over 5

weeks, i.e. 10 hours of lectures and 5 hours of tutorial plus homework. Formal proofs require

practice to reach a stage where their mechanism is well understood. In the past, we observed that
the face-to-face contact time was not sufficient to provide students with good and sufficient

feedback. Only self-disciplined students sufficiently prepared their homework for their tutorial

and received the feedback they needed. As of 2001, the Logic-ITA was particularly useful to the
students as it allowed them to practice on their own and to receive immediate feedback. It can be

assumed that the same proportion of students prepared themselves for the tutorials, but those who
did not still had the chance to do so before the exam.

The control group is the 2000 class, who did not use the Logic Tutor. Students had the same

amount of contact times with their lecturer and tutor, and followed the same curriculum for that
unit for the parts that we assessed. 431 students sat the final exam.

In the 2001 class, 390 students sat the final exam. They used a Unix version of the Logic

Tutor during teaching time (and not the Windows version because then student data would be
stored locally and using the LT-Analyser would be impossible) but we released the standalone

Windows version during exam preparation time.

In the 2002 and 2003 classes, respectively 245 students
2
 and 132 students

3
 sat the final

exam. These students used the web-based Logic Tutor, in a more extensive manner than the

previous year, because of an extra assignment on the Logic Tutor from 2002 and probably also

because of the more convenient aspect of a web-based system.
In terms of prior knowledge, the prerequisites for the course remained the same throughout

these four years: students had to have completed a discrete maths course or equivalent and a first

year programming course.
Finally, there was a change of lecturer from 2001. I personally took over the course in 2001.

However, I was partially involved in 2000 and, apart from the Logic Tutor, I used similar

2
 The drop in numbers in 2002 is due to the fact that the School curriculum was redesigned and more

courses were offered to second year students in 2002. This can also mean that students who were enrolled
in the course were on average more motivated, given that they had the choice.
3
 The additional drop in 2003 was due to the general and worldwide downturn in numbers of students

undertaking tertiary IT studies.

teaching methods and materials as my predecessor, who was involved in the early stage of the

Logic Tutor and with whom I stayed in close contact.

Usage of the Logic-ITA

LT- Configurator

In effect, the curriculum we designed recommended that students first practice on short exercises

involving laws of equivalence or simple rules of inference (ie not Indirect Proof (IP) or
Conditional Proof (CP), which both involve addition and deletion of premises), without yet

mixing the two categories; then on a mix of these two sets; and finally on any rule or law

including IP and CP. Throughout these stages, a pacing of the difficulty is made by setting limits
on the length of the exercises (ie the number of lines in a possible solution) and the number of

rules they involve. The longer the proof needs to be, the more vision is required. This pacing is

based on MOST, where the situations are described in terms of rules involved in the proof, and
where the workload is related to the variety of these rules and the number of steps involved in the

proof.

The reason behind the initial separation of equivalence laws and inference rules is that they
are of different types and uses. The former come from logical equivalences, therefore can be

used to substitute any subpart of a wff (for example, in the wff ((A&B)‡C), one can derive

((B&A)‡C) using the law of commutativity). Rules of inference come from logical inferences.
They should only be applied to a whole formula (for example, the Simplification rule says that

one can derive A from (A&B), but, in the wff ((A&B)‡C), it is not logically valid to derive

(A‡C)). Hence separating the two allows time for students to focus on one same type of rules in
one exercise.

The levels of difficulty are summarised in Table 1. Level 1 involves very easy, short

exercises using either laws of equivalence: or simple rules of inference. At level 2, students start
working on exercises with a mix of laws and rules, and possibly slightly longer exercises. At

level 3 they keep working with the same rules but on more difficult exercises. Two rules of
inference are left to a later stage because they are much more complex to understand as they

involve adding and then removing premises (ie making hypotheses and arriving at a deduction or

at a contradiction): the Conditional Proof (CP) and the Indirect Proof (IP). These are left for level
4 onwards. The difference between levels 4 and 5 is the length of the proof.

The progression through these levels is summarised in Table 2. The performance level ‘3'

refers to the completion of an exercise, with or without useless steps or mistakes along the way.
That is, if the student manages to find a solution but made some mistakes or useless steps, the

performance will be 3. The third column indicates the minimal number of questions they must

complete from the current level, with at least the given performance. The last column specifies
that the student must have used correctly the specified rules. For example, a student may

progress from level 4 to 5 if s/he has completed at least 3 level 4-exercises (with or without

mistakes and useless steps) and used correctly the CP and IP rules at least once each.

