
HAL Id: hal-00197385
https://telearn.hal.science/hal-00197385

Submitted on 14 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Programming by Demonstration Authoring Tool for
Model-Tracing Tutors

Stephen B. Blessing

To cite this version:
Stephen B. Blessing. A Programming by Demonstration Authoring Tool for Model-Tracing Tutors.
International Journal of Artificial Intelligence in Education, 1997, 8, pp.233-261. �hal-00197385�

https://telearn.hal.science/hal-00197385
https://hal.archives-ouvertes.fr

International Journal of Artificial Intelligence in Education (1997), 8, 233-261

233

A Programming by Demonstration Authoring Tool for
Model–Tracing Tutors

Stephen B. Blessing

Department of Psychology
University of Florida
Gainesville, FL 32611

e-mail: blessing@psych.ufl.edu

Abstract. Model–tracing tutors have consistently been among the most
effective class of intelligent learning environments. Across a number of
empirical studies, these tutors have shown students can learn the tutored
domain better or in a shorter amount of time than traditionally taught
students (Anderson et al., 1990). Unfortunately, the creation of these tutors,
particularly the production system component, is a time–intensive task,
requiring knowledge that lies outside the tutored domain. This outside
knowledge—knowledge of programming and cognitive science—prohibits
domain experts from being able to construct effective, model–tracing tutors
for their domain of expertise. This paper reports on a system, referred to as
Demonstr8 (and pronounced “demonstrate”), which attempts to reduce the
outside knowledge required to construct a model–tracing tutor, within the
domain of arithmetic. By utilizing programming by demonstration
techniques (Cypher, 1993; Myers et al., 1993) coupled with a mechanism
for abstracting the underlying productions (the procedures to be used by the
tutor and learned by the student), the author can interact with the interface
the student will use, and the productions will be inferred by the system. In
such a way, a domain expert can create in a short time a model–tracing
tutor with the full capabilities implied by such a tutor—a production system
that monitors the student’s progress at each step in solving the problem and
gives feedback when requested or necessary, in either an immediate or
delayed manner.

Model–tracing tutors have proven extremely effective in the classroom,
with the most promising efforts demonstrating more than a standard
deviation’s improvement over traditional instruction (Anderson et al.,
1990; Koedinger & Anderson, 1993a). They are referred to as model–
tracing tutors because they contain an expert model which is used to trace
the student’s responses to ensure that the student’s responses are part of an
acceptable solution path. The creation of such tutors, particularly the expert
models that underlie them, is a time–intensive task, requiring much
knowledge outside of the domain being tutored. Anderson (1992) estimated

Blessing

234

that 100 hours of development time yields about 1 hour of instruction. The
goal of the authoring tool described in this paper is to drastically reduce the
amount of time and knowledge needed to create a model–tracing tutor.
Since this authoring tool produces a tutor which is functionally equivalent
to one of Anderson’s ACT tutors, what follows is a description of those
tutors, and then a discussion of how an ACT tutor is actually created (see
Anderson et al., 1995, for a more complete discussion of the ACT tutors).

A DESCRIPTION OF THE ACT TUTORS

The ACT Tutors developed by Anderson and his colleagues (Anderson et
al., 1995; Corbett & Anderson, 1990; Anderson, Conrad, & Corbett, 1989)
all operate by the same basic mechanism. What forms the backbone of the
system is an expert model, realized as a set of production rules, that
contains all the knowledge needed to solve problems within the domain
being tutored. A production rule is a statement with a condition and an
action, and a set of such statements can specify the procedural knowledge
needed to perform a task. Within the algebra equation solving tutor, for
example, this expert module is a set of around 150 productions (S. Ritter,
personal communication, December 10, 1996). The tutors use this expert
model to check the student’s answers. In all of the ACT Tutors, this
production set is general enough to be able to solve novel problems. That
is, a programmer, a teacher, or even a student can enter a new problem into
the system, and then the tutor will be able to solve it and to provide tutoring
on it. This generality is part of what makes the architecture of the ACT
Tutors so powerful.

Another feature of the ACT Tutors which is consistent across the tutors
is the student model. The student model is the assessment by the tutor of
the student’s current knowledge state. As the student interacts with the
system, getting some of the answers right and others wrong, this student
model is updated. The ACT Tutors contain a list of skills which make up
the tutored domain. Skills correspond to a sequence of production rules
which result in a student action. Each skill is considered to be in either a
learned or unlearned state, with a probability assigned to it that it is
currently in the learned state. As students demonstrate proficiency (or a
lack of proficiency) in a skill by corresponding to (or not corresponding to)
a set of productions, this probability is adjusted according to a Bayesian
algorithm. When this probability gets above a certain level, generally 95%,
that skill is assumed to be in the learned state. Many of the tutors have an
external realization of this student model, referred to as the Skillometer.
This Skillometer is essentially a bar chart, with each bar representing a
skill, and each bar displaying the current probability that the skill is in the

A Programming by Demonstration Authoring Tool for Model-Tracing Tutors

235

learned state. When the bar gets above the criterion level for that skill to be
assumed to be in the learned state, a little checkmark is placed next to it.

The third main feature of the ACT Tutors is the student’s interface,
which must vary across the different tutored domains. The interface that the
student interacts with in the geometry tutor is very much like a typical
computer drawing program, whereas the interface used by the
programming tutors is a structured text editor. However, no matter the
specifics of an interface, for each student action within the interface
(clicking a button, typing in a text field, selecting a menu option, etc.), that
action can be checked against the expert model. This process of checking
student actions using the expert model is referred to as model tracing. The
outcome of this checking can either be displayed immediately, right after
the student does the action, or it can be delayed until the student requests
the feedback. Also, in the case that the tutor displays the feedback right
away, the tutor can either not allow the action or somehow indicate within
the interface that the action is not correct (perhaps by displaying the
student’s incorrect response in red). Depending on what skill the student’s
action corresponded to, the student model is also updated, in a process
called knowledge tracing. Once all the skills that make up the current
lesson are assumed to be in the learned state (i.e., all the skills in the
Skillometer are “checked”), the student is graduated to the next lesson,
which will add skills to be mastered.

CREATING AN ACT TUTOR

Anderson and Pelletier (1991) described a development tool for the
creation of the ACT Tutors. This tool is referred to as the Tutor
Development Kit, or TDK. The TDK is based in Macintosh Common LISP
(MCL), and provides a working memory manager, a production interpreter,
and several utilities to make the creation of a tutor easier. While this is
better than starting to program a tutor from scratch, a fair amount of non–
domain knowledge is needed to create even the simplest tutor. The
student’s interface needs to be constructed, the appropriate representation
of that interface needs to be encoded within the tutor’s working memory,
and the production rules for the task need to coded. All of this requires not
only a good knowledge of the TDK’s syntax, but also a decent familiarity
with LISP and how to create graphic elements in MCL.

