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ABSTRACT 
 

We review a representative selection of systems that support the management of collaborative learning 

interaction, and characterize them within a simple classification framework. The framework distinguishes 

between mirroring systems, which display basic actions to collaborators, metacognitive tools, which 

represent the state of interaction via a set of key indicators, and coaching systems, which offer advice 

based on an interpretation of those indicators. The reviewed systems are further characterized by the type 

of interaction data they assimilate, the processes they use for deriving higher-level data representations, 

the variables or indicators that characterize these representations, and the type of feedback they provide 

to students and teachers. This overview of technological capabilities is designed to lay the groundwork 

for further research into which technological solutions are appropriate for which learning situations.
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Abstract: We review a representative selection of systems that support the management of collaborative 
learning interaction, and characterize them within a simple classification framework. The framework 
distinguishes between mirroring systems, which display basic actions to collaborators, metacognitive 
tools, which represent the state of interaction via a set of key indicators, and coaching systems, which 
offer advice based on an interpretation of those indicators. The reviewed systems are further characterized 
by the type of interaction data they assimilate, the processes they use for deriving higher-level data 
representations, the variables or indicators that characterize these representations, and the type of 
feedback they provide to students and teachers. This overview of technological capabilities is designed to 
lay the groundwork for further research into which technological solutions are appropriate for which 
learning situations.  

INTRODUCTION 

Over the past decade, we have seen a remarkable increase in the development and adoption of network-
based technologies that enable traditional and non-traditional distance learners alike to learn 
collaboratively. These environments enhance traditional distance learning curricula by giving students the 
opportunity to interact with other students online, on their own time, and wherever they are located, to 
share knowledge and ideas. But especially for domains in which teamwork is critical, do these 
collaborative tools provide the kind of supportive environments learning groups need? Is it possible to 
design environments in which each team of students learns in the presence of a facilitator who helps to 
manage and guide the collaboration, providing clear goals as to what is expected from the group process? 
In this paper, we review a representative selection of tools and methodologies that support collaborative 
learning interaction, and characterize them within a simple conceptual framework. The framework serves 
to organize and explain the array of available collaborative support options. 

Understanding and evaluating collaborative learning tools and methodologies is not a trivial task. 
During collaborative learning activities, factors such as students’ prior knowledge, motivation, roles, 
language, behavior, and group dynamics interact with each other in unpredictable ways, making it very 
difficult to measure and understand learning effects. This may be one reason why the focus of 
collaborative learning research shifted in the nineties from studying group characteristics and products to 
studying group process (Dillenbourg, Baker, O’Malley, & Blaye, 1995; Jermann, Soller, & 
Muehlenbrock, 2001). With an interest in having an impact on the group process in modern distance 
learning environments, the focus has recently shifted again – this time from studying group processes to 
identifying computational strategies that positively influence group learning. This shift toward mediating 
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and supporting collaborative learners is fundamentally grounded in our understanding of the group 
activity described by our models of collaborative learning interaction.  

Because distance learners adapt their interaction to the features and capabilities of the available tools, 
their interaction may also differ from that of face-to-face learners, and the way in which we support their 
interaction may differ too. Online collaborative learning environments may never offer the same kind of 
supportiveness found in the face-to-face classroom, and might never need to, but they must still provide 
students with the kind of rich learning experiences they might otherwise obtain in the classroom. In this 
paper, we explore the advantages, implications, and support possibilities afforded by various technologies 
and computational models in an array of contexts.  

We begin in the next section by describing our conceptual framework, the Collaboration Management 
Cycle. This framework will help to organize the technology support options that we describe in the third 
section. All four authors of this article have recently completed their doctoral dissertations in this area, 
and each has contributed from his or her experiences to the discussion of the critical questions and open 
issues for future research in the fourth and fifth sections. These sections might be used in the development 
of future theses, to identify key unanswered research questions and gaps. 

 

THE COLLABORATION MANAGEMENT CYCLE 
 

Managing collaborative interaction means supporting group members’ metacognitive activities related to 
their interaction. It may be facilitated through activities such as providing on-line dynamic feedback to 
students, or off-line analyses of the students’ collaboration to instructors. The students, instructors, or 
system might then recommend actions to help students manage their interaction by reassigning roles, 
addressing conflicts and misunderstandings, or redistributing participants’ tasks, given their levels of 
expertise.  

In distributed computer-supported collaborative learning (CSCL) environments, the process of 
collaboration management is assisted and informed by one or more computational models of collaborative 
learning interaction (Soller, Jermann, Muehlenbrock, & Martinez-Mones, 2004). These models provide 
functional computer-based representations that help us understand, explain, and predict patterns of group 
behavior, and support group learning processes. They can help us determine how to structure the 
environment in which the collaboration takes place, or regulate the student interaction during the learning 
activities (Jermann, Soller, & Lesgold, 2004). We very briefly describe the role of computational models 
in structuring the group learning environment, and then focus the remainder of our discussion on their 
role in regulating interaction. 
 

The Role of Computational Models in Structuring and Regulating Interaction  
Structuring approaches aim to create favorable conditions for learning by designing or scripting the 
situation before the interaction begins (Dillenbourg, 2002). For example, we might structure the learning 
experience by varying the characteristics of the participants, the size and composition of the group, or the 
definition and distribution of student roles. We might also strategically select a subset of learning tools, 
activities, and communication media with desired characteristics, or change the appearance of the 
environment based on the nature of the task (e.g. writing, problem-solving) or the configuration of the 
group. A computational model, describing students’ prior behavior under similar conditions might be 
used to strategically construct learning teams and activities, or plan mediation schemes. Approaches to 
structuring the learning situation are often based on educational principles or theories, and intended to 
encourage certain types of interaction, such as argumentation or peer tutoring.  

Regulation approaches support collaboration by taking actions once the interaction has begun. 
Interaction regulation is a complex skill that requires a quick appraisal of the situation based on a 
comparison of the current situation to a model of desired interaction. In the classroom, the regulation of 
student interaction is performed by a teacher, taking into account complex variables such as the observed 
student interaction, various experiences from years of teaching, and knowledge of the students’ 
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personalities and typical behaviors. The difficulty in eliciting the knowledge needed to account for these 
complex variables, and determining the manner and degree to which each contributes to the collaborative 
learning outcome, has presented significant challenges to the computational modeling, analysis, and 
assessment of group learning activities. How might a computer assess the quality of knowledge sharing, 
or measure the degree of constructive conflict between students? It is too early to tell whether or not we 
will ever be able to offer the supportiveness of a human teacher, online; however, a few research projects 
have begun to explore the possibilities of enriching CSCL environments with tools to support and 
enhance collaboration management through interaction regulation.  

Before leaving our discussion of structuring and regulating approaches, we note that these methods 
need not be exclusive, and may even be applied in concert. For example, a system might mediate the 
group by dynamically structuring the environment, while the students, at the same time, attempt to 
regulate their own interaction. We now move to a discussion of the four phases in the collaboration 
management cycle, designed to organize the array of state-of-the-art functionality for supporting 
interaction regulation. 

 
Phases of the collaboration management cycle 
In this section, we present a framework for describing the process of collaboration management, building 
upon the work of Jermann, Soller, and Muelhenbrock (2001) and Barros and Verdejo (2000). 
Collaboration management follows a simple homeostatic process, illustrated in Figure 1, that 
continuously compares the current state of interaction with a target configuration (the desired state). 
Pedagogical actions are taken whenever a perturbation arises, in order to bring the system back to 
equilibrium. Because the definition of the desired state may not be fully known, and may also change 
during the course of group activity, the framework presented here provides a general description of the 
activities involved in computer-supported collaboration management, rather than a means for predicting 
collaborative learning outcomes.  

The framework, or collaboration management cycle is represented by a feedback loop, in which the 
metacognitive or behavioral change resulting from each cycle is evaluated in the cycle that follows. Such 
feedback loops can be organized in hierarchies to describe behavior at different levels of granularity (e.g. 
operations, actions, and activities). The collaboration management cycle is defined by the following 
phases:  
 
Phase 1: Collect Interaction Data 
The data collection phase involves observing and recording the interaction. Typically, users’ actions (e.g. 
‘user1 clicked on I agree’, ‘user1 changed a parameter’, ‘user1 created a text node’) are logged and stored 
for later processing. An important decision that must be made in phase 1 as to whether the eventual model 
will call for an activity-based analysis, requiring a historical log of student actions across time, or a state-
based analysis, requiring the logging of “snapshots” of collaborative interaction, without history 
information (Gassner, Jansen, Harrer, Herrmann, & Hoppe, 2003). 