Table 1

Levels in the curriculum

1 Laws of equivalence OR simple rules of inference,

less than 6 lines, less than 4 rules in each exercise

2 Laws of equivalence AND simple rules of inference,
less than 7 lines, less than 7 rules in each exercise

3 Laws of equivalence AND simple rules of inference,

less than 15 lines and 15 rules in each exercise

4 Any rule, including CP and IP,
less than 8 steps and 8 rules in each exercise

5 Any rule, more than 8 rules and steps

Table 2

Level progression criteria

Min performance Nb questions Rules that must have been used correctly

Level 1->2 3 3

Level 2->3 3 5

Level 3->4 3 4

Level 4->5 3 3 CP and IP

In retrospect, the progression we defined was too slow. We could have made the number of

questions at each level of 2 (and maintained the same performance). In fact a small proportion of

students progressed to the higher levels (10% only). However, although the level is used by the
system to retrieve an exercise if the student elects to be suggested one, the impact of this is

tempered by the fact that students have the freedom to select or create any exercise, regardless of

the difficulty. Note that the criteria values shown in
Table 1 and Table 2 can be changed via the LT-Configurator.

Logic Tutor

The tool was made available and demonstrated to the students during the first lecture on logic, in

2001 (Unix version), 2002 and 2003 (web-based version). In all three years, students had to

submit their homework and their assignments from the Logic Tutor. This was not only a way to
enforce its use but also had the advantage of significantly reducing marking time and marking

errors.

It was interesting to witness that there were a small handful of students complaining that the
system was “not functioning correctly” when in fact they were repetitively trying to force the

system to accept their mistakes, disregarding the system's feedback. From a computer design
point of view, this obviously raised the question that the interface was not appropriate for

everyone and could be improved. But more interestingly, from a teaching point of view, it

highlighted the fact that students can have deep misconceptions and can be totally oblivious of
them, even when they are confronted with evidence to the contrary. The benefit we saw was that

these cases were brought up to a tutor or to the lecturer (either because the student would

“complain” or because his/her pen rectification would stand out on the print out). So the remedial

discussion would take place with the lecturer or tutor being aware of this ingrained

misunderstanding. This also highlights the fact that some students need human feedback and not
only computerised ones, and, from our point of view, that the interface could be improved.

Naturally, students were warned that information about their interactions would be stored on

the server and would be used for personalization and teaching purposes. Students actually have
access to that information, stored in their user model, and can access it at anytime for reflection

purposes. No one objected.

LT-Analyser

The LT-Analyser was used in two ways. First, it was consulted during the course of the teaching
semester, to find out how the class was going and adjust as much as possible the content of the

lectures to the current class. Second, it was queried between two semesters of teaching, to find

out information that could help in designing the next course in a better way and to be more
proactive about students' common difficulties.

Use during the teaching period. Regularly throughout the period where students used the
Logic Tutor, and in particular prior to lectures, I consulted the student database, updated with the

most recent students' user models. Through SQL queries and diagrams, I queried the database

with the purpose of identifying the most common mistakes and the logic rules causing the most
problems giving me a general feeling of how well the class is going. Only class-wide and tutorial

group-wide queries were made. I did not make queries to isolate individual students who had

problems.
Mistakes analysis: In 2002, out of 2746 mistakes in total the most frequent mistake was the

Premise set incorrect, in particular with the Indirect Proof or Conditional Proof rules. These

were also two very frequently misused rules (71% and 59% respectively). This is due to the fact
that they are the most difficult to grasp because they both require the assumption of an additional

premise (for example the negation of the conclusion for Indirect Proof, aka proof by

contradiction) and then the removal of this premise to reach the conclusion. The highest absolute
number of mistakes were with Modus Ponens (335) and Simplification (273). However they were

also the most frequently used rule. In the end they were used incorrectly 30% and 26 % of the
time.

Analysis of exercises: not surprisingly, the exercises that produced the most mistakes were

the ones involving Indirect and Conditional proofs. However, they were also attempted by a
larger proportion of students. Some of these exercises were actually part of homework and

assignment.

