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 Abstract 
Providing learners with computer generated feedback on their learning process in 
simulation based discovery environments cannot be based on a detailed model of the 
leaning process due to the “open” character of discovery learning. This paper describes 
a method for generating adaptive feedback for discovery learning based on an 
“opportunistic” learning model that takes the current hypothesis of the learner and the 
experiments performed to test this hypothesis as input. The method was applied in a 
simulation based learning environment in the physics domain of collisions. 
Additionally, the method was compared to an environment in which subjects received 
pre-defined feedback on their hypotheses, not taking the experimentation behavior into 
account. Results showed that overall both groups did not differ on knowledge acquired. 
A further analysis indicated that in their learning processes the learners in the 
experimental condition built upon their intuitive knowledge base whereas, the learners 
in the control condition built upon their conceptual knowledge base. In addition, 
measures of the learning process showed that the subjects in the experimental condition 
adopted a more inquiry based learning strategy compared to the subjects in the control 
condition. We concluded, therefore, that the providing learners with adaptive feedback 
had a different and beneficial effect on the learning process compared to more 
traditional pre-defined feedback. 
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1 Introduction 

Traditionally, Intelligent Tutoring Systems (ITSs) and environments for discovery 
learning were seen as incompatible. This is due to the origins of both types of learning 
environments which, when considered in their purest forms, use different paradigms of 
learning. 
 ITS systems tended to view as replacing the teacher or tutor. This means that their 
task is to maintain a tutoring dialogue with the learner, provide the learner with task-
relevant information, set up exercises, and diagnose the learner’s progress. Examples of 
such tutoring systems are the Lisp, and the geometry tutoring systems based on Act-R 
(Anderson, Farrell, & Sauers. 1984; Anderson, Boyle, & Jost, 1985). The main issue for 
an intelligent tutoring system is to decide what its next action will be in the interaction 
with the learner. Because the system is in control over the learning process, this 
decision is crucial for its success. ITSs base these decisions on a learner model, the 
system’s representation of the learner’s domain knowledge, which is adapted based on 
learner actions.  
 In discovery environments based on computer simulations (De Jong & Van 
Joolingen, 1998), learners can generate data and are expected to extract and construct 
knowledge from these data. The learners are in control and often have to set their own 
learning goals. At the same time, learners have to find the methods that help to achieve 
these goals. These activities would result in deeper rooting of the knowledge, enhanced 
transfer (Bruner, 1961), regulatory skill acquisition (Marchionni, 1988), and increased 
motivation. De Jong & Njoo (1992) describe discovery learning as comprising 
transformative processes that include analysis, hypothesis generation, testing and 
evaluation, and the regulative processes planning, verifying, and monitoring. Research 
shows that discovery learning is not easy for learners and that they may experience a 
large number of problems with these learning processes (de Jong & van Joolingen, 
1998). 
 Due to the difference in locus of control and learning paradigm, ITSs and 
discovery learning seem to be incompatible. However, problems with the traditional 
ITS approach lead to systems that shift the control more to the learner (Holt, Dubs, 
Jones, & Greer, 1994; Shute & Psotka, 1993) and at the same time, problems with 
discovery learning (De Jong & Van Joolingen, 1998; Klahr & Dunbar, 1988) created a 
need for advanced support of discovery learning processes. In this paper, we will 
explore how we can use a method for learner modeling, usually associated with ITSs, in 
a discovery learning environment. 

1.1 Discovery learning environments 

 One specific category of discovery learning environments is computer 
simulations. In computer simulations, learners change values of input variables and 
observe values of output variables, inducing characteristics of the underlying model. An 
example of such an environment is given in Figure 1. This is the interface of a 
simulation from the physics topic of collisions as it is used in the present study. 
Learners can do experiments by manipulating the variables' mass and velocity for both 
balls and then running the simulation by pressing the start button. The variables can be 
manipulated by clicking on the arrows next to the values or by just changing the values. 
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Visual information on the screen includes: graphs (displaying position, velocity, and 
kinetic energy of the balls), numerical output, and on the left side, an animation of the 
movement of the balls. 

------------------------------------------------- 
INSERT FIGURE 1 ABOUT HERE 

------------------------------------------------- 
Support for discovery learning aims at providing context and tools for performing 
learning processes essential for discovery learning. The paradigm is that the 
environment provides the learner with cognitive tools (Lajoie, 1993; Van Joolingen, 
1999). These tools help the learner perform learning processes by offering information, 
externalizing learning processes, or structuring the task. Examples of learning 
environments that follow this paradigm can be found in the environments based on the 
SimQuest authoring system for simulation-based discovery learning (Van Joolingen, 
King, & De Jong, 1997). Simulations are the core of the environments and learners are 
supported in various ways to help them in the learning process. SimQuest-based 
learning environments can structure the task using model progression (White & 
Frederiksen, 1990); provide support for regulation using assignments, small tasks that 
provide the learner with sub-goals that are within reach; provide the learner with just-in-
time information in the form of explanations and allow learners to organize the 
experiments they have done with the simulation by offering a monitoring tool. 

------------------------------------------------- 
INSERT FIGURE 2 ABOUT HERE 

------------------------------------------------- 

 Typically, a learner will utilize the support in a SimQuest learning environment 
by opening an assignment and trying to reach the goal presented in the assignment. 
Figure 2 is an example of an assignment that goes together with the simulation 
presented in Figure 1. This particular type of assignment, an investigation assignment, 
asks the learner to investigate a certain relation in the simulation. The learner would 
conduct experiments with the simulation and the results would be displayed in the 
monitoring tool window (Figure 3). Next, the learner would analyze the results and 
choose one of the hypotheses in the bottom part of the assignment window. In the 
original SimQuest, the learner received feedback on this choice in the form of a pre-
defined explanation containing information on the correctness of the hypothesis and 
optional extra information to support the learning process. 