 
Phase 2: Construct a Model of Interaction 
The next phase involves selecting and computing one or more higher-level variables, termed indicators, 
to represent the current state of interaction. For example, an agreement indicator might be derived by 
comparing the problem solving actions of two or more students, or a symmetry indicator might result 
from a comparison of participation indicators. 
 
Phase 3: Compare the Current State of Interaction to the Desired State 
The interaction can then be “diagnosed” by comparing the current state of interaction to a desired model 
of interaction. We define the desired model as a set of indicator values that describe productive and 
unproductive interaction states. These indicators typically correspond to features of collaborative 
interaction which might positively influence learning. For instance, we might want learners to be verbose 
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(i.e. to attain a high value on a verbosity indicator), to interact frequently (i.e. maintain a high value on a 
reciprocity indicator), and participate equally (i.e. to minimize the value on an asymmetry indicator). 
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Figure 1. The collaboration management cycle, showing points at which the responsibility for 
analyzing and guiding the interaction might shift from the collaborators to the system. 

 
 
From an implementation standpoint, the difference between phases 2 and 3 does not seem significant. 

From a philosophical perspective, however, these phases describe the difference between a system that 
reflects the group’s activities back to the members, and requires them to manage their own interaction, 
and a system that prepares interaction data so that it can be assessed by computer models, or analyzed by 
researchers in an effort to understand and explain the interaction. 

 
Phase 4: Advise/ Guide the Interaction 
Finally, if there are discrepancies between the current state of interaction (as described by the indicator 
values) and the desired state of interaction, some remedial actions might be proposed. Simple remedial 
actions (e.g. ‘Try letting your partner have control for a while’) might result from analyzing a model 
containing only one indicator (e.g. word or action count), which can be directly computed from the data, 
whereas more complex remedial actions (e.g. ‘Try explaining the concept of generalization to your 
partner using a common analogy’) might require more sophisticated computational analysis. 

 
Phase 4 is not the final phase in this process. Remediation by the system or human instructor will have 

an impact on the students’ future interaction, and this impact should be re-evaluated to ensure that it 
produced the desired effects. The arrows that run from phase 4 back through the illustration representing 
the logging of learners’ actions, to phase 1 indicates the cyclic nature of the collaboration management 
cycle, and the importance of evaluation and reassessment at the diagnostic level. 
 
Phase 5: Evaluate Interaction Assessment and Diagnosis 
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After exiting Phase 4, but before re-entering Phase 1 of the following collaboration management cycle, 
we pass through the evaluation phase. Here, we reconsider the question, “What is the final objective?”, 
and assess how well we have met our goals. Some systems are aimed exclusively at analyzing and 
evaluating student activity. Their objective is to explain why students may be experiencing trouble 
collaborating and learning, and help an instructor or online coach target those difficulties. In some cases, 
evaluation may be performed off-line, taking complete courses of interaction as the units of analysis. Off-
line evaluation removes the temporal constraints that are present in dynamic, on-line coaching and 
evaluation scenarios, although such evaluation procedures also introduce some delay in the feedback, 
evaluation, and remediation loop. Off-line evaluation may be performed by either the system, or a human 
evaluator. In the first case, the system improves its own ability to diagnose student performance by 
directly analyzing students’ actions (e.g. Soller, 2002; Soller & Lesgold, 2003). In the second case, a 
human may intervene in the process to alter the method of facilitation or even the model of desired 
interaction. In control theory and in cognitive science, cognitive architectures are described as a hierarchy 
of referents that starts at the level of a sensation up to the level of concepts (Robertson & Powers, 1990). 
The fifth phase in our model corresponds to a higher level of control: it allows adjusting the desired state 
of interaction in the management cycle. For the sake of simplicity, Figure 1 only represents the four first 
phases of the management cycle. 
 

When these five phases are realized in a system, they might form more of a theoretical base than 
embody physical system components or human-controlled tasks. In some systems, the phase durations 
and boundaries may vary significantly, making the phases difficult to identify, whereas in other systems, 
the phases might be implemented as concrete, identifiable, software modules. For instance, the first phase 
– collection of interaction data – could be realized as either the collection of a single new datum that 
immediately triggers the cycle, or the accumulation of interaction data over a long period of time, that 
must be completed before entering the next phase. Systems that involve humans ‘in the loop’ who give 
advice or guide the interaction tend towards the latter because human resources are often not immediately 
available.  
 

The Locus of Processing: from mirroring to guiding 
Research in distributed cognition suggests that cognitive and metacognitive processes might be spread out 
and shared among actors in a system, where these actors may constitute both people and tools (Hutchins, 
1995; Salomon, 1993). Following this idea, computers might offer support for any or all of the four 
phases described in the previous section.  The locus of processing describes the location at which 
decisions are made about the quality of the student interaction, and how to facilitate this interaction. 
Depending on the requirements and goals of the learning activity, the locus of processing may be located 
anywhere on a continuum between the system, instructors, and collaborating students. For example, a 
teacher, or the group members themselves, might observe the interaction, compare its current state with 
implicit or explicitly agreed upon referents, and propose changes to the communicative rules or division 
of labor. In this case, the locus of processing is in human hands. Alternatively, parts of this process might 
be managed by a computer system, thereby shifting the locus of processing towards the computer.  

Systems that collect interaction data and construct visualizations of this data tend to place the locus of 
processing at the user level, whereas systems that advise and coach aggregate and process this 
information directly. In the remainder of this section, we describe three computer-based support options 
that arise as the computer takes over various phases of the collaboration management process presented in 
the previous section.  



7 

Mirroring Tools

Metacognitive Tools

Guiding Systems

Mirroring Tools

Metacognitive Tools

Guiding Systems  

Mirroring tools automatically collect and aggregate data about the students’ 
interaction (phases 1 and 2 in Figure 1), and reflect this information back to 
the user, for example, as graphical visualizations of student actions or chat 
contributions. These systems are designed to raise students’ awareness 
about their actions and behaviors. They place the locus of processing in the 
hands of the learners or teachers, who must compare the reflected 
information to their own models of desired interaction to determine what 
remedial actions are needed.  

Metacognitive tools display information about what the desired interaction 
might look like alongside a visualization of the current state of indicators 
(phases 1, 2 and 3 in Figure 1). These systems provide the referents needed 
by the learners or human coaches to diagnose the interaction. Like mirroring 
tools, users of metacognitive support tools are responsible for making 
decisions regarding diagnosis and remediation.  

Guiding systems perform all the phases in the collaboration management 
process, and propose remedial actions to help the learners. The desired 
model of interaction and the system’s assessment of the current state are 
typically hidden from the students. The system uses this information to 
make decisions about how to moderate the group’s interaction. 
 

 
Fundamentally, these three approaches rely on the same model of interaction regulation, in that first 

data is collected, then indicators are computed to build a model of interaction that represents the current 
state, and finally, some decisions are made about how to proceed based on a comparison of the current 
state with some desired state. The difference between the three approaches above lies in the locus of 
processing. Systems that collect interaction data and construct visualizations of this data place the locus of 
processing at the user level, whereas systems that offer advice process this information, taking over the 
diagnosis of the situation and offering guidance as the output. In the latter case, the locus of processing is 
entirely on the system side.  

Selecting and designing the most appropriate computational approach for supporting group 
interaction means evaluating the instructors and learners’ needs and assessing the available computational 
resources. Each of the three support options described in this section presents different advantages and 
disadvantages (described in more detail in the next section), and many combinations of approaches can be 
complementary. For example, imagine a system that progressively moves the locus of processing from the 
system side to the learner side: a guiding tool that becomes a metacognitive tool and finally a mirroring 
tool. As students observe the methods and standards that the system uses to assess the quality of the 
interaction, they might develop a better understanding of the system’s process of diagnosis, allowing the 
responsibility for interaction regulation to be progressively handed over to the students. Once the students 
have understood (internalized) these standards, simply displaying the indicators in a mirroring tool might 
be sufficient.  

Models designed to assist human instructors in coaching students might look different from those 
intended to guide students directly, even if the locus of processing looks similar. Dimitracopoulou & 
Komis (2004) found that teachers’ most important consideration was their ability to track multiple groups 
of students as they learn synchronously, and identify individual and group difficulties. Supporting these 
teachers might mean providing them with automated analysis tools, targeted at their specific concerns, or 
tools that enable them to reconstruct and analyze sequences of past collaborative student activity. 