As an example of what it takes to program a tutor using the TDK,
consider the code displayed in Table 1. This is part of the code one might
write for a tutor whose domain is multi–column addition. The actual syntax
is not important, but rather the general feel for the overall complexity
involved in creating a tutor for a seemingly easy task like multi–column
addition. The top four lines define the types of objects that can be in

Blessing

236

working memory (WME is short for Working Memory Element). The first
word after “defwme” is the name of the type of object, and then the
following words are attributes, or slots, of that object. The next two
statements, the “make–wme’s” actually create elements within the tutor’s
working memory. A column is made, and then a cell. The value of the slots
are assigned upon the WME’s creation, and they can change as the student
interacts with the tutor. These lines are necessary, the defwmes and make–
wmes, because the ACT Tutors must maintain within their working
memory a representation of the current state of the problem—what appears
onscreen to the student. As the student works on the problem, this
representation is changed to reflect what the student has done. Help
messages and hints are partially based upon this representation. Many more
make–wme statements would be required in the complete definition of this
tutor.
(defwme addition–goal column)
(defwme addition–column rows part–of english)
(defwme cell text row column parent part–of note)
(defwme write–answer column object)
(make–wme column1 isa addition–column rows (c03 c02 c01 c00)
 part–of root english (name tens))
(make–wme c00 isa cell text “2” part–of column1 row 0 column 3)

(defproduction process–column model (=goal)
 =goal>
 isa addition–goal
 column =column
 =column>
 isa addition–column
 rows ($ =cell1 =cell2 =cell3)
 =cell1>
 isa cell
 text =num1
 =cell2>
 isa cell
 text =num2
 ==>
 !eval! =sum (princ–to–string (+ (convert–to–digit =num1)
 (convert–to–digit =num2))
 =subgoal>
 isa write–answer
 column =column
 object =sum
 !chain! model (=subgoal)
 :help ‘(“Add “ ,=num1 “ and “ ,=num2 “.” ~n)
 ‘(,=num1 “ + “ ,=num2 “ = “
 ,(princ–to–string (+ (convert–to–digit =num1)
 (convert–to–digit =num2)) “.” ~n)

Table 1. TDK code segment for a multi–column addition tutor

The last several lines of Table 1 contain one of the actual TDK
productions needed by the expert model. The full model for multi–column

A Programming by Demonstration Authoring Tool for Model-Tracing Tutors

237

addition would contain on the order of 10 such productions. This
production is responsible for figuring out the sum of the two digits in a
particular column. Other productions would figure out which column is
important and what exactly to write down. The words with equal signs in
front of them are variables. This production will match to the two numbers
in the current column of interest. Once it finds the sum, it sets a subgoal to
actually write the answer in the column, which will be handled by another
production. The last couple of lines contain some help text (which will use
the current numbers in the problem) which will be used when the student
asks for help.

Table 1 contains much less than 10% of the code needed for an addition
tutor. The author of such a tutor would need to type all of the code into a
blank document, run it, and then debug it. No provision is made within the
TDK for the automatic generation of working memory elements or
productions. For these things, authors simply have a clean slate they must
fill in. The TDK does do the knowledge tracing automatically, provided
that the necessary hooks are in place. In general, a lot of programming
“glue” is needed to get everything—model and knowledge tracing, and the
student interface—running correctly. It would probably take a competent
MCL and TDK programmer a half day or more to program a basic addition
tutor.

GOING BEYOND THE TDK

Based on the short example above, one can easily see that the creation of a
tutor that would be used throughout an entire course, like the ACT Tutors
for programming and algebra that have been constructed, would require
many, many hours worth of work. Additionally, it requires close
collaboration between the educators, the research scientists, and the
programmers. An educator or other domain expert could not sit down and
create a model–tracing tutor, nor could they easily modify an existing tutor
for their individual needs. Existing tutors do have ways for educators to
create new problems for the tutors (in the geometry tutor, it’s as easy as
using drawing package), but this is a far cry from being able to create a
tutor which teaches a new skill—something that would be advantageous for
educators and curriculum designers to be able to do. What is needed is a
system that drastically reduces or eliminates the non–domain knowledge
needed to create a model–tracing tutor.

By allowing the author to simply manipulate the actual interface that
the student is going to use for the creation of working memory elements
and productions, it becomes much more feasible for non–cognitive
scientists to create intelligent, model–tracing tutors. The main mechanism
which allows the tool described in this paper, Demonstr8, to infer the

Blessing

238

production rules, the heart of a model–tracing tutor, is similar to ACT–R’s
analogy mechanism (Anderson, 1993)1 to be explained in the following
paragraphs.

Inducing Productions

An important distinction within the ACT–R architecture is between
declarative knowledge, one’s knowledge of facts (e.g., “Washington DC is
the capital of the United States”) and procedural knowledge, one’s
knowledge of how to perform actions (e.g., adding numbers together). One
of the claims of the ACT–R theory is that all knowledge has declarative
origins. That is, the only way new procedural knowledge, in the form of
production rules, enters the system is by the process of analogizing from
the current goal to some previous declarative knowledge. This mechanism
operates by forming an analogy from examples stored in declarative
memory to the current goal. The current authoring tool uses this idea, since
the items on the screen can be represented by declarative knowledge
structures, and as the author interacts with them, the procedural knowledge
of what to do with them (i.e., what will become the expert model of the
tutor) can be inferred. Demonstr8 translates the actions of the domain
expert (i.e., their interactions with the objects in the interface) into the
knowledge needed by the tool to successfully tutor students.

To provide an example of ACT–R’s analogy mechanism, assume that
an ACT–R model of a person learning LISP has the declarative knowledge
that the command to multiply 5 by 7 is (* 5 7). This model has a goal to
add 132 and 254. The situation can be diagrammed as:

Current Goal: Previous Example:
Add 132 and 254 Multiply 5 and 7

⇓
(* 5 7)

The arrow shown connecting the two pieces of declarative information
in the Previous Example simply indicates that the goal of multiplying 5 by
7 can be realized by typing (* 5 7), as illustrated by the example. Two
additional pieces of declarative information that the system has stored are
that the symbol for multiplication is ‘*’ and the symbol for addition is ‘+.’
By analogizing from the Previous Example in order to solve the Current
Goal, and using the additional knowledge of which operator is indicated by
which English word, the model will construct the following production:

1 The ACT Tutors do not use ACT–R, the most recent version of Anderson’s ACT Theory. The TDK, and
most of the ACT Tutors, were created before ACT–R. They do share a common heritage.

A Programming by Demonstration Authoring Tool for Model-Tracing Tutors

239

IF the current goal is a LISP operation with two arguments
AND op is the symbol corresponding to the operation
AND arg1 and arg2 are the two arguments

THEN the LISP call should be: (op arg1 arg2)

As can be seen, the analogy mechanism has generalized across the
different numbers, and has linked the knowledge that ‘*’ is the operator for
multiplication with ‘+’ is the operator for multiplication to construct the
generalization that when the goal is to do some LISP operation, use the
associated operator in the front position of the LISP call. The rest of this
paper describes Demonstr8, a system which begins to address the ability of
non–cognitive scientists being able to program a model–tracing tutor by
using something like this analogy mechanism. Using Demonstr8, both the
time and knowledge required to produce a model–tracing tutor is
drastically reduced. With limited training, a non–cognitive scientist can
produce a model–tracing tutor for arithmetic in less than 20 min (an
estimate based on informal observations).

