
HAL Id: hal-00197374
https://telearn.hal.science/hal-00197374

Submitted on 14 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Framework System for Intelligent Support in Open
Distributed Learning Environments

Martin Muehlenbrock, Frank Tewissen, Ulrich Hoppe

To cite this version:
Martin Muehlenbrock, Frank Tewissen, Ulrich Hoppe. A Framework System for Intelligent Support in
Open Distributed Learning Environments. International Journal of Artificial Intelligence in Education,
1998, 9, pp.256-274. �hal-00197374�

https://telearn.hal.science/hal-00197374
https://hal.archives-ouvertes.fr

International Journal of Artificial Intelligence in Education (1998), 9, 256-274

256

A Framework System for Intelligent Support in Open
Distributed Learning Environments

M. Mühlenbrock, F. Tewissen, H.U. Hoppe, University of Duisburg, COLLIDE Research
Group, Dept. of Math./Computer Science, 47048 Duisburg, Germany

Abstract. Recent trends in the design of learning support systems are characterized by
considering group interaction, by combining intelligent support with interactive learning
environments, by providing reusable domain-independent components, and by using agent-
structured architectures. Taking these trends into account, an open framework system has been
developed for integrating distributed intelligent support components with an interactive and
collaborative learning environment. Work in shared activity spaces with synchronized objects is
facilitated by a specific user interface library and communication server. A modular architecture
allows for flexibly plugging in intelligent components, e.g. for knowledge assessment and
diagnosis, individual feedback, multiple student modeling, or simulated students as a partner.
The intelligent subsystem is organized as a cluster of student modeling agents and is inspectable
through a WWW interface. Our approach is exemplified by several applications, one providing
individual feedback for physics exercises, a second one supporting the teacher in supervising a
group of students in a math class, and, thirdly, a generic tool based on card networks for diverse
domains.

INTRODUCTION

Over the last couple of years we have experienced a paradigm shift in innovative learning
support systems. AI in education is particularly confronted with (and must react to) the
following new trends:

• consideration of group interaction, i.e. design for multi-user learning environments,

• combination of intelligent learning support with interactive learning environments,

• provision of intelligent components or plug-in modules rather than all-embracing
systems based on specific AI frameworks

• use of the multi-agent paradigm for the system architecture.

We feel that the first three trends designate a sort of realistic turn that reflects a more
general tendency towards combining AI-based systems with standard software tools and
architectures. The multi-agent paradigm is of more conceptual nature. It has certainly introduced
new ways of thinking and speaking about systems and particularly about architectures.
However, it needs to be further substantiated, at least in our field, in terms of bringing forth new
types of systems. In this paper, we describe the concept and the current version of a general
framework system that fits in with these trends. Our approach is consistent with current efforts
to develop ‘‘architectures and methods for designing cost-effective and reusable ITS’’ (Suthers
1996).

In our understanding, the term open distributed learning environment (ODLE) is a suitable
common denominator for the new orientation of educational systems. It integrates the ideas of
interactive learning environments and of collaborative learning, cf. Dillenbourg, Baker, Blaye &
O’Malley (1995), supported by distributed computing and communication facilities, as well as
the idea of openness in terms of using standards and modular plug-in architectures. The specific
theme of this paper is the development of a system platform that is suited for integrating
intelligent support modules as agents within a general ODLE framework.

A Framework System for Intelligent Support in Open Distributed Learning Environments

257

Concerning the role of AI-based components, we start from the premise that there is rich
body of existing AI technology for educational use that, rather than becoming obsolete through
the adoption of new paradigms, may be used much more practically as modules inside new
ODLEs. This is particularly true for diagnostic algorithms and student modeling techniques that
may serve as analytic background mechanisms to assist teachers, human tutors, and students.

Our practical experience with ODLEs is centered around two different scenarios: (1) the
computer-integrated classroom (CIC) with a large interactive display and with student
computers integrated in a primarily local network (see figure 1), and (2) the facilitation of peer
help and tutoring on demand in a virtual group of networked learners. Multiple student modeling
(Hoppe 1995), defined as an extension of standard methods for individual modeling, can be
used as a support module in scenario (2). In the first scenario, support can be given as individual
feedback to students or groups working on exercises, but also to the teacher in the form of an
intelligent aid for supervising and organizing the learning group. Our framework system
provides a uniform platform for both kinds of applications.

Figure 1. CiC environment

COMMUNICATION AND COOPERATION MECHANISMS

In both of the mentioned ODLE scenarios, there is communication between humans (either
natural or technically mediated), between humans and the system, and internal system
communication. In the CIC, natural communication is both possible and useful and should only
be supported and enriched by technical means. In the virtual scenario (2), any human-human
communication is necessarily technically mediated. Technically mediated human-human

Mühlenbrock, Tewissen & Hoppe

258

communication has two aspects: telepresence and joint actions on shared objects or shared
workspaces. In our current system environment, telepresence is provided by separate tools
(ISDN or LAN video-conferencing systems), but shared workspace operations as well as
internal system communication are facilitated by the architecture in a uniform way.

