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Abstract. The goal we pursue in our research is to build a shell for helping
human instructors to develop intelligent teaching-learning systems in a
wide range of domains. We aim to provide a system where a previously
defined architecture can be adapted automatically into a new tutor using a
set of instructor-generated requirements. Trying to provide a sound basis
for this tool, we use a theory of instruction that integrategnitive
processes, instructional eventandinstructional actionswithin a three-

level framework that relates them. In this paper we extract, through the
analysis of both the cognitive theory and the generic architecture, the
requirements of the different components of a tutor and integrate them in
IRIS (IRakaste-lkaste Sistemdeaching-Learning Systema shell for
building teaching-learning systems. Moreover, we embed these
requirements, cognitive principles, and design requisites in a shell in order
that human instructors can follow them easily. Various design issues and
an example of building a tutor for mathematical differentiation using IRIS
are presented.

INTRODUCTION

Research in computer-aided instruction has been varying its focus
according to new trends in the educational and psychological fields.
Ranging from Computer Assisted Instructional systems, to Intelligent
Tutoring —ITSs, and now to Intelligent Learning Environments —ILES,
systems permit successively greater degrees of freedom for the learner.
This evolution has led us to develop new architectures in the area of tutor
modelling, learning, and domain representation.
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Thus, during recent years, while our research group has been working
in the ITS area, our goals have likewise evolved. First, we developed a
generic ITS architecture evaluated with two applications: TUTOR
(Fernandez et al.,, 1993), which focused on conceptual domains, and
INTZA (Gutiérrez, 1994), which focused on conceptual and procedural
domains. At present our goal is to work towards developing a set of tools
valid for building ITSs and ILEs in a wide range of domains (Figure 1).

With the idea of defining computer-based tools for constructing ITSs
supported by a sound theoretical basis, we proposed a cognitive theory of
instruction, the CLAI Model: Cognitive Learning from Automatic
Instruction (Arruarte et al., 1996a), which integrates cognitive processes,
instructional events and instructional actions within a three level
framework. This theory addresses two main aspects of tutoring. On the one
hand it is suitable for integrating into an instructional plan various recent
educational imperatives such as using multiple teaching styles (Srisetamil
& Baker, 1995-1996), generating flexible tutorial responses (Reye, 1995),
and adapting a tutor's performance to changing situations (Van Marcke &
Vedelaar, 1995; Vassileva, 1995a-1995b). On the other hand it is valid for
multiple domains (Khuwaja et al., 1996) involving conceptual and/or
procedural contents.

COGNITIVE THEORY OF INSTRUCTION  GENERIC ARCHITECTURE OF ITS

T

TOOLS FOR B!JILDING ITS

Figure 1. Underlying basis involved in the design of tools for building
ITSs

In this paper, after reviewing different shells developed for building
ITSs, we describe the requirements for the components of a tutor obtained
from a comparative/parallel analysis of a cognitive theory of instruction
(Section 2) and a proven generic architecture (Section 3). These
requirements are integrated inside the Instructional Plan of the generic
architecture in Section 4. In Section 5 we present the IRIS Shell for ITSs,
illustrate the process of constructing an actual ITS using the IRIS Shell,
and present an example of an actual tutor we constructed for mathematical
symbolic differentiation. Finally, in Section 6 we draw some conclusions.
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Shells for building ITSs: A review.

The goal of developing shells for building ITSs has been considered as a
main focus by the ITS community. In this subsection we briefly describe
some of existing systems relevant to our work.

IDE-Interpreter (Russell, 1988) is a planner-based adaptive tutoring
system which automatically generates instructional courses. It uses
knowledge structures produced byDE (Instructional Design
Environment) as knowledge sources to guide the process. IDE (Retssell
al., 1990) is a hypertext-based tool whose aim is to provide assistance to
the designer in creating a course; for this purpose the knowledge
describing the course’s content and structure and the set of rules
corresponding to the instructional method must be supplied. Due to the
great amount of knowledge that must be specified when generating a
course, initial course construction is a complex task for the designer.
Nevertheless once a course is generated, it can be reused or modified.

GTE (Generic Tutoring Environment) defines a formalism for
representing the instructional expertise of experienced human teachers in
terms of instructional tasks, methods and objects (Van Marcke, 1992). The
underlying assumption of GTE is that this knowledge is not specific to any
individual situation, and can be generally re-applied in a variety of
situations or to completely new domairisstructional tasks are the
building blocks of an instructional process; the great majority are very
general (test, teach,...). Anstructional method is a knowledge-based
description of a procedure for carrying out an instructional plan. It includes
context-dependent knowledge in order to execute tasksobjeets are
instructional primitives manipulated directly by the knowledge sources and
the instructional methods. GTE provides a library of instructional tasks,
methods and objects that can be used to author a new teaching strategy. It
collects the knowledge that human teachers use during the instructional
process but lacks a formal theoretical basis. The author argues that existing
theories are so weak that they are largely irrelevant for computational
purposes.

FITS (Framework for ITSs) (lkeda & Mizoguchi, 1994) is a
framework for building ITSs. It is developed to examine what functions
can be realized as a domain-independent framework among those which
are needed in ITSs. Its final goal is to identify those generic instructional
functions and provide a set blilding blocks useful to cover essential
tasks for teaching. Following expert system technologies, each building
block is designed as a domain-independent problem solver for its
corresponding generic task. FITS is totally oriented to knowledge
engineers and does not offer any suitable interface for human teachers who
may be non-experts in the computational area.
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COCA (CO-operative Classroom Assistant) is a system developed to
allow for authoring ITSs. It makes a clear distinction between three types
of knowledge relevant to the design of an ITS (Major & Reichgelt, 1991).
The first type of knowledge concerns the representation of the material to
be taught or domain knowledge representation. COCA uses a simple
object-oriented representation language by which each fragment of domain
knowledge is represented as a frame with a number of user-defined
attributes and attribute values. The second type of knowledgeaching
strategy, concerns the way in which the material is to be taught. Finally,
COCA includes some meta-strategic knowledge to determine the
conditions under which to apply a certain teaching strategy as well as to
revise a teaching strategy in the light of previous results. For representing
both strategic and meta-strategic knowledge COCA uses production rules
that must be constructed by teachers. The difficulty of specifying a large
amount of knowledge with rules is one of the bigger weakness attributed to
COCA (Major, 1995). Trying to solve this problem and using COCA as a
kernel, REEDEM (Reusable Educational Design Environment and
Engineering Methodology) (Major, 1995) offers graphical windows to
assist teachers with the task of authoring.

Regarding most of the shells introduced above, one aspect that
deserves special mention is the difficulty instructional designers find when
they confront the interfaces necessary for developing the different
components of an ITS. First, many instructional designers are non-experts
with computational field; moreover, building even the most simple tutor
requires such a large amount of data that is very hard for the instructor to
specify the system requirements. Another weakness of these shells is that,
although some of them include or observe various pedagogical principles,
none of them incorporates a whole teaching-learning theory.

Many other ITS shells have been and are now being developed, but
they are less relevant for our work. In some of them, for example in the
Eon system (Murray, 1996; 1998), the initial approach is quite different.
Eon has been designed under the assumptions of a user base-line similar to
typical users of commercially available authoring systems for traditional
computer-based teaching. As such, many of the tools supported in standard
CBT authoring systems are included as basic tools in Eon. In other cases,
for example CREAM-Tools (Nkamboet al., 1996), they are focused in
only one of the components associated to the architecture of an ITS. The
main goal of CREAM-Tools is to facilitate instructional designers to
generate curricula
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A PRACTICAL COGNITIVE THEORY OF INSTRUCTION

Advances in psychology of learning, especially in our understanding of
higher-order cognitive processes, have led to a steady evolution in
understanding the teaching-learning process. Instead of viewing the learner
as an agent reacting to the stimuli generated by the teacher, the learner is
considered to be an active participant in the teaching-learning process
(Weinstein et al., 1986). From this learner-centred perspective we
developed a cognitive theory of instruction, the CLAI Model (Arruatte

al.,, 1996a), that integrates issues about human learning, cognitive
processes, and learning strategies together with aspects from teaching
processes. The theory, based mainlyGagneé’'s (Gagnét al, 1988)and
Shuell's (Shuell, 1985)ideas, can be used to guide the practical
development of ITSs. With the same goal of driving automated
instructional design and development, Merrill and the R@search Group
(1996) developed Instructional Transaction Theory, a set of prescriptions
for determining appropriate instructional strategies to enable learners to
acquire instructional goals. As with the CLModel, Merrill's theory is
based on Gagné’s ideas.

