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Abstract. The paper presents KERMIT, a Knowledge-based Entity Relationship Modelling

Intelligent Tutor. KERMIT is a problem-solving environment for the university-level students, in
which they can practise conceptual database design using the Entity-Relationship data model.

KERMIT uses Constraint-Based Modelling (CBM) to model the domain knowledge and generate

student models. We have used CBM previously in tutors that teach SQL and English punctuation
rules. The research presented in this paper is significant because we show that CBM can be used

to support students learning design tasks, which are very different from domains we dealt with in

earlier tutors. The paper describes the system's architecture and functionality. The system
observes students' actions and adapts to their knowledge and learning abilities. KERMIT has

been evaluated in the context of genuine teaching activities. We present the results of two

evaluation studies with students taking database courses, which show that KERMIT is an
effective system. The students have enjoyed the system's adaptability and found it a valuable

asset to their learning.

INTRODUCTION

Intelligent Tutoring Systems (ITS) have been proven to be very effective in domains that require

extensive practice (Corbett et al., 1998; Koedinger et al., 1997; Mitrovic & Ohlsson, 1999). In
this paper, we present KERMIT, a Knowledge-based Entity Relationship Modelling Intelligent

Tutor. KERMIT (Suraweera & Mitrovic, 2001) is an ITS designed and implemented for teaching

database modelling. It is developed as a problem-solving environment where the system presents
a description of a scenario for which the student has to design a database.

This research is significant because it extends our study of Constraint-Based Modelling

(CBM). In previous work we have shown that CBM is capable of supporting students' learning in
two different domains: SQL, a declarative language, (Mitrovic & Ohlsson, 1999; Mitrovic et al.,

2001) and punctuation and capitalization rules in English (Mayo & Mitrovic, 2001). Database

design is a very different domain. As any other design domain, it involves open-ended tasks for
which there are no well-formed problem solving algorithms. On the contrary, the learner is given

an abstract definition of a good solution. In database modelling, a good solution is defined as an

ER schema that matches the requirements, and satisfies all the integrity rules of the chosen data



model. As we show in section 2, these conditions are very vague. In this paper we show that

CBM can be applied successfully to support design tasks too.
We start by briefly describing database design, and the Entity Relationship model used in

KERMIT. Section 3 reviews related work. In section 4, we describe the overall architecture of the

system, and present details of the user interface, knowledge base, student modeller and the
pedagogical module.

The effectiveness and the students' perception of KERMIT were evaluated during two

empirical evaluation studies. These two studies, presented in section 5, prove the effectiveness of
the system for student's learning. Finally, we present the conclusions and the directions for future

work in the last section.

DIFFICULTIES OF LEARNING DATABASE MODELLING

Databases have become ubiquitous in today's information systems. Learning how to develop

good quality databases is a core topic in Computer Science curriculum. Database design is a
process of generating a model of a database using a specific data model. A model of a database

(also known as a database schema) evolves through a series of phases. The initial phase of

requirements analysis enables database designers to understand the application domain, and
provides input for the conceptual design phase. In this phase, the designers reason about the

application domain as described in the requirements, and use their world knowledge to discover

important relationships between various data items of importance for the database. The
conceptual schema of a database is a high-level description of the database and the integrities that

data must satisfy. This high-level schema is later transformed into a logical schema (such as

relational schema) which can be implemented on a Database Management System (DBMS), and
finally into a physical schema, which contains details of data storage.

The quality of conceptual schemas is of critical importance for database systems. Most

database courses teach conceptual database design using the Entity-Relationship (ER) model, a
high-level data model originally proposed by Chen (1976). The ER model views the world as

consisting of entities, and relationships between them. The entities may be physical or abstract

objects, roles played by people, events, or anything else data should be stored about. Entities are
described in terms of their important features, called attributes in the terminology of the ER

model. Relationships represent various associations between entities, and also may have

attributes.
Let us illustrate the process of designing a database on a simple example. A student is given

the following description of a target database:

You are to design a database to record details of artists and museums in which their

paintings are displayed. For each painting, the database should store the size of the

canvas, year painted, title and style. The nationality, date of birth and death of each
artist must be recorded. For each museum, record details of its location and speciality,

if it has one.

From the description, it is obvious that artists, museums and paintings are of importance.
Therefore, the student may start by drawing the entities first. Each entity is described in terms of



some attributes. For example, each painting would be described by its title, style and the size of

canvas. All three attributes are explicitly mentioned in the requirements. For each artist, we need
to know his/her name, nationality, date of birth and death. The artist's name, however, is not

explicitly listed in the text. Finally, for each museum, we need to know its location and speciality.

The student also needs to identify the relationships between these three types of entities.
Each painting is displayed in a museum, and this is mentioned in the first sentence of the problem

text. However, the other necessary relationship is not mentioned explicitly: the relationship

between the painting and the artist. The student needs world knowledge in order to identify this
relationship.

Once when all concepts are identified, the student needs to determine the integrities of the

model. Each entity type must have at least one key attribute, which uniquely identifies it. For the
museum, that may be the museum name (which is not explicitly given in the text). Assuming

there will be no two artists with the same name, the key attribute of ARTIST is his/her name. The
key of PAINTING is its title, assuming each title is unique.

ER schema is usually presented in the graphical form, and the ER diagram for the museum

database is illustrated in Figure 1. The ER model also contains two integrities defined on
relationships. Each entity type that participates in a relationship can participate totally (shown by

the double line on the diagram) or partially, and the number of instances participating in an

instance of the relationship type is known as cardinality (shown by 1, N and M in Figure 1). The
additional complexity is introduced by relationships possibly involving more than two entity

types (higher degree relationships), and having simple, composite or multivalued attributes.

Fig. 1. The ER diagram for the Museum database

As can be seen from this simple case, there are many things that the student has to know and

think about when developing an ER diagram. The student must understand the data model used,
both the basic building blocks available and the integrity constraints specified on them. In real

situations, the text of the problem would be much longer, often ambiguous and incomplete. To

identify the integrities, the student must be able to reason about the requirements and use his/her
own world knowledge to make valid assumptions. The ER modelling is not a well-defined

process, and the task is open ended. There is no algorithm to use to derive the ER schema for a
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given set of requirements. There is no single, best solution for a problem, and often there are

several correct solutions for the same requirements.
The authors have been involved in teaching database courses for a number of years, and in

our experience students typically have many problems learning to design databases. Experiments

conducted by Batra and colleagues (1990, 1994) have shown that although novices face little
difficulty in modelling entities, they are challenged when modelling relationships. From our

experiences, students find the concepts of weak entities and higher degree relationships difficult

to grasp.
Although the traditional method of learning ER modelling in a classroom environment may

be sufficient as an introduction to the concepts of database design, students cannot gain expertise

in the domain by attending lectures only. Even if some effort is made to offer students individual
help through tutorials, a single tutor must cater for the needs of the entire group of students, and it

is inevitable that they obtain only limited personal assistance. The difficulties of targeting
information at the appropriate level for each student's abilities also become apparent in group

tutorials, with weaker students struggling and more able students not challenged sufficiently.

Therefore, the existence of a computerized tutor, which would support students in acquiring
database design skills, would be highly important.

RELATED WORK: INTELLIGENT TUTORS FOR DB MODELLING

Educational systems with problem-solving environments for DB modelling can be used as
educational tools for enhancing students' learning. Ideally these teaching systems would offer the

student a vast array of practice problems with individualised assistance for solving them,

allowing students to learn at their own pace. There have been very few research attempts at
developing such teaching systems for DB modelling. This section outlines two such systems:

ERM-VLE (Hall & Gordon, 1998) and COLER (Constantino-Gonzalez & Suthers, 2000;

Constantino-Gonzalez et al., 2001).

ERM-VLE: a virtual reality environment

ERM-VLE (Hall & Gordon, 1998) is a text-based virtual learning environment for ER modelling.

In text-based virtual reality environments, users communicate with one another and with the
virtual world exclusively through the medium of text. The objective of the learner in ERM-VLE

is to model a database for a given problem by navigating the virtual world and manipulating

objects. The virtual world consists of different types of rooms such as entity creation rooms and
relationship creation rooms. The authors claim that the organisation of the environment reflects

the task structure, and encourages a default order of navigation around the virtual world. The
student issues commands such as pick up, drop, name, evaluate, create and destroy to manipulate

objects. The effect of a command is determined by the location in which it was issued. For

example, a student creates an entity whilst in the entity creation room. The evaluation command
provides hints for modelling the ER schema.

The interface of ERM-VLE consists of several panes. The Scenario pane contains the

requirements for the database being modelled. The 'Current ERM' pane provides a graphical
representation of the ER model that the user is building. The graphical representation is



dynamically updated to reflect the activities of the student, but the student does not directly

interact with the graphical representation. The student interacts with the virtual world solely by
issuing textual commands. The 'ERM world' pane contains a record of past interactions between

the student and the world.

The solution of each problem is embedded in the virtual world. Correspondences between
the phases of the scenario and constructs of the ER model are stored in the solution. The learner

is only allowed to establish the system's ideal correspondences. If the student attempts to

establish an association that does not comply with the system's solution, the system intervenes
and informs the student that the association is not allowed.

When the system was evaluated with a group of experienced DB designers and novices, the

experienced designers felt that the structure of the virtual world had restricted them (Hall &
Gordon, 1998). On the other hand, novices felt that they had increased their understanding of ER

modelling. However, these comments cannot be treated as substantial evidence as to the
effectiveness of the system since the system has not been evaluated properly.

ERM-VLE restricts the learner since he or she is forced to follow the identical solution path

that is stored in the system. This method has a high tendency to encourage shallow learning as
users are prevented from making errors and they are not given an explanation about their

mistakes. Moreover, a text-based virtual reality environment is a highly unnatural environment in

which to construct ER models. Students who learn to construct ER models using ERM-VLE
would struggle to become accustomed to modelling databases outside the virtual environment.