Student levels: Status on students' progress: more than half the class stayed on level 1 (this
included students who only logged in once or twice), then 20% moved to level 2 and 10%

reached level 3, 4 and 5. The number of times each student logged in the system ranged from 0

to16.
These findings were mostly useful for the revision lectures. Since lecture time does not

allow reviewing everything, I was able to focus on the mistakes made the most frequently and

the rules used the most incorrectly. In lectures, I re-explained these concepts, with relevant and
concrete examples of mistakes made by the students in the past weeks. This occurred in the

context of exercises in where students had to participate. The students' response (an even greater

attention than usual!) was a good indicator of the accuracy of the focus.

Use of previous courses' data to improve subsequent courses.

Further analysis: Subsequent analysis was made after the end of the semester, using other
techniques to extract more information from the student data. In particular we used association

rule to find out the mistakes that often occur together (Merceron & Yacef 2003). These exposed

that the concept itself of formal proofs (especially its “formal” side, ie that each column must
contain specific information and the way that information is calculated) caused difficulties.

Redesign teaching: The data from 2002 suggested some changes for 2003. The concept

itself of formal proofs, which seems to be more difficult to grasp, was introduced earlier. Also,
the fundamental difference between laws of equivalence and rules of inference was much more

emphasized. In previous years, students learned about all the laws and rules before attacking the
concept of formal proofs. In 2003, the concept of formal proofs was introduced just after the laws

of equivalence, a second time after the simple rules of inference, a third time after complex rules

of inference, and again a fourth time for proving tautologies.
Exploit mistakes from previous years: Students were given counter-examples based on

common mistakes of previous years, not only in lectures but also in tutorial exercises, to engage

them actively in finding the mistakes. They were given proof fragments with invalid steps
(students were aware that they are invalid) and the aim of the exercise consisted in finding the

mistakes and explaining why. They were told that the samples came from past years' data.

EVALUATION

We are presenting here the quantitative evaluation results of the impact of the Logic-ITA on
student performance. Then we will present some qualitative results, in terms of student point of

view and teacher point of view.

Evaluation of the learning impact

Assessment used

We used, within the normal assessment of the course, the assessment items that were only
concerned with logic formal proofs. In all four years, we gave similar homework as well as a

similar exam question on formal proofs. The homework consisted of logic proofs, given the
premises and the conclusion. The exam question was a logic proof to complete with some parts

of the proof provided, and the student had to fill in the missing parts. As for the assignment (from

2002), students were given an argument in plain English and had to prove or disprove its validity.
In addition to the actual proof, students therefore had to translate an English argument into a

formal logic one.

In 2000, all assessments were paper-pen. From 2001, the homework and assignment had to
be done through the Logic Tutor whilst of course the exam question remained paper pen. Hence

the exam question is our most important and unbiased indicator, as homework answers were

“filtered” by the Logic Tutor, whereas the exam question was not.

Results

We compared the results over these assessments for the 2003 and 2002 classes (who used the
web-based Logic Tutor), the 2001 class (who used the Unix Logic Tutor), and the 2000 class

(who did not use the tool at all). Table 3 shows various measures of dispersion for these tests,

over the three years. The first line shows the mean and, in brackets, the standard deviation. The
second line shows the number of scores and the median. Marks are brought to the same scale

throughout the 3 years: homework scores are out of 3, exam question out of 7 and the assignment
is out of 5. Students who did not sit the exam or did not hand in their homework are not counted.

Table 3

Measures of dispersion

2000 2001 2002 2003

Homework (3) 1.9 (0.9)

N=242, Med=2

2.3 (0.9)

N= 244, Med=3

2.9 (0.4)

N=184, Med=3

2.4 (0.7)

N=106, Med=3

Assignment (5) N/A N/A 4.8 (0.5) 4.9 (0.3)

Exam question (7) 3.3 (1.6)
N=431, Med=3

4.2 (2.7)
N=390, Med=5

4.7 (2.8)
N=245, Med=6

5.2 (2.4)
N=132, Med=7

We can see that the means and median scores increase each year. The average marks for

homework and assignment from 2001, not surprisingly, are very high, strongly due to the fact
that the Logic Tutor takes care of the mistakes before the submission, so that makes the results

not very informative. However there has been a clear increase in the exam question on logic.
Table 4 shows the results of ANOVA on these exam question scores for each year where

the Logic-ITA was used versus the control year 2000. The last column shows the effect size

using the Glass's delta, as it is more commonly used in educational studies. It is computed as the
difference between the mean scores of experimental and control groups, divided by the standard

deviation of the control group. Effect size provides a common scale that standardizes the various

measurements used in different studies. Whilst Bloom reports studies showing that human
tutoring can yield an effect size of 2 sigmas (i.e. standard deviations of the control group),