The CLAI Model integratesognitive processef@CPs) instructional
eventy(IEs) andinstructional actionglAs) within a three-level framework
that relates them. CPs are the psychological processes or mental activities
that have to happen inside the student in order to achieve learning about a
particular chunk of content. IEs are classes of events that occur in a
learning situation. Each event works by providing the external conditions
of learning. External conditions refer to various ways in which the
instructional events outside the learner activate and support the internal
cognitive processes of learning. Finally, 1As are instances of instructional
activities that the system uses to provide instruction about both specific
contents of the teaching domain and learning strategies.

Gagné (Gagnét al.,1988)made an early attempt to relate learning and
instruction across CPs and IEs and his theory has been shown to provide
an adequate basis for integrating more modern educational practices (Petri
et al, 1987). Gagné's IEs are appropriate for various kinds of learning and
they provide a general framework that must be adapted for each particular
instructional situation (tutorial programs, drill and practice, simulations,
etc.). Figure 2 shows a snapshot of the links relating the levels of CPs and
IEs (two superior levels) adopted in the CLAI Model from the ideas of
Gagne.
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Figure 2 indicates that the three IAsast session session review
Prerequisite reviewandGeneral reviewcan be used indistinctly to refine
the IERetrieval to working memorgand therefore each of them can trigger
the CPRetrieval of items

By using IAs the system provides instruction about both the contents of
the teaching domain and about learning strategies. In this way, the more
completethe set of IAs, the greater the flexibility and power of the system
and, as a result, the possibilities of successful learning increase. So far we
have identified 45 IAs, many of which were integrated and tested in
INTZA (Gutiérrez, 1994). The rest of them were adopted after a deep
analysis of didactic software widely used in the local school environment
by the ORIXE team (Folch, 1993). IAs have been described as objects with
three associated attributes:

* Initiated-by: indicates whether the instructional action can be
initiated by the instructional agent, by the learner, or by either of
them.

¢ |nstructional-event-refined: the instructional event/s that can be
refined using this instructional action.

» Cognitive-process-triggered the cognitive processes that are
eventually triggered by the instructional action. Although this
information can be also obtained from the instructional events, it has
been included in order to provide greater expressivity.

For example, the instructional actioseneral-explanation is
represented in this way:

General explanation

INITIATED-BY: Instructor, Learner

INSTRUCTIONAL-EVENT-REFINED: Presenting the stimulus material, Providing feedback,

Retention and transfer

COGNITIVE-PROCESS-TRIGGERED: Selective perception of the patterns, Reinforcement,

Generalizing performance

Most of the identified IAs can be initiated either by the system or by
the learner. Thus following her own preferences, the learner can use an
individualized learning strategy. In order to successfully trigger the
adequate CPs, these strategies can be initiated by a wide variety of 1As
integrated into the ITS. Nevertheless, we think it is necessary to extend this

set of possibilities by providing the learner with a set of additional learning

* The ruled boxes and dashed lines of Figure 2 indicate graphically that the instructional
actiongeneral-explanatiorran be used to initiate either the instructional event

presenting the stimulus materia, providing feedb@aletention and transfeand

therefore, can trigger the cognitive processdsctive perception of the patterns,
reinforcementr generalizing performance.
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techniques. These techniques, nasiggported actiongsan be initiated by

the learner at any point of the teaching-learning procBede-book,
Summary window, Schema window and Underlining* take the four
supported actions that are widely recognised in the educational literature
(Hernandez & Garcia, 1991) as useful learning supports. Their goal is to
provide support for learning viscaffolding(Solowayet al, 1992), i.e.,
“providing a set of mechanisms that enable a student to perform a task,
but which fade away as the student becomes more expdsihg
instruction, we try to encourage the student to activate the appropriate
cognitive processes in order to learn the presented information. However,
we have no guarantee of what the student will do. The student is free to
choose the kind of instructional actions she prefers and can select the
supported actions most suitable for her.

Two main requirements arise when we try to integrate this instructional
model into a learning environment or tutoring system. First, it is necessary
to define the required kind of instructional tutoring according to the
previously referenced three levels: CPs, IEs and IAs. Second, it is
necessary to select the most suitable subset of instructional and supported
actions depending on both the domain and the kind of learner.

INTZA'S KERNEL: A GENERIC ARCHITECTURE. SYSTEM
REQUIREMENTS FOR THE IRIS SHELL

Although most of the existing ITSs are individually crafted for specific
domains, an interest arises in developing generic ITS Shells valid for a
wide range of domains. TUTOR (Fernandeizal, 1993) and INTZA
(Gutiérrez, 1994) were ITSs developed by our research group with this
eventual aim. TUTOR treated conceptual domains while INTZA is able to
work with both conceptual and procedural domains. By learning a
conceptual domain we mean learning and understanding both the concepts
of the domain and the relationships existing between conceptos.
Meanwhile learning a procedural domain implies also learning how to
execute procedures consisting of a sequence of defined steps. So we can
say that the architecture of INTZA generalises the architecture of TUTOR
by extending the kind of domains it can manage. TUTOR and INTZA

*Note-bookThe learner uses an auxiliary tool, for instance a window, for
recording/copying relevant ideas from the text or paragraph.

Summary-windowThe learner elaborates and writes out the essential ideas or concepts
of a text establishing their inter-relationships.

Schema-windowThis is used to construct graphical representations of relevant
concepts and their relationships.

Underlining: The learner is allowed to underline some words or fragments of a text.
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(both developed in LISP) were instantiated over the domains of teaching
elementary programming and electrical power plant process training,
respectively.

Figure 3 shows the components of the architecture of INTZA that
constitute its kernel. The components correspond directly to those of the
ITS basic architecture (Wenger, 1987; Sokolnicky, 1991). This running
architecture amounts to a crude Shell which can be used as a general
schema to develop new ITSs in similar domains. Next we briefly describe
each component and identify a set of requisite attributes related to its
internal structure.

* Domain is the explicit representation of the content to be taught to
the student. The Domain Component is composed oPé#aagogic
Domain and theDomain Expert.The Pedagogic Domaircontains
the subject matter.e. the set of topics to be taught (procedures,
facts, and typical problems or malfunctions) organized from a
pedagogical point of view. ThHBomain Experencodes the expert's
abilities for carrying out procedures and for detecting and solving
problems and correcting malfunctions. It is used to provide the
trainee with exemplars of expert operations as well as to compare
trainee and expert performances in order to identify differences and
potentially reveal deep errors. The hierarchical representation of the
Pedagogic Domairfbased on an extended genetic graph) is formed
by a conceptual network where each node represents a topic to be
taught. Relationships existing in the domain are expressed using
links between nodes. Moreover topics are described using a set of
descriptors which give the necessary meta-information for traversing
the network.

It is necessary for this component to be able to represent the
domain in terms of the referenced structural elemerdsiopics,
relationships and descriptors. INTZA works with physical processes
and has the ability of simulating these processes. If an intended
domain has such characteristics and simulation is required, one
would have to specify and implement the Domain using procedural
and heuristic information. This would be needed to facilitate the
analysis of the learners’ responses to different scenarios presented as
practical exercises.
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TUTOR

Domain
Expert

Didactic Module

Didactic Didactic Training
Instructor | Supervisorl| Dispatcher

Student Model

Trainee
Manager

Pedagogiq
Domain

Trainee
Model

Student

Interface

Dialogue
Manager

"\

Instructor

Figure 3. INTZA' kernel

» Student Model records information about stedent’s skills and
knowledge acquired during the teaching sessions. The Student
Model consists of th&rainee Modelnd theTrainee ManagerThe
Trainee Modelrecords the long-term characteristics of the user
together with her acquired knowledge and skills. Thainee
Manageranalyses, critiques, and evaluatestthaee's interactions,
and consequently updates the Trainee Model. The Student Model is
based on an overlay approach extended in order to represent
misconceptions. A declarative description is used to characterize
both the knowledge of the student and her learning objectives.