------------------------------------------------- 
INSERT FIGURE 3 ABOUT HERE 

------------------------------------------------- 
 Using only standard techniques, the feedback that can be given on the learner’s 
actions is limited. Given a list of hypotheses, and basic true/false feedback, the learner 
is easily entrapped in a trial and error-game. Moreover, giving direct feedback on an 
action (true or false with a pre-defined explanation) can be seen as conflicting with the 
ideas of discovery learning, because learners are supposed to find out for themselves 
what is right or wrong. Here is a point where intelligent support for discovery learning 
can prove its value.  
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1.2 Tutoring in Discovery Environments 
 There are two main arguments that explain why traditional ITS techniques such as 
learner modeling and instructional planning have not been used very often for discovery 
learning: 

 (a) the amount of learner freedom offered by discovery environments is so large 
that a full learner model is beyond the scope of practical application (i.e., the number of 
parameters is simply too large). 
 (b) often learner modeling is seen as incompatible with discovery learning and the 
related concept of constructivism, for which ‘measuring’ the learner's knowledge 
conflicts with the idea that the learner builds his or her own representation of the 
external world.  
 However, the techniques that have been developed for learner modeling can also 
be useful, in more open environments like discovery learning. The role of learner 
modeling in discovery learning is to generate support for the learner in the process of 
discovery, by inferring the inductive and deductive steps the learner takes in this 
process. The claim is not that the system maintains a full learner model of the discovery 
skills and steps taken by the learner, but that it infers just enough from the learner’s 
behavior to support the discovery process. 
 The use of learner modeling in discovery learning also asks for a different attitude 
towards instructional planning, as directive teaching is not an appropriate teaching 
strategy for discovery learning. If the system is to give up control in favor of the learner 
this implies that tutoring should not be imperative, instead, the system should opt for a 
role of advising the learner. The implication is that the validity of the learner model is 
less critical. The aim is not to establish a complete model of the learners’ knowledge, 
but to assist learners in their discovery processes enabling them to acquire the domain 
knowledge, using a representation of what the learner has actually done. Following Self 
(1990), we use a pragmatic approach in which we attempt to design interactions such 
that the information needed by the system is provided by the learner, link the content of 
the learner model to specific instructional actions, and assume a modest role for the 
model. 

1.3 Intelligent Support for Discovery Learning 
 In this section, we outline a method for intelligently supporting the learner en-
gaged in the discovery scenario that was sketched in the previous section. Using a 
learner model of the learner’s discovery behavior and an expert model of discovery, it is 
possible to provide the learner with advice on experiment design, and data interpreta-
tion, while preserving the open nature of the discovery environment. The method is in-
dependent of domain knowledge. 
 Instead of providing the learner with direct predefined feedback on assignments as 
was explained in the previous section, the learner receives information to be used in 
evaluating the chosen hypotheses. This information is based on a comparison of a 
learner and an “expert” model; both abstracted from the experiments performed by the 
learner and the hypothesis that is investigated. 
 The algorithm for generating a learner model is based on the principles of 
induction and deduction. An induction process tries to infer a hypothesis from a given 
set of data, while a deduction process tries to predict experimental outcomes given a 
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hypothesis. In the algorithm we invert both processes. Instead of reasoning forward 
from given data to a candidate hypothesis, or from a given hypothesis to predicted data, 
we reason back from a candidate hypothesis to supportive data or from experimental 
outcomes to a hypothesis. In this way, we assess the steps the learner has taken and use 
this as a basis for generating tailored advice. 
 The starting point always is a set of experiments performed by the learner and the 
hypothesis that the learner is investigating. The hypothesis is obtained from an 
investigation assignment or from a source where the learner can enter the hypothesis in 
some format, like a hypothesis scratchpad (Van Joolingen & de Jong, 1993). In the 
assignment in Figure 2, the learner has to investigate the relation between the variables 
v1 (initial velocity of ball 1) and Uk1_after (kinetic energy of ball 1 after the collision). 
The hypothesis the learner is working on is “If v1 becomes twice as great than the 
Uk1_after becomes four times as great”. Experiments are described as a set of values 
assigned to input and output variables. 
 In order to assess if a hypothesis can predict a given set of data, a stepwise 
process is applied to the set of data: 

 (1) First, a set of informative experiments about the relation is filtered from the 
complete set of performed experiments. In this case, the relation contains the variables 
v1 and Uk1_after. An experiment (or pair of experiments) is considered to be 
informative when the input variables that have been manipulated take part in the 
relation. If this set is empty, the process stops here. 
 (2) Then, a set of informative experiments about the hypothesis is filtered. This 
process uses the form of the hypothesis to divide the set of hypotheses resulting from 
the previous filter into sets, which can each generate a prediction using the hypothesis. 
For instance, for a hypothesis with the form: “If a doubles, b is divided by two”, 
experiments will be selected where a is doubled, quadrupled etc. and where all other 
input variables are kept constant. 
 (3) For each of the informative sets for the hypothesis, predictions are generated 
for the output variables. This can be done using the hypothesis. For instance, if the 
hypothesis is a quantitative relation, such as y = 2x. Then the output variable y can be 
computed directly from the input variable x. If the hypothesis is qualitative, such as: 
“When x increases, y increases”, it can be inferred from the (x, y) pairs: (1,5), (2,?) that 
the value on the question mark must be greater than 5. 
 (4) The generated predictions are compared to the values actually found in the 
experiments. On mismatches, advice can be generated.  
 The algorithm for analyzing experiments as described here results in two kinds of 
information. First, the presence of informative sets of experiments about a certain 
hypothesis contains information about what a learner could have inferred about a certain 
relation in the domain. Second, the results of the analysis can be used as a source to 
assess the learner’s discovery behavior as such. In this sense, the information 
constitutes a learner model of both the domain knowledge collected using the discovery 
environment and the discovery behavior of the learner. In both cases, this information 
can be used to generate advice, directed at improving the efficiency and effectiveness of 
the discovery process, without disrupting the self-directed nature of this process. A 
worked example on this method can be found in Veermans and Van Joolingen (1998). 
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 The system can assess whether conclusions can be drawn about the hypothesis at 
all, and, if necessary the system can give advice on the kind of experiments needed to 
make an evaluation of a hypothesis possible. Also, the system can infer whether a 
conclusion drawn by the learner is correct or not, and draw a learner’s attention to 
conflicting data in the case the learner makes incorrect inferences from the data. 