Kulik's meta-analytic study (Kulik 1994) of computer assisted instruction reports that, over a

wide range of instructional areas and student levels, a gain of approximately .35-sigma is
achieved. Koedinger, Anderson and colleagues have also shown in various evaluation studies

that their cognitive tutors reached a 1 sigma effect (Anderson, Corbett, Koedinger & Pelletier

1995; Koedinger & Anderson 1997) if not more (Corbett 2001).
Results in these two tables show that there was a steady increase each year in the exam

results and hence in the effect size and ANOVA showed a statistic difference between the results

(p<0.001). The 2001 students scored higher than 2000 students, with an effect size of 0.6 sigma.
In 2002 students scored higher again, reaching an effect size of 0.9 sigma over the control group

and in 2003 the effect size was 1.2.

Table 4

Analysis of variance and effect size

Comparison of exam question results F value (p<0.001) Effect size

2000-2001 F=4.9 0.6

2000-2002 F=69.9 0.9

2000-2003 F=114.2 1.2

We also looked at the comparison of results in another exam question, which remained

similar throughout the years (except for an additional sub-question in 2003), and which is related
to a completely different part of the course. It showed that the results were similar from year to

year: 10.5 (in 2000), 9.5 (in 2001), 10.3 (in 2002) and 8.5 (in 2003) out of 15. The change of

lecturer in 2001 and the restructure of the school curriculum did not seem to have a significant
impact on this part of the course.

We were particularly interested in the regular increase in effect size. There seems to be a

snowball effect. In each year, the teaching was improved in light of the findings in the student
data and this seems to reflect on student performance at the exam.

Looking at individual comparison from each year with the control year, an average of 80%

of students in 2003, 65% of students in 2002 and 50% in 2001 exceeded the levels of
achievement attained by only 10% of students in 2000. This indicates to us that students were

better prepared. If nothing else, the Logic-ITA gave students the opportunity to practice with

feedback more often, which means they were more familiar with the process of solving formal
proofs prior to sitting the exam. This is also indicated by the results shown in Table 5 where

results are shown according to the number of exercises they attempted. The right column

indicates the mean, the standard deviation in parentheses and the number of scores.

Table 5

Breakdown of exam question results per student activity
on the Logic Tutor (year 2002)

Activity on the Logic Tutor Results

More than 10 exercises 5.4 (2.5), N=36

6 to 9 exercises 5.1 (2.7), N=48

3 to 5 exercises 5.0 (2.8), N=56

0 to 2 exercises 4.2 (2.9), N=-105

As we can see, students who used the tool the most received higher marks. However, we

cannot ascertain whether this slight increase is due to the use of the Logic-ITA or simply to the
likeliness that the better students, who would do well anyway, are also the ones that use the

Logic Tutor because they are generally more motivated. The number of exercises attempted by

the students ranged between 0 and 32 and averaged 8. There is a large proportion of students who
only did 0, 1 or 2 exercises. A contributing factor would be the fact that many students chose to

do their homework in pairs (hence only one person is logged in).

The aim of the experiment was first to implement a tutoring system which feeds back
information to the lecturer and then to investigate whether this tutoring system, combined with

the greater information that the lecturer would gain about the current and previous classes, would

improve learning and teaching. These results are consistent with this idea. Over the years of use

of the Logic-ITA, the overall student performance has increased each year.
There are other possible explanations for this increase. For instance the change in student

population (especially from 2001 to 2002 where students had a slightly larger choice of subjects)

as well as the change of lecturer from the original control group (2000) can also be seen as
contributing factors for this improvement. However, as mentioned earlier in this section, the fact

that the results in other parts of the course remained similar does not support this alternative

explanation.
It is important to note that the evaluation reflects on the whole usage of the Logic-ITA,

without highlighting which proportion is due to the Logic Tutor itself, and which proportion is

due to the monitoring process, leading to the teacher's greater awareness and understanding of
the class's difficulties. This tool invites the teacher to spend more time thinking about teaching

and learning issues, during and after teaching semesters. Hence the teaching is bound to evolve
throughout the years, hopefully leading to better learning for the students. We cannot identify

how much of this is due to the Logic-ITA, but we can say that the Logic-ITA supports this

reflection process.