Students, on the other hand, might initially lack the skill and insight to interpret the models correctly, 
and may consequently develop biases about what constitutes effective interaction. For example, students 
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might rely on implicit social norms (status, equality) to manage the interaction by remaining silent while 
their more knowledgeable peers perform difficult tasks. Partners may spend unnecessary time worrying 
about whether or not they are participating equally, thinking that equal participation leads to equal credit. 
Collaborative learners guided by mirroring and metacognitive tools may need to follow a more 
introspective process to develop an understanding of their interaction than those who are guided by a 
teacher or computer-based coach. The advantage of these tools is that those learners who struggle and 
succeed without intervention may more rapidly develop a understanding of their interaction, and how to 
improve their own interaction skills. 

A REVIEW OF SYSTEMS THAT SUPPORT COLLABORATIVE LEARNING 

In this section, we discuss representative examples of three types of supportive collaborative learning 
systems in the context of the collaboration management cycle. In the previous section, we described 
mirroring systems as those that reflect actions because they collect activity data in log files and display it 
to the collaborators. We described metacognitive tools as those that monitor the state of interaction 
because they maintain a model of the group activity, and either diagnose the interaction or provide 
collaborators with visualizations that they can use to self-diagnose their interaction. These visualizations 
typically include a set of indicators that represent the state of the interaction, possibly alongside a set of 
desired values for those indicators. Finally, we explained that coaching or advising systems guide the 
collaborators by recommending actions they might execute to enhance the interaction. We begin this 
section with a brief discussion of the options available for collecting and structuring interaction data, in 
preparation for collaboration analysis. We then turn to a deeper discussion of the technology options for 
each phase of the collaboration management cycle, and review a number of key systems within each 
category. 

Collecting & Structuring Interaction Data 

The first step in designing and developing collaboration support tools is determining how student actions 
should be logged by the system. This means making decisions about the granularity of data to collect 
(mouse movement, clicks, or object manipulation), how often actions should be logged, where (e.g. in a 
logfile, database, or internal data cache), and in what format. While a standard data format that would 
allow researchers to share and reuse analysis tools across different CSCL systems more easily, this might 
also limit our ability to customize tools for specific user groups, or to apply special methods for analyzing 
particular combinations of data. In this section, we briefly introduce the work of a few notable researchers 
who have seriously considered CSCL data collection issues, and then discuss how a variety of mirroring 
tools have taken advantage of these data collection efforts. 

The Object-oriented Collaboration Analysis Framework (OCAF) (Avouris, Dimitracopoulou, & 
Komis, 2003) defines a model that represents the items of the students’ solution (including those that have 
been discussed and eventually rejected) as a sequence, Pifj, where Pi represents the actor, and fj, the 
functional role related to a particular part of the solution (e.g. the insertion or proposal of an item, the 
rejection of a proposal). The functional roles are determined by automatically analyzing the logs of 
student actions, and manually analyzing the logs of student dialog. Collecting and structuring data in this 
way enables the researcher to analyze student workspace actions from the point-of-view of the shared 
objects rather than the student actions. OCAF considers objects as entities that carry their own history, 
and are owned by actors (learners) who have contributed, in varying degrees, to the solution. They 
independently compile statistics on their use, and contribute to the definition of indicators describing their 
owners’ collaborative behavior. Because of this object-orientation, OCAF is restricted to systems in 
which students construct solutions composed of well distinguished objects.  

Avouris, Komis, Margaritis, and Fiotakis (2003) have developed a system called Synergo, which 
represents OCAF-modeled activity textually or diagrammatically. While the former is suitable for 
automatic processing, the latter is intended to provide a human with a view of the items and their history. 
The system also includes a web interface that logs student actions, and displays various views of the 
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model such as a history of events, or an object-oriented view of every object that has been inserted in the 
system. With the help of this tool, the researcher can inspect different aspects of the model, such as the 
activity of each actor, or the structure of the solution.  

To facilitate the automatic data collection process, Martínez-Monés, Guerrero, and Collazos (2004) 
define the concept of the collaborative action in context as an action that can affect the collaborative 
process, and can be perceived by group members. They explain how a CSCL environment can model and 
implement collections of collaborative actions by adapting the standard software engineering command 
design pattern. The design pattern is a general solution that modularizes the data collection process, 
enables data customization, and can be used to define logging functionality in any type of application (not 
only those that are designed to mediate collaborative activity).  

The storing and processing capabilities of computers have long been seen as an opportunity for 
research and evaluation in collaborative learning (Dillenbourg, 1999). For example, computer-generated 
log files may be combined with more traditional sources of data such as ethnographic observation and 
audio tapes. Neale and Carrol (1999) present a complex evaluation methodology that combines automatic 
tools with field work to evaluate distance learning activities. One modern adaptation of this concept uses 
web server logs as the object of analysis. The Server Log File Analyzer (SLA) (Wasson, Guribye, and 
Mørch, 2000) is a tool that analyzes web server logs to determine when it is possible for a team of 
students to collaborate synchronously (i.e. when two or more of the team's members are logged on at the 
same time). SLA also highlights if one team member does not log on for a significant period of time, thus 
identifying periods when even asynchronous collaboration is not possible. Log file analysis tools, such as 
SLA, act as mirroring tools by showing team members representations of their activities. In the next 
section, we see how these representations may help students determine what behaviors would most likely 
promote a successful collaboration. 

 

Systems that Reflect Actions 

The most basic level of support a system might offer involves making the students or teachers aware of 
participants’ actions, without abstracting or evaluating these actions. Actions taken on shared resources, 
or those that take place in private areas of a workspace may not be directly visible to the collaborators, yet 
they may significantly influence the collaboration. Raising awareness about such actions through 
mirroring tools may help students maintain a representation of their teammates’ activity. A better 
representation of the partner’s whereabouts might allow to prevent coordination problems and enhance 
one’s own metacognitive abilities (Amy, this means: seeing the partner’s actions allows me to better 
reflect upon my own actions).  

PENCACOLAS (PEN Computer Aided COLlAborative System) (Blasco et al., 1999),  a system 
designed to teach collaborative writing, is an example of an environment that facilitates formal evaluation 
while reflecting users’ actions. PENCACOLAS enables groups of students, and a teacher, to generate text 
synchronously. It models compositions as problem-solving situations that follow a recursive process 
involving a series of phases (e.g. brainstorming, planning, writing and revision). Students using the 
system may also interact asynchronously, by revising their peers’ compositions, or exchanging short 
messages. PENCACOLAS records all the students’ writing events. These logs are used both to analyze 
the student activity, and to enable the review, correction, and evaluation of previous composition phases. 
Reviewing students’ intermediate writing steps may provide valuable insights regarding the evolution of 
their writing, and their cognitive development. To facilitate formative evaluation, the system 
automatically generates filenames that identify users, sessions, and phases, thus allowing evaluation of 
both collaborative and individual work. This may also allow the teacher to perform a self-evaluation in 
which she reviews her pedagogical interventions.  

Actions may also be represented along a timeline. For example Plaisant, Rose, Rubloff, Salter, and 
Shneiderman (1999) describe a system in which students learn the basics of vacuum pump technology 
through a simulation. As the learner manipulates the controls of the simulation, he can view a history of 
his actions displayed graphically beneath each target variable (e.g. pressure). The display shows a series 
of boxes along a timeline, indicating the intervals in which the user is taking actions, and the system’s 
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messages. The data displayed to the student does not undergo any processing or summarizing, but directly 
reflects the actions taken on the interface. Although Plaisant et al. did not design the system to be used by 
two persons at the same time, the learning history might be used to mirror a collaborative situation by 
displaying the actions of the learners side-by-side, and offering a representation of concurrent actions to 
help students coordinate their activity. 

The graphical records of actions that Plaisant et al.’s (1999) system constructs might be sent to a tutor 
or a peer learner, or replayed by the learner to examine his own performance. Goodman, Geier, Haverty, 
Linton, and McCready (2001) have taken advantage of the capacity of replay and reviewing tools to serve 
as mirroring devices. They have developed the Asynchronous Replay Tool (ART), which when integrated 
in a larger system called SAILE (Synchronous and Asynchronous Interactive Learning Environment), 
provides support for both synchronous and asynchronous interactions. ART allows an asynchronous 
learner to become a full participant in a problem solving session by enabling her to replay (fast review, 
step-by-step, or replay action segments delimited by chat events) and experience the collaboration process 
of the other group members that have been working on the same problem. 