COLER: collaboratively building ER diagrams

COLER (Constantino-Gonzalez & Suthers, 1999; Constantino-Gonzalez & Suthers, 2000;
Constantino-Gonzalez et al., 2001) is a web-based collaborative learning environment for ER

modelling. The main objectives of the system are to improve students' performance in ER

modelling and to help them to develop collaborative and critical thinking skills. The system
contains an intelligent coach that is aimed at enhancing the students' abilities in ER modelling.

COLER is designed to enable interaction between students from different places via a networked

environment to encourage collaboration.
COLER's interface contains a private workspace as well as a shared workspace. The

student's individual solution is constructed in the private workspace, whereas the collaborative

solution of the group of students is created in the shared workspace. The system contains a help
feature that can be used to obtain information about ER modelling. The students are provided

with a chat window through which they can communicate with other members of the group. Only
a single member can edit the shared workspace at any time. Once any modifications are

completed, another member of the group is given the opportunity to modify the shared

workspace. The interface also contains an opinion panel, which shows the opinion of the group
on the current issue. Each member has to vote on each opinion with either agree, disagree or not

sure. The personal coach resident in the interface gives advice in the chat area based on the group

dynamics: student participation and the group's ER model construction.
COLER is designed for students to initially solve the problem individually and then join a

group to develop a group solution. The designers argue that this process helps to ensure that the

students participate in discussions and that they have the necessary raw material for negotiating
differences with other members of the group (Constantino-Gonzalez & Suthers, 2000;



Constantino-Gonzalez et al., 2001). The private workspace also allows the student to experiment

with different solutions to a problem individually. Once a group of students agree to be involved
in collaboratively solving a problem, the shared workspace is activated. After each change in the

shared workspace, the students are required to express their opinions by voting.

COLER encourages and supervises collaboration, and we believe it has the potential in
helping students to acquire collaboration skills. However, it does not evaluate the ER schemas

produced, and cannot provide feedback regarding their correctness. In this regard, even though

the system is effective as a collaboration tool, the system would not be an effective teaching
system for a group of novices with the same level of expertise. From the authors' experience, it is

very common for a group of students to agree on the same flawed argument. Accordingly, it is

highly likely that groups of students unsupervised by an expert may learn flawed concepts of the
domain. In order for COLER to be an effective teaching system, an expert should be present

during the collaboration stage.

Discussion

Intelligent tutoring systems are developed with the goal of automating one-to-one human

tutoring, which is the most effective mode of teaching. ITS offer greater flexibility in contrast to
non-intelligent software tutors since they can adapt to each individual student. Empirical studies

conducted to evaluate ITSs in other domains have shown vast improvements in student learning.

Although ITSs have been proven to be effective in a number of domains, an effective ITS for DB
modelling is yet to evolve.

ERM-VLE, the text based virtual reality environment for ER modelling, is a highly

unnatural environment in which to construct ER models. Students would struggle to transfer their
knowledge acquired using ERM-VLE to modelling databases for real life requirements.

Furthermore, since the solutions are embedded in the virtual environment itself, students who

have used the system have complained that it was too restrictive since they were forced to follow
the ideal solution path. The method of forcing the user to follow the path of the system's solution

has an increased risk of encouraging shallow learning.

The collaborative learning environment, COLER, is yet to undergo a comprehensive
evaluation to test its effectiveness. COLER encourages and supervises collaboration with peers in

collaboratively constructing an ER model. However, the system is not capable of evaluating the

group solution and commenting on its correctness. The system assumes that the combined
solution agreed upon by all the members of the group is correct. This assumption may not be

valid for a group of novices with similar misconceptions about ER modelling. Consequently for
COLER to be an effective teaching system, a human expert must participate in the modelling

exercise.

KERMIT: A KNOWLEDGE-BASED ER MODELLING TUTOR

KERMIT is an intelligent teaching system that assists students learning ER modelling. The

system is designed as a complement to classroom teaching, and therefore we assume that the

students are already familiar with the fundamentals of database theory. KERMIT is a problem-
solving environment, in which students construct ER schemas that satisfy a given set of



requirements. The system assists students during problem solving and guides them towards the

correct solution by providing feedback tailored towards each student depending on his or her
knowledge.

Fig. 2. A screenshot from the introduction to KERMIT

The system is designed for individual work. A student initially logs onto the system with an

identifier. The system introduces its user interface, including its functionality, to first time users
(Figure 2). During the problem solving stage, the student is given a textual description of the

requirements of the database that should be modelled. The task is to use the ER modelling

notation to construct an ER schema according to the given requirements. The ER model is
constructed using the workspace integrated into KERMIT's interface. Once the student completes

the problem or requires guidance from the system, their solution is evaluated by the system.
Depending on the results of the evaluation, the system may either congratulate the student or

offer hints on the student's errors. The student can request more detailed feedback messages

depending on their needs. On completion of a problem, KERMIT selects a new problem that best
suits the student's abilities. At the completion of a session with KERMIT, the student logs out.



KERMIT was developed using Microsoft Visual Basic to run on the Microsoft Windows

platform. The teaching system was developed to support the Entity Relationship data model as
defined by Elmasri and Navathe (Elmasri & Navathe, 2003). The following sections discuss

KERMIT's design and implementation details.

Architecture

The main components of KERMIT are its user interface, pedagogical module and student

modeller (Figure 3). Users interact with KERMIT's interface to construct ER schemas for the

problems presented to them by the system. The pedagogical module drives the whole system by
selecting the instructional messages to be presented to the student and selecting problems that

best suit the particular student. The student modeller, which is implemented using constraint

based modelling (Ohlsson, 1994), evaluates the student's solution against the system's knowledge
base and records the student's knowledge of the domain in the form of a student model.
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Fig. 3. Architecture of KERMIT

KERMIT does not have a domain module that is capable of solving the problems given to
students. Developing a problem solver for ER modelling is an extremely difficult task. There are

assumptions that need to be made during the composition of an ER schema. These assumptions

are outside the problem description and are dependent on the semantics of the problem itself.
Although this obstacle can be avoided by explicitly specifying these assumptions within the

problem, ascertaining these assumptions is an essential part of the process of constructing a
solution. Explicitly specifying the assumptions would over simplify the problems and result in

students struggling to adjust to solving real world problems. Another complexity arises due to the

fuzziness of the knowledge required in modelling a database. Consequently, developing a
problem solver for database modelling would be difficult, if not entirely impossible.

Although there is no problem solver, KERMIT is able to diagnose students' solutions by

using its domain knowledge represented as a set of constraints. The system contains an ideal
solution for each of its problems, which is compared against the student's solution according to

the system's knowledge base (see a later section for details on the knowledge base). The

knowledge base, represented in a descriptive form, consists of constraints used for testing the
student's solution for syntax errors and comparing it against the system's ideal solution.



KERMIT's knowledge base enables the system to identify student solutions that are identical to

the system's ideal solution. More importantly, this knowledge also enables the system to identify
alternative correct solutions, i.e. solutions that are correct but not identical to the system's

solution.

Fig. 4. User interface of KERMIT

User interface

Students interact with KERMIT via its user interface to view problems, construct ER diagrams,
and view feedback. KERMIT's interface, illustrated in Figure 4, consists of four main

components. The top window displays the textual description of the current problem. The middle

window is the ER modelling workspace where students create ER diagrams. The lower window
displays feedback from the system in textual form. The animated pedagogical agent (the Genie)

that inhabits the learning environment presents feedback verbally incorporated with animations

and speech bubbles.
The top right corner of the interface contains the button for submitting solutions and

obtaining feedback. The feedback content is dependent on the level of feedback. The student can

either choose a specific level of feedback using a pull down list or can submit the solution again



to request more feedback. The next problem button can be used to request a new problem to work

on and the system presents the student with a new problem that best suits the student's abilities.

ER modelling workspace

The workspace functions as an ER diagram-composing tool that assists students in constructing

ER models. It is essential that the workspace is intuitive and flexible to use. It is also important
that students do not feel restricted by the workspace and that its interface does not degrade their

performance.

Table 1
Symbols available in KERMIT

Symbol Construct

Regular entity

Regular relationship

Weak relationship

Simple attribute

Multivalued attribute

Key attribute

Partial key

Derived attribute

Simple connector, partial participation

Total participation connector

Total participation with cardinality 1

Total participation with cardinality N

Partial participation with cardinality 1

Partial participation with cardinality N

Weak entity

1

1

1

N

Although the ER modelling workspace is not the main focus of our research, it is an
important component of the system. During the design phase we explored the possibility of

incorporating an effective commercial CASE tool, developed for database design. We selected
Microsoft Visio (Visio), which is a diagram composing tool that allows users to create 2D

diagrams by dragging and dropping objects from a template. We developed a set of objects for



ER modelling, and integrated Visio with KERMIT by using its comprehensive set of APIs that

allow external programs to control Visio and to access its internal representation of the diagram.
The objects that the students can use to draw diagrams are shown on the left of the diagram,

and are also given in Table 1. When creating an entity type, the student has to select either a

regular or weak one. Similarly, when creating a relationship type, the student needs to use the
appropriate object: diamond for a regular relationship, or a double diamond for an identifying

relationship. There are four types of attributes to choose from: simple, multivalued, derived, key

or partial key. To create a composite attribute, the student needs to create each component
separately and then attach it to the attribute itself. Whenever a new object is created, the system

asks for it to be named, by highlighting a phrase from the problem text. Figure 5 illustrates the

state of the interface immediately after the student created a regular entity type. The student
selects the name and the result of that action is shown in Figure 6.

Simple connector (single line) is used to connect attributes to other attributes, relationships
or entities. To specify the constraints of relationships types, the student needs to select the

appropriate connector from the four available ones.

