
HAL Id: hal-00197387
https://telearn.hal.science/hal-00197387

Submitted on 14 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The IRIS Shell: ”How to Build ITSs from Pedagogical
and Design Requisites”

Ana Arruarte, Isabel Fernández-Castro, Begoña Ferrero, Jim E. Greer

To cite this version:
Ana Arruarte, Isabel Fernández-Castro, Begoña Ferrero, Jim E. Greer. The IRIS Shell: ”How to
Build ITSs from Pedagogical and Design Requisites”. International Journal of Artificial Intelligence
in Education, 1997, 8, pp.341-381. �hal-00197387�

https://telearn.hal.science/hal-00197387
https://hal.archives-ouvertes.fr

International Journal of Artificial Intelligence in Education (1997) 8, 341-381

341

The IRIS Shell: "How to Build ITSs from Pedagogical and
Design Requisites"

Ana Arruarte 1, Isabel Fernández-Castro1, Begoña Ferrero1 and Jim
Greer2

1 Department of Computer Languages and Systems
Computer Science Faculty

University of the Basque Country UPV/EHU
649 Postakutxa, 20080 Donostia, Spain

2 ARIES Laboratory
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada S7N 5A9

Abstract. The goal we pursue in our research is to build a shell for helping
human instructors to develop intelligent teaching-learning systems in a
wide range of domains. We aim to provide a system where a previously
defined architecture can be adapted automatically into a new tutor using a
set of instructor-generated requirements. Trying to provide a sound basis
for this tool, we use a theory of instruction that integrates cognitive
processes, instructional events and instructional actions within a three-
level framework that relates them. In this paper we extract, through the
analysis of both the cognitive theory and the generic architecture, the
requirements of the different components of a tutor and integrate them in
IRIS (IRakaste-Ikaste Sistema; Teaching-Learning System), a shell for
building teaching-learning systems. Moreover, we embed these
requirements, cognitive principles, and design requisites in a shell in order
that human instructors can follow them easily. Various design issues and
an example of building a tutor for mathematical differentiation using IRIS
are presented.

INTRODUCTION

Research in computer-aided instruction has been varying its focus
according to new trends in the educational and psychological fields.
Ranging from Computer Assisted Instructional systems, to Intelligent
Tutoring –ITSs, and now to Intelligent Learning Environments –ILEs,
systems permit successively greater degrees of freedom for the learner.
This evolution has led us to develop new architectures in the area of tutor
modelling, learning, and domain representation.

Arruate, Fernandez-Castro, Ferrero and Greer

342

Thus, during recent years, while our research group has been working
in the ITS area, our goals have likewise evolved. First, we developed a
generic ITS architecture evaluated with two applications: TUTOR
(Fernández et al., 1993), which focused on conceptual domains, and
INTZA (Gutiérrez, 1994), which focused on conceptual and procedural
domains. At present our goal is to work towards developing a set of tools
valid for building ITSs and ILEs in a wide range of domains (Figure 1).

With the idea of defining computer-based tools for constructing ITSs
supported by a sound theoretical basis, we proposed a cognitive theory of
instruction, the CLAI Model: Cognitive Learning from Automatic
Instruction (Arruarte et al., 1996a), which integrates cognitive processes,
instructional events and instructional actions within a three level
framework. This theory addresses two main aspects of tutoring. On the one
hand it is suitable for integrating into an instructional plan various recent
educational imperatives such as using multiple teaching styles (Srisetamil
& Baker, 1995-1996), generating flexible tutorial responses (Reye, 1995),
and adapting a tutor's performance to changing situations (Van Marcke &
Vedelaar, 1995; Vassileva, 1995a-1995b). On the other hand it is valid for
multiple domains (Khuwaja et al., 1996) involving conceptual and/or
procedural contents.

COGNITIVE THEORY OF INSTRUCTION GENERIC ARCHITECTURE OF ITS

TOOLS FOR BUILDING ITS

Pedagogical
requisites

Requisites
Of design

Figure 1. Underlying basis involved in the design of tools for building
ITSs

In this paper, after reviewing different shells developed for building
ITSs, we describe the requirements for the components of a tutor obtained
from a comparative/parallel analysis of a cognitive theory of instruction
(Section 2) and a proven generic architecture (Section 3). These
requirements are integrated inside the Instructional Plan of the generic
architecture in Section 4. In Section 5 we present the IRIS Shell for ITSs,
illustrate the process of constructing an actual ITS using the IRIS Shell,
and present an example of an actual tutor we constructed for mathematical
symbolic differentiation. Finally, in Section 6 we draw some conclusions.

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

343

Shells for building ITSs: A review.

The goal of developing shells for building ITSs has been considered as a
main focus by the ITS community. In this subsection we briefly describe
some of existing systems relevant to our work.

IDE-Interpreter (Russell, 1988) is a planner-based adaptive tutoring
system which automatically generates instructional courses. It uses
knowledge structures produced by IDE (Instructional Design
Environment) as knowledge sources to guide the process. IDE (Russell et
al., 1990) is a hypertext-based tool whose aim is to provide assistance to
the designer in creating a course; for this purpose the knowledge
describing the course’s content and structure and the set of rules
corresponding to the instructional method must be supplied. Due to the
great amount of knowledge that must be specified when generating a
course, initial course construction is a complex task for the designer.
Nevertheless once a course is generated, it can be reused or modified.

GTE (Generic Tutoring Environment) defines a formalism for
representing the instructional expertise of experienced human teachers in
terms of instructional tasks, methods and objects (Van Marcke, 1992). The
underlying assumption of GTE is that this knowledge is not specific to any
individual situation, and can be generally re-applied in a variety of
situations or to completely new domains. Instructional tasks are the
building blocks of an instructional process; the great majority are very
general (test, teach,...). An instructional method is a knowledge-based
description of a procedure for carrying out an instructional plan. It includes
context-dependent knowledge in order to execute tasks. The objects are
instructional primitives manipulated directly by the knowledge sources and
the instructional methods. GTE provides a library of instructional tasks,
methods and objects that can be used to author a new teaching strategy. It
collects the knowledge that human teachers use during the instructional
process but lacks a formal theoretical basis. The author argues that existing
theories are so weak that they are largely irrelevant for computational
purposes.

FITS (Framework for ITSs) (Ikeda & Mizoguchi, 1994) is a
framework for building ITSs. It is developed to examine what functions
can be realized as a domain-independent framework among those which
are needed in ITSs. Its final goal is to identify those generic instructional
functions and provide a set of building blocks useful to cover essential
tasks for teaching. Following expert system technologies, each building
block is designed as a domain-independent problem solver for its
corresponding generic task. FITS is totally oriented to knowledge
engineers and does not offer any suitable interface for human teachers who
may be non-experts in the computational area.

Arruate, Fernandez-Castro, Ferrero and Greer

344

COCA (CO-operative Classroom Assistant) is a system developed to
allow for authoring ITSs. It makes a clear distinction between three types
of knowledge relevant to the design of an ITS (Major & Reichgelt, 1991).
The first type of knowledge concerns the representation of the material to
be taught or domain knowledge representation. COCA uses a simple
object-oriented representation language by which each fragment of domain
knowledge is represented as a frame with a number of user-defined
attributes and attribute values. The second type of knowledge, i.e. teaching
strategy, concerns the way in which the material is to be taught. Finally,
COCA includes some meta-strategic knowledge to determine the
conditions under which to apply a certain teaching strategy as well as to
revise a teaching strategy in the light of previous results. For representing
both strategic and meta-strategic knowledge COCA uses production rules
that must be constructed by teachers. The difficulty of specifying a large
amount of knowledge with rules is one of the bigger weakness attributed to
COCA (Major, 1995). Trying to solve this problem and using COCA as a
kernel, REEDEM (Reusable Educational Design Environment and
Engineering Methodology) (Major, 1995) offers graphical windows to
assist teachers with the task of authoring.

Regarding most of the shells introduced above, one aspect that
deserves special mention is the difficulty instructional designers find when
they confront the interfaces necessary for developing the different
components of an ITS. First, many instructional designers are non-experts
with computational field; moreover, building even the most simple tutor
requires such a large amount of data that is very hard for the instructor to
specify the system requirements. Another weakness of these shells is that,
although some of them include or observe various pedagogical principles,
none of them incorporates a whole teaching-learning theory.

Many other ITS shells have been and are now being developed, but
they are less relevant for our work. In some of them, for example in the
Eon system (Murray, 1996; 1998), the initial approach is quite different.
Eon has been designed under the assumptions of a user base-line similar to
typical users of commercially available authoring systems for traditional
computer-based teaching. As such, many of the tools supported in standard
CBT authoring systems are included as basic tools in Eon. In other cases,
for example CREAM-Tools (Nkambou et al., 1996), they are focused in
only one of the components associated to the architecture of an ITS. The
main goal of CREAM-Tools is to facilitate instructional designers to
generate curricula.

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

345

A PRACTICAL COGNITIVE THEORY OF INSTRUCTION

Advances in psychology of learning, especially in our understanding of
higher-order cognitive processes, have led to a steady evolution in
understanding the teaching-learning process. Instead of viewing the learner
as an agent reacting to the stimuli generated by the teacher, the learner is
considered to be an active participant in the teaching-learning process
(Weinstein et al., 1986). From this learner-centred perspective we
developed a cognitive theory of instruction, the CLAI Model (Arruarte et
al., 1996a), that integrates issues about human learning, cognitive
processes, and learning strategies together with aspects from teaching
processes. The theory, based mainly on Gagné’s (Gagné et al., 1988) and
Shuell’s (Shuell, 1985) ideas, can be used to guide the practical
development of ITSs. With the same goal of driving automated
instructional design and development, Merrill and the ID2 Research Group
(1996) developed Instructional Transaction Theory, a set of prescriptions
for determining appropriate instructional strategies to enable learners to
acquire instructional goals. As with the CLAI Model, Merrill's theory is
based on Gagné´s ideas.

