
HAL Id: hal-00197382
https://telearn.hal.science/hal-00197382

Submitted on 14 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring the Design of Computer Supports for
Reciprocal Tutoring

Tak-Wai Chan, Chih-Yueh Chou

To cite this version:
Tak-Wai Chan, Chih-Yueh Chou. Exploring the Design of Computer Supports for Reciprocal Tutoring.
International Journal of Artificial Intelligence in Education, 1997, 8, pp.1-29. �hal-00197382�

https://telearn.hal.science/hal-00197382
https://hal.archives-ouvertes.fr

International Journal of Artificial Intelligence in Education (1997), 8, 1-29

Exploring the Design of Computer Supports
for Reciprocal Tutoring

Tak-Wai Chan Chih-Yueh Chou

Institute of Computer Science and Information Engineering
National Central University

Chung-Li, Taiwan 32054, R. O. C.

Abstract

This paper explores the design of a set of system prototypes for supporting
a protocol of cooperative learning activity called reciprocal tutoring.
During reciprocal tutoring, two or more agents in centralized or distributed
environments interact as they take turns at playing the roles of a tutor and
a tutee in solving Lisp recursive problems. These agents are either real
students or virtual learning companions simulated by the computer.
Furthermore, in the design of a virtual tutee, which is one of the roles
assumed by the virtual learning companion, we found that the student
model plays a critical role in adaptive interaction with the student, thus
broadening the applicability of the student model in one-on-one tutoring
settings. Preliminary experimental trials of these systems have been
conducted.

Keywords: reciprocal tutoring, cooperative learning, learning by teaching,
learning companion, student modeling

1. Introduction

 In early computer assisted learning research, the question "Should the
computer teach the student or vice-versa?" was first raised by Luehrmann
(1972) when he argued that, like reading and writing, computing
constitutes a new and fundamental intellectual resource that should not be
a mere delivery system for instruction. Students should learn how to
employ computing as a resource for learning. By teaching or instructing
the computer through computing, students may learn more about the
process of learning than they do from being tutored by software written by
others. Taylor (1980) further elaborated that a computer can be conceived
as a tutor, a tutee, a tool, or a toy. We should note that sometimes it may

Wong and Chan

2

not be easy to distinguish these three traits of computers, for example,
whether Logo is tool, a toy, or a tutee. However, the differentiation of
these traits is useful to designers in identifying their goals and developing
the characteristics in computer software that they want to portrait to the
users. In addition, the advancement of multimedia and network
technology today enables the computer to be an interactive textbook with
multimedia as well as a telecommunicator. Thus computer and network
resemble 6T.

In educational psychology studies, the reciprocal teaching method
(Palincsar & Brown, 1984; Brown, 1992) is a prominent model employed
in reading comprehension. It was modeled after studies of Socratic or
inquiry teaching (Collins and Stevens, 1982), but in a peer group setting.
Participants take turns as a learning leader, who begins by asking a
question and ends by summarizing the gist of what has been read. The
group rereads and discusses possible problems of interpretation when
necessary. Questioning provides the impetus to get the discussion going.
Summarizing at the end of a period of discussion helps students establish
where they are in preparation for tackling a new segment of text.
Attempts to clarify any comprehension problems that might occur arise
opportunistically, and the leaders ask for predictions about future content.
These four activities — questioning, clarifying, summarizing, and
predicting — bolster the discussion because they are comprehension-
monitoring devices. The model is recently being combined with Jigsaw
method (Aronson, 1978) in fostering a community of learners (Brown, et
al., 1993) that features students as designers of their own learning and
engages students in self-reflective learning and critical inquiry in an
intentional learning classroom (Scardamalia & Bereiter, 1991).

Intelligent tutoring systems (ITSs) research, as indicated by its
name, intends to mimic the process of private tutoring in a computer
supported environment. While tutoring is a useful metaphor for describing
human computer interaction for learning, Chan and Baskin (1988, 1990)
appealed to the computer to impersonate explicitly multiple artificial
agents: a teacher and a learning companion. Also, researchers like Self
(1988) advocate that the student may undertake collaborative learning with
the computer. Prototypes of these alternatives to ITSs have been
developed. Integration-Kid, a learning companion system, explores
various patterns of interactions through different protocols of learning
activities among the agents, such as cooperation, competition, and
reciprocally working and observing (Chan, 1991). The performance of the
learning companion is governed by a subset of problem solving expertise
and some faulty knowledge. During the learning process, this problem
solving expertise is expanded and the faulty knowledge is tuned by simply

A Multimedia Authoring System for Crafting Intelligent Learning Environments

3

deleting and adding knowledge units. People Power and Wombat are
collaborative learning systems where a computer takes the role of a
collaborator (Dillenbourg and Self, 1992; Blandford, 1994). These
systems investigate how the computer and the student co-generate
reflective social dialogue through argumentation or negotiation.

Of particular interest to this work is a protocol of learning activity
where the student "learns how to learn by teaching the learning
companion" (Chan and Baskin, 1988, p.199). This model is also called
learning by teaching and was elaborated by Palthepu, Greer, and McCalla
(1991) who describe a system architecture in a declarative domain
represented by a semantic network. The system acts as an interactive
knowledge acquisition tool and asks the student questions in order to
complete the inheritance hierarchies. They speculate that such a system
would be useful to a student who 'almost knows' the domain and that the
system would enhance the student's meta-cognitive reasoning skills. They
found that student modeling seemed to be less useful and put it as an
interesting open question whether student modeling is critical in learning
by teaching. Following such a tabula rasa approach, Nichols (1994)
developed a system and found that subjects who tested the system
expressed "discomfort at having to feed a 'knowledge-hungry' agent."

Instead of using such pure co-learners, VanLehn, Ohlsson, and
Nason (1994) suggested that a more complex system could use covert
experts and pedagogical modules to move the dialogue in a pedagogically
useful direction. Besides being a learning partner of the student, a
simulated student can potentially be useful for formative evaluation of an
instructional designer's prototypes and teacher training. This task is called
'meta-tutoring' (VanLehn, Ohlsson, and Nason, 1994; VanLehn, 1993).
Ur and VanLehn (1994) applied explanation-based machine learning
methods to simulate a physics student for the purpose of tutor training and
used it to study the cognitive process of learning from a tutor.

Computer support for peer learning is not restricted to centralized
systems. Distributed systems that support multiple agents to take different
roles to interact over connected machines are being studied (Chan et al.,
1992; McManus and Aiken 1993; Jehng et al., 1994). Indeed, distance
learning environments in the future will need artificial learning companions
to ensure their accessibility if there is no appropriate learning partner
available on-line. For some learning activities, the artificial learning
companions together with the real students on the network can form a
virtual learning group (Chan & Lai, 1995).