We believe that shared activity spaces are an important element of collaborative learning
environments (Plötzner, Hoppe, Fehse, Nolte & Tewissen 1996). By co-operating
simultaneously or by following adequate turn-taking rules, individual contributions are
objectivated and externalized in persistent form as compared to the volatile nature of spoken
language communications. The material used by students can also be of abstract, symbolic
nature (e.g. formulae or abstract diagrams). The epistemological foundations and implications of
communication and cooperation through shared actions are of general interest for theories of
collaborative learning. In this paper, we will only discuss technical prerequisites for further
work in this direction.

All our ODLE applications (cf. section 5 and 6 for examples) comprise an environment or
microworld with more or less rich interaction that can be used in both shared and single-user
mode. Sharing is technically facilitated by a general mechanism of coupling or synchronizing
user interface (UI) objects. This UI coupling service is supported by one of two central
communication servers, the MATCHMAKER server (see item (3) in figure 1). It allows user
interfaces to share information and synchronize actions on UI objects, and it also supports
remote procedure calls for internal communication. The object-wise coupling method is very
flexible in that it allows for dynamic coupling between objects with potentially different
presentation types. The application programmer does not deal with the lower levels of the
communication protocols, and the communication through the provided high level message
primitives only needs a small network bandwidth. This UI part of an application, including the
interactive environment and the coupling mechanism, is self-contained and functional without
intelligent support. Both this communication mechanism as well as the multi-agent architecture
for intelligent support (to be described in section 4) make use of the standard TCP/IP protocol
and provide abstracted programming interfaces.

The communication model and the principle of communication with and through coupled
UI objects are originally defined in Zhao & Hoppe(1994). The communication facilities are
built into a UI library of object types and functions called MATCHMAKER, which is currently
implemented as a C++ library. Additional programming for enabling the coupling of UI objects
is not necessary. Every MATCHMAKER-based user interface exists as an autonomous
application in a replicated architecture. This communication design gives the application
programmer a clear conceptual model of the mechanism of object coupling; if two or more UI
objects are coupled, all events reaching one of these objects are broadcasted to all the other
objects. For instance, pressing a coupled button in one user interface produces the same effect as
pressing decoupled buttons in every user interface.

Table 1 shows a list of all communication-related MATCHMAKER methods. The methods
are separated into three groups. The first group covers the methods related to coupling. These
methods initialize the coupling of UI objects or of children objects, dispose the UI object
coupling and distribute messages via the MATCHMAKER server that keeps track of every
change of the coupling-database. The second group comprises three ways of executing remote
procedure calls: Calling the callback-methods of a named object, calling a named method
directly and providing an interface for communicating with external (non-MATCHMAKER)
processes (e.g. to provide access to the DALIS server and support agents, see item (2) in figure
1). Group 3 deals with services provided by the server: access to the property-databases of the
applications and a few general services (e.g. generating unique identifiers). The most interesting
method might be the method MmCouple. Once the objects have a symbolic name they can
simply be coupled with this method. The initialization, synchronization and the life-cycle
handling of coupled objects are facilitated by the central server and the underlying local
MATCHMAKER functionality.

A Framework System for Intelligent Support in Open Distributed Learning Environments

259

Table 1: MATCHMAKER Communication Primitives1

 Method Arguments Description

MmCouple host1,
app1,
obj1,
host2,
app2,
obj2

Couple object //host1/app1/obj1 with
object //host2/app2/obj2, obj1 initially
overwrites state of obj2. Both objects may be
local or remote.

MmCoupleChildren obj1,
host, app,
obj2

Couple all child objects of the local parent
obj1 with children of parent
//host/app/obj2.

MmDecouple host, app,
obj

Decouples object //host/app/obj.

MmCreateCallback obj, msg,
fmt, data

Creates a callback message with the arguments
msg, fmt and data on object obj and
distributes it to all objects coupled with obj.

MmSendFunctionMessage host, app,
fnc, msg,
fmt, data

Executes a remote procedure call on the
function //host/app/fnc with the
arguments msg, fmt and data.

MmSendObjectMessage host, app,
obj, msg,
fmt, data

Executes a remote procedure call on all
callback functions of object
//host/app/obj with the arguments msg,
fmt and data.

MmSendSocketMessage host,
port, fnc,
msg, data

Sends the byte stream message data to
//host:port. Results are send back to
function fnc labeled as msg.

MmServerService srv, fnc,
fmt, data

Requests a common server service srv with
the arguments fmt and data. Results are send
back to function fnc.

MmSetAppProperty prop, val Sets an application property prop with the
value val for the local application in the
server’s database.

MmGetAppProperty host, app,
prop

Gets the value of the application property
//host/app/prop from the server’s
database.

STUDENT MODELING

The online analysis of group interactions aiming at assessing and updating individual learner
models of the group members appears to be currently intractable for unrestricted interaction,
including (spoken) natural language or even non-verbal communication. Even if the group
interaction leads to concrete actions and state changes in shared workspace environments, it is
often not evident how to assign individual credits for concrete achievements or failures.
Following a recent suggestion by Paiva (1997), this difficulty can be avoided by treating the
entire group as a subject of the modelling process according to the principle that the group is
more than the sum of its parts. In the approach of Paiva (1997), the group model should be built
upon actions and beliefs on which the group members have agreed. However, with unrestricted
interaction, the tractability problem is now shifted towards defining operational criteria for
agreement. Also, it is not clear how to initialize the group model when the collaborative
learning session starts after a phase of individual work.