The CLAI Model integrates cognitive processes (CPs), instructional
events (IEs) and instructional actions (IAs) within a three-level framework
that relates them. CPs are the psychological processes or mental activities
that have to happen inside the student in order to achieve learning about a
particular chunk of content. IEs are classes of events that occur in a
learning situation. Each event works by providing the external conditions
of learning. External conditions refer to various ways in which the
instructional events outside the learner activate and support the internal
cognitive processes of learning. Finally, IAs are instances of instructional
activities that the system uses to provide instruction about both specific
contents of the teaching domain and learning strategies.

Gagné (Gagné et al., 1988) made an early attempt to relate learning and
instruction across CPs and IEs and his theory has been shown to provide
an adequate basis for integrating more modern educational practices (Petri
et al., 1987). Gagné's IEs are appropriate for various kinds of learning and
they provide a general framework that must be adapted for each particular
instructional situation (tutorial programs, drill and practice, simulations,
etc.). Figure 2 shows a snapshot of the links relating the levels of CPs and
IEs (two superior levels) adopted in the CLAI Model from the ideas of
Gagné.

A
rruate, F

ernandez-C
astro, F

errero and G
reer

346

LEVEL OF

COGNITIVE

PROCESSES

LEVEL OF

INSTRUCTIONAL

EVENTS

LEVEL OF

INSTRUCTIONAL

ACTIONS

Reception of

neural impulses

Gainning

attention

Expectancy

of the results

Informing

lessons

objectives

Retrieval

of items

Retrieval

to working

memory

Selective perception

of the patterns

Presenting

the stimulus

material

Semantic

encoding

Providing

learning

guidance

Responding with

a performance

Eliciting

performace

Reinforcement Generalizing

performance

Retention

and

transfer

Providing cues that

are uses in recall

Enhancing

retention

and transfer

Showing

domain

significance

Informing

objectives

General

review

Example

based explanation

Explicit relation

image

Graphic test

Matching

pairs

Pointing

in graph

Encouraging

the learner

Bug

explanation

Misconception

explanation

Similar

wrong answer

based explanation

Beep
Showing

content

significance

Prerequisite

review

Similar correct

answer based

explanation

Showing

a message

Expert

simulation

Pointing

in test

Operating

partially

Showing

the answer

Step-by-step

explanation

Changing/flashing

screen

Last session

review

General

explantation

Analyzing

an error

Own

elaboration

• • •
• • •

• • •• • •• • •• • •

Figure 2 - A snapshop of links relating three leves of the CALI Model (adopted from Arruarte et al., 1996a)

Analogy based

explanation

Explicit

relation explanation

When apply or

not explanation

Explicit relation

example

Writing

answer

Test

Stopping

simulation

Solving problems

about exercise

question

Evaluating

with own

criteria

Evaluating

with

fixed criteria

Congratulating

the learner

Counter example

based explantation

Brief

explanation
Choosing correct

answer

Crossword

Operating

totally

Filling

in gaps

Providing

feedback

Explicit relation

simulation

E
a

ch
 IE

 h
a

s b
e

e
n

 in
sta

n
tia

te
d

 in
 o

u
r th

e
o

ry in
 a

 g
ro

u
p

 o
f co

n
cre

te
 IA

s. In
th

is w
ay a

 sin
g

le
 IA

 m
ay re

fin
e

 se
ve

ra
l IE

s d
e

p
e

n
d

in
g

 o
n

 th
e

 co
n

te
xt o

f
u

se
, a

n
d

 th
e

re
fo

re
 it m

ay trig
g

e
r se

ve
ra

l C
P

s.
 T

h
e

 re
m

a
rke

d
/sh

a
d

e
d

 a
re

a
 o

f

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

347

Figure 2 indicates that the three IAs Last session session review,
Prerequisite review, and General review can be used indistinctly to refine
the IE Retrieval to working memory and therefore each of them can trigger
the CP Retrieval of items.

By using IAs the system provides instruction about both the contents of
the teaching domain and about learning strategies. In this way, the more
complete the set of IAs, the greater the flexibility and power of the system
and, as a result, the possibilities of successful learning increase. So far we
have identified 45 IAs, many of which were integrated and tested in
INTZA (Gutiérrez, 1994). The rest of them were adopted after a deep
analysis of didactic software widely used in the local school environment
by the ORIXE team (Folch, 1993). IAs have been described as objects with
three associated attributes:

• Initiated-by : indicates whether the instructional action can be
initiated by the instructional agent, by the learner, or by either of
them.

• Instructional-event-refined: the instructional event/s that can be
refined using this instructional action.

• Cognitive-process-triggered: the cognitive processes that are
eventually triggered by the instructional action. Although this
information can be also obtained from the instructional events, it has
been included in order to provide greater expressivity.

For example, the instructional action General-explanation* is
represented in this way:

General explanation
INITIATED-BY: Instructor, Learner
INSTRUCTIONAL-EVENT-REFINED: Presenting the stimulus material, Providing feedback,
Retention and transfer
COGNITIVE-PROCESS-TRIGGERED: Selective perception of the patterns, Reinforcement,
Generalizing performance

Most of the identified IAs can be initiated either by the system or by
the learner. Thus following her own preferences, the learner can use an
individualized learning strategy. In order to successfully trigger the
adequate CPs, these strategies can be initiated by a wide variety of IAs
integrated into the ITS. Nevertheless, we think it is necessary to extend this
set of possibilities by providing the learner with a set of additional learning

* The ruled boxes and dashed lines of Figure 2 indicate graphically that the instructional
action general-explanation can be used to initiate either the instructional event
presenting the stimulus materia, providing feedback or retention and transfer and
therefore, can trigger the cognitive processes selective perception of the patterns,
reinforcement or generalizing performance.

Arruate, Fernandez-Castro, Ferrero and Greer

348

techniques. These techniques, named supported actions, can be initiated by
the learner at any point of the teaching-learning process. Note-book,
Summary window, Schema window and Underlining tool* are the four
supported actions that are widely recognised in the educational literature
(Hernández & García, 1991) as useful learning supports. Their goal is to
provide support for learning viascaffolding(Soloway et al., 1992), i.e.,
“providing a set of mechanisms that enable a student to perform a task,
but which fade away as the student becomes more expert”. Using
instruction, we try to encourage the student to activate the appropriate
cognitive processes in order to learn the presented information. However,
we have no guarantee of what the student will do. The student is free to
choose the kind of instructional actions she prefers and can select the
supported actions most suitable for her.

Two main requirements arise when we try to integrate this instructional
model into a learning environment or tutoring system. First, it is necessary
to define the required kind of instructional tutoring according to the
previously referenced three levels: CPs, IEs and IAs. Second, it is
necessary to select the most suitable subset of instructional and supported
actions depending on both the domain and the kind of learner.

INTZA’S KERNEL: A GENERIC ARCHITECTURE. SYSTEM
REQUIREMENTS FOR THE IRIS SHELL

Although most of the existing ITSs are individually crafted for specific
domains, an interest arises in developing generic ITS Shells valid for a
wide range of domains. TUTOR (Fernández et al., 1993) and INTZA
(Gutiérrez, 1994) were ITSs developed by our research group with this
eventual aim. TUTOR treated conceptual domains while INTZA is able to
work with both conceptual and procedural domains. By learning a
conceptual domain we mean learning and understanding both the concepts
of the domain and the relationships existing between conceptos.
Meanwhile learning a procedural domain implies also learning how to
execute procedures consisting of a sequence of defined steps. So we can
say that the architecture of INTZA generalises the architecture of TUTOR
by extending the kind of domains it can manage. TUTOR and INTZA

*Note-book: The learner uses an auxiliary tool, for instance a window, for
recording/copying relevant ideas from the text or paragraph.
Summary-window: The learner elaborates and writes out the essential ideas or concepts
of a text establishing their inter-relationships.
Schema-window: This is used to construct graphical representations of relevant
concepts and their relationships.
Underlining: The learner is allowed to underline some words or fragments of a text.

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

349

(both developed in LISP) were instantiated over the domains of teaching
elementary programming and electrical power plant process training,
respectively.

Figure 3 shows the components of the architecture of INTZA that
constitute its kernel. The components correspond directly to those of the
ITS basic architecture (Wenger, 1987; Sokolnicky, 1991). This running
architecture amounts to a crude Shell which can be used as a general
schema to develop new ITSs in similar domains. Next we briefly describe
each component and identify a set of requisite attributes related to its
internal structure.

• Domain is the explicit representation of the content to be taught to
the student. The Domain Component is composed of the Pedagogic
Domain and the Domain Expert. The Pedagogic Domain contains
the subject matter i.e. the set of topics to be taught (procedures,
facts, and typical problems or malfunctions) organized from a
pedagogical point of view. The Domain Expert encodes the expert’s
abilities for carrying out procedures and for detecting and solving
problems and correcting malfunctions. It is used to provide the
trainee with exemplars of expert operations as well as to compare
trainee and expert performances in order to identify differences and
potentially reveal deep errors. The hierarchical representation of the
Pedagogic Domain (based on an extended genetic graph) is formed
by a conceptual network where each node represents a topic to be
taught. Relationships existing in the domain are expressed using
links between nodes. Moreover topics are described using a set of
descriptors which give the necessary meta-information for traversing
the network.

It is necessary for this component to be able to represent the
domain in terms of the referenced structural elements, i.e. topics,
relationships and descriptors. INTZA works with physical processes
and has the ability of simulating these processes. If an intended
domain has such characteristics and simulation is required, one
would have to specify and implement the Domain using procedural
and heuristic information. This would be needed to facilitate the
analysis of the learners’ responses to different scenarios presented as
practical exercises.