This paper first explores the design of a set of reciprocal tutoring
environments to practice Lisp recursion. Reciprocal tutoring is a protocol
of learning activity, where two or three agents (an agent is a computer or

Wong and Chan

4

a student) take turns to play the roles of a 'tutor' and a 'tutee'. Next, we
construct a Petal-Like-System (Bhuiyan, Greer, and McCalla, 1992) to
provide a scaffolding tool for the student by exploiting the computing
power of the machine to perform parts of the learning task for the students.
Finally, like most ITSs, we employ student modeling as the basis to deal
with students' difficulties that emerge during problem solving, enabling
adaptive interactions between agents. For example, in one of the
reciprocal tutoring environments, the student model is used as an
intelligent tool for a student to tutor another student through a connected
machine. In another environment, we use the student model to implement
a virtual learning companion. The rest of this paper is organized in the
following way: After discussing the various reciprocal tutoring
configurations, we describe different supports for a set of reciprocal
tutoring systems. Then we discuss experimental trials of these systems.
Finally, after more discussions and future work, we arrive at a few
conclusions.

2. Variations of Reciprocal Tutoring

Reciprocal tutoring is a form of cooperative learning by adopting the
'divide and conquer' strategy. A learning task is partitioned into sub-tasks
of tutoring and 'tuteeing' where tuteeing is learning by working on the
solution while being tutored. These sub-tasks are distributed to different
agents and each agent is responsible for a sub-task, while the rest of the
work is taken care of by other agents. Integration-Kid (Chan, 1991)
supports a close approximation of the reciprocal tutoring protocol where
the virtual learning companion and the student reciprocally works and
observes each other on different problems. If the observer is more capable
or knows the answer to offer helpful comments, then it would become
reciprocal tutoring. In contrast to reciprocal teaching in the domain of
reading comprehension, the learning task of Lisp recursion can not be
decomposed into many significant sub-tasks without lessening the
importance of each agent's role.

In general, we may consider: agents, which are either real (human)
or virtual (computer simulated); roles, which are either tutor or tutee
(learner); and location, which is either centralized (a single human student
interacting with a computer) or distributed (multiple human students in
different places connected by a network). If there are only two agents
involved in the learning environment and if we let R, V, T, and L denote
real, virtual, tutor, and learner, respectively, then we can envisage 10
possible configurations:

A Multimedia Authoring System for Crafting Intelligent Learning Environments

5

RL+RL RT+RT
RL+VL RT+VT
RL+VT VL+VL
RT+RL VT+VL
RT+VL VT+VT

Clearly we are not interested in configurations in which all agents
are virtual or in which all roles are tutors, therefore the second column of
the above list will not be considered. Co-exist collaboration where human
students work together using a standalone computer is not within the
scope of discussion in this paper. Therefore, if there are multiple real
students involved, then we assume a distributed environment. Now let us
consider the first configuration, RL+RL, the configuration simply means
that the two students collaborate (or compete) and communicate with two
connected computers. TurtleGraph (Jehng, et al., 1994) is such a system,
when difficulty arises, the two connected students are encouraged to
communicate and discuss the solution. The second combination RL+VL
is a form of collaborative learning between the student and the computer.
This type of system was suggested by Self (1988) and is exemplified by
the People Power system (Dillenbourg & Self, 1992). The third
combination RL+VT is the usual ITS model. The fourth one, RT+RL,
distributes two different roles, tutor and learner, to students. The last one,
RT+VL, is the inverted model of the ITS discussed above referred to as
the learning by tutoring model, which puts the student in the position of a
tutor. We shall come back to discuss these last they combinations because
they involve T and L roles.

If three agents are involved there will be 20 possible configurations.
We shall discuss some of the relevant models. RL+VT+VL is essentially
the original learning companion system model. RT+RL+RL involves
three students, one of whom serves as a peer tutor who may have more
advanced skills, perhaps only because of computer support. RT+VL+VL
is an extension of the learning by tutoring model in which the student now
instructs or monitors two computer learners. RT+RL+VT is a model in
which the VT is a meta-tutor, that is, VT helps RT to tutor RL. But if the
RT knows more than the RL and has some good knowledge about the
domain, then a VT may not be necessary.

For more than three agents, there are many more combinations. But
we can still discuss several relevant models. Three's Company (Chan,
1995), RL+VT+VL+VL, is a direct extension of the learning companion
system model. In a further extension of the Three's Company system
Glassroom (Chan, 1995), has configured a scenario which involves the

Wong and Chan

6

combination RL+VT+VL+VL+VT+VL+VL. The additional virtual
learning sub-group VT+VL+VL in Glassroom is observed by another
group, RL+VT+VL+VL, which is in fact a Three's Company group. In
Distributed West (Chan, et al., 1992), two connected students collaborate
to play against the computer (RL+RL+VL) or compete against each other
with the help of a private tutor for each student (RL+RL+VT+VT). In the
group leader paradigm (McManus & Aiken, 1993), the computer is the
leader in coordinating the activities of a group of students, represented by
the combination VT+RL+RL+.... In Contest-Kids (Chan & Lai, 1995), a
group of students of unlimited number play a competitive game,
represented symbolically by RL+RL+RL+....

Since we are interested in the concept of reciprocal tutoring, we will
only consider those configurations in which the roles of T and L and
agents take turns or reciprocate in their activities. In particular, we shall
study seven models. Many of these models involve the use of two tools.
The first tool is an intelligent tool, called Diagnosis-Hint-Tree, is
developed for the student tutor. It can be used to locate the tutee's error
and generate a variety of hints in a menu for the student tutor to choose.
Once the student tutor picks a hint, this hint will be sent to the tutee. The
second tool, called the Petal-Like-System, is developed for the tutee. It is
a nicely designed scaffolding tool to help students to construct the Lisp
program and solution. Detailed discussion of the Diagnosis-Hint-Tree
and the Petal-Like-System will be in next section.

The first model, called the distributed reciprocal tutoring system
(DRT), is represented by the combination RT+RL+VT. The system
allows two students (a dyad) to work cooperatively but separately on two
connected machines to solve problems (see Figure 1). One plays the role
of a 'tutee' while the other assumes the role of a 'tutor'. The students take
turns in these roles in different problems. While the tutee is working on a
problem, the tutor, who knows the answer, is watching how the tutee
works. However, knowing the answer is not enough; when the tutee faces
difficulties or makes errors, the tutor, who is not necessarily more capable
than the tutee, may not be able to offer help. A natural way to handle this
situation is to provide an intelligent 'super-tutor', VT, to help the student
tutor to assist the tutee in problem solving. The role of the super tutor is to
make sure that the student tutor knows where the tutee's difficulty lies and
to offer relevant help in the tutoring process. Instead of implementing an
'active' super-tutor agent who informs the student tutor of the tutee's
mistakes, an alternative approach is adopted.

