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Abstract. In this paper, | describe how a cognitive model was used as a
simulated student to help design lessons for training circuit board
assemblers. The model was built in the Soar cognitive architecture, and
was initially endowed with only an ability to learn instructions and
prerequisite knowledge for the task. Five lessons, and a total of 81
instructions for teaching expert assembly were developed by iteratively
drafting and testing instructions with the simulated student. The resulting
instructions were in a canonical form, so they were embellished to create
humanly palatable lessons using qualitative insights from the simulated
student’s model of learning from instruction. The constraints imposed by
Soar exposed where learning can be difficult for students. During the
design process, six types of problems were found and corrected. The
paper concludes by reviewing some interesting characteristics of a
cognitive architecture-based simulated student.

INTRODUCTION

The classic educational use of a cognitive model is to define the target
knowledge for an area of study -- an expert model. The expert model
formally defines what a student should know after he or she has completed
a course of study. This knowledge cannot be pumped directly into a
student, however. That is, the student can not be programmed with the
model as a computer can -- the process is much more complex and error
prone. An instructional designer must use the expert model as atarget, and
then design educational materials (e.g. expository text, instructions,
worked-out examples, lectures, diagrams) to lead the student to that target.
The student, then, must work with the materials, extract information from
them, and apply it to the tasks they are given. If all works well, then the
student learns an approximation of the knowledge in the expert model.
Ordinarily, testing materials with real students is the only way to evaluate
if lessons work well, or where they fail. And evaluation results are
necessary before the lesson can be revised.
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Cognitive models that incorporate learning can assist in instructional
design by providing an immediately available test bed for formative
evaluation. For example, amodel that has both the prerequisite knowledge
for a course, and the ability to learn from instructions, can be used to test
lessons as they are designed. If the model is presented with alesson that it
successfully learns, then the lesson is given some validation. Conversely,
if it fails to learn the lesson, the model can be examined to find out why,
and the lesson can be revised. In any case, the lesson receives some
debugging before students are subjected to it.

VanLehn, Ohlsson, and Nason have called this type of a model a
simulated student (1994). The purpose of this paper is to describe how
Assembler-Soar, a cognitive model built in the Soar cognitive architecture,
was used as a simulated student to iteratively design and evaluate lessons
for teaching circuit board assembly.

This paper is organized as answers to a series of questions concerning
the use of a simulated student for instructional design. The first three
sections concern the design of the simulated student: what is it, what does
it learn, and how does it learn. After this description of the smulated
student model, | answer how it is used in instructional design. | conclude
with a discussion reviewing other ssimulated students and describe their
Interesting characteristics as tools for instructional design.

WHAT ISTHE SIMULATED STUDENT MODEL?

Assembler-Soar is a model built in the Soar cognitive architecture. Soar
has been proposed as a unified theory of cognition, built on a wide range
of experimental results from psychological research (Newell, 1990) . It
has been successfully used to model a wide range of tasks of appreciable
complexity (Lewiset a., 1990) .

Assembler-Soar works in the domain of circuit board assembly. One
aspect of an assembler’s job is to insert electronic parts into their correct
slots in a printed circuit board. A parts list defines the mapping of what
part goes in what slot. The parts are initialy sorted into parts bins.
Consequently, the assembly task requires iteratively inserting each part in
the parts bins into its slot on the board, guided by the information in the
parts list.

Inserting parts in a board is a fairly trivial task. For example, the
assembler can just pick up a part, search the parts list to find the label of
the dlot it should go in, and then search the board for that slot. Then he or
she can repeat this procedure while there are still dots to fill. What
separates expert from novice assemblers, however, is the correctness and
efficiency with which they work. Most notably, expert assemblers use
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strategies that avoid difficult searches of the circuit board, and learn where
parts go to avoid having to search the parts ist.

Figure 1 shows how Assembler-Soar evolves from a simulated student
to an expert model. Assembler-Soar begins with only prerequisite
assembly knowledge and the ability to learn from instructions.

Assembler-Soar as Simulated Student Assembler-Soar as Expert Model
Prerequisite Instruction Prerequisite Expert Knowledge
Assembly in Expert Assembly (pifferentiate Correct Pt Use of the
Knowledge Assembly Knowledge Pgrqts by Orientation  PartList
. , ape

Instruction Instruction Expert Learning-

Taking — —> Taking Strategy Expertise
Knowledge @ Knowledge Choice p

Figure 1. The Evolution of Assembler-Soar into an Expert Model

Its prerequisite assembly knowledge is akin to a novice model of an
assembler, and includes knowledge for performing cognitive actions
(operators), and control knowledge for choosing between possible
operators:

» Operatorsto initiate motor action - e.g. pickup-part, rotate-part,
Insert-part

» Operatorsto control attention - e.g. focus attention on a slot on the
board, shift attention to another slot

» Operators to augment internal models - e.g. notice a part’s shape and
add it to an internal part-model

» Control knowledge to guide when operators apply - e.g. if aready
holding a part, don’t ook to the parts bins.

With this prerequisite assembly knowledge, the model knows enough
to assemble a board. However, parts will be put in incorrect slots, and
their orientations are likely to be wrong. Because the initial model does
not bother with correctness, its efficiency (measured in parts-inserted-per-
minute) could be quite good.

Assembler-Soar evolves into an expert model, not by directly
augmenting its Soar-encoded knowledge, but by having the model interpret
and apply the instructions that it "reads." This instruction taking behavior
Is also knowledge-based; that is, it is not part of the Soar cognitive
architecture, rather the model has explicit knowledge of how to learn from
instructions. This knowledge is discussed later.

As the model receives instructions and practices assembly, it develops
new expert knowledge in assembly. Specifically, Assembler-Soar learns
the five expert skillslisted in Figure 1:
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1. To differentiate parts inserted by shape. Correct part placement can
sometimes be inferred by finding a slot that matches the shape of a
part.

2. To correctly orient parts. Some types of parts, such as diodes and
integrated circuits, have to be oriented correctly before inserting.