Fig. 5. The student creates an entity type



Problem description

Typical problems given to students in database modelling, such as those provided by KERMIT,
involve modelling a database that satisfies a given set of requirements. The sample problem

(Elmasri & Navathe, 2003) displayed in Figure 4 outlines the requirements of a database for a

company. Students are required to construct ER models by closely following the given
requirements. It is common practice with most students to either make notes regarding the

problem or to underline phrases of the problem text that have been accounted for in their models.

Some students highlight the words or phrases that correspond to entities, relationships and
attributes using three different colours. This practice is very useful as they closely follow the

problem text, which is essential to producing a complete solution.

Fig. 6. The entity type with a name

KERMIT is designed to support this behaviour. Whenever a student creates a new object,
the system requires that it be named, by selecting a word or a phrase from the problem text. The

highlighted words are coloured depending on the type of object. When the student highlights a



phrase as an entity name, the highlighted text turns bold and blue. Similarly the highlighted text

turns green for relationships and pink for attributes.
This feature is extremely useful from the point of view of the student modeller for evaluating

solutions. There is no standard that is enforced in naming entities, relationships or attributes, and

the student has the freedom to use any synonym or similar word/phrase as the name of a
particular object. Since the names of the objects in the student solution (SS) may not match the

names of construct in the ideal solution (IS), the task of finding a correspondence between the

constructs of the SS and IS is difficult. For example, one may use 'HAS' as the relationship name,
while another may use 'CONSISTS_OF'. Even resolutions such as looking up a thesaurus will not

be accurate as the student has the freedom to name constructs using any preferred word or phrase.

This problem is avoided in KERMIT by forcing the student to highlight the word or phrase that is
modelled by each object in the ER diagram. The system uses a one-to-one mapping of words of

the problem text to the objects of its ideal solution to identify the corresponding SS objects.
The feature of forcing the student to highlight parts of the problem text is also advantageous

from a pedagogical point of view, as the student must follow the problem text closely. Many of

the errors in students' solutions occur because they have not comprehensively read and
understood the problem. These mistakes would be minimised in KERMIT, as students are

required to focus their attention on the problem text every time they add a new object to the

diagram. Moreover, the student can make use of the colour coding to ascertain the number of
requirements that they have already modelled.

Feedback presentation

The goal of the feedback is to improve the student's knowledge of the domain, and therefore it is
essential that these messages are presented in an effective manner. KERMIT presents feedback in

two ways: using an animated agent and in a conventional text box.

Animated pedagogical agents are animated characters that support students' learning. Studies
have shown that animated pedagogical agents have a strong positive effect on students'

motivation and learning (Lester et al., 1999; Johnson et al., 2000; Mitrovic & Suraweera, 2000).

The interface of KERMIT is equipped with such an agent (the Genie) that presents instructional
messages verbally and displays a strong visual presence using its animations, which are expected

to contribute towards enhanced understanding and motivation levels. The Genie provides advice

to the students, encourages them and enhances the credibility of the system by the use of emotive
facial expressions and body movements, which are designed to be appealing to students. In

general, the Genie adds a new dimension to the system, making it a more interesting teaching
tool.

The Genie was implemented using Microsoft Agent (Microsoft) technology. The MS agent

can be easily incorporated, as it is equipped with a comprehensive set of APIs. KERMIT uses
these to control the Genie, which performs animated behaviours such as congratulating, greeting

and explaining. The Genie is very effective in introducing KERMIT's interface to a new student.

It moves around the interface pointing to elements in the interface, explaining their functionality.
The goal of this initial introduction is to familiarise new students with the interface.

Although the animated agent presents the feedback, that text disappears once the agent

completes its speech. However, the student may find it useful to refer to the feedback later on
while constructing the ER model. For this reason, the interface also contains a static text box (the



bottom part of the interface) that displays the feedback message until the student re-submits the

solution. This is especially useful in situations where more than one error has been identified, and
feedback addresses all errors, when students need to refer back to the feedback. From the

pedagogical point of view, this also reduces the cognitive load, since students do not have to

remember the feedback that was presented by the agent.

Problems and Ideal Solutions

KERMIT contains predefined database problems, each with a natural language description of

requirements, and the ideal solution, specified by a human database expert. In this section we
describe the way problems and solutions are represented in the system.

Internal representation of solutions

In order to evaluate the student's solution efficiently, it is essential for KERMIT to represent it
internally in a convenient form. Since KERMIT incorporates MS Visio as its ER modelling

workspace, it either must use MS Visio's internal representation of the diagram or maintain its
own representation. MS Visio represents each object in the diagram as a generic object, and

therefore does not distinguish between the different types of ER objects. All the objects in a

diagram are arranged in a list, in the order in which they were added to the workspace.
Accessing Visio's internal representation for evaluating a student's solution against the

constraint base is inefficient since constraints naturally deal with a particular group of objects

such as entities or relationships. Each time a constraint in the knowledge base is evaluated, the
list of objects in Visio that represents the internal structure of the diagram would have to be

sequentially scanned to extract the particular group of constructs. This method is inefficient and

would increase the response time. Moreover, accessing Visio's internal data structures through its
APIs using a VB program is slower than accessing a data structure maintained by the VB

program itself. Due to these drawbacks, KERMIT dynamically maintains its own internal

representation of the ER diagram.
KERMIT maintains two lists of objects: one for entities and one for relationships. The

attributes are contained as a list within the entity or relationship object to which they belong.

Attributes that are components of a composite attribute are stored as a list within their parent
attribute. Each relationship has a list of participating entity objects that keeps track of its

participating entities.

Fig. 7. The ER schema for the scenario "Students live in halls"

The procedure of building the internal representation of the student's solution is based on the
student's interactions. When the student adds a new object to the workspace, the system adds

information about it into a corresponding list. All syntactically illegal constructs are recorded in a

STUDENT HALL
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separate list. For example, when an attribute is added to the workspace, it will be included in the

illegal constructs list until it is connected to an entity or relationship. Once the attribute becomes
part of an entity or relationship, it is added to the list of attributes of the entity or relationship to

which it belongs.

KERMIT contains ideal solutions for all of the problems in its database. These ideal
solutions (IS) are stored in a compact textual form. When a new problem is given to the student,

the system reads its stored solution, parses it and builds a runtime internal representation in the

memory. An ideal solution is also represented internally with objects grouped using lists during
runtime, similar to the SS. KERMIT uses this representation of the IS to compare it to the SS

according to its constraint base.

The stored textual version of the IS consists of two lists: an entities list and a relationships
list. The entities list consists of the names of all the entities including their attributes. The entity

name is followed by the attributes, which are listed within parentheses. In the case of composite
attributes, the components of the attribute are listed enclosed by '|' symbols. As an example

consider the entities list of the ideal solution to the scenario "Students live in halls". The correct

ER schema is depicted in Figure 7, and its textual representation is outlined in Figure 8.

Entities = "STUDENT<E1>(Number<K1>),HALL<E2>(Name<K1>)"

Relationships = "LIVES_IN<R1>()-<E1>np,<E2>1t-"

Fig. 8. Internal representation of the ideal solution for the scenario "Students live in halls"

Each object in a solution is assigned a unique identifier, composed of a single character code

that specifies the type of the object and an integer. For example, 'E' is used for regular entities

and 'W' for weak entities. The integer in the ID makes it unique. The solution in Figure 7 contains
two entities, namely STUDENT and HALL. The former entity has the identifier of E1 (see Figure

8), as it is the first entity that has been created. Its key attribute is Number, and its identifier is

K1. There is only one relationship, LIVES_IN, whose ID is R1. This relationship has no
attributes, and the ids of participating entities are also represented. E1 (i.e. the STUDENT entity

type) participates partially in this relationship, and there may be many instances of STUDENT

participating in the relationship (there can be many students living in a hall); these constraints are
represented by np in Figure 8. Similarly, the HALL entity type participates totally, and there is

one hall per student; this is represented by 1p.

Internal representation of problems

The text of each problem describes the requirements of a database that the student is to design.

Since KERMIT does not possess any NLP abilities, we developed an effective internal

representation that enabled the system to identify the semantic meaning of each object. As
discussed previously, KERMIT forces students to highlight the word or phrase modelled by each

object in their solutions. The system uses these highlighted words to form correspondences
between the student's and the ideal solution.

The problem text is represented internally with embedded tags that specify the mapping of

its important words to the IS objects. These tags have a many-to-one mapping to the objects in



the ideal solution. In other words, more than one word may map to a particular object in the ideal

solution to account for duplicate words or words with similar meaning. The set of tags embedded
in the problem text are identical to the tags assigned to the objects of the ideal solution. The tags

are specified by a human expert when the problem is added to the system. They are not visible to

the student since they are extracted before the problem is displayed. The position of each tag is
recoded in a lookup table, which is used for the mapping exercise. Whenever the student creates

an object, the corresponding tag from the problem text matching the name of the object is used to

relate the object in the student's solution to the appropriate object in the ideal solution.

Knowledge base

The knowledge base is an integral part of any ITS. The quality of the pedagogical instructions

provided depends critically on the knowledge base. As stated previously, KERMIT uses CBM to
model the domain knowledge and generate student models. In previous work (Mayo & Mitrovic,

2001; Mitrovic & Ohlsson, 1999, Mitrovic et al. 2001, 2002) we have discussed CBM and its
implementations in SQL-Tutor and CAPIT. Each constraint specifies a fundamental property of a

domain that must be satisfied by any correct solution. Constraints are modular and problem-

independent, and therefore easy to evaluate. Each constraint is a collection of patterns, and
therefore the evaluation process is very efficient computationally.

One of the advantages of CBM over other student modelling approaches is in its

independence from the problem-solving strategy employed by the student. CBM models students'
evaluative, rather than generative knowledge and therefore does not attempt to induce the

student's problem-solving strategy. CBM does not require an executable domain model, and

therefore is applicable in situations in which such a model would be difficult to construct (such as
database design or SQL query generation).