A Multimedia Authoring System for Crafting Intelligent Learning Environments

7

tutee tutor

Figure 1. A Learning Dyad in Distributed Tutoring System

The second model is also a distributed system called the distributed
responsibility sharing system (DRS). It is represented by the
combination, RT+RL+RL, which involves a triad of three human students,
who take turns playing different roles (see Figure 2). The solution
construction task in DRS is shared by two students. DRS is a twofold
reciprocal tutoring system. One student plays the role of 'designer' who
uses a Petal-Like-System, another student plays the role of a tutor and,
like DRT, uses the Diagnosis-Hint-Tree to assist the designer. After the
designer obtains a solution approved by the tutor, the solution is passed to
another student, who plays the role of 'translator', to translate the program
into Lisp, again, via another Petal-Like-System. The tutor mainly helps
the translator use the correct Lisp syntax in the process.

tutor

designer

translator

Figure 2. A Learning Triad in the Distributed Responsibility Sharing
System

The third model is the combination of ITS and Learning By
Teaching (LBT), that is, the student and the computer switch their roles of
R and L for alternate problems. We call this a centralized reciprocal
tutoring system (CRT). The ITS and Learning By Teaching models are
included as the fourth and fifth models for comparison. In an ITS,
students use a Petal-Like-System to construct Lisp programs. When there
are mistakes, a student model is used to offer hints directly to the student.
The student model lies inside the system and is hidden from the student.

Wong and Chan

8

In LBT, the computer plays the role of a tutee, being tutored by the
student. The configuration of LBT can also be RT+VT+VL, where VT
may help RT to tutor VL. In this configuration, a virtual companion, who
delineates the sub-optimal performance of a tutee, and a virtual tutor,
which helps the student tutor, are used. To tutor the virtual learning
companion, like the student tutor in DRT, a Diagnosis-Hint-Tree is used
by the student. Indeed, if we were only interested in pure tutoring and
pure tuteeing, we could have modified the DRT model by canceling the
role-switching part of the activity. However, we are more interested in
comparing traditional ITSs with other systems. Therefore, we will study
the two sub-systems, ITS and LBT, of the CRT system separately and
then compare them with the CRT system itself.

In an ITS, a computer tutor diagnoses and gives hints directly to
students. In fact, an interface for the student may be provided to locate
and diagnose her mistakes before the system generates hints. So the
student is more active and the computer is more passive when the student
debugs the program. We shall call this sixth system, a modified version of
ITS, the self-diagnosing system (SD). In SD, like ITS, students use the
Petal-Like-System to construct Lisp programs. When errors are
encountered or help is needed, they use Diagnosis-Hint-Tree to spot their
own errors and receive hints from the student model. The student model
used in SD is similar to the student model used for teaching Portuguese
(Bull, Pain, and Brna, 1993) where the student can inspect and modify the
student model through user/system negotiation. Finally, we consider a
single agent (RL) model in which the student is a learner who works alone
(WA) and the computer only provides the Petal-Like-System tool.

3. Supports for Reciprocal Tutoring

In our observations of mathematics problem solving using paper and
pencil (Chan, 1989), we noticed that students go through several learning
stages. At the beginning, they acquire relevant unfamiliar information
from demonstrated examples, in particular, they focus on the syntax or the
form of problem solutions in examples. At a certain point, when the
student starts to relieve from the burden of syntactic details, a process of
learning to understand more about the essential parts of the problem
begins. Slowly, their emphasis shifts from accurate description towards
effectiveness. For example, steps which would shorten the solution path
are considered. As problems become more complex, students increasingly
integrate the newly learned technique with previously learned knowledge.
In short, the student's learning evolves from recognizing new knowledge to

A Multimedia Authoring System for Crafting Intelligent Learning Environments

9

gradually increasing control over that knowledge. In most problem
domains, even learning a simple task at the beginning, there are many
elements to master. If students have to handle the whole learning task at
the outset, they will inevitably encounter difficulties. Therefore, in
computer assisted learning, designing a set of computer or human supports
is crucial. These supports serve to enable the learning processes to
proceed steadily. Indeed, given a limited amount of a learning resource,
such as time, students should be rewarded by maximizing their learning
instead of wasting effort by unnecessary struggle at a certain point or
because of overwhelming problem complexity. It is the design that leads
us to recognize various concerns and put all these concerns together in
creative flux to build a learning environment. In this section, we shall
explain the details of the implementation of these supports in reciprocal
tutoring.

3.1 Cognitive Load Sharing
Cognitive load sharing is a salient feature of most of the systems

considered in this paper. In writing a Lisp recursive problem, a student
seek an approach and then constructs a program. If errors are found, the
program is diagnosed, alternatives are made, possible errors are corrected,
the program is modified or reconstructed. If there are errors in a modified
program, the diagnostic process is repeated (see Figure 3).

search for approach to problem

construct program

diagnose program

suggest alternative or correction

modify or reconstruct solution

student

student

computer in ITS
student in reciprocal tutoring

correct possible errors

Figure 3. Sub-processes in developing a correct recursive Lisp
program

Wong and Chan

10

Note, in most ITSs, the first two sub-processes and the last two sub-
processes are performed by the student while the two sub-processes in the
middle are carried out by the computer. In reciprocal tutoring (e.g. DRT),
the middle two sub-processes are executed by another student instead.
Therefore, both usual human tutoring and reciprocal tutoring can be
regarded as a cooperative learning process.

Basically, reciprocal tutoring seeks to add a social element to the
spontaneous process of learning by doing and encourages students to
reflect and compare as she observes her own and her partner's learning
processes. Learning in reciprocal tutoring, therefore, can be characterized
as a cyclical process of construction and reflection.

3.2 Petal-Like-System
In apprenticeship learning, scaffolding refers to the assistance offered

to students by the expert in the process of accomplishing a complex
learning task (Collins, Brown, & Newman, 1989). The expert completes
those parts of the task that students have not yet mastered. In other
words, students participate in the task only to the degree that they can
manage and with the amount of responsibility that they are capable of
assuming. Scaffolding is temporary and matches the level of mastery of
the students. At a later stage of learning, the process of fading proceeds,
that is, the expert's support is gradually removed when students learn to
handle more of the task on their own and students are increasingly asked
to make up for the missing parts that were being supported. When
scaffolding is employed in a computer based learning environment, it
refers to the facilities offered by the computer. This is usually done by
providing a tool that employs the computing capability of the machine to
share a learning sub-task and leaves the rest to the student. This can then
reduce the task complexity to the student. We call such a tool a
scaffolding tool

 Most systems described in this paper are supported by a Petal-Like-
System (PLS), a typical scaffolding tool. PLS is a part of the Petal
system, called PET1 (Bhuiyan, Greer, and McCalla, 1992). PET1
originally provided a mental model-based programming environment to
free students from dealing with the syntax problem since there is a set of
Lisp 'code chunks' (or expression templates) displayed as buttons on the
screen (%t and %f are the Boolean values true and false in our small Lisp
language). These code chunks allow the student to construct code without
making syntactic errors. Thus, students do not worry about the formal
details or legality of the expressions and can pay more attention to the
semantics and the heuristic knowledge required for developing a solution.

A Multimedia Authoring System for Crafting Intelligent Learning Environments

11

Figure 4. Tutee's Petal-Like Scaffolding Tool

In addition, several advantages of PLS that were not described in the
original paper are revealed. We shall describe them here:

• PLS in fact employs the calculator metaphor which obeys almost all of
the good user interface principles (Smith, Cypher, & Spohrer, 1994). It
allows students to produce code by invoking a sequence of actions and
examining their effects. When the code is what they want, they stop.
These actions are not performed by memorizing and typing, but by
seeing and pointing — a hand-eye coordinated direct manipulation.
The calculator metaphor visualizes information for understanding what
is going on and what to do next. Indeed, with proper re-framing of the
domain, most problem solving domains can use such a calculator
metaphor since they usually require a set of operators to transform the
problem state until a solution is reached.