------------------------------------------------- 
INSERT FIGURE 4 ABOUT HERE 

------------------------------------------------- 
 In the example shown in Figure 4, the learner evaluated the hypothesis “If v1 
becomes twice as great than the Uk1_after becomes four times as great” to be true. The 
analysis of the experiments resulted in two sets of two experiments that contain 
information that can be used for evaluation of the hypothesis. The other experiments 
that the learner did were not informative because variable v1 was not changed, or did 
not fit the condition part of the hypothesis. The first experiment of each of the two sets 
is used to generate a prediction for the value of variable Uk1_after and this value is then 
compared to the value that was actually observed in the simulation. It is then explained 
that a correct hypothesis should generate correct predictions in all cases. In this 
example, the predictions did not match the actual values. Thus, the learner is informed 
about this discrepancy and is advised to reject the hypothesis.  

 

2 Evaluation Study 

The method for intelligent support was evaluated in an experimental study in which a 
discovery environment with the new support method was compared with one that 
provided learners with the traditional pre-defined feedback. The main research question 
was whether intelligent feedback on the learners’ experimentation behavior influenced 
learners’ discovery behavior and the learning results. This was investigated using a pre-
test – post-test design with different kinds of knowledge tests and by studying learners’ 
behavior through logs of the interaction with the learning environment. 

2.1 Experimental Conditions 
 In the study, two conditions corresponding with the aforementioned different 
environments were realized: 
 (1) A Control Condition: subjects interacted with a SimQuest simulation 
environment on Collisions (see Section 2.3). This simulation included assignments 
stimulating subjects to detect the principles behind moving and colliding particles by 
means of manipulating input variables and interpreting the outcomes of their 
experiments. The assignments covered relations in the domain and contained 
hypotheses about these relations. The learners were asked to select the correct 
hypothesis or hypotheses from this list. If they did so, they received feedback that was 
pre-defined and contained a statement about the truth-value of the hypothesis and 
additional information. For instance, if the hypothesis was correct, but there was 
another, more precise, correct hypothesis the additional information prompted the 
learner to look for this other hypothesis as well. 
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 (2) An Experimental Condition: subjects interacted with basically the same 
SimQuest simulation environment on Collisions but there were two differences. First, in 
the experimental condition, subjects also had the option to state that a hypothesis was 
incorrect. Second, the feedback they received in the experimental condition depended 
on the experiments that the subjects did to support their statement about the hypothesis. 
The feedback contained an analysis of this evidence and, if needed, advice on the 
discovery processes along the lines described earlier in this article. 

2.2 Subjects 

 Forty-six Dutch students, - fourth year of pre-scientific education, age 15-16 -, 
from two schools participated in this study. Subjects attended physics classes and had 
some computer experience. The subjects were transferred from their schools to the 
university to participate in the experiment. One school participated with twenty-three 
subjects from two classes in one experimental session. The other school participated 
with twenty-three subjects from one class. The subjects of these classes were distributed 
over the two experimental conditions. The subjects received no compensation or credit 
for their participation. 
 One subject was excluded from the analysis because the response times on most 
of the items in the post-test were close to the minimum time that is needed to respond, 
and the number of correct answers dropped dramatically from pre- to post-test. There is 
reason to believe that this subject did not try to answer the items correctly but merely 
tried to finish the test as fast as possible. Furthermore, for four subjects the result of one 
test was lost. The results of these subjects were excluded analysis by analysis. 

2.3 The Learning Environment 

 The discovery learning environment used in this study was called on Collision 
and covered the physics domain of central collisions between two balls. Collision was 
developed in the SERVIVE project (Van Joolingen, King, & De Jong, 1997; De Jong et 
al., 1998; De Jong et al., 1999). The Collisions learning environment was designed for 
learners in the fourth year of secondary school. It included four levels of complexity: 
non-accelerated movement, collisions against a wall, completely elastic collisions 
between two balls in one dimension and, completely inelastic collisions between two 
balls in one dimension. Figure 1 displays a simulation interface for the third level. Apart 
from the four levels, the environment contained support in the form of assignments, a 
monitoring tool that registered the experiments with the simulation, background 
information about the simulations, and feedback explanations. 

2.3.1 Assignments 
 A total of 41 investigation assignments guided the subjects in exploring the 
domain. Learners in both conditions were free to choose any assignment. The 
assignments offered four to eight hypotheses to the subjects. The subjects were advised 
to select one of the hypotheses from the list, to experiment with the simulation, to 
evaluate the evidence for the hypothesis and, if they felt this was necessary, to 
investigate other hypotheses as well. The content of the assignments was identical for 
the two conditions. In both conditions, assignments guided the subjects in investigating 
the relation between (a) mass, velocity, and momentum; (b) mass, velocity, and kinetic 
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energy; (c) mass, velocity, and resulting velocities after a collision. In addition, 
conservation of momentum was treated in assignments on elastic and inelastic collisions 
and contrasted with the loss of kinetic energy in inelastic collisions. 

2.3.2  Monitoring Tool 
 Whenever a subject opened an assignment concerning a relation between 
variables, a monitoring tool (Figure 3) was activated which automatically registered the 
values of the important variables in that relation. This monitoring tool served as a kind 
of external memory for the subjects. After each experiment the values for the variables 
were listed in the monitoring tool. The subjects had the opportunity to re-run any of the 
experiments that were in this list and could re-arrange the experiments in the list to get a 
better overview of the experiments. The general idea behind an instructional measure 
like the monitoring tool is to allow the subjects to focus on discovering the relations in 
the domain. Without the presence of the monitoring tool, subjects would have to 
remember the results of their experiment and think of an appropriate next experiment at 
the same time and then interpret the results afterwards. 

2.3.3  Tests 
 Three different tests were administered to assess the subjects’ knowledge: the 
definitional knowledge test, the what-if knowledge test, and the what-if-why test. These 
tests were also used earlier in Swaak, De Jong, and Van Joolingen (submitted). 

 Definitional knowledge test. The definitional knowledge test consisted of three-
answer items and aimed to measure conceptual knowledge of a declarative quality like 
definitions and equations. The same definitional test was given both as a pre- and as a 
post-test. Whenever learners selected an answer, the item disappeared from the screen 
and the next item popped-up. Learners were allowed to return to previously answered 
items. The definitional knowledge test consisted of 20 items. 