Furthermore, CBM eliminates the need for bug libraries, i.e. collections of typical errors

made by students. Cognitive tutors contain buggy rules and use them to provide error-specific
feedback to students (Anderson et al., 1996; Corbett et al., 1998). When a student's action

matches one of the misconceptions from a bug library, a teaching system based on a bug library

responds by offering an explanation of why the action is incorrect. Bug libraries are extremely
difficult to acquire, as it is necessary to collect and analyse numerous instructional sessions in

order to identify the misconceptions, a time-consuming and error-prone process. Secondly, the

effectiveness of the system would depend on the completeness and correctness of the bug library.
If a specific misconception is missing from the bug library, the system will be able to inform the

student that his/her action is incorrect, but will not be able to provide error-specific feedback.
Thirdly, bug libraries do not transfer well between different populations of students (Payne &

Squibb, 1990). If a bug library is developed for a specific group of students, other populations

may have different misconceptions, and therefore the effort in developing a bug library is not
justified. (Please see (Mitrovic, Koedinger & Martin, 2003) for a comparison of CBM and

cognitive tutoring)

On the contrary, CBM focuses on correct knowledge only. If a student performs an incorrect
action, that action will violate some constraints. Therefore, a CBM-based tutor can react to

misconceptions although it does not represent them explicitly. A violated constraint means that

student's knowledge is incomplete/incorrect, and the system can respond by generating an
appropriate feedback message. Feedback messages are attached to the constraints directly, and



they explain the general principle violated by the student's actions. Feedback can be made very

detailed, by instantiating parts of it according to the student's action.
The domain knowledge of KERMIT is represented as a set of constraints used for testing the

student's solution for syntax errors and comparing it to the ideal solution. Currently KERMIT's

knowledge base consists of 92 constraints. Each constraint consists of a relevance condition, a
satisfaction condition and feedback messages. The feedback messages are used to compose hints

that are presented to the students when the constraint is violated.

The constraints in the knowledge base have to be specified in a formal language that can be
parsed and interpreted by the system. It is imperative that the formal representation is expressive

enough to test the subtle features of student solutions and compare them to ideal solutions. We

have chosen a simple Lisp-like functional language. It contains a variety of functions such as
'unique', 'join' and 'exists'. The lists of entities and relationships are addressed using aliases (e.g.

'SSE' is used for the list of entities of the SS). More examples of the internal representations of
the constraints can be found in the following sections.

In this section, we describe the process of acquiring constraints and then present examples of

syntactic and semantic constraints. Finally, we discuss how the constraints are used to diagnose
students' solutions.

Knowledge acquisition

It is well known that knowledge acquisition is a very slow, labour intensive and time consuming
process. Anderson's group have estimated that ten hours or more is required to produce a

production rule (Anderson et al., 1996). Although there is no clear-cut procedure that can be

followed to identify constraints, this section discusses the paths that were explored in discovering
the constraints of KERMIT's knowledge base.

Most syntactic constraints of KERMIT were formulated by analysing the target domain of

ER modelling through the literature (Elmasri & Navathe 2003). Due to the nature of the domain,
the acquisition of syntactic constraints was not straightforward. Since ER modelling is an ill-

defined domain, descriptions of its syntax in textbooks are informal. This process was conducted

as an iterative exercise in which the syntax outline was refined by adding new constraints.
Semantic constraints are harder to formulate. We analysed sample ER diagrams and compared

them against their problem specifications to formulate basic semantic constraints.

id = 10

relCond = "t"

satCond = "unique (join (SSE, SSR))"

Fedback1 = "Check the names of your entities and relationships. They must be unique."

Feedbck2 = "The name of <viol> is not unique. All entity and relationship names must be

unique."

Feedback3 = "The names of <viol> are  not  unique. All entity and relationship names must be

unique."

construct = "entRel"
conceptID = 1

Fig. 9. Constraint 10



Syntactic constraints

The syntactic constraints describe the syntactically valid ER schemas and are used to identify
syntax errors in students' solutions. These constraints only deal with the student's solution. They

vary from simple constraints such as "an entity name should be in upper case", to more complex

constraints such as "the participation of a weak entity in the identifying relationship should be
total".

Constraint 10, presented in Figure 9, is a syntactic constraint. It specifies that all names of

entities and relationships should be unique. The relevance condition (relCond) of this constraint is
set to true (denoted by t) and is always satisfied, meaning that this constraint is relevant to all

student solutions. Its satisfaction condition checks that all names the student has assigned to

entities and relationships are unique. In addition to the relevance and satisfaction conditions, each
constraint contains three messages (feedback, feedback1, feedback2) that are used to generate

feedback when the student violates the constraint. The first message is general, and is used to
give hints to students. The other two messages are used as templates for generating detailed

feedback messages. During the generation of feedback, the <viol> tag embedded in the message is

replaced with the names of the constructs that have violated the constraint. Feedback1 is singular
and is used for situations where a single construct has violated the constraint, whereas feedback2

is plural and is used for cases where many constructs of the solution have violated the constraint.

The types of constructs that violate the constraint are given as the construct attribute. In this
example, the type of violated constructs can be either an entity or a relationship (denoted by

entRel). The construct attribute is used in generating a very general feedback message that

specifies the type of constructs that contain errors.

Table 2

Concepts covered by constraints

ID Concept

0 Syntax and notation

1 Regular entity types
2 Weak entity types

3 Isolated regular entity types
4 Regular relationship types

5 Identifying relationship types
6 n-ary regular relationship types

7 Simple attributes
8 Key attributes

9 Partial key attributes
10 Derived attributes

11 Multivalued attributes
12 Composite attributes

13 Multivalued composite attributes

The constraints are organized into fourteen concepts, given in Table 2. The concepts cover

different types of objects, their different arrangements and notation and syntax rules. The

concepts are used for problem selection. When selecting a problem for the student, the system



decided on the concept first, and then selects a problem for the chosen concept. Each constraint is

assigned to only one concept. The specific concept that the constraint deals with is specified as
the conceptID of the constraint. Constraint 10 belongs to the concept with the identifier of 1,

which is 'regular entities'.

Semantic constraints

Semantic constraints compare the student's solution to the ideal one. These constraints are usually

more complex than syntactic constraints. Constraint 67 (Figure 10) deals with composite

multivalued attributes, which are equivalent to weak entities. A weak entity type is used to model
a set of entities that do not have an identifying attribute. Instead, such entities can be identified

through their relationship with a regular entity type. For example, in the company database, the

employee entity type is a regular one, as each employee can be identified by his/her (unique)
employee number. The same database stores information about dependents of employees, but

there are no unique attributes defined for them. Each dependent can be uniquely identified by
his/her name, and the ID of the employee who supports the dependent.

id = 67

relCond = "each obj ISE

(and (notNull (matchSS (obj)))
(and (= type (obj), type (matchSS (obj)))

(> (countOfType (attributes (obj), mComp), 0)))))"
satCond = "each obj RELVNT

(each att (ofType (attributes (obj)), mComp)
(or (and (notNull (matchAtt (att, (matchSS (obj)))))

         (= (type (matchAtt (att, (matchSS (obj)))) mComp))
    (and (and (notNull (matchSS (att))) (= (type att) w))

 (belongs (matchSS (att), obj)))))"
Feedback1 = "Check whether your entities have all the required multivalued composite attributes.

Your entities are missing some multivalued composite attributes. You can represent composite
multivalued attributes as weak entities as well."

Feedback2 = "The <viol> entity is missing some composite multivalued attributes. You can
represent composite multivalued attributes as weak entities as well."

Feedback3 = "<viol> entities are missing some composite multivalued attributes. You can represent
composite multivalued attributes as weak entities as well."

construct = "ent"
conceptID = 13

Fig. 10. Constraint 67

As stated above, composite multivalued attributes can be modelled alternatively as weak
entities. If the ideal solution contains a composite multivalued attribute, constraint 67 compares it

to a composite multivalued attribute in the student's solution, or to a weak entity. The relevant

objects include IS entities, which possess a multivalued composite attribute, for which there is a
corresponding entity in the SS. The constraint is satisfied if all the corresponding entities in the

SS have a matching multivalued composite attribute (of type mComp) or a matching weak entity.

This constraint illustrates the ability of the system to deal with alternative correct student



solutions that are different from the IS specified by a human expert. KERMIT knows about

equivalent ways of solving problems, and it is this feature of the knowledge base that gives
KERMIT considerable flexibility.

If constraint 67 is violated, the student will get the general feedback message (feedback1)

first. If the student needs more help to correct the error, a more detailed message (feedback2 or
feedback3, depending on the number of constructs that violate the constraint) will be given.

Please note that the <viol> variable will be replaced by the name of the entity that violates

constraint 67, thus providing a reference to the student.
The equivalent solutions identified by Constraint 67 are illustrated in Figure 11. The entity

E1, in the schema labelled (a), is the owner of the weak entity W1. According to the cardinality of

the entity E1 in the identifying relationship I1, E1 may own a number of W1 weak entities.
Schema (a) is equivalent to Schema (b), where W1 is represented as a multivalued attribute of E1.

All attributes of the weak entity W1 (e.g. A1) are represented as components of the multivalued
attribute W1. In this scenario, even though the same database can be modelled in two different

ways, KERMIT is only given one schema as its ideal solution. KERMIT's constraints are able to

identify that the other schema is also an equivalent representation of the solution.

   

E1   

E1   I1   

W1   

n   

1   

(a) (b)   

A1   

W1   

A1   

Fig. 11. A weak entity can also be represented as a multivalued attribute

The ability to identify alternative correct solutions is very important, especially in domains

where problem-solving strategies do not exist and therefore a problem solver is not available. In

the ER domain, the differences between alternative solutions are small, as illustrated on the
example of constraint 67. However, in other domains, these differences may be greater. In our

previous work (Mitrovic & Ohlsson, 1999), SQL-Tutor was also able to recognise alternatives to

the pre-specified correct solution, as constraints checked whether the student included all the
necessary elements of the solution in any allowable form. In the SQL domain, the differences

between alternative queries may be substantial. There may be many constraints that are necessary
to ensure that two solutions are equivalent. In domains where there are many alternative

approaches to solving problems, constraints will be more complex, and the process of generating

the constraint set will be more demanding. However, the ability to recognize alternative solutions
only depends on the correctness and the completeness of the constraint base. If the constraint set

is incomplete/incorrect, the system may not be able to identify equivalent ways of solving the

same problem, and in such cases the student's solution would be rejected as incorrect. As the
knowledge base of a good quality is a normal requirement for any knowledge-based system, this

is not a limitation of the approach used.



