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Abstract. We propose and evaluate a decision-theoretic approach for selecting tutorial actions by

looking ahead to anticipate their effects on the student and other aspects of the tutorial state. The
approach uses a dynamic decision network to consider the tutor's uncertain beliefs and objectives

in adapting to and managing the changing tutorial state. Prototype action selection engines for

diverse domains - calculus and elementary reading - illustrate the approach. These applications
employ a rich model of the tutorial state, including attributes such as the student's knowledge,

focus of attention, affective state, and next action(s), along with task progress and the discourse

state. For this study, neither of our action selection engines had been integrated into a complete
ITS, so we used simulated students to evaluate their capabilities to select rational tutorial actions

that emulate the behaviors of human tutors. We also evaluated their capability to select tutorial

actions quickly enough for real-world tutoring applications.

INTRODUCTION

This paper proposes and evaluates a decision-theoretic approach for selecting tutorial actions
while helping a student with a task such as solving a problem. The approach, which we call DT

Tutor, involves explicitly looking ahead to anticipate how the tutorial action alternatives will

influence the student and other aspects of the tutorial state. For each tutorial action alternative,
the tutor computes (1) the probability of every possible outcome of that tutorial action, (2) the

utility of each possible outcome in relation to the tutor's objectives, and then (3) the alternative's

expected utility by weighting the utility of each possible outcome by the probability that it will
occur. The tutor then selects the action with maximum expected utility. This approach unifies

considerations regarding the tutor's objectives, the tutor's uncertain beliefs about the student's

changing internal state (e.g., the student's knowledge), and the tutor's uncertain beliefs about the
effects of tutorial actions. One advantage of a decision-theoretic approach is the capability to



balance multiple tutorial objectives in computing the utility of each outcome. DT Tutor leverages

this capability by considering multiple objectives related to tutorial state outcomes such as the
student's knowledge, focus of attention, affective state, and next action, along with task progress

and the discourse state.

There are at least three ways that this approach could fail. First is the knowledge
representation issue: For real-world tutorial contexts, it might not be feasible to decision-

theoretically represent the tutorial state with enough fidelity. The real tutorial state is of course

hopelessly complex. It includes the student's knowledge (which is changing, we hope), the
student's focus of attention, the student's affect, progress on the tutorial task, the tutor's domain

knowledge and pedagogical objectives, the discourse history, etc. We can approximate some of

these tutorial state attributes. For instance, we could represent student affect as a variable with
just two values: high or low. However, such coarse approximations may make it impossible to

predict future tutorial states and rate their utilities accurately enough. Thus, one challenge is to
develop a representation of the tutorial state that is accurate enough to make good decisions but

not so complex that it is computationally infeasible.

Another way that this approach could fail is in its tutorial action selection capabilities. DT
Tutor's architecture is novel. Its networks can be complex because they model multiple outcomes

as they change over time, and they may include hundreds of nodes and thousands of probabilities

and utilities. Yet these networks are just approximations of the tutorial state. DT Tutor's basis in
decision-theory gave us good reason to believe that it should be able to select tutorial actions

rationally. However, we did not know just what action selection capabilities would emerge from

such a complex yet approximate representation, or whether they would be comparable to the
capabilities of tutors using heuristics refined through years of experience or human intuition.

Furthermore, we did not know how sensitive DT Tutor would be to changes in its probabilities

and utilities.
A third potential point of failure is the real-time inference requirement: A tutor must select

actions quickly enough to keep the student engaged. Our decision-theoretic approach uses an

extension of Bayesian networks. DT Tutor's networks have many uninstantiated variables, are
multiply-connected, and can be large. Such characteristics, which appear to be necessary for

many complex, real-world domains (Cooper, 1990), can make probabilistic inference NP-hard

(Cooper, 1990; Dagum & Luby, 1993) and thus can make real-time inference challenging.
We investigated the feasibility of our approach with tutorial action selection engines for

diverse domains: calculus related rates problems and reading aloud. At the time of this study,
neither of our action selection engines had a modern user interface, so we could not use them to

test DT Tutor's effectiveness with students. However, we did use them to address the potential

points of failure listed above. We addressed the knowledge representation issue by encoding the
tutorial action selection problem for the two domains. We tested DT Tutor's action selection

capabilities by presenting both action selection engines with a variety of scenarios and checking

to see whether the actions selected were both (1) rational in light of the system's probabilities and
utilities, and (2) comparable to the actions of human or other automated tutors. To see whether

the real-time inference requirement could be met, we tested the response times of both action

selection engines for a variety of problem sizes.
While many ITSs and other user modeling systems have used Bayesian networks for

reasoning under uncertainty (see, e.g., Jameson, 1996), decision-theoretic approaches for

selecting tutorial actions remain rare. Reye (1995) was perhaps the first to propose a decision-



theoretic approach for ITSs but left many details unspecified. Murray and VanLehn (2000)

presented DT Tutor's architecture in the context of the action selection engine for calculus related
rates problems. We know of two other decision-theoretic approaches for ITSs, both of which

differ significantly from our work: (1) iTutor (e.g., Pek, 2003; Pek & Poh, 2000) uses a decision-

theoretic approach to reason about curriculum topics such as which problems to present to the
student, but uses heuristics to decide how to help the student with individual problems. (2)

CAPIT (Mayo & Mitrovic, 2001) models the tutorial state in terms of observable constraints

only. This approach eases the burden of learning empirically justifiable probabilities but
sacrifices the capability to reason about unobservable tutorial state attributes, including the

student's knowledge, which we believe is an important attribute for an ITS to consider.

Decision-theoretic methods have also been employed in the broader user modeling
community - for instance, in the work of Horvitz (e.g., Horvitz et al., 1998) and Jameson (e.g.,

Jameson et al., 2001). Conati's architecture (e.g., 2002) for educational games is probably the
closest to DT Tutor in that it too employs a dynamic decision network representation to consider

both the user's knowledge and affective state to select actions while helping the user with a task,

although so far it focuses only on modeling the user's affective state. We provide a more
complete review in the Relation to Prior Work section.

Below, we first describe the decision-theoretic basis of our approach. Next, we present our

solution to the knowledge representation issue by describing DT Tutor's general architecture and
its realization as action selection engines for calculus related rates problems and reading aloud.

Then we present the results of tests of DT Tutor's action selection capabilities and response time.

Next, we describe related work in ITSs and other user modeling systems. We conclude with a
discussion of our results and plans for future work.

A DECISION-THEORETIC APPROACH

The term decision-theoretic has been used in various ways (Jameson et al., 2001). We define our
general approach in this section, reviewing prerequisite concepts while working up to a

description of the dynamic decision network that is at the heart of DT Tutor.

Probability has long been the standard for modeling uncertainty in diverse scientific fields.
In recent years, algorithms for belief networks (Pearl, 1988, equivalently, Bayesian networks)

have made probabilistic modeling of complex domains more feasible. A belief network is a

directed acyclic graph with (1) a chance node for each modeled attribute to represent beliefs
about its value, and (2) arcs between nodes to represent conditional dependence relationships

among the beliefs. Beliefs are specified in terms of probability distributions for the attribute's
possible values. For a node with incoming arcs, a conditional probability table specifies its

probability distribution conditioned on the possible values of its parents. For a node without

parents, a prior probability table specifies its probability distribution prior to observation of
actual node values. In many real-world scenarios, a substantial number of conditional

independence relationships exist. When this is the case, a belief network can concisely represent

the entire joint probability distribution - the probabilities for every possible combination of
attribute values - with exponentially fewer probability entries, making it possible to model more

complex domains. Belief networks provide a mathematically sound basis for updating beliefs

about any set of nodes in the network given any set of observations. Prior and conditional beliefs



may be determined subjectively, theoretically, or empirically. Using Bayes' rule and a variety of

inference algorithms, belief networks can be used to perform diagnostic, causal and intercausal
reasoning, as well as any combination of these (Russell & Norvig, 1995).

