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Abstract:  One problem that commonly faces hypertext users, particularly in educational
situations, is the difficulty of identifying pages of information most relevant to their current
goals or interests. In this paper, we discuss the technical feasibility and the utility of applying
machine learning algorithms to generate personalised adaptation on the basis of a user’s
browsing history in hypertext, without additional input from the user. In order to investigate the
viability of this approach, we developed a Web-based information system called MLTutor. The
design of MLTutor aims to remove the need for pre-defined user profiles and replace them with
a dynamic user profile-building scheme in order to provide individual adaptation. In MLTutor,
this adaptation is achieved by a combination of conceptual clustering and inductive machine
learning algorithms. An evaluation technique that probes the detailed effectiveness of the
adaptation is presented. The use of dynamic user profiles has been shown to be technically
feasible; however, while a superficial evaluation indicates that it is educationally effective, the
more thorough evaluation performed here shows that the positive results may be attributed to
other causes. This demonstrates the need for thorough evaluation of adaptive hypertext systems.

INTRODUCTION

The idea of an intelligent personal assistant is not new. In the early 80's Michalski (1980)
anticipated that individuals, in the expanding information society predicted by Bush (1945),
would need intelligent personal assistants to cope with the overwhelming amounts of available
information and the complexity of every day decision making. In addition, Michalski (1980)
proposed that the knowledge and the function of such (computer based) assistants should be
dynamic in order to adapt themselves to changing demands; in other words any such systems
should be able to learn.

Traditionally, most research on computer based (machine) learning has dealt with the
development of techniques for solving engineering problems and many of the systems
developed have been tested on simplified artificial problems (Reich, 1994). Consequently, the
machine learning research field has historically been very rich in terms of theoretical
developments but lacks practical applications with direct links between theory and practice.
This is particularly noticeable in the field of adaptive educational hypermedia, where many
developments are restricted to small, hand-crafted systems and omit thorough evaluations of
utility.

mailto:serengul1@mdx.ac.uk
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The research presented in this paper is an attempt to bridge the gap between theory and
practice in the domain of WWW-based systems. The World Wide Web (WWW) is an excellent
mechanism for the dissemination of information and a few WWW-based systems can provide
support by adapting material to the needs of a user. A number of these systems employ machine
learning techniques (e.g. NewsWeeder (Lang, 1995); Magi (Payne and Edwards, 1997);
WebWatcher (Armstrong et al, 1995); LAW (Edwards et al, 1996); MANIC (Stern and Woolf,
2000)). However, the key challenge in such systems is to be able to capture an individual user’s
preferences and specific information needs and utilise this information to adapt the environment
to the user. These systems do not meet the criterion for the ideal adaptive system as described
by Brusilovsky (1996):

 “ … while the user is simply working in an application system, the
adaptation component watches what the user is doing, collects the data
describing user’s activity, processes these data to build the user model, then
provides an adaptation. Unfortunately, such an ideal situation is very rarely
met in adaptive hypermedia systems…”.

With few exceptions, such as the referrer page based personalisation of PWW (Kushmerick
et al, 2000), existing systems intrude by needing to interrogate users about their requirements or
interests. This can be in the form of an initial registration process where user needs are assessed,
or during interaction with the system in the form of questions or the provision of relevance
feedback. The information gathered in this process is typically used to allocate a pre-defined
stereotypical profile to a user, which is used to control adaptation (e.g. Pazzani et al, 1996). The
development of such profiles is a very time consuming and laborious task and consequently
most prototypes are restricted to one domain (Edwards et al, 1997). The knowledge bases of
these systems are likely to be "hand-crafted" (Hohl et al, 1996). There is an overhead in
generating such stereotypical profiles and a danger that an inappropriate one may be selected for
a user.

The work reported here addresses the ideal as outlined by Brusilovsky: basing adaptation
on browsing history. No additional feedback is required from a user and, by using machine
learning techniques to dynamically analyse the browsing history, there are no requirements for
pre-defined profiles to be constructed.

The prototype system implemented to test our approach is called MLTutor. Although it is
not a tutoring system, it has been designed within an educational context to support task-
oriented learning activity. MLTutor is a hypertext system that provides suggestions to the user
on the basis of their recent browsing history, indicating pages that are relevant to the user’s
current area of interest. MLTutor is designed for use in an educational context on the World
Wide Web (WWW). It aims to provide adaptation without the need for any prior knowledge
regarding a user’s background or interests.

Since work on MLTutor commenced, the idea of analysing information requests as a
primary source of data has become more widespread. The use of clustering techniques to learn a
user profile from a collection of documents has been investigated by Crabtree and Soltysiak
(1998). In their system a user’s word processing documents, emails and Web browsing activities
are monitored to build an interest profile. Highest information bearing words are extracted from
these documents to create vectors which are then clustered. These clusters are presented to users
for feedback regarding relevance to their interests. The clustering technique used in this system
is a top-down statistical approach. Crabtree and Soltysiak (1998) anticipate that the clusters
produced by the system could be used for personalised information retrieval and filtering tasks.
An overriding aim of this work was to reduce, as much as possible, the need for a user to
provide input to the system. As with MLTutor the monitoring conducted by this system is
unobtrusively performed, and keyword based page descriptions are used to cluster the accessed
documents to identify user interests. The system aims to reduce the need for users to provide
feedback but does not completely eliminate this.

The Syskill and Webert (Pazzani et al, 1996) system has similar objectives. The Syskill and
Webert browsing assistant asks users to rate Web pages as interesting or not and learns a user
profile which is used to suggest other pages of possible interest. One profile per topic is learned
which is much more specific than a generic user profile could be. As with MLTutor this system
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used machine learning techniques to build user profiles but relied on users rating documents,
which are used as training data for the algorithms.

We present the system design, focusing on the design and test of the machine learning
component, then describe the evaluation method employed and the results of that evaluation,
and close with a discussion of the implications of this work and its relation to other studies.

SYSTEM DESIGN

MLTutor is a Web-based client server system which has been built with the intention of
combining Internet technology with educational hypertext. The client component of the system
incorporates the user interface and runs in a WWW browser. The client captures data which is
transmitted to the server using Internet technology. The server component of the system is
executed when requested by the client. The server contains a machine learning component
(MLC) which analyses the received data and transmits results to the client. The server based
MLC of MLTutor has been designed so that learning does not require any initial training. This
is achieved by the novel integration of attribute-based clustering and inductive learning
techniques. To enable this learning, an attribute database is embedded within the system; entries
in the database describe pages in terms of presence or not of keywords within the hypertext
content of the system. Within MLTutor the catalogue of keywords is based largely on hypertext
anchors.