Student modeller

KERMIT maintains two kinds of student models: short-term and long-term ones. Short-term
models are generated by matching student solutions to the knowledge base and the ideal

solutions. The student modeller iterates through each constraint in the constraint base, evaluating

each of them individually. For each constraint, the modeller initially checks whether the current
problem state satisfies its relevance condition. If that is the case, the satisfaction component of

the constraint is also verified against the current problem state. Violating the satisfaction

condition of a relevant constraint signals an error in the student's solution.
The short-term student model consists of the relevance and violation details of each

constraint, discovered during the evaluation of the problem state. The short-term model is only

dependent on the current problem state and does not account for the history of the constraints
such as whether a particular constraint was satisfied during the student's last attempt. The

pedagogical module uses the short-term student model to generate feedback to the student.
The long-term student model of KERMIT is implemented as an overlay model. In contrast

to the short-term model, the long-term model keeps a record of each constraint's history. It

records information on how often the constraint was relevant for the student's solution and how
often it was satisfied or violated. The pedagogical module uses this data to select new problems

for the student. The long-term student model is saved in a file when the student logs out.

Pedagogical module

The pedagogical module (PM) is the driving engine of the whole system. Its main tasks are to

generate appropriate feedback messages for the student and to select new practice problems.

KERMIT individualises both these actions to each student based on their student model. Unlike
ITSs that use model tracing, KERMIT does not follow each student's solution step-by-step. It

only evaluates the student's solution once it is submitted. During evaluation, the student modeller

identifies the constraints that the student has violated.

Feedback generation

The feedback from the system is grouped into six levels according to the amount of detail:

correct, error flag, hint, detailed hint, all errors and solution. The first level of feedback, correct,
simply indicates whether the submitted solution is correct or incorrect. The error flag indicates

the type of construct (e.g. entity, relationship, etc.) that contains the error. Hint and detailed hint

offer a feedback message generated from the first violated constraint. Hint is a general message
such as "There are attributes that do not belong to any entity or relationship". On the other hand,

detailed hint provides a more specific message such as "The 'Address' attribute does not belong
to any entity or relationship", where the details of the erroneous object are given. Not all detailed

hint messages give the details of the construct in question, since giving details on missing

constructs would give away solutions. A list of feedback messages on all violated constraints is
displayed at the all errors level. The ER schema of the complete solution is displayed at the final

level (solution level).

Initially, when the student begins to work on a problem, the feedback level is set to the
correct level. As a result, the first time a solution is submitted, a simple message indicating



whether or not the solution is correct is given. This initial level of feedback is deliberately low, as

to encourage students to solve the problem by themselves. The level of feedback is incremented
with each submission until the feedback level reaches the detailed hint level. In other words, if

the student submits the solutions four times the feedback level would reach the detailed hint

level, thus incrementally providing more detailed messages. The system was designed to behave
in this manner to reduce any frustrations caused by not knowing how to compile the correct ER

model. Automatically incrementing the levels of feedback is terminated at the detailed hint level

to encourage to the student to concentrate on one error at a time rather than all the errors in the
solution. Moreover, if the system automatically displays the solution to the student on the sixth

attempt, it would discourage them from attempting to solve the problem at all, and may even lead

to frustration. The system also gives the student the freedom to manually select any level of
feedback according to their needs. This provides a better feeling of control over the system,

which may have a positive effect on their perception of the system.
In the case when there are several violated constraints, and the level of feedback is different

from 'all errors', the system will generate the feedback on the first violated constraint. The

constraints are ordered in the knowledge base by the human teacher, and that order determines
the order in which feedback would be given.

Problem selection

KERMIT examines the long-term student model to select a new practice problem for the student.
In selecting a new problem from the available problems, the system first decides what concept is

appropriate for the student on the basis of the student model. The concept that contains the

greatest number of violated constraints is targeted. We have chosen this simple problem selection
strategy in order to ensure that students get the most practice on the concepts with which they

experience difficulties. In situations where there is no obvious "best'' concept (i.e. a prominent

group of constraints to be targeted), the next problem in the list of available problems, ordered
according to increasing complexity, is given.

Authoring tool for adding new problems

The ideal solutions are represented internally in an encoded textual representation, as discussed
previously. Similarly the problem text is also stored internally with embedded tags. Therefore,

adding new problems and their solutions to the teaching system requires extensive knowledge of

their internal representations. In order to ease the task of adding new problems, an authoring tool
that administers the process of inserting new problems and automatically converting the problems

and solutions to their internal representations was developed.
The authoring tool offers a number of benefits. It eliminates the burden of having to learn

the complicated grammar used to represent the ideal solutions internally. As a consequence,

teachers and other database professionals can add new problems and their ideal solutions to
KERMIT easily. This feature makes it possible for the system to evolve without the need for

programming resources. Furthermore, it makes it possible for teachers to customise the system by

modifying the problem database to consist of problems that they select. As a result, database
teachers would have better control over the subject material presented to the students.



The process of adding new problems using the authoring tool consists of three phases. The

author needs to enter the problem text, then draw the ER diagram and finally specify the
correspondences between the words of the problem text and the objects in the ideal solution.

Initially, the user is given a text box in which to insert the problem text. At the completion of this

phase, the user is presented with an interface, similar to the problem-solving interface presented
to students, in which they can construct the ideal solution to the problem. Once the user

completes the ideal solution to the problem using the ER modelling workspace, the authoring tool

generates an image (in GIF format) of the ideal solution and saves it in the solutions directory to
be used for the complete solution feedback level. The final phase involves the human teacher

specifying the positions of the tags that need to be embedded in the problem text. The authoring

tool automatically generates a unique ID for each construct in the solution and iteratively goes
through each construct prompting the user to select the words in the problem text that correspond

to the construct. It is up to the human teacher to make sure that he or she has specified all the
relevant words of the problem text that correspond to a particular construct. Lastly, the tool adds

the new problem with its embedded tags and its ideal solution converted to its internal

representation.

EVALUATION

As the credibility of an ITS can only be gained by proving its effectiveness in a classroom

environment or with typical students, we have conducted two evaluation studies on KERMIT,

described in this section.

Pilot Study

The pilot study was conducted to evaluate the effectiveness of KERMIT and its contribution to
learning. This study involved two versions of the system. One group of students used the full

version, which generates the student model and offers various levels of feedback. The other

group worked with ER-Tutor, a cut-down version of the system. We wanted to have a version of
the system that would be similar to a classroom situation, where students do not get individual

feedback. However, we also wanted all students to work on computers. Therefore, ER-Tutor

contained the same problems and the drawing tool as KERMIT, but neither evaluated students'
solutions nor offered individualized feedback. The only level of feedback available to students in

ER-Tutor was the complete solution. The interfaces of both systems were similar, but with the

option of selecting feedback and the feedback textbox missing from the ER-Tutor. Therefore, in
the pilot study we were interested to see the effects of the individualization on students' learning.

The pilot study also assessed the students' perception of the two systems.
There were other differences between the two systems besides the student model and

feedback options. When a new construct is created in KERMIT, the system requires the student

to name it by highlighting a phrase from the problem text. In ER-Tutor the student is not required
to do that, and can type any name. Furthermore, there is a tutorial in KERMIT, which is shown at

the beginning of the session, explaining the various features of the system, including highlighting

of the problem text. Students using ER-Tutor were not shown this tutorial, and therefore had
more time for interaction. The students who were using KERMIT were required to complete the



current problem before moving on to the next one, whereas ER-Tutor allowed students to skip

problems as they pleased.
The pilot study took place at Victoria University, Wellington (VUW). Twenty eight

volunteers from students enrolled in the Database Systems course (COMP302) offered by the

School of Mathematical and Computer Sciences at VUW participated. The course is offered as a
third year computer science paper, which teaches ER modelling as defined by Elmasri and

Navathe (2003). The students who participated in the pilot study had previously learnt database

modelling in the lectures and labs of the course.

Procedure

The study involved two streams of one-hour sessions. The participants were randomly allocated

to the groups. Although the study was originally planned for a two-hour session, each group was
only given only one hour due to resource shortages at VUW. Initially each student was given a

document that contained a brief description of the study and a consent form. The students sat a
pre-test and then interacted with the system. Finally, the participants were given a post-test and a

questionnaire. Students were asked to stop interacting with the system after approximately 45

minutes into the study, as the study had to be concluded within an hour.
A pre- and post-test (given in Appendix A) were used to evaluate the students' knowledge

before and after interacting with the system. To minimise any prior learning effects, we designed

two tests (A and B) of approximately the same complexity. They contained two questions: a
multiple choice question to choose the ER schema that correctly depicted the given scenario and

a question asking the students to design a database that satisfied the given set of requirements.

The tests were short because of the short duration of the study; if more questions were given in
the tests, the students would have no time to interact with the system. In order to reduce any bias

on either test A or B, the first half of each group was given test A as the pre-test and the

remainder were given B as the pre-test. The students who had test A as their pre-test were given
test B as their post-test and vice versa.

All the participants interacted with either KERMIT or ER-Tutor, composing ER diagrams

that satisfied the given set of requirements. They worked individually, solving problems at their
own pace. The set of problems and the order in which they were presented was identical for both

groups. A total of six problems were ordered in increasing complexity.