1 The URL syntax //a/b/c[.d]* is used to mark an entity that is registered with the

symbolic name c[.d]* in application b that is running on host c.

Mühlenbrock, Tewissen & Hoppe

260

We believe that the general problem of analyzing rich group interactions will be an issue of
research for the next years to come, and it may even turn out that certain aspects of the problem
are indeed intractable. To avoid the complexity of analyzing realistic group interactions, we
suggest to start with using individually assessed student models to parameterize group learning
situations (Hoppe 1995). To make this more modest approach widely applicable, it is desirable
that the extrapolation of individual student models not be dependent on a special modelling
technique. So, we depart from general information that is essentially provided by any type of
student model. Accordingly, we do not make specific assumptions about the actual assessment
of the model, i.e., about the diagnostic procedure.

Though learner modeling for groups of learners introduces a new type of complexity, the
availability of human support, such as peer-to-peer cooperation, can also help to avoid existing
problems in generating adequate, personally meaningful feedback to learners. Generally
speaking, intelligent subsystems may support the tasks of knowledge assessment and error
diagnosis, whereas the actual tutoring may be left to human-human interaction, be it direct or
technically mediated. While in the presence of a teacher or human tutor, individual problem
solving phases (exercises) are typically only monitored and analyzed locally and feedback is
given directly to the teacher, unmonitored situations require an integration of the multiple
student models to infer the adequateness of cooperation between certain individuals.

A general conceptual and formal framework for student model integration is introduced in
Hoppe (1995) under the notion of multiple student modeling. The general premise is that
individually assessed learner models can be used to support the configuration or
parameterization of collaborative learning settings. These are prototypical cases:

• Given a number of students working on comparable problems in an open learning
network, find pairs of students that could potentially benefit from cooperation in a joint
session. The selection can be based on such criteria as complementarity or
competitiveness.

• Given a group of students, select or generate a problem that forms an adequate
challenge for the group as a whole. The problem should not be solvable by one student's
knowledge alone, but rather through the union of all the students' individual knowledge
bases. In this case, the challenge for the group consists in knowledge exchange and
integration.

Selection criteria for these prototypical cases can be formulated on the basis of general
modeling primitives such as knows(Student,Topic) or has_difficulty(Student,Topic), which can be
inferred from different standard types of student models. A simple case of knowledge
integration is exemplified by the rule

can_help(Student1,Student2,Topic) <--

knows(Student1,Topic) &

has_difficulty(Student2,Topic).

This rule is actually used in a peer helper scenario. Accordingly, the architecture of the
intelligent subsystem must allow for combining elements from different individual student
models. In the original example, individual diagnosis did not require backtracking and modeling
was cumulative for all learners at a time. However, diagnosis with backtracking and user
interaction needs a more flexible, parallel or multi-threaded architecture. Such an architecture
will be introduced in the next section.

Individual tutoring ideally takes place in a closed loop in which every utterance or action of
the tutee is interpreted and can lead, if considered useful by the system, to specific feedback.
This is practically not feasible with rich group interactions. Thus, in intelligently supported
group learning we do not expect to have a closed feedback loop but an open system that
evaluates and intervenes only under certain specific conditions. This general framework is
visualized in Figure 2.

A Framework System for Intelligent Support in Open Distributed Learning Environments

261

Figure 2. Open framework for student modeling, from Hoppe (1995)

Open-loop learning with a learning support system is indeed not only specific to group
situations. It is also typical for free individual exploration in interactive learning environments
(ILE) or microworlds. Here, the role of the environments consists in providing a rich activity
space that rather implicitly than explicitly creates opportunities for learning. However, if given
a limited, partial function in evaluating and supporting the learning process, student modeling
can also play a role in ILE (Self 1994). Phases of more or less free or unguided exploration may
e.g. be followed by exercises with closed-loop feedback.

There is a wide range of different support functions that can be implemented in such a
modeling framework:

• intelligently mediated peer help
Here, the individually assessed learner models are used to match pairs of learners that
should maximally benefit from each other when working together. The prediction can
be based on different criteria such as complementarity of skills/knowledge or
competition. A first implementation of this principle has been reported in Hoppe,
Baloian, Schupp & Zhao (1995). Massive practical applications of a similar type have
recently been described by McCalla, Greer, Kumar, Meagher, Collins, Tkatch &
Parkinson (1997).

• intelligently mediated expert tutoring
Formally, this case can be considered as a specialization and simplification of matching
peer learners, since only one of the models (the learner’s) has to be dynamically
assessed, whereas the tutors’ profiles may be predefined.

• teacher/tutor support for supervising individual exercises
Essentially a decision support function for the teacher. To achieve this it is sufficient to
aggregate the individual learner models in a form that allows for filtering out specific
features, e.g. frequent problems. The support mechanism can also actively inform the
teacher if adequate.

• group formation around given problems
This is a generalization of mediating peer help in that the number of group members is
not restricted to two. Also the problem requirements must be analytically specified.

• selection of adequate problems for a given group
A problem is e.g. selected or generated in such a way that it could serve as a challenge
to the group as a whole but should still be feasible if the group were able to combine
individual strengths.