• PLS provides handy problem solving management. The tutee does not
need to write the Lisp constructs such as 'defun' and 'cond' as well as
the function name and the argument list, but only focuses on filling in
the content of the conditional clauses. When the tutee finishes a
problem, the system will take up the finished code, obtain the other
necessary parts of a complete program from the system and test the
program with examples using a Lisp interpreter.

• PLS requires the student to specify which case — base or recursive —
is going to be dealt with in the next conditional clause. This reminds

Wong and Chan

12

the student that in solving a recursive problem, two cases, and only
these two cases, have to be tackled, though a problem could have
multiple base cases and recursive cases.

• The restriction of using a single 'cond' construct implies that this
construct is by itself a schema that suffices to solve a set of recursive
problems. We noticed that students using a Lisp language interpreter
tended to try more than one 'cond' and sometimes combined a 'cond'
with an 'if' construct. However, it turns out that solutions using a single
'cond' construct are usually the most readable and elegant.

Since PLS handles the syntax of the language as well as some other
peripheral support required to manage the learning task, the space of
possible errors made by the tutee in writing Lisp recursion code is
reduced. This allows the tutee to get on with the important features of
Lisp recursion problems more easily and enables the tutor to focus on the
tutee's essential errors. First, using the code chunk buttons instead of the
keyboard, PLS cuts down dramatically on the space of the student's
possible responses. Suppose a Lisp expression is composed of 5 code
chunks and assume that there are 20 code chunks on the screen, then the
number of possible responses is 205. If students use a keyboard,
assuming that there are 30 characters on the keyboard and on average 5
characters are required to form a code chunk, then there can be 3025

possible responses. To the system, a student's response is either expected
or unexpected and either correct or incorrect (see Figure 5).

Correct

Incorrect

Figure 5. Student Responses Divided by Correctness and System
Expectation

 The use of PLS significantly reduces the number of unexpected
responses, which consist syntax errors, such as typing or careless
mistakes. This permits the system to concentrate most on responses that
are expected, no matter whether they are correct or incorrect. Second, by
restricting students to the use of a single 'cond' construct, PLS diminishes
the number of possible correct solutions to one or two. This, in turn,

A Multimedia Authoring System for Crafting Intelligent Learning Environments

13

reduces the complexity of the relationship between the student and the
learning companion and simplifies the design of the student model.

 The PLS described thus far is used in all systems except the DRS.
There are two variations of PLSs used, the PLS-SNL and the PLS-KEY.
The designer uses PLS-SNL when the code chunks are expressed in a
Semi-Natural Language syntax instead of Lisp syntax. The premise is that
this language is closer to the mental model of the student, and thus it is
easier to express the problem solution in this language than in the symbolic
Lisp language. This is also similar to the idea of PET2 in the original Petal
system. The 'translator' uses another Petal-like system, PLS-KEY, where
the code chunk has to be KEYed in by the translator. The 'tutor', like
tutors in other systems, uses the Diagnosis-Hint-Tree as an interface.

Figure 6 shows the interface of the translator observing the solution
of the designer. The third line of code in the top right rectangle of the
semi-natural language solution of the designer in Figure 6 is: "if the above
are all false, then return[call: findb?, arguments: the tail of lst]."

Figure 6. Semi-Natural Language of the Petal-Like System

3.3 Virtual Tutor
Assistance offered in a cooperative learning environment is usually

performed by reducing the cognitive load or by facilitating performance.
Instead of deleting learning elements in reducing cognitive load,

Wong and Chan

14

facilitating performance can be achieved by adding new learning elements
for the student. These new elements enhance learning performance and
allow the student to proceed more smoothly with the learning task. The
advice or suggestions given by a virtual tutor are examples of this kind of
assistance.

Tutoring is an adaptive interaction process. By adaptive interaction,
we mean interaction that can facilitate changes in the learning environment
which correspond to the varying and changing needs of different agents
over time. Through this interaction, students receive information to
dismiss doubts and overcome difficulties encountered during problem
solving. Adaptive information allows students to proceed steadily with the
problem solving and prevents cognitive roadblocks — getting stuck. To
support such interaction, we must understand the student's problem
situation and thus some kind of student model is needed. To simulate a
tutor, like other ITSs, we implement a student model. If the computer
plays the role of a tutor, advice or hints are generated from the student
model. If a student plays the role of a tutor, the Diagnosis-Hint-Tree is
provided as an interface on top of the student model. With the Diagnosis-
Hint-Tree, the human tutor can explore and locate the current trouble of
the tutee and use it to supply relevant hints to the tutee. Thus, the student
model inside the computer acts as a 'super-tutor' to the student tutor, but in
a rather passive form.

As noted before, the use of the scaffolding tool, PLS, significantly
shrinks the space of student responses. In building the student model, we
collected error data from many students using the scaffolding tool. A
discrimination net was then developed for each problem based on the
correct solution and the collected error data. Each node in the net
represents a problem situation that might occur in a student's partial
program and stores different levels of hints and suggestions. When the
student requests a hint, the student's solution is matched with the net. On
termination of the matching at a certain node, the current situation of the
student's program is recognized and the associated hints are then available
for the tutor to deliver. Using the schema (a single 'cond') constrained by
the PLS, the problem's latitude has been narrowed to one or two possible
correct solutions, so the discrimination net is rather linear. The
disadvantage of this approach is that each problem needs a discrimination
net. The size of each net is rather large and is thus labor intensive to
build. Nevertheless, this student model suffices to provide the computer
with the ability to keep track of the student's actions and point out the
tutee's errors and supply hints about how and what to do next in solving a
problem.

A Multimedia Authoring System for Crafting Intelligent Learning Environments

15

3.4 Diagnosis-Hint-Tree
The Diagnosis-Hint-Tree (DHT) is an interface enabling the human

tutor to interact with the student model in carrying out the tutoring task.
Thus DHT is a scaffolding tool for the tutor. The human tutor can see the
correct solution and the partial solution as well as every action of the
virtual or real tutee (see Figure 7).

Figure 7. Student Tutor's Interface

The tutor cannot interrupt but waits for the tutee to ask for help or
check a 'conditional clause' — a line of code including the 'condition' and
the 'action' parts — when the tutee finishes writing the clause. When the
tutee asks for help, the tutor does two things: locates the tutee's trouble
and chooses a hint to give. The tutor expands the Diagnosis-Hint-Tree,
starting from the 'base case' or 'recursive case' nodes (that are displayed as
buttons on the screen). The tutor is required to pick the correct path in
expanding the DHT. Nodes will not expand if the tutor hits the wrong
button. When the tutor has successfully spotted the student's trouble, a
number of hints (in Chinese)1 are available at the end of the path. The
system uses a student model to determine whether the tutor has hit the

1 The English translation of the second hint in Figure 7 is "consider a recursive call here" and that of
the third hint is "if the first element is an atom, you can consider (sum-all lst) as the sum of the first
element of the list and the result of applying sum-all to the rest of the list."

