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Abstract.  Lifelike animated agents for knowledge-based learning environments can provide
timely, customized advice to support learners’ problem-solving activities.  By drawing on a rich
repertoire of emotive behaviors to exhibit contextually appropriate facial expressions and
emotive gestures, these agents could exploit the visual channel to more effectively communicate
with learners.  To address these issues, this article proposes the emotive-kinesthetic behavior
sequencing framework for dynamically sequencing lifelike pedagogical agents’ full-body
emotive expression.  By exploiting a rich behavior space populated with emotive behaviors and
structured by pedagogical speech act categories, a behavior sequencing engine operates in
realtime to select and assemble contextually appropriate expressive behaviors. This framework
has been implemented in a lifelike pedagogical agent, COSMO, who exhibits full-body emotive
behaviors in response to learners' problem-solving activities.

INTRODUCTION

Recent years have witnessed significant advances in intelligent multimedia interfaces that
broaden the bandwidth of communication in knowledge-based learning  environments.
Moreover, because of the potential benefits of both agent-based technologies and
anthropomorphic interfaces, concerted efforts have been undertaken to develop pedagogical
agents that can play an important role in learning environment architectures (Dillenbourg et al.,
1997; Eliot & Woolf, 1996; Frasson, 1997; Ritter, 1997; Chan and Chan, 1997). In particular,
animated pedagogical agents (Lester et al., 1999a; Rickel & Johnson, 1999; Stone & Lester,
1996) that couple advisory functionalities with a strong lifelike presence offer the promise of
providing critical visual feedback, which raises the intriguing possibility of creating learning
environments inhabited by a pedagogical agent in the form of an intelligent lifelike character.

Engaging lifelike pedagogical agents that are visually expressive could clearly
communicate problem-solving advice and simultaneously have a strong motivating effect on
learners.  If they could draw on a rich repertoire of emotive behaviors to exhibit contextually
appropriate facial expressions and expressive gestures, they could exploit the visual channel to
advise, encourage, and empathize with learners.  However, enabling lifelike pedagogical agents
to communicate the affective content of problem-solving advice poses serious challenges.
Agents’ full-body emotive behaviors must support expressive movements and visually
complement the problem-solving advice they deliver.  Moreover, these behaviors must be
planned and coordinated in realtime in response to learners’ progress.  In short, to create the
illusion of life typified by well crafted animated characters, animated pedagogical agents must
be able to communicate through both visual and aural channels.

To address these issues, this paper proposes the emotive-kinesthetic behavior sequencing
framework for dynamically sequencing lifelike pedagogical agents’ full-body emotive
expression. Creating an animated pedagogical agent with this framework consists of a three
phase process:
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1. Emotive Pedagogical Agent Behavior Space Design: Creating a behavior space populated
with emotive behaviors with full-body movements, including facial expressions with eyes,
eyebrows, and mouth, and gestures with arms and hands.

2. Speech Act-Based Behavior Space Structuring: Constructing a behavior space in which
pedagogical speech acts are associated with their emotional intent and their kinesthetic
expression.

3. Full-body Emotive Behavior Sequencing: Creating an emotive-kinesthetic behavior
sequencing engine that operates in conjunction with an explanation system to dynamically
plan full-body emotive behaviors in realtime by selecting relevant       pedagogical speech
acts and then assembling appropriate visual behaviors.

This framework has been used to implement COSMO (Figure 1), a lifelike pedagogical
agent with realtime full-body emotive expression. COSMO inhabits the INTERNET ADVISOR, a
learning environment for the domain of Internet packet routing.  An impish, antenna-bearing
creature who hovers about in the virtual world of routers and networks, he provides advice to
learners as they decide how to ship packets through the network to specified destinations.
Previous work with the COSMO  project focused on techniques to enable lifelike agents to
dynamically create deictic references to particular objects in learning environments agents
(Lester et al., 1999b).  Here, we propose the emotive-kinesthetic behavior sequencing
framework and illustrate its use in COSMO’s realtime emotive behavior sequencing as it corrects
learners’ misconceptions detected in the course of their problem-solving activities.

This article is structured as follows. Section 2 outlines the communicative functionalities
that animated pedagogical agents should provide to learners.  Section 3 describes the emotive-
kinesthetic behavior sequencing framework, including methods for designing emotive-
kinesthetic behavior spaces, for structuring these spaces with pedagogical speech acts, and the
algorithm for dynamically sequencing emotive behaviors in realtime.  Section 4 presents an
implemented animated pedagogical agent, COSMO, that employs the emotive-kinesthetic
behavior sequencing framework, illustrates its operation in a problem-solving episode, and
describes an informal focus group study with COSMO.  The article concludes with a discussion
of directions for future work.