The system assessment questionnaire (given in Appendix C) recorded the student's
perception of the system. The questionnaire contained fourteen questions. Initially students were

questioned on previous experience in ER modelling and in using CASE tools. Most questions
asked the participants to rank their perception on various issues on a Likert scale with five

responses ranging from very good (5) to very poor (1), and included the amount they learnt about

ER modelling by interacting with the system and the enjoyment experienced. The students were
also allowed to give free-form responses. Finally, suggestions were requested on enhancement of

the system.

Learning

All the important events such as logging in, submitting a solution and requesting help that

occurred during an interaction session with KERMIT are recorded in a log specific to each



student. An entry in the student log contains the date and the time associated with it. The data

extracted from the student logs are summarised in Table 3.

Table 3

System interaction details for the pilot study

 KERMIT ER-Tutor

 mean s. d. mean s. d.

Time spent on problem solving (min.) 23:24 7:27 31:56 8:48

No. of attempted problems 1.64 0.50 3.50 0.85

No. of completed problems 1.21 0.70 0.86 0.95

Time spent per problem (min.) 14:25 4:54 9:06 5:04

No. of attempts per problem 6.53 3.47 N/A N/A

The ER-Tutor group spent eight minutes more interacting with the system. One reason for

the difference is that the students who used KERMIT were given the online tutorial. The students

who used KERMIT spent more time per problem, as they needed to complete a problem before
moving on to the next one. This is reflected in the mean number of attempted problems and the

mean number of completed problems for both groups. Students in the ER-Tutor group attempted

almost twice as many problems as the KERMIT group. However, the KERMIT group had a high
completion rate of 74% whereas the ER-Tutor group had a completion rate of 25%. The students

in the KERMIT group on average submitted 6.53 solutions for each problem (ranges from 1 to

31).
The domain knowledge of KERMIT is represented as constraints. If the constraints represent

an appropriate unit of knowledge of the domain, then learning should follow a smooth curve with
a decreasing trend in terms of constraint violations (Anderson, 1993). We evaluated this prospect

by analysing the student logs and identifying each problem-state in which a constraint was

relevant. Each constraint relevance occasion was rank ordered from 1 to R. Mitrovic and Ohlsson
(1999) refer to these as occasions of application. For each occasion, we recorded whether a

relevant constraint was satisfied or violated. The analysis was repeated for each participant of the

study.
From the analysis we calculated, for each participant, the probability of violating each

individual constraint on the first occasion of application, the second occasion and so on. The

individual probabilities were averaged across all the constraints in order to obtain an estimation
of the probability of violating a given constraint C on a given occasion. The probabilities were

then averaged across all participants and plotted as a function of the number of occasions when C

was relevant, as shown in Figure 12. As the number of uses increases, the set of constraints that
were relevant for that number of times diminishes in size. At n=12, at least two thirds of the

participants have used a constraint, while at the end of the series, there might be just one

participant. Hence, a single failure at the end of the series will have a much bigger impact on
probability than at the start of the curve. We have arbitrarily chosen n=12 to reduce this effect.



y = 0.1459x-0.3559

R2 = 0.8378

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4 5 6 7 8 9 10 11 12

Occasion number

P
ro

b
a

b
il

it
y

Fig. 12. Probability of violating a constraint as a function of the occasion when that constraint was

relevant, averaged over all participants in the pilot study

The graph shows a regular decrease in probability that can be approximated by a power

curve. The curve fits very closely to the data points with an R
2
 power-law fit of 0.84. The initial

probability of violating a constraint is approximately 14%. This probability is low because the

students had learnt ER modelling in lectures and practised constructing ER models in tutorials

prior to the study. After twelve occasions, the probability of violating a constraint dropped down
to 6% (45% of the original). The graph shows that students learn (i.e. the probability of violating

a given constraint decreases) with practice (i.e. as the occasion that they use the constraint

increases). The data supports the belief that KERMIT's constraint base partitions the ER domain
knowledge into psychologically relevant units that are learned independently and that the degree

of mastery of a given unit is a function of the amount of practice on that unit.

Subjective analysis

All the participants completed a questionnaire at the end of the study. Table 4 gives the mean

responses of the participants regarding their attitude towards the system. The KERMIT group
required more time to learn the interface, as we expected, since the KERMIT's interface is more

sophisticated then that of ER-Tutor. Students using KERMIT were forced to highlight words of

the problem text to indicate the semantic meaning of each construct, whereas students using ER-
Tutor had no such requirement.



Table 4

Mean responses from the user questionnaire

 KERMIT ER-Tutor

 mean s. d. Mean s. d.

Time to learn interface (min.) 13.21 9.32 10.00 15.14

Amount learnt 2.43 0.85 2.64 1.08

Enjoyment 3.64 1.08 3.43 0.94

Ease of using interface 3.50 0.65 3.71 0.99

Usefulness of feedback 3.00 0.96 2.79 1.25

When asked to rate the amount they learnt from the system, the mean response for the

KERMIT group was 0.21 higher than the other group. The difference was found to be statistically

insignificant. There are a few factors that may have influenced such low mean rankings for the
amount learnt. The students who used KERMIT commented that the interaction time was too

short. Some students also provided free-form comments, suggesting that the final solutions were

not helpful as there was no indication of what was wrong with their own solutions.
Students found KERMIT's interface more complicated to use, as expected. 86% of

participants from both groups would recommend the system that they used to other students. 71%

of the KERMIT group wanted more feedback, compared to 86% of the ER-Tutor group. The
students who used KERMIT were very enthusiastic about using the system. They wrote positive

comments about the system, emphasizing the usefulness of feedback, the high quality of the

interface and their enjoyment.

Pre- and post-test performance

The mean scores on the pre- and post-tests are given in Table 5. The KERMIT group scored a
mean of 5.86 out of a possible 12 for the pre-test, while the mean of the ER-Tutor group was 6.

Since the difference of mean scores is statistically insignificant we can conclude that the two

groups are comparable.

Table 5

Mean pre- and post-test scores of the two groups

 Pre-test s. d. Post-test s. d.

KERMIT 5.86 1.46 6.50 2.47

ER-Tutor 6.00 2.18 6.29 2.09

The KERMIT group scored 0.64 higher in the post-test, whereas the other group gained

0.29. The difference is insignificant. A statistically significant improvement cannot be expected
from such a short interactive session with the system.

We computed the effect size and power, which are the two measures commonly used to

determine the effects and validity of an experiment. Effect size is a standard method of



comparing the results of one pedagogical experiment to another. The common method to

calculate the effect size in the ITS community is to subtract the control group's mean gains score
from the experimental group's mean gain score and divide by the standard deviation of the gain

scores of the control group (Bloom, 1984). This calculation yields (0.64 – 0.29) / 2.46 = 0.15.

The resulting effect size is very small in comparison to an effect size of 0.63 published in
(Albacete & VanLehn, 2000) and 0.66 published in (Mitrovic et al., 2002). Both papers report on

the experiments where the sessions lengths were two hours. Better results on the effect size have

been obtained in studies where interactions lasted for a whole semester or an academic year.
Bloom (1984) reports an effect size of 2.0 for one-on-one human tutoring in replacement of

classroom teaching and Anderson and co-workers (Anderson et al., 1996) reports an effect size of

1.0 for a study that lasted for one semester. Considering these results, yielding an effect size of
0.15 with a study that lasted for only half an hour is quite promising.

Chin (2001) published another method of calculating the effect size as the omega squared
value (w

2
). It gives the magnitude of the change in dependent variable values due to changes in

the independent variables as a percentage of the total variability. w
2
 is calculated using w

2
 = sA

2
 /

(sA
2
 + s S/A

2
), where sA

2
 is the variance of the effects of varying the independent variable and

sS/A
2
 is the random variance among participants. According to this formula we get an effect size

of 0.03, which is considered small in social sciences (Chin, 2001). An effect size of 0.15 is
considered large. The omega-squared value of the experiment further points out that the amount

of time allocated for the participants to interact with the system was insufficient.

Power or sensitivity gives a measure of how easily the experiment can detect differences.
Power is measured as the fraction of experiments that for the same design, the same number of

participants and the same effect size would produce a given significance. In other words, the

power of 0.5 means that half of the repeated experiments would produce non-significant results.
Chin (2001) recommends that researchers should strive for a power of 0.8. We calculated the

power of this experiment to find out how easy it is to detect differences in the pre- and post-test.

The calculation yielded a power of 0.13 at a significance of 0.05, which is quite low. The low
power value can be attributed to the low number of students, each group having only fourteen

participants.

Discussion

Although the pilot study was short, we got some promising results. Students who used KERMIT

displayed a slightly higher gain score in comparison to the ER-Tutor group. More importantly,
the pre- and post-test scores demonstrated that using KERMIT did not hamper students' abilities

in ER modelling.

The pilot study also enabled us to identify several features of the system that needed
improvement. During the pilot study, we have identified several bugs in the system, and also

some problems with the constraint base. The implementation of KERMIT was fine-tuned and

eight new constraints were defined. Also, the students found one of the tests used as pre/post tests
to be a little harder than the other.

Some students struggled with highlighting words in the problem text to specify each

construct's semantic meaning. A typical mistake was to add a new construct to the diagram,
highlight a word from the problem text and rename the construct to have a different semantics. In

such cases KERMIT cannot give useful hints, as it is designed to ignore the construct's name



assigned by the user and only considers its tag associated with the highlighted area of the

problem text. This problem can be avoided by preventing the users from renaming constructs,
and using the highlighted text as the name.

Students who used KERMIT were forced to complete each problem before moving on to the

next problem, whereas students in the ER-Tutor group were free to abandon problems at any
time. Students' perception has been further affected by this variation. This is also a flaw of the

experiment, since the group who used ER-Tutor were treated differently, disqualifying them as a

true control group. Therefore we decided to allow students to abandon problems in both systems.
Some students had difficulties in understanding the feedback messages presented by

KERMIT. The feedback messages of the version of KERMIT used in the pilot study were short

and less descriptive. Some messages delivered small hints that novice users struggled to
understand. We therefore revised the feedback messages of the constraint base making them

more descriptive.