Each node within a belief network represents possibly changing beliefs about an attribute

whose value is fixed even though it may be unknown. Temporal probabilistic networks (Dean &
Kanazawa, 1989) support reasoning under uncertainty in domains where the values of attributes

may change over time (as tutorial state attributes often do). For each attribute whose value may

change, a sequence of nodes represents the attribute's value at each point in time. Typically, a
new slice is created for each time point at which attribute values may change, where a slice is a

set of nodes representing attributes at a specific point in time. For tutoring, slices can be chosen

to represent the tutorial state after a tutor or student action, when attribute values are likely to
change (Reye, 1996; Reye, 2004). In addition to atemporal arcs between nodes within the same

slice, temporal arcs extend between nodes across time slices to represent the fact that attribute
values may also depend on earlier values of the same and other attributes. The set of temporal

arcs represents the network's state evolution model (Russell & Norvig, 1995). Typically (e.g.,

Albrecht et al., 1998), each slice is constructed so that the Markov property holds true, by adding
additional nodes if necessary (Russell & Norvig, 1995): attribute values in one slice depend only

on attribute values in the same slice and in the immediately preceding slice.

In static temporal networks, the number of slices is fixed in advance. Dynamic temporal
networks (e.g., dynamic belief networks ) avoid this limitation by creating additional slices

dynamically and removing old slices when they are no longer required. They rely on the Markov

property to roll up beliefs from an old slice into the following slice so that beliefs in the
following slice summarize all accumulated evidence and the old slice can be removed. However,

attributes that are conditionally independent in one slice may eventually be influenced by a

common historical cause, making them conditionally dependent in later slices. This can cause
nodes in later slices to become fully connected (Boyen & Koller, 1998), eliminating the

conciseness advantage of belief network representations. To avoid this situation, rollup schemes

that approximate a slice's belief state without full connectivity are typically used (e.g., Boyen &
Koller, 1998).

Decision theory extends probability theory to provide a normative account of how a rational

decision-maker should behave (Keeney & Raiffa, 1976). The decision-maker's preferences in
light of her objectives are quantified in terms of a numeric utility value for each possible

outcome of the decision-maker's action. To decide among alternative actions, the expected utility
of each alternative is calculated by taking the sum of the utilities of all possible outcomes

weighted by the probabilities of those outcomes occurring. Decision theory holds that a rational

agent should choose the alternative with maximum expected utility, thereby maximizing the
utility achieved when averaged over all possible outcomes (Russell & Norvig, 1995). Explicitly

quantifying the decision-maker's preferences facilitates comparing and prioritizing outcomes,

helps to clarify the rationale underlying decisions (Jameson et al., 2001), and supports modifying
the agent's behavior simply by changing utility values. The expected utility mechanism integrates

considerations about probability and utility over a continuous range of values. Decision theory

thus provides a rational, transparent, flexible and integrated mechanism for comparing decision
alternatives in light of probabilities and priorities regarding any number of competing objectives.

A belief network can be extended into a decision network (equivalently, an influence diagram) to

model a decision-theoretic approach by adding decision and utility nodes along with appropriate



arcs (Howard & Matheson, 1984).

A dynamic decision network (DDN) combines the capabilities of a dynamic belief network

and a decision network by combining chance, decision and utility nodes in a dynamic temporal
representation (Dean & Wellman, 1991). DDNs model scenarios in which decisions, attribute

values, or priorities among objectives can vary over time. They provide a unified mechanism for

computing the decision with maximum expected utility considering both uncertainty about the
changing state and multiple competing objectives. As with dynamic belief networks, DDNs are

typically constructed so that they can rely on the Markov property to dynamically add new slices

and remove old slices. Rollup methods are similar to those for dynamic belief networks.
DT Tutor uses a DDN to make tutorial action decisions by looking ahead to anticipate their

effects on the changing tutorial state in light of the tutor's uncertain beliefs and multiple

competing objectives. For DT Tutor, chance nodes represent the tutor's beliefs about tutorial state
attributes, decision nodes represent tutorial action alternatives, and utility nodes represent the

tutor's preferences among the possible tutorial states.

GENERAL ARCHITECTURE

DT Tutor's DDN is formed from dynamically created decision networks. We call each of these

networks a tutor action cycle network (TACN) because they each represent a single cycle of
tutorial action, where a cycle consists of deciding a tutorial action and carrying it out, observing

the next student action, and updating the tutorial state based on these two actions.

Each TACN consists of three slices, as illustrated in Figure 1
1
. The Tutorial States

subnetwork in each slice is a set of chance nodes representing the student's state and all other

                                                                        
1
 In figures in this paper, decision nodes are represented by rectangles, chance nodes are represented by

ovals, utility nodes are represented by hexagons, and subnetworks are represented by rounded rectangles.
Each arc into or out of a subnetwork actually represents multiple arcs to and from various subnetwork

nodes. For subnetwork and node names, a subscript of 0, 1, or 2 refers to the slice number. A subscript of s
refers to any applicable slice.
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Fig. 1. Tutor Action Cycle Network (TACN), high-level overview



attributes of the tutorial state, such as the task state and the discourse state. The Tutor Action1 and

Student Action2 nodes represent tutor and student actions, respectively. The Utility2 node is a
high-level representation of multiple utility nodes that together represent the tutor's preference

structure regarding the various possible outcomes of the tutor's action for the current TACN.

TACNs are used both for deciding the tutor's action and for updating the tutorial state. Let
us first consider how a TACN is used for deciding the tutor's action. During this phase, slice 0

represents the tutor's current beliefs about the tutorial state, slice 1 represents the tutor's possible

actions and predictions about their influence on the tutorial state, and slice 2 represents a
prediction about the student's next action, its influence on the tutorial state, and the utility of the

resulting tutorial state outcomes. The decision network inference algorithm calculates the action

with maximum expected utility and the tutor selects that action. This ends the decision-making
phase. The tutor executes the action. After the tutor has observed the student's action or decided

that the student is at an impasse, the update phase begins.
The tutor enters the student action as evidence in slice 2 and updates the network. At this

point, the posterior probabilities in Tutorial State2 represent the tutor's current beliefs. Since it is

now time for another tutorial action selection, another TACN is created and the dynamic network
is rolled forward: posterior probabilities from Tutorial State2 of TACNi are copied as prior

probabilities to Tutorial State0 of TACN i+1, where they represent the tutor's current beliefs
2
. This

initializes the new TACN. The old TACN is discarded. This ends the update phase. The tutor is
ready to begin the next phase, deciding what action to take next.

With this architecture, the tutor both reacts to past student actions (e.g., for corrective

feedback), whose effects are summarized by the beliefs in Tutorial State0, and anticipates future
student actions and their ramifications (e.g., to provide proactive help). In principle, the tutor can

look ahead any number of slices without waiting to observe student actions in order to consider

the long-term effects of its action alternatives. The tutor simply predicts probability distributions
for the next student action and the resulting Tutorial State2, rolls the DDN forward, predicts the

tutor's next action and the following student action, and so on. However, a large amount of

lookahead can be computationally prohibitive, so DT Tutor currently looks ahead only as far as
the student's next action and the resulting tutorial state.