Figure 1.  COSMO and the INTERNET ADVISOR learning environment
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PEDAGOGICAL AGENTS

Although knowledge-based graphical simulations (Hollan et al., 1987) are virtually de rigueur
in contemporary learning environments, it is only in recent years, as a result of rapid advances
in multimedia technologies, that full-scale intelligent multimedia interfaces have become
standard components through which tutoring systems can provide clear visual feedback to
learners.  A particularly promising line of work underway outside of the intelligent tutoring
systems community is that of lifelike animated intelligent agents.  Because of these agents’
compelling visual presence and their high degree of interactivity, there has been a surge of
interest in believable intelligent characters (André & Rist, 1996; Bates, 1994; Blumberg &
Galyean, 1995; Granieri et al., 1995; Kurlander & Ling, 1995), including the runtime
incorporation of gesture and facial expression in communication (Cassell, 1999; Pelechaud et
al., 1996).

As a result of these developments, the ITS community is now presented with opportunities
for exploring new technologies for pedagogical agents and the roles they can play in
communication.  Work to date on pedagogical agents is still in its infancy, but progress is being
made on two fronts.  First, research has begun on a variety of pedagogical agents that can
facilitate the construction of component-based tutoring system architectures and communication
between their modules (Chan and Chan, 1997), provide multiple context-sensitive pedagogical
strategies (Frasson, 1997), reason about multiple agents in learning environments (Eliot &
Woolf, 1996), provide assistance to trainers in virtual worlds (Maraella & Johnson, 1998), and
act as co-learners (Dillenbourg et al., 1997).  Second, projects have begun to investigate
techniques by which animated pedagogical agents can behave in a lifelike manner to
communicate effectively with learners both visually and verbally (André & Rist, 1996; Johnson
et al., 1998; Paiva & Machado, 1998; Rickel & Johnson, 1997; Stone & Lester, 1996). It is this
second category, lifelike animated pedagogical agents, that is the focus of the work described
here.

Creating lifelike pedagogical agents that are endowed with facilities for exhibiting learner-
appropriate emotive behaviors potentially provides four important educational benefits (Elliott
et al., 1999). First, a pedagogical agent that appears to care about a learner’s progress may
convey to the learner that it and she are “in things together” and may encourage the learner to
care more about her own progress. Second, an emotive pedagogical agent that is in some way
sensitive to the learner’s progress may intervene when she becomes frustrated and before she
begins to lose interest.  Third, an emotive pedagogical agent may convey enthusiasm for the
subject matter at hand and may foster similar levels of enthusiasm in the learner.  Finally, a
pedagogical agent with a rich and interesting personality may simply make learning more fun.
A learner that enjoys interacting with a pedagogical agent may have a more positive perception
of the overall learning experience and may consequently opt to spend more time in the learning
environment.

In short, lifelike pedagogical agents seem to hold much promise because they could play a
central communicative role in learning environments.  Through an engaging persona, a lifelike
pedagogical agent could simultaneously provide students with contextualized problem-solving
advice and create learning experiences that offer high visual appeal.  Perhaps as a result of the
inherent psychosocial nature of learner-agent interactions and of humans’ tendency to
anthropomorphize software (Reeves & Nass, 1998), recent evidence suggests that ITSs with
lifelike characters can be pedagogically effective (Lester et al., 1997b), while at the same time
having a strong motivating effect on learners (Lester et al., 1997a).  For example, the latter
study, which was conducted with one hundred middle school students, demonstrated that well-
designed pedagogical agents are perceived as being very helpful, credible, and entertaining.  It
is even becoming apparent that particular features, e.g., personal characteristics, of lifelike
agents, can have an important impact on learners’ acceptance of them (Hietala & Niemirepo,
1998).

In the same manner that human-human communication is characterized by multi-modal
interaction utilizing both the visual and aural channels, agent-human communication can be
achieved in a similar fashion.  As master animators have discovered repeatedly over the past
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century, the quality, overall clarity, and dramatic impact of communication can be increased
through the creation of emotive movement that underscores the affective content of the message
to be communicated:

Situated Emotive Communication: By carefully orchestrating facial expression,
full-body behaviors, arm movements, and hand gestures, animated pedagogical
agents could visually augment verbal problem-solving advice, give encouragement,
convey empathy, and perhaps increase motivation.