Evaluation Study

An evaluation study was carried out at the University of Canterbury, Christchurch in August

2001. Similar to the pilot study, this study involved a comparison of two groups of students
learning ER modelling by using KERMIT and ER-Tutor. KERMIT was enhanced in the light of

the findings from the pilot study. The study involved sixty-two volunteers from students enrolled

in the Introduction to Databases course (COSC 226) offered by the Computer Science
department. The course, offered as a second year paper, teaches ER modelling as outlined by

Elmasri and Navathe (2003). The students had learnt ER modelling concepts during two weeks of

lectures and had some practice during two weeks of tutorials prior to the study.

Procedure

The evaluation study was conducted in two streams of two-hour laboratory sessions. Each session

proceeded in four distinct phases identical to the pilot study. In the pilot study, we discovered that
the multiple-choice questions in the tests were ineffective, since over 75% of the students had

made the correct choice. These multiple-choice questions were replaced by a question where the

students were asked to specify the cardinality and participation constraints of a relationship. In
order to be certain of the two tests having equal complexity, both the questions in test A and B

dealt with a binary relationship from the university database. Since we were not satisfied by the

evaluation of the student's abilities from the tests used in the pilot study, we added an extra
question that involved a partially completed ER model. The students were asked to complete the

ER model that included an identifying relationship with a regular entity and a weak entity. The
task also included specifying the cardinality and participation constraints as well as specifying

the partial key of the weak entity. Both tests (given in Appendix B) contained similar scenarios

that produced similar ER models. The tests were marked by one person, who was not aware of
what groups the participants belonged to.



Table 6

Mean system interaction details

 KERMIT ER-Tutor

 Mean s. d. mean s. d.

Time spent on problem solving (min.) 66:39 21:22 57:58 34:38

Time spent per completed problem (min.) 23.36 6:55 23.46 21.40

No. of attempted problems 4.36 1.45 4.10 2.55

No. of completed problems 1.75 1.14 1.97 1.20

No. of attempts per problem 6.05 2.83 N/A N/A

Learning

The results, summarised in Table 6, show that the students in the experimental group spent more

time interacting with the system and solving problems, than the control group. The average times
spent on completing a problem for both groups were very similar. These findings suggest that

even though the students using KERMIT were forced to indicate the semantic meaning of each

construct by highlighting a word in the problem text, their performance was not degraded. The
average number of attempts per problem is 6.05, with the maximal number of attempts was 25.
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Fig. 13. Probability of violating a constraint as a function of the occasion when that constraint was

relevant, averaged over all participants



The mastery of constraints was analysed by examining the student logs. Figure 13 illustrates

the probability of violating a constraint plotted against the occasion number for which it was
relevant, averaged over all participants. The data points show a regular decrease, which is

approximated by a power curve. The power curve displays a close fit with an R
2
 power-law fit of

0.88. The probability of 0.23 for violating a constraint at its first occasion of application has
decreased to 0.12 at its sixteenth occasion of application displaying a 53% decrease in the

probability. These findings are analogues to the results from the pilot study, where a decrease of

45% was displayed. The results of the mastery of constraints for this experiment further
strengthen the claim that the students learn ER modelling by interacting with KERMIT.

Subjective analysis

All the participants were given a questionnaire at the end of their session to determine their
perceptions of the system. Table 7 displays a summary of the responses. The students in both

groups required approximately the same time to learn the interface. Since KERMIT's interface is
more complicated, forcing the users to highlight words in the problem text to indicate the

semantic meaning of constructs, we expected that students who used KERMIT would require

longer to learn its interface. It is encouraging to see that the students did not find the relatively
more complex interface harder to learn. This is further illustrated by the similar mean numbers of

problems attempted and completed by each student, as shown in Table 7.

The mean response when asked to rate how much they learnt by interacting with KERMIT
was 3.19. The control group using ER-Tutor had a mean rating of 3.06. This difference was

found to be insignificant. The free-form comments from the experimental group emphasized the

importance of feedback for their learning. Both groups of students, on average, rated their
enjoyment of the system on a similar scale.

The students who used ER-Tutor rated its interface easier to use in comparison to the

students who used KERMIT. The difference of 0.46 in favour of ER-Tutor's interface is
statistically significant (t = 1.78, p < 0.01). This result was expected since KERMIT's interface is

more complex than ER-Tutor's.

Table 7
 Mean responses from the user questionnaire for the evaluation study

 KERMIT ER-Tutor

 mean s. d. mean s. d.

Time to learn interface (min.) 11.50 11.68 11.94 14.81

Amount learnt 3.19 0.65 3.06 0.89

Enjoyment 3.45 0.93 3.42 1.06

Ease of using interface 3.19 0.91 3.65 1.08

Usefulness of feedback 3.42 1.09 2.45 1.12

The mean rating for the usefulness of feedback presented by each system is considerably

higher for the experimental group who interacted with KERMIT. The difference is statistically
significant (t = 3.45, p < 0.01). These results are analogous with our expectations due to the



difference in the information content presented as feedback from each system. Students who used

KERMIT were offered individualised feedback on their solutions upon submission. On the other
hand the students who used ER-Tutor only had the option of viewing the completed solution to

each problem. 74% of the students who used ER-Tutor indicated the need for more detailed help

other than the complete solution, compared to 61% of the students who used KERMIT.
Students who used KERMIT had a better perception of the system as a whole in comparison

to the group who used ER-Tutor. This was shown in their responses to whether they would

recommend the system to others, where approximately 84% of the students who used KERMIT
indicated that they would recommend the system to others, compared to 68% of the control group

students.

Pre- and post-test performance

The mean scores of the pre- and post-test (out of a possible 22) are shown in Table 8. The

difference in scores on the pre-test is statistically insignificant, confirming that the two groups
initially had equal knowledge in ER modelling and that they are comparable.

Table 8

Mean pre- and post-test scores for the evaluation study

 Pre-test s. d. Post-test s. d.

KERMIT 16.16 1.82 17.77 1.45

ER-Tutor 16.58 2.86 16.48 3.08

The experimental group achieved a significantly higher score on the post-test (t = 4.91, p <
0.01). Conversely, the difference in pre- and post-test scores of the group who used ER-Tutor is

statistically insignificant. The difference in post-test scores of the two groups is statistically
significant (t = 2.07, p < 0.05). We can conclude from these results that students who used

KERMIT learnt more about ER modelling using KERMIT than the control group students.

The effect size and power for the experiment were calculated. The common method used in
the ITS community to calculate the effect size yields 0.63, which is comparable with the effect

size of 0.63 published by Albacete and Vanlehn (2000) and 0.66 published in (Mitrovic et al.,

2002). Both published results are also results from experiments that spanned a two-hour session.
An effect size of 0.63 with the students interacting with the system for approximately an hour is

an excellent result.

The effect size calculated using the w
2
 value was 0.12. As Chin (2001) points out that an

effect size of 0.15 is considered large in social sciences, the effect size of 0.12 calculated for this

experiment can be considered as a relatively large effect size. This value suggests a considerable

change in the gain score as the group (either control or experimental) that a student belongs to
changes. In other words, the gain score is highly dependent on whether a student interacted with

KERMIT or ER-Tutor.
We also calculated the power of the experiment, which is a measure of how easily the

experiment can detect differences. Chin (2001) recommends that researchers should strive for a



power of 0.8. The power of this experiment was calculated as 0.75 at significance 0.05, which is

an excellent result.

Discussion

The results show that students' knowledge increased by using KERMIT, Students who interacted

with KERMIT achieved significantly higher scores on the post-test, suggesting that they acquired
more knowledge in ER modelling. Subjective evaluation shows that the students in the

experimental group felt they learnt more than their peers in the control group. It is surprising to

record a high mean ranking of approximately 3 for the control group, when asked how much they
learnt from ER-Tutor. This may be due to the typical student misconception of assuming that

they learnt a lot by analysing the complete solution. The student responses to the questionnaire

suggested that most students appreciated the feature of being able to view the complete ER
model. The student's perception may have further been influenced by a sense of complacency

from being able to view the complete solution. As an observer during the experiments, the author
noticed that some students attempted to replicate the system's solution, which is not likely to

result in deep learning.

There were other encouraging signs that suggested that KERMIT was an effective teaching
tool. A number of students who participated in the study using KERMIT inquired about the

possibility of using KERMIT in their personal time for practicing ER modelling. Moreover, there

were a few students who requested special permission to continue interacting with KERMIT even
after the allocated two hours for the session had elapsed.

CONCLUSIONS

This paper has discussed the design and implementation of KERMIT, developed to assist
students learning ER modelling. KERMIT's effectiveness in teaching ER modelling was

evaluated in the two classroom experiments. The results of the final classroom evaluation proved

that KERMIT is an effective educational tool. The participants who used the full version of
KERMIT showed significantly better results in both the subjective and objective analysis in

comparison to the students who practiced ER modelling with a conventional drawing tool.

The student modelling technique used in KERMIT, Constraint Based Modelling has
previously been used to represent domain and student knowledge in SQL-Tutor (Mitrovic, 1998;

Mitrovic & Ohlsson, 1999) and in CAPIT (Mayo et al., 2000; Mayo & Mitrovic, 2001). SQL-

Tutor teaches a declarative language, and the evaluation performed on this system showed that
CBM is well-suited towards representing knowledge necessary for specifying queries. CAPIT is

a system that teaches punctuation, which is a very restricted domain requiring students to master
a small number of constraints. In both cases, the analysis of students' behaviour while interacting

with these systems proved the sound psychological foundations of CBM and the appropriateness

of constraints as the basic units of knowledge. The research presented in this paper demonstrated
that CBM can also be used to effectively represent knowledge for open-ended tasks such as

design. This is an important result of this research that further strengthens the credibility of CBM.

In the following section we discuss the applicability of CBM to other design tasks. Finally, we
discuss the avenues for future work.