It is necessary for this module to specify both the initial
characteristics of each learner and the kind of learner interactions
that will be treated by the tutostident’s objectives)

Level 1
level of Contents
|

Level 2
level of I0Os

]
Level 3
level of ISs

]
Level 4
level of TGs

[ /]

Pedagogic
decision
level

Executive
level

Figure 4. Layers in the Instructional Plan of INTZA

» Didactic Module plans and performs the teaching/learning session.
The Didactic Module supports two different training stylgsided
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training and free-exploration This module generates, re-plans and
carries out the Instructional Plan (IP) for the session. In INTZA, the
IP is organised into four layers (Figure ©Qontents, Instructional
Objectives (10s), Instructional StrategieqISs) and Tutor Goals
(TGs). The first one consists of a sequence of conf@aiscepts

and procedures) to be acquired by the learner. The second layer
represents a sequence of 1@sdnitive skill§ that the tutor wants

the student to achieve in the training session — currently
implemented I0s are extracted from Bloom’s taxonomy (1956). At
the third layer, each 10 is refined into a sequence of ISs. ISs include
activities for both programming the session and guiding and
motivating the student during the accomplishment of an 10. Finally,
at the fourth level each IS is refined into a sequence of TGs. The
TGs are the basic actions that the tutor has to execute in order to
accomplish an IS. The first three layers in the IP correspond to the
pedagogical decision levekhich reflects the pedagogical decisions
developed by the tutor, and the last one corresponds exd#uoeitive
level, which reflects the refinement of the IP in directly executable
tutor goals. During the session, each IO is refined into a sequence of
Instructional StrategieqISs), meanwhile, each IS is refined in a
sequence of théutor Goals(TGSs).

This component is structured in several cooperating submodules:
1) the Didactic Instructorgenerates the IP for the session, deciding
which 10s should be reached and which IEs should be applied
during the training process; ii) thEraining Dispatchercarries out
the IP; iii) the Didactic Supervisordecides how to treat the new
conditions in the session causedthyg trainee's interactions and how
to integrate this treatment in the IP.

The Didactic Module uses a set of I0s, ISs, TGs and all the rules
and plans related to their selection and refinement. To treat special
situations such as errors, students requests, unforeseen changes in
the Student Model, and changes in the available time for the session,
the tutor introduces special strategies for describing, correcting and
recovering from errors as well as for responding to the student’s
objectives and changes in the student model. So, the Didactic
Module is described in terms of Instructional Objectives,
Instructional Strategies and Tutor Goals together with the set of
plans and rules to select them. In Section 4 we show the relationship
between the CLAI Model (CPs, IEs and IAs) and the pedagogic
decision level of the instructional plan of INTZA (Contents, I0s,
ISs).

* Interface / Dialogue Manager copes with the communication process
between the Tutor and the human agents.
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The Interface / Dialogue Manager would normally be developed
separately for each ITS, as it is completely depending on the domain.
So at interface level, it is necessary to specify the set of necessary,
tutor-specific graphical tools and communications channels.

The INTZA kernel comprises an already implemented core which can
be adapted to building new tutors sharing the same structure according to
the requirements specified by human instructors. The INTZA system was
developed following an object-oriented design and implementation, and
contains several rule-based modules which determine the nature of the
instructional support tools described in this paper.

INTEGRATING THE CLAI MODEL WITH A TUTOR SHELL

Taking into account the architecture schema defined by the INTZA kernel
and its concrete specification and implementation, the production of a new
tutor maintaining its structure imposes a set of requirements over the
contents of each one of the identified components.

The IRIS Kernel: Instructional Planner

The integration process is especially relevant in the module responsible for
the pedagogic decisions of the systam, in the Didactic Instructor
module that builds and executes the Instructional Plan (IP). The IP defines
the behaviour of the tutor during the whole teaching-learning session. It is
responsible for deciding what to do next at each point during the session.
In order to be effective, the IP requires both domain-dependent and
domain-independent knowledge about instruction (Macmelaal, 1988).

The former is required for capturing instructional methods of expert
teachers for a particular subject area. The latter is required in order to
improve cost-effectiveness in developing processes for tutors in new
domains. In section 5 we will show how both kinds of knowledge are
treated in our system.
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/ Level 1 /
level of Con:ents-BLUs / level of CPs /

Level 2

[ ]
/ level of 'Ios / / level of Els /

|
Level 3
level of ISs-IAs
|
Level 4
level of TGs

Figure 5. Layers in the Instructional Plan

In order to fully integrate the aspects considered in the CLAI model we
include two new levels in the INTZASs IP: those of tl@&ognitive
Processeg¢CPs) andnstructional EventglEs). The former corresponds to
the set of mental activities in which the student must be engaged for the
learning to take place; the latter corresponds to the events that the system
carries out in order to activate the required cognitive processes in the
student’'s mind. Figure 5 shows the modified/final IP including the two
new layers.

Focusing just on the pedagogic decision level, formed by the first five
layers, the main requirement for building an ITS that integrates aspects
from the CLAI Model and from the generic tutoring system architecture, is
to specify the preferred instructional tutoring method in terms of BL.Us
I0s, CPs, IEs and IAs.

The structure of the instructional plan determines the basic cycle of
general activities of the tutor:

1. determine the next Basic Learning Unit to teach

determine the Instructional Objective to reach

select the Cognitive Processes for reaching the previously chosen 10
refine the CPs into a sequence of Instructional Events

a kM wDbd

select the most suitable Instructional Actions for applying these IEs

An example of an IP is shown in Figure 6. It is based on the
mathematical symbolic differentiation domain and illustrates a possible
refinement of the IP for teaching a particular BLU, specifically a
procedural rule for differentiating a product expression.

* Basic Learning Units (BLUs), described in detail in subsection 4.2, refer to those
minimal contents of domain knowledge to be taught to the learner.
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Figure 6 - Example of a IP

Once the last layer of the pedagogical decision lexellevel of IAs,

IS obtained, the tutor refines each IA in a sequence of Tutor Goals (TGs) or
directly executabl@rocedures. For example, the Pherequisite-reviews
refined as the sequence of T@Gbtain prerequisite list, show prerequisite
until last prerequisiteEach one of these TGs can be executed directly by
an implemented algorithm.

The process of building the Instructional Plan is implemented by
means of a rule-based paradigm. Each level of activity involves a particular
set of rules used to refine the current level of the IP in terms of the
subsequent level. The set of rules is automatically customized for each
tutor, depending on the requisites specified by the human instructor;
namely characterization of the domain, the kinds of student who are going
to use the teaching-learning system, and the pedagogical aspects of the
tutor. These requisites have a direct relationship with the rules identified in
an initial hierarchy. In Section 6 we will show how the initial hierarchy is
customized according to the specified requisites.

Domain knowledge requirements for IRIS

Instructional Design Theories study in detail knowledge representation
paradigms from an educational perspective; they are primarily concerned
with prescribing optimal methods of instruction to bring about desired
changes in learner knowledge and skills. In particular, these optimal
methods must specify what must be learned (Scandura, 1983) and some
way to represent knowledge. There are three basic features relating to ITS
design that are taken into account in different Instructional Design
Theories: learning units or kinds of teaching-learning contents,
relationships between elements, and skills to be reached.
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Basic Learning Units

Instructional design theories based on Merrill's (1983) Component Display
Theory' presenfacts concepts, procedureand principles as the Basic
Learning Units (BLUs). From this perspective it is possible to determine a
complete schema of knowledge representation organized from three
different views:conceptually when a conceptual structure (taxonomy of
parts or types) is used to organize the concepts and the facts, e.g. in the
TUTOR system Fernandez-Castret al, 1993); procedurally when a
procedure based structure is used for the domain organization, e.g. in the
INTZA system (Gutiérrez, 1994); andheoretically when a structure
based on principles or theories is used for this organization, e.g. in the
WHY system (Stevenst al, 1982).