Although work has been underway for several years on two large-scale projects involving
lifelike pedagogical agents, STEVE and DESIGN-A-PLANT, neither has focused on runtime
inference techniques for providing visual feedback via the exhibition of continuous full-body
emotive behaviors.  The STEVE (Soar Training Expert for Virtual Environments) project has
produced a full complement of animated pedagogical agent technologies for teaching procedural
knowledge.  Although the STEVE agent can create on-the-fly demonstrations and explanations
of complex devices and its creators are beginning to examine more complex animations (Rickel,
1998), its focus to date has been on the realtime generation of behaviors using a visually simple
agent, originally  based on the JACK model (Granieri et al., 1995).  The DESIGN-A-PLANT

project (Stone & Lester, 1996) has produced effective animated pedagogical agent technologies
that are the creation of a multidisciplinary team of ITS researchers and animators.  However,
research on its behavior sequencing mechanisms has not addressed realtime inference about the
creation of full-body emotive behaviors.  Finally, initial forays have begun on emotion
generation in pedagogical environments (Abou-Jaoude & Frasson, 1998) and reasoning about
learners’ emotions (de Vicente & Pain, 1998), indicating the potential richness offered by
affective learner-system interactions.

Animated pedagogical agents can be introduced into learning environments with a variety
of forms and functions.  In this work, we make the following three simplifying assumptions
about the role and form of the agent.  First, it assumes that only one agent inhabits the learning
environment and this agent serves as a “coach.”  Second, it assumes that a full-body agent is
used.  While emotions can be communicated solely with facial expressions, employing a body
including arms enables the agent to gesture emotively.  Third, it assumes that an explanation
system is used to drive the content and organization of the agent’s advice.  While the
explanation system’s decisions may be informed by a student model or plan recognition
system—in fact the implemented explanation system uses a simple overlay student model (Carr
& Goldstein, 1977)—the emotive behavior sequencing framework described here only requires
that the explanation system somehow provides the content and organization of the advice that
will be presented.

THE EMOTIVE-KINESTHETIC BEHAVIOR FRAMEWORK

To enable a lifelike pedagogical agent to play an active role in facilitating learners’ progress, its
behavior sequencing engine must be driven by learners’ problem-solving activities.  As learners
solve problems, an explanation system monitors their actions in the learning environment
(Figure 2).  When they reach an impasse, as indicated by extended periods of inactivity or sub-
optimal problem-solving actions, the explanation system is invoked to construct an explanation
plan that will address potential misconceptions.  By examining the problem state, a curriculum
information network, and a user model, the explanation system determines the sequence of
pedagogical speech acts that can repair the misconception and passes the types of the speech
acts to the emotive-kinesthetic behavior sequencing engine.  By assessing the speech act
categories and then selecting full-body emotive behaviors that the agent can perform to
communicate the affective impact appropriate for those speech act categories, the behavior
sequencing engine identifies relevant behaviors and binds them to the verbal utterances
determined by the explanation system.  The behaviors and utterances are then performed by the
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agent in the environment and control is returned to the learner who continues her problem-
solving activities.

Figure 2.  The Emotive-Kinesthetic Behavior Sequencing Architecture

The techniques for designing emotive-kinesthetic behavior spaces, structuring them with
pedagogical speech act categories, and the computational mechanisms that drive the emotive
behavior sequencing engine are described below.

Emotive-Kinesthetic Behavior Space Design

To exhibit full-body emotive behaviors, a pedagogical agent’s behavior sequencing engine must
draw on a large repertoire of behaviors that span a broad emotional spectrum.  For many
domains, tasks, and target learner populations, agents that are fully expressive are highly
desirable.  To this end, the first phase in creating a lifelike pedagogical agent is to design an
emotive-kinesthetic behavior space that is populated with physical behaviors that the agent can
perform when called upon to do so.  Because of the aesthetics involved, an agent’s behaviors are
perhaps best designed by a team that includes character animators.  Creating a behavior space
entails setting forth precise visual and audio specifications that describe in great detail the
agent’s actions and utterances, rendering the actions, and creating the narrative utterances.1  By
exploiting the character behavior canon of the animated film (Culhane, 1988) (which itself drew
on movement in theater) and then adapting it to the specific demands posed by learning
environments, we can extract general emotive animation techniques that artists in this medium
have developed over the past hundred years.