Although online chat facilities pervade distance collaborative learning systems, many still present 
limitations, such as the lack of visual and audio cues (e.g. gestures and voice tone). Some researchers 
have addressed these limitations by developing creative extensions (see Looi, 2001, for an array of 
examples). For example, chat awareness tools such as Chat Circles (Donath, Karahalios, & Viegas, 1999), 
can help users keep track of ongoing conversations. Chat Circles is a graphical interface for synchronous 
chat communication that reveals the social structure of the conversation (see Figure 2).  

 

 
Figure 2. Chat Circles: A mirroring tool that helps users keep track of ongoing conversations Obtained by 

email from Fernanda Veigas (viegas@media.mit.edu). Note: figure enlarged and colors enhanced for 
printing. Printed with permission. 

 
Each participant is represented by a coloured circle on the screen in which his or her words appear. 

The tool is based on an auditory metaphor: while one can see all the participants at once, one can only 
"hear" (that is, read the words) of those one is sufficiently close to. Distances between messages (circles) 
are used to represent who is talking to whom, hence the tool represents social structure through spatial 
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proximity. A participant’s circle grows and brightens with each message that he sends, and fades in 
periods of silence. The circles, however, do not completely disappear while the participant is still 
connected to the chat. Viewed over time, Chat Circles creates a visual record of conversational patterns. 
Each user is made aware of the other active, animated participants and can watch the emergence and 
dissolution of conversational groups. The developers of Chat Circles also developed an archival interface, 
“Conversation Landscape”, that graphically displays chat logs in an intuitive format. This format 
maintains the information that is normally lost in log files, such as pauses and turn-taking behavior. The 
conversation landscape is a two-dimensional model of the conversation, showing the postings of the 
participants (again identified by color) as horizontal lines. The width of the lines is proportional to the 
lengths of the messages. The viewer can interact with this visualization to see individual conversations, 
and read the postings. In this way, it is possible to explore what has happened in an intuitive way. 

Other systems reflect actions, but are not geared specifically toward learning, and hence will be 
covered only briefly here. For example, one of the awareness tools (Gutwin, Stark, & Greenberg, 1995) in 
the Groupkit system (Roseman & Greenberg, 1992) contains a shared scrollbar to display the section of 
text each participant is looking at, allowing students to locate their partner’s focus of attention. Some 
groupware systems use a room-based paradigm to inform users of the virtual locations of their peers. 
They may also show users which objects their peers are viewing or manipulating. (See NCSA Habanero, 
CUSeeMe, IWS, Microsoft NetMeeting, and Groove for some other examples.) 

Systems that Monitor the State of Interaction 

Systems that monitor the state of interaction fall into two categories: those that aggregate the interaction 
data into a set of high-level indicators, and display these indicators to the participants, and those that 
internally compare the current state of interaction to a model of ideal interaction, but do not reveal this 
information to the users. In the former case, the learners are expected to manage their interaction 
themselves, assuming that they have been given the appropriate information to do so. In the latter case, 
this information is either intended to be used later by a coaching agent, or analyzed by researchers in an 
effort to understand and explain the interaction. 

Systems that Display High-Level Indicators 

Our first group of systems models the state of interaction through a set of indicators that are displayed to 
the users. Jermann (2004) has developed a system that displays participation rates to the collaborators as 
they are solving a traffic light tuning problem. The indicators on the display represent the number of 
messages each student has sent with respect to the number of problem-solving actions he and his 
teammates have taken (see Figure 3). The system displays a color-coded model of desired interaction next 
to the observed interaction state. The colors indicate that desirable interaction includes a greater 
proportion of talk relative to simulation-directed actions. The students use this standard to judge the 
quality of their interaction and determine whether or not to take remedial actions. Jermann found that the 
metacognitive display encourages students to participate more through the chat interface, in particular to 
engage in more precise planning activities. 

Tools like this might have a positive impact on a group's metacognitive activities by aiding in the 
construction and maintenance of a shared mental model of the interaction. This mental model may 
encourage students to discuss and regulate their interaction explicitly, leading to a better coordination of 
the joint effort to reach a solution. The notion of desirable interaction might also change during the 
learning process, causing the target values of the indicators to be dynamically updated, and encouraging 
the learners to improve in different ways. 
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Figure 3. While students solve a traffic light tuning problem, they can visualize and compare their chat 
and problem solving behavior to that of their teammates. The color of the Pie ranges from red on the left 
side to green in the center and right side. The needles indicate the Talk Tune Proportion (TTP) for each 
subject (Christina and Billy) as well as the average for the group (Team). 

 
Some metacognitive tools also include specialized displays for teachers and facilitators, to help them 

regulate the collaborative activities of their students. These systems usually avoid complex computation 
because they are designed to dynamically provide intuitive displays that make the assessment process as 
efficient as possible. In classrooms with hundreds of students, such tools may be invaluable in helping 
teachers monitor and facilitate group work. The Synergo system (Avouris, Komis, Margaritis, & Fiotakis, 
2004) presented in the previous section, and the tool developed by Fesakis, Petrou, and Dimitracopoulou 
(2004) compute the quantitative indexes CF (Collaborative Factor) and CAF (Collaborative Action 
Function), respectively. Both calculate a value for collaboration by taking into consideration the actions 
performed by the user in the environment through the different collaboration channels (e.g. chat, shared 
workspace). In the classroom, teachers have described these tools as useful for monitoring the state of on-
line collaborative activities, reflecting on their own activities off-line, planning new lessons, and 
configuring new group structures. The impact of these kinds of tools can be significant; they have the 
capability to focus a teacher’s attention toward some groups, and away from others that may really need 
the extra help. In the design of these tools, especially those with a limited pedagogical basis, we should 
therefore remember to respect the teacher’s authority in the classroom, and focus our efforts on 
developing tools that assist the teacher in managing the classroom, rather than tools that assume the 
responsibility for evaluating the collaborative activity. 

Metacognitive tools designed for use in educational forums may be used to support asynchronous 
discussions over indefinite periods of time. Gerosa, Gomes Pimentel, Fuks, and Lucena (2004) describe 
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the tree-like visualization tools they have developed that compute and display the statistics and linkages 
between forum messages. The tools provide information about the structure of the student discourse, 
accounting for factors such as the length of messages related to each message category, discussion depth, 
percentage of leaves, percentage of messages in each category, and frequency of messages per hour. 
Depending on the style of interaction (reflective discussion or brainstorming), either the length of 
messages of their frequency is better suited to measure the intensity of interaction. 

Simoff (1999) proposes an interesting way to estimate students’ potential for learning by analyzing the 
graphical representation of student participation in an educational forum. His system uses nested boxes to 
visualize discussion threads. The thickness of the boxes’ edges represents the number of messages 
produced in response to the opening message for a particular thread. In an educational environment, 
thicker boxes containing task-oriented content might mean deeper conversations, hence deeper 
understanding. To study of the content of the messages, Simoff applies a semi-automatic content analysis 
method. Common words such as articles and prepositions are discarded, and then the occurrences of the 
remaining terms are counted, noting the co-occurences of the most frequent words. This technique is used 
to build a seminar thesaurus, and an individual thesaurus for each participant. The comparison between 
these thesauri gives an indication of each participant’s contribution to the seminar. The content of the 
discussions is also used to generate a semantic net (through the use of the Text Analyst tool), which 
indicates the relevance of each term. 

Talavera & Gaudioso (2004) apply data mining and machine learning methods to analyze student 
messages in asynchronous forum discussions. Their aim is to identify the variables that characterize the 
behaviour of students and groups by discovering clusters of students with similar behaviours. A teacher 
might use this kind of information to develop student profiles and form groups. Talavera and Gaudioso’s 
approach is general enough to be useful within many different types of collaborative environments, 
however the output may need further refinement to be usable by teachers, who are not expected to be 
experts in data mining techniques.  