The prototype version of MLTutor contains four Web sites covering information on
‘Environmental Science’ issues. These four sites contain a total of 133 pages. There are no
intrinsic links between the four sites. For this reason, bookmark links were provided to allow
transition from one site to another. The Web technology employed in the design of the MLTutor
prototype should ensure extendibility to the wider Internet environment, and to other topics.

The interface of MLTutor has been built in the Java language. The educational hypertext
document is loaded into a Web browser frame following a logon procedure controlled by the
MLTutor applet. Once the user has visited ten pages, the MLTutor applet passes the URL
addresses of the last 10 hypertext pages visited by a user to the server. On the Web server, a
CGI script starts running the Machine Learning Component (MLC) of the system. The output of
this process produces a list of recommended hypertext pages and this information is sent to the
MLTutor applet which consequently updates the information displayed in the suggestion frame
as shown in figure 1.

Figure 1: The MLTutor's suggestions, after 10 pages have been visited.

MLTutor's

suggestions
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The user then has the choice of following links presented on the current page, selecting a
different site (e.g. from the ‘bookmark’ list, or by typing a new URL) or following a link from
the suggestion list.

From this point on, MLTutor presents updated suggestions on a regular basis. It processes
the most recent ten pages at any time; the ten page limit was selected to minimise the browsing
required before learning can take place while also ensuring that the learning algorithms are
presented with a sufficient volume of data to allow effective learning. Alan Hutchinson, the
developer of the conceptual clustering algorithm (Hutchinson, 1994) used in MLTutor, advised
(personal communication) that ten pages is sufficient for the algorithm.

The phases of the learning process in the MLC are illustrated in figure 2 along with their
relation to the attribute database.

  
           Client 

Pages visited 
in MLT utor 

Suggested pages 
fed back to MLT utor 

MLC 

Clustering 
phase 

Rule induction 
phase 

Suggestion 
phase 

Attr ibute database 

Server 

Figure 2: The machine learning component (MLC) design.

In the first phase of the learning process, clustering is utilised to find inherent patterns
within the hypertext pages browsed by a user. To find these inherent classifications within the
hypertext a simple conceptual clustering algorithm (Hutchinson, 1994) is used. Applying this
method eliminates the need for initial "hand-crafted" stereotypical profiles or any additional
input from a user.

In the second phase of learning, as shown in figure 2, a rule induction procedure is
employed to generate rules. These rules describe the concept of cluster membership. This
process works on the basis that the components of a cluster are in some way related to each
other and as such are representative of a concept. Based on this, the content of a cluster is
assumed to represent positive examples of a concept and anything beyond the boundary of the
cluster is taken to be non-representative of that concept. The information concealed in clusters
was initially interpreted by the ID3 algorithm (Quinlan, 1986) to create a set of rules which can
be viewed as dynamically created user profiles. The rules generated by this phase are used to
search for other hypertext pages within the original population of pages, classified as belonging
to the concept.

The results of the learning process in the MLC are the pages classified as belonging to one
of the learned concepts. These hypertext pages are related to those which have already been
explored by a user and form the content of the suggestion list displayed within MLTutor as
depicted in figure 3. The suggestion list has been developed as a plug-in plug-out component;
with this feature disabled the MLTutor system is a simple hypertext browsing system.
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Figure 3: Selection of an entry from the suggestion list reveals the keyword pop-up window.

The clustering and rule induction processes within MLTutor make use of an attribute
database. The first stage of attribute database construction is to assemble a list of keywords
from the Web pages within the system. In the development of MLTutor a manual process was
used to generate a catalogue of keywords which is largely based on embedded hypertext
anchors. The long-term aim for the approach presented here is that it should support users
accessing information from the Web, using meta-data about page content to index pages;
various methods of automating the indexing have been considered, for example using the DC-
Dot tool (UKOLN, 1998); although such an approach has not implemented, it is believed to be
feasible as part of further work.

Having established a keyword catalogue from hyperlinks and other context related words
and phrases from the pages contained within MLTutor, a binary vector was created for each
page to show presence (explicit or implicit) or absence of each keyword on a page. In the binary
representation the absence of a keyword on a page was coded with '0' and the presence with '1'.
Each vector forms a single record of the attribute database as shown in figure 4.

Figure 4: The binary representation of five hypertext pages in the attribute database.

In the clustering process the attribute descriptions of hypertext pages visited by a user are
obtained from the attribute database and, based on these attribute descriptions, the clustering
process puts maximally similar pages into the same clusters.

The role of clustering in the MLC is illustrated in figure 5 below. Let the dark coloured
circles in the first ellipse represent the hypertext pages visited by a user out of the available
pages, then the second ellipse illustrates the results of clustering these hypertext pages. In this
case the clustering has identified three distinct trends within the input and formed three clusters.

page00110000000100000010000000000000000000000000000000010000000100000000000000000000000000………….acid.buildings
page00210000000100000000100000001000000000000000000000000000000000000010010000000000000000………….acid.formation
page00310000000100000000000000000000000000000000000000010000000010000000000000000000000000………….acid.home
page00410000000100000000000000000000000000000000000100010000000000000000000000000000000000………….acid.how.big.problem
page00500110000100010010000000000000000000000000000000010000000100000000000000000000000000………….acid.lakes

Suggested
pages

Web
BrowserSuggested

keywords
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Clustering process

Figure 5 Input pages are partitioned into three clusters.

As a result of the clustering, the components of a cluster are in some way related to each
other and as such are representative of a concept. Based on this the content of a cluster is
assumed to represent positive examples of a concept and anything beyond the boundary of the
cluster is taken to be non-representative of that concept.

The rule induction process generates attribute-based rules defining cluster membership.
These rules are used to search the attribute database for other hypertext pages within the
original population of pages classified by the rules as belonging to the concept. In figure 6 the
grey zones extend the cluster boundaries and represent the hypertext pages suggested by the
MLC as members of the same concept.

Figure 6: The rule induction process allows related pages to be suggested.