3. To usethe partslist to guideinsertions. The part list defines what
the correct part isfor each dot.

4. To apply expert insertion strategies. Because it is easier to search
the ordered part list than it isto search the unordered circuit board, is
more efficient to find the part that goesin each dlot, than it isto find
the dot for each part.

5. To use learning expertise. An expert assembler can learn where
parts go on the board, in order to avoid having to do any search of
the board or part list.

WHAT DOESTHE SIMULATED STUDENT LEARN?

Because of the nature of the assembly training task, Assembler-Soar needs
to learn operator control knowledge. As was described in the previous
section, what separates expert from novice assemblers is the correctness
and efficiency with which they work, and the strategies they choose to
avoid difficult searches. The basic operators all assemblers use are simple
(e.g. pick up part, scan list for item); consequently, they can be considered
prerequisite skills that neither Assembler-Soar, nor a real student
assembler, needs to learn. But novice assemblers must learn to sequence
these operators toward a more efficient strategy (e.g. when to scan the
parts-list, or when to stop and try to remember what part goes in a slot).
Thistype of knowledge is operator control knowledge.

In Soar, operator control knowledge is well defined and has three parts:
a context, an operator, and a preference. The context is the state of
working memory in which the knowledge (expressed as a production) will
fire. The operator is a primary unit of cognitive action. And preferences
express the desirability of applying an operator, and are considered in the
decision procedure for choosing what operator will be applied next.
Therefore, given that the task is to learn operator control knowledge, it is
easy to work backward from Soar’s requirements to define what the content
of instruction must be. The instruction given to Assembler-Soar must
provide some sense of context, operator, and preference.

Assembler-Soar learns a canonical form of instructions that has three
parts. a situation, an action, and advice. The situation describes when the
instruction applies. It corresponds to the state of working memory
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defining the context in which the control knowledge production will apply.
The action names what basic behavior (pickup, insert, scan, compare) the
instruction concerns, and corresponds to a Soar operator. And the advice
expresses whether the action should or should not be done in this situation.
It maps onto Soar’s preference options for how desirable it is to choose a
given operator in the next selection cycle. An example of a typical
instruction is shown in Figure 2. The actua productions that Assembler-
Soar learns from the instruction in Figure 2 are listed in detail in the
WWW version of this paper at
http://cbl.|eeds.ac.uk/ijaied/currentvol .html

Instruction For
Part Assembler-Soar For a Real Student
(instruction (location page) The instruction on this page says...
Situation - (situation When you are
(look-at bins) looking at the parts bins,
(holding nil) with nothing in hand,
(attending-to and attending to
(isa part) apart
(object-model that you have already compared and
found
(compare (type same))))) that its type matches the part-model...
Advice - (advice best) Itisbest...
Action - (action (name compare) To compare
(attribute value))) the part’s value with that in the part-
model.

Figure 2. Canonical Form of an Instruction with Example

Assembler-Soar does not read a lesson in the same form as a rea
student. Rather, it reads a nested list describing explicitly a situation,
action, and advice. This is a much different form than a real student
typically sees. There are at |east three waysto view this difference:

1. Prerequisite Knowledge. When training assemblers, the ability to
comprehend natural language text (and diagrams, tables, graphs,
pictures, etc.) is assumed to be a prerequisite skill. That is, just as
the ability to pick up a part is considered a simple prerequisite that a
student approaching the lesson should have, students are also
expected to be able to comprehend natural language text and to
extract from it the relevant situation, action, and advice. If a student
does not have the prerequisite skill, then they are unlikely to be
successful in learning the lesson. This is true whether the
prerequisite is comparing shapes of parts, or extracting the key
components from natural language instruction.
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2. Parsimony. A model of natural language text (and diagram, etc.)
comprehension is unlikely to provide significant insight into design
of instruction for assembly. In any use of a simulated student, the
modeling effort should be concentrated where it is most likely to
benefit the instructional design process.

3. Sate of the Art. The state of the art in machine vision and natural
language processing currently makes comprehending real student
instruction infeasible. (Huffman's Soar model of an instructable
agent does have alimited natural language ability (1993; 1994) .)

Assembler-Soar used the canonical form of instruction for all three of
these reasons.

While the canonical form of instruction is sufficient for the task given
to Assembler-Soar, it would be quite desirable for a simulated student to
comprehend natural language text. This would free the instructional
designer from the task of translating between the canonical and real
instruction, and could provide insight into educational problems that
happen at the text (or diagram, etc.) comprehension level.

HOW DOESTHE SIMULATED STUDENT LEARN?

To be used as a smulated student, Assembler-Soar needed a model of
learning instructions that could expose problems similar to areal student’s.

Unlike some other cognitive theories, Soar does not have an
architectural ability to learn from instructions. For example, ACT
(Anderson, 1983; Anderson, 1993) has an architectural means by which
declarative examples are adapted by analogy into procedura rules. And
more recently (Anderson & Fincham 1994), ACT has moved away from
the necessity of declarative examples being first stored in long term
memory. As will be evident in the following discussion, any model of
learning from instruction in Soar could not currently move away from this
necessity.

While Soar does not implement instruction-taking architecturaly, it
does have a ubiquitous learning mechanism on which all more complex
forms of learning can be built. Ohlsson (1987) has reported on another
system which proceduralizes declarative knowledge. It has a set of
learning mechanisms that are not part of the architecture, but are
implemented as productions. These productions are treated dlightly
differently than task-dependent productions, however. And while the
productions that implement the learning mechanism are constrained by
psychological theory, the underlying model is a production system, not a
model of cognition.