Tutorial States Components

Figure 2 shows a generic TACN in slightly more detail. The Tutorial States subnetwork in each
slice is further divided into subnetworks to model various tutorial state attributes. In Figure 2,

Student Models is composed of the Student Knowledges subnetworks to model the student's task-
related knowledge, the Student Focuss subnetworks to model the student's task-related focus of

attention, and the Student Affects subnetworks to model the student's affective state. Outside the

student model are the Task Progresss subnetworks to model the student and tutor's task-related
progress, and the Discourse States subnetworks to model the state of the discourse between

student and tutor. The Tutor Action1 and Student Action2 representations, shown respectively as

                                                                        
2
 This is a naïve network rollup scheme which neglects additional dependencies between nodes in the new

slice (slice 0 of TACN i+1) that are induced by shared dependence on nodes in previous time slices. Future

work includes refining this rollup using an algorithm for approximate summarization of past dependencies
(e.g., Boyen & Koller, 1998).



single decision and chance nodes, may actually consist of more than one node, depending on the
application. Each of these components will be described in greater detail in the next section. This

generic TACN is a framework in which a variety of components can be included or omitted, and

each component can be modeled at various levels of richness and detail.

APPLICATIONS

We investigated the feasibility and generality of DT Tutor's knowledge representation schema by

creating tutorial action selection engines for two domains: calculus related rates problems
(Murray & VanLehn, 2000) and reading aloud (Murray et al., 2001). We present each application

below, describing major components of their TACNs. We also describe the implementation

process for both applications, including generating conditional probability table entries (which
make up the vast majority of a TACN's numeric entries) using a much smaller number of rules

with numeric parameters.

This section is crowded with details, but what makes these details significant is that they
explicitly represent much of the common sense psychology and pedagogy that is usually hidden

away within an ITS's heuristics. For instance, DT Tutor models relationships between the target

domain's structure and the student's knowledge, focus of attention, and next action(s). Such
relationships are hypotheses at this point, with the research literature still undecided. But it is

interesting that DT Tutor can explicitly represent hypotheses of this kind. Indeed, it may provide

Utility2

Tutor Action1
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State0
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Affect0

Focus0
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Model2

Discourse

State2

Task
Progress2

Affect2

Focus2

Knowledge2

Student
Action2

Fig. 2. TACN architecture in more detail
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a vehicle for testing them. However, our claim at present is only that DT Tutor's architecture

supports explicit representation of such hypothesized relationships.

Calculus Application

CTDT (Calculus Tutor, Decision-Theoretic) is an action selection engine for calculus related

rates problems. A sample word problem for this domain (Singley, 1990, p.104) follows:

The economy of the newly-founded republic of San Pedro is growing such that, in any

year y, the level m of the money supply in billion dollars is 2 times the square of the

number of years elapsed. The gross national product g of the economy is 4 times the
money supply. How fast is the gross national product growing when y  equals 2 years?

In equation form, the givens are m = 2y
2
, g = 4m, and y = 2, and the goal is to find dg/dy when y

equals 2. Singley (1990) developed a tutoring system for 32 problem types in this domain with
an interface designed to make student problem-solving actions observable, including goal-setting

actions that are normally unobservable.

Problem Solution Graph

A key knowledge representation scheme for CTDT is the problem solution graph that we use as

the basis for modeling the relationship between the structure of problem solutions and the
student's knowledge, focus of attention, next action, and task progress. A problem solution graph

is a hierarchical dependency network (Huber et al., 1994) that includes all steps and related rules

along any solution path for a problem. Like Andes1 (Conati et al., 2002), CTDT uses a rule-
based problem solver to create a problem solution graph for each problem. Figure 3 presents an

example for a simple problem of the same type as the example above except with generic

variable names (x, y, z) and variables in place of constants. For ease of explication, only one
solution path is shown. The goal is to find dx/dz when z=c (node Find dx/dz:z=c) and the given

equations are x=ay
b
, y=ez

f
, and z=c. Rule nodes are shown with diagonal shading in the two rows

along the top. Step nodes are facts or goals: fact nodes are equations; the remaining nodes are
goal nodes. Solidly shaded nodes are steps that have already been completed. The first subgoal is

to apply evaluation (node Apply Eval) by substituting the equation z=c into an equation for dx/dz

in terms of z (dx/dz:z). Since no equation for dx/dz:z exists, a subgoal is established to Find
dx/dz:z. One way to find dx/dz:z is to apply the chain rule (goal node Apply Chain) to equations

for dx/dy:? (":?" means in terms of any variable) and dy/dz:z. These equations do not exist either,

so subgoals are established to find them (Find dx/dy:? and Find dy/dz:z). One way to find dy/dz:z
is to apply differentiation (goal node Apply Diff2) to an equation for y in terms of z. One of the

givens is y=ez
f
, so differentiation is applied to derive the fact dy/dz=fez

f-1
. A parallel process is

used to derive the fact dx/dy=bay
b-1

. The parallel steps to derive the latter two facts may be

executed in any order. Now the chain rule can be applied to the equations dx/dy=bay
b-1

 and

dy/dz=fez
f-1

to derive fact dx/dz=bay
b-1

fez
f-1

, to which evaluation can be applied with fact z=c to
derive the answer, dx/dz=bay

b-1
fec

f-1
. Rule nodes license each problem step. For example, given

the goal Apply Eval to dx/dz:z=c, a rule for finding evaluation operands (node Eval Ops) is used

to establish the subgoal Find dx/dz:z. Once the fact  dx/dz=bay
b-1

fez
f-1

 has been derived, a rule for



executing evaluation (Eval Exec) is combined with the goal Apply Eval and the operands

dx/dz=bay
b-1

fez
f-1

 and z=c to derive the answer.
Other solution paths are possible for this problem, many of which are inefficient. For

instance, instead of differentiating x=ay
b
 to get dx/dy, one could restate x=ay

b
 in terms of y (y =

(x/a)
1/b

), differentiate the restated equation to get dy/dx, and then flip the derivative to get dx/dy.
Furthermore, if the student is allowed to go down parts of multiple solution paths, the student

could repetitively derive identical intermediate or final results in multiple ways. We are currently

experimenting with our automated problem solver and student interface to decide which types of
solution paths to allow.

Tutor Action1 Nodes

CTDT addresses the tutor action topic in the manner specified by the tutor action type. These
action components are represented by the decision nodes Tutor Action Topic1 and Tutor Action

Type1. The Tutor Action Type1 alternatives are currently prompt, hint, teach, positive feedback,
negative feedback, do (tell the student exactly how to do a step), and null (no tutor action).

The Tutor Action Topic1 alternatives may consist of any problem step (fact  or goal) or

related rule in the problem solution graph. However, students rarely repeat steps that they have
already completed successfully, and they are unlikely to be able to complete steps for which

prerequisites have not been completed. Accordingly, tutors are less likely to address such steps.

Therefore, for faster response time, CTDT normally considers as the tutor action topic only
uncompleted steps for which prerequisites have been completed, any step that has just been

completed (e.g., to give positive feedback), and related rules. A tutor action topic of null is also

supported to model (1) a tutor action with a type but no specific topic, such as general positive
feedback, or (2) no tutor action.

Student Action2 Nodes

Like Tutor Action1, CTDT's student action representation consists of nodes to model the student's
action topic and type: Student Action Topic2 and Student Action Type2 respectively. Student

Action Type2 may be correct, error, impasse, or null. A correct action matches an action in the

problem solution graph. An action type of impasse models either a help request on a specific
topic (specified by the Student Action Topic2 value) or a general help request such as "What

should I do next?" Null means no student action. All other student actions are of type error.

Student Action Topic2 may be any step in the problem solution graph or null to model either no
action at all or an action with no specific topic (such as a general help request).