Once a particular domain is chosen, the immediate task is to determine
the kind of characterization required to cover the contents to be conveyed
to the student. For instance, in the mathematical symbolic differentiation
domain, for practicing differentiation rules, two types of BLUs, namely
concepts and procedures, are sufficient to represent the domain. The
selection of one BLU or another will determine, amongst other things, the
kind of specific internal representation. For example, a concept (see
subsection 5.1) will have, as well as other attributes, several associated
texts, a difficulty level, and assessment items. Meanwhile, a procedure will
need to include its steps or actions, some application examples, and
practice-tests.

Relationships between elements

In order to establish a pedagogical view useful for selecting and/or
sequencing the content, Reigeluth (Reigekitlal., 1978) references four
different kinds of relationships between teaching contents of the same

type:
* Requisite relationship<€.g.: "The learner must know X (or must be
able to do X) before learning Y (or be able to do Y)". They appear in

the TUTOR (Fernandeet al., 1993) and INTZA (Gutiérrez, 1994)
systems.

» Conceptual relationshipst.g.: "X is Y-type ", "X is part of Y".
These appear in TUTOR and INTZA as well.

* Procedural relationshipsThese are eitherder relationshipse.g.:
"The learner must do X before doing Y" (INTZA) alecision
relationships e.g: "Given a condition A, the learner must do X
rather than Y or Z".
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» Theoretical or principles-based relationshipbhese can beause-
effect relationshipse.g.: "Y is the effect of X" as in the WHY
system (Stevenst al., 1972), orprescriptive relationshipse.g.: "In
order to achieve Z it is necessary that X and Y happen in a specified
order".

So, the BLUs include in their representations some attributes which
relate them to one another. Some relationships we propose and issa,are
part-of and prerequisite (see subsection 5.1). In our mathematical
differentiation domain we identified three type of relationships: requisite,
conceptual and procedural.

Instructional Objectives

Instructional Objectives (I0s) refer to the application of particular skills
over BLUs. They form a useful part both in planning the teaching process
and in creating procedures to assess the learners knowledge. The
instructional objectives can be hierarchically organized in order to
establish a structure for the didactic activities. The most accepted
taxonomical classifications in the psycho-educational field have been the
taxonomy of teaching objectivéBloomet al, 1956) and théaxonomy of
learning objectives(Gagné et al., 1988). The former identifies three
different learning categoriesognitive affective andpsychomotorinside

the cognitive category, six |0 have been defineknowledge,
comprehension, application, analysis, synthemimsl evaluation INTZA

uses the objectivdeghowledge, applicationandanalysis Gagné identifies

six categories of learningntellectual skills, cognitive strategies, verbal
information, motor skillsand attitudes only the first three are valid for
acquiring static knowledge and problem-solving skills.

Depending on the domain and the characteristics of the various
learning activities proposed by the instructor, each BLU in the domain can
be completed by adding the skilise( 10s) that must be developed in the
learner. For instance, a BLU procedure can be learned superficially just by
knowing its associated steps, or in a deeper way by knowing how to
execute it.

In the example of Section 5, we specify two of Bloom’s IOs:
knowledge or remembering of ideas or phenomenag.(the learner knows
the definition of the procedural differentiation rule for a product
expressioh and application or correct use of the procedure.d. the
learner is able to differentiate a prodjict

These three main domain knowledge featulessiC learning units,
instructional objectivesand relationships between elements) are
fundamental to many Instructional Design Theories, and also are needed
by IRIS for generating the domain model related to each new tutor. Other
systems integrate these features, but not in a particularly explicit way. IRIS
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requires an explicit representation of these features and so provides the
instructor with tools (as shown in subsection 5.1) for specifying their
actual values. These features identify two different levels in the domain
representation (Arruarte &ernandez, 1995), Concrete Levelfocused

on how to represent the basic contents or elements associated with the
teaching-learning processé basic learning units) and ifpedagogical
Level,focused both on the representation of the skills to be mastered by the
learner {.e. instructional objectives) and the relationships between these
elements in order to get an effective teaching-learning prodess (
relationships). Similar pedagogical relationships betvweaming units or
contents to be learned by the students are also represented in the ECSAI
system (Gavignet, 1994).

Learner Requirements in IRIS

Although the Learner Model or Student Model is a widely recognized
component of ITSs there is no consensus about the information it should
include. Moreover, there is debate about whether or not it is an essential
component in order to achieve an effective and efficient instructional
system (Holet al, 1994).

From a pragmatic point of view we consider the learner model as a
needed component whose information is a basis for the Pedagogic Module
to make individualized planning decisions and thus to produce a more
efficient instruction process. Even though "learner models by themselves
achieve nothing" they do provide other components with useful data for
diagnosis, sequencing content, determining the level of explanations, and
so forth (Self, 1990).

Different criteria have been used to classify learner models. Kok (Kok,
1991) classifies these criteria on the basis of several paramelsrsre
users modelled, who is modelled, what is modebed,how are users
modelled Verdejo (Verdejo, 1992) classifies them along the following six
dimensions:the use of the model, the extent of the users domain
knowledge to be represented, shadow or deep model, generic or individual
model, permanent or temporal modednd predefined or inferred model
These six dimensions are valid for both classifying and defining learner
models; moreover, the last three are related to model construction
(Verdejo, 1992).

The ideal learner model should include all the aspects related to
behaviour and knowledge that influence the learning process (Wenger,
1987). In spite of this assumption, IRIS generates a pragmatic learner
model that, in the sense of Evertsz and Elsom-Cook (Evertsz & Elsom-
Cook, 1990), is "accurate enough as is necessary for guiding the tutorial
actions of the teaching-learning system".
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The learner is modelled in IRIS following a successfully tested
classical approach, based on the characteristics identified in the learner
model of INTZA, is a passive-descriptive model that represents the
acquired knowledge by means of the overlay technique (Carr & Goldstein,
1977). It is ashallow, individual, system inferred student model containing
a combination of temporal and permanent information. The model, which
is built up during the teaching-learning process, defines the individual
learning characteristics and the evolution of each student. It includes new
characteristics about the student such as learning preferences, used
supported actions, etc.

The IRIS shell also requires that the grain-size of the learner model
representation be taken into account in the final tutor. As a consequence,
the level of adaptability in tutors generated with IRIS can vary; the more
fine and specific is the representation of the leasmcified by the
instructor (see subsection 5.2), the more adaptation is obtained.

Pedagogic Knowledge Requirements for IRIS

Pedagogic knowledge is the core of any tutoring system. It is responsible
for the pedagogic decisions of the system as it builds and executes an
Instructional Plan (IP) adapted to the individual learner considering his or
her curriculum needs and learning characteristics. Specifying the
pedagogic knowledge for planning instructional sessions is one of the most
difficult aspects that instructors face in the process of building ITSs using
shells. This becomes even more difficult if this knowledge has to be
represented by the instructor in a rule-based mode (Major, 1995).

Several planning approaches supported by decisions about different
aspects give rise to a range of tutoring styles. In particular, tutors generated
by IRIS sharean incremental planning schermminimum commitment.

In subsection 4.1 we introduced the general tutor planning activities in the
generation of the instructional plan. In the first level a decision is made
about the next BLU to teach but not about the whole session plan. The IP
(Figure 5) is carried out by successive refinements to the basic actions to
execute. Later during the session time, possibly in response to the
changing tutorial situations, an adaptive opportunistic plan-based approach
is used to allow the plan to be revised and adapted. Each level is refined in
the next level by means of rule-based systems which implement
instructional decisions. In order to build the planner for a new tutor, it is
necessary to know the contents for each level of the IP and the
corresponding sets of refinement rules. The level contents are: BLUs and
kinds of 10s considered in the particular domain, CPs and IEs identified in
the teaching-learning process and IAs chosen for refining the IEs in that
particular tutor.
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With the aim of facilitating the description of planning knowledge,
IRIS provides the instructor with the possibility of specifying planning
knowledge in anon-direct or non-explicit form (a concrete example of
specification in a non-direct way is illustrated in subsection 5.3). In this
way the instructor is not obliged to explicitly define the different set of
refinement rules needed for planning.