121



Mertz

Hayes-Roth, Klahr, and Mostow (1981) have also reported on a
significant system that can learn from instructions. Their system could
operationalize advice, expressed as LISP expressions, consisting of
concept definitions, behavioral constraints, and performance heuristics.
They did not make a distinction between declarative and procedural
knowledge, rather a concept was operational if it could be evaluated.
Advice was made operational by transforming it, using other known
concepts, until the result could be fully evaluated. Consequently, it
appears that some advice was operational as given, while most advice had
to be transformed. They had a rich set of transformational rules (about
200). Hayes-Roth, Klahr, and Mostow were successful in learning a
sophisticated card game (Hearts) and they reported having success in other
domains, including music. Their research demonstrates the sophistication
necessary from a logic standpoint to operationalize advice. It would be
interesting to achieve this same level of sophistication, while conforming
to constraints of a cognitive theory, to better inform us how humans learn
complex instruction. For example, most cognitive theories do make some
sort of distinction between declarative and procedural knowledge, at least
to the point that received input is never directly operational.

Assembler-Soar builds on previous work on instruction taking in Soar.
The earliest work was by Golding, Rosenbloom, and Laird (1987) . They
reported on a model that performs simple algebra problems, and asks for
advice when it doesn't know how to proceed. The model accepts direct
advice, or an illustrative small problem from which it could infer advice.

Lewis, Newell, and Polk (1989) reported on a model that learns
instructions for immediate reasoning tasks. Their model performs natural
language comprehension, and builds a behavioral model from simple
English instruction. This behaviora model is interpreted in order to
perform the immediate reasoning task.

Vera, Lewis, and Lerch (1993) reported on a model that |earns how to
use an automated teller machine (ATM). The ATM’s screen provides
Instructions for each step, and the model is able to comprehend and apply
the instructions in order to perform the task. Their research focused on
how Soar learned in a simple situated task.

The most significant work so far is reported by Huffman and Laird
(1993; 1994). By developing an instructable autonomous agent that
performs tasks in a robotic blocks-world, they have provided Soar with a
very general theory of instruction-taking called situated explanation. As
the name implies, the flavor of this instruction is interactive, and initiated
by the model.

How do the assembly task and the form of instruction Assembler-Soar
|earns compare with these other models?

First, Assembler-Soar perceives and manipulates a model of the
external world. This is similar to models performing in the ATM and
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robotic blocks-world tasks. The models that perform the algebra and
immediate reasoning tasks are purely cognitive ones. They do not rely on
visual input.

Second, all instructions for performing a task are presented to
Assembler-Soar before the task is begun. Only the model that does the
Immediate reasoning task accepts instructions in this way, the other three
models accept instructions interactively while at the task. Table 1
summarizes these two comparisons.

The Model Interacts with an The Model Performs
External World Cognitive Operations Only
Instruction is Delivered Verag Lewis, & Lerch (1993) | Golding, Rosenbloom, &
Interactively When Huffman (1994) Laird (1987)
Needed
Instruction is Delivered Assembl er-Soar Lewis, Newdll, & Polk
Beforeitis Applicable (1989)

Table 1. Comparison of Soar Models that Learn Instructions

The ramification of these differences is that Assembler-Soar must not
only learn what to do, but when to do it. For the model to acquire more
efficient strategies, it must know when to apply an instruction to change
behavior that otherwise would have been acceptable. In other words, it has
to recognize for itself situations where the old behavior is no longer
desired, and apply new knowledge from the instruction. Conversely, the
algebra model does not have to recognize when the advice applies. It
applies immediately to the situation in which it has been requested.
Likewise, the instructionsin the ATM model say what to do now, not some
time in the future.

Instructions given to the immediate reasoning model apply to the
future, but it is unclear what the model would do if they advised different
behavior than it had previously learned. And finally, the robotic blocks-
world model deals only with adding to incomplete knowledge, not
augmenting or replacing that which is already complete.

Because of these differences in the task and the form of instruction,
Assembler-Soar had to build on the previous Soar work, to add an ability
to visualize a future situation in which an instruction would apply. When
an instruction is being studied, the model visualizes the situation that it
describes. This enables the model to learn to recognize that situation when
it perceives it later while doing the task. This idea will be described in
more detail |ater in this section.

Soar theory attempts to define a parsimonious cognitive architecture.
In a Soar model, no matter what is being learned, there is only one way to
learn. Y et with this ubiquitous learning mechanism, it is possible to model
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a wide range of learning behavior. Assembler-Soar learns from

instruction, and in doing so, provides a process-level view of what is

necessary to learn from instruction, given this unitary learning mechanism.
The theoretical essence of Soar’s basic |earning mechanism follows:

* Whenever a knowledge impasse prohibits the continuation of normal
behavior...

* A subgoadl iscreated, providing an opportunity to reason about that
Impasse.

* Results returned from the subgoal toward overcoming the impasse
are cached as along term memory production. The memory is an
association linking the information in the supergoal that was used to
arrive at aresult, and the result itself.

* Whenever identical information appears in working memory again,
the cached long term memory will apply, avoiding any impasse and
its corresponding need for reasoning in a subgoal.

As a high-level analogy of how this learning mechanism works,
consider a driver who one morning discovers that the usual route from
home to work is blocked by road work. The normal continuation of the
task of getting to work is prohibited and a subgoal (i.e. "get around the
blocked point") is created to deal with the situation. When a search
through the surrounding streets reveals a detour around the blockage, that
detour is learned and encoded in long term memory as a production rule.
When the same obstacle is encountered on the next morning, the new rule
fires and no problem solving is necessary to find the detour.

Assembler-Soar’'s canonical instructions have the same functional
content as Soar productions, so it could appear that the trandlation from
instruction to production should be simple. In fact, the ramifications of
Soar’s basic learning mechanism exposes just how difficult the process can
be for students. These difficulties are interesting, not because they make
the modeling task harder, but because they highlight, according to the Soar
theory of cognition, what problem solving is necessary to learn from
instruction. A knowledge-based, process-level understanding of how
instructions are learned can show where students are likely to have
problems and can help instructional designers be sympathetic to the
learning process.

In building the learning model in Assembler-Soar, | attempted to add
only minimal knowledge to Soar’s architectural abilities. The alternative
would have been to develop the model from human data or existing
research. The purpose of the minimal approach was to exploit the
constraint the architecture provides in order to see what insight it brings to
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understanding instruction. This has been referred to as "listening to the
architecture.," This approach also provided the parsimonious path to
supporting Assembler-Soar as a simulated student.