In MLTutor, the navigational steps taken by a user are the sole information source analysed
to understand the user’s motivation. This approach is the most unobtrusive way of gathering
information about the user’s interest during a task-oriented information search. Furthermore it
eliminates the need for users to provide relevance feedback and eliminates the need for pre-
defined stereotypical user profiles.

In summary, the machine learning approach proposed here facilitates a flexible,
individualised approach to adaptation without the need for additional input from a user or pre-
classification of users. This is achieved in the MLC by dynamically generating rules which hold
generalised information about a user's current area of interest and are used to construct a
suggestion list. This suggestion list is adaptive, reflecting the on-going browsing activity. While
suggestions will only be related to previously browsed pages, as browsing activity moves into
new areas the suggested items will begin to reflect this new focus. The suggested items will not
be able to suggest topics that a user has given no indication that they are interested in.

The implementation of the suggestion list in MLTutor demonstrates the analysis performed
by the MLC; however, the dynamically generated rules, based on the browsing activity,
effectively form a profile indicating the user’s current area of interest at a point in time. This
profile is continually updated as further pages are accessed and new rules are created.

RULE INDUCTION STRATEGIES

Research in the field of symbolic machine learning (ML) has resulted in the development of a
wide range of algorithms. Typically, learning in these algorithms is accomplished by searching
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through a space of possible hypotheses to find an acceptable generalisation of a concept.
However, ML algorithms vary in their goals, learning strategies, the knowledge representation
languages they employ and the type of training data they use.

ML algorithms that do not require training are referred to as unsupervised algorithms e.g.
clustering and discovery algorithms. Those that require training with a set of pre-classified
examples are referred to as supervised learning algorithms e.g. decision tree learning such as
the Classification algorithm, ID3, C4.5 etc.

Decision tree algorithms accept a training set of attribute-based positive and negative
instances of a concept which must all be presented before learning commences. Top down
induction of decision trees is an approach to decision tree building in which classification starts
from a root node and proceeds to generate sub trees until leaf nodes are created. It is possible to
categorise conjunctive and disjunctive descriptions of concepts with decision trees, and if-then
rules can easily be lifted from the trees.

Typically in decision tree learning, instances are represented by a fixed set of attributes;
Mitchell (1997) states that decision tree learning is well suited when attributes take on a small
number of disjoint values. This maps well to the attribute encoding scheme employed by
MLTutor which is based on the presence or not of keywords in hypertext pages. This suggests
that a decision tree building algorithm is a suitable candidate for the rule induction phase in the
MLC. ID3 (Quinlan, 1986) was initially selected as being simple while providing the necessary
functionality.

In order to test this a number of experiments were carried out. However, upon analysing
the results of these experiments some concerns about the rule induction strategy used in the
MLC were raised. Within the MLC of MLTutor the clustering of pages is used to detect
inherent groupings within the hypertext pages browsed by a user, and the decision tree building
ID3 algorithm is used to reveal information contained within the clusters.

For these experiments an attribute database with 123 keywords was used to test sets of
browsed hypertext pages. Table 1 shows the two clusters created for these pages by the
conceptual clustering algorithm.

Attributes that were common to all pages within the cluster are indicated in bold and
referred to as primary determinants of cluster formation. Other attributes that are shared by only
some of the pages are shown in italic and referred to as secondary determinants of cluster
formation.

Attribute data base containing 123 keyword descriptions

Cluster 1 contains: page 5-7-11

common attributes: 1 2 22

Cluster 2 contains: page 2-3-4-9-10-2-32

common attributes: 31 84 99

Table 1: Two clusters were created.

In this example the ID3 algorithm was applied to the data in the two clusters to induce
decision rules for each cluster. Each cluster in turn was treated as positive training data for the
rule induction process; the negative training data was the pages in the other cluster.

The ID3 algorithm uses an information theoretic heuristic to produce shallower trees by
deciding the order in which to select attributes. The first stage in applying the information
theoretic heuristic is to calculate the proportions of positive and negative training cases that are
currently available at a node. In the case of the root node, this is all the cases in the training set.
A value known as the information needed for the node is calculated using the following formula
where p is the number of positive cases and n is the number of negative cases at the node.
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subtracted from the information needed for the node to give an expected information gain for
attribute A. The information gained by branching on A is therefore Gain (A) = I(p, n) – E(A).

The ID3 algorithm is summarised as follows:

Input:  A training set
Output:  decision trees
1. If all the instances are positive then terminate the process and return the decision tree.
2. If all the instances are negative then terminate the process and return the decision tree
3. Else

Compute the information gain for all attributes, select an attribute with the maximum
information gain, and create a root node for that attribute.

Make a branch from the root for every value of the root attribute.

Assign instances to branches.

Recursively apply the procedure to each branch.

The concept descriptions produced by the ID3 algorithm are in the form of if-then rules
which are used to select other pages to suggest to the user. The rule developed for cluster 1 of
table 1 is depicted in figure 7.

IF
att-no 22 is 1

THEN Yes

Figure 7: The rule generated for cluster 1.

The pages within cluster 1 contain attributes 1, 2 and 22, and the ID3 algorithm needs only
a single attribute, in this case 22, to create a rule describing the cluster. Consequently, only
pages that contain the keyword represented by this attribute are eligible for suggestion using this
rule. Within the context of the MLTutor this was not ideal as the suggestion rule failed to take
into account all primary determinants of the cluster.

This is due to the fact that ID3 maintains a single current hypothesis as it searches through
the space of the given concept. As a result, ID3 is incapable of representing alternative decision
trees which are consistent with the available training data (Mitchell, 1997). In order to rectify
this weakness the SG-1 algorithm was developed as an enhancement of ID3. Prior to using both
the ID3 and the SG1 algorithms in the machine learning component of MLTutor, they were
tested using sample training data, including data from Quinlan (Quinlan, 1983).



ML Tutor

9

THE SG-1 RULE INDUCTION ALGORITHM

The ID3 algorithm was used as the basis for the rule induction phase in the initial prototype of
MLTutor. The algorithm is used to generate classification rules, which are then used to provide
adaptive navigational support. However, as described above, the ID3 algorithm was found not
to be ideally suited to this application.

The idea of replacing ID3 with C4.5 in MLTutor was considered, however, the additional
features introduced by C4.5 were not seen to offer significant benefit due to the nature of the
data in MLTutor. Consequently, the SG-1 algorithm, an enhancement of ID3, was developed.