Mühlenbrock, Tewissen & Hoppe

262

INTELLIGENT SUPPORT

User and group assistance in ODLEs call for a simple yet powerful mechanism to extend the
user interfaces with intelligent components, thereby reacting to the needs of the various learning
and collaboration modes in a flexible and scalable manner. The development of the intelligent
support system is based on the following goals:

• a simple plug-in connection to any ODLE as described in section 2,

• compatibility with a wide range of standard user modeling techniques with no
assumptions about the specific nature of the model, and

• design for collaborative, multi-user environments.

Above all, these underlying assumptions speak for a flexible, parallel or multi-threaded
support component, since multiple user requests for advice and collaboration have to be
processed concurrently.

It has been argued that for ITS to achieve more general and reusable learner models,
learner modeling systems have to be decoupled from the other software parts, and considered as
a kind of software agent (Paiva 1996). In our approach, we have adopted the notion of a
software agent in a broad sense; i.e. that some entity is an agent if it communicates correctly in a
specified communication language and if it is constrained by behavioral principles such as
autonomy and independence (Genesereth, Singh & Syed 1994). This is comparable to the
KQML approach (Finin, Fritzson, McKay & McEntire 1994; Finin, Labrou, Mayfield 1997)
and its incorporation in learner modeling systems such as e.g. the system GIA by Cheikes
(1994). However, the goal is not to build another general multi agent system, but to provide a
framework system that is particularly suited for flexibly plugging support agents into existing
ODLEs. This approach is eased by the open structure of ODLEs which helps to avoid many of
the difficulties that Ritter & Koedinger (1996) had to tackle in their approach of plugging-in
tutoring agents into rather closed pre-existing programs.

The intelligent support system DALIS (Distributed Architecture for Learning with
Intelligent Support) is centered around a message server (see item (2) in figure 1) that provides
anonymous interaction between agents on the basis of a specific communication protocol. The
agents relinquish part of their autonomy to the DALIS server, which therefore allows for a
uniform user interface and agent administration. This corresponds to a federated system headed
by a facilitator (Genesereth 1997). A difference is that the DALIS server also facilitates entities
outside the federation architecture, i.e. the user interfaces, in order to comply with the first
design goal (see above).

Figure 3: Sample configuration of the framework system based on the MATCHMAKER and
DALIS servers

A Framework System for Intelligent Support in Open Distributed Learning Environments

263

Figure 3 shows on its left a sample configuration of a MATCHMAKER centered ODLE
with some user interfaces and a teacher interface as described in section 2. In the figure, the
ODLE has been extended by the DALIS agent environment for individual and group support
(see figure 3). Its architecture is based on the design principle of mirroring the topology and
interactivity of the real learning group by a Prolog-based monitoring system composed of
individual agents. The agents have in common a standardized communication interface to the
DALIS server. The entire Prolog functionality including backtracking can be accessed through
this interface. By using this general mechanism, it is quite simple to add arbitrary Prolog
programs as new agents to the environment.

In order to extend an ODLE by components for individual and group support, the user
interfaces first have to register with the DALIS server (facilitator) by way of the
MATCHMAKER server. The user interfaces send information about their specific types and their
languages to the DALIS server. For each newly registered application, the DALIS server invokes
a pre-specified set of support agents, which again register with the server in the same way as the
user interfaces. Some support agents are only invoked once and their services are shared among
other agents and user applications. A typical example for a shared agent is the group monitoring
agent in a learning environment or an artificial player for a game-like application. There are also
some additional shared monitoring agents for system maintenance and WWW interfacing,
which will be described below.

Table 2: DALIS communication and specification primitives

 Functor Arguments Description
init AgentType

AgentLanguage
Initialization message used by a user interface or
support agent to register with the DALIS server; the
server builds communication clusters based on the
invoke and share specifications (see below)

inform AgentMessage message send to user interfaces or support agents

do AgentMessage query message send to agents; allows for
backtracking on query (see below)

redo AgentMessage triggers backtracking on message

fail failure an evaluating previous message; no results
given or no more backtracking possible

invoke AgentType1
AgentType2

Registration of a user interface or support agent
with type AgentType1 triggers the invocation of a
support agent with type AgentType2 by the DALIS
server; the agent with type AgentType2 is grouped
in the cluster of the agent with type AgentType1

share AgentType1
AgentType2
AgentTypeShared

user interfaces or support agents with types
AgentType1 and AgentType2 share agents with type
AgentTypeShared; the latter are only invoked once
for newly registered agents with types AgentType1
and AgentType2

The communication between agents is based on a small set of message primitives. The user

interfaces and the agents register with the DALIS server by the primitive init to inform the server
about their types and languages (see table 2). The agents’ types determine the invocation of
other agents and sharing of agent services. The automatic invocation and sharing of agents can
be pre-specified with the DALIS server by the primitives invoke and share, respectively. Based
on this specification, the user interfaces and their corresponding agents are grouped in
communication clusters, in order to prevent interference of messages from agents or interfaces
of the same types. However, multi cluster membership is possible for shared agents. The

Mühlenbrock, Tewissen & Hoppe

264

language information that an agent sends with its registration provides an implicit addressing
scheme by determining the dispatching of messages by the server to the connected agents within
a cluster.