In the remainder of this section, | will discuss two difficult issues in
modeling learning from instruction in Soar, and the problem solving
knowledge that Assembler-Soar was given to overcome these problems.
An even more detailed description can be found in Mertz (1995) .

Recognizing When an Instruction Applies

Consider again the example of navigating the route from home to work.
What if the driver did not hit road work, but the night before had talked to
a friend who described a faster path. In this case, the problem solving
necessary to learn the new detour would not be forced by the environment.
Rather, the driver would, in some other way, have to break from the habit
of the former route. The driver would need to somehow create a need to
do problem-solving at the appropriate time (i.e. at the appropriate street),
and recall and apply the friend’s instruction. It would be al-too-easy to
just follow the old route by habit (i.e. by compiled knowledge).

Assembler-Soar faced a similar problem. It could perform the task
with the knowledge it had. But it needed to learn how to perform the task
more efficiently -- to learn a new route. Therefore, recognizing when an
instruction applied was one difficulty Assembler-Soar had to overcome.
An instruction describes a situation, but the model requires operational
knowledge to recognize when the contents of working memory match that
description. Without operational knowledge to flag when an instruction
applies, the model would continue to behave in old ways, ignoring new
instructions.

When viewing an instruction, Assembler-Soar visualizes the situation
in which it applies by mimicking what working memory will look like in
that situation. Instruction-taking knowledge then bars further progress
until two symbols exist in working memory which a) uniquely name the
instruction situation and b) flag that the instruction has been studied.

Because progress cannot continue until these conditions are met, an
impasse is hit and a subgoal of "study the instruction situation” is created.
In this subgoal, the working memory contents relative to the situation are
examined, and the two appropriate symbols are returned. In this way, two
new productions are learned. One fires when the context of working
memory matches the one described in the instruction and adds a unique
symbol to working memory. The second fires when viewing the
instruction again and flags that the instruction has already been studied.

Returning to the home to work example, the first production would fire
when the driver got to the corner that the friend had described was where
to turn, and would provide a way of breaking from the normal route (and
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from compiled knowledge). The second production is less useful, and
would only apply if someone again told the driver about this faster route.

Breaking the Association of Knowledge from its Sour ce

Once the driver knows where to turn, the new-route problem solving only
begins. Which way did the friend say to go? The second hurtle
Assembler-Soar overcame is related to the difficulty of breaking the
association of knowledge from external sources (e.g. an instruction), from
those sources. In other words, it is easy to follow instructions while
looking at them, and hard when they are taken away. Truly learning
instructions requires taking the hard step of following them while not
looking at them. In Soar, this difficulty is part of what is called the data
chunking problem (Newell, 1990; Rosenbloom, Newell & Laird, 1991) .

This difficulty is manifested in Soar as a consequence of two
assumptions. Thefirst is how learning is achieved (as results are returned
from a subgoal), and the second is that al visual input enters working
memory only into the top goal state. (In other words, visual input cannot
enter into a subgoal state.) Consider learning an instruction that has a
situation, action, and advice. The declarative form of this instruction that
enters the top goal state of working memory is:

Situation, Action, Advice

The desired operational form of this knowledge is in the form of a
production:

Situation -> Action, Advice

That is, in a given situation, apply some control knowledge advice to
an action. The model of learning from instruction must make this
transformation. How can this be done? Recall that long term memories
are built as results are returned from a subgoal. First consider the simple
case: with a goa of learning an instruction, the model hits an impasse,
lacking knowledge of the instruction. The instruction is then examined in
a Soar subgoal, and the action and advice returned to overcome the
impasse. In this case amemory would be created:

Situation, Action, Advice -> Action, Advice

The action and advice appear on the result (right) side of the
association, because they are what was returned from the subgoal, but they
also appear on the condition side because it was their existence in the top
goal state of working memory (as visual input) that motivated the result.
This is a useless memory because it only applies if action and advice are
aready in working memory! If they were not, then the memory would not
apply. Consequently, if the model were to look away from the instruction,
say to assemble a circuit board, the memory would never apply.
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Returning to the driving example, if the driver’'s friend is always sitting
in the car pointing where to turn, then the driver will not learn the new
route. Only by doing problem solving beyond following the friend's
immediate instruction will the new route be learned to the extent that the
driver can follow it alone. Else, the memory is created: "When seeing the
corner of Murray and Forward Avenues and hearing it is best to turn left"
->"turn left".

The condition-side dependence on the action and advice must be
broken. (e.g. "When seeing the corner of Murray and Forward -> "turn
left".) To do this, the information returned from a subgoal must come from
someplace other than the visual (or auditory) input. The only remaining
option is from long term memory.

To achieve this, first the information can be put into long term memory
in the form of arecognition memory:

Situation, Action, Advice -> symbol-1

In this form, symbol-1 serves merely to recognize the declarative
information of situation, action, and advice (e.g. "It is best to turn left at
the corner of Murray and Forward" -> symbol-1).

Later, when actually performing the assembly task, operationalize the
instruction. The process begins when the production described in the
previous section recognizes the instruction situation, and puts a symbol
signifying the situation into working memory (e.g. "at the corner of Murray
and Forward" -> "situation-1"). Instruction-taking knowledge then bars
further progress until the instruction advice has been applied, as flagged by
asymbol signifying that the instruction has been applied.

Because progress cannot continue until this condition has been met, an
Impasse is hit and a subgoal of "recall the action and advice for this
situation from instruction" is created. In this subgoal, consider al
combinations of alternative operations afforded by the current context, and
possible advisements of which there are only two, "it is best", or "reject"
(e.g. it is best to turn right, reject turning right, it is best to turn left, reject
turning left, it is best to go straight, etc.). The long term memory:

Situation, Action, Advice -> symbol-1

will "recognize" the correct alternative combination (e.g. "It is best to
turn left at the corner of Murray and Forward" -> symbol-1). The
application of the correct advice to the correct action can then be returned
from the subgoal. Thiswill create the desired long memory:

Situation -> Action, Advice

(i.e. "At the corner of Murray and Forward" -> "It is best to turn left.")
Notice that only the situation appears on the condition (left) side of the
association, because it is the only information from the supergoal that was
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used to recall the instruction. The action and advice were retrieved from
long term memory (by generating and testing alternatives).