 Intuitive knowledge test (what-if test). To measure intuitive knowledge about the 
relationships between the variables of the domain, a test called the what-if test was 
created (Swaak & De Jong, 1996). In the what-if test, each test item contained three 
parts: conditions, actions, and predictions. The conditions and predictions were possible 
states of the system. The conditions were displayed in graphs. The action was presented 
in text. The predicted states were, like the conditions, presented in graphs. In the 
instructions of the what-if test the learners were asked to decide which state would 
follow from a given condition as a result of the action. The items of the task were kept 
as uncomplicated as the domain permitted. The items had a three-answer format. In 
order to prevent memorization effects, two parallel versions of the intuitive knowledge 
test were developed (however 9 of the 24 items were identical in both versions because 
no parallel item could be constructed). Whenever learners selected an answer, the item 
disappeared from the screen and the next item popped-up. Learners could not go back to 
previously answered items. 

 What-if-why test. The what-if-why test was essentially a paper version of the 
what-if test. It too required the learners to decide which of three situations followed 
from a given condition, given the action that was displayed. Additionally, the learners 
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had to state their answer in their own words. In this study, the learners were also asked 
to depict a situation in which the other answer alternatives would be true. A sub-test of 
13 items from the what-if post-test was used for this purpose. Thus, the difficulty level 
and the level of detail of the two test formats were exactly identical. However, the what-
if prediction task and the what-if-why prediction and explanation tasks contrasted, on 
the demand they placed on the conscious awareness of the learners with respect to the 
underlying principles and the implications of physics laws. This awareness was needed 
in the what-if-why test items, but was not necessary in the what-if test items. 

2.3.4  Interaction Behavior 
 Many of the subjects’ actions during the interaction with the environment were 
registered. This provided us with data on the use of the simulation, the assignments, and 
feedback to answers of assignments. In addition, time spent on different simulations 
was recorded. These data were used to compare the Experimental and Control condition 
in terms of the general interaction patterns of the subjects, and to associate the 
interaction within a condition with test outcomes. 

2.3.5  Procedure 
 Each experimental session lasted approximately three hours. Each session was 
comprised of the following sequence of events: 

(1) Introduction and pre-tests (40 minutes). Subjects were welcomed and given an 
overview of the activities in the session. After the introduction, the definitional 
knowledge and what-if pre-test were administered electronically.  
 (2) Introduction to the learning environment (10 minutes). Upon completion of 
the pre-tests, subjects read an introduction on the Collision environment. This was 
followed by a demonstration in which the experiment leader showed the function of the 
various elements of the learning environment and explained how they could be 
operated. It was explained to the subjects that both their performances on the tests and 
their interaction with the learning environment would be recorded. 
 (3) Interaction with Collision (set at 1 hour and 30 minutes). After the 
introduction, subjects worked with the Collision environment on their own. The 
experiment leader was present and could give assistance on questions concerning 
operating the environment, but not on questions concerning subject matter. Subjects 
were encouraged to use the full one and a half-hour available for the interaction. If they 
wanted finish earlier they were asked to explore more of the environment, but were not 
forced to do so.  

(4) Post-tests (45 minutes). After the interaction with the learning environment the 
post-tests were administered. The definitional knowledge test was administered first, 
then the what-if test, and finally the what-if-why test followed. The what-if-why (with 
the prediction and the explanation part) test was administered using paper and pencil, 
the other two tests were presented electronically. 

2.4 Predictions 
 The learning environments in the two conditions were identical except for the 
possibility to reject a hypothesis in the experimental condition and the feedback that the 
subject received upon evaluating a hypothesis. Both environments required the subjects 
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to investigate relations between the variables in the domain through experimenting with 
the simulation.  

Our first prediction concerns the subjects’ interaction behavior. Because subjects' 
experiments were used in the feedback the subjects in the experimental condition were 
invited to reflect more on their interaction with the learning environment. Consequently, 
we expected them to spend more time on designing and interpreting experiments result-
ing in more careful evaluation of the hypotheses. 

Our second prediction was that both conditions would gain equally in definitional 
knowledge as measured by the definitional knowledge test, but that the experimental 
condition would also gain more knowledge as measured by the what-if and what-if-why 
tests. The definitional knowledge test assesses the formal principles of the domain, 
which are not explicitly dealt with in either of the two environments. We anticipated 
subjects in the experimental condition to perform better on the what-if test because, as a 
result of the more intense interaction, the subjects in this condition would have con-
structed more integrated knowledge of the relations of the domain. Finally, we expected 
the subjects in the experimental condition to perform better on the why part of the what-
if-why because they would reflect more on their interaction with the environment, 
therefore being able to explain more adequately in their own words why a certain situa-
tion had occurred. 

2.5 Results 
 The result section presents analyses of the learning outcomes and processes, and 
consists of five parts. The first three parts of this section present results on the 
knowledge tests. First, the overall results of these tests will be described, and the two 
conditions will be compared. Then, as a measure for the integration of knowledge, 
correlations between post-tests will be shown. We will go on by investigating the 
relationship between the pre-tests and the post-tests to see what role the definitional and 
intuitive knowledge play in the two conditions. The fourth part presents data on the 
interaction of learners with the learning environment, and in the fifth and final part the 
relation between the interaction and the knowledge measures is presented. 