Qualitative evaluation

The Logic Tutor

We conducted a student evaluation survey on a voluntary basis with students, teachers and tutors.

In July 2001, before the tool was used, 9 people participated in a survey. The population

consisted of 1 teacher (the former teacher for the course), 4 tutors and 4 students. These tutors
and students took the course in earlier years. The survey related to various aspects of the Logic

Tutor (interface, help, usability, usefulness) and allowed free comments. In November 2001 and

in November 2002, the population surveyed consisted exclusively of students who attended the
course and used the tool. The survey was done in the context of general course surveys that

students are encouraged to fill in at the end of the teaching semester (so although the survey was
of voluntary nature, it was not specific to the Logic Tutor). Unfortunately not many students

usually take the time to fill out the course surveys (here only 5-10% of students took the time to

complete it). The survey in 2001 had similar questions to the pre-survey whereas in 2002
students were only asked to give their opinion on the usefulness of the tool. Those who wanted to

add comments could do so in a free text section. Unfortunately the course survey for 2003 was

not conducted.
In 2001 the feedback from the students was positive apart from the fact that they would

have liked the freedom of using the tool from various locations. In 2002, this downside had

disappeared and students thought the tool helped them understand logic proofs better.
As we can see in Table 6, students make clear that they like the opportunity to practice with

a system as long as it is not their primary source of learning. The last comment on the low

satisfaction in first time use links with a result we found using symbolic data analysis. Students
seem to be slow at using the system, but once they do at least 2 exercises, they are likely to do

more. This highlights an initial barrier of use.

Table 6

Extracts from students' comments

Is it useful in learning propositional logic?
- “Excellent to learn from, since the program offers helpful suggestions about what action to take.”

- “Computers no substitute for human teachers!”
- “Yes. It forces the students to construct correct proofs.”

Would you like to see this type of tool used more in courses?
- “Sure! Please, it would definitely help the helpless people like me.”
- “Yes. Self learning and practice is good.”

- “Yes – as an extra resource the students can use…but not as the primary source of their
learning.”

What is good?
- Statistics and mistake history - help identify problems.

- Question database.
- Can do as many questions as we want and can get important feedback on them.
- Feedback - is context sensitive and hints are very appropriate.

- Forces students to construct correct proofs without missing any steps.

What is bad? What needs to be improved?

- Usability - Needs to be improved.
- Help files - Need access to help while doing question. Also good if one could print the help pages

out. Also good if there was some help explaining what each of the input fields were (for first time

users).
- Level of satisfaction from using the program is low to begin with.

The LT-Analyser

Here I can only report on my personal experience as the teacher for the course. As explained in
the previous section, I used the LT-Analyser twice a week during the use of the Logic Tutor as

well as analysing student data between semesters. I had saved a number of queries, such as the
breakdown of mistakes per type of mistake and per rule and used the results to adapt the lecture

contents and warn tutors of problem areas to look for. The students' response when I focused on

the major problem areas indicated to me that this was extremely useful. I also found it useful to
be aware of the real common problems rather than guessing what they could be. It also gave me

concrete guidelines to amend the next year course and to design more appropriate material. Much

more detailed analysis was carried out outside teaching time and revealed very interesting
patterns in learning (Merceron & Yacef 2003; Merceron & Yacef 2004).

One drawback of the system was that analysing the data can take time (unless there are just

a repetition of saved queries). This is only a technical problem that can quite easily be solved
with a more powerful and user-friendly analysis software.

Another drawback was also that the experiment was conducted on a small topic, which only

covered 2 weeks of lectures. This means that we could not take full advantage of the teacher
feedback functionality. I could give feedback to the students in the second week, and then during

the revision lecture at the end of the semester. One can imagine that, had the topic been larger

and covering a longer period, the benefits for the teacher would have been greater.