The last group of metacognitive tools we discuss in this section apply the formal concepts and 
techniques of Social Network Analysis (SNA) (Wasserman & Faust, 1996) to study and display the 
structure of group activity. SNA is based on strong mathematical and sociological foundations, and 
provides a set of methods and measurements for discovering and describing patterns of relationships 
among actors, and understanding how these patterns affect people and organizations. SNA methods 
operate on structures called social networks that describe a set of actors and their relationships. Social 
networks can take many different forms. For example, e-mail interchange networks describe which actors 
have sent e-mail to which other actors. Although social networks typically represent relationships 
between people, they can be extended to include relationships between the users and resources. Indirect 
interaction networks describe which actors have created and shared documents with which other actors, 
and who has taken actions on these shared documents. Many possibilities exist depending on the 
environment, the issues being studied, and the available data processing capabilities.  

Social Network Analysis supports the study of the relationships at different levels, namely the 
individual, the group and the community. For example, at the individual level, the degree centrality 
measures the prominence of actors in the network, and helps to identify those who are the most active or 
most peripheral. At the group level, cohesive subgroups can be identified as groups of actors with strong, 
direct, frequent ties. And, at the community level, the network density computes the percentage of actual 
links with respect to the number of possible links in a network, describing the level of activity in the 
network (Wasserman & Faust, 1996; see Martínez-Monés, Dimitriadis, Rubia-Avi, Gómez-Sánchez, & 
Fuente-Redondo, 2003, for CSCL-specific examples).  

Metacognitive CSCL tools have used SNA to both display and measure interaction during 
collaborative activities. In Gassner’s (2004) approach, social networks of filtered e-mail data convey 
information about group roles, individual personality factors, and even evidence of cooperation. While 
this system is still a prototype, the design of meaningful filters for building social networks is an 
promising line of research that may add more content and meaning to social network analysis studies. 
Other systems, such as SAMSA (Martínez et al, 2003), and that by Nurmela, Lehtinen, & Palonen, (1999) 
were developed to filter a large amount of data off-line and point evaluators to key collaborative learning 
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events that need further study. The follow-up research is then carried out manually through content 
inspection or qualitative analysis.  

Ogata, Matsuura and Yano (2000) extend the notion of the social network through a special 
metacognitive tool called a Knowledge Awareness Map that explicitly represents the content of the 
interaction and the objects students manipulate in the network. This tool can be seen as a specialized 
social network that also includes “knowledge pieces” describing information that is linked to participants. 
The Knowledge Awareness Map graphically shows users who else is discussing or manipulating their 
knowledge pieces. In this case, the distance between users and knowledge elements on the map indicates 
the degree to which users have similar knowledge.  

In this section, we discussed the role of metacognitive tools that display high-level indicators in 
supporting students’ collaboration and awareness, teachers’ monitoring and assessment, and researchers’ 
analysis and evaluation. Social Networks may benefit all of these communities by making the interaction 
in group structures visually explicit, and grounding the analysis in solid procedures based on mathematics 
and graph theory. SNA does not naturally represent the evolution of interaction, and may best be 
combined with other methods and techniques that can model how interaction and relationships change 
over time. 

 
Systems that Internally Compare the Current State to a Model of Productive Interaction 
The systems that we have discussed so far cover the first two stages of the collaboration management 
cycle (Figure 1), described at the beginning of this paper. We now turn to a discussion of systems in 
which the locus of processing (and the responsibility for analyzing the interaction) gradually shifts from 
the user to the system. These systems not only analyze, but also “diagnose” the student interaction in an 
attempt to deduce or infer where the students might be having trouble. This is generally done by internally 
comparing the current state of interaction to a model of ideal, or productive, interaction. The main 
challenges present during this process are (a) defining, as best possible, the model of desired interaction, 
and (b) designing algorithms that measure the degree to which the current model of interaction meets the 
requirements of the desired model, which may be uncertain or unstable. The result of the comparison in 
these systems is not displayed to the users, but instead used later by a coaching agent, or analyzed by 
researchers in an effort to understand and explain the interaction. 

In the CSCL and AI-ED communities, we commonly think of “productive” interaction as interaction 
that facilitates learning. Models of productive interaction are therefore built from factors that are thought 
to positively influence learning. These factors are qualitative in nature, and involve analyzing the 
semantic aspects of interaction and the patterns of student actions. The systems in this section include 
internal representations that model aspects of collaborative learning such as coordination, conflict, and 
knowledge sharing.  

Our first system was developed by Muehlenbrock and Hoppe (1999), two of the first researchers to 
propose sequences of multi-user actions in shared workspaces as a basis for qualitative analysis. The 
shared workspaces they consider for the automatic analysis provide semi-structured graphical 
representations for various types of domains and tasks. The users ‘act’ on these shared graphical 
representations by adding new textual and pictorial objects, and relations between these objects. The users 
can also remove or revise existing structures that result from previous joint problem solving, or that are 
drawn from sample material.  

In contrast to student dialog, user actions have clearly defined operational semantics in terms of 
changes to the graphical structures. Hence they are directly available for automatic analysis, and do not 
require an intermediate labeling step, which might introduce a certain degree of error. Action-based 
collaboration analysis (Muehlenbrock, 2001) observes user actions in the temporal context of other users’ 
actions as well as in the structural context of the graphical representations. It provides higher-level 
descriptions of the group activities (overview), and signals alerts when relevant events, such as task-
related conflicts and coordination activities, have been detected (indicators). The analysis system was 
implemented as a plug-in component for the generic framework system CARDBOARD, which includes 
intelligent support components (CARDDALIS). A recent version (see Figure 4) has been used in a 
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psychological study for examining the influence of a feedback function to the behavior of the group 
(Zumbach, Muehlenbrock, Jansen, Reimann, & Hoppe, 2002).   
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Figure 4. The CARDBOARD/CARDDALIS interface shows a large shared workspace for co-constructive 
activity using pre-defined cards (categories: text, idea, question, pro, contra), a chat interface (center 

right) with sentence makers (categories: idea, question, pro, contra), and a subtle feedback area (lower 
right) generated by the interaction analysis component. 

 
The visualization of the model of interaction (e.g. the illustration of coordination vs. conflict in Figure 

4) may be displayed to the students, as described in the previous section, or hidden from the students, and 
instead used by an instructor or computer-based facilitation agent in advising the students. It is worth 
noting, however, that if the model is sufficiently complex, containing a large number of interdependent 
variables with varying degrees of uncertainty, its construction will likely contain a margin of error. Such a 
model may be inappropriate to display to the user, and perhaps more meaningful to an automated 
facilitation agent that can abstract the relevant aspects of the model on which to base its advice. The 
models of interaction developed by the CARDBOARD/CARDDALIS system, and the EPSILON system 
which we describe next, are intended to be used by a coaching agent (in the future) in advising and 
guiding the group interaction.  

Analyzing complex indicators, such as conflict and knowledge construction, may require sophisticated 
computation involving advanced modeling or natural language processing techniques. Interfaces that 
structure student conversation and activity in terms of a set of actions the system knows how to handle 
may facilitate the interpretation of student behavior. For example, our next system automatically analyzes 
structured sentence opener-based knowledge sharing conversation in the temporal context of workspace 
actions.  
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EPSILON (Soller, 2004; Soller & Lesgold, 2003) analyzes sequences of group members’ 
communication and problem solving actions in order to identify situations in which students effectively 
share new knowledge with their peers while solving object-oriented design problems. In the first phase of 
the collaboration management cycle (Figure 1), the system logs data describing the students’ conversation 
acts (e.g. Request Opinion, Suggest, Apologize) and actions (e.g. Student 3 created a new class). In the 
second phase, the system collects examples of effective and ineffective knowledge sharing, and constructs 
two Hidden Markov Models (HMMs) that describe the students’ interaction in these two cases. A 
knowledge sharing example is considered effective if one or more students learn the newly shared 
knowledge (as shown by a difference in pre-post test performance), and ineffective otherwise. The 
Hidden Markov Modeling approach (Rabiner, 1989; also see Soller, 2004) is a probabilistic machine 
learning method that generates abstract generalizations of coded sequences of activity, in the form of 
nondeterministic state transitions.  

At the beginning of the third phase of the collaboration management cycle, the EPSILON system has 
generated the HMMs describing effective and ineffective knowledge sharing, and is then prepared to 
dynamically assess a new group’s interaction. It compares the sequences of student activity to the 
constructed Hidden Markov Models, and determines whether or not the students are experiencing a 
knowledge sharing breakdown. The system also includes multidimensional data clustering methods to 
help explain why the students might be having trouble, and what kind of facilitation might help. 