Queries are initiated by the primitive do, and redo resumes backtracking on the previous
query. Messages labeled with the primitive inform are similar to do-messages, but do not give
the possibility of backtracking. If a query fails or no more backtracking is possible, the agent
will send back the fail primitive. These communication primitives are comparable to a subset of
the KQML agent communication language. They correspond to the performatives register,
generate (short for standby with content stream-all), inform, next, and sorry in KQML. Figure 4
shows a sample message flow between user interfaces, servers, and agents during a process of
agent invocation and interaction. In this example, the registration of UserInterface1 leads to the
invocation of UserModel1 and GroupModel, and the latter two placed in the communication
cluster of UserInterface1. The agent GroupModel would be shared with further user interfaces and
user models.

Figure 4: Message flow between user interfaces, servers, and agents

The modeling system is also combined with some standard tools: As the most prominent
feature, dynamically updated HTML files are used as a means for inspecting the flow of
information between the user interfaces and support agents that have registered with the DALIS
server. This is particularly useful on a heterogeneous system platform with no common file
system shared by the two components but only a TCP/IP-based Internet connection.2 In
combination with a standard WWW sever, the information generated can be easily accessed
from each system platform. The HTML component generates an overview of the currently
registered agents and user interfaces (see figure 5), and for each of these components there is an
additional linked page that shows received and sent messages (see figure 6, which includes part
of the sample communication outlined in figure 4 from the point of view of a user model, with
the latest messages on top of the list). Though it is currently used for system testing and
development, it is a potential platform also for educationally oriented supervision tasks and for
the transcription and monitoring of experiments.

2 In our environment, the user interfaces (for teacher and students) run on Windows PCs, whereas the
modeling subsystem runs on SUN workstations or PCs.

A Framework System for Intelligent Support in Open Distributed Learning Environments

265

Figure 5: Server connections

Mühlenbrock, Tewissen & Hoppe

266

 Figure 6: Client communication

DOMAIN-SPECIFIC APPLICATIONS

On the basis of the MATCHMAKER and DALIS framework system, several prototypical
applications have been developed, e.g. in the domains of high school mechanics (CardMan) and
symbolic differentiation (SuperDeriv). The applications differ along the following lines: On the
one hand, whether they provide domain-dependent user interfaces or employ a more generic
interface that can be instantiated for a range of domains. On the other hand, whether the
intelligent support component is realized as a coaching system or as a computer partner such as

A Framework System for Intelligent Support in Open Distributed Learning Environments

267

e.g. an artificial game player. The early systems CardMan and SuperDeriv come with domain-
dependent user interfaces and coach the student in solving exercises.

In the shared workspace environment of CardMan (Tewissen 1996) for the domain of high
school mechanics, all terms and operators, but also diagrams and other graphical material, are
uniformly represented as ‘‘cards’’. The notion of a card has been derived from a psychological
study with real paper material (Plötzner et al. 1996). With these cards, the students can arrange
card nets of their solutions within their private workspaces. They can also cooperate with each
other in shared workspaces. Once a problem or a question arises, the students can help each
other or they are supported by the system through locating likely mistakes or referencing
relevant course material. This application for high school mechanics served as a basis for the
development of a more domain-independent application framework that will be described in the
following two sections.

Whereas CardMan provides individual feedback and context-sensitive suggestions on
demand, the application SuperDeriv (Supervisor for Derivations) additionally uses individual
error analyses to support the teacher in supervising a group of students working on exercises
(Mühlenbrock, Tewissen & Hoppe 1997). In this application, the communication architecture
has been employed for providing intelligent support not only for individuals but also on the
group level. The diagnostic procedure follows a reconstructive approach, namely deductive
diagnosis (Hoppe 1994). Given a correct and complete domain theory, in this case symbolic
differentiation, an incorrect student solution is indicated by an unprovable goal in the process of
reconstructing a correct solution using a fail-safe meta interpreter. In the course of backtracking
on different sets of error conditions, the algorithm determines structural conditions of erroneous
examples. In the context of group learning, the individual student models are accumulated and
integrated to derive a model of group problem solving that initiates and supports remedial
activities.

Figure 7: SuperDeriv teacher interface

Since the derivation tutor has been implemented in Prolog, it was easy to integrate the tutor
into the DALIS architecture. Here, the backtracking facility of the architecture (cf. section 4)
plays an important role for the generation and testing of error hypotheses. For each student, an

Mühlenbrock, Tewissen & Hoppe

268

agent is automatically invoked which keeps track of the student model and is connected to a
group monitor that integrates the individual student models. Figure 7 shows the components of
the teacher interface: the exercise window prepared for coupling with an equally structured
student interface, and a tentative version of a teacher assistant, which shows the output of the
group monitoring agent. It allows for inspecting a student's current status concerning his
knowledge and difficulties, for arranging groups on selected topics and for suggesting a
appropriate peer helper for a student with difficulties.

GENERIC APPLICATION FRAMEWORK

The two applications mentioned in the previous section are domain-dependent to a considerable
degree. Reusing these applications in domains other than high school mechanics and symbolic
differentiation would require quite a bit of re-implementation, mostly on the part of the user
interfaces. In order to overcome this limitation, the CardMan application has been generalized
to a generic ``card board'' user interface (Gassner, Tewissen, Mühlenbrock, Loesch & Hoppe
1998).