USING THE IRIS SHELL

Taking the previous analysis as a starting point, our goal has been to build
a set of tools for helping to develop ITSs. We aim to facilitate teachers
attempts to build ITSs for those domains in which they are experts. The
human instructor must establish the characteristics or requirements of the
target tutor, which in turn are used to adapt and to produce the final tutor.
Thus this resulting tutor uses a general planning cycle generating,
executing and re-planning the Instructional Plan, while maintaining the
representation structure and the reasoning schema of INTZA kernel with
changes only in the content of the components. This methodology leads to
the design of the IRIS Shell (IRakaste-lkaste Sistema or, in English,
Teaching-Learning Syst@mwvhich utilizes the planning cycle and basic
architecture of INTZA and incorporates the CLAI Model for instruction.
Thus, the IRIS shell has the following functionalities:

» assisting with data acquisition related to the nature of the desired
tutoring system, the semantics of the teaching domain, and to the
final users of the tutoring system;

e determining a tutor architecture derived from the requirements
specified;

» providing the final tutoring system by selecting and/or generating
the necessary set of rules and objects in terms of the previously
specified properties of the tutor, domain and users.

The internal structure of the tutors generated with IRIS closely
resembles the INTZA kernel and shares with INTZA certain activities
instructional planning, selection of contents and/or instructional activities,
and so forth)

The process of authoring a new tutor using the IRIS Shell consists of
two phases (Figure 7). During Phase 1 a skeletal architecture of the
resulting tutor is generated on the basis of the requirements specified by
the human instructor. These are introduced and used to adapt the generic
architecture of INTZA to the tutoring domain. The requirements are
grouped around four basic aspects: the characterization dtitibre the
description of both the Concrete Level and the Pedagogical Level of the
teaching-learninglomain, the learner characterization, and thaterface
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characterization. These aspects, as we will see in next subsections, are not
independent from one other. In Phase 2 the contents of each module
established in Phase 1 are defined and the final tutor system is produced.
Some of these contents are authored by the teaelgerdqontents of the
domain by means of a set of related BLUs instances, concrete presentation
forms, etg. and some others are generated automatically by iRtstlhe

rules for refining the instructional plan

Generator of the
REQUIREMENTS = - tutor structure Skeletal structure
(first phase) based on INTZA
CONTENTS

Ggf“reur@?f
(second phase)

Figure 7. Phases in building a tutor

Next we will discuss the requirements associated with the Domain, the
Learner, and the Tutor that must be known in order to fully specify the
IRIS Shell; it is responsibility of the human instructor authoring them. A
study of the different types of requirements for the Shell together with the
internal structure of INTZA leads to a minimum basic architecture for the
IRIS Shell (see Section 5.4). On the other hand, interface issues and
diagnosis requirements in the IRIS Shell are undertaken in other research
work, which is beyond the scope of this paper (Feretiad, 1996).

Throughout the remainder of this paper we will use the domain of
mathematical symbolic differentiation to illustrate the process of building a
specific ITS, calledMaisu tutor”, by using the IRIS Shelln short, as the
human instructor or course developers uses the IRIS Shell to construct
each component of the new tutor, the following choices must be made:

* With respect to the Domain: specify basic learning units,
instructional objectives, presentation and evaluation forms, and
relationships between contents.

* With respect to the Learner: specify learner characteristics and
learner goals.

* With respect to the Pedagogic: specify instructional method,
supported tools and motivation resources.

The generic requirements for thkaisu tutor are listed below:

Domain (mathematical symbolic differentiation)

» The required Basic Learning Units a@nceptsandprocedures.
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* In general, the skills to be developed in the learnerkaosviedge
andapplication.

* The tutor should use the following types of presentation and
evaluation formstexts, examples, tesemdfill-gaps.

* The sequencing relationships used by the tutopereequisite and
next.

Learner (assuming an adult learner of mathematical symbolic
differentiation)

» The adaptability of the system is based on the following learner
characteristicstype, motivation, preferred learning methodand
preferred session duration

» The learners” interventions will refer to the control of the session
(sleep, follow, finish)and the session developmefask for
explanation, solve exercise, agree, disagree, repeat explanation,
repeat exercise, ask for exercise)

Pedagogy (assuming a coaching style of instruction)
» The instructional method selectedjisided learning.

» The supported tools selected for the tutorsaamamary windowand
underlining tool.

 The motivation resources includeeep, attention/alert message,
provide congratulationandgive encouragement.

Keeping in mind these particular design decisions for the Maisu Tutor,
we will show incrementally the hierarchy of objects generated by the IRIS
Shell for such a tutor. It is generateg growing an initial basic hierarchy
representing the main components ofMegsu tutor (Figure 8).

Learner Pedagogic
Model Module

Figure 8. Structure of the main components of Maisu ITS
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Building the Maisu domain: basic symbolic differentiation

Four different types of information are included to describe the domain:
meta-information for characterizing the domain in a general way, basic
learning units, instructional objectivesand requisite relationshipsThe
former has been included with the aim of describing the main goal of the
tutor and the interest of the domain.

LEARMER | TUTOR |

DOMAIN - PHASE 1

S AR NING LINITS »| General Characterization

B Concepts Bl Basic Learning Units

»| Procedures »| Instructional Objectives

»| Principles +| Requisite Relationships

+| Fact ' !
i =] CONGEFTS

Concrete lewel

OK§ W |5-a M FPart-of Others

Pedagogical lewvel
Instructionalkobjectives Support information

B Knowledge B Difficulty level
Comprehension &hstraction level
Application
Analysis
Synthesis
Ewvaluation

Instructiona! Objectives refer to the application
of particulsr skills over Concepts. Ok
I Click on the objectives vou want to choose. —_—

Cancelg

Figure 9. Specification of the BLU Concept Maisu

» Meta-information for characterising the domain in a general way.
Two attributes have been include@eneral Goaland Relevance
The human instructor will select one or both; however it could be
possible to define new informative perspectives. The
selection/inclusion of these slots ensures that the final tutor include
instructional actions for informing the learner about the goals she
can get working with that domain.

» Basic Learning Units. IRIS allows the instructor to define any
instructional domain in terms of the already referenced four BLUSs:
concepts, procedures, principlesand facts The differentiation
domain can be represented using mainly concepts'Qexivative
concept” and "Derivative function") and procedures (eXSine
derivative rule’} "Add derivative rule”) Figure 9 shows the
specification of the conceLU in the Maisu domain; the selected
characteristics are those shadowed.
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Each BLU considered in the domain must be described at the
Concrete and Pedagogical levels. At the Concrete Level we record
exclusively the curricula requirementsi.e. the declarative
descriptions of the subject matter to be conveyed to the learner. The
Pedagogical Level defines a meta-level description of the domain
and includes descriptors such I&s and Support Information For
each BLU the set of skills to be worked are chosen; the particular
development of each skill is elaborated and further specified later,
independent of the associated BLU. At the Pedagogical Level, we
also specify theSupport Informationrequisite indicating the
Difficulty Level attribute.

« Instructional Objectives. The default IOs used in the shell are those
of Bloom’s taxonomy (1956). IMaisu the 10s Knowledge and
Application have been selected as the main abilities to develop for
the basic symbolic differentiation domain (Figure 10). Both kinds of
objectives need a set pfesentation forms(techniques which can
be used to introduce the domain concepts to the leaterinr-the
example), evaluation form (techniques for assessing domain
concepts test in the example)difficulty level (a refinement of the
difficulty level property associated to the corresponding BLU) and
estimated-timefor acquiring that 10.