 

Systems that Offer Advice 

This section describes systems that analyze the state of collaboration using a model of interaction, and 
offer automated advice intended to increase the effectiveness of the learning process. The coach in an 
advising system plays a role similar to that of a teacher in a collaborative learning classroom. This actor 
(be it a computer coach or human) is responsible for guiding the students toward effective collaboration 
and learning. Since effective collaborative learning includes both learning to effectively collaborate, and 
collaborating effectively to learn, the facilitator must be able to address social or collaboration issues as 
well as task-oriented issues. Collaboration issues include the distribution of roles among students (e.g. 
critic, mediator, idea-generator) (Burton, 1998), equality of participation, and reaching a common 
understanding (Teasley & Roschelle, 1993), while task-oriented issues involve the understanding and 
application of key domain concepts. The systems described here are distinguished by the nature of the 
information in their models, and whether they provide advice on strictly collaboration issues or both 
social and task-oriented issues. We begin by taking a look at systems that advise  the social aspects of 
collaborative learning. 

Systems that Advise Social Aspects of Interaction 

A classroom teacher might mediate social interaction by observing and analyzing the group’s 
conversation, and noting, for example, the degree of conflict between group members’ roles, or the 
quality of the conversation. A CSCL system that can advise the social aspects of interaction therefore 
could benefit from the ability to understand the dialog between group members. Barros and Verdejo’s 
(2000) asynchronous newsgroup-style system, DEGREE, accomplishes this by requiring users to select 
the type of contribution (e.g. proposal, question, or comment) from a list each time they contribute to the 
discussion. This data satisfies the first phase of the collaboration management cycle. The system’s model 
of interaction (phase 2 of the collaboration management cycle) is constructed using high-level attributes 
such as cooperation and creativity (derived from the contribution types mentioned above), as well as low-
level attributes, such as the mean number of contributions. In the third phase of the collaboration 
management cycle, the system rates the collaboration between pairs of students along four dimensions: 
initiative, creativity, elaboration, and conformity. These attributes, along with others such as the length of 
contributions, factor into a fuzzy inference procedure that rates students’ collaboration on a scale from 
“awful” to “very good”. The advisor in DEGREE elaborates on the attribute values, and offers students 
tips on improving their interaction (see Figure 5). 
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MArCo (Tedesco, 2003) is a dialog-oriented system for the detection of meta-cognitive conflicts. The 
system adopts a dialog game approach with a limited set of possible dialog moves. User utterances must 
be formulated in a formal language that enables the conversation to be mapped onto a belief-based model 
(BDI). The analysis mechanism then detects disagreements and conflicts between users’ beliefs and 
intentions. The mediator informs the group when it detects a conflict, and may also recommend 
alternative courses of action. 
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Figure 5. A snapshot of messages generated for a student in an intermediate stage of work, and below it, 
a general assessment of the group’s behavior. From Barros, B., and Verdejo, M.F. (2000). Analysing 

student interaction processes in order to improve collaboration. The DEGREE approach. International 
Journal of Artificial Intelligence in Education, 11, 221-241. Copyright 2000 by the International AIED 

Society. Reprinted with permission. 

 
The approaches taken by DEGREE and MArCo might be limited by their dependence on users’ ability 

to choose the correct contribution type (proposal, comment, etc.). An alternative way of obtaining this 
information is to have users select sentence openers, such as “Do you know”, or “I agree because” to 
begin their contributions. Associating sentence openers with conversational acts such as Request 
Information, Rephrase, or Agree, and requiring students to use a given set of phrases, allows a system to 
understand the basic flow of dialog without having to rely on Natural Language parsers. Most sentence 
opener approaches make use of a structured interface, comprised of organized sets of phrases. Students 
typically select a sentence opener from the interface to begin each contribution. 

McManus and Aiken (1995) take this approach in their Group Leader system. Group Leader builds 
upon the concept that a conversation can be understood as a series of conversational acts (e.g. Request, 
Mediate) that correspond to users’ intentions (Flores, Graves, Hartfield, & Winograd, 1988). Like Flores 
et al.’s Coordinator system, Group Leader uses state transition matrices to define what conversation acts 
should appropriately follow other acts; however unlike the Coordinator, users are not restricted to using 
certain acts based on the system’s beliefs. Group Leader compares sequences of students’ conversation 
acts to those recommended in four finite state machines developed specifically to monitor discussions 
about comments, requests, promises, and debates. The system analyzes the conversation act sequences, 
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and provides feedback on the students’ trust, leadership, creative controversy, and communication skills, 
originally defined by Johnson, Johnson, and Holubec (1990).  

The success of McManus and Aiken’s Group Leader (1995) began a proliferation of systems that 
take a finite state machine approach to modeling and advising collaborative learners. One year later, Inaba 
and Okamoto (1996) introduced iDCLE, a system that provides advice to students learning to 
collaboratively prove geometry theorems. This system infers the state of interaction by comparing the 
sequences of conversation acts to four possible finite state machines. The finite state machines describe 
the mode of interaction; for example the model describing the query mode is used when the group is 
attempting to address a member’s question, and the model describing the confirmation mode is used when 
the students are justifying or confirming an idea. Advice is generated through consideration of the dialog 
state and the roles of each group member. For example, iDCLE considers whether or not a group member 
is leading the discussion, or asking an abundance of questions, and tailors the advice appropriately. 

OXEnTCHÊ (Vieira, Teixeira, Timóteo, Tedesco, & Barros, 2004) is an example of a sentence 
opener-based tool integrated with an automatic dialogue classifier that analyses on-line interaction and 
provides just-in-time feedback to both teachers and learners. During the first phase of the collaboration 
management cycle, the system collects the student chat logs, codified with sentence openers. During the 
second phase, the dialog classifier uses neural networks trained to identify productive and non-productive 
dialogs regarding a number of collaborative skills, (although the authors do not specify how the system 
computes these collaborative skills). The system also identifies off-task interactions by comparing the 
input with a domain ontology. During the third phase of the cycle, the system compares the students’ 
interaction to its models and offers two types of feedback: teachers receive reports on both the group and 
individual students, and students may view the analysis of their contributions to the chat. The authors 
evaluated these reports in four experimental settings, obtaining positive results overall. 

OXEnTCHÊ also includes a chatterbot (natural language agent) that acts as an advising system, 
attempting to maintain the dialogue focus. It interrupts the group chat when it detects an unproductive 
change of subject, and also attempts to motivate less participative students to engage in conversation. As 
of this writing, the chatterbot’s functionality has not been formally evaluated, and further work is planned 
in order to improve its efficiency. Overall, OXEnTCHÊ goes further than many systems regarding data 
analysis and feedback, and also takes into account the needs of different types of users (teachers and 
students). The main limitations of the approach include the reliance on sentence openers and an unclear 
theoretical justification for the chosen collaboration skills. 

Sentence opener approaches have gained popularity over the past 10 years because of their ease-of-
use, and ability to efficiently reduce the amount of the amount of natural language understanding for 
which the system would otherwise be responsible. They are however not without their limitations. 
Because of the dialogical constraints of sentence openers, students may not always use them as expected. 
For example, it is possible to use the sentence opener, “I think”, to say, “I think I disagree”. The degree to 
which this will happen is largely dependent on the degree to which the set of sentence openers enable the 
students to express themselves, and the ability for them to find the phrases they need on the interface. 
Training students how to use the sentence openers available on the interface in contextualized situations, 
and running iterative human-computer interaction studies can both make a difference (Soller, 2004). 

Because each sentence opener is also typically associated with only one intention (i.e. Suggest or 
Justify), a sentence opener-based coding scheme is only able to account for the primary intention. It 
cannot capture complex intentions, such as a Discuss/Agree act that both expresses agreement and doubt. 
We do not yet know to what degree a more complicated coding scheme might improve the ability to 
which the system can support various collaborative learning activities. Text mining methods that learn to 
automatically classify contributions into categories might help to address this problem, although 
approaches in this direction are also limited in their ability to understand natural human conversation 
(Linton, Goodman, Gaimari, Zarrella, & Ross, 2003; Padilha, Almeida, & Alves, 2004). Moreover, text 
mining techniques must be adapted to each learning domain, presenting an obstacle for their general use.  
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Systems that Advise Social and Task Oriented Aspects of Interaction 

Dillenbourg (1999) describes the so-called “Berlin Wall” of collaborative learning as the notion of trying 
to understand and support the social aspects of collaboration separately from the task elements. Students 
cannot effectively learn how to collaborate outside the context of a concrete task, and cannot effectively 
learn how to perform the task collaboratively without attention to social and socio-cognitive factors 
influencing the group. A few systems have taken advantage of this idea by monitoring and analyzing 
students’ task-based and social actions together in order to gain a better understanding of the 
collaboration as a whole.  