Whenever the same working memory context is recognized in the
future, the new knowledge will immediately apply, avoiding any further
mpasse. The instruction would have been truly learned and
operationalized.

Summary

To recap, Assembler-Soar’s canonical form of instruction is not the same
as a Soar production, and its model of learning from instruction makes
explicit the type of problem solving necessary for a student to
operationalize instructions.

The Soar cognitive architecture pushed Assembler-Soar’'s model of
learning from instruction in an interesting direction. Classically, learning
has been thought of as something one has direct control over, just as one
has control over moving a finger. Soar suggests a somewhat different
approach. There is no "learn" operator that directly stores away
knowledge. An individual can control reasoning, but not what is learned.
Learning can only be controlled indirectly, by reasoning in ways that are
sympathetic with how the mind learns. In Soar, learning happens when
impasses are hit, when new knowledge is needed to continue. If reasoning
Is not done in ways in which impasses are hit, then nothing will be learned.
If the surface structure of instructions are read without reasoning about
their content, then nothing will be learned. But by choosing to reason in
ways in which knowledge impasses are hit, new knowledge can be learned.

This process-level model of learning from instruction is useful in two
ways. First, as a simulated student, Assembler-Soar will fail in learning
instructions when the conditions necessary for applying the process are not
met, and in doing so, will flag problematic instructions. Second, once a
full set of canonical instructions have been developed and tested with the
simulated student, qualitative insights from the learning model can be used
to embellish the instructions into a full student lesson. Both of these
points will be discussed again later in this paper.

HOW ISTHE SIMULATED STUDENT USED?

Designing instructions with a simulated student is an interactive process,
and the classic roles of novice and expert models are reinterpreted
somewhat. Writing alesson is done by working with the simulated student
in a process of drafting, testing, and revising instructions and exercises.
The novice model defines the prerequisites to the sequence of lessons.
Instead of a singular penultimate expert model, a sequence of increasingly
expert models is created at each step of the design process. And finaly,
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the penultimate expert model is not a source of instruction, rather it is a
validation of the instruction that generated it. In other words, the expert
model is not built directly, rather the novice model is taught to be an
expert, therefore the expert model does not precede the instruction but is
developed alongsideit. Thisdoes, of course, presuppose that there is some
target expert behavior that the expert model can be externally validated
against.

TheInstructional Design Process

Figure 3 depicts how lessons are designed using a simulated student. It
shows the iterative process of designing, testing, and revising a sequence
of lessons. The process begins by defining the prerequisites for the
lessons. Next, each lesson is drafted, tested, and revised. Once the student
is able to successfully learn from alesson, a new knowledge state exists on
which to build future lessons. Eventually, the last lesson brings the student
to the fully expert knowledge state.

State of L essons
Knowledge Designed/
Process Steps Defined Validated
Begin
A
Define/Revise L
Prerequisites Prerequisite
(Novice)
Knowledge
State
........................................ Leﬂ)n 1
Drafted
Intermediate Lesson 1
Knowledge """ v
State 1
°
°
4 Intermediate Lessons1
................. Knowledge' P [hrough (n_]_)
State n-1 Validated
Draft/Revise
er, = Lessonn Lessonn
91/,&].[0 R Drafted
§
Attribute NO(Can Model Learn
Failure Lesson n? Expert Lessons 1
Yes Knowledge through n
State Validated

K End

Figure 3. The Instructional Design Process with a Simulated Student

Defining Prerequisites. The instructional design process begins by
defining the lessons' prerequisites. This is done by developing a novice
model of whatever entry-level skills are necessary. There are two types of
knowledge required of the simulated student: Task knowledge and
|earning-from-instruction knowledge.
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Task knowledge is mostly domain specific. For example, Assembler-
Soar has knowledge of assembly-specific actions such as pick-up-part and
look-at board. Other task knowledge includes the basic general skills on
which task-specific skills are built. For example, Assembler-Soar begins
with a general attention mechanism and learns to use it to perform
assembly-specific searches.

Learning-from-instruction is a more general type of knowledge that
does not depend on the task. For example, Assembler-Soar’'s theory of
learning from instruction is not specific to assembly; the ability to learn
control knowledge from direct instruction can apply to many domains.

Once the novice model has been built, its contents define the
knowledge necessary to learn the lessons. As will be seen, however, this
definition is likely to be refined as the instructional design process
continues.

Drafting the Lesson. Lessons are drafted by writing a set of
instructions in a form that the simulated student can learn. The lesson can
only build upon the student’s current knowledge state. For the first lesson,
this is equivalent to the novice model. For later lessons, it is the
intermediate state of knowledge leading into that lesson. In either case, the
knowledge that the lesson can build on is well defined.

If the type of instruction is restricted to the form that Assembler-Soar
can learn, then the instruction design process is quite constrained. With a
target behavioral change in mind, drafting an instruction requires defining
the situation in which the behavioral change will occur, defining the action
to be affected, and defining the new advice to be applied to that action.

Testing the Lesson: Does the Model Learn? After defining the
Instructions and exercises, they are tested with the simulated student. The
lesson is successful if the simulated student studies the instructions and
performs the exercises, and as a result, acquires the lesson's target
knowledge. If so, then the instructional designer can move on to the next
lesson.

Attributing Failure. The whole point of using a simulated student is
to identify points of failure, and to fix them. Failure of the model to learn
can be attributed to either the prerequisite knowledge, or to the lesson. In
either case, however, the model is available to examine exactly where the
failure occurred.

The problem might be with the prerequisite knowledge. For example,
in Assembler-Soar, an instruction might refer to an action that was not in
the novice model. Because Assembler-Soar can only learn control
knowledge for actions it aready knows, this action must be added to its
prerequisite knowledge.