Arruate, Fernandez-Castro, Ferrero and Greer

350

TUTOR

Trainee
Model

Student Model

Trainee
Manager

Didactic

Supervisor

Didactic Module

Training
Dispatcher

Didactic
Instructor

Dialogue
Manager

Interface

Pedagogic
Domain

Domain

Domain
Expert Student

Instructor

Figure 3. INTZA’s kernel

• Student Model records information about the student´s skills and
knowledge acquired during the teaching sessions. The Student
Model consists of the Trainee Model and the Trainee Manager. The
Trainee Model records the long-term characteristics of the user
together with her acquired knowledge and skills. The Trainee
Manager analyses, critiques, and evaluates the trainee's interactions,
and consequently updates the Trainee Model. The Student Model is
based on an overlay approach extended in order to represent
misconceptions. A declarative description is used to characterize
both the knowledge of the student and her learning objectives.

It is necessary for this module to specify both the initial
characteristics of each learner and the kind of learner interactions
that will be treated by the tutor (student´s objectives).

Pedagogic
decision

level

Executive
level

 Level 2
level of IOs

Level 4
level of TGs

Level 3
level of ISs

Level 1
level of Contents

Figure 4. Layers in the Instructional Plan of INTZA

• Didactic Module plans and performs the teaching/learning session.
The Didactic Module supports two different training styles: guided

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

351

training and free-exploration. This module generates, re-plans and
carries out the Instructional Plan (IP) for the session. In INTZA, the
IP is organised into four layers (Figure 4): Contents, Instructional
Objectives (IOs), Instructional Strategies (ISs) and Tutor Goals
(TGs). The first one consists of a sequence of contents (concepts
and procedures) to be acquired by the learner. The second layer
represents a sequence of IOs (cognitive skills) that the tutor wants
the student to achieve in the training session – currently
implemented IOs are extracted from Bloom´s taxonomy (1956). At
the third layer, each IO is refined into a sequence of ISs. ISs include
activities for both programming the session and guiding and
motivating the student during the accomplishment of an IO. Finally,
at the fourth level each IS is refined into a sequence of TGs. The
TGs are the basic actions that the tutor has to execute in order to
accomplish an IS. The first three layers in the IP correspond to the
pedagogical decision level, which reflects the pedagogical decisions
developed by the tutor, and the last one corresponds to the executive
level, which reflects the refinement of the IP in directly executable
tutor goals. During the session, each IO is refined into a sequence of
Instructional Strategies (ISs), meanwhile, each IS is refined in a
sequence of the Tutor Goals (TGs).

This component is structured in several cooperating submodules:
i) the Didactic Instructor generates the IP for the session, deciding
which IOs should be reached and which IEs should be applied
during the training process; ii) the Training Dispatcher carries out
the IP; iii) the Didactic Supervisor decides how to treat the new
conditions in the session caused by the trainee's interactions and how
to integrate this treatment in the IP.

The Didactic Module uses a set of IOs, ISs, TGs and all the rules
and plans related to their selection and refinement. To treat special
situations such as errors, students requests, unforeseen changes in
the Student Model, and changes in the available time for the session,
the tutor introduces special strategies for describing, correcting and
recovering from errors as well as for responding to the student´s
objectives and changes in the student model. So, the Didactic
Module is described in terms of Instructional Objectives,
Instructional Strategies and Tutor Goals together with the set of
plans and rules to select them. In Section 4 we show the relationship
between the CLAI Model (CPs, IEs and IAs) and the pedagogic
decision level of the instructional plan of INTZA (Contents, IOs,
ISs).

• Interface / Dialogue Manager copes with the communication process
between the Tutor and the human agents.

Arruate, Fernandez-Castro, Ferrero and Greer

352

The Interface / Dialogue Manager would normally be developed
separately for each ITS, as it is completely depending on the domain.
So at interface level, it is necessary to specify the set of necessary,
tutor-specific graphical tools and communications channels.

The INTZA kernel comprises an already implemented core which can
be adapted to building new tutors sharing the same structure according to
the requirements specified by human instructors. The INTZA system was
developed following an object-oriented design and implementation, and
contains several rule-based modules which determine the nature of the
instructional support tools described in this paper.

INTEGRATING THE CLAI MODEL WITH A TUTOR SHELL

Taking into account the architecture schema defined by the INTZA kernel
and its concrete specification and implementation, the production of a new
tutor maintaining its structure imposes a set of requirements over the
contents of each one of the identified components.

The IRIS Kernel: Instructional Planner

The integration process is especially relevant in the module responsible for
the pedagogic decisions of the system, i.e. in the Didactic Instructor
module that builds and executes the Instructional Plan (IP). The IP defines
the behaviour of the tutor during the whole teaching-learning session. It is
responsible for deciding what to do next at each point during the session.
In order to be effective, the IP requires both domain-dependent and
domain-independent knowledge about instruction (Macmillan et al., 1988).
The former is required for capturing instructional methods of expert
teachers for a particular subject area. The latter is required in order to
improve cost-effectiveness in developing processes for tutors in new
domains. In section 5 we will show how both kinds of knowledge are
treated in our system.

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

353

 Level 2
level of IOs

Level 1
level of Contents-BLUs

Level 4
level of TGs

Level 3
level of ISs-IAs

level of EIs

level of CPs

Figure 5. Layers in the Instructional Plan

In order to fully integrate the aspects considered in the CLAI model we
include two new levels in the INTZA’s IP: those of the Cognitive
Processes (CPs) and Instructional Events (IEs). The former corresponds to
the set of mental activities in which the student must be engaged for the
learning to take place; the latter corresponds to the events that the system
carries out in order to activate the required cognitive processes in the
student’s mind. Figure 5 shows the modified/final IP including the two
new layers.

Focusing just on the pedagogic decision level, formed by the first five
layers, the main requirement for building an ITS that integrates aspects
from the CLAI Model and from the generic tutoring system architecture, is
to specify the preferred instructional tutoring method in terms of BLUs* ,
IOs, CPs, IEs and IAs.

The structure of the instructional plan determines the basic cycle of
general activities of the tutor:

1. determine the next Basic Learning Unit to teach

2. determine the Instructional Objective to reach

3. select the Cognitive Processes for reaching the previously chosen IO

4. refine the CPs into a sequence of Instructional Events

5. select the most suitable Instructional Actions for applying these IEs

An example of an IP is shown in Figure 6. It is based on the
mathematical symbolic differentiation domain and illustrates a possible
refinement of the IP for teaching a particular BLU, specifically a
procedural rule for differentiating a product expression.

* Basic Learning Units (BLUs), described in detail in subsection 4.2, refer to those
minimal contents of domain knowledge to be taught to the learner.

Arruate, Fernandez-Castro, Ferrero and Greer

354

Product rule: "rule for differentiating a product expression" Level of
BLUs

Level of
IOs

KNOWLEDGE(Product rule) APPLICATION(Product rule)

Retrieval of
items

Expectancy of the
results

Selective
perception

Responding with
performance

Level of
CPs

•••

Level of
IEs

Informing-
objectives

Retrieval-working-
memory

Stimulus-
material

Eliciting-
performance

Level of
IAs

Showing-content-
significance

Prerequisite-
review

TestGeneral-
explanation

Figure 6 - Example of a IP

Once the last layer of the pedagogical decision level, i.e. level of IAs,
is obtained, the tutor refines each IA in a sequence of Tutor Goals (TGs) or
directly executable procedures. For example, the IA Prerequisite-review is
refined as the sequence of TGs: obtain prerequisite list, show prerequisite
until last prerequisite. Each one of these TGs can be executed directly by
an implemented algorithm.

The process of building the Instructional Plan is implemented by
means of a rule-based paradigm. Each level of activity involves a particular
set of rules used to refine the current level of the IP in terms of the
subsequent level. The set of rules is automatically customized for each
tutor, depending on the requisites specified by the human instructor;
namely characterization of the domain, the kinds of student who are going
to use the teaching-learning system, and the pedagogical aspects of the
tutor. These requisites have a direct relationship with the rules identified in
an initial hierarchy. In Section 6 we will show how the initial hierarchy is
customized according to the specified requisites.

Domain knowledge requirements for IRIS

Instructional Design Theories study in detail knowledge representation
paradigms from an educational perspective; they are primarily concerned
with prescribing optimal methods of instruction to bring about desired
changes in learner knowledge and skills. In particular, these optimal
methods must specify what must be learned (Scandura, 1983) and some
way to represent knowledge. There are three basic features relating to ITS
design that are taken into account in different Instructional Design
Theories: learning units or kinds of teaching-learning contents,
relationships between elements, and skills to be reached.

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

355

Basic Learning Units

Instructional design theories based on Merrill’s (1983) ’Component Display
Theory’ present facts, concepts, procedures and principles as the Basic
Learning Units (BLUs). From this perspective it is possible to determine a
complete schema of knowledge representation organized from three
different views: conceptually, when a conceptual structure (taxonomy of
parts or types) is used to organize the concepts and the facts, e.g. in the
TUTOR system (Fernández-Castro et al., 1993); procedurally, when a
procedure based structure is used for the domain organization, e.g. in the
INTZA system (Gutiérrez, 1994); and, theoretically, when a structure
based on principles or theories is used for this organization, e.g. in the
WHY system (Stevens et al., 1982).

Once a particular domain is chosen, the immediate task is to determine
the kind of characterization required to cover the contents to be conveyed
to the student. For instance, in the mathematical symbolic differentiation
domain, for practicing differentiation rules, two types of BLUs, namely
concepts and procedures, are sufficient to represent the domain. The
selection of one BLU or another will determine, amongst other things, the
kind of specific internal representation. For example, a concept (see
subsection 5.1) will have, as well as other attributes, several associated
texts, a difficulty level, and assessment items. Meanwhile, a procedure will
need to include its steps or actions, some application examples, and
practice-tests.

Relationships between elements

In order to establish a pedagogical view useful for selecting and/or
sequencing the content, Reigeluth (Reigeluth et al., 1978) references four
different kinds of relationships between teaching contents of the same
type:

• Requisite relationships. E.g.: "The learner must know X (or must be
able to do X) before learning Y (or be able to do Y)". They appear in
the TUTOR (Fernández et al., 1993) and INTZA (Gutiérrez, 1994)
systems.