SG-1 is a decision tree building algorithm based on ID3. Within ID3, if there are several
ways of building the decision tree at a given point, the algorithm takes into account only one of
these. In contrast, SG-1 has the ability to produce multiple decision trees in this scenario and
treats each possible alternative equally, building a subtree for each of them. Conceptually, the
SG-1 algorithm can be visualised as building three-dimensional trees.

The SG-1 algorithm is as follows.

Input:  A training set
Output:  Multiple decision trees

1.

2.

If all the instances are positive or negative then terminate the process and return the
decision tree.

Else
Compute information gain for all attributes. For each attribute with the maximum
information gain create a root node for that attribute.

Make a branch from each root for every value of the root attribute.

Assign instances to branches.

Recursively apply the procedure to each branch.

The consequence of the ID3 enhancement is described in the following example. Suppose
the information theoretic heuristic adds attribute A to the decision tree as the root as shown in
figure 8. If there are two values for attribute A, two branches are added to the tree and the next
attribute is selected.

Attribute : A

Value 1 of
Attr ibute A

Value 2 of
Attribute A

Figure 8: Two values for attribute A.

The information theoretic heuristic is again used to select the next attribute. If two
attributes have the same maximum information gain, say B and C, the ID3 algorithm does not
indicate which of these eligible attributes to select. The SG-1 algorithm builds a subtree for each
of these attributes. The first subtree as seen in figure 9 is built when considering attribute B.



Smith and Blandford

10

Att ri bute :  B At tribute :  B

+ - + -

Att ri bute :  C At tribute : C

+ - + -

Attri bute : A

Figure 9: Multiple attribute eligibility, in this case attribute B is added to the tree.

Similarly, when the SG-1 algorithm considers attribute C, the second eligible attribute, a
second subtree is constructed.

Decision rules from the SG-1 tree are created as for ID3. However, the additional
dimension introduced by SG-1 potentially results in more decision rules being created as SG-1
maintains multiple concept descriptions.

In the example above, four rules for positive classifications are generated and similarly four
rules for negative classifications. In this case the standard ID3 algorithm would have produced
two negative and two positive classification rules only. The additional rules produced by SG-1
take into account alternative primary determinants from the cluster formation process. By using
a disjunction of these rules to search for suggestions, the list of suggestions generated is more
representative of the concept the cluster covers.

The SG1 algorithm was implemented and tested with the conceptual clustering algorithm,
and found to perform satisfactorily, overcoming the shortcomings of ID3 identified in this
context. This was therefore implemented with MLTutor, which was then evaluated using a
battery of techniques to assess different aspects of effectiveness.

EVALUATION

In order to evaluate the effectiveness of the MLC of MLTutor, an empirical study was
conducted. The evaluation aimed to assess the feasibility and also the utility of using machine
learning techniques for the analysis of an individual user’s navigational pattern.

Evaluating a system is an intricate task and, as noted by Hook (1997), it becomes more
difficult if the system is adaptive. In recent years, although adaptive hypertext research has
produced promising results (in terms of assisting personalised information gathering in an
educational context) as reported by Brusilovsky (1996), a weak point of this research field is the
lack of comprehensive empirical studies to measure the usefulness of adaptation within such
systems and between such systems. One reason for this is that there is no standard or agreed
evaluation framework for measuring the value and the effectiveness of adaptation yielded by
adaptive systems.

One typical approach to determining the effectiveness of adaptation has been to compare
the performance of an adaptive system against a version of the system with adaptation disabled.
Hook (1997) states that adaptivity should preferably be an inherent part of a system, and so if it
is removed from the system, the system may not be fully functional.
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In MLTutor, the suggestion list is the adaptive component of the system. When the
suggestion list feature is disabled, the MLTutor system becomes a simple hypertext browsing
system. Consequently, it is feasible to create a non-adaptive version of MLTutor for comparison
purposes. However, we considered additional questions about the details of the adaptation:

•  If the previous ten pages form (typically) three or four clusters, which is the one the user
is most likely to be interested in? The most likely candidates are the cluster containing
the most recently visited page and the one containing most of the recently visited pages.
To address this, two variants of the MLC were implemented, as described below.

•  For a static web structure, it is possible to pre-classify the pages into clusters; while this
would not be possible for the total web, we investigated the relative merits of pre-
classifying against dynamic clustering based on the user’s browsing patterns.

These questions were investigated within one study by comparing the performance of
MLTutor versions containing four variants of the MLC. The four variants were compared with
each other and against a non-adaptive control version.

Cluster selection strategies in MLC

The four versions of MLTutor were constructed with alternative cluster selection strategies as
outlined below. The versions that employ pre-clustering do not use the conceptual clustering
algorithm dynamically or the SG-1 algorithm to generate suggestions.

MLTutor Version 1

Rule induction based on the cluster containing the latest page visited: Within this version of
MLTutor the data passed to the MLC of the system is clustered dynamically based on the most
recent ten pages visited. The pages within the cluster that contains the latest page visited by the
user are treated as positive training data for the SG-1 rule induction process. The negative
training data for the rule induction process are the pages passed to the MLC which are not
within the cluster containing the latest page visited.

MLTutor Version 2

Rule induction based on the most heavily weighted cluster: In this version of MLTutor the
data passed to the MLC of the system is assigned a weight based on how recently the page was
visited by the user. The most recently visited page is given the highest weight and the least
recently visited page is given the lowest weight. A total weight for each cluster generated by the
clustering process is calculated by summing the individual weights of the pages that formed the
cluster. This strategy aims to reduce the impact of the most recent page being a temporary
diversion. The pages within the heaviest cluster are treated as positive training data for the SG-1
rule induction process. The negative training data for the rule induction process are the other
pages passed to the MLC which are not within the heaviest cluster.

MLTutor Version 3

Pre-clustering using the latest page: Within this version of MLTutor the complete set of pages
available within the system were clustered beforehand and these clusters stored within the
system. The stored cluster which contains the last page visited by the user is selected and the
other pages within this cluster, excluding those in the input data passed to the MLC, are selected
for suggestion. This cluster selection strategy would not be suitable for a general domain as the
space of possible pages is not predefined.
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MLTutor Version 4

Pre-clustering using weights: Within this version of MLTutor the complete set of pages
available within the system were clustered beforehand and these clusters stored within the
system. The data passed to the MLC of the system is assigned a weight based on how recently
the page was visited by the user, as per version 2.