                                                     
1 An important technical decision in creating an emotive behavior space is the decision of whether the
agent’s utterances will be created by a voice actor or via natural language generation (NLG) coupled with
speech synthesis.  Although NLG plays a central role in the authors’ research programme, e.g., (Lester &
Porter, 1997), because of the current quality of speech synthesizers, it was determined that the COSMO

agent’s behavior space should be populated with utterances created by a professional voice actor.  As
speech synthesis improves, the authors believe that NLG for emotive pedagogical agents will become an
increasingly important research issue.
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Stylized Emotive Behaviors

It is important to draw a critical distinction between two approaches to animated character
realization, life-quality vs. stylized (Culhane, 1988).  In the life-quality approach, character
designers and animators follow a strict adherence to the laws of physics.  Characters
musculature and kinesthetics are defined entirely by the physical principles that govern the
structure and movement of human (and animal) bodies.  For example, when a character become
excited, it raises its eyebrows and its eyes widen.  In contrast, in the stylized approach, although
a consistency is obeyed, the laws of physics (and frequently the laws of human anatomy and
physiology) are broken at every turn.  When a character animated with the stylized approach
becomes excited, e.g., as in the animated films of Tex Avery (Culhane, 1988), it may express
this emotion in an exaggerated fashion by rising from the ground, inducing significant changes
to the musculature of the face, and bulging out its eyes.  Not all stylized animation features such
exaggerated emotive overstatement—for learning environments, a more restrained approach is
called for—but its ability to communicate with dramatic visual cues can be put to good use in
the realtime animation of pedagogical agents.  For example, when a learner solves a complex
problem in the INTERNET ADVISOR environment, the COSMO agent smiles broadly and uses his
entire body to applaud the learner’s success.

Expressive Range

To be maximally entertaining, animated characters must be able to express many different kinds
of emotion. As different social situations arise, they must be able to convey emotions such as
happiness, elation, sadness, fear, envy, shame, and gloating.  In a similar fashion, because
lifelike pedagogical agents should be able to communicate with a broad range of speech acts,
they should be able to visually support these speech acts with an equally broad range of emotive
behaviors.  However, because their role is primarily to facilitate positive learning experiences,
only a critical subset of the full range of emotive expression is useful for pedagogical agents.
For example, they should be able to exhibit body language that expresses joy and excitement
when learners do well, inquisitiveness for uncertain situations (such as when rhetorical
questions are posed), and disappointment when problem-solving progress is less than optimal.
The COSMO agent, for instance, can scratch his head in wonderment when he poses a rhetorical
question.

Behavior Space Structuring with Pedagogical Speech Acts

An agent’s behaviors will be dictated by design decisions in the previous phase, which to a
significant extent determine its personality characteristics.  Critically, however, its runtime
emotive behaviors must be somehow modulated to a large degree by ongoing problem-solving
events driven by the learner’s activities. Consequently, after the behavior space has been
populated with expressive behaviors, it must then be structured to assist the sequencing engine
in selecting and assembling behaviors that are appropriate for the agent’s communicative goals.
Although, in principle, behavior spaces could be structured along any number of dimensions
such as degree of exaggeration of movement or by type of anatomical components involved in
movements, experience with the implemented agent suggests that the most effective means for
imposing a structure is based on speech acts.  While it could be indexed by a full theory of
speech acts, our research to date leverages a highly specialized collection of speech acts that
occur in pedagogical dialogue with great frequency.

Given the primacy of the speech act in this approach, the question then arises about the
connection between rhetorical goals on the one hand and physical behaviors on the other.  This
linkage is supplied by emotive categories inspired by foundational research on affective
reasoning.  Work on the Affective Reasoner (AR) (Elliott, 1992) uses Ortony’s computational
model of emotion to design agents’ that can respond emotionally.  In the AR framework, agents
are given unique pseudo-personalities modeled as both an elaborate set of appraisal frames
representing their individual goals (with respect to events that arise), principles (with respect to
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perceived intentional actions of agents), preferences (with respect to objects), moods (temporary
changes to the appraisal mechanism), and as a set of about 440 differentially activated channels
for the expression of emotions (Elliott, 1992; Elliott & Ortony, 1992).  Situations that arise in
the agents’ world may map to twenty-six different emotion types (e.g., pride, as approving of
one’s own intentional action), twenty-two of which were originally theoretically specified by
Ortony and his colleagues (Ortony et al., 1988).  Qualities, and intensity, of emotion instances
in each category are partially determined by some subset of roughly twenty-two different
emotion intensity variables (Elliott & Siegle, 1993).  To communicate with users, Elliott’s
implementation of the AR framework uses line-drawn facial expressions, which are morphed in
real time.