» Requisite Relationships. The defautequisite relationships are
Prerequisite Corequisite PostrequisiteandNext They are used for
organizing, selecting and sequencing the BLUs (Reigedtithl,
1978). In Maisu we have identified thererequisite and next

relationship.
IRIS
DOMAIN | LEARMNER | TutoR | INTERFACE]| Buiding
......... | MAISET
DOMAIN - PHASE 1
INSTRUCTIONAL OBJECTIVES x
#| General Characterization ¢ H ELP \\\\\\\ é
B Knowledge !
i +| Basic Learning Units SAVE z
k] Comprehension bl e s RESe e et B T i i
B Instructional Objectives
= Aplication et et o i i | E XlT
+| Requisite Relationships
= Analysis f P
=1 Sinthesiz = KNOYLEDGE
A} el Presentation kfor:ms Evaluation forms
b Toxts W Tests
Examples Fill gap
OK Analogies
Graphics
B Difficulty level M Estimated time
Eresentation Forms refer to technigues T i
uzed to Introduce the domain contents. oK | Cancel;
T flick on the forms vou want to choose. o] A

Figure 10. Specification of the kind of Instructional Objecti¥mowledge
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Next the resulting class of concept BLU obtained from the
specification phase (Phase 1) is showed in a frame-like form (Table 1). The
form will be filled in Phase 2 as the domain expert creates each domain
concept. The Procedure BLU is described in a similar way. In the case of
FigurelO, the prerequisite relationship has been selected and the
Knowledge and Application 10s have been chosen.

CONCEPT PROCEDURE
identification: identification:

is-a: is-a:

part-of: part-of:

difficulty level: steps:

next: difficulty-level:
prerequisite: next:

10s: KNOWLEDGE prerequisite:
texts-knowledge: 10s: KNOWLEDGE, APPLICATION
tests-knowledge: texts-knowledge:
difficulty-level-knowledge: tests-knowledge:
estimated-time-knowledge: difficulty-level-knowledge:

estimated-time-knowledge:
texts-application:
examples-application:
tests-application:
fill-in-gaps-application:
difficulty-level-application:
estimated-time-application:

Table 1. Slots for the Concept and Procedure Frames of a BLU

For example, consider defining a new BLU namBdrivative-
functionusing IRIS (Phase 2). As shown fingure 11, first the instructor
chooses the type of the new BLthnceptin our example. After doing that
IRIS prompts the instructor to fill in values for each of the concept
attributes related to that concept (those represented above in Table 1). In
figure 11the attributeidentification of a Concept is being filled with the
value "derivative-function". When the instructor is finished with
specifying each BLU, IRIS generates all the internal associated instances.
Each BLU is created in this way.
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= IRIS |
DObAIN LEARMER | TUTCOR | INTERFACE' Buiding
; . MAISEF
—| DOMAIN - PHASE 2
! | HELF
_.| BASIC LEARMING UNITS =| General Characterization —I
@ Create a Concept | B Basic Learning Units SaVE |
— Slot values EXIT
»| Create a Procedure | I
»| Create a Principle identification
»| Create a Fact
Symhol: | derivative—functior]
OKl
J oK | Cancell

Figure 11.Creating a new Concept

Figure 12 shows the domain objects generated by IRISViEnsu
tutor represented in @art-of hierarchy. This organizes the Domain Model
in three sectionsGeneral CharacterizationDescriptive Structure and
Descriptive Taxonomy of Instructional Objectives. Thdescriptive
Structure groups the BLUs, I0s and the instructional resources used in the
representation of the differentiation domain.

Maisu
Domain
Model

Descriptive
Structure

Descriptive
Taxonomy

General
Characterizatioy

Figure 12.Part-of hierarchy of the domain objects generated in the first
phase by IRIS foMaisu tutor
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IRIS
DOMAIN | TUTOR | INTERFACE| |  Buiding
IEEEY  wos I R ce| | Biting
LEARNER
LEARNER GOALS
=| Learner characterization | Control sessj_.::,nk
B Learner goals W Sleep session
W Follow session
| B Finish session
QK |
Session dewvelopment
Information request Betivity reruest
B ask explanation B Repeat explanation
Background UB& N Repeat exercise
Procedure steps W Ask exercise
Step precondition Repeat procedure
Repeat procedure step
Evaluable answer
N Resolution exercise
N Agree
B Disagree
Theses objectives will be used o control - i
the teaching-Iearning process. Ok E Canceﬁ

Click on the goals vou want to choose. | =——) —

Figure 13. Specification of the Learner Goals
Learner modelling for Maisu

The characterization of the general kind of the learneMfmsu tutor, i.e.,

the prototypical aspect&urriculum, learner profileand learner goals)

are used not only to generate the Learner Model but also to determine the
kind of instruction that learners are going to receive. That is, there are

choices of using one or another group of Instructional Actions and the

possibility of recognizing different learner goals.

Learner goals refer to the goals that the tutor will be able to identify
after interpreting the student interventions. Goals have been split into two
groups (Figure 13) according to their functionalitgntrol of the session
and development of the sessiofhey collect the set of learner goals
identified in the literature by several systems (Barnard & Sandberg, 1994)
(Breukeret al, 1987) (Diaz de llarraza, 1990) (Fernandez, 89) (Vaeillo
al., 1994).

Figures 13 and 14 show the properties used in IRIS for characterizing
the kind of learner and her goalshfaisu tutor. The learner characteristics
are separated into two groupsirriculum andlearner profile (Figure
14).The former refers to the physical and professional aspects of the
learner, the latter refer to characteristics that influence the learning
process; so, they are the basis for tutorial decisions about Cognitive
Processes, Instructional Actions and communications ways between the
tutor and the learner. The learner goals are selected directly by the
instructor from a predefined set.
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RIS

DoMalN | m TUTOR | INTERF &CE| Buiding

. @ R Eee ] MAISE

LEARNER
[ Learner characterization | JJJJJJJ HEL‘,P‘,"
-| Learner goals LEARNER CHARACTEREATION
Curriculum A
OK‘E W Mame

........... W Age
Photagraph
W Description

Learner profile
W Type W Preferred session duration

Graup Intrussion
H Motivation Guidance

Learning speed Summarization level
W Preferred learning method Self-confidence

Curriculin refers to the profesional . i
characteristics of the learner. (@] | Cancel|
Click on the charscteristics vou want fto choose. e -

Figure 14. Learner Characterization fdtaisu

The Learner Model finally generated by IRIS fdaisuis organized in
two partsPermanent ModelandDynamic Model (Figure 15). It collects
information not only from the requirements related to the learner but also
from the domain requisites in order to reflect the knowledge of the learner
and how it was acquired. The Permanent Model is updated at the end of
each session and is divided into three sections:
« Learner Characterizationwhich consists oCurriculum-Vitae and
Learner Profile
» Learner Knowledgewhich records the domain contents acquired by
the learner during the learning process including the achieved
Instructional Objectives, the errors made and the didactic materials
used; and finally
» Learner History which consists of information about the evaluation
process of théast Sessiomand the collection of the most important
events of the whol€ourse
The Dynamic Model exists just during the current session and is used
for updating the permanent model. It is divided into two components:
Session Characteristicge. events occurring up to the current moment in
the session, and.earner Performance,which contains interaction
information about the learner suchtasgts presented, requests maaed
so forth.
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Maisu

Learner

Model
Permanent Dynamic
Model Model
Learner Learner Learne Session Learner
Characterizatig Knowledge History Characteristicg Performange
@ Learnek /" | earner BL L
) earner BL g
Concept Procedure

’ ‘
Learner IO Learne
Application Error

=

Learne Learne Learne Learne
Text Examplg Test Fill Gap

Figure 15. Part-of hierarchy corresponding to the Learner Mod&lau
(phase 1) generated by IRIS

Pedagogic Knowledge in Maisu

At this moment, after specifying the domain and the learner characteristics,
just a few aspects remain to be fixed. They are the instructional method
that the target tutor will use, the supported tools, and the motivation

resources.