The problem might be in the instruction. For example, it might
describe a situation that is implausible, in which case, the instruction
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would never be learned. Consequently, the instruction would have to be
changed.

Similarly, the problem might be in the practice exercise. If the exercise
does not afford the student with situations that match those in the
instructions, then those instructions will not be learned.

The instructional designer often has a choice as to where to attribute
the failure, and where to make the necessary changes. In genera terms, the
decision is. "Is this something that a real student is likely to know
beforehand?' If it is, then it should be added to the prerequisite
knowledge. If it isnot, then the lesson should be changed.

Revising. Finaly, once the source of failure has been determined,
either the prerequisite knowledge or the lesson can be revised, and the
lesson can then be re-tested.

A Characterization of the Knowledge L ear ned

Assembler-Soar was successful in learning the 5 expert skills listed in

Figure 1. Asaresult, 81 canonical instructionsin 5 lessons (one per skill)

were designed using this simulated student of assembly. The canonical

instructions are listed in detail in the WWW version of this paper at
http://cbl.leeds.ac.uk/ijaied/

Assembler-Soar was capable of starting from its novice state and
learning all lessons in a single run. Each lesson required studying the
instructions and assembling a circuit board one or more times. The
number of assemblies varied for each lesson. For the lessons Differentiate
Parts by Shape, Correct Part Orientation, Use of the Part List, and Expert
Srategy Choice, only one practice assembly was needed to give the
simulated student all the situations it needed to operationalize the lessons.
The Learning-Expertise lesson, however, required at least 2 assemblies of
the same board. In the first, the student would learn about the parts that
went in each slot. That knowledge would then be used to assemble
subsequent copies of the circuit board.

Besides learning from instructions (as exemplified in Figure 2),
Assembler-Soar also learned while assembling boards. As the model
assembled boards, it continually acquired knowledge about what parts it
had inserted and what parts go in each slot. Therefore the model learned
both in "training" (i.e. studying and practicing) and "on-the-job. The
knowledge built in both ways applied in later situations to varying degrees.

1. Application to later instruction and assembly
When studying instructions, recognition knowledge of instruction
situations is built. These memories transfer not only from
Instruction to practice (as has been described earlier), but from one
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set of instructions to another. If a Situation is similar to an earlier
one studied, the similar parts are immediately recognized and only
the different parts must be assimilated.

2. Application to later assembly
Operationalized instructions apply in all subsequent assembly tasks.

3. Application to later assemblies of identical boards
Information about the parts that go in each dot is assimilated as a
board is assembled (e.g. slot 147 takes an LC451 chip). This
knowledge applies to later assemblies of identical boards, and is
used to be able to insert parts without resorting to searching the parts
list.

4. Application only within the assembly of the current board
Some memories are relevant only to the currently-being-assembled
circuit board. While they apply later in the assembly (e.g. "aready
inserted the 10K ohm resistor into slot R1), they are not relevant
after the current board is finished.

No knowledge is deliberately rigged to never apply again, but temporal
flags augment some learned knowledge and deliberately limits its transfer
to future situations. The practical effect is that some learned knowledge
will never apply again. This knowledge does not transfer, not because it is
somehow wrong, but rather it is knowledge that applies only to the
immediate problem being solved and is not relevant to the future. It can be
considered as episodic knowledge that applies while in that episode, but
afterward it will not apply unless there is reason to reflect on that episode.
The duration of the episodes in Assembler-Soar correspond to the duration
of objectives and sub-objectives. As an analog, consider the problem
solving necessary to decide which dlice of pie to choose from the cut
whole. Knowledge is learned in making the decision, but this choice of
piece has no practical application to later pies. In Assembler-Soar, the
knowledge created is flagged with a unique instance tag, and this tag is
never matched again in future problem solving instances.

While learning the 5 lessons, 1747 productions were learned. 724
(43%) applied to some other situation (i.e. fired at least once), the
remaining 998 were never used. Of those, only 17 were learned as
applying only narrowly to an instance of a sub-objective. 46 productions
were tied to an objective, such as assembling a single board, and would
have applied if the relevant situation had arisen, but would not apply after
the board was completed.

Before learning, Assembler-Soar had no knowledge to guide the
correct insertion of parts and therefore made many mistakes (parts were
chosen in the order they were found in the parts bins and were inserted in
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the next empty slot the model found on the board). After learning the two
lessons: Correct Part Orientation and Use of the Part List, the model made
no mistakes in orientation or part placement.

In Soar, adecision cycle is a handy unit of temporal progress. In each
decision cycle, an operator is applied, a subgoal is created, or a new
problem space or state is selected. Consequently, the number of decision
cycles required to complete a task is a rough measure of its cognitive
difficulty. Figure 4 shows the difficulty to assemble the same practice
board after each lesson. Notice that the difficulty increases with each new
lesson, because the instructions, in effect, make the task more difficult.
For example, for the board that was assembled before learning any
instruction, the model does not have to expend any cognitive effort
determining if part is oriented correctly in the slot.
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Figure 4. Effort to Assemble Practice Board After Each Lesson

The last two lessons were each meant to make the task easier than after
the Use of the Part List lesson. The Learning-Expertise lesson actually
makes the task harder. This is because the practice board that was used
each time afforded the opportunity to operationalize the learning-expertise
instruction, but did not have enough parts to make the investment in
learning where parts go worthwhile. The Expert Strategy Choice lesson
did show some moderate gain in efficiency. While Assembler-Soar was
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able to model behavioral strategies that would be more efficient on larger
boards, the model was not run on such boards to be able to empirically
demonstrate those gains.

Types of Problems Found Using the Simulated Student

In the course of the design process, several types of problems were found
and corrected:

Unknown referent: the instruction referred to a term the model did not
yet know about. For example, Assembler-Soar made use of objectives,
which were task-oriented goals that the model pursued, such as search,
take-note-of-the-parts-shape, or use-the-expert-insertion-strategy. These
objectives had to be learned before they could be subsequently used in
later instructions. Similar failures would occur if operators that were
assumed to be prerequisite knowledge were not already part of the model.