• Conceptual relationships. E.g.: "X is Y-type ", "X is part of Y".
These appear in TUTOR and INTZA as well.

• Procedural relationships. These are either order relationships, e.g.:
"The learner must do X before doing Y" (INTZA) or decision
relationships, e.g.: "Given a condition A, the learner must do X
rather than Y or Z".

Arruate, Fernandez-Castro, Ferrero and Greer

356

• Theoretical or principles-based relationships. These can be cause-
effect relationships, e.g.: "Y is the effect of X" as in the WHY
system (Stevens et al., 1972), or prescriptive relationships e.g.: "In
order to achieve Z it is necessary that X and Y happen in a specified
order".

So, the BLUs include in their representations some attributes which
relate them to one another. Some relationships we propose and use are is-a,
part-of and prerequisite (see subsection 5.1). In our mathematical
differentiation domain we identified three type of relationships: requisite,
conceptual and procedural.

Instructional Objectives

Instructional Objectives (IOs) refer to the application of particular skills
over BLUs. They form a useful part both in planning the teaching process
and in creating procedures to assess the learner’s knowledge. The
instructional objectives can be hierarchically organized in order to
establish a structure for the didactic activities. The most accepted
taxonomical classifications in the psycho-educational field have been the
taxonomy of teaching objectives (Bloom et al., 1956) and the taxonomy of
learning objectives (Gagné et al., 1988). The former identifies three
different learning categories: cognitive, affective, and psychomotor. Inside
the cognitive category, six IO have been defined: knowledge,
comprehension, application, analysis, synthesis and evaluation. INTZA
uses the objectives knowledge, applications and analysis. Gagné identifies
six categories of learning: intellectual skills, cognitive strategies, verbal
information, motor skills, and attitudes; only the first three are valid for
acquiring static knowledge and problem-solving skills.

Depending on the domain and the characteristics of the various
learning activities proposed by the instructor, each BLU in the domain can
be completed by adding the skills (i.e. IOs) that must be developed in the
learner. For instance, a BLU procedure can be learned superficially just by
knowing its associated steps, or in a deeper way by knowing how to
execute it.

In the example of Section 5, we specify two of Bloom´s IOs:
knowledge or remembering of ideas or phenomena (e.g. the learner knows
the definition of the procedural differentiation rule for a product
expression) and application or correct use of the procedure (e.g. the
learner is able to differentiate a product).

These three main domain knowledge features (basic learning units,
instructional objectives and relationships between elements) are
fundamental to many Instructional Design Theories, and also are needed
by IRIS for generating the domain model related to each new tutor. Other
systems integrate these features, but not in a particularly explicit way. IRIS

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

357

requires an explicit representation of these features and so provides the
instructor with tools (as shown in subsection 5.1) for specifying their
actual values. These features identify two different levels in the domain
representation (Arruarte & Fernández, 1995), i) Concrete Level, focused
on how to represent the basic contents or elements associated with the
teaching-learning process (i.e. basic learning units) and ii) Pedagogical
Level, focused both on the representation of the skills to be mastered by the
learner (i.e. instructional objectives) and the relationships between these
elements in order to get an effective teaching-learning process (i.e.
relationships). Similar pedagogical relationships between learning units or
contents to be learned by the students are also represented in the ECSAI
system (Gavignet, 1994).

Learner Requirements in IRIS

Although the Learner Model or Student Model is a widely recognized
component of ITSs there is no consensus about the information it should
include. Moreover, there is debate about whether or not it is an essential
component in order to achieve an effective and efficient instructional
system (Holt et al., 1994).

From a pragmatic point of view we consider the learner model as a
needed component whose information is a basis for the Pedagogic Module
to make individualized planning decisions and thus to produce a more
efficient instruction process. Even though "learner models by themselves
achieve nothing" they do provide other components with useful data for
diagnosis, sequencing content, determining the level of explanations, and
so forth (Self, 1990).

Different criteria have been used to classify learner models. Kok (Kok,
1991) classifies these criteria on the basis of several parameters: why are
users modelled, who is modelled, what is modelled, and how are users
modelled. Verdejo (Verdejo, 1992) classifies them along the following six
dimensions: the use of the model, the extent of the user’s domain
knowledge to be represented, shadow or deep model, generic or individual
model, permanent or temporal model , and predefined or inferred model.
These six dimensions are valid for both classifying and defining learner
models; moreover, the last three are related to model construction
(Verdejo, 1992).

The ideal learner model should include all the aspects related to
behaviour and knowledge that influence the learning process (Wenger,
1987). In spite of this assumption, IRIS generates a pragmatic learner
model that, in the sense of Evertsz and Elsom-Cook (Evertsz & Elsom-
Cook, 1990), is "accurate enough as is necessary for guiding the tutorial
actions of the teaching-learning system".

Arruate, Fernandez-Castro, Ferrero and Greer

358

The learner is modelled in IRIS following a successfully tested
classical approach, based on the characteristics identified in the learner
model of INTZA, is a passive-descriptive model that represents the
acquired knowledge by means of the overlay technique (Carr & Goldstein,
1977). It is a shallow, individual, system inferred student model containing
a combination of temporal and permanent information. The model, which
is built up during the teaching-learning process, defines the individual
learning characteristics and the evolution of each student. It includes new
characteristics about the student such as learning preferences, used
supported actions, etc.

The IRIS shell also requires that the grain-size of the learner model
representation be taken into account in the final tutor. As a consequence,
the level of adaptability in tutors generated with IRIS can vary; the more
fine and specific is the representation of the learner specified by the
instructor (see subsection 5.2), the more adaptation is obtained.

Pedagogic Knowledge Requirements for IRIS

Pedagogic knowledge is the core of any tutoring system. It is responsible
for the pedagogic decisions of the system as it builds and executes an
Instructional Plan (IP) adapted to the individual learner considering his or
her curriculum needs and learning characteristics. Specifying the
pedagogic knowledge for planning instructional sessions is one of the most
difficult aspects that instructors face in the process of building ITSs using
shells. This becomes even more difficult if this knowledge has to be
represented by the instructor in a rule-based mode (Major, 1995).

Several planning approaches supported by decisions about different
aspects give rise to a range of tutoring styles. In particular, tutors generated
by IRIS share an incremental planning schema of minimum commitment.
In subsection 4.1 we introduced the general tutor planning activities in the
generation of the instructional plan. In the first level a decision is made
about the next BLU to teach but not about the whole session plan. The IP
(Figure 5) is carried out by successive refinements to the basic actions to
execute. Later during the session time, possibly in response to the
changing tutorial situations, an adaptive opportunistic plan-based approach
is used to allow the plan to be revised and adapted. Each level is refined in
the next level by means of rule-based systems which implement
instructional decisions. In order to build the planner for a new tutor, it is
necessary to know the contents for each level of the IP and the
corresponding sets of refinement rules. The level contents are: BLUs and
kinds of IOs considered in the particular domain, CPs and IEs identified in
the teaching-learning process and IAs chosen for refining the IEs in that
particular tutor.

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

359

With the aim of facilitating the description of planning knowledge,
IRIS provides the instructor with the possibility of specifying planning
knowledge in a non-direct or non-explicit form (a concrete example of
specification in a non-direct way is illustrated in subsection 5.3). In this
way the instructor is not obliged to explicitly define the different set of
refinement rules needed for planning.

USING THE IRIS SHELL

Taking the previous analysis as a starting point, our goal has been to build
a set of tools for helping to develop ITSs. We aim to facilitate teachers
attempts to build ITSs for those domains in which they are experts. The
human instructor must establish the characteristics or requirements of the
target tutor, which in turn are used to adapt and to produce the final tutor.
Thus this resulting tutor uses a general planning cycle generating,
executing and re-planning the Instructional Plan, while maintaining the
representation structure and the reasoning schema of INTZA kernel with
changes only in the content of the components. This methodology leads to
the design of the IRIS Shell (IRakaste-Ikaste Sistema or, in English,
Teaching-Learning System) which utilizes the planning cycle and basic
architecture of INTZA and incorporates the CLAI Model for instruction.
Thus, the IRIS shell has the following functionalities:

• assisting with data acquisition related to the nature of the desired
tutoring system, the semantics of the teaching domain, and to the
final users of the tutoring system;

• determining a tutor architecture derived from the requirements
specified;

• providing the final tutoring system by selecting and/or generating
the necessary set of rules and objects in terms of the previously
specified properties of the tutor, domain and users.

The internal structure of the tutors generated with IRIS closely
resembles the INTZA kernel and shares with INTZA certain activities (i.e.
instructional planning, selection of contents and/or instructional activities,
and so forth).

The process of authoring a new tutor using the IRIS Shell consists of
two phases (Figure 7). During Phase 1 a skeletal architecture of the
resulting tutor is generated on the basis of the requirements specified by
the human instructor. These are introduced and used to adapt the generic
architecture of INTZA to the tutoring domain. The requirements are
grouped around four basic aspects: the characterization of the tutor, the
description of both the Concrete Level and the Pedagogical Level of the
teaching-learning domain, the learner characterization, and the interface

Arruate, Fernandez-Castro, Ferrero and Greer

360

characterization. These aspects, as we will see in next subsections, are not
independent from one other. In Phase 2 the contents of each module
established in Phase 1 are defined and the final tutor system is produced.
Some of these contents are authored by the teacher (e.g. contents of the
domain by means of a set of related BLUs instances, concrete presentation
forms, etc.) and some others are generated automatically by IRIS (e.g. the
rules for refining the instructional plan).