If BLU has prerequisite/s then learn first the prerequisite/s

BLU/s

If
BLU-IPL.current-BLU = $BLU
not(reached-blu-p ($BLU))
not(empty-p $BLU.prerequisite)
not(reached-BLU-list $BLU-prerequisite)
Then
BLU-IPL.current-BLU := first($BLU.prerequisite)
BLU-IPL.BLU-LIFO:= append(rest($BLU-prerequisite), $BLU,
BLU-IPL.BLU-LIFO)

Figure 16. Rule corresponding to tipgerequisite property

Tutors generated by IRIS share the same planning schema defined in
INTZA which is customized for each target tutor in terms of all specified
properties. As IRIS holds default rules and objects associated to several
defining properties, instructor selection is used to produce the final new

planner.

368



The IRIS Shell: How to BuildITSs from Pedagogical and Design Requisites”

IRIS

DOkAAIN LE&RMER | TUTOR INTERF&CE| Buiding

JEITEEEEN T ---------------- = | B R L DT T TN N ----\-.-.v.---\.--\.v.-.-.-\-\.--\.al mﬂ
= TUTOR - B
HELF |
i El s e e e e s e e s R s IR
Instructional Hethod Hotiwvation resocurces @ ||| - e ]

B Guided learning W Eeep ExIT

Free exploration

Supported tools h
MHote boak
B Summary window
Schema window

Change screen
Flash screen

B Gain attention message

Congratulating the learner
Encaouraging the learner

---------------------------

W ndelining

Supported tools group different mechsnisms

or learning techmigues that the learner can
use for facilitating the lesrning process.

| Siick on the tools vou want to choose.

Cancel |

..................

------------------

Figure 17.Specification of the tutor requirements

So, for example, if the instructor chooses the progadyequisite as a
relation requisite, the rule corresponding to prerequisite (Figure 16) is
included in the corresponding refinement rule set to be taken into account
for selection of BLUs in the new tutdvaisu. Thus, the set of rules
corresponding to each level of the IP is customized for each tutor built
using IRIS by means of the properties chosen by the instructor.

In the specification phase (Phase 1) the human instructor chooses the
most suitable instructional actions (e.dpeep, changing/flashing the
screen, congratulating the learnestc.) according to the tutor and domain
characteristics. In the first IRIS prototypapact(audio-visual)resources
and message$iave been identified. Finally, tfieupported Toolsndicate
supported action tools that the student can use. Shadowed attributes (in
Figure 17) are those selected for the symbolic differentiation domain in
Maisu

Figure 18 represents a snapshot of the objects of the pedagogic
component generated by IRIS Miaisu The module is composed of six
main aspects: thénstructional Methodwhich in the particulaguided
learning  method includes the instructional plabhearner Goals,
Instructional Strategies, Instructional Eventand Instructional Actions
Finally theSupported Learning Actionare also considered.
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Maisu
Pedagog
Module

Figure 18 Snapshot of the Part-of hierarchy corresponding to the
Pedagogic Module d¥laisu

Significance of the IRIS Shell for Building ITSs

IRIS is a shell developed with the aim of facilitating the efficient
production of ITSs througlsoftware reuseThe main reason for taking
reusability issues into account in the ITS field stems from the fact that
building ITSs necessitates large and costly development environments and
significant amounts of time. The tools in these development environments
tend to require sizeable computing resources and are seldom suited for
developing both experimental research prototypes and practical teaching-
learning systems. Taking into account that prototype ITSs are built
incrementally through successive enhancements and refinements, the time
and cost of development is reduced if existing software and knowledge is
reused.

Concerning the construction of ITSs, IRIS considers knowledge
reusability at different levels (Arruaret al.,1996b; Arruarteet al.,1997),
knowledge bases/data structures, libraries of teaching resources, libraries
of teaching strategies, reusability of modulesd reusability of
architectures.The tutors built using the IRIS Shed,g. Maisureflects all
these levels of knowledge reusabilitfaisu reuses knowledge and rules
bases, uses some of the teaching resources and strategies identified in
previously developed tutors, mainly in INTZA and TUTOR, reuses the
modules of the architecture of INTZA and also, reuses the whole
architecture of INTZA. The tutors built using the IRIS Shell focus on
reusability at the highest levelj.e. reusability of architectures
Architecture reusability is achieved when capturing the whole architecture
of a previously developed system and using it for organizing new systems
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(Krueger, 1992). In this sense, IRIS facilitates the development of new
tutors by reusing and customizing the whole architecture of INTZA. The
extra effort needed to adapt and integrate modular components with
functionalities of parts of the original tutor are eliminated.

Furthermore, the IRIS Shell not only reflects the reusability but also
promotes it. IRIS is a tool for developing applications generating the code
automatically. It is not necessary for the instructor to specify any
programming code, IRIS builds different teaching-learning systems
following only the requirements specified by human instructors by using
different graphical windows. The tutors built using IRéSy. Maisu tutor,
are modular tutors developed under a modular philosophy. The modular
design of the components is the basis for generating reusable ITS software.

Building any system, including any ITS, from scratch requires three
main phasesanalysis, desigrand implementation.The utilization of a
high level tool like IRIS greatly facilitates the system development process
by virtually eliminating the implementation phase and significantly
reducing the design phase.

When using IRIS to develop a tutor, the analysis phase involves high-
level decisions about each main component of the t(iter domain
module, learner model and pedagogic component). The domain component
analysis is supported by textbooks in the domain, previous teaching
experience of the instructor, and also user help provided by the IRIS Shell.
The outcome of the domain analysis will result in the necessary Basic
Learning Units (BLUs) for representing the domain, the Instructional
Objectives, and the selection and/or sequencing relationships between
BLUs.

Analysis involving the desired style of tutoring determines both the
learner model and the pedagogic module. The same basic type of learner
model is maintained in all tutors developed using the IRIS Shell, but the
analysis phase will determine the grain size of the learner model
representation,e. representations range from coarse to fine representation
of acquired knowledge. This analysis leads to specification of the learner's
goals that the tutor must be able to identify and interpret. Concerning the
pedagogic module, the instructor must identify the instructional method for
the new tutor, the supported tools that the tutor will be able to offer to the
learner, and the motivation resources that the tutor will use.

The design of a tutor constructed with the IRIS Shell is implicitly
conducted by the instructor through selecting the different requisites and
characteristics offered by IRIS for each component. The implementation
phase vanishes as IRIS takes charge of generating the new tutor’'s code
automatically.

Let us suppose that one wants to develop a new tutor for, say, symbolic
integration. This domain is very similar to that of differentiatiofMiaisu
tutor, so that one can presume many similarities Widlisu. In fact, one
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can generate similar learner and pedagogic modules but a different domain
component would be required. As pointed out in Section 5, the process of
building a new tutor using IRIS consists of two phasesuirements
specification andcontent specificationThe specification of requirements

for the new domain can be represented using the same types of Basic
Learning Units (concepts, procedures), the same Instructional Objectives
(knowledge, application) and the same requisite relationships (prerequisite,
next). The difference arises in the content specification phase (second
phase) when we have to define integration rules instead of differentiation
rules.

In conclusion, a reflection on the process of building a new tutor based
on IRIS shows that the analysis phase is always required (to plan the
structure of the tutor), the design phase is considerably simplified (to select
parameters within the IRIS Shell and to design the domain knowledge
rules and interface), and the implementation phase is mostly automated
(with the exception of the interface).

A DEEPER LOOK AT THE ARCHITECTURE OF THE IRIS
SHELL

As mentioned in the previous section, the IRIS Shell works in two phases
which run sequentially. In the first phase, the tutor structure is generated
on the basis of requirements, and in the second phase the defined modules
are filled with contents. The basic architecture, therefore, includes the
following four main components (Figure 19Generator of the Tutor
Structure Object GeneratorRules Generatorandinterface.

Interface

FINAL TUTOR

Knowledgg
Bases

Tutor
Structure
Generator

Object
Generator

Skeletal
architecture

— Data flow

— »  Control flow

Knowledge Bases Rules Bases

Figure 19. Architecture of the IRIS Shell
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The Generator_of the Tutor Structure has a twofold function: to
customize the generic architecture of INTZA and to check the creation
preconditions and the completeness of the contents.