The main features of the application CardBoard are cards, which generally speaking are
containers for textual or graphical material, and workspaces with networks of cards. There are
two kinds of cards, namely content and connector cards. Only connector cards can establish
links to other cards. A link may be labeled and can be formed to any other card within the same
workspace. Certain restrictions on cards concerning their default content and the number and
labels of links of connector cards can be specified in separate configuration files. These are
consulted at runtime. This specification is the only domain dependent part of a user interface
and the separation of user interface and card specification allows for an easy adaptation to
different domains.

A single CardBoard can contain several workspaces, and cards can be freely moved and
copied between workspaces by drag and drop operations. Workspaces can be shared with other
users by the synchronization mechanism of the MATCHMAKER server(cf. section 2). As graph-
based representations have clear advantages in representing structural, logical or temporal
dependencies in many formal and semi-formal domains, a special component CardDalis has
been developed for the provision of operational semantics for card nets.

For the generic application framework CardBoard and CardDalis, we have developed a
specific communication protocol to define messages on the creation, deletion, and modification
of applications, workspaces, cards, and links. Every user action is reported in terms of this
communication language to every coupled application and to the CardDalis agent. The
CardDalis component keeps track of the changes in the workspaces and reconstructs a model of
the workspaces and their contents. The agents can equally initiate modifications of workspaces
by the same set of message primitives. In this way, the support component can communicate
with users in the same way as users communicate with each other in shared workspaces, i.e., by
creating or deleting cards or modifying card nets. The benefit from a systems engineering point
of view is that additional functions to the support component can be integrated into the user
interface not by re-designing the interface but by extending the corresponding card
specification.

Operational semantics for card nets is provided by integrating appropriate interpreters in
CardDalis and defining a translation between the descriptive representation of the card nets and
the representational structures of the particular interpreter. A set of topological and graph-based
abstractions for workspaces is already defined. In the sample application in figure 8, the cards
are specified in such a way that they allow for simple deductive queries over a relational
knowledge base. There are content cards for constants and variables and connector cards for
relations and logical combination of relations (unit clauses). Here, the task is to create a
relational model of some domain (e.g. family relationships) and to verify the model by posing
queries against relations previously defined. In this case, the underlying semantics is simply the
standard Prolog interpretation. However, any other interpreter that is implemented in Prolog can
be incorporated in the framework system. For instance, the arithmetic interpretation within

A Framework System for Intelligent Support in Open Distributed Learning Environments

269

SuperDeriv (cf. figure 7) can be integrated in the same way, as will be described in the next
section.

Figure 8: CardBoard interface for family relationships

To initiate and request context-dependent support functions, a small set of request card
such as a question and an exclamation card are given. Primarily, they are defined for human-
computer communication, but they can also be used for human-human communication. They
obtain their meaning through the context of the workspace and the cards they have been placed
on. For instance in the example shown in figure 8, placing a question card on a connector card
will be interpreted as a query to the current database. In the game-like application in figure 9,
the question cards are used to ask the computer player to add one of its individual turtle cards to
the puzzle in the central workspace. This application has been developed to introduce students
to the principles of collaboration in shared workspaces. The set of cards with turtle symbols is
split up among the participating players. In case there are not enough players, CardDalis takes
over the role of an artificial player with the left over cards. The task is to collaboratively join the
cards to form a coherent picture of turtles with matching colors and shapes. The request to the
artificial player is based on an inferred adjacency relation between cards. After a request to the
artificial player, the question card is deleted. Since there is only a limited number of question
cards available for each player, the players have to carefully think about where and when they
should use their question cards.

Mühlenbrock, Tewissen & Hoppe

270

Figure 9: User interfaces for the turtle puzzle

USING THE SYSTEM

Generally, the ODLE framework system is designed for diverse settings, such as settings for
primary schools and for continuing education, and for business settings, etc. However, a specific
application of the framework system has to take the needs of a certain setting into account. In
this section, we will exemplify a scenario of how the framework could be applied in a course of
high school mechanics. This example is based on existing system components. During the
sequence of interactions with the system, different features of the framework system will be
used.

Figure 10 shows a snapshot of a some workspaces that developed from a given exercise (1)
to the derivation tree created by a student (2). The Query Result workspace (3) presents the
automatically generated feedback, and the fourth workspace (4) contains a dialogue with a
human tutor.

A Framework System for Intelligent Support in Open Distributed Learning Environments

271

Figure 10: Scenario of a task solution in high school mechanics

1. Presentation of the task (workspace at the top left in figure 10)

The task for the student here is to determine the acceleration function of a harmonic
oscillator. The s-t-relation of the movement of a harmonic oscillator (an ideal spring) is
given.3 The content of this workspace initially has been loaded from a workspace repository
of tasks in mechanics. The student has to calculate the a-t-relation, that is the time-
dependent acceleration of the small ball attached to the end of the spring.4

2. Constructing derivatives (workspace at the bottom left)

The crucial point in solving the task is to build the first and second derivative of the
function s(t). The general idea is to support the derivation task by a card net representation
of the term structure. This representation helps to illustrate the operations involved and to
reference the source of possible mistakes.