CONCLUSION

The Logic-ITA is an Intelligent Teaching Assistant system in the domain of logic. It aims at
alleviating some of the problems caused by large classes or distance learning, acting as a

complementary intermediary between teacher and students: on one hand it provides students with

an environment to practice formal proofs with immediate feedback and on another hand it allows
teachers to monitor how the class is progressing. It is complementary in the sense that it does not

aim at replacing any of the existing interactions between teachers and students but complement

them. In this sense, it bypasses some of the criticisms that are made about ITSs and ILEs such as
their strong individual tutoring focus (Andriessen & Sandberg 1999; Cumming & McDougall

2000; Laurillard 2002) or the narrowness of their teaching strategies and tactics (du Boulay &
Luckin. 2001). The Logic-ITA is a tool that empowers teachers to do their work better. It only

automates a few teaching tactics (eg provision of immediate feedback) where the teacher is not

able to provide enough of them, due to time and resource constraints, and records for the teacher
the class's activity, mistakes and progress. In the whole teaching and learning process, the roles

of the teacher and students are preserved. The Logic-ITA's role is to service them, without the

goal to take any control of the process.
The interesting part of this study is the combination of an ordinary intelligent tutor with

components for the teacher to assist classroom teaching. We have presented a summary of how

the tool works and conducted an evaluation comprising of four groups: the 2002 and 2003
classes, who used the web-based Logic Tutor, the 2001 class who used the former Unix version

and the 2000 class, who did not used the tool at all. Results were very encouraging and showed

an effect size on students' marks increasing each year from 0.6 to 1.2 in the exam question on
logic.

There are still some functionalities of the Logic-ITA that need to be tested and evaluated. In

particular, the LT-Analyser can be used to identify individual students who are struggling in
order to intervene. We have only performed group monitoring. We plan to carry out individual

monitoring in the next course session. We are also working on an additional layer of intelligent

assistance to mine and visualize the student data. Our aim is that this component will be able to
detect specific or abnormal patterns and alert the teacher about them.

ACKNOWLEDGEMENTS

The author thanks Agathe Merceron, David Abraham, Elisabeth Crawford and Leanna Lesta for
their various contributions to the project. This project was funded by a University of Sydney

Sesqui grant.

REFERENCES

Abraham, D., Crawford, L., Lesta, L., Merceron, A., & Yacef, K. (2001). The Logic Tutor: a Multimedia

Presentation. Interactive Multimedia Electronic Journal of Computer-Enhanced Learning, 3(2).

Abraham, D., & Yacef, K. (2002). Adaptation in the Web-based Logic-ITA. In P. de Bra (Ed.) 2nd

International Conference on Adaptive Hypermedia and Adaptive Web Based Systems (AH2002)
(pp. 456-461). Malaga, Spain, Springer-Verlag.

Anderson, J. R. (1983). The architecture of cognition. London, Harvard University Press.
Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: lessons learned.

The Journal of the Learning Sciences, 4(2), 167-207.
Andriessen, J., & Sandberg, J. (1999). Where is Education Heading and How About AI? International

Journal of Artificial Intelligence in Education, 10, 130-150.
Boy, G. A. (1991). Intelligent Assistant Systems. London: Academic Press.

Corbett, A. T. (2001). Cognitive computer tutors: Solving the two-sigma problem. In M. Bauer, P. J.
Gmytrasiewicz & J. Vassileva (Eds.) User Modeling (UM2001) (pp. 137-147). Sonthofen,

Germany. Berlin: Springer.
Croy, M. (1999). Graphic Interface Design and Deductive Proof Construction. Journal of Computers in

Mathematics and Science Teaching, 18(4), 371-386.
Croy, M. J. (1989). CAI and Empirical Explorations of Deductive Proof Construction. The Computers and

Philosophy Newsletter, 4, 111-127.
Cumming, G., & McDougall, A. (2000). Mainstreaming AIED into Education? International Journal of

Artificial Intelligence in Education, 11, 197-207.
du Boulay, B., & Luckin., R. (2001). Modelling human teaching tactics and strategies for tutoring systems.

International Journal of Artificial Intelligence in Education 12(3), 235-256.
Fitts, P. M., & Posner, M. I. (1967). Human Performance. Belmont, CA: Brooks Cole.

Habeshaw, S., Gibbs, G., & Habshaw, T. (1992). 53 Problems with Large Classes. Making the Best of a
Bad Job. Bristol, Technical & Educational Services.