In order to customize the generic architecture of INTZA, taking into
account the particularities of the domain and the teaching method specified
by the instructora low level knowledge acquisition tool, GBC (see below)
is used together with the various knowledge bases of INTZA. A skeletal
architecture is generated by selecting the main components that will
comprise the final tutor.

Furthermore, it is necessary to check the creation preconditions and the
completeness of the contents in each phase in order to get a viable and
reliable tutor. It will not be possible, for example, to introduce particular
contents of the teaching-learning domain before characterizing the domain.

Requirements Contents
specificaton specification

FINAL TUTOR

Knowledge Bases

Tutor
Structure

Object
Generatd
Generator Skeletal
architecture

Classes hierarc

[ KB1 / |_Instances hierarchy
__ KB, m—b | —» Data
Knowledge Bases _ m Control

Figure 20. Partial schema related to t@bject Generator

Once the skeletal architecture of the tutor has been produced, the
Object Generator completes and saves the declarative knowledge
associated to each component of the new tutor (its classes and instances). It
works in two different phases (see Figure 20):

1. The first phase, namely the specification of requirements, gives rise
to the needed classes of objects corresponding to the components of
the new tutor.
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2. The second phase, namely the specification of contents, generates
the corresponding attribute values to create pertinent instances from
the previously defined classes.

Both phases are supported by GBC (Generacion de Bases de
Conocimiento, in EnglislKnowledge Bases AcquisitiorBC (Elorriaga
et al.,1995) is a basic tool for generating Knowledge Bases (KBs). Its goal
is to facilitate the building of Knowledge Based Systems prototypes. GBC
acquires the abstract class specifications of a particular domain as well as
its instances. The tool allows us to create new KBs and modify and adapt
them to their particular needs using already existing KBs. GBC represents
each domain using an updatable internal format that finally is translated to
CLIPS code.

The Rules Generatorworks afterthe skeletal architecture of the tutor
and the first phase of the object generator have been completed. Its
function is to generate and/or select, the necessary sets of pedagogic
decision rules in order to get operative components for the tutor (as we
pointed out in subsection 4.1 tutors generated by IRIS are based on a rule-
based paradigm). The Rules Generator module is compose&eaiéetor
and aGenerator If we select default values in the first phase, as it was
shown at the beginning of Section 5, Belectorsub-module will be the
activated. If, on the other hand, we introduce new slot values, the
Generatorwill be activated instead.

Rule Bases

(load RRBLU-RR-Pre-1)
(load RRBLU-RR-Pre-2
(1 oad R-BLU- RR- Nx- 1)
(l oad R BLU-RR- Nx- 2)
(l oad R BLU-RR- Nx-3)

Object
Generator

— Data

— » Control

Rules Bases

Figure 21.Partial schema related to tBelector module
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The current IRIS Shell prototype includes only tBelector sub-
component and does not contain the Generator yet. Sélector
customizes the whole set of rules existing in the initial rules hierarchy,
taking into account the requisites or requirements specified by the human
instructor (Figure 21). The different requisites have a direct relationship
with the rules identified in the initial hierarchy. For example, if we select
only two 10s Knowledgeand Application) from the six 10s that the tool
offers by default, the sets of IO rules (in thedagogic Moduleyill be
composed of just rules related to those two 10s.

An initial hierarchy of rules has been identified which groups the different
sets of rules according to its final goal in the new tutor. Figure 22 shows a
snapshot of rules identified in the initial hierarchy as rules corresponding
to therequisite-relationshipsin the first level of the instructional plare.

the BLU selection phase.

If the instructor choosegrerequisite and next as a requisite
relationships among BLUs, the set of rules that will be activatddiisu
will be just the rules identified in these two objects, specifically: R-BLU-
RR-Prel, R-BLU-RR-Pre2, R-BLU-RR-Nx1, R-BLU-RR-Nx2 and R-
BLU-RR-Nx3 (Figure 20).

R-BLU-
Requisite-Relationships
R-BLU-RR- R-BLU-RR- R-BLU-RR-
Prerequisite Corequisite Postrequisite

id: R-BLU-RR-Pre id: R-BLU-RR-Co id: R-BLU-RR-Post id: R-BLU-RR-Nx
tutor-component: pedagogic module tutor-component: pedagogic module tutor-component: pedagogic module tutor-component: pedagogic module|
goal: "selection of BLUS" goal: "selection of BLUs" goal: "selection of BLUS" goal: "selection of BLUs"
condition-elements: condition-elements: condition-elements: condition-elements:
(requisite-relationship, prerequisite) (requisite-relationship, corequisite) (requisite-relationship, postrequisite) (requisite-relationship, next)
list-rules: R-BLU-RR-Pre-1, list-rules: R-BLU-RR-Co-1 list-rules: R-BLU-RR-Post-1, list-rules: R-BLU-RR-Nx-1,
R-BLU-RR-Pre-2 R-BLU-RR-Post-2 R-BLU-RR-Nx-2,
R-BLU-RR-Nx-3

Figure 22.Stage of the requisite-relationships rules in the initial hierarchy

Finally, the Interface or communication component maintains the
interaction process with the human instructor by means of various
graphical windows, some of which were shown earlier in the paper where
we illustrated the construction of thdaisu tutor. In our initial IRIS
prototype the interface is was implemented using MOTIF in C.

CONCLUSION

The goal we have pursued in this paper is to describe the design and
implementation of a shell to aid the construction of instructional
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environments integrating pedagogical principles with a general ITS
architecture. We assume that a human instructor establishes the
requirements of the final tutor and these requirements be used to adapt
automatically a previously built generic architecture producing a new tutor.
INTZA is an already developed and tested ITS, valid for conceptual and
procedural domains, that provides a kernel for the IRIS Shell. Thus, any
new tutor built with IRIS is provided with a flexible planner and shares
many characteristics of INTZA including its types of domains and how it
generates, executes and re-plans its Instructional Plan. It will retain the
representation structure and the reasoning scheme with changes only in the
content of its components.

On the other hand, with the aim of providing a sound basis for
computer-based training, we have previously defined a pragmatic cognitive
theory of instruction, the CLAI Model, which has been integrated into the
IRIS Shell. A deep analysis of both the architecture and the theory has
allowed us to extract the necessary pedagogic requirements that affect the
different components of a tutor. The information required for building the
domain knowledge has been organized in four groups: meta-information
for characterizing the domain in a general way, basic learning units,
instructional objectives and requisite relationships. For modelling the
learner, IRIS requires a curriculum, a learner profile, and learner goals.
Finally, the necessary pedagogical information includes the specification
of the instructional method that the target tutor will use, the supported
tools, and the motivation resources together with the instructional plan
refinement rules. All these requirements (which must be specified by
human instructors) have directly influenced the design and the basic
architecture of the IRIS Shell and allow us to integrate those pedagogic
principles with a general ITS architecture.

At this time we have an implemented prototype containing most of the
components identified in the architecture, running on a SUN workstation.
The Object GeneratoandSelectowere implemented in CLIPS and tested
on an example tutor f@ymbolic differentiationThe Interfacecomponent
of the IRIS Shell was implemented in MOTIF and C. After finishing the
whole implementation we plan, as an immediate task, to test and evaluate
the global shell with human instructional designers from an educational
and a usability perspective. We are aware of the necessity of developing
on-line help and adequate methodological guidelines to facilitate the use of
IRIS.

Two important aspects remain to be considered: those related to the
diagnosis and treatment of errors and to the generation of interfaces. They
constitute the current and future research lines of our group. The
diagnostic process is being considered currently (Fereeral., 1996;
Ferreroet al., 1997), and in that work we face the general problem of
developing an autonomous general purpose tool, integrable in IRIS and
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adaptable to different domains. It would offer to instructors the possibility
of defining a customized minimum diagnosis process. The more
challenging problem of automatic interface generation will be tackled in
future research.
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