Student Focuss Subnetworks

For CTDT, the Student Focuss subnetworks represent the tutor's beliefs about two components of

the tutorial state: (1) the student's focus of attention within the current problem, and (2) the

student's task progress (CTDT has no separate Task Progresss subnetworks). Figure 4 illustrates
the Student Focuss subnetworks for a simple problem with just five steps (facts or goals), the first

of which (Step 1s) is given, and three related rules. We model the student's focus of attention

relative to the problem steps, so the Student Focus s subnetworks consist of just the step nodes in



the problem solution graph, except for Student Focus1, which also includes the rule nodes, as

explained below.
Student Focuss step nodes have four possible values: not_ready, ready, in_focus, and

complete. The student is unlikely to be able to successfully complete problem steps for which

prerequisites have not been completed, and is therefore less likely to attempt them. Such steps
have the value not_ready. The student is also unlikely to repeat problem-solving steps that have

already been completed successfully. These steps have the value complete. The remaining steps

are uncompleted steps that the student could productively attempt next since all prerequisite steps
have been completed, and thus are more likely to be in the student's focus of attention. They have

some distribution over the values ready and in_focus, with ready meaning that the student is

ready to attempt the step next, and in_focus meaning that the step is also in the student's focus of
attention. In Figure 4, the probability distribution between ready and in_focus is depicted by the

density of the dots shading the nodes, with denser dots meaning that the node is more likely to be
in_focus.

Nodes in slice 0 represent the tutor's prior beliefs about the tutorial state and are

disconnected except for arcs to slice 1. In Student Focus0 of the first TACN for a tutorial session,
prior probabilities for the given steps (the problem goal and facts) are set to complete with

probability 1.0. Steps with uncompleted precedent steps are set to not_ready with probability 1.0.

Prior probabilities for the remaining steps are set to a distribution over the values ready and
in_focus, with a probability mass of 1.0 for in_focus divided equally among these steps. For

subsequent TACNs, prior probabilities for slice 0 are copied from posterior priorities in slice 2 of

the previous TACN. Slice 0 in Figure 4 depicts a situation in which Step 10 was given, Step 20

and Step 30 have equal probabilities of being in_focus, and Step 40 and Step 50 are not_ready.

Student Focus1 represents the influence of the tutor's action on the student's focus of

attention. The tutor's action can influence the student's focus among problem steps directly - e.g.,
by a hint on a specific step -so the tutor action nodes influence Student Focus1 step nodes. The

tutor normally considers addressing only steps that are ready or in_focus, plus any step that was

just completed (not given steps), so in Figure 4 there are arcs from the tutor action nodes to Step
21 and Step 31. The tutor can also indirectly influence the student's focus among problem steps by

addressing a related rule. In Figure 4, Rule A1 is the rule parent of both Step 21 and Step 31, so

there are arcs from the tutor action nodes to Rule A 1. Student Focus1 rule nodes have a
distribution over the values in_focus and out_of_focus with the obvious meanings. Student

Focus1 rule nodes in turn influence the probability that their related step nodes are in_focus.
Student Focus 1 influences the topic of the student's next action, Student Action Topic2,

which may be any problem step. However, if every Student Focus1 step node influenced Student

Action Topic2, the number of conditional probability table entries required could be prohibitive:
Each Student Focus1 step node has 4 possible values, and Student Action Topic2 has s+1 possible

values, where s is the number of problem steps. If there are just 15 steps and if each step node in

Student Focus1 influenced Student Action Topic2, the conditional probability table for Student
Action Topic2 would require 4

15
 * (15+1) entries, or over 17 billion. In order to limit the size of

the conditional probability table, only the step nodes that are more likely to be in the student's

focus of attention - those that are ready or in_focus - influence Student Action Topic2. The
remaining steps - those that are not_ready or complete - may still be the topic of the next student

action; it is just that they are assumed to have a uniformly low probability of being the action

topic. This requires dynamic specification of arcs to Student Action Topic2 and dynamic creation



Fig. 3. Problem solution graph for CTDT

of Student Action Topic2's conditional probability table for each new TACN as student actions

are observed. In the situation depicted in Figure 4, only Step 21 and Step 31 are ready or in_focus
in slice 1, so only they influence Student Action Topic2. This restriction results in considerable

savings. For instance, if only 2 of 15 steps are ready or in_focus, only 4
2
*(15+1) = 256

conditional probabilities must be specified instead of over 17 billion.
The student action nodes can in turn influence the Student Focus2 step nodes. In slice 2 of

Figure 4, the student has just completed Step 2, so it is complete. Student Focus2 step nodes are

also influenced by their prerequisite steps. In Figure 4, when Step 22 becomes complete, its child,
Step 42, has a distribution over the values ready and in_focus since all of its prerequisite steps

(just Step 22) are now complete.



Fig. 4. Student Focuss subnetworks in CTDT's TACN

Focus Evolution and Aging

Temporal arcs between Student Focuss step nodes model the persistence of the student's focus of
attention and task progress over time. For instance, steps that are not_ready remain so until either

all of their parent steps are complete or the student completes the step (e.g., by guessing). In

contrast, steps that are in_focus at some point in time become a little less likely to be in_focus
with each passing slice. This is to model focus aging: steps that were in_focus slowly become

less in_focus over time as the student moves on to other topics. In Figure 4, Step 3's probability
of being in_focus decreases from slice 1 to slice 2 as the student completes Step 22 instead.

When there are multiple steps that could be in_focus because they are the next ready step

along some portion of a solution path, DT Tutor needs some way to decide how likely the
various steps are to be in_focus. To do this, DT Tutor, like Andes1 (Gertner et al., 1998),

assumes a depth-first bias: Students usually prefer to complete work on one portion of a solution

path before starting to work on another. A depth-first bias in problem solving corresponds to a
depth-first traversal of the problem solution graph. Such a bias is consistent with activation-based

theories of human working memory (e.g., Anderson, 1993) and observations of human problem



solvers (e.g., Newell & Simon, 1972). However, depth-first bias is not absolute (VanLehn et al.,

1989): at any given step, there is some probability that a student will not continue depth-first.
To model depth-first bias, when a step first becomes ready or in_focus because all of its

parent steps have become complete, that step has a high probability of being in_focus. This is

because the student, having just completed the last of the step's parents, is likely to continue
working with the step itself. In Figure 4, Step 42 is highly likely to be in_focus since Step 22 has

just been completed. Focus aging helps to model another aspect of depth-first bias: preferring to

backtrack to more recently in_focus steps. When the student completes or abandons a portion of
the solution path, steps that were recently in_focus but that are still not complete have had less

focus aging than steps that were in_focus in the more distant past, so the more recently raised

steps remain more likely to be in_focus.

Student Knowledges Subnetworks

The Student Knowledges subnetworks represent the tutor's beliefs about the student's problem-
related knowledge. Figure 5 provides an illustration for the same problem that was described in

the previous subsection. To create these subnetworks, the problem solution graph is converted

into a belief network, associating each node with a probability distribution for the values known
and unknown. Rule nodes represent the tutor's belief about the student's knowledge of the

corresponding rule. Step nodes represent the tutor's beliefs about the student's capability to derive

the corresponding fact or goal given the student's rule knowledge. In Figure 5, the step nodes are
shaded according to whether their Student Focus 0 subnetwork values are not_ready, ready or

in_focus ("ready/i-f"), or complete. This shading is intended to illustrate why the tutor action

nodes influence some nodes (the ready or in_focus nodes and their rule parents) and not others,
as explained below.

In the first TACN for a tutorial session, prior probabilities for the Student Knowledge0 rule

nodes are based on the best information available, such as pretest data for a particular student or
statistical data for a student population. Prior probabilities for the given steps (the problem goal

and the given facts) are set to known with value 1.0. Prior probabilities for the remaining steps

are set to unknown with probability 1.0. For subsequent TACNs, prior probabilities for slice 0 are
copied from posterior priorities in slice 2 of the previous TACN.