The tree representation of the initial function sin(w*t) would be generated from a textual
representation by the system on demand. The student then constructs the derivatives by drag
and drop manipulations on cards. Eventually, dropping a question card on one of the
derivation symbols (see figure 10) would initiate the analysis of the respective part of the
card net by the system.

3. Solution analysis (workspace Query Result at the top right)

3 w stands for .The argument of sin is �

I
W.

4 A correct solution plan would be:

)).t.wsin(.()t(s
dt

d
)t(a);t.cos(.)t(s

dt

d
)t(v);t.sin()t(s −===== 2

2

2

ϖϖϖϖ

Mühlenbrock, Tewissen & Hoppe

272

The analysis is carried out by the same student modelling mechanism as in the SuperDeriv
application (cf. section 5). The component has been reused here by ``plugging'' it into a
different user interface. The diagnosing agent finds a possible mistake in a sub-derivative.5

For this reason, the agent generates the Query Result workspace and illustrates the mistake
by giving a partial tree in the card representation.

Alternatively, when using an exclamation card instead of the question card, the agent would
manipulate the student's card net to correct the mistake.

4. Getting further help (Shared Workspace at the bottom right)

In this Shared Workspace the student discusses his/her mistake with a human tutor by using
arithmetic and request cards. This is done by dragging existing cards from other workspaces
(including the Query Result workspace) to the shared workspace.

The tutor has access to the recent flow of information between the student and the support
agent and has therefore the knowledge about the specific problem. In this example, the
student argues that his solution fulfills the premise that a derivative has to have a zero value,
where the function has an extreme value.6

The tutor now proposes the student to look at the gradient of the sin function at 0.3. The
function falls, the gradient is negative and therefore the derivative must be negative, too.
The tutor finally points out the minus sign of the sin function to the student and provides the
correct sub-solution.

The four workspaces in this example differ in terms of the pre-defined card sets and in the
system support that is given. These workspace properties are summarized in table 3.

Table 3: Properties of workspaces in mechanics example

 Workspace Initiated
Content
created

Synchro-
nized

Card set System support

1 (top left) by user

from file no text, image
and
arithmetic
cards

none

2 (bottom left) by user

by user
and agent

no Arithmetic
and query
cards

solution
analysis,
correcting
solution

3 (top right) by agent

by agent no text, image
and
arithmetic
cards

illustration of
possible
mistake

4 (bottom right) by user

by user
and tutor

yes text,
arithmetic
and query
cards

none

5 It is a common mistake to derive sin from

)).xsin()xcos(
dx

d
cos(≠ The correct derivative would be (-sin).

6 f)s(f
dt

d ≡= 0 has a local extremum at x.

A Framework System for Intelligent Support in Open Distributed Learning Environments

273

CONCLUSION

Our experience with the described approach is very encouraging. The new architecture makes
the distributed interactive learning environment completely independent of the monitoring and
modeling system. Yet, intelligent support can easily be added by connecting the DALIS server
to the MATCHMAKER server, given the availability of adequate definitions for monitoring and
modeling agents as separate knowledge bases. From an engineering point of view, the provision
of individual and group support is facilitated as compared to an implementation ‘‘from scratch’’,
since the architecture provides a high level interface for the flow of information between the
interactive applications and the modeling system both in terms of data formats and flexible
control mechanisms.

The period of work reflected in this paper was mainly dedicated to implementing a new
flexible and powerful framework system as a platform for the development of intelligently
supported ODLE. This work was inspired by a rich body of previous experience in both
modeling and the construction of interactive, distributed educational applications. Moreover, the
usability of the framework system has been indicated by a number of sample applications as
presented in this paper. For the future, we expect innovative types of CSCL applications, mainly
characterized by the flexible ‘‘symbiotic’’ interaction between human and artificial agents to
emerge from this framework.

Originally, it has been foreseen to port the C++ version of the MATCHMAKER toolbox
from the Win32 platform to other platforms (especially to X/OSF Motif). With the appearance
of Java, a programming language that provides robust object oriented programming based on a
rich set of standard classes, system independent user interface design and high level inter-
process communication handling (RMI, CORBA), this plan has been changed in favor of a
enhanced rebuild of the MATCHMAKER toolbox in Java (JMM). JMM will provide coupling
facilities for existing Java applications and a very dynamic way of evaluating remote function
calls in distributed processes (RMI, REFLECTION). First prototypical applications have
already been implemented on the basis of JMM (which is currently in a beta-status).

The further development of the agent framework is characterized by two opposing forces,
i.e. the need for concurrent and distributed processing versus the goal of integration and
abstraction of user data and the handling of system complexity. It seems that the tradeoff
between those positions depends, to a certain degree, on the specific applications. The domain-
specific applications mentioned in this paper have been build on the basis of the distributed
DALIS framework, whereas the domain-independent framework on the basis of CardDalis is
currently established as a single-agent system.

Ongoing work is dedicated to the provision of mainly domain-independent components for
the monitoring and support of group interactions. Of course, the DALIS agent system can be
simplified in such a way as to ignoring the ‘‘authorship’’ of individual contributions in a group
setting with synchronized user interfaces. In this indiscriminate view, the whole group is treated
as a single user. The same mechanisms that monitor the behavior of individual users can then be
used to evaluate the success of the group formation. Closing the ‘‘open loop’’ in such a way, the
same feedback as for single users will also be provided by the system for groups.