DEMONSTR8 DESCRIPTION

Using Demonstr8, an author can create a model–tracing tutor for some
specific application within arithmetic—multi–column addition or
subtraction, for example. While Demonstr8 has been implemented for the
construction of a particular class of tutors, parts of it are general enough to
apply to any domain, and the ideas behind the parts that are not can be
modified to work within almost any setting. Throughout the description of
Demonstr8, these generalizable features will be highlighted, and the
General Discussion addresses this specific point of which features are
readily generalized and which require additional effort.

Within Demonstr8 the author has available three things:

• a palette of MacDraw–like tools used to create the student interface

• a method for creating higher–order declarative representations for
these student interface elements (e.g., making a column of numbers)

• a programming by demonstration method for creating productions.

There is also a way of inputting new abstract, declarative knowledge
into the system, such as subtraction facts, which aids in the induction of the
production rules. However, the system has a number of built–in facts for
doing arithmetic, so an author may never have to use this feature. The
above three items are all that are necessary to create a model–tracing tutor
for some aspect of arithmetic.

Blessing

240

When the system first starts, three windows, a menu titled Author, and
the Author Palette appear. The three windows are:

• Student Interface: The author will create the student’s interface
within this window, using the available tools. (Shown in Figure 1)

• Working Memory Elements: This window contains a list of the
current working memory elements of the tutor. At startup, the only
item is a list of predefined memory elements, which are the numbers
0 through 18 (sufficient for arithmetic tasks through multi–column
subtraction), a blank, and a slash character.

• Productions: This window contains a list of current productions,
which is empty at startup. At the bottom of this window is a
checkbox which indicates if the system is in recording mode. When
the box is checked, the system is in recording mode, and is recording
the author’s actions and trying to induce the productions behind them
(more on that in the Demonstrating Productions section below).

Both of the last two windows are scrolling, hierarchical lists from
which items can be selected, edited, and deleted.

The Author menu contains options for creating working memory
elements, new productions, a problem generator, and other authoring
activities. These will be discussed as they arise in the creation of a tutor.
The Author Palette will be described in the next section. The rest of this
section discusses designing an interface, creating the working memory
elements, and programming the productions within the context of creating a
multi–column subtraction tutor.

DESIGNING THE STUDENT INTERFACE

The tools available to the author for creating the student’s interface are
basic, but complete enough to provide all the functionality needed for an
arithmetic tutor. All the tools are contained in the Author Palette, as seen in
Figure 1. The tools work like the tools in a drawing program. They are,
from left–to–right:

• Selection Tool: Used to select any object within the student’s
interface. Multiple objects can be selected, which is useful when
creating working memory elements (see next section).

• Cell Tool: Used to place cells within the student’s interface. Cells are
the place holders for numbers, and authors create them simply by
clicking where they want the cell to be.

• Line Tool: The author can draw lines in the student interface, to
make it look more like an arithmetic problem.

A Programming by Demonstration Authoring Tool for Model-Tracing Tutors

241

• Worksheet Tool: This is the grid onto which the cells get placed.
While it is possible to have more than one worksheet per tutor, it
probably is not necessary (though another class of tutors for a
different domain could make use of this feature).

Figure 1 displays a student interface an author has just created. On the
worksheet, the author has created six cells arranged in two columns of
three, and has drawn two lines so that the interface resembles a simple
subtraction problem. When cells are placed on the worksheet, they
automatically become available as WMEs. Designing a student interface in
such a way, using a set of drawing tools, can easily be applied to any
domain. Domain specific tools, like the Cell Tool, could be supplied as
plug–in packages available to the author. These domain specific tools, as
will be seen with the Cell Tool, can contain specialized knowledge for
operating correctly in the authored domain (e.g., cells know how to display
numbers and that numbers can have slashes through them).

At this point, the author has created the interface that he or she will use
to demonstrate the skills, and this interface will also be the one students
will ultimately use. The actions the author has performed are:

• Selecting the Cell Tool from the Author Palette

• Placing six cells on the provided worksheet grid

• Selecting the Line Tool from the Author Palette

Figure 1. Designing the interface.

Blessing

242

• Drawing two lines so that the interface looks like a subtraction
problem

CREATING WORKING MEMORY ELEMENTS

After the author has created the basic layout of the student’s interface, he or
she must next define any higher–order working memory elements that are
part of this interface. For the simple subtraction tutor, the six cells that have
been placed correspond to two columns, and these two columns correspond
to one problem. These two columns and one problem must be defined in
order for the correct productions to be induced. One could imagine a
system, particularly a system devoted to arithmetic, already knowing about
columns (i.e., cells that are aligned vertically) and problems (i.e., columns
that are aligned horizontally), but this feature of Demonstr8 was provided
for two reasons. First, it allows the system to be more extensible by
allowing the author to define novel arrangements of cells. Second, and
more importantly, it demonstrates the generality of the way in which
working memory elements based on primitives (like cells in an arithmetic
domain, or any of the other items directly available from the Author
Palette) could be authored, based on the student interface and employing
end–user programming techniques (Smith et al., 1994; Nardi, 1993). The
following description shows how the cells can be grouped into columns,
and then the columns into a problem.

Grouping cells into columns

To group the three cells to the right into a column, the author selects all
three cells using the Selection Tool. With all three cells selected, he or she
must next select Name WMEs from the Author menu. A dialog box similar
to what is depicted in Figure 2 appears, which has been filled out. Since
this is the first time a column has been created, the author must leave the
New radio button checked, and fill in what the classname (defwme in TDK
parlance) should be, “Column.” Next, the author must give a new instance
name to this particular column, for example, “Column1.”

The middle of the dialog contains a scrolling, two–column table which
lists the properties (or “slots”) of this classname on the left, and their
current values for this instance on the right. Since three cells were selected
in the student’s interface, the system assumes there are three properties, one
for each cell. That was the proper guess in this instance, since columns are
composed of a Top, Bottom, and Answer cell. The author can rename the
property names, as the author is currently doing in Figure 2. If the values of
the properties are wrong, they can be edited by double–clicking them and

A Programming by Demonstration Authoring Tool for Model-Tracing Tutors

243

obtaining an editing box, or values can be dragged–and–dropped from the
Working Memory Elements window.

Figure 2. Creating working memory elements

Below the properties table is an edit box labeled “Help Tag.” The
author can input here a word or short phrase that will be used by the help
system when the system generates a help message. Since this is the ones
column, the author can type “ones column” or “ones” in the box. When the
author clicks the Okay button, the WME type Column appears in the
Working Memory Elements Window, with its one instantiation, Column1.

Defining the second column, the tens columns, is considerably easier,
since the column type has already been defined. After the author has
selected the three cells in the other column and selected Name WMEs from
the Author menu, the author can select “Column” from the pop–up menu
under classname (this pop–up menu contains the name of the WME types
the author has already created), which automatically fills in the correct
property names. All that is left for the author to do is to give this particular
column a name (“Column2”), provide a help tag (“tens”), and click the
Okay button.

At this point, two columns have been created based on the six initial
cells the author placed in the interface. The actions the author had to
perform were:

• Selecting the Selection Tool from the Author Palette and selecting
the three leftmost cells.