CBM and Design Tasks

Although there has been a lot of research on design tasks within specific disciplines, the theory of
generic design (i.e. domain-independent characterization of design tasks) has proven to be

extremely challenging. Goel and Pirolli (1992) define generic design as a radical category, which

is described in terms of prototypical examples and some unpredictable variations of them. They
define a dozen criteria to describe design task environments, which allow for identification of

design tasks. We describe some of these criteria here. Design tasks are ill-structured problems,

because their start/goal states and problem-solving algorithms are underspecified (Reitman,
1964). The start state is usually described in terms of ambiguous and incomplete specifications.

The problem spaces are typically huge, and operators for changing states do not exist. The goal

state is also not clearly stated, but is rather described in abstract terms. There is no definite test to
use to decide whether the goal has been attained, and consequently, there is no best solution, but

rather a family of solutions. Design tasks typically involve huge domain expertise, and large,
highly structured solutions. Typical examples of design tasks include architecture, software

design, mechanical engineering and music composition.

Although design tasks are underspecified, Goel and Pirolli (1992) identify a set of 12
invariant features of design problem spaces, such as problem structuring, distinct problem-

solving phases, modularity, incremental development, control structure, use of artificial symbol

systems and others. Problem structuring is the necessary first phase in design, as the given
specifications of a problem are incomplete. Therefore, the designer needs to use additional

information that comes from external sources, the designer's experience and existing knowledge,

or needs to be deduced from the given specifications. Only when the problem space has been
constructed via problem structuring, problem solving can commence. The second feature

specifies three problem-solving phases: preliminary design, refinement and detail design. Design

problem spaces are modular, and designers typically decompose the solution into a large number
of sparsely connected modules and develop solutions incrementally. When developing a solution,

designers use the limited commitment mode strategy, which allows one to put any module on

hold while working on other modules, and return to them at a later time.
Database design shares these common features of generic design (as discussed in Section 2).

In this paper, we have shown that CBM can be used effectively to support students learning

conceptual database design. Goel and Pirolli (1988) argue that design problems by their very
nature are not amenable to rule-based solutions. On the other hand, constraints are extremely

suitable for representing design solutions: they are declarative, non-directional, and can describe
partial or incomplete solutions. A constraint set specifies all conditions that have to be

simultaneously satisfied without restricting how they are satisfied.

One of the features of design tasks is the personalized stopping rules and evaluation
functions (Goel & Pirolli, 1992). As there are no right or wrong answers in design, the evaluation

functions are necessarily personalized (i.e. the solution is developed when the designer is

satisfied with it). In KERMIT there is an ideal solution for each problem. The ideal solution is
chosen by the teacher to highlight some important domain principles. If the ideal solutions exist,

constraint can compare the student's solution to the ideal one however, in some domains it might

not be possible to come up with the ideal solution. For example, in house design, the student
might be given the total area of the house, the location and shape of the section the house is to be

built on, the number of bedrooms etc, but there may be many solutions that satisfy all the



problem specifications and the general domain constraints. In such domains, semantic constraints

will not compare the student solution to the ideal solution; instead, they would check whether the
student's solution satisfies the requirements of the problem.

CBM can support all features of design tasks. Each constraint tests a particular aspect of the

solution, and therefore supports modularity. Incremental development is supported by being able
to request feedback on a solution at any time. At the same time, CBM supports the control

structure used by the designer (student) as it analyses the current solution looking at many of its

aspects in parallel: if a particular part of the solution is incomplete, the student will get feedback
about missing constructs. CBM can be used to support all problem-solving phases. Therefore, we

believe that CBM can be applied to all design tasks.

Future Work

There are a number of future avenues that can be explored to further improve KERMIT. The

system currently requires the user to indicate the semantic meaning of each construct by
highlighting a word from the problem text. A more flexible approach is to allow students to use

their own names and improve the system by incorporating a natural language processing module

to identify correspondences between the student's solution constructs and the ideal solution
constructs. Students using KERMIT with this enhanced system would find the interface

significantly easier to use since their progress would not be hampered by having to highlight

words in the problem text. Another current project involves opening the student model so that the
student can inspect the content of the model (Hartley & Mitrovic, 2002). Our hypothesis is that

the visualization of the student model will encourage the student to reflect on his/her knowledge,

and that such model would also support the student in gaining a deeper understanding of the
structure of the domain knowledge.

KERMIT's long-term student model is implemented as a simple overlay model. The long-

term student model could be improved by using normative theories. A Bayesian network could
be used to represent the student model and could also predict the student's behaviour with respect

to the constraints. The probabilistic student model can be used to select feedback and new

problems for the student.
The current system only presents general hint messages on the errors in the student's

solution. The feedback of the system could be enhanced to provide support for deep learning. We

have recently started a new project, which will enhance KERMIT to support self-explanation
(Weerasinghe & Mitrovic, 2002).

The current version of the system is implemented as a stand-alone Windows program. The
system could be enhanced to run as a web-based system to enable a number of students working

on multi-platforms to use the system simultaneously. Enhancing the system to function over the

Internet would also allow the possibility of distance learning, where students could learn ER
modelling from the system from the comfort of their own home.
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Appendix A: Pre- and Post-Test from the Pilot Study

Test A

Please specify your user ID you use to log on to the system:

Answer both questions.

1. Select the most appropriate ER schema that best describes the given following situation: Lecturers
teach courses.

COURSE LECTURERTAUGHT_BY

Code ID

1

1

COURSE LECTURERTAUGHT_BY
N

Code ID

1

COURSE LECTURERTAUGHT_BY
N

N

Code ID

COURSE LECTURERTAUGHT_BY

Code ID

11

2. Draw an ER diagram that captures the following situation. For each course a student has taken, we need

to know the final grade. Each course has a unique course code.

(a)

(d)

(c)

(b)



Test B

Please specify your user ID you use to log on to the system:

Answer both questions.

1. Select the most appropriate ER schema that best describes the given following situation: Courses
recommend textbooks.

TEXTBOOK COURSERECOMMENDED_BY

ISBN Code

1

1

TEXTBOOK COURSERECOMMENDED_BY

ISBN Code

1 N

TEXTBOOK COURSERECOMMENDED_BY

ISBN Code

1N

TEXTBOOK COURSERECOMMENDED_BY

ISBN Code

N N

2. Each course, with a unique course code, consists of several sections. For each section, we know the
topic it covers, and the number of lectures and labs it contains. The same topic can be covered in several
courses, but the number of lectures and labs will differ in that situation.

(a)

(d)

(c)

(b)



Appendix B: Pre- and Post-Test from the Evaluation Study

Test A

Please specify your computer name:

Answer all questions.

1. The following ER model represents the relationship between lecturers and courses. Please specify the
cardinality and participation constraints.

LECTURER TEACHES COURSE

ID Code

2. The following partially completed ER model, represents the scenario described below. Please
complete the ER model. A textbook, with a unique ISBN, contains a number of chapters. For each
chapter we know its chapter number, topic, total number of pages and total number of references.
Different textbooks may cover the same topics.

TEXTBOOK CONTAINS CHAPTER

Chapter_NO

Topic

No_of_pages

ISBN

No_of_References

3. Please draw an ER diagram that captures the following situation. For each course a student has taken,
we need to know the final grade. Each course has a unique course code and a student has his/her
student ID.

PC



Test B

Please specify your computer name:

Answer all questions.

1. The ER diagram below represents the relationship between courses and recommended textbooks. Please
specify the participation and cardinality constraints.

COURSE RECOMMENDS TEXTBOOK

Code ISBN

2. The ER diagram below is a partially completed ER model that represents the information given below.
Please complete the ER diagram. Each course, with a unique course code, consists of several sections.
For each section, we know the topic it covers, and the number of lectures and labs it contains. The same
topic can be covered in several courses, but the number of lectures and labs will differ in that situation.

COURSE CONSISTS_OF SECTION

Topic

Lectures

Labs

Code

3. Please draw an ER diagram that models the requirements given below. Sometimes students work in
groups. Each group has a unique number and students have their student IDs. A student may have
different roles in various groups he/she belongs to.

PC



Appendix C: User Questionnaire

KERMIT : Knowledge-based Entity Relationship Modelling Intelligent Tutor

Thank you for using KERMIT. Your feedback will be crucial for further improvements of the system and

we would be most grateful if you could take time to fill in this questionnaire. The questionnaire is
anonymous, and you will not be identified as an informant. You may at any time withdraw your

participation, including withdrawal of any information you have provided. By completing this
questionnaire, however, it will be understood that you have consented to participate in the project and that

you consent to publication of the results of the project with the understanding that anonymity will be
preserved.

Please specify your computer name:

1. What is your previous experience with ER modelling? (please circle one)

(a) Only lectures

(b) Lectures plus some work

(c) Extensive use

2. How much time did you need to learn about the system's functions? (please circle one)

(a) Substantial time (most of the session

(b) 30 minutes

(c) 10 minutes

(d) Less than 5 minutes

3. How much did you learn about ER modelling from using the system? (please circle one)

Nothing Very
much

1 2 3 4 5

Please comment

4. Did you enjoy leaning with KERMIT? (please circle one)

Not at all Very

much

1 2 3 4 5

Please comment
5. Would you recommend KERMIT to other students? (please circle one)

(a) Yes

(b) Don't know

(c) No



6. Did you find the interface easy to use? (please circle one)

Not at all Very

much

1 2 3 4 5

Please comment

7. Did you find the feedback from KERMIT useful? (please circle one)

Not at all Very

much

1 2 3 4 5

Please comment

8. Would you prefer more details in feedback? (please circle one)

(a) Yes

(b) Don't know

(c) No

Please comment

9. Did you encounter any software problems or system crashes? (please circle one)

(a) Yes

(b) No

If yes, please specify which
10. What did you like in particular about KERMIT?

11. Is there anything you found frustrating about the system?
12. Do you have any suggestions for improving KERMIT?