Generator
of rulesTranslator

Generator of the
tutor structureREQUIREMENTS

(first phase)

CONTENTS
(second phase)

Skeletal structure
based on INTZA

TUTOR

IRIS

Figure 7. Phases in building a tutor

Next we will discuss the requirements associated with the Domain, the
Learner, and the Tutor that must be known in order to fully specify the
IRIS Shell; it is responsibility of the human instructor authoring them. A
study of the different types of requirements for the Shell together with the
internal structure of INTZA leads to a minimum basic architecture for the
IRIS Shell (see Section 5.4). On the other hand, interface issues and
diagnosis requirements in the IRIS Shell are undertaken in other research
work, which is beyond the scope of this paper (Ferrero et al., 1996).

Throughout the remainder of this paper we will use the domain of
mathematical symbolic differentiation to illustrate the process of building a
specific ITS, called “Maisu tutor”, by using the IRIS Shell. In short, as the
human instructor or course developers uses the IRIS Shell to construct
each component of the new tutor, the following choices must be made:

• With respect to the Domain: specify basic learning units,
instructional objectives, presentation and evaluation forms, and
relationships between contents.

• With respect to the Learner: specify learner characteristics and
learner goals.

• With respect to the Pedagogic: specify instructional method,
supported tools and motivation resources.

The generic requirements for the Maisu tutor are listed below:

Domain (mathematical symbolic differentiation)

• The required Basic Learning Units are concepts and procedures.

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

361

• In general, the skills to be developed in the learner are knowledge
and application.

• The tutor should use the following types of presentation and
evaluation forms: texts, examples, tests, and fill-gaps.

• The sequencing relationships used by the tutor are prerequisite and
next.

Learner (assuming an adult learner of mathematical symbolic
differentiation)

• The adaptability of the system is based on the following learner
characteristics: type, motivation, preferred learning method, and
preferred session duration

• The learners´ interventions will refer to the control of the session
(sleep, follow, finish) and the session development (ask for
explanation, solve exercise, agree, disagree, repeat explanation,
repeat exercise, ask for exercise)

Pedagogy (assuming a coaching style of instruction)

• The instructional method selected is guided learning.

• The supported tools selected for the tutor are summary window and
underlining tool.

• The motivation resources include beep, attention/alert message,
provide congratulation and give encouragement.

Keeping in mind these particular design decisions for the Maisu Tutor,
we will show incrementally the hierarchy of objects generated by the IRIS
Shell for such a tutor. It is generated by growing an initial basic hierarchy
representing the main components of the Maisu tutor (Figure 8).

Maisu
ITS

Domain
Model

Learner
Model

Pedagogic
Module

Interface

Figure 8. Structure of the main components of the Maisu ITS

Arruate, Fernandez-Castro, Ferrero and Greer

362

Building the Maisu domain: basic symbolic differentiation

Four different types of information are included to describe the domain:
meta-information for characterizing the domain in a general way, basic
learning units, instructional objectives and requisite relationships. The
former has been included with the aim of describing the main goal of the
tutor and the interest of the domain.

Figure 9. Specification of the BLU Concept in Maisu

• Meta-information for characterising the domain in a general way.
Two attributes have been included: General Goal and Relevance.
The human instructor will select one or both; however it could be
possible to define new informative perspectives. The
selection/inclusion of these slots ensures that the final tutor include
instructional actions for informing the learner about the goals she
can get working with that domain.

• Basic Learning Units. IRIS allows the instructor to define any
instructional domain in terms of the already referenced four BLUs:
concepts, procedures, principles, and facts. The differentiation
domain can be represented using mainly concepts (ex. "Derivative
concept" and "Derivative function") and procedures (ex. "Sine
derivative rule", "Add derivative rule"). Figure 9 shows the
specification of the concept BLU in the Maisu domain; the selected
characteristics are those shadowed.

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

363

Each BLU considered in the domain must be described at the
Concrete and Pedagogical levels. At the Concrete Level we record
exclusively the curricula requirements, i.e. the declarative
descriptions of the subject matter to be conveyed to the learner. The
Pedagogical Level defines a meta-level description of the domain
and includes descriptors such as IOs and Support Information. For
each BLU the set of skills to be worked are chosen; the particular
development of each skill is elaborated and further specified later,
independent of the associated BLU. At the Pedagogical Level, we
also specify the Support Information requisite indicating the
Difficulty Level attribute.

• Instructional Objectives. The default IOs used in the shell are those
of Bloom´s taxonomy (1956). In Maisu the IOs Knowledge and
Application have been selected as the main abilities to develop for
the basic symbolic differentiation domain (Figure 10). Both kinds of
objectives need a set of presentation forms (techniques which can
be used to introduce the domain concepts to the learner –text in the
example), evaluation form (techniques for assessing domain
concepts –test in the example), difficulty level (a refinement of the
difficulty level property associated to the corresponding BLU) and
estimated-time for acquiring that IO.

• Requisite Relationships. The defaults requisite relationships are
Prerequisite, Corequisite, Postrequisite and Next. They are used for
organizing, selecting and sequencing the BLUs (Reigeluth et al.,
1978). In Maisu we have identified the prerequisite and next
relationship.

Figure 10. Specification of the kind of Instructional Objective: Knowledge

Arruate, Fernandez-Castro, Ferrero and Greer

364

Next the resulting class of concept BLU obtained from the
specification phase (Phase 1) is showed in a frame-like form (Table 1). The
form will be filled in Phase 2 as the domain expert creates each domain
concept. The Procedure BLU is described in a similar way. In the case of
Figure10, the prerequisite relationship has been selected and the
Knowledge and Application IOs have been chosen.

CONCEPT
identification:
is-a:
part-of:
difficulty level:
next:
prerequisite:
IOs: KNOWLEDGE
texts-knowledge:
tests-knowledge:
difficulty-level-knowledge:
estimated-time-knowledge:

PROCEDURE
identification:
is-a:
part-of:
steps:
difficulty-level:
next:
prerequisite:
IOs: KNOWLEDGE, APPLICATION
texts-knowledge:
tests-knowledge:
difficulty-level-knowledge:
estimated-time-knowledge:
texts-application:
examples-application:
tests-application:
fill-in-gaps-application:
difficulty-level-application:
estimated-time-application:

Table 1. Slots for the Concept and Procedure Frames of a BLU

For example, consider defining a new BLU named Derivative-
function using IRIS (Phase 2). As shown in Figure 11, first the instructor
chooses the type of the new BLU, concept in our example. After doing that
IRIS prompts the instructor to fill in values for each of the concept
attributes related to that concept (those represented above in Table 1). In
figure 11 the attribute identification of a Concept is being filled with the
value "derivative-function". When the instructor is finished with
specifying each BLU, IRIS generates all the internal associated instances.
Each BLU is created in this way.

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

365

Figure 11. Creating a new Concept

Figure 12 shows the domain objects generated by IRIS for Maisu
tutor represented in a part-of hierarchy. This organizes the Domain Model
in three sections: General Characterization, Descriptive Structure and
Descriptive Taxonomy of Instructional Objectives. The Descriptive
Structure groups the BLUs, IOs and the instructional resources used in the
representation of the differentiation domain.

Maisu
Domain
Model

General
Characterization

Descriptive
Taxonomy

IO
Knowledge

IO
Application

Text

BLU
Concept

BLU
Procedure

Fill GapExample Test

Descriptive
Structure

Figure 12. Part-of hierarchy of the domain objects generated in the first
phase by IRIS for Maisu tutor

Arruate, Fernandez-Castro, Ferrero and Greer

366

Figure 13. Specification of the Learner Goals

Learner modelling for Maisu

The characterization of the general kind of the learner for Maisu tutor, i.e.,
the prototypical aspects (curriculum, learner profile and learner goals)
are used not only to generate the Learner Model but also to determine the
kind of instruction that learners are going to receive. That is, there are
choices of using one or another group of Instructional Actions and the
possibility of recognizing different learner goals.

Learner goals refer to the goals that the tutor will be able to identify
after interpreting the student interventions. Goals have been split into two
groups (Figure 13) according to their functionality: control of the session
and development of the session. They collect the set of learner goals
identified in the literature by several systems (Barnard & Sandberg, 1994)
(Breuker et al., 1987) (Diaz de Ilarraza, 1990) (Fernández, 89) (Vadillo et
al., 1994).

Figures 13 and 14 show the properties used in IRIS for characterizing
the kind of learner and her goals in Maisu tutor. The learner characteristics
are separated into two groups: curriculum and learner profile (Figure
14).The former refers to the physical and professional aspects of the
learner, the latter refer to characteristics that influence the learning
process; so, they are the basis for tutorial decisions about Cognitive
Processes, Instructional Actions and communications ways between the
tutor and the learner. The learner goals are selected directly by the
instructor from a predefined set.

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

367

Figure 14. Learner Characterization for Maisu

The Learner Model finally generated by IRIS for Maisu is organized in
two parts Permanent Model and Dynamic Model (Figure 15). It collects
information not only from the requirements related to the learner but also
from the domain requisites in order to reflect the knowledge of the learner
and how it was acquired. The Permanent Model is updated at the end of
each session and is divided into three sections:

• Learner Characterization, which consists of Curriculum-Vitae and
Learner Profile;

• Learner Knowledge, which records the domain contents acquired by
the learner during the learning process including the achieved
Instructional Objectives, the errors made and the didactic materials
used; and finally

• Learner History, which consists of information about the evaluation
process of the Last Session and the collection of the most important
events of the whole Course.

The Dynamic Model exists just during the current session and is used
for updating the permanent model. It is divided into two components:
Session Characteristics, i.e. events occurring up to the current moment in
the session, and Learner Performance, which contains interaction
information about the learner such as texts presented, requests made, and
so forth.