• Choosing “Name WMEs...” from the Author Menu

Blessing

244

• Completing the resulting working memory dialog box:

� Creating a new classname (“Column”) for the selected object, and
naming this particular instance (“Column1”)

� Providing names for the attributes of this class (“Top,” “Bottom,”
and “Answer” cells)

� Indicating a piece of help text to be associated with this instance

• Selecting the three rightmost cells and choosing “Name WMEs...”
from the Author Menu

• Completing the dialog box for this column (“Column2”), which is
greatly simplified since the class Column has already been defined

Grouping columns into a problem

The last WME the author defines is the problem. This demonstrates the
way a WME can be created that has no direct objects on the screen that
represent them. A problem is composed of the two columns, and whereas
the cells that make up the columns are objects on screen that can be
selected, the columns themselves cannot (though one could imagine an
authoring interface which could make apparent some of these higher–order
WMEs). Therefore, the author cannot have anything selected when the
Name WMEs item is selected from the Author menu. Once the Name
WMEs dialog appears, and the new classname of “Problem” and an
instance name of “Problem1” has been entered, the author fills in the
Properties table, which is currently empty, since nothing was selected.
Using the New Property button, the author can either create two new
properties, one for each column (“OnesColumn” and “TensColumn”), or
one property (“Columns”) which has list of columns as its value. Based on
the way the author has decided to create the production system, the latter
option is selected since it will allow for the easier creation of the rest of the
system. To create the list of values, the names of the columns are dragged
over from the Working Memory Elements Window and dropped on the
Properties table. Once more than one value has been dropped, a list
enclosed in parentheses is automatically created for that property’s value.
The author decided to use this method because Demonstr8 has special
features to reason about lists (e.g., finding the rightmost element in a list, or
an item which is to the immediate left of another item). This feature will be
highlighted in the next section, which describes how the author
demonstrates the procedural knowledge of a task.

The author has now defined all the necessary WMEs needed for this
tutor. To define the Problem WME, the actions the author had to perform
were:

A Programming by Demonstration Authoring Tool for Model-Tracing Tutors

245

• With nothing selected in the interface, choosing “Name WMEs...”
from the Author Menu

• Completing the resulting working memory dialog box:

• Creating a new classname for the selected object (“Problem”, and
naming this particular instance (“Problem1”)

• Providing a name for the attribute of this class (“Columns”)

• Dragging the values for this attribute from the WMEs window into
the row named above

The structures that are perhaps most key to inducing the productions
behind the actions of the author are Knowledge Functions, which can be
thought of (and depicted as) ACT–R working memory elements which
represent a table of values. These structures represent declarative
knowledge not depicted directly in the interface. In the current
implementation, Knowledge Functions take one or two values and return a
single result. In this respect, they are similar to look–up tables, and as such
enable many WMEs to be depicted in an easy–to–read, easy–to–enter
manner. While they are limited to only two–dimensions in the current
application, n–dimensional Knowledge Functions are possible (and indeed,
the ACT–R analogy mechanism is meant to deal with such structures).
Demonstr8 has built–in the Knowledge Functions for the standard
arithmetic operations (e.g., addition, subtraction, and decrementing). Figure
3 shows part of the Subtraction Knowledge Function. An easy interface
exists within Demonstr8 to create new, novel Knowledge Functions. After
selecting New Knowledge Function... from the Author menu, and

Figure 3. The Subtract Knowledge Function

Blessing

246

indicating the size and name of the table, the author can simply drag and
drop keys (the inputs to the table, which can be any WME in the system)
and values (the result to be returned—again, these can be any WME) onto
the table. In such a way, an author could create a subtraction function for
octal arithmetic, and have it automatically available to the system from
which to infer productions.

This method of creating new working memory elements—grouping
items in the interface or creating tables of values—is general to any
domain. Since almost all working memory elements correspond to things a
person can point to (or at least has an easy–to–generate representation that
could be pointed to), having a visual method of placing and creating WMEs
should be natural and easy–to–do in any domain.

DEMONSTRATING PRODUCTIONS

With all the necessary working memory elements constructed, the author is
now ready to demonstrate the skill to be tutored, and have Demonstr8
induce the underlying production rules. First, however, the author will want
to create a problem within the student’s interface to be solved. The author
can drag the predefined numbers from the Working Memory list and drop
them onto the cells which represent the problem. The cells will then display
those numbers. Alternatively, the author can use one of the options under
the Author menu, Define Problem Generator. Selecting this option displays
a dialog which lists all the cells in the student interface. The author can
indicate which cells should contain a number, and what range that number
should fall. In such a way, the author can prohibit, if desired, the system
from generating problems that would involve borrowing. While the
description to follow is specific to demonstrating the productions needed
for subtraction, the general approach (essentially presenting the system
with before and after shots and having it infer the underlying action) can be
applied to almost any domain, and is the basic way ACT–R’s analogy
mechanism works.

Once the problem is in place, the author can begin to solve the problem.
To indicate to the system that it should now start recording what the author
is doing, the author checks a box marked “Recording” at the bottom of the
Production List. The system will now take note and will attempt to induce
the productions behind the author’s actions, recording the results within the
currently highlighted production in the Production List.

Two ways exist for the author to define a production using Demonstr8.
The first is to interact directly with the Knowledge Functions. With the
proper Knowledge Function on the screen, the author can drag and drop the
items of interest from the problem displayed in the student’s interface onto
the table, and then drag the function’s result onto the proper cell in the

A Programming by Demonstration Authoring Tool for Model-Tracing Tutors

247

problem. Dragging and dropping a result from a Knowledge Function onto
the student interface indicates a student action, and the system constructs a
production based on the actions of the author from the creation of the last
production (or the start of recording) to the use of some function’s result.
Having the author define the production in this way directly specifies to
Demonstr8 the relevant WMEs and Knowledge Function needed to
construct the production.

The other method that Demonstr8 has for creating productions is much
more powerful and flexible, and is based on ACT–R’s analogy mechanism.
To define a production using this method, the author option–clicks on a
cell. A dialog is displayed, asking what value should be entered into that
cell. Once the author enters a value and clicks the dialog’s Okay button, the
system attempts to induce why the author entered that value into that cell.
In trying to induce the production, Demonstr8 has available its Knowledge
Functions and the Working Memory Elements which the author defined.
For example, in the present case the author has arranged three cells into a
column of numbers, and has created the appropriate WMEs. The top two
cells on the right have numbers in them (say a “7” with a “2” below). The
author indicates that the bottom–most cell should have a “5” in it. Since
these three cells have been arranged in working memory as a column, the
system has access to the “7” and “2” in order to figure out where the “5”
comes from (i.e., this cell that should contain a “5” is part of this column,
and so the other cells of this column may contain useful information; this
column is also part of this problem, and if necessary, the system may
reason about that as well). By using the “7” and “2” in various
combinations with the available Knowledge Functions in order to figure
out the appearance of the “5,” it will find that a “7” and a “2” with the
Subtract Function will produce a “5.” In such a way, the system has
induced a rule that the Top number of a column and the Bottom number of
a column can be used to produce the Answer of that column. If the
indicated number (the “5” in the above example) could have come about
from multiple ways (e.g., by using different Knowledge Functions with the
WMEs that are related in some way to the “5”), the system displays a
Discrimination Dialog, asking the author to pick the proper interpretation
of the action.