Experimental set-up

The evaluation study aimed to compare the adaptive MLTutor against a non-adaptive hypertext
(the same web pages without the suggestion list), and also to compare the alternative adaptation
strategies outlined above. We were interested in users’ perceptions of the different versions, in
whether the adaptive component had a significant effect on their task performance (in terms of
their ability to perform well on a teacher-defined information task) and in whether the
adaptation component had a great influence on user behaviour with the system.

Thirty people were recruited to participate in the empirical study. As many as possible
(about 50%) were environmental science students; the remainder were computer scientists.
Subjects were balanced across versions of MLTutor (so that, as far as possible, equal numbers
of environmental and computer scientists used each version).

An instruction sheet illustrating the MLTutor logon procedure and use of the navigational
tools available within the system was prepared. A version of the instructions, with descriptions
of the adaptive features removed, was also prepared for users of the control version.

An expert on environmental science set 13 questions based on the information covered in
the MLTutor system, and also provided model answers indicating the hypertext pages which
contained the answers. Answers to some of these questions specifically required several pages
to be visited. A marking scheme for answers was established.

The participants were asked to complete the tasks set by the expert using the allocated
variant of MLTutor. Following this, they were asked to complete a short questionnaire on their
views of the system they had used.

Raw data collection

Data for the empirical analysis was captured in several forms:
•  Answer Sheets: In the experiment, participants were asked to answer 13 questions while

browsing the Web documents within MLTutor and provide their answers in written
form. The written answers of the participants were assessed against the model answers.

•  User feedback questionnaire: In order to gather feedback on various aspects of the
system a user feedback form was prepared consisting of two sections. In the first
section, six questions asked for feedback on a scale; in the second section, the
participants were given the opportunity to comment on various features of the system
and provide any other feedback.

•  Log files: During the experiment each participant’s interaction with MLTutor was
recorded in a log file. The MLTutor log files were used to identify the paths taken
through the hypertext to reach pages containing the answers to the set tasks. Log files
are the most effective method of unobtrusively determining how often adaptive features
are being used and to trace interaction with the system.

Measures

The following data was extracted or calculated for the empirical analysis:
•  Participant task results: These were used to see whether better performance was

achieved using an adaptive MLTutor version, and if so which one, compared to the non-
adaptive version. Each answer was marked using the marking scheme devised by the
domain expert.
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•  Time spent to complete tasks: Calculated from log files, this data was used to see
whether total task completion time was reduced by any MLTutor version.

•  Total link usage: Extracted from log files, this data was used to see whether total link
usage was reduced for any MLTutor version, suggesting more purposeful browsing.

•  Total suggestion list link usage: Extracted from log files, this data was used to see
whether suggestion list link usage was higher for any MLTutor version, suggesting
more focused suggestions.

•  Total site transition link usage: Extracted from log files, this data was used to see
whether site transition via bookmark link usage was reduced for adaptive MLTutor
versions compared to non-adaptive.

•  Navigation paths: Data within the log files was analysed to determine how participants
reached pages containing answers to the tasks – directly or via the suggestion list – and
whether tasks were answered correctly from these pages.

RESULTS

Analysis of the participants’ answer sheets

In order to proceed with the answer sheet analysis the participants’ written answers were
assessed against the expert recommended model answers. The participants’ scores were
analysed based on usage of adaptive and non-adaptive versions of MLTutor. Means and
standard deviations based on this evaluation criterion are summarised below (table 2).

Non-Adaptive MLTutor Adaptive MLTutor
Mean 17.9 19.6
Stdev 4.2 4.2

Table 2: Summary of means and standard deviations of scores.

These results show that scores using an adaptive version are slightly higher than for the
non-adaptive version of MLTutor. Further tests for statistical significance could not be
conducted due to inadequate sample sizes.

In the next phase of evaluation the participants’ scores were analysed in terms of the
MLTutor version used. Means and standard deviations based on this evaluation criterion are
summarised below (table 3).

Version 1 Version 2 Version 3 Version 4
Mean 21.4 20.7 20.2 16
Stdev 3.3 2.2 4.9 4.7

Table 3: Summary of means and standard deviations of scores for adaptive versions.

The results indicate that the highest mean score was attained by users of MLTutor version
1, which was an adaptive version, and the lowest mean score was attained by users of MLTutor
version 4 –again, an adaptive version. The second lowest mean score was attained by users of
the non-adaptive MLTutor version.

Standard deviations for these results are quite high because each version was tested by
participants with differing backgrounds (environmental and computer scientists), which resulted
in large variations in test scores for each version.

In summary, these results only partly support the hypothesis that an adaptive version of
MLTutor results in higher scores compared to the non-adaptive version. Although the results are
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suggestive, the number of participants who tested the variants of MLTutor is too small to apply
any further parametric statistical analysis.

Analysis of feedback questionnaires

The participants in the evaluation were asked to complete a feedback questionnaire after using
MLTutor to answer the set tasks. Here, we focus on the qualitative (freeform) responses.

For each free form question on the feedback questionnaire, the comments of participants
were examined with a view to identifying common themes and significant comments. The
common themes identified from comments made by users of the non-adaptive MLTutor were as
follows:

•  Unstructured information

•  Not a tutoring system

•  There is no inter-link between sites

The common themes identified from comments made by users of the adaptive variants of
MLTutor were as follows:

•  Easy to use

•  Site transition links are useful

•  Some suggestions are good, but there should be more useful suggestions

•  Suggests already visited pages

•  Time delay before useful suggestions appear

•  The entries in suggestion list were very difficult to understand

•  A layman may need further background knowledge

•  Provides a short-cut to relevant pages

•  Made aware of links which were not apparent

•  Offers different forms of navigational aid

The comments made regarding the non-adaptive version of MLTutor, a plain HTML
browsing system, tend to support the decision to develop the adaptive MLTutor. It was
suggested by a non-computer literate user that a layman may need further background
information than that provided by this implementation of MLTutor.

In many cases, information on the WWW is unstructured and the adaptive features of
MLTutor aim to overcome this by providing links between sites which are otherwise
unconnected. Users liked the seamless integration of web-sites with a common interface and, as
noted by participants, the adaptation provided by MLTutor gave them additional choice while
searching for information.

In addition, participants found the suggestion list entries a convenient shortcut to relevant
pages that were otherwise not apparent or readily accessible. Although it was not heavily used
(see below), the alternative form of navigation introduced by the suggestion list seemed to be
appreciated.