Arruate, Fernandez-Castro, Ferrero and Greer

368

Maisu
Learner
Model

Permanent
Model

Curriculum Learner
Profile

Learner BLU
Concept

Learner BLU
Procedure

Learner
Error

Learner IO
Knowledge

Learner IO
Application

Learner
Text

Learner
Example

Learner
Test

Learner
Fill Gap

Last
Session

Learner
History

Dynamic
Model

Session
Characteristics

Learner
Performance

Course

Learner
Characterization

Learner
Knowledge

Figure 15. Part-of hierarchy corresponding to the Learner Model of Maisu
(phase 1) generated by IRIS

Pedagogic Knowledge in Maisu

At this moment, after specifying the domain and the learner characteristics,
just a few aspects remain to be fixed. They are the instructional method
that the target tutor will use, the supported tools, and the motivation
resources.

If BLU has prerequisite/s then learn first the prerequisite/s
BLU/s
If
 BLU-IPL.current-BLU = $BLU
 not(reached-blu-p ($BLU))
 not(empty-p $BLU.prerequisite)
 not(reached-BLU-list $BLU-prerequisite)

Then
 BLU-IPL.current-BLU := first($BLU.prerequisite)
 BLU-IPL.BLU-LIFO:= append(rest($BLU-prerequisite), $BLU,
 BLU-IPL.BLU-LIFO)

Figure 16. Rule corresponding to the prerequisite property

Tutors generated by IRIS share the same planning schema defined in
INTZA which is customized for each target tutor in terms of all specified
properties. As IRIS holds default rules and objects associated to several
defining properties, instructor selection is used to produce the final new
planner.

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

369

Figure 17. Specification of the tutor requirements

So, for example, if the instructor chooses the property prerequisite as a
relation requisite, the rule corresponding to prerequisite (Figure 16) is
included in the corresponding refinement rule set to be taken into account
for selection of BLUs in the new tutor Maisu. Thus, the set of rules
corresponding to each level of the IP is customized for each tutor built
using IRIS by means of the properties chosen by the instructor.

In the specification phase (Phase 1) the human instructor chooses the
most suitable instructional actions (e.g., beep, changing/flashing the
screen, congratulating the learner, etc.) according to the tutor and domain
characteristics. In the first IRIS prototype impact (audio-visual) resources
and messages have been identified. Finally, the Supported Tools indicate
supported action tools that the student can use. Shadowed attributes (in
Figure 17) are those selected for the symbolic differentiation domain in
Maisu.

Figure 18 represents a snapshot of the objects of the pedagogic
component generated by IRIS in Maisu. The module is composed of six
main aspects: the Instructional Method which in the particular guided
learning method includes the instructional plan, Learner Goals,
Instructional Strategies, Instructional Events and Instructional Actions.
Finally the Supported Learning Actions are also considered.

Arruate, Fernandez-Castro, Ferrero and Greer

370

Maisu
Pedagogic
Module

Guided
Learning

Instructional
Method Instructional

Plan

IP Level
BLU

IP Level
IO IP Level

CP

IP Level
IE

IP Level
IA

Plan Item
BLU

Plan Item
IO

Plan Item
CP

Plan Item
IE

Plan Item
IA

Cognitive
Process

Retrieval •••

Instructional
Strategy

Retention Stimulus•••

Instructional
Action

Message Make
Test

•••

Supported
Learning
Action

Summary
Window

Underlining

Learner
Goal

Sleep Ask
Exercise

•••

Encoding

Figure 18. Snapshot of the Part-of hierarchy corresponding to the
Pedagogic Module of Maisu

Significance of the IRIS Shell for Building ITSs

IRIS is a shell developed with the aim of facilitating the efficient
production of ITSs through software reuse. The main reason for taking
reusability issues into account in the ITS field stems from the fact that
building ITSs necessitates large and costly development environments and
significant amounts of time. The tools in these development environments
tend to require sizeable computing resources and are seldom suited for
developing both experimental research prototypes and practical teaching-
learning systems. Taking into account that prototype ITSs are built
incrementally through successive enhancements and refinements, the time
and cost of development is reduced if existing software and knowledge is
reused.

Concerning the construction of ITSs, IRIS considers knowledge
reusability at different levels (Arruarte et al., 1996b; Arruarte et al., 1997),
knowledge bases/data structures, libraries of teaching resources, libraries
of teaching strategies, reusability of modules and reusability of
architectures. The tutors built using the IRIS Shell, e.g. Maisu, reflects all
these levels of knowledge reusability. Maisu reuses knowledge and rules
bases, uses some of the teaching resources and strategies identified in
previously developed tutors, mainly in INTZA and TUTOR, reuses the
modules of the architecture of INTZA and also, reuses the whole
architecture of INTZA. The tutors built using the IRIS Shell focus on
reusability at the highest level, i.e. reusability of architectures.
Architecture reusability is achieved when capturing the whole architecture
of a previously developed system and using it for organizing new systems

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

371

(Krueger, 1992). In this sense, IRIS facilitates the development of new
tutors by reusing and customizing the whole architecture of INTZA. The
extra effort needed to adapt and integrate modular components with
functionalities of parts of the original tutor are eliminated.

Furthermore, the IRIS Shell not only reflects the reusability but also
promotes it. IRIS is a tool for developing applications generating the code
automatically. It is not necessary for the instructor to specify any
programming code, IRIS builds different teaching-learning systems
following only the requirements specified by human instructors by using
different graphical windows. The tutors built using IRIS, e.g. Maisu tutor,
are modular tutors developed under a modular philosophy. The modular
design of the components is the basis for generating reusable ITS software.

Building any system, including any ITS, from scratch requires three
main phases: analysis, design and implementation. The utilization of a
high level tool like IRIS greatly facilitates the system development process
by virtually eliminating the implementation phase and significantly
reducing the design phase.

When using IRIS to develop a tutor, the analysis phase involves high-
level decisions about each main component of the tutor (i.e. domain
module, learner model and pedagogic component). The domain component
analysis is supported by textbooks in the domain, previous teaching
experience of the instructor, and also user help provided by the IRIS Shell.
The outcome of the domain analysis will result in the necessary Basic
Learning Units (BLUs) for representing the domain, the Instructional
Objectives, and the selection and/or sequencing relationships between
BLUs.

Analysis involving the desired style of tutoring determines both the
learner model and the pedagogic module. The same basic type of learner
model is maintained in all tutors developed using the IRIS Shell, but the
analysis phase will determine the grain size of the learner model
representation, i.e. representations range from coarse to fine representation
of acquired knowledge. This analysis leads to specification of the learner’s
goals that the tutor must be able to identify and interpret. Concerning the
pedagogic module, the instructor must identify the instructional method for
the new tutor, the supported tools that the tutor will be able to offer to the
learner, and the motivation resources that the tutor will use.

The design of a tutor constructed with the IRIS Shell is implicitly
conducted by the instructor through selecting the different requisites and
characteristics offered by IRIS for each component. The implementation
phase vanishes as IRIS takes charge of generating the new tutor’s code
automatically.

Let us suppose that one wants to develop a new tutor for, say, symbolic
integration. This domain is very similar to that of differentiation in Maisu
tutor, so that one can presume many similarities with Maisu. In fact, one

Arruate, Fernandez-Castro, Ferrero and Greer

372

can generate similar learner and pedagogic modules but a different domain
component would be required. As pointed out in Section 5, the process of
building a new tutor using IRIS consists of two phases: requirements
specification and content specification. The specification of requirements
for the new domain can be represented using the same types of Basic
Learning Units (concepts, procedures), the same Instructional Objectives
(knowledge, application) and the same requisite relationships (prerequisite,
next). The difference arises in the content specification phase (second
phase) when we have to define integration rules instead of differentiation
rules.

In conclusion, a reflection on the process of building a new tutor based
on IRIS shows that the analysis phase is always required (to plan the
structure of the tutor), the design phase is considerably simplified (to select
parameters within the IRIS Shell and to design the domain knowledge
rules and interface), and the implementation phase is mostly automated
(with the exception of the interface).

A DEEPER LOOK AT THE ARCHITECTURE OF THE IRIS
SHELL

As mentioned in the previous section, the IRIS Shell works in two phases
which run sequentially. In the first phase, the tutor structure is generated
on the basis of requirements, and in the second phase the defined modules
are filled with contents. The basic architecture, therefore, includes the
following four main components (Figure 19): Generator of the Tutor
Structure, Object Generator, Rules Generator, and Interface.

KBn

KB1

RBn

RB1

Knowledge Bases Rules Bases

FINAL TUTOR

Knowledge
Bases

Rule
Bases

Tutor
Structure
Generator Skeletal

architecture

Object
Generator Rules

Generator

Interface IRIS

Data flow

Control flowGBC

Figure 19. Architecture of the IRIS Shell

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

373

The Generator of the Tutor Structure has a twofold function: to
customize the generic architecture of INTZA and to check the creation
preconditions and the completeness of the contents.

In order to customize the generic architecture of INTZA, taking into
account the particularities of the domain and the teaching method specified
by the instructor, a low level knowledge acquisition tool, GBC (see below)
is used together with the various knowledge bases of INTZA. A skeletal
architecture is generated by selecting the main components that will
comprise the final tutor.

Furthermore, it is necessary to check the creation preconditions and the
completeness of the contents in each phase in order to get a viable and
reliable tutor. It will not be possible, for example, to introduce particular
contents of the teaching-learning domain before characterizing the domain.

KBn

KB1

Knowledge Bases

Tutor
Structure
Generator Skeletal

architecture

Object
Generator

Interface IRIS

Data

Control

GBC

Requirements
specificaton

Contents
specification

FINAL TUTOR
Knowledge Bases

Classes hierarchy

Instances hierarchy

Figure 20. Partial schema related to the Object Generator

Once the skeletal architecture of the tutor has been produced, the
Object Generator completes and saves the declarative knowledge
associated to each component of the new tutor (its classes and instances). It
works in two different phases (see Figure 20):

1. The first phase, namely the specification of requirements, gives rise
to the needed classes of objects corresponding to the components of
the new tutor.

Arruate, Fernandez-Castro, Ferrero and Greer

374

2. The second phase, namely the specification of contents, generates
the corresponding attribute values to create pertinent instances from
the previously defined classes.