2.5.1  The Knowledge Measures 
 The definitional knowledge test was administered before and after the session. 
Reliability analysis (N=43; n=20 items) resulted in a reliability of .46 (Cronbach’s α) 
for the pre-test and .38 for the post-test. The reliability of the pre-test was moderate, but 
the reliability of the post-test was relatively low. The what-if test was administered in 
two parallel versions as pre- and post-test. Reliability analysis of the pre-test (N=44; 
n=24 items) resulted in a reliability of .70 (Cronbach’s α) and .56 for the post-test. The 
reliability of the pre-test was good and the reliability of the post-test moderate. The 
definitional knowledge test and the what-if test are assumed to measure different types 
of knowledge in learners. The low correlation between the pre-tests (.29) supported this 
assumption. The what-if-why test was scored on correctness of the prediction given and 
on the correctness of the explanation given for the prediction. The score for the 
explanation could be either 0 (incorrect), 0.5 (partly correct), or 1 (correct) and was 
rated by two independent domain experts. The inter-rater reliability yielded a Kappa of 
.65, which can be considered substantial. The reliability of the what-if-why correct test 
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(Cronbach’s α) was somewhat low (.38) and the reliability of the what-if-why 
explanation test was good (.69).  
 The results of the knowledge tests are given in Table 1. As can be seen, learners 
gained on both the definitional and what-if tests in both conditions. Paired-samples T-
Tests showed a significant within-subject effect for the definitional test across 
conditions (t=-5.96, df =42, p =.001) and in each of the conditions (for the experimental 
condition: t= -3.35, df=19, p= .003; for the control condition: t=-5.14, df=22, p=.000). 
The overall effect size was d= .88. Similarly, there was a significant within-subject 
effect for the what-if test (overall: t = -7.81, df =42, p =.000; experimental: t= -5.11, 
df=20, p=.000; control: t= -6.04, df=21, p=.000). Overall effect size again was d= .88. 

 There were no significant differences between conditions in the mean scores on 
the pre-tests, and on the post-tests, including the two measures on the what-if-why tests. 
T-tests on the measures show p > 0.3 in all cases.  
Table 1  
Mean Scores and Standard Deviations for the Different Knowledge Tests in the Different 
Conditions. Standard Deviations are given within Parentheses 

 Condition  

 Experimental Control Total 

 Pre Post Pre Post Pre Post 
DEFINITIONAL 
(MAX=20) 

11.6 
(2.6) 

13.7 
(2.4) 

10.9 
(2.9) 

13.4 
(2.3) 

11.3 
(2.8) 

13.5 
(2.4) 

WHAT-IF 
(MAX. 24) 

14.7 
(4.0) 

18.3 
(3.2) 

14.1 
(3.6) 

17.6 
(2.7) 

14.4 
(3.8) 

17.9 
(3.0) 

WHAT-IF-WHY 
CORRECTNESS (MAX. 13) 

 11.2 
(1.4) 

 11.1 
(1.6) 

 11.1 
(1.5) 

WHAT-IF-WHY EXPLANATION 
(MAX. 13) 

 7.0 
(2.1) 

 7.2 
(2.5) 

 7.1 
(2.3) 

 
2.5.2  Relations Between the Different Knowledge Measures 
 In order to find out to what extent the different knowledge measures assess similar 
or different constructs, their correlations were computed. Table 2 displays the 
correlations between the post-tests. In the experimental group, correlations between the 
definitional post-test and the what-if and what-if-why explanation post-test were not 
significant. All other correlations were significant. In the control group all correlations 
were significant. 
 
Table 2  
Correlations Between the Scores on the Different Post-Tests, for Each of the Conditions.  
  DEF. POST-

TEST 
WHAT-IF POST-
TEST 

WHAT-IF-WHY 
CORRECTNESS 

EXPERIMENTAL .38 
WHAT-IF POST-TEST 

CONTROL .51* 
- - 

EXPERIMENTAL .44* .74** WHAT-IF-WHY 
CORRECTNESS CONTROL .75** .54** 

- 

EXPERIMENTAL .13 .60** .58** WHAT-IF-WHY 
EXPLANATION CONTROL .61** .56** .72** 

Note. * means p<0.05, ** means p<0.01. 
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 These results were somewhat surprising. In the experimental condition, the 
definitional knowledge post-test seems to measure a different construct than the other 
tests, whereas in the control condition all post-test scores seem related, and therefore it 
can not be claimed that the post-tests measure different constructs. Given the low 
correlation between the pre-test scores on definitional knowledge and what-if 
knowledge, the correlations between the pre-tests and the post-test knowledge measures 
were computed to gain insight in the causes of the differences. 

2.5.3 Relations Between Pre- and Post-Test Knowledge Measures 
Table 3 displays the correlations between the pre- and post-tests scores, thus 

showing to which extent the two types of prior knowledge (definitional and intuitive 
knowledge) predicted the subjects’ performance on the post-tests. A basic expectation is 
that a high score on a pre-test leads to a high score on the post-test of the same type. 
This expectation was met for the what-if tests in both conditions, for the definitional 
tests in the control condition, but not for the definitional tests in the experimental 
condition.  

Comparing the experimental and the control condition we see remarkable 
differences in the pattern of correlations with post-tests for the definitional and what-if 
pre-test. For the definitional knowledge, in the experimental condition the pre-test does 
not correlate significantly with any of the post-tests. In the control condition, to the 
contrary, the definitional knowledge pre-test correlates significantly with all of the post-
test measures. For the what-if knowledge pre-test, the pattern is reversed. In the 
experimental condition, the what-if pre-test correlates significantly with the post-tests. 
In the control condition, the what-if pre-test correlates significantly with the what-if 
post-test, but not with any of the other post-tests. In summary, it seems that in the 
experimental condition the what-if pre-test is the main predictor of all post-test scores 
whereas in the control condition the definitional pre-test is the main predictor.  
 
Table 3 
Correlations Between the Pre-Test Scores and the Post-Test Scores on the Knowledge Tests 

  DEFINITIONAL 
POST-TEST 

WHAT-IF 
POST-TEST 

WHAT-IF-
WHY 

CORRECTNESS 

WHAT-IF-
WHY 

EXPLANATION 
EXPERIMENTAL .30 .39 .33 .15 DEFINITIONAL 

PRE-TEST CONTROL .64** .46* .46* .59** 

EXPERIMENTAL .61** .62** .76** .37 WHAT-IF  
PRE-TEST CONTROL .20 .68** .21 .32 

Note. * means p<0.05, ** means p<0.01. 