Within slices 1 and 2, the Student Knowledges subnetworks have the same basic structure as

the problem solution graph: atemporal arcs from rule nodes model the influence of rule
knowledge on the student's ability to derive related steps, and atemporal arcs between step (fact

or goal) nodes model prerequisite relations. Temporal arcs between corresponding nodes in
adjacent slices model the persistence of the student's knowledge over time.

Student Knowledge1 represents the influence of the tutor's action on the student's knowledge.

The tutor normally considers addressing only steps that are ready or in_focus - this is the reason
for the shading in Figure 5 - plus any step that was just completed. The tutor also considers

tutoring on rules related to steps that are ready or in_focus, since (1) these rules are more likely

to be in the student's focus of attention, and (2) tutoring on them may provide the knowledge
necessary for the student to complete the corresponding step. Therefore, in Figure 5 there are

arcs from the tutor action nodes to Step 21 and Step 31 (there is not an arc to Step 11 since it was

given) and to Rule A1 since it is the parent of both Step 21 and Step 31.



Fig. 5. Student Knowledges subnetworks in CTDT's TACN

Given the topic of a student action (Student Action Topic2), which may be any problem step

(or null), the student's knowledge of the topic influences the student action type (e.g., correct,

error, or impasse), Student Action Type 2. Therefore, Student Knowledge1 step nodes influence
Student Action Type2. In Figure 5, all five step nodes in Student Knowledge1 influence Student

Action Type2. Just as with the influence of Student Focus1 step nodes on Student Action Topic2,

this could result in an untenably large number of influences on Student Action Type2. However,
in this case, since Student Action Topic2 may be any step and we want to be able to learn

diagnostically about the student's knowledge of the action topic based on her action type, we

cannot restrict which Student Knowledge1 step nodes influence Student Action Type2. Instead, we
employ what we call a funnel subnetwork (Murray, 1999, not shown in Figure 5) between the

Student Knowledge1 step nodes and Student Action Type2. This funnel subnetwork does not

change the semantics of the TACN in any way (which is why it is not shown in the figure); it is
simply a factoring technique to minimize the number of conditional probability table entries.



In slice 2, the Student Action2 nodes do not directly influence Student Knowledge2 nodes.

This is because a student action does not influence the student's knowledge without feedback
(e.g., from the tutor), which is not modeled until the next TACN. Rather, once Student Action2

has been observed, it influences Student Knowledge1 nodes diagnostically, which in turn

influence the corresponding Student Knowledge2 nodes.

Student Affects Subnetworks

The Student Affects subnetworks represent the tutor's beliefs about the student's affective state.

CTDT incorporates a simple model with just two attributes: (1) Independences, the student's
feelings of independence or self-efficacy within the domain (e.g., whether she feels like she can

solve problems without the tutor's help), and (2) Morales, the student's satisfaction with engaging

in the current task. Independence is one of the attributes modeled in del Soldato and du Boulay's
(1995) seminal work for affective modeling within ITSs, and is related to the attributes of

challenge and confidence suggested by Lepper and colleagues (1993). Morale in CTDT is a
coarse approximation of Lepper and colleagues' (1993) suggested attributes of curiosity and

control and del Soldato and du Boulay's (1995) attribute of effort.

The Independences and Morales nodes each have five possible values, level 0 through level
4, with higher levels representing greater independence or morale. Both the tutor and student

actions influence the Independences and Morales nodes. For instance, a Tutor Action Type1 value

of null (no action) increases the Independence1 value but leaves the Morale1 value about the
same. A Student Action Type2 value of correct is likely to boost both Independence2 and Morale2,

while a Student Action Type2 value of error or impasse is likely to have the opposite effect. Arcs

between corresponding Independences and Morales nodes in adjacent slices model the
persistence of the student's affective state over time.

Utility2 Subnetwork

Utility2 is actually a number of utility nodes in a structured utility model representing tutor
preferences regarding the following outcomes:

1. Student rule knowledge in slice 2 (rule nodes in Student Knowledge2)

2. Student problem solving progress in slice 2 (step nodes in Student Focus2)

3. Student independence in slice 2 (Independence2)

4. Student morale in slice 2 (Morale2)

5. Tutor action type in slice 1 (Tutor Action Type1)

6. Discourse state coherence in slice 1 (Coherence1)

7. Discourse state relevance in slice 1 (Relevance1)

We use linearly-additive multi-attribute utility functions to combine subutilities for the

outcomes above: Subutilities are combined by assigning a weight to each subutility, multiplying

each subutility value by its weight, and summing the weighted subutility values. These functions
make it easy to change DT Tutor's behavior by simply changing the weights. For instance, DT



Tutor will focus on student rule knowledge at the expense of problem-solving progress if a high

weight is assigned to the former and a low weight is assigned to the latter.

Reading Application

RTDT (Reading Tutor, Decision-Theoretic) is a prototype action selection engine for Project

LISTEN's Reading Tutor, which uses mixed-initiative spoken dialogue to provide reading help
for children as they read aloud (Mostow & Aist, 1999). The Reading Tutor has helped to improve

the reading of real students in real classrooms (Mostow & Aist, 2001). It displays one sentence at

a time for the student to read, and a simple animated persona that appears to actively watch and
patiently listen. As the student reads, the Reading Tutor uses automated speech recognition to

detect when the student may need help, which it provides using both speech and graphical

display actions. Thus, in contrast to CTDT, the Reading Tutor already has an extensively
developed interface to which RTDT must adapt.

Currently, when the Reading Tutor gives help on an individual word, it selects randomly
from a set of tutorial actions deemed to be felicitous for that word. We investigated the feasibility

of applying DT Tutor to replace this random action selection mechanism for two types of

unsolicited help: proactive help and corrective feedback. The Reading Tutor provides proactive
help before the student attempts a sentence when it believes that she is likely to misread a word,

and corrective feedback when it detects words read incorrectly, skipped words and disfluent

reading. DT Tutor considers both proactive help and corrective feedback on every turn, so RTDT
may provide proactive help even after the student's first attempt.

Tutoring reading differs enough from coaching calculus problem solving to pose challenges

for adapting DT Tutor. First, student turns may consist of multiple reading actions, where a turn
is defined to end when the student pauses for some threshold amount of time, and each action is

an attempt to read a word. Therefore, in contrast to CTDT, RTDT must predict and respond to

multiple student actions per turn. Student turns may indeed include multiple actions in many
target domains, so it is important to meet this challenge.

Second, beginning readers often make repeated attempts at words or phrases and sometimes

omit words, with the effect of jumping around within a sentence. Thus, the order in which
beginning readers attempt words is not always sequential and has little prerequisite structure.

This means that the set of actions that the student is likely to attempt next is less constrained than

with CTDT, posing a challenge for predicting the student's next turn. A similar challenge must be
faced for tutoring in any target domain with weak constraints on the order in which actions may

be completed.
Below, we describe some of the major components of RTDT's knowledge representation,

highlighting differences with CTDT and the mechanisms by which we model the probabilistic

relationship between the student's knowledge, focus of attention, and next actions. We also
describe a new component, the Tutor Efficacys subnetworks.

Network Structure

Figure 6 illustrates RTDT's general TACN structure. In contrast to the generic TACN structure in
Figure 2: (1) Student Models does not currently include Student Affects subnetworks (although

they could be added), (2) Tutor Efficacys subnetworks are included, and (3) the Student Action2



representation has many more nodes. Also, not all TACN components are included in each slice -

for instance, Tutor Efficacys is not included in slice 1. For efficiency, we omit components where

they are not necessary in order to reduce the size of the network. In contrast to CTDT, RTDT's
Task Progresss subnetworks are not combined with the Student Focuss subnetworks.