Analysis of log files

The participants’ browsing activity were recorded in a log file in the background during the
experiment. The usage of three types of links and the task completion time were assessed from
these log files. The types of links examined are built-in links, suggestion list links and site
transition links via bookmarks.

A quantitative data analysis was applied to this data. The primary objective of this
particular analysis is to investigate relative performance of using adaptive MLTutor compared
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with non-adaptive MLTutor. Means and standard deviations based on this evaluation criteria are
summarised below (table 4).

Version Mean Time spent Links followed Sites transitions Suggestions visited

0 Mean 73.2 111.2 9.3 Facility not available
Stdev 24.6 49.2 8.1

1 Mean 62.2 85.7 7.7 4.3

Stdev 17.8 28.6 4.7 4.6

2 Mean 53.7 82.8 8.2 4

Stdev 18.4 55.1 5.4 4.7

3 Mean 53.2 85 5.2 2.8

Stdev 23.1 34.1 1.0 2.6

4 Mean 56.3 71.3 7.3 6.5

Stdev 14.6 16.8 7.6 5.4

Table 4: Mean and standard deviation analysis of evaluation criteria.

The results indicate that the mean total task completion time was reduced for users of the
adaptive versions, as was the total number of links followed. Although the suggestion list was
used relatively infrequently by most users, it raised awareness of alternatives and helped make
interactions more efficient. In this way, it appears to have had an indirect beneficial effect.

Cross analysis of log file and participant scores

In addition to the analysis described above, further in-depth analysis was conducted in order to
investigate the use of built-in and suggestion-list links. The objective of this analysis was to
determine how frequently built-in links and MLTutor system suggestions were followed by the
participants and utilised to complete the given tasks.

For this analysis, four categories of link usage were established as follows:

X1: If a user accessed the expert recommended page by a built-in link and answered the question
correctly when no suggestion link was available.

X2: If a user accessed the expert recommended page either by a built-in link or by a suggestion list
link and answered the question correctly when suggestion link was available.

O1: If a user accessed the expert recommended page by a built-in link and failed to answer the
question correctly.

O2: If a user accessed the expert recommended page either by a built-in link or by a suggestion list
link and failed to answer the question correctly.

Ideally, six categories would have been preferred allowing built-in and suggestion list links
to be analysed individually, but the data available from log files was not sufficient to allow this
and so usage of these link types were merged to form categories X2 and O2.

In order to assist with this analysis, a link usage analysis form was created (see table 5).
Part 1 of the form contains details of the participant to whom the form refers. Part 2 of the form
gives a count of the number of times a suggestion list link was used to access the pages listed in
part 4. Part 3 of the form contains counts of the number of times a built-in link was used to
access the page numbers in part 4 of the form. Part 4 of the form lists the pages which contain
the expert recommended model answers. In part 5 of the form there is a row for each of the set
tasks. Within each of these rows, the pages containing the model answers to the question the
row corresponds to, are highlighted in dark grey. For example pages 63 and 127 are the
recommended pages to answer question 4.

This form is populated with data from various sources. The log file of each participant was
analysed in conjunction with the answer sheet completed by the participant. Each answer was
rated in terms of the four categories defined above and transferred to part 5 of the form. Data to
complete part 2 and part 3 of the form was also extracted from log files.



Smith and Blandford

16

1 Participant
Group:
Version:

2 Suggestion-list
Links

3 Built-in
Links

4 Expert  rec.
Links

2 5 12 61 62 63 74 77 87 88 94 95 101 104 109 110 112 114 115 116 119 121 122 123 126 127 128 129 130 132 133

5 Question 1

Question 2

Question 3

Question 4

Question 5

Question 6

Question 7

Question 8

Question 9

Question 10

Question 11

Question 12

Question 13

Table 5: A link usage analysis form.

From an examination of the data gathered during the experiment, it became apparent that
the pages containing answers to the questions had been accessed via various types of links i.e.
suggestion list and built-in. Furthermore, the pages containing the answers had been repeatedly
accessed, which had not been anticipated prior to the experiment. It was thus not clear which
type of link had been used to answer the set tasks. This highlights a flaw in the design of the
experiment, as the time the tasks were answered was not time stamped or audited. This would
not be feasible with the paper-based format of the task completion which was used in this
experiment. An on-line exercise, as suggested by one of the participants on the feedback
questionnaire would be a solution to this problem.

The total occurrences for the categories X1 and X2 were summed from the link usage
analysis forms and transferred to table 6.

1st Participant 2nd Participant 3rd Participant 4th Participant 5th  Participant 6th  Participant

X1= 13 X1= 7 X1= 6 X1= 10 X1= 15 X1= 18Version  1

X2= 0 X2= 3 X2= 3 X2= 1 X2= 0 X2= 0

X1= 12 X1= 6 X1= 7 X1= 9 X1= 7 X1= 10
Version 2

X2= 3 X2= 0 X2= 2 X2= 0 X2= 0 X2= 0

X1= 8 X1= 10 X1= 12 X1= 11 X1= 10 X1= 11
Version 3

X2= 0 X2= 3 X2= 1 X2= 3 X2= 0 X2= 0

X1= 4 X1= 7 X1= 2 X1= 15 X1= 3 X1= 6
Version 4

X2= 0 X2= 3 X2= 7 X2= 0 X2= 8 X2= 2

Table 6: Summary of the X1 and X2 categories in the link usage analysis form.

Within the population of participants, across the adaptive variants of MLTutor, the total
occurrences of categories X1 and X2 are equal to 219 and 39 respectively.
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The percentage of correct answers where the answer page has been visited by built-in links

only is =
+ 21

1

XX

X
85

258

219 =  and the percentage of correct answers where the answer page has

been visited using only suggestion list links is less than =
+ 21

2

XX

X
.15

258

39 =  These results

indicate that the preferred navigational method for completing tasks was to follow available
built-in links. Although the results of the statistical analysis are indicative of the benefits of
adaptivity, the log file and participant score cross analysis contradicts this evidence. The simple
quantitative evaluation criteria used in the analysis, widely used to measure the effectiveness
and efficiency of adaptation in adaptive hypermedia research, on their own, fail to reflect the
actual usefulness of the adaptation. The results indicate that the use of an adaptive feature does
not prove anything unless related to improved performance in some way, and that superficial
measures of performance may be misleading. The enhanced results alone may simply be the
consequence of an alternative interface and not directly a consequence of any adaptation. This
issue needs further investigation.