Both phases are supported by GBC (Generacion de Bases de
Conocimiento, in English, Knowledge Bases Acquisition). GBC (Elorriaga
et al., 1995) is a basic tool for generating Knowledge Bases (KBs). Its goal
is to facilitate the building of Knowledge Based Systems prototypes. GBC
acquires the abstract class specifications of a particular domain as well as
its instances. The tool allows us to create new KBs and modify and adapt
them to their particular needs using already existing KBs. GBC represents
each domain using an updatable internal format that finally is translated to
CLIPS code.

The Rules Generator works after the skeletal architecture of the tutor
and the first phase of the object generator have been completed. Its
function is to generate and/or select, the necessary sets of pedagogic
decision rules in order to get operative components for the tutor (as we
pointed out in subsection 4.1 tutors generated by IRIS are based on a rule-
based paradigm). The Rules Generator module is composed of a Selector
and a Generator. If we select default values in the first phase, as it was
shown at the beginning of Section 5, the Selector sub-module will be the
activated. If, on the other hand, we introduce new slot values, the
Generator will be activated instead.

RBn

RB1

Rules Bases

Object
Generator Selector

IRIS

Data

Control

FINAL TUTOR
Rule Bases

(load R-BLU-RR-Pre-1)
(load R-BLU-RR-Pre-2
(load R-BLU-RR-Nx-1)
(load R-BLU-RR-Nx-2)
(load R-BLU-RR-Nx-3)

Interface

Figure 21. Partial schema related to the Selector module

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

375

The current IRIS Shell prototype includes only the Selector sub-
component and does not contain the Generator yet. The Selector
customizes the whole set of rules existing in the initial rules hierarchy,
taking into account the requisites or requirements specified by the human
instructor (Figure 21). The different requisites have a direct relationship
with the rules identified in the initial hierarchy. For example, if we select
only two IOs (Knowledge and Application) from the six IOs that the tool
offers by default, the sets of IO’s rules (in the Pedagogic Module) will be
composed of just rules related to those two IOs.
An initial hierarchy of rules has been identified which groups the different
sets of rules according to its final goal in the new tutor. Figure 22 shows a
snapshot of rules identified in the initial hierarchy as rules corresponding
to the requisite-relationships in the first level of the instructional plan, i.e.
the BLU selection phase.

If the instructor chooses prerequisite and next as a requisite
relationships among BLUs, the set of rules that will be activated in Maisu
will be just the rules identified in these two objects, specifically: R-BLU-
RR-Pre1, R-BLU-RR-Pre2, R-BLU-RR-Nx1, R-BLU-RR-Nx2 and R-
BLU-RR-Nx3 (Figure 20).

id: R-BLU-RR-Nx
tutor-component: pedagogic module
goal: "selection of BLUs"
condition-elements:
 (requisite-relationship, next)
list-rules: R-BLU-RR-Nx-1,
 R-BLU-RR-Nx-2,
 R-BLU-RR-Nx-3

R-BLU-
Requisite-Relationships

R-BLU-RR-
Prerequisite

id: R-BLU-RR-Pre
tutor-component: pedagogic module
goal: "selection of BLUs"
condition-elements:
 (requisite-relationship, prerequisite)
list-rules: R-BLU-RR-Pre-1,
 R-BLU-RR-Pre-2

id: R-BLU-RR-Co
tutor-component: pedagogic module
goal: "selection of BLUs"
condition-elements:
 (requisite-relationship, corequisite)
list-rules: R-BLU-RR-Co-1

id: R-BLU-RR-Post
tutor-component: pedagogic module
goal: "selection of BLUs"
condition-elements:
 (requisite-relationship, postrequisite)
list-rules: R-BLU-RR-Post-1,
 R-BLU-RR-Post-2

R-BLU-RR-
Corequisite

R-BLU-RR-
Postrequisite

R-BLU-RR-
Next

Figure 22. Stage of the requisite-relationships rules in the initial hierarchy

Finally, the Interface or communication component maintains the
interaction process with the human instructor by means of various
graphical windows, some of which were shown earlier in the paper where
we illustrated the construction of the Maisu tutor. In our initial IRIS
prototype the interface is was implemented using MOTIF in C.

CONCLUSION

The goal we have pursued in this paper is to describe the design and
implementation of a shell to aid the construction of instructional

Arruate, Fernandez-Castro, Ferrero and Greer

376

environments integrating pedagogical principles with a general ITS
architecture. We assume that a human instructor establishes the
requirements of the final tutor and these requirements be used to adapt
automatically a previously built generic architecture producing a new tutor.
INTZA is an already developed and tested ITS, valid for conceptual and
procedural domains, that provides a kernel for the IRIS Shell. Thus, any
new tutor built with IRIS is provided with a flexible planner and shares
many characteristics of INTZA including its types of domains and how it
generates, executes and re-plans its Instructional Plan. It will retain the
representation structure and the reasoning scheme with changes only in the
content of its components.

On the other hand, with the aim of providing a sound basis for
computer-based training, we have previously defined a pragmatic cognitive
theory of instruction, the CLAI Model, which has been integrated into the
IRIS Shell. A deep analysis of both the architecture and the theory has
allowed us to extract the necessary pedagogic requirements that affect the
different components of a tutor. The information required for building the
domain knowledge has been organized in four groups: meta-information
for characterizing the domain in a general way, basic learning units,
instructional objectives and requisite relationships. For modelling the
learner, IRIS requires a curriculum, a learner profile, and learner goals.
Finally, the necessary pedagogical information includes the specification
of the instructional method that the target tutor will use, the supported
tools, and the motivation resources together with the instructional plan
refinement rules. All these requirements (which must be specified by
human instructors) have directly influenced the design and the basic
architecture of the IRIS Shell and allow us to integrate those pedagogic
principles with a general ITS architecture.

At this time we have an implemented prototype containing most of the
components identified in the architecture, running on a SUN workstation.
The Object Generator and Selector were implemented in CLIPS and tested
on an example tutor for symbolic differentiation. The Interface component
of the IRIS Shell was implemented in MOTIF and C. After finishing the
whole implementation we plan, as an immediate task, to test and evaluate
the global shell with human instructional designers from an educational
and a usability perspective. We are aware of the necessity of developing
on-line help and adequate methodological guidelines to facilitate the use of
IRIS.

Two important aspects remain to be considered: those related to the
diagnosis and treatment of errors and to the generation of interfaces. They
constitute the current and future research lines of our group. The
diagnostic process is being considered currently (Ferrero et al., 1996;
Ferrero et al., 1997), and in that work we face the general problem of
developing an autonomous general purpose tool, integrable in IRIS and

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

377

adaptable to different domains. It would offer to instructors the possibility
of defining a customized minimum diagnosis process. The more
challenging problem of automatic interface generation will be tackled in
future research.

Acknowledgements

This work is partly supported by the Economy Department of the Gipuzkoa
Council (Gipuzkoako Foru Aldundia), the Department of Education,
Universities and Research of the Basque Government (Eusko Jaurlaritza),
and the University of the Basque Country (Euskal Herriko Unibertsitatea).

References

Arruarte, A. and Fernández, I. (1995). A two-phased development shell for
Learning Environments. In A design proposal. Tinsley and van Weert
(Eds.), World Conference Computer in Education VI: Chapman & Hall,
53-65.

Arruarte, A., Fernández, I. and Greer, J. (1996a). The CLAI Model. A
Cognitive Theory to Guide ITS Development. Journal of Artificial
Intelligence in Education, 7(3/4), 277-313.

Arruarte, A., Elorriaga, J.A. and Fernández-Castro, I. (1996b). Knowledge
Reusability: some Experiences in Intelligent Tutoring Systems, In
Proceedings of the Workshop Architectures and Methods for Designing
Cost-Effective and Reusable ITSs, Montreal.

Arruarte, A., Elorriaga, J.A. and Fernández-Castro, I. (1997). Reutilización
del Conocimiento: Experiencias en los Sistemas Tutores Inteligentes.
Journal of Informática y Automática (in press).

Barnard, Y.F. and Sandberg, J.A.C. (1994). The Learner in the Centre:
towards a methodology for open learner environments, Doctoral
Dissertation, University of Amsterdam, 1994-6.

Bloom, B.S., Engelhart, M.D., Murst, E.J., Hill, W.H. and Drathwohl,D.R.
(1956). Taxonomy of Educational Objectives: The Cognitive Domain,
Longmans.

Breuker, J., Winkels, R. and Sandberg, J. (1987). A Shell for Intelligent
Help Systems, Proceedings of the 10th International Conference on
Artificial Intelligence, 167-173,

Carr, B. and Goldstein, I. (1977). Overlays: A Theory of Modelling for
Computer-Aided Instruction. International Journal of Man-Machine
Studies, 5, 215-236.

Diaz de Ilarraza, A. (1990). Gestión de diálogos en Lenguaje Natural para
un Sistema de Enseñanza Inteligente, Doctoral Dissertation, University
of the Basque Country UPV/EHU, Donostia.

Arruate, Fernandez-Castro, Ferrero and Greer

378

Elorriaga, J.A., Ferrero, B. and Fernández-Castro, I. (1995). GBC: una
herramienta para la construcción de bases de conocimiento. In Actas de
CAEPIA-95, Alicante, 367-376.

Evertsz, R. and Elsom-Cook, M. (1990). Generating Critical Problems in
Student Modelling. In Elsom-Cook, M. (Ed.), Guided Discovery
Tutoring. A Framework for ICAI Research, Paul Chapman, 216-246.

Fernández, I. (1989). Estrategias de Enseñanza en un Sistema Inteligente de
Enseñanza Asistida por Ordenador, Doctoral Dissertation, University of
the Basque Country UPV/EHU, Donostia.

Fernández, I., Díaz-Ilarraza, A. and Verdejo, F. (1993). Architectural and
Planning Issues in Intelligent Tutoring Systems. Journal of Artificial
Intelligence in Education, 4(4), 357-395.