Hara, N., & Kling, R. (1999). Students' Frustrations with a Web-Based Distance Education Course. First
Monday, 4(12).

Jean, S. (2000). Pépite: un système d'assistance au diagnostic de compétences, PhD, University of Le
Mans, Le Mans.

Kay, J. (2000). Accretion representation for scrutable student modelling. In G. Gauthier, C. Frasson & K.
VanLehn (Eds.) Intelligent Tutoring Systems (ITS'2000) (pp. 514-523). Berlin: Springer-Verlag.

Kinshuk, Tretiakov, A., Hong, H., & Patel, A. (2001). Human Teacher in Intelligent Tutoring System: A
Forgotten Entity! In T. Okamoto et al (Eds.) Advanced Learning Technology: Issues,

Achievements and Challenges. Los Alamitos, CA: IEEE Computer Society.
Koedinger, K. R., & Anderson, J. R. (1997). Intelligent Tutoring Goes to School in the Big City.

International Journal of Artificial Intelligence in Education, 8, 30-43.
Kulik, J. A. (1994). Meta-analytic studies of findings on computer-based instruction. In E. Baker & H.

O'Neil (Eds.) Technology assessment in education and training. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Laurillard, D. (2002). Rethinking University Teaching: A Framework for the Effective Use of Educational
Technology. London: Routledge Flamer.

Leroux, P., Vivet, M., & Brezillon, P. (1996). Cooperation between a Pedagogical Assistant, a Group of
Learners and a Teacher. European Conference on AI in Education (pp. 379-385). Lisbon,

Portugal.
Lesta, L., & Yacef, K. (2002). An Intelligent Teaching-Assistant System for Logic. In S. Cerri & F.

Paraguo (Eds.) International Conference on Intelligent Tutoring Systems (ITS'02) (pp. 421-431).
Biarritz, France. Berlin: Springer-Verlag.

Mark, M. A., & Greer, J. E. (1995). The VCR tutor: Effective Instruction for device operation. The Journal
of the Learning Sciences, 4(2), 209-246.

Merceron, A., & Yacef, K. (2003). A Web-based Tutoring Tool with Mining Facilities to Improve

Learning and Teaching. In F. Verdejo & U. Hoppe (Eds.) 11th International Conference on
Artificial Intelligence in Education (pp. 201-208).Amsterdam: IOS Press.

Merceron, A., & Yacef, K. (2004). Clustering students to help evaluate learning. In J.-P. Courtat, C.
Davarakis & T. Villemur (Eds.) Proceedings of TeL'04 - Technology Enhanced Learning, 18th

IFIP World Computer Congress (pp. 31-42). Toulouse, France. Kluwer Press,
Pittinsky, M. S. (2003). The Wired Tower: Perspectives on the Impact of the Internet on Higher Education.

Englewood Cliffs: Prentice Hall.
Rasmussen, J. (1983). Skills, rules and knowledge : signals, signs and symbols, and other distinctions in

human performance models. IEEE Transactions on Systems, Man and Cybernetics, 3, 257-266.
Scheines, R., & Sieg, W. (1994). Computer environments for proof construction. Interactive Learning

Environments, 4(2), 159-169.
Sweller, J. (1993). Some cognitive processes and their consequences for the organisation and presentation

of information. Australian Journal of Psychology, 45(1), 1-8.
Van Labeke, N. (1999). Prise en compte de l'usager enseignant dans la conception des EIAO, Illustration

dans Calques 3D. PhD dissertation, Universite Henri Poincare, Nancy I, Nancy.
Virvou, M., & Moundridou, M. (2001). Adding an Instructor Modelling Component to the Architecture of

ITS Authoring Tools. International Journal of Artificial Intelligence in Education, 12, 185-211.
Vivet, M. (1992). Uses of ITS: which role for the teacher? In E. Costa (Ed.) New Directions for Intelligent

Tutoring Systems (F91). Berlin, Heidelberg, New York: Springer-Verlag.
Yacef, K. (1999). Vers un assistant tutoriel intelligent pour la formation d'opérateurs de systèmes

complexes. PhD dissertation, University of Paris 5, Paris, France.
Yacef, K. (2002). Intelligent Teaching Assistant Systems. In Kinshuk (Ed.) International Conference on

Computers in Education (ICCE'02) (pp. 136-140). Auckland, New Zealand.