 To further investigate these differences an extra analysis was performed. If the 
conditions differ with respect to the way their pre-test scores predicted their post-test 
scores, this should become apparent by comparing groups based on their pre-test scores. 
Therefore, both the experimental and control groups were divided into two groups, 
based on their score for the definitional pre-test (using median split, with the median 
left out). In Table 4, these groups are labeled LD and HD respectively (Low/High on 
Definitional test). These groups were compared for their scores on the four post-tests, 
using T-tests. The results are displayed in Table 4. The results from the correlational 
analysis reoccur on a more detailed level in this analysis. In the experimental condition, 
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the low definitional knowledge group can not be distinguished from the high 
definitional knowledge group on the basis of the post-test results, not even on the post-
test version of the definitional test itself. In the control group, the difference between 
the groups becomes smaller but is still present on the definitional post-test, and 
differences are also found on the other post-tests, although the difference for the what-if 
post-test is not significant.  
Table 4  
Relations Between Pre-Test Score on the Definitional Knowledge Test and the Score on the 
Post-Tests. 

 EXPERIMENTAL CONTROL 

 LD 
(9.33) 

HD 
(14.11) T  (DF)  P LD 

(8.11) 
HD 

(13.67) T  (DF)  P 

DEFINITIONAL 
POST TEST 13.56 14.11 -.48 (16) .635 11.56 14.33 -3.04 (11.8) .010* 

WHAT-IF 
POST TEST 17.88 18.89 -.67 (15) .535 16.44 18.67 -1.64 (16) .121 

WHAT-IF-WHY 
CORRECTNESS 11.11 11.44 -.53 (16) .640 9.89 11.89 -2.84 (16) .012* 

WHAT-IF-WHY 
EXPLANATION 7.00 7.22 -.32 (16) .819 5.39 8.28 -2.83 (16) .012* 

Note. * means p<0.05, ** means p<0.01. The p-values are computed using a T-test comparing the 
high scoring groups with the low scoring groups on the definitional pre-test. Between 
parentheses, the mean scores on the definitional pre-test are given for each group. 

 
 A similar analysis was done based on the scores for the what-if pre-test, yielding 
LW and HW groups. These results can be found in Table 5. Again, a pattern emerged in 
line with the correlational analysis. Now the low and high group in the experimental 
condition could still be distinguished in all the post-test scores, whereas in the control 
group only a difference was found on the what-if test post-test.  
Table 5 
Relations Between Pre-Test Score on the What-If Test and the Score on the Post-Tests. 

 EXPERIMENTAL CONTROL 

 LW 
(11.27) 

HW 
(18.18) T  (DF)  P LW 

(10.62) 
HW 

(17.30) T  (DF)  P 

DEFINITIONAL 
POST TEST 12.36 15.0 -2.97 (20) .008** 13.75 13.6 .13 (11.4) .900 

WHAT-IF 
POST TEST 16.72 20.1 -2.79 (19) .012* 16.25 19.2 -2.47 (16) .025* 

WHAT-IF-WHY 
CORRECTNESS 10.27 12.09 -3.81 (20) .001** 11.0 11.2 -.30 (16) .768 

WHAT-IF-WHY 
EXPLANATION 5.95 8.0 -2.61 (20) .017* 6.5 7.45 -.80 (16) .433 

Note. * means p<0.05, ** means p<0.01. The p-values are computed using a T-test comparing the 
high scoring groups with the low scoring groups on the What-If pre-test. Between parentheses, 
the mean scores on the What-If pre-test are given for each group. 

 
2.5.4  Interaction Measures 
 Actions that subjects performed while interacting with the learning environments 
were registered. This provided data on the use of the environments including time 
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distribution over the four levels of complexity, assignments, feedback on hypotheses, 
experiments, and the variability of experiments. Table 6 summarizes data on time spent 
in general and on the levels. Table 7 summarizes the data on the assignments, 
experimentation, and feedback. 
Table 6 
Mean and Standard Deviations of Time Spent on the Complexity Levels in Minutes

CONDITION 
TIME MEASURES (MINUTES) EXPERIMENTAL CONTROL 
LEVEL 1 (non-accelerated mov.) 22:15 (9:28) 12:46 (7:25)  
LEVEL 2 (collisions against wall) 20:17 (6:09) 21:40 (7:36) 
LEVEL 3 (elastic collisions) 25:30 (5:47) 26:17 (6:23) 
LEVEL 4 (inelastic collisions) 18:16 (13:05) 23:33 (9:57) 
TOTAL TIME GENERAL 86:18 (4:48) 84:16 (4:44) 
 
 As shown in Table 6, the subjects in the experimental group spent considerably 
more time than the control group on the first level (t= 3.73, df=39.79, p= .001). 
Comments by subjects like “It does not say what the correct answer is” indicated that 
the extra time spent on this level was spent there to get acquainted with the feedback. 
Time spent on the second and third level was almost equal between the two groups (t= -
.673, df=43, p= .504; t= -.427, df=43, p= .671). The experimental group spent less time 
on the last level although, due to the large variance, this difference is not significant (t= 
-1.53, df=43, p= .159).  
Table 7 
Mean and Standard Deviations of Interaction Measures within Conditions

CONDITION 
INTERACTION MEASURES EXPERIMENTAL CONTROL 
ASSIGNMENTS 33 (8) 40 (16) 
UNIQUE ASSIGNMENTS (MAX 41) 30  (8) 34 (9) 
EXPERIMENTS 111 (50) 84 (22) 
EXPERIMENTS DURING ASSIGNM. 89 (39) 55 (28) 
FEEDBACK 94 (38) 54 (24) 
AV. FEEDBACK /ASSIGNMENT 3.2 (1.3) 1.6 (0.5) 
UNIQUE EXPERIMENTS 65 (31) 46 (12) 
AV. TIME PER ASSIGNM. (MIN) 2:32 (1:44) 1:44 (1:43) 
 