The emotive-kinesthetic behavior sequencing framework exploits the fundamental intuition
behind the AR, namely, that the emotive states and communication are intimately interrelated.
It creates emotive annotations that connect pedagogical speech acts to relevant physical
behaviors.  Computationally, this is accomplished by employing a model of communication that
places pedagogical speech acts in a one-to-one mapping to emotive states: each speech act type
points to the behavior type that expresses it.  To illustrate, the COSMO agent deals with cause
and effect, background, assistance, rhetorical links, and congratulatory acts as follows:

•  Congratulatory: When a learner experiences success, a congratulatory speech act
triggers an admiration emotive intent that will be expressed with behaviors such as
applause, which depending on the complexity of the problem will be either restrained or
exaggerated.  The desired effect is to encourage the learner.

•  Causal: When a learner requires problem-solving advice, a causal speech act is
performed in which the agent communicates an interrogative emotive intent that
will be expressed with behaviors such as head scratching or shrugging. The desired
effect is to underscore questioning.

•  Deleterious effect: When a learner experiences problem-solving difficulties or when the
agent needs to pose a rhetorical question with unfortunate consequences,
disappointment is triggered which will be expressed with facial characteristics and
body language that indicate sadness.  The desired effect is to build empathy.

•  Background and Assistance: In the course of delivering advice, background or
assistance speech acts trigger inquisitive intent that will be expressed with
“thoughtful” restrained manipulators such as finger drumming or hand waving. The
desired effect is to emphasize active cognitive processing on the part of the agent.

The one-to-one mapping is used to enact a three-fold adaptation of the AR framework.
First, while the AR is intended to be generic, the emotive-kinesthetic behavior framework is
designed specifically to support problem-solving advisory communication.  Second, while the
AR framework is enormously complex, the emotive-kinesthetic framework employs only the
speech acts and only the emotive intentions that arise frequently in tutorial situations.2  Third,
while work on computational models of social linguistics indicates that the combination of
speech and gesture in human-human communication is enormously complex (Cassell et al.,
1994), the one-to-one mapping approach turns out in practice to be a reasonable starting point
for realtime emotive behavior sequencing.

To create a fully operational lifelike agent, the behavior space includes auxiliary
structuring to accommodate important emotive but non-speech-oriented behaviors such as
dramatic entries into and exits from the learning environment.  Moreover, sometimes the agent
must connect two behaviors induced by multiple utterances that are generated by two speech
acts.  To achieve these rhetorical link behaviors, it employs subtle “micro-movements”
such as slight head nods or blinking.

                                                     
2 An extensive discussion of adapting the Affective Reasoning framework to emotive models of tutoring
may be found in (Elliott et al., 1999).
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Dynamic Emotive Behavior Sequencing

As students solve problems in the learning environment, the pedagogical agent provides advice
to assist them.  In the course of observing a learner attempt different solutions, the agent
explains concepts and gives hints.  It provides advice in two situations: (1) when a student
pauses for an extended period of time, which may signal a problem-solving impasse, and (2)
when a learner proposes a solution that is either incorrect or sub-optimal.  When it has been
determined that the agent should provide advice, the emotive behavior sequencing engine is
invoked.  First, an explanation planner determines the content and structure of explanations by
examining a curriculum information network, a simple overlay user model (Carr & Goldstein,
1977), the current problem state, and the learner’s proposed solution.  It constructs a sequence
of explanatory behaviors and explanations (typically 6-10 utterances) which will collectively
constitute the advice that will be delivered.  In this way, problem-solving actions performed by
the learner are punctuated by customized explanations delivered by the agent.

To dynamically orchestrate full-body emotive behaviors that achieve situated emotive
communication, complement problem-solving advice, and exhibit realtime visual continuity, the
emotive behavior sequencing engine selects and assembles behaviors in realtime.  By exploiting
the pedagogical speech act structuring, the sequencing engine navigates coherent paths through
the emotive behavior space to weave the small local behaviors into continuous global behaviors.
Given a communicative goal G, such as explaining a particular misconception that arose during
problem solving, a simple overlay user model, a curriculum information network, and the
current problem state, it employs the following algorithm to select and assemble emotive
behaviors in realtime:

1. Determine the pedagogical speech acts A1…An used to achieve G. When the
explanation system is invoked, employ a top-down goal decomposition planner to
determine a set of relevant speech acts.  For each speech act Ai, perform steps (2)-(5).