Wong and Chan

16

'right' or 'wrong' button. The hints explain errors, suggest possible
approaches or Lisp functions to be used, or offer answers directly. The
tutor will pick a hint and send it to the tutee. If 'more hint' is requested by
the tutee, the tutor will send another one. A point system is used to
encourage the human tutor not to depend too much on the hints in the
DHT and to pay more attention to the tutee throughout the tutoring
process. Points are scored or deducted according to the performance of
the tutor in locating the tutee's errors and penalties are given for using
hints that are too close to the answers.

3.5 Virtual Tutee (Learner)
To simulate a tutee, we have to model the behavior of a learner whose

overall knowledge of the domain appears to be advancing despite
occasional mistakes. The tutee's response may be incorrect. Sometimes
the tutee may not be able to respond and asks for help. Thus, two
objectives have to be fulfilled: the ability to model the evolving knowledge
of the tutee and the modeling appearing to be 'psychologically plausible' to
the student tutor. By psychological plausibility, we mean that the learning
behavior and performance of the tutee must be understandable to the
student. Instead of applying machine learning methods to empower the
learning ability of the tutee, we take an overlay approach to enable the
tutee to pretend to learn at about the level of an average student.

For each problem, the simulation of the tutee will refer to five
components of the system: (i) a tutee model, (ii) a decomposed solution,
(iii) the tutor's hints, (iv) the error code base, and (v) a set of response
rules. The tutee model is a set of all the concepts of the domain and their
proficiency values. It records the tutee's degree of understanding or
competence in the domain. A decomposed solution is a list of code
chunks decomposed from a solution of the problem. Each code chunk is
associated with the required concepts. A tutor's hint, though in natural
language form, can be analyzed to determine whether it indicates a
concept of that code chunk. The error code base is formed by collecting
mistakes of students in previous empirical experiments. Response rules
are heuristic rules that govern the responses of the tutee. Detailed
discussion of the simulation of a virtual tutee is out of the scope of this
paper (for full description of the simulation of a virtual tutee see Chan &
Chou, 1995).

The systems are implemented in SuperCard and Mac Lisp on
MacQuadra and PowerMac, using AppleEvent to link the two application
programs. A small Lisp interpreter written in Lisp is used for testing a

A Multimedia Authoring System for Crafting Intelligent Learning Environments

17

student's program and the student may use it to verify the properties of the
Lisp language constructs. Distributed Systems use AppleTalk to connect.

Table 1. Summary of Supports for Reciprocal Tutoring Systems

System Configuration Companion(s
)

Task(s) Scaffolding
Tool(s)

Distributed

Reciprocal Tutoring

(DRT)

RT+RL+VT RT / RL+VT Tutoring

/

Tuteeing

PLS / DHT

Distributed

Responsibility Sharing

(DRS)

RT+RL+RL RL+RL /

RT+RL

Tutoring

/

Tuteeing

PLS-SNL /

PLS-KEY /

DHT

Centralized

Reciprocal Tutoring

(CRT)

RL+VT /

RT+VL

VT / VL Tutoring

/

Tuteeing

PLS / DHT

Intelligent Tutoring

System (ITS)

RL+VT VT Tuteeing PLS

Learning By Tutoring

(LBT)

RT+VT+VL VT+VL Tutoring DHT

Self Diagnosing

(SD)

RL+VT VT Tuteeing PLS / DHT

Working Alone (WA) RL no Working

Alone

PLS

Table 1 is a summary of the supports for human students. The
Companion(s) column refers to agents other than the student. The Task(s)
column refers to the task(s) that the student may undertake. If the student
does both tutoring and tuteeing, then the student will be involved with both
spontaneous and reflective learning processes. The student may select only
one of these tasks and leave the other to the computer or undergo both
types of learning simultaneously as in 'working alone' (WA) model. For
the first two systems, DRT and DRS, computers also serve as
communicators between students. The DRS system provides the
maximum support to the user and WA the minimum. There is slight
difference between ITS and SD, the former uses an active virtual tutor and

Wong and Chan

18

the later uses DHT, a passive virtual tutor. In the DRT, DRS, CRT, and
LBT systems, DHT acts as the super-tutor of the student tutor.

4. Preliminary Experimental Trials

The learning effectiveness of these systems were measured by a
posttest after students' use of the system. A class of freshmen learning
basic Lisp concepts used the systems to practice Lisp recursion problems
for two hours. Their mid-term examination results were taken as a pretest
and the students were distributed evenly in different systems according to
their pretest result. Each system version was used by at least 5 subjects
who all took a posttest with a Lisp language interpreter. Table 2 shows
the resulting posttest scores.

Table 2. Posttest Scores of Different Variations of Reciprocal Tutoring
Systems

System Individual
Posttest Score

Average
Score

Standard
Deviation

Distributed Reciprocal Tutoring
(DRT)

100, 100, 90, 60, 85 87 14.69

Distributed Responsibility Sharing
(DRS)

80, 80, 85, 70, 85 80 5.47

Centralized Reciprocal Tutoring
(CRT)

80, 70, 80, 85, 75, 75 78 4.78

Intelligent Tutoring System (ITS) 55, 69, 100, 85, 75,
80

77 13.86

Learning By Tutoring (LBT) 60, 50, 60, 75, 75 64 9.69

Self Diagnosing (SD) 80, 55, 85, 85, 100 81 14.62

Working Alone (WA) 45, 60, 80, 80, 85 70 15.16

Given the limited number of subjects per system, the preliminary
evaluation can only provide us with possible hypotheses concerning the
effectiveness of reciprocal tutoring with no definite conclusion.
Nevertheless, to facilitate our discussion of likely hypotheses, we
investigate three perspectives of reciprocal tutoring.

A Multimedia Authoring System for Crafting Intelligent Learning Environments

19

4.1 Virtual vs. Real Companion
The first perspective we are interested in is the possible difference

between a virtual learning companion and a real learning companion. For
this, we found that DRT students seemed to out-perform CRT students
(Table 3). Does this suggest that the virtual learning companion possesses
any deficiency when compared to the real learning companion? This may
not be the case because we succeeded to fool two students by asking them
to use DRT, in fact, they used two CRTs independently (more discussion
of this in next section). This indicates that the cognitive benefits due to
peer interactions may involve other psychological factors other than pure
cognition. For example, real learning companions may draw more of
students' attention, creating better performance under peer pressure. The
discovery of the attributes that contribute to the difference might help to
improve the virtual learning companion's ability to stimulate the students.
During the interviews after the test, all CRT and DRT students felt that
reciprocal tutoring is like playing a game. All of the DRT students found
that the system was exciting and fun and some even enjoyed seeing their
partners struggle in solving a problem. A few of the DRT students said
that at times they preferred writing the hints themselves to picking a hint
provided by the menu.