Ill-defined situation: an instruction situation can be either too
generally or too selectively defined. When a situation is too generaly
defined, it would be recognized at times when the instruction should not
apply. For example, one of the skills that were taught was learning
expertise: an expert assembler can learn where parts go on the board, in
order to avoid having to do any search of the board or part list.
Implementing this strategy requires doing some special problem solving
just after a part isinserted. But this situation must be carefully delineated
to not do the same problem solving on parts that had been previously
inserted, only the part that was last inserted. Conversely, when a situation
Istoo selectively defined, it may not apply in situations where it could.

Inappropriate practice: the practice exercise that accompanied an
instruction did not afford a situation in which the instruction could be
applied. This was often a problem with the exercise boards that
Assembler-Soar practiced on. For example, the learning expertise strategy
takes advantage of the fact that identical parts are often located next to
each other on a circuit board. If the practice board did not have this
feature, then it would not learn the strategy.

Inappropriate behavior: athough the instructions were learned
successfully, the resulting behavior was not what the designer planned.
And example of this arose when designing instructions to apply expert
insertion strategies. Because it is easier to search an ordered part list than
it is to search the unordered circuit board, is more efficient to find the part
that goes in each dlot than it is to find the slot for each part. In the less
efficient strategy, Assembler-Soar would keep a marker in mind for where
it left off in the parts list so that it could continue with the next line. But
when searching the whole parts list for the new strategy, it was a problem
iIf the model initiated its search where it had last attended. Consequently,
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while the new instructions were successfully learned, interactions with old
knowledge sometimes produced incorrect behavior.

Refinement of behavior: the instructions were learned successfully,
but when watching the resulting behavior, better ways of doing the task
were seen.  For example, early instructions directed Assembler-Soar to
compare the slot name for each slot it was looking at with the one being
searched for. (The slot name is a label stenciled on the circuit board next
to each set of holes.) It became obvious from watching the model’s
behavior that comparing the slot names of slots already containing parts
was silly and that only the names of empty slots should be compared. This
instruction was then further refined to only compare the slot names of
empty slots whose shape matches the part to be inserted.

Slips: the instruction has small oversights. For example, accidentally
referring to a part instead of a part slot.

Creating Real Instruction from Simulated Student Instructions

Because the instructions were in a canonical form, the instructional design
process was not complete. Rather, it was still necessary to embellish the
instructions into a more humanly palatable form. In order to maintain as
much discipline as possible in the process, this was done in two passes.
First, | performed the most basic translation of the canonical instructions to
English sentences. Because these sentences are brief and direct, they
appear to be proverbs. An example of such a proverb is given in the
rightmost column of Figure 2.

In the second pass, | further transformed the instructions into general
prose and added diagrams. To do this, | anticipated the type of mental
work that students would have to do with the instructions, guided by
Assembler-Soar’'s model of learning from instruction, and embellished the
instructions to be sympathetic to that process. For example, the model
suggests that an instruction must be visualized, therefore the lesson was
embellished to support this visualization. This can be done in a variety of
ways. Good prose can richly describe a situation, using concise detail to
help the learner to visualize it. What is the situation? What is being seen?
What would already be known in the situation? What should or should not
be done? A diagram can be worth 10,000 words, for they very directly aid
the learner’s visualization. In any case, the key is to provide information
so that the learner can visualize applying the instruction, which is
necessary in studying it.

For teaching assembly, the proverbs were used directly to "give away"
the essence of the instruction. This was done by including them in the
lesson, but in such away that they stood out from the rest of the text. Asa
result, the situation, action, and advice, are highlighted, priming the learner
for what isimportant.
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The specific referents in the original canonical instructions are critical
to the instruction, however, and should not be lost or made too fuzzy to
extract. They are the concepts that the ssimulated student identifies as
being necessary to discern the uniqueness of a situation or of an action.
The lesson should strive to make these referents clearer, not to obfuscate
them, for the latter would negate the discipline brought to the process of
instructional design.

DISCUSSION

VanLehn, Ohlsson, and Nason (1994) published a review surveying work
that has been done with simulated students. They describe three uses of
simulated students: teacher training, student collaboration, and formative
evaluation. Assembler-Soar isan example of the third.

The Sierra system (VanLehn, 1987) is another simulated student that
has been used in formative evaluation. Sierra can learn arithmetic skills
from solved examples. In particular, the model learns an ordered sequence
of lessons, where a lesson is an unordered sequence of examples. The
examples can be positive examples (of things to do) or negative examples
(things not to do). Asthe Sierramodel solves arithmetic problems, it uses
solved examples to augment its procedures whenever it reaches an
Impasse. Sierra can succeed in learning arithmetic skills if it is given a
sequence of lessons that lead it to hit impasses in its knowledge, and if the
examples are adequate for it to bridge each impasse. The sequence of
lessons and the availability of examples must be such that a gradually more
sophisticated skill is built. If a lesson leads Sierra to an impasse that a
single inference taken from an example cannot bridge, then the simulated
student will fail to learn. In this way, lessons and examples can be
evaluated for their efficacy.

HS (Heuristic Searcher) has also been used as a simulated student in
formative evaluation (Ohlsson, 1992; Ohlsson, 1993; Ohlsson, Ernst &
Rees, 1992) . It also learns arithmetic skill, but from instruction, not
examples. The instruction is presented to the model interactively,
immediately whenever the model makes a mistake. HS learns by repairing
over-general rules which are detected when they lead to incorrect behavior.
The instructions given to HS are actually constraints that describe
erroneous states. If the model makes a decision that leads it to a state
described as erroneous in an instruction, the model repairs the knowledge
that made that decision so that the incorrect behavior will not be repeated.
In this way, the instruction is learned and guides future behavior. In the
real world, these constraints would be relayed by a human tutor at the time
an error is made. HS was used as a simulated student to compare the
performance of learning two alternative strategies for doing multi-column
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subtraction. Specifically, it modeled acquisition across two subtraction
strategies and two instruction methods. Whenever the model made an
error, the researchers would add a new constraint/instruction, and run the
model again from the beginning. From this experimentation, they were
able to compare the efficacy of the alternative instructional designs.