2. Identify a family of emotive behaviors Fi to exhibit when performing Ai. Using the
emotive annotations in the behavior speech act structuring, index into the behavior
space to determine a relevant family of emotive behaviors Fi.

3. Select an emotive behavior Bi that belongs to Fi. Either by using additional contextual
knowledge, e.g., the level of complexity of the current problem, or simply randomly
when all elements of Fi are relevant, select an element of Fi.

4. Select a verbal utterance Ui from the library of utterances that is appropriate for
performing Ai. Using a audio library of voice clips that is analogous to physical
behaviors, extract a relevant voice clip.

5. Coordinate the exhibition of Bi with the speaking of Ui. Couple Bi with Ui on the
evolving timeline schedule.

6. Establish visual continuity between B1…Bn. Examine the final frame of each Bi,
compare it with the initial frame of each Bi+1, and if they differ, introduce transition
frames between them.

First, the behavior sequencing engine must determine the content and organization of the
problem-solving advice to be communicated (Step 1).  To do so, it performs a function that is
analogous to that performed by discourse planners of natural language generation systems
(Cawsey, 1992; Hovy, 1993; Lester & Porter, 1997; Mittal, 1993; Moore, 1995; Suthers, 1991).
Natural language generators typically consist of a discourse planner that determines the content
and structure of multi-sentential texts and a realization system that plans the surface structure of
the resulting prose.  Analogously, given a communicative goal, the emotive behavior
sequencing engine uses the by-now-classic techniques of goal decomposition planning to
determine the content and structure of the agent’s explanations.  For example, the particular
class of explanations focused on in the current agent implementation were inspired by McCoy’s
seminal work on discourse schemata for correcting misconceptions (McCoy, 1989-90).  The
sequencing engine typically first points out the strong points (if any) of the learner’s proposed
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solution, then compares and contrasts it with the properties that an ideal solution would exhibit.
The leaves of the resulting hierarchical plan are instantiated speech acts that will achieve the
initial top-level communicative goal.

For each speech act Ai identified by the sequencing engine above, it performs the following
actions.  First, during Step 2, it identifies a family of emotive behaviors Fi that can be exhibited
while the agent is performing Ai.  It accomplishes this by employing pedagogical speech act
indices that have been used to index the agent’s physical behavior space.  For example, a
congratulatory speech act created during top-down planning will cause the sequencing
engine to identify the admiration emotive behavior family.

Next, during Step 3, it selects one of the physical behaviors in Fi.  By design, all of the
behaviors have the same emotive intent, so they are all legitimate candidates.  However,
because a key aspect of agent believability is exhibiting a variety of behaviors, the behavior
space was constructed so as to enable the agent to perform a broad range of facial expression
and gestures.  Hence, the sequencing engine selects from a collection of behaviors, any of which
will effectively communicate the relevant emotive content.  For example, in the current
implementation of the COSMO agent, the behavior sequencing engine makes this decision
pseudo-randomly with elimination, i.e., it randomly selects from among the behaviors in Fi that
have not already been marked as having been performed. After all behaviors in a given Fi have
been performed, they are unmarked, and the process repeats.  Empirical evidence suggests that
this pseudo-random element contributes significantly to believability.

During the final three steps the behavior sequencing engine determines the narrative
utterances to accompany the physical behaviors and assembles the specifications on an evolving
timeline. In Step 4, it selects the narrative utterances Ui, which are of three types: connective
(e.g., “but” or “and”), phrasal, e.g., “this subnet is fast” or sentential, i.e., a full sentence.
Because each instantiated speech act specifies the verbal content to be communicated, narrative
utterance selection is straightforward.  In Step 5, it lays out the physical behaviors and verbal
utterances in tandem on a timeline.  Because the emotive physical behaviors were determined
by the same computational mechanism that determined the utterances, the sequencing engine
can couple their exhibition to achieve a coherent overall behavior.

Finally, in Step 6, it ensures that the visual continuity is achieved by introducing
appropriate transition frames.  To do so, for each of the visual behaviors selected above, it
inspects the first and final frames.  If adjacent behaviors are not visually identical, it splices in
visual transition behaviors and installs them, properly sequenced into the timeline.  As it
delivers advice, sometimes the agent must refer to objects in the environment through judicious
combination of gesture, locomotion, and speech.  It employs a deictic behavior planner (Lester
et al., 1999b) to make these decisions.  In addition, for purposes of believability, the agent is
always in subtle but constant motion, even when it is not delivering advice. COSMO, for
example, typically performs “anti-gravity bobbing” and blinking behaviors as learners solve
problems.