Table 3. Real and Virtual Learning Companion Perspective

System Companion Average
Score

Standard
Derivation

Distributed Reciprocal Tutoring
(DRT)

Real 87 14.69

Centralized Reciprocal Tutoring
(CRT)

Virtual 78 4.78

4.2 Sub-Tasks

Reciprocal tutoring, as mentioned before, can be regarded as a
cooperative learning activity where each agent is responsible for a sub-
task in accomplishing a complete learning task. Therefore, there are
variations of task decomposition and sub-task assignments to agents.
Some of these variations employ a student model, possibly in different
ways, for adaptive interaction. The nature of the sub-tasks: tutoring,
tuteeing, and their combinations, will now be examined.

Wong and Chan

20

Table 4 shows that some significant differences in the posttest
results. LBT is 64, ITS is 77 and the average of DRT, CRT, and DRS is
82. Low performance of LBT is expected since students only need to
watch the computer tutee, expand the Diagnosis-Hint-Tree when needed,
and choose a hint for the student. This is a less intellectually demanding
process than tuteeing. In our interviews, most students said that they
preferred the LBT systems because tutoring is an easy task. They agreed
that they would learn more by doing the problems themselves but enjoyed
the passive role. Five out of six LBT students preferred teaching a virtual
student to teaching a real student because it is easier. All of the students
liked the hints provided by the system and some of them thought that there
were not enough hints. Does the low performance of ITS imply that social
learning systems, or at least reciprocal tutoring systems, are superior to
ITSs in general? If so, one possible explanation lies in the dual
perspectives of tutoring in reciprocal tutoring. When the student plays the
role of tutor, she regards the tutee as her counterpart which involves her in
the solution process to a degree much larger than in LBT. At the same
time the student benefits from meta-cognitive activity  taking another
person's position to observe the problem solving process. More
investigation into the cognitive implications of these systems will be
required before definitive conclusions can be drawn.

Table 4. Sub-Task Perspective

System Task(s) Average
Score

Standard
Deviation

Distributed Reciprocal Tutoring
(DRT)

Tutoring /
Tuteeing

87 14.69

Centralized Reciprocal Tutoring
(CRT)

Tutoring /
Tuteeing

78 4.78

Distributed Responsibility Sharing
(DRS)

Tutoring /
Tuteeing

80 5.47

Intelligent Tutoring System (ITS) Tuteeing 77 13.86

Learning By Tutoring (LBT) Tutoring 64 9.69

A Multimedia Authoring System for Crafting Intelligent Learning Environments

21

4.3 Amount of Support

The final perspective we investigate is the amount of support that is
most beneficial to learning. Neither too many learning elements nor too
many supports are good for students. If there are too many learning
elements, the students will face roadblocks to learning and will be unable
to proceed whereas if there are too many supports, students will be
inundated with information. Supports should be incremental and built
upon each other. The PLS is a scaffolding tool. On top of it, ITS brings
forward an additional support where the student receives hints when
needed. Another system, SD, is similar to ITS. Instead of hiding the
student model inside the system, SD allows students to use DHT to spot
their errors and receive hints from it. Finally, in addition to these system
supports, the interpersonal supports of peer interactions and possible
moral support can be generated in DRT and DRS due to the cyber social
presence.

Table 5 shows that the average performance of the pure scaffolding
tool (PLS) is 70, adaptive interaction (ITS or SD) is 79, and interpersonal
supports (DRT or DRS) is 84. All WA students liked the system and
thought that they could focus better on problem solving when the emphasis
on syntax was removed and it was convenient to have other facilities, such
as checking the solution with examples. Most SD students (5 out of 6)
thought that the DHT was useful. Three preferred direct hints provided by
the system (like ITS) and three thought that using DHT was helpful. In
WA, since there was no hint provided, students sometimes could not
proceed to other problems in two hours once they had trouble with one or
two of the problems. Unlike WA, students are less likely to get stuck
when there is a student model in the system since hints and the needed
feedback are provided. Also, students may learn more from these hints.
The performance of interpersonal supports is better than adaptive
interaction and we suspect that one of the reasons is the effect of
interpersonal motivation or peer pressure. When we compare the results
of tutoring with ITS and the average of the four other systems, SD, CRT,
DRT, and DRS, which involve learning by tutoring, there is some
significant difference. This seems to indicate that explicit use of the
student model by the student is better than hiding it from the student.

Wong and Chan

22

Table 5. Amount of Support Versus Average Test Scores

System Supports Average
Score

Standard
Deviation

Distributed Reciprocal
Tutoring
(DRT)

Interpersonal, Adaptive
Interaction,
Scaffolding Tool

87 14.69

Distributed Responsibility
Sharing
(DRS)

Interpersonal, Adaptive
Interaction,
Scaffolding Tool

80 5.47

Intelligent Tutoring System
(ITS)

Adaptive Interaction,
Scaffolding Tool

77 13.86

Self Diagnosing
(SD)

Adaptive Interaction,
Scaffolding Tool

81 14.62

Working Alone
(WA)

Scaffolding Tool 70 15.16

5. Discussion and Future Work

At the outset of this research, we intended to build an individualized
LBT system. However, due to the enormous complexities encountered in
the early development, we focused on the design of a distributed social
learning system, DRS, and selected the domain of acquiring programming
skill as the objective of our system. We studied how to divide the
programming task into sub-tasks: designing, implementing, and critiquing.
Soon we discovered that the system is inevitable to have a student play the
role of a critic or teacher unless there is a human or computer tutor or the
domain is open-ended so that there is no need to have a teacher justify the
answer or solution. Therefore, instead of searching for meaningful ways
of decomposing the programming task, we focused on the more
fundamental reciprocal tutoring paradigm from which the presented
version of DRT naturally emerged. After analysis of data collected from
students' using the DRT, we found that a student model could be used as a
basis for the implementation of a centralized LBT system. Within that
framework the student model enabled us to build an ITS version of the
system and hence the CRT. It is interesting to note that the experience of
building and using DRT to observe students' behavior before the final
actual development of LBT mimicked the Wizard of Oz process.

Besides cooperative learning, collaborative learning, where two or
more students work on the same task, without decomposition of the task,
is also possible for sharing the cognitive load. Collaboration, in the end,
may need powerful natural language understanding ability to understand
students' dialogues. Comparing to cooperation, collaboration is a free

A Multimedia Authoring System for Crafting Intelligent Learning Environments

23

invitation to interact while cooperation is coercive, requiring each member
has to complete a part of the task to ensure that the process can move on.

During the experimental trials, two additional small trials were
performed. We asked two students to use an interpreter to solve the same
set of problems. Both of the students became mired in either syntax or
semantics errors for the second or third problems and could not continue.
The result is indicative of a more general cognitive difficulty that occurs in
the individual learning process without in time feedback. In another trial
two students who believed they were being asked to work cooperatively
on DRT were instead placed on two independent CRT systems. Similar
tests have been performed using Distributed West (Chan, et al., 1992) and
Contest-Kids systems (Chan & Lai, 1995). The results suggest that either
the students trusted us and so they did not intend to distinguish or that the
restricted and narrow bandwidth of communications made them unable to
distinguish between the system with and without human agent. It is also
possible that the student tutor does not have a good model of the computer
tutee. If this is the case and the tutee is simulated by machine learning
methods, the machine learning process must be made explicit and
understandable to the student tutor, so that the process can be beneficial to
the student's learning.