However, the situation gets much more complicated when differentiating between
individual contributions in a shared, i.e., synchronized workspace, since it is hard to determine
by the system if all users would agree on individual contributions and if all group members have
a share understanding of the issues involved. Concerning group supervision and support, this
goal is expected to be achieved in rather problem solving oriented tasks. Furthermore,
remediation in group settings has to be based on a well-balanced initiative between the system,
the users and the tutor.

References

Cheikes, B. A. 1994, GIA: An agent based architecture for intelligent tutoring system, In
Proceedings of the Third International Conference on Information and Knowledge
Management, Galthersburg, Maryland.

Mühlenbrock, Tewissen & Hoppe

274

Dillenbourg, P., Baker, M., Blaye, A. O'Malley, C. 1995, The evolution of research on
collaborative learning, In P. Reimann H. Spada (eds.), Learning in Humans and Machines:
Towards an Interdisciplinary Learning Science (189-211), Oxford: Elsevier.

Finin, T., Fritzson, R., McKay, D. McEntire, R. 1994, KQML as an agent communication
language. In Proceedings of the Third International Conference on Information and
Knowledge Management, Galthersburg, Maryland.

Finin, T., Labrou, Y. Mayfield, J. 1997, KQML as an agent communication language, In J. M.
Bradshaw (Ed), Software Agents (291-316), Menlo Park, California: AAAI Press/MIT
Press.

Gassner, K., Tewissen, F., Mühlenbrock, M., Loesch, A. Hoppe, H. U. 1998, Intelligently
supported collaborative learning environments based on visual languages: A generic
approach, In Proceedings of the Third International Conference on the Design of
Cooperative Systems COOP-98, Cannes, France.

Genesereth, M. R. 1997, An agent-based framework for interoperability, In J. M. Bradshaw
(Ed), Software Agents (317-345), Menlo Park, California: AAAI Press/MIT Press.

Genesereth, M. R., Singh, N. P. Syed, M. A. 1994, A distributed and anonymous knowledge
sharing approach to software interoperation, In Proceedings of the CIKM Workshop on
Intelligent Information Agents, Galthersburg, Maryland.

Hoppe, H. U. 1994, Deductive error diagnosis and inductive error generalization for intelligent
tutoring systems, Journal of AI in Education, 5(1), 27-49.

Hoppe, H. U. 1995, The use of multiple student modeling to parameterize group learning, In J.
Greer (Ed), Proceedings of AI-ED 95, Washington D.C., USA.

Hoppe, H. U., Baloian, N., Schupp, M. Zhao, J. 1995, Eine Architektur für die Unterstützung
von unmoderierten Gruppen-Lernprozessen (An architecture for supporting unmoderated
group learning processes), In E. Schoop, R. Witt U. Glowalla (Eds), Hypermedia in der
Aus- und Weiterbildung (55-64), Universitätsverlag Konstanz.

McCalla, G. I., Greer, J. E., Kumar, V. S., Meagher, P., Collins, J. A., Tkatch, R. Parkinson, B.
1997, A peer help system for workplace training, In B. du Boulay R. Mizoguchi (Eds),
Artificial Intelligence in Education: Knowledge and Media in Learning Systems (183-190),
Kobe, Japan: IOS Press.

Mühlenbrock, M., Tewissen, F. Hoppe, H. U. 1997, A framework system for intelligent support
in open distributed learning environments, In B. du Boulay R. Mizoguchi (Eds), Artificial
Intelligence in Education: Knowledge and Media in Learning Systems (191-198), Kobe,
Japan: IOS Press.

Paiva, A. 1996, Learner modelling agents, In P. Brna, A. Paiva J. Self (Eds), Proceedings of the
European Conference on Artificial Intelligence in Education, Lisbon, Portugal.

Paiva, A. 1997, Learner modeling for collaborative learning environments, In B. du Boulay R.
Mizoguchi (Eds), Artificial Intelligence in Education: Knowledge and Media in Learning
Systems (215-222), Kobe, Japan: IOS Press.

Plötzner, R., Hoppe, H. U., Fehse, E., Nolte, C. Tewissen, F. 1996, Model-based design of
activity spaces for collaborative problem solving and learning, In P. Brna, A. Paiva J. Self
(Eds), Proceedings of the European Conference on Artificial Intelligence in Education,
Lisbon, Portugal.

Ritter, S. Koedinger, K. R. 1996, An architecture for plug-in tutor agents, Journal of Artificial
Intelligence in Education, 7(3/4), 315-347.

Self, J. 1994, The role of student models in learning environments, IEICE Transactions on
Information & Systems, E77-D(1), 3-8.

Suthers, D. 1996, Architectures and methods for designing cost-effective and reusable ITSs,
(http://advlearn.lrdc.pitt.edu/its-arch/)

Tewissen, F. 1996, Begriffsnetze als Basis für ein System zur kooperativen Lösung
physikalischer Aufgabenstellungen (Concept maps as a basis for a system supporting the
cooperative solution of physics problems). University of Duisburg. (in German)

Zhao, J. Hoppe, H. U. 1994, Supporting flexible communication in heterogeneous multi-user
environments, In Proceedings of the 14th IEEE International Conference on Distributed
Computing Systems (442-449), Juan-les-Pins, France.