The sequencing engine passes all behaviors and utterances to the learning environment,
which cues them up and orchestrates the agent’s actions and speech in realtime.  The net effect
of the sequencing engine’s activities is the learner’s perception that an expressive lifelike
character is carefully observing their problem-solving activities and behaving in a visually
compelling manner.  The resulting behaviors are then exhibited by the agent in the learning
environment and control is immediately returned to the learner who continues her problem-
solving activities.

AN IMPLEMENTED EMOTIVE PEDAGOGICAL AGENT

The emotive-kinesthetic behavior sequencing framework has been implemented in COSMO, a
lifelike (stylized) pedagogical agent that inhabits the INTERNET ADVISOR learning environment.
COSMO and the INTERNET ADVISOR environment are implemented in C++ and employ the
Microsoft Game Software Developer’s Kit (SDK). COSMO’s behaviors run at 15 frames/second
with 16 bits/pixel color on a Pentium Pro 200 Mhz PC with 128 MB of RAM.  He has a head
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with movable antennae and expressive blinking eyes, arms with bendable elbows, hands with a
large number of independent joints, and a body with an accordion-like torso.  His speech was
supplied by a voice actor. COSMO, as well as the routers and subnets in the virtual Internet
world, were modeled and rendered in 3D on SGIs with Alias/Wavefront. The resulting bitmaps
were subsequently post-edited with Photoshop and AfterEffects on Macintoshes and transferred
to PCs where users interact with them in a 21/2D environment. COSMO can perform a variety of
behaviors including locomotion, pointing, blinking, leaning, clapping, and raising and bending
his antennae. His verbal behaviors include 240 utterances ranging in duration from 1-20
seconds.

COSMO’s behavior sequencing engine operates according to the framework outline above.
Given a request to explain a concept or to provide a hint, the behavior planner selects the
explanatory content by examining the curriculum information network (a partially ordered
structure of topics and skills) and the user model (a representation of the individual problem-
solving skills previously demonstrated by the learner).  Explanatory content is determined in
large part by the current problem state, which includes both the logical state of the problem and
the student’s proposed solution.  Problems in the INTERNET ADVISOR are defined by factors
such as the current packet’s destination address, subnet type, IP numbers for the computers and
routers on the current subnet, and network congestion.

Learners interact with COSMO as they study network routing mechanisms by navigating
through a series of subnets.  Given a packet to escort through the Internet, they direct it through
networks of connected routers.  At each subnet, they may send their packet to a specified router
and view adjacent subnets.  By making decisions about factors such as address resolution and
traffic congestion, they learn the fundamentals of network topology and routing mechanisms.
Helpful, encouraging, and with a bit of attitude, COSMO explains how computers are connected,
how routing is performed, what types of networks have particular physical characteristics, how
address schemes work, and how traffic considerations come into play.  Learners’ journeys are
complete when they have successfully navigated the network and delivered their packet to the
proper destination.

Suppose a student has just routed her packet to a fiber optic subnet with low traffic.  She
surveys the connected subnets and selects a router which she believes will advance it one step
closer to the packet’s intended destination.  Although she has chosen a reasonable subnet, it is
sub-optimal because of non-matching addresses, which will slow her packet’s progress.
Working in conjunction with the deictic behavior planner, the emotive behavior planner chooses
pedagogical speech acts and the relevant emotive behaviors as follows.

•  State-Correct(Subnet-Type): The learning environment determines that the agent
should interject advice and invokes the sequencing engine.  As a result of the deictic
behavior planner’s directives, COSMO moves towards and points at the onscreen subnet
information and says, “You chose the fastest subnet.”

•  State-Correct(Traffic): COSMO then tells the student that the choice of a low traffic
subnet was also a good one.  The gesture focus history indicates that, while the type of
subnet has already been the subject of a deictic reference, the traffic information has
not.  COSMO therefore moves to the onscreen congestion information and points to it.
However, the utterance focus history indicates that he has mentioned the subnet in a
recent utterance, he pronominalizes the subnet as “it” and says, “Also, it has low
traffic.”

•  Congratulatory(): Responding to a congratulatory speech act, the sequencing engine
selects an admiration emotive intent which is realized with an enthusiastic applauding
behavior as COSMO exclaims, “Fabulous!”