 Independent samples T-tests for the interaction measures showed a significant 
difference on the total number (multiple use allowed) of assignments used (t= -2.04, 
df=33.44, p= .049), with the control group using more assignments. Furthermore, 
significant differences were found on the overall number of experiments performed (t= 
2.34, df=28.65, p= .027), the number of experiments performed during an assignment 
(t= 3.32, df=43, p= .002), the total amount of feedback (t= 4.23, df=35.22, p= .000), the 
average amount of feedback in an assignment (t= 5.69, df=26.87, p= .000), and the 
number of unique experiments performed (t= 2.60, df=27.01, p= .0.15), all with the 
larger numbers in the experimental group. On average, subjects in the experimental 
condition also spent more time on an assignment(t= 3.63, df=43, p= .0.001). Only the 
number of unique assignments did not show a significant difference between the two 
conditions (t= -1.52, df=43, p= .136). 
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2.5.5  Relations Between Interaction and Knowledge Measures 
 We also investigated the relations between the learners’ activities and the results 
on the various knowledge tests (i.e., whether the behavior in the learning environment 
could be related to the scores on the post-tests). A good measure from the learners’ 
activities is the number of different assignments that were used as this provides an 
indication of the level coverage. The number of unique experiments learners conducted 
within each level is also an appropriate measure, because the number of unique 
experiments indicates the amount of evidence gathered that could be utilized for 
understanding the simulations’ underlying principles. In Table 8, the correlations 
between the number of different assignments and the post-test scores are shown. Table 
9 displays the correlations between the number of unique experiments and the post-test 
scores. In both tables, the correlations are computed for the overall number, but also for 
the number on each of the four levels that were present in the learning environment.  
Table 8 
Correlations Between the Number of Assignments used on the Different Levels and the Results 
on the Different Post Tests
NUMBER OF ASSIGNMENTS LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 TOTAL 

DEFINITIONAL POST TEST      
            EXPERIMENTAL -.21 .21 .34 -.01 .26 
            CONTROL .42* .54** .47* .29 .51* 
WHAT-IF POST-TEST      
            EXPERIMENTAL -.04 .22 .22 .06 .24 
            CONTROL .38 .50* .53** .33 .52* 
WHAT-IF-WHY CORRECTNESS     
            EXPERIMENTAL .16 .38 .22 -.07 .17 
           CONTROL .56** .65** .38 -.04 .40 
WHAT-IF-WHY EXPLANATION     
            EXPERIMENTAL -.02 .32 .21 .04 .27 
            CONTROL .40 .42* .45* .17 .42* 

Note. * means p<0.05, ** means p<0.01. 

 
 Table 8 shows the correlations between assignment use and post-test scores. As 
can been seen in this table there were quite a few significant correlations between 
assignment use and the post-test results in the control condition. The total number of 
different assignments in the control condition were significantly correlated with all 
post-tests scores with the exception of the what-if-why correctness post-test. On level 
one, the correlations between the use of assignments and scores on definitional 
knowledge and what-if-why correctness were significant. The number of assignments 
used on level 2 correlated with all post-test results. Correlations between assignment 
use on level 3 resembled these for the total number of assignments, and only the use of 
assignments on level 4 showed no significant relations with the post-test results. This 
contrasted sharply with the experimental condition, where no significant correlations 
were found between the use of assignments and the post-tests in the experimental 
condition. 
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Table 9 
Correlations Between the Number of Unique Experiments Performed with the Simulations, and 
the Results on the Different Post Tests 
UNIQUE EXPERIMENTS LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 TOTAL 

DEFINITIONAL POST TEST      
            EXPERIMENTAL -.15 .01 .36 -.11 .08 
            CONTROL -.03 -.28 -.03 .16 -.06 
WHAT-IF POST-TEST      
            EXPERIMENTAL -.11 .52* .60** .18 .47* 
            CONTROL -.06 -.18 .07 -.06 -.09 
WHAT-IF-WHY CORRECTNESS     
            EXPERIMENTAL .23 .46* .42 -.08 .29 
           CONTROL .29 -.03 -.13 -.39 -.20 
WHAT-IF-WHY EXPLANATION     
            EXPERIMENTAL .07 .34 .48* -.05 .28 
            CONTROL .14 -.15 .32 -.01 .16 

Note. * means p<0.05, ** means p<0.01. 

 
 Table 9 shows a significant correlation between the number of unique 
experiments on level 3 and the results on the what-if post-test and the what-if-why 
explanation test for the experimental group. Significant correlations for the 
experimental group were also found between the number of unique experiments on 
level 2 and the what-if, and what-if-why correctness post-test. The total number of 
unique experiments correlates significantly with the what-if post-test. Only for the 
definitional knowledge test, there was no significant correlation between the number of 
experiments and the scores on the post-test. In the control condition, no significant 
correlations were found between unique experiments and post-tests.  
 

3 Conclusions 

We predicted that as a result of the type of feedback given(i.e., feedback that took the 
experimentation behavior of learners into account) the experimental group in our study 
would show a more reflective attitude while interacting with the learning environment. 
In the interaction data we found evidence that this was indeed the case. The interaction 
data revealed that on average subjects in the experimental group spent more time on an 
assignment, did more experiments when working with an assignment, did a larger 
percentage of their experiments during assignments, and did more unique experiments 
than subjects in the control group. The picture that emerges is that learners in the 
experimental group needed some time to get accustomed to the feedback, reflected in 
the time spent on the first complexity level. Afterwards, however, their behavior 
focussed on analyzing hypotheses rather than on solving assignments.  

  The effects of this different behavior did not directly show in the scores on the 
knowledge tests that were administered after the experimental session. Both conditions 
gained from pre- to post-test on both the definitional and what-if tests. Contrary to the 
predictions, no significant differences in favor of the experimental condition were found 
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for the what-if test or the what-if-why test. Actually, when looking at the average 
scores, there is no difference at all between groups, so it seems that there is no influence 
of the experimental treatment on the definitional and intuitive domain knowledge that 
learners gained during the interaction with the learning environment. 

 However, close examination of the results reveals effects in the way the overall 
means were constituted by the individual subjects’ scores. This becomes clear when 
looking at the relation between the pre-tests and post-tests, as shown in Table 3 and as it 
is elaborated in Table 4 and Table 5. The results display a completely different picture 
for the subjects in the two groups. In the control group, the major predictor of a post-test 
result was the result on the same test as the pre-test. Of course, this is nothing special, 
starting higher on a test means that the same person will probably score higher when the 
same test is taken again. In the control group, this was true for both the definitional test 
and the what-if test. In the experimental group, however, the what-if pre-test was a good 
predictor for the results on both the definitional post-test and the what-if post-test. In 
this group, the result of the definitional pre-test did not seem to have any relation to any 
of the post-tests, not even on the definitional post-test. Table 4 showed that the 
difference between the high scoring group and the low scoring group on the definitional 
pre-test had completely vanished at the time the subjects took the post-tests.  