Our last group of collaborative learning systems interacts with students via a set of specialized 
computer agents that address both social and task-oriented aspects of group learning. HabiPro (Vizcaino, 
2001) is a collaborative programming environment that uses two databases – one containing words related 
to the domain (computer programming), and other containing potential off-topic terms. The system 
includes a simulated peer agent that detects off-topic words in the students’ utterances, and intervenes as 
necessary to bring them back to work (see Figure 6).  

 

  
Figure 6. The simulated peer in HabiPro detects that the students are discussing the football match, and 

attempts to refocus them on the problem solving. Obtained by email from Aurora Vizcaino 
(avizcaino@inf-cr.uclm.es). Printed with permission. 

 
HabiPro also includes a group model, and an interaction model, which includes a set of “patterns” 

describing possible characteristics of group interaction (e.g. the group prefers to look at the solution 
without seeing an explanation). During the collaborative activity, the simulated peer uses the group model 
to compare the current state of interaction to these patterns, and proposes actions such as withholding 
solutions until the students have tried the problem. 

GRACILE (Ayala & Yano, 1998) is an agent-based system designed to help students learn Japanese. 
GRACILE’s agents assess the progress of individual learners, propose new learning tasks based on the 
learning needs of the group, and cooperate to maximize the number of situations in which students may 
effectively learn from one another. In order to reach these goals, GRACILE maintains user models for 
each of the students, and forms beliefs about potential group learning opportunities. Group learning 
opportunities are defined as those that extend an individual’s zone of proximal development (Vygotsky, 
1978), which describes the potential development of a learner with the assistance of others. Following this 
idea, GRACILE proposes the students potential partners to collaorate with so that they maximize the 
opportunities to learn from each other.  
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The models of interaction employed by LeCS (Rosatelli & Self, 2002) and COLER (Constantino-
González, Suthers, & Escamilla de los Santos, 2002) also integrate task and social aspects of interaction. 
LeCS is similar to GRACILE in that a set of computer agents guide students through the analysis of case 
studies. The agents monitor students’ levels of participation, and track students’ progression through the 
task procedure, while addressing students’ misunderstandings and ensuring group coordination.  

COLER (Constantino-González, Suthers, & Escamilla de los Santos, 2002) uses decision trees to 
coach students collaboratively learning Entity-Relationship (ER) modeling, a formalism for conceptual 
database design (see Figure 7). A coach monitors the personal and shared workspaces in order to detect 
opportunities for group-learning interactions. COLER draws on the socio-cognitive conflict theory (Doise 
& Mugny, 1984) which states that disagreements can be an opportunity for learning when students detect 
them and try to resolve them through reflection and elaboration.(Constantino-González et al., 2002) 
define three types of coaching opportunities: when there are problems in the quality of the ER group 
diagram, differences between individual and group ER diagrams, and differences in the levels of 
participation of the learners. COLER generates a set of potential advisory comments for a given situation 
using decision trees and chooses one of them according to a control strategy. 
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Figure 7. The COLER Workspace  
[Available: http://lilt.ics.hawaii.edu/lilt/images/COLER.gif] 

 
Goodman, Linton, Zarrella, and Gaimari (2004) present a specific example in which machine learning 

methods are used to train an agent-based system to recognize when students are experiencing trouble 
related to specific aspects of interaction. Their approach involves training neural networks with 
segmented, coded (speech act) student dialog and surface features (e.g. question marks and keywords). 
Goodman et al.’s research reminds us that choosing the appropriate technique for data analysis is critical, 
and depends on the conditions under which these techniques are, or are not, expected to be successful. In 
the next section, we summarize the various systems and methods that we have encountered in this article 
along the paths of the collaboration management cycle. 

DISCUSSION 

In the first half of this paper, we developed the collaboration management cycle from a system’s 
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perspective. This cycle describes the actions a system can take to support online collaborative learning 
interaction. In the second half of this paper, we reviewed an array of systems that instantiate the stages in 
this model: mirroring, monitoring, and advising.  

Mirroring systems record and reflect input data, while monitoring and advising systems process this 
input data to obtain a higher-level representation which is then either displayed to the collaborators (in the 
case of indicator-based systems), or used by the system or human facilitators (in the case of advising 
systems). This higher-level, derived representation may be quantitative or qualitative in nature. A 
quantitative derivation process might entail counting, for instance, the number of dialog or workspace 
actions a user has taken. A qualitative derivation process requires taking relational information into 
account, such as interdependencies between actions, or between actions and the application context. 
Tables 1-3 summarize the systems we have reviewed in this paper by the type of interaction data they 
assimilate, the derivation mechanism they use to produce higher-level (derived) data models, the format 
of the derived data model, and the way in which they attempt to achieve or maintain equilibrium (ideal 
collaboration). 

In some cases, systems that monitor the state of interaction are not all that different from systems that 
provide advice. For example, suggesting that a student participate more does not require much more 
computation than displaying students’ participation statistics; moreover both approaches may have the 
same effect. These systems begin to differ when the knowledge behind the indicators requires a great 
enough level of inferencing to warrant having a coach analyze the data to scaffold the learning process. 

While reflecting on our review of systems to support collaborative learning, we noticed that there is a 
great diversity of approaches, and asked the question “Why?” Such diversity might be explained by the 
fact that each system draws upon a different theoretical perspective. But even systems that share the same 
view of learning employ different strategies for pedagogical intervention. For example, Table 1 shows 
that some systems focus on modeling features of the individual learners (learner models) in order to detect 
potential situations for productive interactions, while other systems that are based on similar theoretical 
principals, focus on analyzing collaborative interaction. GRACILE, a system that was inspired by 
Vygostky’s zones of proximal development is an example of the first approach, whereas COLER, a 
system inspired by theories of socio-cognitive conflict, takes the second approach. Systems that 
characterize the second approach often attempt to understand how different patterns of interaction 
promote various aspects of collaborative learning such as knowledge sharing and construction (e.g. 
EPSILON, MarCo), or conversation (DEGREE). Some are more focused toward the social aspects of 
learning (e.g. HabiPro), while others study the structural properties of interactions within groups, such as 
the evolution of social roles (Salomon & Perkins, 98).  

 
 

Table 1. A summary of mirroring systems that support collaborative learning 
System Input data Output Expected function 

Groupkit, Gutwin (1995) Shared workspace 
actions (window level) 

Other users’ interface 
actions 

On-line workspace 
awareness 

Plaisant et al. (1999)  Problem-solving 
actions  

Actions on a timeline Off-line analysis of the 
activity 

Chat Circles (Donath, 
Karahalios & Viegas,1999) 

Dialog in an 
unstructured virtual 
space 

Graphical visualization On-line social awareness  

ART/SAILE 
 (Goodman et. al, 2001) 

Shared workspace 
actions  (window-
level) 

Reproduction of the 
collaboration at different 
granularities 

Off-line review of the 
collaborative process 

SLA (Wasson, 2000) Shared workspace 
actions (web-server 
level)  

Users’ connection times 
to the server  

Off-line analysis of the 
possibilities of collaboration 
work  



22 

PENCACOLAS (Blasco et 
al., 2001) 

Shared workspace 
actions (low-level 
events) 

Video-like reproduction 
of the collaboration 

Off-line review of the 
collaborative process for 
evaluation and self-
evaluation purposes   

Table 2. A summary of metacognitive systems that support collaborative learning  
System Input data Derivation 

mechanism 
Derived data Output Expected function

Sharlock II, Ogata et 
al. (2000) 

User profile, web 
page access 

Counting, 
similarity 
indices 

Shared knowledge 
awareness map 

Graphical 
visualization 

Participants: Provide 
knowledge 
awareness 

SAMSA, (Martínez-
Monés et al., 2003) 

Shared workspace 
actions 

Social network 
analysis 

Network density and 
centralisation; 
actors’ centrality 
degree  

Graphical 
visualization 

Analyze  
participation 
structure 

Jermann (2004) Chat and problem-
solving actions 

Counting Participation  Graphical 
visualization 

Teachers: Analyze 
interaction  
Self-regulation for 
the students 

Talavera and 
Gaudioso (2004) 