Tutoring represents a range of actions, including simple lecturing,
evaluating and diagnosing the tutee's answers, offering opinions, hints,
advice, suggestions, and strategies, motivating the student, and even
monitoring all parts of the learning activities. Although the tutoring
activities discussed here represent only a small part of this range, they are
adequate to promote meta-knowledge, such as the strategic knowledge of
problem solving and judgment knowledge of the performance. This type
of knowledge has the potential to foster knowledge transfer to novel
problems or domains. Models of this kind of cognitive development and
the measurement of respective learning effects are not easy tasks. Still,
the preliminary evaluation seems to indicate that reciprocal tutoring
provides cognitive benefits that could possibly differ from other protocols
of learning. More data and analysis are needed to answer important
questions such and whether a human learning companion is better than a
virtual learning companion, whether intelligent reciprocal tutoring systems
are superior to intelligent tutoring systems, etc. In such analysis, social
presence or absence could possibly be a critical factor.

The process of fading is not represented in our model. A fading
process should be coupled with the supports offered by the environment to
reflect the changing needs of students. A straightforward way of fading is
to have students use systems with full supports, then leave out such
supports one by one and finally students use the primitive language

Wong and Chan

24

interpreter to perform their tasks. Our test and posttest experiments
involve only the presence or absence of whatever supports the systems
have to the same base environment, the interpreter. To respect the
evolving learning repertoire of students, supports should not be singled out
to be studied and evaluated without considering how they are faded.
Nevertheless, this issue is complicated and intriguing since there are
various kinds of supports in a system which are likely to require different
fading techniques.

It is difficult to design game-oriented learning activities in which the
student can sustain motivation while expending effort to accomplish a
learning task. The preliminary evaluation indicates that the reciprocal
tutoring learning activity possesses some game-like characteristics.
Observation is needed to reveal these elements and how they can be
incorporated into the student model to enhance its motivational effects.
Indeed, motivation is desirable in all kinds of learning activities.

Reciprocal tutoring interleaves tutoring with tuteeing, or vice versa,
allowing immediate use of the learned knowledge and meta-knowledge of
the domain. However, learning may also proceed in two phases: tuteeing
followed by tutoring. An interesting scenario involves a student who is
first tutored by a computer tutor and then trains an artificial agent so that
its performance reaches a level sufficient to defeat another opponent
computer agent. Reversing these two phases, that is, tutoring followed by
tuteeing, is also possible. This scenario can also be regarded as a fading
process since the computer tutee performs a partial modeling process for
the student before the student works on the task. Our results indicate that
learning by tutoring does not perform well when used alone. Therefore,
this may suggest that learning by tutoring should be combined with other
forms of learning to generate more effective learning paradigms.

We are currently in the process of transporting DRT and CRT to the
Internet. The presence of DRT and CRT on the Internet will make the
systems always available to students in their residence halls. A powerful
workstation will be used as a server running the main program in Lisp.
The clients will run Delphi on PC and/or SuperCard on Mac to perform
the interface functions of PLS. A student on line may connect with
another student in the same or different campus to play DRT. When CRT
is converted to the Internet version, it means that a virtual learning
companion is present on the server so that if there is no other student on-
line, a virtual learning companion is always available to serve as a virtual
agent to cooperate. Thus, the scenario is analogous to playing bridge on
the network, where your partner can be a human or a virtual companion.

We can also observe how students' social behavior may affect their
learning and the use of the systems. For example, we can examine

A Multimedia Authoring System for Crafting Intelligent Learning Environments

25

whether students prefer to work with students they know well or whether
weak students will try more than one time but sign on as anonymous users.
Perhaps some of the students would have developed differently if allowed
to play with the virtual learning companion before with fellow classmates.
Data on student preferences can be easily captured by the server
automatically without labor intensive experiments. Furthermore,
integration of the real-time and interactive network version of these
systems on WWW with the usual asynchronous distance learning course
with the hypertext-based material for introducing basic Lisp and recursion
can be made available in the same system.

We shall also develop a simple follow up version of DRT on the
Internet which can also be regarded as a fading phase. Again, the student
tutor can see the solution and help the student tutee to diagnose the
program or to give advice by typing comments when queried by the tutee.
The student tutee, at the other end, only has a menu of the language
constructs as reference and key in the program solution. The learning
process can be regarded as cycling processes of conceptualization,
construction, reflection, and articulation. The DRT system can lead
students to learn concepts of recursion in class, experiencing construction
and reflection in the first phase of reciprocal tutoring. The students will
then undergo articulation, construction, and reflection in the fading phase.

6. Conclusions
In this paper we have discussed the design of a set of different versions

of reciprocal tutoring systems. An intelligent tutoring system is a specific
type of reciprocal tutoring system. An intelligent reciprocal tutoring
system can be viewed as a product of designing and applying a sequence
of devices to support student learning. These computer and human
supports constrain the design and learning space, relate various elements
of concern during the learning process and place these elements in proper
positions in the systems.

A student model plays a critical role in supporting adaptive
interaction. In traditional ITS fashion, a student model is used as a
supporting component for the computer tutor (usually called the tutoring
module) and is hidden from the student. When the student plays as a tutor
to teach another student, the student model becomes a tool for the student
tutor to manipulate directly in fulfilling the responsibility of being a tutor.
Furthermore, when the computer assumes the role of a tutee, the student
model serves as an active and autonomous agent inside the system. This
means that simulating a typical student or a virtual learning companion is
technically equivalent to student modeling; but operated in a proactive

Wong and Chan

26

way, rather than in a reactive way as in most ITSs. The various uses of
student modeling prove that a student model gets to the very soul of
cooperative learning systems, dismissing doubts of its importance.
(McCalla, 1990; Palthepu, Greer, & McCalla 1991; Chan, 1991). Student
modeling will certainly not pass unnoticed in reciprocal tutoring or, more
generally, in cooperative learning.

Placing the student in the role of tutor is a methodology common to
many distributed cooperative learning in problem solving domains and is
potentially applicable to all domains in which advice is needed during the
learning process. The model of reciprocal tutoring is a simple and
powerful idea and its significance in distributed learning environments will
be as important as the intelligent tutoring system model in centralized
learning environments.

Acknowledgments: The authors would like to express thanks for the
support of the National Science Council of Taiwan and members of the
LISA project, in particular, Ming-Hsiu Chang and Ming-Fung Lee for their
help in implementing the systems and Wing-Kwong Wong for his editorial
suggestions. We would also likely to thank anonymous reviewers for their
suggestions and comments which lead to many improvements in the
organization of this paper.

References
Aronson, E. (1978). The jigsaw classroom. Beverly Hills, CA: Sage.
Bhuiyan, S., Greer, J.E., & McCalla, G.I. (1992). Learning recursion

through the use of a mental model-based programming environment,
The 2nd International Conference of Intelligent Tutoring Systems,
Lecture Notes in Computer Science, 608, Springer-Verlag, 50-57.

Blandford, A.E., (1994). Teaching through collaborative problem solving,
Journal of Artificial Intelligence in Education, Vol. 5. No.1, 51-84.