After the system has either gone through the above process, or the
author has chosen to interact directly with the Knowledge Functions, a
dialog box similar to the one displayed in Figure 4 appears. Using this
dialog, the author can fine–tune the production that was just created. If the
author used the second method of production creation, probably very little,
if any, fine–tuning will be needed, since the system has had to infer much
more about the production than it would if the first method had been used.
Specifically, using the first method, the system would not know that the

Blessing

248

representation of column needs to be invoked in order to properly use this
rule (i.e., what was important about putting the “5” in that cell was because
that cells containing a “7” and a “2” were also part of that column).

Condition and Action

The dialog box in Figure 4 has three parts, accessed by the radio buttons in
the upper right. These parts appear in the thick rectangle that takes up most
of the dialog, and parts that have not been accessed are italicized. The
production’s name appears in the upper left, and can be edited easily. The
first part that comes up, and the one displayed in the figure, is the part that
actually shows the form of the production that has been induced. This is the
way the dialog would look if the act of entering a “5” after the option–click
had been done, as discussed above. Many of the pop–up menus are a
consequence of how the working memory elements were initially created.
While it may look complicated, the interpretation is easy, and as previously
stated, the author will probably not have to make many, if any, changes.
The dialog as shown in Figure 4 is the correctly specified production, and
only two related changes had to be made from the default (which are
mentioned at the end of this subsection).

Let us first consider the lines which follow the statement “And the
following occurs:” in the middle part of the dialog. This is the production’s
condition statement. The way this condition should be thought of is, “If the
top and bottom number of a column is used with the Subtract Function...”
The menu options for the pop–up menu currently set to “Any Column’s
Top” contains the full container hierarchy of how to refer to the top–most
cell of that column (e.g., Cell1 —> Any Cell —> Column1’s Top —> Any

Figure 4. Fine-tuning a production

A Programming by Demonstration Authoring Tool for Model-Tracing Tutors

249

Column’s Top), and one can generalize the production to any of those
levels. This refers to the cell that contained the “7” in the problem. Since
the Column1 working memory element needed to be invoked in order to
access this “7” (because the “5” is in the same column), the pop–up menu
is automatically set to a one higher level of generality (just as a rule of
thumb, which turns out to be correct in most instances in the arithmetic
domain). The arrow can be translated as “is placed on,” and then after it
appears the Knowledge Function which was used. The pop–up menu set to
“None” contains a list of comparison functions (e.g., “<,” “=,” “>=,”
“contains,” etc.). When one of these comparison functions is selected, a
box appears to the right of the pop–up. A value can then be entered into the
box in order to place a constraint on the possible values which whatever
cell is indicated can have. For example, you may want one action to occur
when borrowing from a zero occurs and another action to occur when
borrowing from a non–zero. In the first case, you can set the pop–up to “=“
and put a “0” in the box that appears.

The second line, which starts “Any Column’s Bottom” has the same
interpretation, and came about the same way as the first line. The line
below it, which starts off “Relation between first and second condition:”
and ends with a pop–up menu gives the author the opportunity to input a
constraint (the pop–up contains a list of comparison operators) between the
whatever the values the first and second conditions are instantiated as. For
example, in multi–column subtraction with borrow, one rule may apply
when the top number is equal to or greater than the bottom, and a different
would apply when the bottom number is bigger. That relation can be
specified with this pop–up.

Demonstr8 is currently limited to having only two of these conditions,
primarily because the Knowledge Functions are limited to two dimensions.
While this may seem a detriment (though it would scale up easily—the
ACT–R analogy mechanism can create arbitrarily complex productions, if
needed and correctly specified), there is a movement within the ACT–R
community to create simpler productions, those in which only one, or at
most two, memory retrievals are performed. Larger productions are harder
to understand and debug, and given the purpose of this tool (allowing non–
programmers and non–cognitive scientists to create ITSs), forcing an upper
limit on the complexity of the authored productions is a desirable attribute.

The line after the phrase, “Then this can happen:” is the production’s
action, and is arrived at much the same way was as both of the conditions.
In this particular instance, it can be thought of as “...then the result from the
Subtract Function can be placed in the column’s result cell.” Constraints
can also be placed on the values that this result can have. Again,
Demonstr8 is limited to creating productions with only one action. This
action corresponds to a change being made within the tutor’s interface. If

Blessing

250

multiple actions are possible at any one point in solving a problem (e.g.,
different strategies can be followed), then multiple productions which
correspond to each of the individual actions will need to be authored.

Given just the above information (what is specified under “And the
following occurs” and “Then this can happen”), the system does not know
which column is being referenced. The information under “If this constraint
can be met:” gives this information. Since the system has induced that
columns are important for this production, it continues up the WME
container hierarchy looking for a slot value which contains a list of
columns. The Problem WME has such a list, and this is the list it will use.
(If the author was not having Demonstr8 induce the rules, he or she could
drag the WME that contains such a list and drop it in the box below where
it says, “If this constraint can be met:” and the system will generate the line
shown.) In the last section it was mentioned that Demonstr8 has knowledge
about how to reason with lists—what it means to be rightmost or left of an
item in a list. The first pop–up menu under “If this constraint can be met:”
contains such relations. The word after the pop–up is the Classname of
interest (in this case, Column). The second pop–up is a list of the slot
names associate with the Classname of interest (Top, Bottom, and Answer
for the present example). The third pop–up of comparison operators and its
accompanying text box operate like they do in the other lines. The
interpretation given to this line in Figure 4, which has been set to the right
selections, would be, “This production will match to: The rightmost
column whose answer property contains a blank.” (The default is to set the
first pop–up to `rightmost,’ since arithmetic strategies usually go from right
to left, the second pop–up to the first item in the list—Top, in this case—
and to leave the box empty. This is where the two changes had to be made
from the default assumptions—change Top to Answer, and put Blank in the
box). Wherever Any Column appears in the following “If” and “Then”
parts of the parts of the production, it will take on the value of that column.

Goal and Skill

When the Goal and Skill radio button is selected, the main part of the
Production Dialog changes to two simple sections. The top section contains
two checkboxes and one text box and states what the topmost goal of the
system currently is (Demonstr8 defaults to “Do Arithmetic” as the topmost
goal). As the author demonstrates the actions that make up a skill, subgoals
may have to be set and satisfied. The top checkbox states: “I am now going
to do this:” and the text box follows. When the author is going to start some
specialized procedure, like borrowing in subtraction, after the just–
specified action, a subgoal may need to be set. This indicates to the system
to place the indicated subgoal on top of the goalstack, and subsequent
productions will be in service to that subgoal. Once the author has

A Programming by Demonstration Authoring Tool for Model-Tracing Tutors

251

demonstrated an action that accomplishes this subgoal, the second
checkbox can be checked, which states, “I have completed this subgoal.”
This will remove the topmost goal from the goalstack. Subgoaling and
keeping a goalstack is necessary for when the same action occurs in
different contexts (e.g., crossing out a number to add ten to it versus
crossing out a number to decrement it). A current research aim is the
automatic detection of subgoals and subgoal completion.

The second part of the dialog allows the author to indicate which skill
this production supports. As mentioned in the Introduction, one of the
features of the ACT Tutors is the Skillometer, a list of skills that are being
taught and the probabilities that the skills are in a learned state. This tool
supports such a Skillometer. The author can indicate if the current
production supports a skill that has already been identified (via a pop–up
menu listing skills previous productions have supported), or if this
production supports a new skill (by typing the skill’s name in a text box).