To avoid disrupting the flow of reading, the Reading Tutor ignores errors on a list of 36
common function words (e.g., a, the) that are unlikely to affect comprehension. Approximately

two-thirds of the words in sentences within the Reading Tutor's corpus of readings are non-

function words, or content words. RTDT ignores errors on function words as well and so does
not include nodes to represent them in its subnetworks.

Tutor Action1 Node

RTDT's tutor action representation consists of only one decision node, Tutor Action1. The
decision alternatives are null (do nothing), move_on (move on to the next sentence - e.g., after

the student has completed a sentence), read_move_on (read the sentence to the student and then

move on), hint_sentence (e.g., read the current sentence to the student), and hint_word_i (give a
hint for word i) for each content word i in the current n-content-word sentence, i = {1, 2, …, n}.
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Specifying the type of hint as well - for example, whether to hint about a particular word by

saying the word itself or by giving a rhyming hint - would require information that was not
available for the prototype implementation. For instance, information about the student's

knowledge of the letter-sound mappings pertinent to a particular word would help RTDT

determine the probability that a rhyming hint would supply knowledge that the student needs.
Before the student's first attempt at a sentence, RTDT considers every action alternative,

including hinting on each content word. For faster response time on subsequent attempts, RTDT

does not consider hinting on words that the student has already read correctly, since hints on
words that the student already knows are less likely to have pedagogical benefit.

Student Focuss Subnetworks

For RTDT, Student Focus s includes a Focus_Word_is node for each content word i in the current
sentence. Each node has possible values in_focus and out_of_focus, where in_focus means that

the student intends to attempt to read this word next. In slice 1, each Focus_Word_i1 node is
influenced by the tutor's action. For instance, if the tutor hints about word j, Focus_Word_j1 is

more likely to be in_focus. A tutor hint about the sentence as a whole increases the probability

that the student will attempt to read the entire sentence (starting with the first word), increasing
the probability that Focus_Word_11 is in_focus.

Student actions also influence the tutor's beliefs about the student's focus of attention. For

instance, if the student misreads a word, she is more likely to focus on it (since she may know
she misread it), so it is more likely to be in_focus. Similarly, if the student stops at a word

(perhaps because she is having difficulty), it is more likely to be in_focus.

Student Knowledges Subnetworks

For RTDT, the Student Knowledges subnetworks represent the student's knowledge of how to

read the current sentence. For each content word i, a Know_Word_is node represents the student's

knowledge of how to read the word. In addition, a Know_Sentences node represents the student's
knowledge of how to read the sentence as a whole. Each of these nodes has possible values

known and unknown.

The tutor's action influences the Student Knowledge1 nodes. For instance, hint_word_j
increases the probability that Know_Word_j1 is k n o w n , and hint_sentence increases the

probabilities that each Know_Word_i1 node and the Know_Sentence1 node are known. Knowing

the sentence requires knowing each word, so Know_Sentence1 is also influenced by the student's
knowledge of each content word (Know_Word_i1). Student Knowledge1 in turn influences the

success of the student's turn, as described in the next subsection. After the student's turn has been
observed, Student Knowledge1 is updated diagnostically to reflect its causal role in the student's

success at reading any words attempted.

Student Action2 Nodes

The Student Action2 nodes model student turns which may consist of multiple reading actions,

where each action is an attempt to read a word. Figure 7 illustrates the Student Action2 nodes in

the context of predicting the next student turn. The student action Read_Word_i2 nodes represent



the student's reading of each content word i as not_read, error, or correct, based on results

provided by the automated speech recognizer. This representation models student turns ranging
from no productive attempt (all words not_read - e.g., a silent impasse), to all words read

correctly (all words correct), to any combination of words not_read, read in error, and read

correctly. In addition, the student action Read_Sentence2 node models the student's reading of
the sentence as a whole as either fluent or disfluent.

To predict the student's next turn, influences on each Read_Word_i2 node from the

corresponding Focus_Word_i1 node probabilistically predict which word the student will attempt
first. For any word that the student attempts, an influence from the corresponding Know_Word_i1

node predicts whether the reading will be in error or correct. We assume that if a student reads

one word correctly, she is most likely to attempt the next word, and so on, until she gets stuck or
makes an error. Therefore, arcs from each node Read_Word_i2 to node Read_Word_i+12, i = {1,

2, …, n-1}, model the influence of reading word i correctly on the probability that the student
will attempt word i+1.

For a fluent reading of the sentence, each Read_Word_i2 node must be correct, plus the

sentence must be read without extraneous utterances or long pauses. The Read_Sentence2 node is
therefore influenced by each Read_Word_i2 node and by the Know_Sentence1 node.

Tutor Efficacys Subnetworks

The Tutor Efficacys subnetworks represent the tutor's beliefs about the efficacy of its help at
increasing the student's knowledge. Each node represents the efficacy of a particular help

alternative. RTDT represents the effectiveness of the hint_sentence and hint_word_i (for each

word i in the sentence) alternatives with corresponding Hint_Sentences and Hint_Word_is nodes.
Each node has possible values effective and ineffective, where effective means that the tutorial

help is immediately effective at causing the student to know the help topic (i.e., for Hint_Word_i,

to know how to read word i; for Hint_Sentence, to know how to read the sentence as a whole).
Tutor Efficacy0 nodes combine with the Tutor Action1 node to influence the Student Knowledge1

node or nodes corresponding to the help topic: Hint_word_i1 influences Know_Word_i1 while

Hint_Sentence1 influences every Student Knowledge1 node. Student Knowledge1 in turn
influences Student Action2. The success of Student Action2 provides evidence about tutor efficacy

that is propagated diagnostically through Student Knowledge1 to the appropriate Tutor Efficacy0

node.
The Tutor Efficacys nodes tune the network to the particular student, reducing the need for

developers to provide accurate conditional probabilities regarding the effects of Tutor Action1 on
Student Knowledge1, and helping RTDT to avoid repeating ineffective tutorial actions.

Implementation

With input from a problem solution graph (CTDT) or sentence text (RTDT), the action selection
engine creates the initial TACN. Thereafter, it recommends tutorial actions, accepts inputs

representing student actions, updates the network, and rolls the DDN forward to decide each new

tutorial action. Below, we describe some methods we used to cope with the size of the networks:
factoring techniques and automatically creating conditional probability table entries.



Factoring Techniques

As part of creating TACNs, the action selection engines use factoring techniques to reduce the
sizes of conditional probability tables. For example, the Tutor Action Topic1 (CTDT) and Tutor

Action1 (RTDT) decision nodes can have many values: in CTDT, null plus every problem step
and related rule; in RTDT, four values plus every word in the sentence. These decision nodes

have arcs to many nodes in the Student Knowledge1 and Student Focus1 subnetworks. Without

factoring, each arc would cause the number of entries in the target node's conditional probability
table to be multiplied by the number of tutor action alternatives even though there is a direct

influence only if the tutor action topic corresponds to the target node. Instead, we insert a filter

node between these tutor action nodes and each target node. Each filter node reduces the
influence of the tutor action node to a binary distinction: either the tutor action node directly

influences the target node or it does not. Since filter nodes have only one input (a tutor action

node) and a binary output, their conditional probability tables remain relatively small while they
limit the increase in the size of their target nodes' conditional probability tables to a factor of two.