•  Causal(): The sequencing engine’s planner selects a causal speech act, which causes the
interrogative emotive behavior family to be selected.  These include actions such as
head scratching and shrugging, for which the desired effects are to emphasize a
questioning attitude.  Hence, because COSMO wants the student to rethink her choice, he
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scratches his head and poses the question, “But more importantly, if we sent the packet
here, what will happen?”

•  Deleterious-Effect(Address-Resolution): After the causal act, the sequencing engine’s
planner now selects a deleterious-effect speech act, which causes it to index into the
disappointment behavior family.  It includes behaviors that indicate sadness, which is
intended to build empathy with the learner.  COSMO therefore informs the learner of the
ill-effect of choosing that router as he takes on a sad facial expression, slumping body
language, and dropping his hands, and says, “If that were the case, we see it doesn’t
arrive at the right place.”

•  Rationale(Address-Resolution): To explain the reason why the packet won’t arrive at
the correct destination, COSMO adds, “This computer has no parts of the address
matching,” as he moves and gestures to the problematic computer.

•  Background(Address-Resolution): The sequencing engine has selected a  background
speech act.  Because all background and assistance speech acts cause the sequencing
engine to index into the inquisitive behavior family, it obtains one of several
“thoughtful” restrained manipulators such as hand waving.  In this case, it selects a form
of finger tapping which he performs as he explains, “Addresses are used by networked
computers to tell each other apart.”

•  Assistance(Address-Resolution): Finally, COSMO assists the learner by making a
suggestion about the next course of action to take.  Because she has committed several
mistakes on address resolution problems, COSMO provides advice about correcting her
decision by pointing to the location of the optimal computer and stating, “This router
has two parts of the address matching.”

The emotive-kinesthetic behavior sequencing framework has been “stress tested” in a very
informal focus group study in which 10 students interacted with COSMO for approximately half
an hour each.  The subjects of the study were 7 men and 3 women with ages ranging from 14 to
54.  All of the subjects expressed genuine delight in interacting with COSMO.  Their typical
reaction was that he was fun, engaging, interesting, and full of charisma.  Taking into account
the important caveat that the study was very limited, the findings are nonetheless informative.
Although some subjects voiced the opinion that COSMO was overly dramatic, almost all
exhibited particularly strong positive responses when he performed the congratulatory
behaviors.  In short, they seemed to find him very entertaining and his advice very helpful.

It is also important to note the limitations of the framework.  First, because the sequencing
engine does not employ a natural language generation system, it’s flexibility is necessarily
limited by the narrative utterances of the behavior space.  As the quality of speech produced by
synthesizers improves, generation will undoubtedly come to the forefront of research on lifelike
pedagogical agents.  Second, the subjects’ perception that COSMO is overly dramatic is a by-
product of his initial design by the animation team.  In creating pedagogical agents, it is critical
to take into account the target learner audience, and an important feature of this is the
personality characteristics of the users themselves (Isbister & Nass, 1998). Third, in interacting
with COSMO, it quickly becomes clear that his emotions tend to come and go very quickly.
While this is certainly in keeping with the stylized approach to character animation, it could
become a distraction over time.  Further theoretical work needs to be done to create sequencing
engines that smooth out emotive transitions and provide mechanisms for the attenuation of
emotive expression.

CONCLUSIONS AND FUTURE WORK

Because of their strong lifelike presence, animated pedagogical agents offer significant potential
for playing the dual role of providing clear problem-solving advice and keeping learners highly
motivated. By endowing them with the ability to exhibit full-body emotive behaviors to achieve
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situated emotive communication, to complement problem-solving advice, and to exhibit
realtime visual continuity, an emotive behavior sequencing engine can select and assemble
expressive behaviors in realtime.  In the emotive-kinesthetic behavior sequencing framework for
dynamically planning lifelike pedagogical agents’ full-body emotive expression, the behavior
sequencing engine navigates a behavior space populated with a large repertoire of full-body
emotive behaviors.  By exploiting the structure provided by pedagogical speech act categories,
it can weave small expressive behaviors into larger visually continuous ones that are then
exhibited by the agent in response to learners’ problem-solving activities.

This work represents a small step towards the larger goal of creating fully interactive and
fully expressive lifelike pedagogical agents. To make significant progress in this direction, it
will be important to develop a comprehensive theory of pedagogical speech acts and leverage
increasingly sophisticated computational models of affective reasoning.  We will be addressing
the limitations of the framework noted above and pursuing these lines of investigation in our
future work.
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