Help

Selecting the last radio button allows the author to enter help text specific
to the current production. When selected, the main part of the dialog will
display four text boxes, labeled Levels 1 through 4. Each level corresponds
to a more specific hint that the tutor will provide when the student asks for
help repeatedly at the same spot (the ACT Tutors generally provides three
levels of help). The help text can contain variables in order to provide
context–sensitive help. The values of the variables will either be a specific
number (when the variable refers to a slot name whose value contains a
cell) or the text of a WME’s help tag (when the variable refers to a specific
WME). The variable names are preceded by an equal sign, and the actual
name must refer to a name from the Conditions and Action part of the
dialog (these names are listed at the bottom of the Help part to aid the
author). In the current instance, =top, =bottom, =answer, and =column are
valid variable names, generated by Demonstr8 based on the slot names of
the appropriate classnames. The value of the first three would be the value
of a cell, and the value of =column would be its help tag text. An example
of explicit help message would be, “You must subtract =bottom from =top
in the =column column,” which might be instantiated as “You must
subtract 2 from 7 in the ones column,” if a student asked for help.

While the preceding section has been long, the author has had to
perform very few actions in demonstrating this production. They were:

• Option–clicking the Answer cell of the ones column

• Indicating that a “5” should be placed there

• Completing the resulting production dialog box:

Blessing

252

• In the Condition and Actions part, changing the second pop–up menu
to read “Answer” and dragging “Blank” from the WMEs window to
the box in the first line

• In the Goal and Skills part, typing a new skill name (“Subtract”) in
the bottom box

• In the Help part, typing in the help text

The author continues demonstrating how the problem should be solved,
specifying the productions as needed. For a subtraction tutor that does not
handle borrowing, the production just specified is sufficient for the task.
For subtraction with borrow, six productions are needed. An easy way
exists to specify when the problem is solved. One could imagine writing a
specific Done production (realizing when a problem is solved is a skill that
students need to learn), but for most problems in the domain of arithmetic,
problems are done with then leftmost cell is filled. The system has an
implicit Done production, whose condition is satisfied when that cell is
filled (the author indicates that cell by selecting it and then choosing a
menu command). Once the productions and the Done Cell have been
specified, the author can have the system Auto–Solve a problem by simply
generating a new problem and selecting “Auto–Solve” from the Author
Menu. The system will work through the problem, filling in the appropriate
cells as it goes along. This provides the author an opportunity to see if the
specified productions are sufficient for the desired curriculum. If a mistake
is encountered, the author can fine–tune the faulty production (double–
clicking on a production’s name will bring up the Production Dialog), or it
may be necessary to record additional actions if they were not
demonstrated. In general, knowing when enough example solutions have
been demonstrated is difficult, particularly as the domain gets more
complex. For those complex domains, the best recourse is to simply test the
tutor in the real world and see where the deficiencies lie. When some are
found, the missing productions can easily be demonstrated and added to the
system.

The preceding description of how to create productions could also
apply to the creation of what are termed “buggy” productions as well
(Brown & Burton, 1978). In the course of learning a domain, a student may
develop a misconception about a particular step in the problem solving
process. These misconceptions are “buggy” pieces of knowledge that the
student has. There is a set of common misconceptions for any domain, and
the author may want to target instruction for when a student apparently
possesses one of these misconceptions. A common misconception in
subtraction is that one always takes the larger number from the smaller,
even if the larger one is on bottom (thereby eliminating the need for
borrowing). While Demonstr8 does not currently have this feature (though

A Programming by Demonstration Authoring Tool for Model-Tracing Tutors

253

having buggy productions with specific remediation is a feature of the ACT
Tutors), one could easily imagine a menu toggle indicating that the next
action that the author is going to demonstrate is a buggy production, and so
should not be considered a correct step. When the student is using the tutor,
if he or she performs one of the buggy productions the proper help text
could be displayed.

USING THE TUTOR

Once the author is satisfied with the productions that have demonstrated,
the system can be put into “Student Mode” by selecting that option from
the Author Menu. The screen will then appear as in Figure 5.

The authoring windows have disappeared, and the Author Menu is
replaced with the Student Menu, which has three options: Help, Done, and
New Problem. The Student Interface has been modified to be more
presentable to a student, and two windows have been created: Skillometer,
which contains a list of all the skills the author specified, and the Student
Palette, which contains the numbers 0 – 18 and a slash. Next to each skill in
the Skillometer is a bar graph indicating the probability that the skill is in
the learned state. The numbers and slash of the Student Palette can be
dragged from the palette and dropped onto the problem in the appropriate
(or not appropriate) places. In operation, this tutor behaves essentially like

Figure 5. The finished tutor’s interface

Blessing

254

one of the ACT Tutors. The student can ask for help at any time, and the
tutor will respond with an appropriate, context–sensitive help message.
When the student performs an action, the tutor will check that action
against the productions specified by the author. If the action is correct, the
appropriate skill is incremented. If incorrect, the action is not allowed and
the appropriate skill decremented. Once all of the skills have more than a
95% chance being in the learned state, a dialog box appears congratulating
the student on mastering the tutored domain.

SUMMARY

This section has described how Demonstr8 can be used to create a simple
model–tracing tutor for multi–column subtraction without borrowing. The
total time the author spent creating the tutor was less than 10 minutes. To
extend the tutor to problems with borrowing, the author would need to
demonstrate 5 more productions, embodied in a single example, which
would add no more than 10 minutes to the tutor creation time. Creation of
the tutor involved using a set of MacDraw–like tools to design the student
interface, defining working memory elements through a simple–to–use
dialog, and finally demonstrating the underlying rules of the domain by
working with the student’s interface, with only minor additions by the
author.

GENERAL DISCUSSION

The three parts of creating a tutor in Demonstr8, designing the student
interface, creating working memory elements, and demonstrating
productions, can each be evaluated with respect to two questions: 1) How
easy is it to do in the current system, and 2) How general is the technique?
The following sections consider each of these parts and the questions in
turn, followed by a discussion of making these three parts separate tools.

GENERAL PRINCIPLES WITHIN DEMONSTR8

Designing the student interface

The tools in Demonstr8 to design the interface the student will use are
extremely simple (essentially containing widgets only for drawing lines and
cells), but they are sufficient to create any kind of arithmetic interface. Any
person familiar with using a computer drawing package could create a
student interface within Demonstr8. (Remember, the alternative in the TDK
would be to code LISP statements describing lines and cells—a task doable
only by programmers.) Being able to create a student interface using a

A Programming by Demonstration Authoring Tool for Model-Tracing Tutors

255

drawing–like package creates a situation in which designing the interface is
not only easy to do, but it is also quite general. A sophisticated interface
can be easily created using such methods. Several off–the–shelf,
commercial packages (e.g., Apple’s Hypercard or Macromedia’s Director
programs) allow designers to easily create interfaces with sophisticated
widgets (pop–up menus, radio buttons, etc.) that could be used as student
interfaces in tutors. Some even allow for plug–in widgets, so that a
programmer could create something like the cell tool, which an educator
could then have available in designing a tutor.