We employ filter nodes wherever warranted throughout TACNs but we do not clutter network

diagrams with them because they have no effect on network semantics. For similar reasons (as
described previously), we insert a funnel subnetwork between the step nodes in CTDT's Student

Knowledge1 subnetwork and Student Action Type2 (Murray, 1999).
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Conditional probability table entries

Conditional probability table (CPT) entries make up the vast majority of a TACN's numeric
entries. They often follow patterns so that the CPTs of different nodes may be similar in many

respects even if the nodes have different numbers of influences from different parent nodes. For

instance, consider the CPTs of two different CTDT Student Knowledge1 subnetwork step nodes,
one of which has one parent (antecedent) step, and the other of which has two parent steps (both

steps also have rule node parents). For both nodes, if any of the parent nodes is unknown, then

the student does not have the information to complete the step successfully, so the step is likely
to be unknown unless the student guesses correctly. Conversely, for both nodes, if all of the

parent nodes are known, then the step is likely to be known unless the student somehow slips in

making the inference required for the step. The probability of a correct guess or a slip is likely to
be about the same for both steps, at least in the absence of knowledge about special

circumstances related to either node - probabilities summarize uncertainty due to such ignorance
anyway (Russell & Norvig, 1995). Similar levels of tutor help may also have similar probabilities

of helping a student know different steps, again in the absence of more specific knowledge, and

especially in extreme cases, such as when the tutor simply prompts the student (providing little or
no information) or when the tutor tells the student exactly how to do a step.

We use rules to specify such patterns along with numeric parameters representing the

probability of a correct guess, a slip, success after a specific level of tutor help, etc. For our
prototype implementations, we used our best judgment to set default values for CPT parameters,

prior probabilities and utilities, leaving obtaining more accurate values as an important goal for

future research. The action selection engines also accept an optional file to specify any
probability or utility values that differ from the defaults.

Figure 8, along with the rules listed below, provides an example of automated CPT creation

for CTDT Student Knowledge1 subnetwork step nodes. The table in Figure 8 is the CPT for the
slice 1 node dx/dy = bay

b-1
 (shown in Figure 3) except that it has been simplified as follows: (1)

The step's slice 1 parents - its antecedent steps and related rule - are simplified to a single node,

Antecedent Steps & Rule, which has value unknown if any of the parents are unknown and value
known otherwise. (2) The Tutor Action Type1 decision node has just 3 alternatives - prompt, hint,

and do - which can be extended as described below. (3) The influence of Tutor Action Topic1

(through a filter node) is not shown. If the value of Tutor Action Topic1 does not correspond to
this node (i.e., if the tutor addresses some other knowledge element), then Tutor Action Type1

does not directly influence the student's knowledge of this node. For these cases, the table entries
are the same as the table entries for the content-free Tutor Action Type1 value of prompt, which

also does not influence the student's knowledge of this node.

The rules and parameters follow. Each rule specifies only the conditional probability that the
node is known, p(known), since p(unknown) is simply 1 - p(known).

1. If a step is known in slice 0, then the step is known with probability 1 - f, where f is a

parameter representing the probability of forgetting a step known in the previous slice.



2. Otherwise, if all of the step's parents are known, then the step is known with probability 1 - s,
where s is a parameter representing the probability of a slip on a known step.

3. Otherwise, the probability that the step is known depends on Tutor Action Type1:

•  If Tutor Action Type1 is content-free, such as prompt, then the step is known with
probability g , where g  is a parameter representing the probability of guessing an

unknown step correctly.

•  If Tutor Action Type1 is do (tell the student exactly how to do a step), then the step is
known with probability 1 - s.

•  If Tutor Action Type1 is neither content-free nor as explicit as do, the step is known with
a probability corresponding to the efficacy of Tutor Action Type1 at conveying the

information. In Figure 8, this probability is h, a parameter representing the probability

that a hint about an unknown step will be successful. This schema is easily extended to
various levels of hint efficacy and to other Tutor Action Type1 values such as teach.

TUTORIAL ACTION SELECTION EVALUATION

We had two goals for evaluating DT Tutor's action selection capabilities. First was to determine
whether DT Tutor's action selections are rational in light of its probabilistic beliefs and utilities.

This included testing whether DT Tutor is sensitive to changes in these values. Second was to

g= probability of a correct guess
h= probability that a hint about an unknown step will be successful
s= probability of a slip on a known step

f= probability of forgetting a step known in the previous slice
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determine whether DT Tutor can select actions that are comparable to those of other tutors in

similar situations. At the time of this evaluation, we had not yet developed a modern graphical
user interface for CTDT, and RTDT has not been integrated with the Reading Tutor, so for

testing we created a temporary text interface to simulate student inputs and tutorial actions (e.g.,

for CTDT, the student and tutor action type and topic).
As discussed above, the tutor must balance multiple competing objectives. This balance is

affected by the tutor's beliefs and utilities, so variations in any of the probability or utility values

may be enough to sway the balance to a different tutorial action selection. A TACN incorporates
thousands of real-numbered probability and utility values that may be varied in any combination,

and the number of possible variations for each value is unbounded, so the most we can do is

sample from this unlimited space. To sample from this space in such a way that the results would
be comprehensible, we first used our best judgment to initialize the system with reasonable

default values using parameters as described in the previous section. From a reasonable starting
state, it is easier to attribute the results of changes to one or more probability or utility values to

those changes rather than to odd interactions among the values.

DT Tutor's modular construction makes it easy to isolate its components, and we used this
capability for testing. Each of the major outcomes - e.g., the student's knowledge, focus of

attention, and affective state; task progress; and the discourse state - corresponds both to a

subnetwork of the TACN and to a subutility node. Total utility is a weighted sum of the
subutilities for the major outcomes. To isolate network components related to any subset of

TACN outcomes, we simply assign a weight of zero to the subutilities for all other outcomes. Of

course, this capability makes for a flexible tutor as well. For instance, one can easily configure
the tutor to focus on increasing the student's knowledge at the expense of task progress, or vice

versa, simply by changing the weights assigned to student knowledge and task progress.

We used both action selection engines to test DT Tutor's major components individually and
in various combinations while we varied probability and utility values. In addition, we tested the

tutor's action selections with all components active through all steps of problems while

simulating a range of student action types. Due to space limitations, we present only some
highlights below.

Considering Only the Student's Knowledge

With CTDT, we tested the effects of varying prior probabilities for student rule and problem step
knowledge while considering only knowledge-related outcomes. First, the prior probability that

each rule was known was fixed at 0.5 while we varied the prior probability that each step was
known from 0.1 to 0.5 to 0.9. Then, we reversed the manipulation, holding the prior probabilities

for the step nodes fixed at 0.5 while similarly varying prior probabilities for the rule nodes. With

equal prior probabilities that rules and steps are known, tutorial actions that increase rule
knowledge were preferred because increasing rule knowledge also increases the probability that

the student knows task steps that depend upon that knowledge (accomplishing both objectives at

once). Effective human tutoring is correlated with teaching generalizations that go beyond the
immediate problem-solving context (VanLehn et al., 2003). Otherwise, CTDT tended to prefer to

address the topic with lower probability of being known.

There is at least one situation in which a human tutor might choose not to devote attention to
a rule or task step that has a low probability of being known: when the tutor cares little about



whether the student learns the particular rule or task step. By helping the student get past the

need for low utility knowledge, the tutor and student can proceed with higher priority goals. We
tested CTDT's capability to emulate such behavior by setting a low prior probability for

knowledge of the rule required to do a particular problem step and setting a low subutility for

that rule. The tutor recommended a tutor action topic corresponding to the problem step and a
tutor action type of do, which helped the student get past the step without learning the rule. These

tests demonstrate DT Tutor's capability to emulate human tutors' proclivity to prioritize their

actions based on the student's needs and to avoid wasting time addressing topics that the student
does not need to know (Merrill et al., 1995).