 Another difference between the experimental and control group is that only in the 
experimental group a relation was found between the experimentation as reflected in 
interaction data and post-test scores. This is an indication that experimenting is a factor 
that contributed to learning in this condition. A similar relation was absent for the 
control group. In the control group, we found that the use of assignments correlated 
with the post-tests scores. Such a correlation was not found in the experimental 
condition. These results indicate that in the experimental condition it does not matter 
that much how many assignments the learner used, but more how they used them, 
whereas in the control condition it was merely using the assignments that contributed to 
the post-test scores. 

 Although on the surface both groups of subjects did not appear to show any 
difference, differences were revealed when a more fine-grained analysis of the data was 
conducted. It appears that the overall means of subjects in the two experimental are 
equal, but that they are the result of a completely different learning process.  

 To understand what happened in the two experimental groups, it could be 
illuminating to follow two ‘typical’ subjects in the group. However, it must be 
emphasized that these two scenarios require a great deal of data interpretation. Further 
research should be done to investigate the extent to which these scenarios are true. 

 A subject in the control group would perform the pre-tests, and study the material 
in the learning environment. The results on the post-test are best predicted from the 
definitional pre-test scores. There is no relation between the experimenting behavior 
and the results on the post-tests, but there is a relation between the number of 
assignments used and the results on the post-tests. The knowledge gained in the learning 
environment therefore appears not to be related to the fact that the subject was engaged 
in a discovery environment, but to the fact that for 90 minutes the learner processed new 
information on the topic. During this time, the subject merely builds on the existing 
definitional knowledge and utilizes this knowledge on the post-tests. 
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 A typical subject in the experimental group engaged more in experiments. The 
results on the post-test are best predicted based on the what-if pre-test scores. Subjects 
in this group activated their intuitive knowledge (as measured by the what-if test) in 
order to generate and interpret experiments. The feedback given by the learning 
environment seems to have triggered this more in-depth processing of the information. 
The more intuitive knowledge the subject had in the beginning, the more he or she 
could benefit from the information generated in the experiments and present in the 
feedback. This knowledge gain extended to definitional knowledge and even to the 
extent that the result on this test is no longer dependent on the subject’s definitional pre-
knowledge. Therefore, it seems that definitional knowledge is not activated in the 
experimental learning environment. Also, the more experiments the learner did, the 
more intuitive knowledge he or she gained. 
 The above are stereotypes to contrast the learning in the two conditions. Even if 
these were true, a number of questions remain unanswered after this study. The main 
question is why we did not find any differences between the two conditions on the 
knowledge tests. Three explanations come to mind.  
 One is that we based these expectations on the idea that learners in both 
conditions had to show discovery learning behavior, but that learners in the 
experimental condition were better supported by the feedback on the discovery learning 
processes. The results indicate that the learners in the control condition compensated for 
the absence of feedback on the discovery learning processes by adopting a more 
traditional learning style in which they made extensive use of the assignments and drew 
heavily on their definitional knowledge. This way of learning was not anticipated when 
we made our predictions about the learning outcomes. Removing the domain-oriented 
feedback from the control environment to force discovery learning behavior upon the 
learners would be a way to look at the influence of the feedback on the discovery 
learning processes in more detail.  
 The second explanation is that each of the two environments is better suited for 
learners with a specific learning style. Closer examination of learners working with the 
environments should reveal whether this is the case and if so, we would like to be able 
to distinguish between the categories. For the moment, it seems that definitional and 
intuitive knowledge are possible selection criteria.  
 A third explanation for not finding the expected differences lies in the time that 
the learners in the experimental condition needed to get acquainted with the new 
feedback. Perhaps, if they had been able to work with the environment longer we would 
have found differences. The feedback given in the experimental condition differs from 
the feedback learners usually receive in that the content of the feedback is based on the 
learner’s own experiments. Thus, learners were required to think about experiment 
design if they wanted to receive feedback on the correctness of a hypothesis. That is, 
they had to think about the interpretation of the experiments in relation to the 
hypothesis. This required the learners to take a more active role than the learners in the 
control condition and it took them more time to adjust. This automatically leads us to 
the following issue. Our idea was that feedback in the experimental condition would 
help learners in learning the domain knowledge through supporting the discovery 
process. We believe that extra time spent on the first level and the other differences in 
behavior are indicators that the learners in the experimental condition, apart from 
learning domain knowledge, learned discovery skills as well. As this is indirect 
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evidence, we would like to substantiate this claim in a follow-up study explicitly testing 
for discovery skills. This might also provide an answer to the issue of the relation 
between intuitive knowledge and discovery skills. In this study, we found that in the 
experimental condition intuitive knowledge was the main predictor for the post-test 
results. This raises the question of the exact role of the intuitive knowledge in the 
discovery processes. Is domain specific intuitive knowledge a necessary condition for 
discovery learning unrelated to the discovery skills, or is there interdependency between 
the discovery skills and the domain specific intuitive knowledge? By testing for the 
discovery skills in our next study, along with investigating the learning processes of a 
few learners in more detail, we hope to be able to answer this question in the future.  
In this study, we have introduced a potentially effective way of supporting learners in a 
simulation based discovery environment. The approach is general and can be used in 
domains in which hypotheses can be interpreted by the system, because they are 
specified beforehand, as was the case in this study, or because they are created by tools 
like a hypothesis scratchpad yielding well-formed hypotheses. The results show that 
providing learners with specific information on the relationship between their 
experiments and the hypotheses they study changed the overall behavior of the learners 
in the learning environment and lead to more discovery oriented behavior. In our next 
study, we hope to show that learners working with this kind of learning environment not 
only gain domain knowledge, as we found in this study, but also gain discovery skills. 
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Figure Captions 

Figure 1. Elastic collision simulation window 

Figure 2. An investigation assignment, the seventh alternative is in focus 

Figure 3. The monitoring tool, with experiments. 
 
Figure 4. Feedback explanation with analysis of the experiments in figure 3 and the 

hypothesis from figure 2. 
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