Brown, A.L., (1992). Design experiments: theoretical and methodological
challenges in creating complex interventions in classroom settings, The
Journal of the Learning Sciences, 2(2), 141-178.

Brown, A.L., Ash, D., Rutherford, M., Nakagama, K., Gordon, A., &
Campione, J.C. (1993). Distributed expertise in the classroom. In G.
Salomon (ed.), Distributed Cognitions: Psychological and Educational
Considerations, 188-288, New York: Cambridge University Press.

Brown, A.L., Campione, J.C. (1994). Guided discovery in a community
of learners. In K. McGilly (ed.), Classroom lessons: Integrating
cognitive theory and classroom practice, 229-270, Cambridge, MA:
MIT Press/Bradford Books.

A Multimedia Authoring System for Crafting Intelligent Learning Environments

27

Brown, J.S. and Burton, R.R. (1978). Diagnostic models for procedural
bugs in basic mathematical skills. Cognitive Science, 2, 155-191.

Bull, S., Pain, H. & Brna, P. (1993). Student modeling in intelligent
computer assisted language learning system: The issues of language
transfer and learning strategies, Proceedings of the International
Conference on Computers in Education, Taiwan, 121-126.

Chan, T.W. (1989). Learning companion systems, Ph.D. Thesis,
Computer Science Department, University of Illinois at Urbana-
Champaign.

Chan, T.W. (1991). Integration-kid: a learning companion system. The
Proceedings of the 12th International Joint Conference on Artificial
Intelligence, Sydney, Australia, Morgan Kaufmann Publishers, Inc.,
1094-1099.

Chan, T.W. (1995). A Tutorial on Social Learning Systems. In Emerging
Technologies in Education, T.W. Chan & J. Self (eds), AACE.

Chan, T.W. & Baskin, A.B. (1988). Studying with the prince: The
Computer as a Learning Companion. The Proceedings of
International Conference of Intelligent Tutoring Systems, 1988, June,
Montreal, Canada, 194-200.

Chan, T.W. & Baskin, A.B. (1990). Learning companion systems. In C.
Frasson & G. Gauthier (Eds.) Intelligent Tutoring Systems: At the
Crossroads of Artificial Intelligence and Education, Chapter 1, New
Jersey: Ablex Publishing Corporation.

Chan, T.W. & Chou, C.Y. (1995). Simulating a Learning Companion in
Reciprocal Tutoring System, (unpublished manuscript).

Chan, T.W., Chung, Y.L., Ho, R.G., Hou, W.J. & Lin, G.L. (1992).
Distributed learning companion systems — WEST revisited. The 2nd
International Conference of Intelligent Tutoring Systems, C. Frasson,
G. Gauthier & G. McCalla (Eds.). Lecture Notes in Computer
Science, 608, Springer-Verlag, 643-650.

Chan, T.W. & Lai, J.A., (1995). Contest-Kids: a competitive distributed
social learning environment. Proceedings of World Conference on
Computers in Education, Birmingham, England, 767-776.

Collins, A., Brown, J.S., & Newman, S. E. (1989). Cognitive
apprenticeship: teaching the craft of reading, writing and mathematics.
In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays
in honor of Robert Glaser, Hillsdale, NJ: Lawrence Erlbaum
Associates Publishers.

Collins, A. & Stevens, A. (1982). Goals and strategies of inquiry
teachers. In R. Glaser (ed.), Advances in Instructional Psychology
(Vol. 2, pp.65-119). Hillsdale, NJ: Erlbaum.

Wong and Chan

28

Dillenbourg, P & Self, J. (1992). People power: a human-computer
collaborative learning system. C. Frasson, G. Gauthier & G.
McCalla (Eds.). The 2nd International Conference of Intelligent
Tutoring Systems, Lecture Notes in Computer Science, 608, Springer-
Verlag, 651-660.

Jehng, J.C., Shih, Y.F., Liang, S. & Chan, T.W. (1994). TurtleGraph: a
computer supported cooperative learning environment. The
Proceedings of the World Conference on Educational Multimedia and
Hypermedia, Vancouver, Canada, AACE, 293-298.

Luehrmann, A. (1972). Should the computer teach the student or vice-
versa? AFIPS 1972 Spring Joint Computer Conference Proceedings,
Vol. 40, AFIPS, Montvale, N.J.; Also appeared in The Computer in
the School: Tutor, Tool, Tutee, Taylor, R.P. (ed), 1980, 129-135,
Teacher College Press.

McManus, M.M., & Aiken, R.M. (1993). The group leader paradigm in
an intelligent collaborative learning system. In S. Ohlsson, P. Brna,
and H. Pain (Eds.), Proceedings of the World Conference on
Artificial Intelligence in Education. Charlottesville, VA: Association
for the Advancement of Computing in Education, 249-256.

Newman, D. (1989). Is a student model necessary ? Apprenticeship as a
model for ITS. In D. Bierman, J. Breuker, & J. Sandberg (Eds.),
Artificial Intelligence and Education, Amsterdam: IOS, 177-184.

Nichols, D. (1994). Issues in designing learning by teaching systems.
AAI/AI-ED Technical Report No. 107, Computing Department,
Lancaster University, Lancaster, United Kingdom.

Palthepu, S., Greer, J., & McCalla, G. (1991). Learning by teaching.
The Proceedings of the International Conference on the Learning
Sciences, AACE, 357-363.

Palincsar, A.S. & Brown, A.L. (1984). Reciprocal teaching of
comprehension-fostering and monitoring activities. Cognition and
Instruction, 1, 117-175.

Scardamalia, M. & Bereiter, C. (1991). Higher levels of agency for
children in knowledge building: A challenge for the deign of new
knowledge media. Journal of Learning Sciences, 1, 37-68.

Self, J. (1985). A perspective on intelligent computer-assisted learning.
Journal of Computer Assisted Learning, Vol. 1, 159-166.

Self, J. (1986). The application of machine learning to student modeling.
Instructional Science, Vol. 14, 327-338.

Self, J. (1988). Bypassing the intractable problem of student modeling.
International Conference of Intelligent Tutoring Systems, Montreal,
Canada, 18-24.

A Multimedia Authoring System for Crafting Intelligent Learning Environments

29

Smith, D.C., Cypher, A., & Spohrer (1994). KIDSIM: Programming
agents without a programming language. Communication of ACM,
July, Vol 37, No. 7, 55-67.

Taylor, R.P. (1980).The Computer in the School: Tutor, Tool, Tutee.
Teacher College Press.

Ur, S. & VanLehn, K. (1994). STEPS: A preliminary model of learning
from a tutor. The Proceedings of the 16th Annual Conference of the
Cognition Science Society. Hillsdale, NJ: Erlbaum.

VanLehn, K., Ohlsson, S. & Nason, R. (1994). Applications of
simulated students: an exploration, Journal of Artificial Intelligence in
Education, Vol. 5 No. 2, 135-175.

VanLehn, K. (1993). Keynote speech. World Conference on Artificial
Intelligence in Education, Edinburgh, Scotland.