Like Sierra and HS, Assembler-Soar is a fine-grained, algorithmic
model. Also like Sierraand HS, Assembler-Soar learns control knowledge
that changes decisions concerning the application of prerequisite primitive
operations. Sierra and Assembler can learn positive and negative control
knowledge, however, while HS learns only negative. Each of the three
models learn from different forms of "instructions." Sierra learns from
solved examples, HS from state-constraint instructions, and Assembler-
Soar from situation/action/advice instructions.

As simulated students, Sierra, HS, and Assembler-Soar were used in
similar, but not identical, types of formative evaluation. Sierrawas used to
show that one set of examples was more effective than another. HS was
used to show the efficacy of one strategy over another. Assembler-Soar
was used to develop a sequence of lessons to teach a series of increasingly
expert job skills. In effect, Assembler-Soar was used to make a series of
instructional decisions, each replacing an ineffective instruction with an
effective one.

The maor difference between Assembler-Soar and the other two
modelsisthat it is built in a general cognitive architecture. HS and Sierra
were each developed specifically to model aspects of arithmetic skill, and
their implementation decisions are individually supported by empirical
evidence and/or developed theory. Assembler-Soar’'s development was
different. Data on expert assemblers was collected and formed the target
behavior for the model, but many of the implementation decisions of the
model were aready constrained by the Soar cognitive architecture.
Specificaly, Soar's modeling language and execution environment are
designed toward expressing only those behaviors that are considered to be
cognitively plausible (i.e. there is psychological datato support the type of
behavior).

Several benefits are derived from Soar’s well-defined capabilities and
constraints. Thefirst is quite practical: it can make modeling easier. Many
modeling decisions, such as how long term memories are created and
retrieved, are aready defined and supported by empirica evidence.
Modeling is also simplified because Soar’s constraints often point to fewer
ways to model a given behavior. Another benefit is that Soar bestows on a
model some degree of validity. Simply put, if the cognitive architecture is
validated by human data, any model built in it inherits that validation. In
reality, the inheritance may be a modest, first-order validity, but it is a
Start.
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A final benefit of building a simulated student in a general cognitive
architecture like Soar is the packaged ability and mutual constraint that
comes from other models built in the architecture. General cognitive
models deal with one aspect of cognition, and while researchers make
cases for how results of one model correspond to other findings, these
clams are not verified by a combined execution of multiple models.
Models built within a cognitive architecture are also often built to deal
with one aspect of cognition, but because they exist in the architecture,
they become part of alarger comprehensive model. For example, NL-Soar
Is a model of language comprehension, built in the Soar cognitive
architecture (Lehman, Lewis & Newell, 1991; Lewis, 1993). Instructo-
Soar is a model of learning from instruction that incorporates NL-Soar to
comprehend written instructions (Huffman & Laird, 1993; Huffman &
Laird, 1994). NTD-Soar is a model of the behavior of a NASA Test
Director that uses NL-Soar to comprehend the text of the Director’s manual
(Nelson, Lenman & John, 1994) . In both cases, NL-Soar provides some
natural language capability, and constrains what assumptions the models
can make about natural language comprehension.

CONCLUSION

Advances in cognitive science have created new opportunities for using
computational models. It is now possible to develop simulated students
that can aid teachers, students, and instructional designers. | have
described one such simulated student, Assembler-Soar, which was used to
design instruction for an adult vocational task. From this work, I've
identified afew interesting characteristics of using a simulated student.

The smulated student is an evolving model. Instead of being a
single expert performance model, the simulated student is an evolving
model. Each intermediate state of knowledge is an expert model for the
completed lesson and a novice model for the ensuing one.

A simulated student highlights detailed changes in knowledge.
When using novice and expert models to design instruction, the difference
between the two gives a gross measure of what must be learned. This
approach potentially misses intermediate states of knowledge that are
necessary to make the transition to more expert behavior. The simulated
student method brings to light those intermediate states.

A smulated student permits the use of multiple methods of
learning. Unfortunately, knowledge cannot be directly infused into
human long term memory. Consequently, a model of how real students
learn from external sources is integral to a simulated student. Assembler-
Soar learns control knowledge from direct instructions; other simulated
students have learned control knowledge from solved examples, and state-
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constraint instructions. There are a variety of other methods of learning
that a simulated student could use, if it knew how. Some include learning
new actions instead of just control knowledge, and learning by interpreting
diagrams, graphs, or tables.

A simulated student can test alternative ways of instructing a
learner. The instruction design process depicted in Figure 3 produces a
linear sequence of lessons. The same process can be repeated, however, if
a variety of different sequences are desired, or if alternative methods of
learning are to be tried.

Cognitive architecture-based simulated students inherit capability
and validity. Maodels built in a cognitive architecture can borrow
capabilities from, and be constrained by, other models implemented in the
same architecture. This mutual constraint adds validity to all the models
involved.

As with any cognitive modeling task, the primary disadvantage of
using a simulated student is the time and expertise that is necessary to
build one. Because Assembler-Soar is built in a general cognitive
architecture, it is hoped that further research with simulated students could
build on it and on the capabilities being developed by other researchers
using Soar. For example, of Assembler-Soar’'s 59 operators, only 7 are
assembly-specific. The rest provide general skills such as controlling
attention, learning from instruction, and augmenting situation models with
perceived information. By reusing this knowledge, the marginal effort of
building new simulated studentsis reduced.

While simulated students are not applicable to every instruction design
task, since existing methods and technologies are effective enough for
most teaching, the insights from cognitive psychology and Al together can
take on problems where learning has not been effective enough. It isin
these cases that simulated students can be employed. As the science of
learning and instruction has progressed, first performance was modeled,
then learning. Simulated students integrate these two advances into a
technology where learning toward better or new performance is modeled.
One practical use of such a model is the ability interactively design and
test instruction.
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