Ferrero, B., Fernández-Castro, I. and Urretavizcaya, M. (1996). Un Sistema
de Diagnóstico para Ayuda al Aprendizaje. Experiencias en el Dominio
de las Derivadas. Technical Report UPV/EHU/LSI/TR 14-96,
University of the Basque Country UPV/EHU, Donostia.

Ferrero, B., Fernández-Castro, I., Urretavizcaya, M. (1997). DETECTive: a
generic diagnostic tool to support learning. Some experiences in the
symbolic differentiation domain. In Proceedings of Computer Aided
Engineering Education CAEE’97 (in press).

Folch, M. (1.993). Una Metodología del Ordenador como Instrumento de
Apoyo al Curriculum. El Grupo ORIXE. Comunicación y Pedagogía,
Marzo, 29-34.

Gagné, R.M., Briggs, L.J. and Wager, W.W. (1988). Principles of
Instructional Design. Third Edition, Holt, Rinehart and Winston:
Orlando.

Gavignet, E. (1994). Instructional expertise in ECSAI. Desalles, J. (Ed.), In
Proceedings of the International Conference on Computer Aided
Learning and Instruction in Science and Engineering CALISCE’94,
TELECOM, 249-257.

Gutiérrez, J. (1994). INTZA: un Sistema Tutor Inteligente para
Entrenamiento en Entornos Industriales. Phd. Thesis. Euskal Herriko
Unibertsitatea, UPV/EHU, Donostia.

Hernández, P. and García, L.A. (1.991). Psicología y Enseñanza del Estudio.
In Teorías y Técnicas para potenciar las Habilidades Intelectuales,
Pirámide: Madrid.

Holt, P., Dubs, D., Jones, M. and Greer, J. (1994). The State of Student
Modelling. In. J. Greer and G. McCalla (Eds.), Student Models: The Key
to Individualized Educational Systems, Springer Verlag, 3-35.

Ikeda, M. and Mizoguchi, R. (1994). FITS: a Framework for ITS - A
Computational Model of Tutoring. Journal of Artificial Intelligence in
Education, 5(3), 319-348.

Khuwaja, R., Desmarais, M., Cheng, R. (1996). Intelligent Guide:
Combining User Knowledge Assessment with Pedagogical Guidance. In

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

379

Frasson, C., Gauthier, G., Lesgold, A. (Eds.), Proceedings of the Third
International Conference Intelligent Tutoring Systems ITS’96, Springer-
Verlag, 225-233.

Kok, A.J. (1991). A Review and Synthesis of User Modelling in Intelligent
Systems. The Knowledge Engineering Review, 6(1), 21-47.

Krueger, C.W. (1992). Software Reuse. ACM Computing Survey, 24(2),
131-183.

Macmillan, S.A., Emme, D. and Berkowitz, M. (1988). Instructional
Planners: Lessons Learned. In Psotka, J., Dan Massey, L. & Mutter, S.A.
(Eds.), Intelligent Tutoring Systems: Lessons Learned, Lawrence
Erlbaum, 369-402.

Major, N. and Reichgelt, H. (1991). Using COCA to build an intelligent
tutoring system in simple algebra. Intelligent Tutoring Media, 2(3/4),
159-169.

Major, N. (1995). REEDEM: Creating Reusable Intelligent Courseware. J.
Greer (Ed), In Proceedings of Seventh World Conference on Artificial
Intelligence in Education AI-ED’95, AACE, 75-82.

Merrill, M.D. (1983). Component Display Theory. In Reigeluth, C.M.
(Eds.), Instructional-Design Theories and Models: an overview of their
current status, Lawrence Erlbaum Associated, 279-333.

Merrill, M. and the ID2 Research Group (1996). Instructional Transaction
Theory: Instructional Design Based on Knowledge Objects. Educational
Technology, May-June, 30-37.

Murray, T. (1996). Having It All, Maybe: Design Tradeoffs in ITS
Authoring Tools. Frasson, C., Gauthier, G., Lesgold, A. (Eds.), In
Proceedings of the Third International Conference Intelligent Tutoring
Systems ITS’96, Springer-Verlag, 93-101.

Murray, T. (1998). Authoring Knowledge Based Tutors: Tools for Content,
Instructional Strategy, Student Model, and Interface Design. Journal of
the Learning Sciences, 7(1), 5-64.

Nkambou, R., Gauthier, G., Frasson, C. (1996). CREAM-Tools: An
Authoring Environment for Curriculum and Course Building in an
Intelligent Tutoring System. In Díaz de Ilarraza Sánchez, A. &
Fernández de Castro, I. (Eds.), Computer Aided Learning and
Instruction in Science and Engineering, Springer-Verlag, 186-194.

Petri, B., Mouton, H. and Reigeluth, C.M. (1987). A Lesson Based on the
Gagné-Briggs Theory of Instruction. In Reigeluth, C.M. (Eds.),
Instructional Theories in Action, Lawrence Erlbaum, 11-44.

Reigeluth,C.M., Merrill, M.D., and Bunderson,V. (1978). The Structure of
Subject Matter Content and Its Instructional Design Implications.
Instructional Science, 7, 107-126.

Reye, J. (1995). A Goal-Centred Architecture for Intelligent Tutoring
Systems. J. Greer (Ed), In Proceedings of Seventh World Conference on
Artificial Intelligence in Education AI-ED’95, AACE, 307-314.

Arruate, Fernandez-Castro, Ferrero and Greer

380

Russell, D.M. (1988). IDE: The Interpreter. In Psotka, J., Dan Massery, L.,
Mutter, S.A. (Eds.), Intelligent Tutoring Systems. Lessons Learned,
Lawrence Erlbaum Associates, 323-349.

Russell, D.M., Burton, R., Jordan, D.S., Jensen, A., Roger, R., Cohen, J.
(1990). Creating instruction with IDE: tools for instructional designers.
Intelligent Tutoring Media, 1(1), 3-16.

Scandura, J.M. (1983). Instructional Strategies Based on the Structural
Learning Theory. In Reigeluth, C.M. (Eds.), Instructional-Design
Theories and Models: An overview of their current status, Lawrence
Erlbaum Associates, 213-246.

Self, J.A. (1990). Bypassing the Intractable Problem of Student Modelling.
In Frasson, C. and Gauthier, G. (Eds.), Intelligent Tutoring System. At
the Crossroads of AI and EI, Ablex, 107-123.

Shuell, T.J. (1985). Designing Instructional Computing Systems for
Meaningful Learning. In Jones, M. & Winne, P.H. (Eds.), Adaptive
Learning Environments. Foundations and Frontiers, Springer-Verlag,
19-54 .

Sokolnicky, T. (1991). Towards Knowledge-Based Tutors: A Survey and
Appraisal of Intelligent Tutoring Systems. The Knowledge Engineering
Review, 6(2), 59-95.

Soloway, E., Guzdial, M., Brade, K., Hohmann, L., Tabak, I., Weingrad, P.,
Blumenfeld, P. (1992). Technological Support for the Learning and
Doing of Design. In Jones, M., & Winne, P.H. (Eds.), Adaptive Learning
Environments. Foundations and Frontiers, Springer-Verlag, 173-200.

Srisetamil, C. and Baker, N.C. (1995). Application and Development of
Multiple Teaching Styles to an Engineering ITS. In J. Greer (Ed),
Proceedings of Seventh World Conference on Artificial Intelligence in
Education AI-ED’95, AACE, 75-82.

Srisetamil, C. and Baker, N.C. (1996). ITS-Engineering: A Domain
Independent ITS for Building Engineering Tutors. Frasson, C., Gauthier,
G., Lesgold, A. (Eds.), In Proceedings of the Third International
Conference Intelligent Tutoring Systems ITS’96, Springer-Verlag, 677-
685.

Stevens, A. (1982). Misconception in student’ understanding. In Sleeman,
D. and Brown, J. (Eds.), Intelligent Tutoring Systems, Academic Press,
13-24.

Vadillo, J.A., Díaz de Ilarraza, A., Fernández, I., Gutiérrez, J. and Elorriaga,
J.A. (1994). Explicaciones en Sistemas Tutores de Entrenamiento:
Representación del Dominio y Estrategias de Explicación, Actas II
Congresso Ibero-americano de Informática na Educaçao, 2, 289-309.

Van Marcke, K. (1992). A Generic Task Model for Instruction. In Dijkstra,
S., Krammer, H.P.M., VanMerrienboer (Eds.), Instructional Models in
Computer-Based Learning Environments, Springer-Verlag, 171-194.

The IRIS Shell: “How to Build ITSs from Pedagogical and Design Requisites”

381

Van Marcke, K. and Vedelaar, H. (1995). Learner Adaptivity in Generic
Instructional Strategies. In J. Greer (Ed), Proceedings of Seventh World
Conference on Artificial Intelligence in Education AI-ED’95, AACE,
323-333.

Vassileva, J. (1995a). Dynamic Courseware Generation: At the Cross Point
of CAL, ITS and Authoring. In Authoring Shells for Intelligent Tutoring
Systems, Workshop at AI-ED´95, Washington, AACE.

Vassileva, J. (1995b). Reactive Instructional Planning to Support Interacting
Teaching Strategies. In J. Greer (Ed), Proceedings of Seventh World
Conference on Artificial Intelligence in Education AI-ED'95, AACE,
334-342.

Verdejo, M.F. (1992). User Modelling in Knowledge-Based Systems. In
Ezquerro, J. and Larrazabal, J.M. (Eds.), Cognition, Semantics and
Philosophy, Kluwer Academic Publishers, 23-46.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems, Morgan
Kaufmann Publishing.

Weinstein, C.E. and Mayer, R.E. (1986). The teaching of Learning
Strategies. Wittrock, C. (Eds.), Handbook of Research on Teaching,
New York: Macmillan Publishing Company, 315-327.