Analysis of the MLC

Much of the adverse user feedback on the suggestion list focused on the existence of irrelevant
suggestions. Since the clustering phase of the MLC is largely responsible for the quality of the
suggestions made, a further technical analysis of MLTutor was conducted, focusing on the
performance of clustering within MLTutor. Two aspects of the clustering algorithm used were
investigated: sort step sensitivity and the ‘bin’ cluster effect.

Sort step sensitivity

The conceptual clustering algorithm (Hutchinson, 1994) employed by MLTutor contains a sort
step which orders pairs of pages based on the distance between them. If two pairs of pages are
equally far apart they can legitimately appear in any order following the sort. The order of the
pairs of pages has a bearing on the clusters produced by the algorithm. The decision to use
integer values to encode the page attribute descriptions and the metric used to measure the
distance between pages leads to the likelihood of there being a high incidence of equally distant
pages. The impact of this in terms of the resultant clustering in MLTutor is hard to determine
from the available information but could have had an impact on the clustering and ultimately the
suggestions made by MLTutor.

The ‘bin’ cluster

For the implementation of pre-clustering in versions 3 and 4 of MLTutor, all 133 pages
available within the system were clustered applying the same algorithm used in the dynamic
variants of MLTutor.

Running the clustering algorithm on 133 pages initially generated 10 clusters; however the
10th cluster contained a large number of pages. The clustering algorithm was re-applied to this
data. This second phase of clustering produced three more clusters and yet again another quite
large (final) cluster. This re-clustering process was repeated until no further subdivisions could
be achieved. Having repeated the clustering process six times, 16 clusters were created. The 16th

cluster was still very large.
During the pre-clustering process it was observed that each re-clustering attempt produced

one heterogeneous cluster – which in each case appeared to be the largest cluster – that
contained a combination of items which seemed to be semantically unrelated. This paper refers
to this last and largest cluster as the ‘bin’ cluster. The ‘bin’ cluster has implications for both
dynamic clustering and pre-clustered versions of MLTutor and the effect was observed in the
users’ log files.

In the case of dynamic clustering, if the cluster selected for inducing rules is the ‘bin’
cluster then it is very likely that any suggestions produced for this cluster would be unfocused.
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This problem was not appreciated when the MLTutor system was initially tested, and now needs
to be addressed as a matter of priority.

SUMMARY OF ANALYSIS

The aim of the comparative study conducted on MLTutor was to determine whether users of the
adaptive versions of the system were able to perform tasks more successfully than users of the
non-adaptive version and, if so, whether any adaptive version was more successful than others.
The principal measure used in the evaluation was the answers to questions completed by
participants while using a version of MLTutor. Additionally, link usage and time taken to
complete the exercises were used.

In terms of test scores achieved by the participants, the users of the adaptive versions
scored on average higher than the users of the non-adaptive version. Within the versions
themselves there was no clear favourite: users of three of the adaptive versions scored on
average better than users of the non-adaptive version, while users of one of the adaptive
versions scored particularly poorly. While it might be tempting to re-run the empirical study
with larger user groups, this has not been done because qualitative and analytical results have
highlighted areas where further development should be conducted before conducting further
empirical evaluation.

Findings of the cross analysis indicate that there are a number of weaknesses related to the
evaluation methods used in the field of adaptive hypermedia. These are that:

•  The use of quantitative measures, on their own, may fail to reflect the actual benefits of
adaptation.

•  The use of an adaptive feature may not prove anything unless related to improved
performance in some way.

In terms of MLTutor, although the results of the statistical analysis are indicative of the
adaptivity having an effect on users, the log file and participant score cross analysis indicates
that the adaptivity available within the system has hardly been used. By simply measuring
differences in performance between adaptive and non-adaptive versions of a system, a
fundamental assumption that the difference is due to the adaptivity is made. However, the cross
analysis conducted as part of this research suggests that this assumption may not be valid.

Beyond the quantitative data gathered during the experiment, qualitative data was also
collected in the form of feedback comments from the participants. Not all feedback from the
participants who took part in the evaluation was positive. A number of enhancements to
MLTutor were suggested by participants as follows:

•  Already visited pages can be re-suggested without indicating that they have already
been visited. There is no history-based annotation within the entries of the suggestion
list and adding this feature was suggested as an enhancement to the system. An option
to hide already visited pages from the suggestion list might also be considered.

•  For the research prototype implementation, the file names, as opposed to the page titles,
were used in the suggestion list. File names are not always as meaningful as the page
titles, which should be used for any further development of the system.

•  The suggestion list should be keyword based allowing links to pages containing the
keywords as opposed to the current implementation which lists pages and allows the
display of keywords covered on that page.

•  The suggestion list should be permanently visible as opposed to being on a floating
popup that can be obscured by the main browser window. Participants also commented
that the content of the suggestion list should be more structured and an alternative
representation, for example a graphical representation, would be useful.

•  Users also commented on the time delay in the suggestion process which is due to the
need to build up a list of pages to generate suggestions from and the periodic nature of
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the suggestion list refresh. Within MLTutor 10 pages have to be visited before
suggestions can be made. This is due to the need to collect sufficient data for the
machine learning algorithm to process. Once 10 pages have been visited, the suggestion
list is refreshed periodically. The time between refreshes is set within the application
and can easily be adjusted.

These comments from users of the system suggest areas where effort should be directed for
future development work with the system.

In addition a number of technical issues with the conceptual clustering algorithm used in
the MLC were identified. These technical issues with the clustering algorithm will need to be
addressed before further development of MLTutor takes place.

DISCUSSION

With this deeper understanding of the strengths and limitations of the implementation of
MLTutor, we can relate this development to work in adaptive hypertext.

Browsing path analysis

Balabanovic (1997) points out that a machine learning approach to support browsing without
any particular goal in mind is useless. MLTutor has been designed for use in an educational
context and specifically supports task-oriented browsing. If the browsing activity of a user is
aimless, it is difficult to determine any regularity or any meaningful pattern in that behaviour.
However, if the intention of a user’s navigation is to complete a number of specific tasks, or to
answer questions during browsing, then monitoring the user interaction in order to provide
guidance becomes more feasible (Taylor and Self, 1990).