Actions on a 
forum  

Data mining and 
machine 
learning 

Clusters of students 
with similar 
characteristics 

Clusters of 
students 

Identify student 
profiles and form 
groups 

Nurmela (1999) Actions on a 
shared workspace 

Social network 
analysis 

Actors´centrality 
degree 

Indexes Analyze 
participation 
structure 

Simoff (1999) Synchronous and 
asynchronous 
dialog (forum) 

Counting and 
semi-automatic 
content analysis 

Participation, 
structure of 
discussion 

Graphical 
representation 
(Boxes) 

Visualize the depth 
of the conversations

Action-based 
Collaboration 
Analysis, 
Muehlenbrock 
(2001) 

Actions on 
graphical 
representation in 
shared workspaces 

Activity/plan 
recognition 

Action sequences, 
indicators for task-
related conflicts and 
coordination 

Graphical 
representation 

Students’ self-
regulation, feedback 
to facilitator 

EPSILON, Soller & 
Lesgold (2003) 

Shared workspace 
actions, tagged 
dialog 

Hidden Markov 
Models 

Effectiveness of  
knowledge sharing 

Textual 
assessment & 
explanation 

Feedback to 
facilitator, Input to 
Computer-based 
Coach 
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Table 3. A summary of guiding systems that support collaborative learning  

System Input data Derivation 
mechanism 

Derived data Output Expected function

Group Leader,  McManus 
and Aiken (1995) 

tagged dialog Finite state 
machines 

Trust, leadership, 
communication 

Coach On-line textual 
feedback to the 
students on 
collaborative skills 

iDCLE, Inaba and 
Okamoto (1996) 

Tagged dialog Finite state 
machines 

Roles Coach On-line feedback to 
the students  

DEGREE, Barros and 
Verdejo’s (2000) 

Tagged dialog Counting and 
fuzzy inference 

Initiative, 
creativity, 
elaboration, 
conformity 

Coach and 
conversation 
analysis 
display 

On-line feedback on 
“initiative, creativity, 
elaboration, & 
conformity” 

MarCo (Tedesco, 2003) Dialog in formal 
language 

BDI modeling Meta-cognitive 
conflicts 

Conflict 
mediator 

On-line feedback on 
alternatives when 
conflicts are detected

GRACILE, Ayala and 
Yano (1998) 

Workspace 
actions, learner 
models 

Rule-based 
expert system 

Student helpers & 
learning tasks 

Coaching 
agents 

On-line proposals of 
group learning tasks

LeCS (Rosatelli & Self, 
2002) 

Shared workspace 
actions,  

Case tree Participation, 
group coordination

Coaching 
agents 

On-line feedback of 
misunderstandings & 
coordination 

COLER, (Constantino-
González et al., 2002) 

Shared and private 
actions, dialog 

Decision trees Participation, 
agreement with 
group procedure 

Coach  On-line feedback of 
participation and 
workspace 
differences 

OXEnTCHE, Vieira, 
Teixeira, Timóteo, 
Tedesco, & Barros. 
(2004) 

Tagged dialog Neural networks 
and comparison 
with a domain 
ontology 

Productive and 
non-productive 
dialogs sequences

Chatterbot On-line feedback of 
conversation 
productivity 

HabiPro, Vizcaino (2001) Shared workspace 
actions, student 
preferences, 
dialog 

Matching group 
interaction 
“patterns”, 
content analysis 

Ideal participation, 
motivation, 
existence of off-
topic 
conversations 

Coach Detection of off-
topic interaction & 
on-line guidance to  
students 

 
Because the systems described here are research prototypes, which tend to focus on a specific research 

question, they should be viewed from the perspective of that question. The collaboration management 
cycle, described at the beginning of this article, is intended to describe a way of understanding the 
capabilities available today for computationally supporting collaborative learning, rather than a way of 
classifying and comparing these systems. Developing a new system to support several different aspects of 
interaction might involve the application of research ideas from different systems, perhaps by way of re-
implementation. 

In this review article, we have attempted to provide an overview of the current technological 
capabilities, with the intention of laying the groundwork for further research that addresses the question of 
which technological solutions are appropriate for which learning situations. We now conclude by 
motivating this further research.  

FUTURE WORK 

The concept of supporting (as opposed to enabling) peer-to-peer interaction in computer-supported 
collaborative learning systems is still in its infancy (Jermann, Soller, & Lesgold, 2004). We have not yet 
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seen full-scale evaluations of the types of systems we have covered here. The evaluations that were 
conducted for many of these systems, if at all, were done so under closely controlled laboratory 
conditions. Laboratory studies are critical for developing an understanding of the various conditions that 
affect learning, and make sense as the first step in the assessment and redesign of the technology. If our 
objective is to assist students and teachers during real, curriculum-based learning activities, we must also 
understand how well our laboratory findings apply to natural classroom situations. This can only be done 
by developing and deploying robust technology in physical and virtual classrooms, and performing large 
scale evaluations. The feedback obtained from such evaluations should enhance the evaluation feedback 
loop in the collaboration management cycle, and further our understanding of which technological 
solutions help students, and which do not. 

More studies are needed that test the utility of various strategies for computationally supporting online 
collaborative learning. It is probable that certain strategies are more beneficial than other strategies under 
various conditions, and for different domains. There is hence an important opportunity for needs analysis 
studies to understand which types of systems (i.e. mirroring, monitoring, or advising) are useful under 
various constraints (i.e. group size and ability, environment, task characteristics, availability of human 
instructors). Then, further analyses of computer-mediated interaction in parallel with a finer-grained 
needs analysis may help to determine which behavioral and pedagogical factors are influenced in what 
ways by the various technological features. Only then may we be in a position to recommend specific 
technologies for fostering established learning activities. 

In some cases, a combination of technologies may be most practical. For example, analyzing visual 
indicators may increase students’ cognitive load; moreover, some students may misinterpret the 
indicators. But, the interaction management skills students learn as they attempt to interpret and act upon 
these indicator values might transfer well to other situations. One possibility is to both display indicator 
values to students, and provide advice based on a deeper computational analysis of the data that was used 
to generate the indicators.  

Many of the approaches presented in this article address effects with technology, rather than effects of 
technology (Kolodner & Guzdial, 1996; Salomon, Perkins & Globerson, 1991). Effects with technology 
refer to the changes in the group dynamics that are triggered by software tools, whereas effects of 
technology refer to the outcome of the collaboration, both for the individual and the collective group. 
These outcomes include the skills that students acquire or improve, and whether or not these skills might 
transfer to a new learning situation or group experience. More research is needed to determine how visual 
feedback through mirroring and metacognitive tools, or advice from guiding systems can lead to learning 
gains. In designing support for the collaborative learning process, we must still not forget to assess the 
product. 

The techniques and systems described throughout this article use different standards for diagnosis. 
How might we develop modular, reusable solutions that would allow researchers to share and reuse tools 
in different CSCL environments? Instead of proposing new data formats and interfaces, would it be 
reasonable to tackle this problem in parallel with current efforts toward introducing collaboration aspects 
in e-learning standards? In the future, we could aim to develop reusable models of collaborative 
processes, based on modular architectures, that can provide the computational, theoretical, and 
pedagogical foundations for guiding tools, while encouraging metacognitive reflection by both teachers 
and students. Such models might even be used in teacher training, to help explain breakdowns in student 
interaction, or the dynamics of productive collaborative learning interaction. 

Knowledge about how students interact in a computer-mediated environment is useful to a system 
only if it knows when and how to apply this knowledge to recognize specific situations that call for 
intervention. Classroom teachers learn to analyze and assess student interaction through close observance 
of group interaction, trial and error, and experience. Developing a system to analyze group conversation, 
however, poses its own challenges. For example, how do we go about calibrating a set of indicators that 
should represent a model of desired interaction, and what learning theories or experimental results allow 
for this calibration? This leads us to the broader issue of how to quantify and translate well-known 
theories from the learning and cognitive sciences into computational models that can be used to diagnose 
student interaction. For example, how might the principle relating elaborated explanations to learning 
gains (Webb, 1992) be quantified as a set of calibrated indicators that can be computed on the fly during 
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computer-mediated interaction?  A “sufficiently elaborated explanation” might be relatively long, and 
refer to several domain concepts, making computer diagnosis difficult. The theoretical and experimental 
foundations for our models must be strengthened, justified, and assessed. Focused research in 
computational modeling of peer interaction in context may help in making the transition from 
understanding how to mediate learning groups to understanding how to train a system assist in mediating 
learning groups more effectively. 
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