However, designing an interface that maximizes the time spent by the
student in learning the domain, and not in learning the interface, is not
trivial. There are human–computer interface design issues that need to be
taken into consideration, but that the average educator could not be
expected to have. There are a few courses of action that could be taken.
First, packages of plain interfaces could be made available, and the domain
experts could modify them to suit their needs. Lewis, Milson and Anderson
(1987) described an algebra tutor that allowed teachers to slightly modify
the interface and the tutoring method (though no provision was made for
the teachers to actually augment the underlying production rules).
Alternatively, the application used by the educator to create the interface
could offer suggestions about the interface, or maybe even not allow some
interface choices. Finally, either an interface designer could work with the
educator in creating the interface, or perhaps the educator could be given
some instruction beforehand in proper interface construction.

Creating working memory elements

This is arguably the most important step in creating a tutor using
Demonstr8, since the working memory elements as defined by the author
serve as a major determiner the format of the resulting productions. It is
important to use the right representation for the WMEs, so that the
induction method can successfully produce the right productions. As
realized within Demonstr8, this process isn’t much more difficult than
using a drawing package like discussed above, but to do it correctly still
requires more knowledge of cognitive science and production systems than
a typical educator would have. To take the example of creating the
subtraction tutor, why was it important that each column be identified and
segmented into the three cells (Top, Bottom, and Answer)? Why did those
columns need to be grouped into a problem? The answer to both questions
is so that productions could be created that would sufficiently solve the
problem. The realization that such WMEs would be needed comes from
introspection as to how the problem is segmented in order to solve it, as
well as experience in designing such systems. It may also come from
listening to people solve such problems, and finding out what sorts of

Blessing

256

things they mention in the course of the solving. To make this task doable
by educators, some instruction in designing WMEs may inevitably have to
be given. However, things could be done within the tool to make this
process easier, such as having it ask questions or make intelligent guesses
as to the correct way of parsing the interface as drawn. Also, the method
itself could be made easier, perhaps by doing away with the dialog and
having the author construct and group the WMEs on the interface itself.

In terms of the generality of this method of designing WMEs, that of
visually defining them as opposed to typing out statements in a LISP
document, it can be quite general. Most WMEs represent things that can be
pointed to, like a column of numbers or the symbols that make up an
algebraic equation. That being the case, they can be selected, grouped, and
named, and their parts can be separably identified. For WMEs that have no
on–screen counterpart, perhaps a representation can be created to allow
them to be done so. In Demonstr8, the addition and subtraction facts are
represented as tables, and these tables can be easily created and modified.
A table format can perhaps represent many such abstract WMEs. For
WMEs that represent goals and other declarative information without an
easily represented form, the best representation may be something akin to
the currently used list form in the TDK.

Demonstrating Productions

Once an adequate set of WMEs have been defined, actually generating the
productions is relatively easy. The author merely has to perform the task,
and for each intended student action, make sure that the created production
is at the right level of specificity, assign it to a skill, and write help text for
it. With Demonstr8 inducing the structure of the production (i.e., what
WMEs are being referred to), little or no fine–tuning of these productions
should be needed, though the author will need some training in
understanding the induced production, in case a slight modification is
needed. Creating a production without the induction method (as in the tool
described in Blessing, 1995) is moderately difficult and requires an
adequate understanding of production systems. Also, if the skill requires
subgoaling, those have to be indicated at this point as well. Similar to
WME creation, instruction on when to use subgoals may have to be given
to the educator –author as well.

Given that the induction method employed by Demonstr8 is based on
the analogy mechanism of ACT–R, it should be as general as that
mechanism is. As stated in the Introduction, one of the strong claims of the
ACT–R theory is that all productions are created by this mechanism, based
on the contents of declarative memory (i.e., existing WMEs). By
embodying such a mechanism within a tool like Demonstr8, a strict test of
that claim can be made.

A Programming by Demonstration Authoring Tool for Model-Tracing Tutors

257

COMPONENT ARCHITECTURES

As described, Demonstr8 is an all–inclusive system. It contains the
components necessary to design the student interface, create working
memory elements, demonstrate the productions, and tutor the student.
However, other researchers have argued for a component–system approach
to tutor design (e.g., Ritter & Koedinger, 1995). The pieces of Demonstr8
are amenable to such a view.

In a component architecture system, the different parts are actually
separate applications which communicate by sending messages back and
forth (e.g., by using AppleEvents on a Macintosh). This allows for the
student interface to actually be a piece of off–the–shelf software like
Microsoft Excel, which would report the student’s interface actions to a
tutoring agent (a separate application, designed apart from Excel, and
usable in the context of other spreadsheet applications). This agent then
judges the correctness of the student’s actions, which it would then report
back to Excel.

Applying such a model to Demonstr8, the component that creates the
student’s interface could be anything—something simple like what exists
now in Demonstr8, a program like Macromedia’s Director, or some other
off–the–shelf solution. The only restriction is that the component must be
able to tell other applications what the student is doing (in AppleEvents
nomenclature, be recordable), and also other applications must be able to
tell it what to do (i.e., be scriptable) and be able to request information
from it, so that when the student is using the interface, the interface can be
updated correctly if the student makes a mistake.

A second tool, essentially the guts of Demonstr8, would be needed that
aided the author in creating WMEs and productions. This tool would be
able to parse the student interface in order to create WMEs, and also allow
the author to create higher–order WMEs (e.g., columns for multi–column
subtraction) by grouping the existing WMEs in the interface. Furthermore,
this tool would also need to support the creation of more abstract WMEs,
such as addition and subtraction facts, and any goal structures needed to
solve the problems. Once those are in place, the author could create the
productions by putting the interface application in “before” and “after”
states (in the course of solving an actual problem), and the tool would
induce the production needed to get from the “before” state to the “after”
state. The output of the tool would be a set of productions usable by a
tutoring agent in a component architecture system.

Blessing

258

BEYOND DEMONSTR8

With the current tool only arithmetic tutors can be created. What about
other domains? I have argued that the techniques embodied within
Demonstr8 are usable to design other systems with which other tutors could
be created. This section considers the form of those other systems could
take in different domains.

The main requirement for a tool like Demonstr8 to work is that
successive states in the problem solving process be concretely represented.
Let us consider what this means in algebra—a domain similar to arithmetic,
but different and complex enough to be worthwhile creating another
authoring tool for. Within algebra, representing the successive states of the
problem solution is quite natural. An author should be able to demonstrate
the following problem:

3x + 5 = 14
3x = 9
x = 3

and have the system infer the productions needed to solve such problems
(i.e., first subtracting from both sides and then dividing by the coefficient in
order to solve for x). Neves (1978) actually developed a system, called
Alex, for doing just this, and in a manner similar to Demonstr8. Neves’
concern in constructing Alex was how a system could learn from textbook
examples, similar in most respects to the main concern of Demonstr8. Alex
implemented Newell and Simon’s (1972) GPS approach to problem
solving. It had available knowledge of simple arithmetic, and when given
an example like the one above, could infer the rules behind it by seeing
what had changed between pairs of lines in the example (i.e., what has been
removed or transformed between the left and right sides of the equation).