MLTutor uses machine learning techniques to search for patterns within the content of
material accessed during a user’s information seeking activity. Beaumont (1994) argues that the
bandwidth of the information contained in a user’s browsing pattern might be too narrow to
elicit information about the user’s interest; however, as noted by other researchers (Hirashima et
al, 1998; McEneaney, 1999), browsing patterns are a fundamental source of information
representing the user’s interaction with the system. While such patterns have been investigated
by several researchers (Sun et al, 1995; Lieberman, 1995; McEneaney, 1999) who have applied
various AI techniques, such as heuristic search, dynamic programming and neural networks,
little work has been done on the application of machine learning techniques to dynamically
build user profiles in the field of adaptive hypermedia.

Within MLTutor, any patterns identified in the browsing history by the MLC of the system
are used to dynamically generate suggestion rules which are used to recommend pages related to
the browsing. By this mechanism the MLTutor system aims to help users to locate information
relevant to their current interest.

The suggestion rules within MLTutor are generated by use of a novel combination of
clustering and inductive machine learning algorithms. The dynamically generated rules form a
profile that holds a generalisation of the user’s current area of interest. This profile is updated as
further pages are visited and new rules created.

In future development, augmenting the recommendations given by the MLC of MLTutor
with social navigation (Dieberger et al, 2000; Riedl, 2001) techniques should also be
considered. Social navigation is currently viewed as a new means of aiding users to find their
way through an information space by making information trails left by previous users available
to new users.

Attribute based systems

Information retrieval systems rely on document categorisation strategies and these strategies are
typically based on keyword descriptions of information. These keyword descriptions are used
by information retrieval systems to relate associated documents together. Similarly, attribute
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based machine learning algorithms process attribute descriptions of objects. In both cases the
selection of features to describe objects is fundamental to performance.

The MLTutor has based attribute encoding on a classification of hyperlink anchors within
the hypertext. Hypertext links facilitate navigation and, as such, typically relate pages at a
conceptual level. A distinct advantage of using hypertext anchors to describe documents is the
ease with which they are identified within the hypertext. Although this strategy relies on
hypertext documents being constructed in a sensible manner the strategy has been shown as a
viable option. However, the MLTutor design is capable of incorporating any attribute based
scheme for encoding documents due to the nature of the machine learning algorithms employed.

Adaptive navigational support

As a result of the machine learning process within MLTutor, the suggestion list is adaptive to
the ongoing and changing requirements of the user. This is achieved by use of a sliding window
technique that takes into account recent browsing. The use of browsing paths alleviates the need
for any additional feedback from a system user at all.

Furthermore, the adaptivity provided by MLTutor can be disregarded without penalty or
overhead to the user. By ignoring system suggestions, or turning the facility off, the MLTutor
becomes a plain hypertext browsing system familiar to all users of the WWW. This solution to
providing adaptivity is intended to prevent alienation of potential users; some users may not
need to see suggestions and others may not be comfortable with unfamiliar adaptive features
within the interface.

WWW based systems

While the WWW offers huge potential for distance learning, the mechanism of the Web can be
employed to deliver information within an individual organisation or classroom. The WWW can
be considered a vast network of interlinked documents, effectively a huge hypertext system.
Within this network specific sites cater for specific needs, often with links to other related sites.
However, the Web of documents is growing in an unregulated and unstructured manner with
important connections between highly related documents missing. Consequently, finding
specific or relevant information on the Web can be difficult.

The MLTutor presents a solution to this issue by introducing an adaptive facility, which
aims to assist in the search for information. The MLTutor dynamically generates an individual
profile in the form of suggestion rules based on a user’s history of browsing activity. These
rules are used to suggest additional pages the user may be interested in. A significant benefit of
the MLTutor is that suggestions may relate to documents the user has not yet seen, or may not
be aware of, as they are not directly connected to the document the user has accessed. The
suggestion list mechanisms in MLTutor allows direct access to these additional pages even
though no link physically exists between them.

The machine learning approach employed to build the list of suggestions ensures that the
suggestions made are relevant to the user’s current area of interest. Effectively, the MLTutor
provides a mechanism for re-structuring a hypertext document to cater for individual
preferences without restricting access in any way.

This approach has synergies with the approach suggested by Stotts and Furuta (1991) who
proposed a flexible structure, to overlay a fixed structure, as a solution to personalising a
hypertext system.

As an alternative to analysing a Web page, a more fine-grained approach, splitting a HTML
page content into smaller chunks (Maglio and Farrell, 2000) may be applied. This approach may
be possible with the growth of XML and the facility to define tags and the structural
relationships between them.
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CONCLUSION

This paper has presented the work undertaken on the MLTutor development to date. The
objective of this research was to design, implement, test and evaluate a prototype system
capable of testing the technical feasibility of using machine learning techniques to analyse
browsing patterns within hypertext, and to use this analysis to provide adaptive navigational
support without the need for pre-defined stereotypical profiles or user relevance feedback.

The MLTutor implementation serves as a proof of concept, demonstrating the feasibility of
the approach. As a practical application of established machine learning algorithms, this work
has identified limitations of algorithms that appeared to be well suited to this purpose; this has
resulted in the implementation of SG1 (as an adaptation of ID3), and future work will be
addressed at overcoming the limitations of the conceptual clustering algorithm discussed above.

In order to evaluate the system a comparative empirical study was conducted. The
evaluation of adaptive systems is particularly complex as the results of the adaptation are
personal to a specific user’s set of circumstances and, as such, an empirical study is the most
appropriate strategy for evaluation. The quantitative results from the evaluation study are
indicative of improved performance for the adaptive versions but, due to sample size, not
conclusively so. However, the qualitative elements of the study identified a number of issues
that can very usefully be addressed before running any further empirical trials. In particular, it
became apparent that the conceptual clustering algorithm has limitations (concerning sort step
sensitivity and the generation of a ‘bin’ cluster) that need to be addressed; users also made
various useful suggestions about the presentation of the suggestion list, as noted above.

Although faults in the experimental design limit the conclusions that can be drawn about
MLTutor, the results of the evaluation do show that MLTutor is a robust and functional system
and suggest the potential benefits of using a machine learning approach to provide adaptivity
based on an analysis of browsing patterns. The empirical methodology also highlighted issues
about the design that would have been missed by a simple quantitative analysis, and serves as a
model for future studies of adaptive hypertext.
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