Using manipulations like those described in creating the subtraction
tutor, one could imagine the author indicating to the system the general
form of equations by placing cells that could contain numbers, variables, or
operators onto the worksheet, and then grouping those cells into terms, the
terms into sides, and the sides into an equation. Having created the
necessary working memory types and elements, the author could
demonstrate how the problems should be solved by dragging and dropping
those elements to the next line on the worksheet. In going from Line 1 to
Line 2 in the example presented above, the 3x stays the same on the left–
hand side, and the 5 and the 14 get combined (the result of applying a
Knowledge Function) to generate the 9. Likewise, in getting the solution,
the x stays on the left–hand side, but the 3 and 9 are used to generate the
answer, 3.

However, not all domains are equally amenable to having tutors
constructed in them using Demonstr8–like tools. Successful ACT Tutors

A Programming by Demonstration Authoring Tool for Model-Tracing Tutors

259

have been built for algebra word problem solving and algebra equation
solving, and, as shown above, versions of these tutors could be authored
using programming by demonstration methods. Even the tutors for
programming languages could be demonstrable (Neves had Alex learn
LISP by example). However, programming a geometry tutor (Koedinger &
Anderson, 1993b; Anderson et al., 1985) by demonstration may not be
straight–forward. These tutors taught how to do geometry proofs, and the
student could work on the proof either forwards or backwards, by applying
the requisite theorems and axioms necessary to do the proof. The problem
in trying to induce the productions necessary lies in the fact that there is
much knowledge between successive states of the problem solving process
that is not directly observable in the interface—much of the reasoning
behind why certain theorems were applied when is not represented in the
interface, but rather is inside the solver’s head (Koedinger & Anderson,
1989). This indicates that it may be necessary in some domains to create
the production rule set in an interface different than that the student will
use—perhaps one that has been augmented to indicate the overall plan that
is being implemented to solve the current problem.

In general, the challenge in using the techniques discussed in this paper
to create an authoring tool lies in finding the correct representations to use.
For arithmetic the challenge was perhaps simpler than it would be for other
tasks, but above I have argued that it would be just as straight–forward for
some (algebra and even programming) and more difficult for others
(geometry). For any task, the difficulty in applying these techniques arises
when whatever is implicit in performing the task must be made explicit. In
Demonstr8 this was satisfied by the use of Knowledge Functions, and I
believe these would generalize to many domains. However, it will only be
constructing authoring tools for other domains that we will be able to see
what techniques truly are general and which are specific for a particular
task.

CONCLUSION

This paper has described a tool which makes the creation of model–tracing
tutors much easier than currently realized (e.g., by the Tutor Development
Kit). The goal of the research is to empower any domain expert, even an
educator in a classroom, to be able to create an intelligent tutor in the
domain in which they are expert. The current tool, Demonstr8, falls
somewhat short of that goal, since some training is still required, but
contains some techniques, such as using ACT–R’s analogy mechanism to
induce the production rules, that places us closer to that ideal.

Blessing

260

Author Notes

The work presented in this paper is based upon work supported by the
National Science Foundation and the Advanced Research Projects Agency
under Cooperative Agreement No. CDA–940860. I would like to thank
Marsha Lovett, Steven Ritter, and three anonymous reviewers for their
comments on earlier drafts of this paper, and also John Anderson and Jim
Spohrer for their help and suggestions with this work.

References

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Anderson, J. R. (1992). Intelligent tutoring and high school mathematics. In
C. Fasson, G. Gauthier, & G. I. McCalla (Eds.). Proceedings of the
Second International Conference on Intelligent Tutoring Systems.
Spring–Verlag: Berlin, Germany.

Anderson, J. R., & Pelletier, R. (1991). A development system for model–
tracing tutors. In Proceedings of the International Conference of the
Learning Sciences (pp. 1–8). Evanston, IL.

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition
and the LISP Tutor. Cognitive Science, 13, 467–506.

Anderson, J. R., Boyle, C. F., & Yost, G. (1985). The geometry tutor. In
Proceedings of the International Joint Conference on Artificial
Intelligence—85. Los Angeles: IJCAI.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995).
The cognitive tutors: lessons learned. Journal of the Learning Sciences,
Vol. 4(2), 167–207.

Anderson, J. R., Boyle, C. F., Corbett, A. T., & Lewis, M. W. (1990).
Cognitive modelling and intelligent tutoring. Artificial Intelligence, 42,
7–49.

Blessing, S. B. (1995). ITS authoring tools: The next generation. In J.
Greer (Ed.), Proceedings of AI–ED 95–7th World Conference on
Artificial Intelligence and Education (p. 567). Charlottesville, VA:
Association for the Advancement of Computing in Education.

Brown, J. S., & Burton, R. (1978). Diagnostic models for procedural bugs
in basic mathematical skills. Cognitive Science, 2, 155–192.

Corbett, A. T., & Anderson, J. R. (1990). The effect of feedback control on
learning to program with the LISP tutor. In Proceedings of the Twelfth
Annual Conference of the Cognitive Science Society. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Cypher, A. (1993). Watch What I Do: Programming by Demonstration.
MIT Press, Cambridge, MA.

A Programming by Demonstration Authoring Tool for Model-Tracing Tutors

261

Koedinger, K. R. & Anderson, J. R. (1989). Perceptual chunks in gemoetry
problem solving: A challenge to theories of skill acquisition. In
Proceedings of the Eleventh Annual Conference of the Cognitive
Science Society. Hillsdale, NJ: Lawrence Erlbaum Associates.

Koedinger, K. R., & Anderson, J. R. (1993a). Effective use of intelligent
software in high school math classrooms. In Proceedings of the World
Conference on Artificial Intelligence in Education, 1993.
Charlottesville, VA: AACE.

Koedinger, K. R. & Anderson, J. R. (1993b). Reifying implicit planning in
geometry: Guidelines for model–based intelligent tutoring system
design. In S.P. Lajoie and S.J. Derry (Eds.) Computers as Cognitive
Tools. Hillsdale, NJ: Lawrence Erlbaum Associates.

Lewis, M. W., Milson, R., & Anderson, J. R. (1987). The Teacher’s
Apprentice: Designing an intelligent authoring system for high school
mathematics. In G.P. Kearsley (Ed.) Artificial Intelligence and
Instruction: Applications and Methods (pp. 269–301). Addison–Wesley
Publishing Company: Reading, MA.

Myers, B. A., McDaniel, R. G., & Kosbie, D. S. (1993). Marquise:
Creating Complete User Interfaces by Demonstration. In Proceedings
of INTERCHI ‘93: Human Factors in Computing Systems, April 24–29,
1993.

Nardi, B. A. (1993). A small matter of programming: Perspectives on end–
user computing. Cambridge, MA: MIT Press.

Neves, D. M. (1978). A computer program that learns algebraic procedures
by examining examples and by working test problems in a textbook.
Proceedings of the Second National Conference of the Canadian
Society for Computational Studies of Intelligence.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood
Cliffs, NJ: Prentice–Hall.

Ritter, S., & Koedinger, K. R. (1995). Towards lightweight tutoring agents.
In J. Greer (Ed.), Proceedings of AI–ED 95–7th World Conference on
Artificial Intelligence and Education (p. 567). Charlottesville, VA:
Association for the Advancement of Computing in Education.

Smith, D. C., Cypher, A., & Spohrer, J. (1994). KidSim: Programming
agents without a programming language. Communications of the ACM,
37(7), 55–67.