Trade-offs between the Student's Knowledge and Task Progress

With CTDT, we tested the effects of assigning various weights to the subutilities for student
knowledge (Student Knowledge2) and task progress (Student Focus2). When the weights were

apportioned only to student knowledge, tutorial actions that increase rule knowledge were
preferred. When the weights were apportioned equally, tutorial actions that increase rule

knowledge were again preferred, all other things being equal. This is because increasing rule

knowledge also increases the probability that the student knows how to do related steps and thus
to make progress on the tutorial task. When the weights were apportioned only to task progress,

tutorial actions that directly increase step knowledge with high probability (e.g., do, teach) were

preferred. However, tutorial actions that directly increase step knowledge with only low
probability (e.g., a prompt or an ineffective hint) were sometimes less preferred than tutorial

actions that increase knowledge of a related rule. Again, this is because increasing the student's

rule knowledge reaps rewards for task progress as well.

Considering Only the Student's Affective State

With CTDT, we tested the effects of considering only individual components of the student's

affective state (independence or morale). Only the Tutor Action Type1 component of the tutor's
action influences the student's affective state, so we expected that the tutor action alternatives

would be ranked solely by tutor action type, and this proved generally to be the case.

However, there was a secondary influence that we should have anticipated. Student Action
Type2 also influences the student's affective state, with a value of correct improving both

Morale2 and Independence2. The influence of the student's future action on the student's affective

state is mitigated by uncertainty about what that action will be, so it is a secondary influence.
Among tutor action types with just a small positive or a negative direct influence on student

affect, the influence of the predicted student action type sometimes outweighed the direct
influence of the tutor action type. For instance, when considering student independence, action

type do was preferred over negative feedback, even though do was more likely to decrease

Independence1, because do was also most likely to lead to a correct student action. Human tutors
are likewise sensitive to the student's affective state but sometimes willing to take risks with it in

order to teach something, in part because they realize that success will be beneficial for the

student's affective state in the long run (Lepper et al., 1993).
We also varied prior probabilities for the affective state variables. We tested the effects of

three different prior probability distributions for each variable: a medium distribution centered



around the middle of the five values, a low distribution and a high distribution. The direction and

magnitude of the influence of the Tutor Action Type1 alternatives does not depend on prior
probabilities (except for ceiling and floor effects), so we hypothesized that varying prior

probabilties for student affect variables would change the expected utility values associated with

the various Tutor Action Type1 alternatives, but not their preference order. This turned out to be
true for many cases, but a surprise effect was that for student morale with a high prior probability

distribution, tutor action types do and teach were most preferred even though positive feedback

was most likely to directly increase student independence and morale. In retrospect, this is not so
surprising: With Morale0 already likely to be high, not much expected utility could be gained by

further increasing the probability of Morale1 being high. Instead, maximizing the probability that

Morale2 would be high could best be ensured by increasing the probability that Student Action
Type2 would be correct. Thus, DT Tutor is willing to take more risks with a student's morale

when it is high in order to increase the student's knowledge or task progress. Lepper and
colleagues (1993) conjecture that expert human tutors are also likely to provide less emotional

reassurance and support to more able and self-assured learners.

Providing Proactive Help by Considering both Informational and Affective Outcomes

We tested DT Tutor's ability to provide proactive help when the tutor believes the student needs

it, and conversely to refrain from providing help when the student does not appear to need it.

Most ITSs do not provide proactive help, reacting instead to student errors and impasses. Human
tutors sometimes provide proactive help (Lepper et al., 1993; Merrill et al., 1995), but most do

not provide it on every turn unless it is necessary. This may be in part because they also consider

other factors, such as the student's affective state, in addition to the student's cognitive state
(Lepper et al., 1993). CTDT's explicit consideration of the student's affective state

counterbalances objectives involving task progress and the student's cognitive state. For instance,

providing help only when necessary promotes the student's feeling of independence, and
providing proactive help serves to maintain student morale by avoiding failures. RTDT does not

explicitly reason about the student's affective state, but it does reason about objectives with

affective impact. These objectives include maximizing correct reading without the tutor's help,
which inhibits the tutor from giving proactive help unless it is needed, and minimizing incorrect

reading, which spurs RTDT to provide proactive help when necessary.

With both CTDT and RTDT, we varied prior probabilities for student knowledge elements -
steps and rules for CTDT; words for RTDT - to test whether the tutors would intervene with

proactive help when appropriate. When the probability was low that the student had the
knowledge necessary to complete the next problem step (CTDT) or read the sentence (RTDT),

DT Tutor suggested help before the student could experience failure. Conversely, with both

CTDT and RTDT, the tutor did not suggest help (i.e., it selected a null action) when prior
probabilities indicated that the student was likely to be able to complete the next problem step

(CTDT) or read the sentence (RTDT) successfully.

Considering the Student's Focus of Attention and Discourse State Relevance

For CTDT, the Discourse State Relevance1 outcome models the extent to which the tutor

cooperates with the student's focus of attention, assuming a depth-first topic bias. We tested



CTDT's ability to cooperate by configuring it to consider only the utility of the Relevance1

outcome when selecting tutorial actions for the problem whose problem solution graph is shown
in Figure 3. Of course, CTDT normally has other objectives as well, such as facilitating task

progress, in which case CTDT might choose not to cooperate with the student's focus of attention

- for instance, in order to get the student back onto a productive problem-solving track.
First, we simulated a student completing the Apply Chain step. Next, the student has a

choice among two subgoal setting steps, Find dx/dy:? and Find dy/dz:z , which happen to have

the same rule parent, Chain Ops. Since these subgoals share the problem step parent that was just
completed, there should be no depth-first preference between them, and testing verified that there

was not. Next, the simulated student completed setting one of the subgoals, Find dx/dy:?. Now

depth-first topic preference is applicable. Depth-first, the next step is Apply Diff1, so topics
related to completing step Apply Diff1 (the step itself plus its rule parent, Diff LHS) should be

preferred, and indeed they were. To test the flexibility of DT Tutor's depth-first topic preference,
we next simulated the student completing step Find dy/dz:z. Now, the next step depth-first is

Apply Diff2, so Apply Diff2 should be preferred over Apply Diff1 (both steps have the same rule

parent, Diff LHS), and again it was. Thus, CTDT emulated a common human tutorial tendency to
support the student in productive lines of reasoning rather than dictating which step to attempt

next.

Considering the Efficacy of Tutorial Actions

With RTDT, we tested DT Tutor's ability to model the efficacy of the various tutorial action

alternatives and choose its actions accordingly. First, we varied prior probabilities for the

Hint_Sentence0 and Hint_Word_i0 nodes in the Tutor Efficacy0 subnetwork. RTDT preferred
tutorial actions that it believed to be more effective, all other things being equal. Next, we

simulated tutorial hinting actions (hint_sentence and hint_word__i for each word i in the

sentence) and the subsequent student reading action (not_read, error, or correct for each word in
the sentence, along with either a fluent or disfluent reading of the sentence as a whole). After the

student's action, we updated the network and checked the value of the Hint_Sentence2 or

Hint_Word_i2 efficacy node corresponding to the tutor's action. For tutorial hint_word_i actions,
a subsequent student reading action of correct for word i increased the corresponding

Hint_Word_i node's probability of being effective, while student-reading actions of not_read or

error decreased it. For the tutorial hint_sentence action, the probability that the corresponding
Hint_Sentence node was effective depended upon the student's reading of each word i and the

sentence as a whole. Finally, we rolled the TACN forward and verified that RTDT prefers not to
repeat ineffective tutorial actions.

Tutorial Action Selections for a Complete Problem

We tested CTDT's action selections while simulating student actions through all problem steps.
Here, we recount a simulation for the problem whose solution graph is shown in Figure 3. At the

beginning of the problem, the only step whose prerequisite steps are all complete but that is not

yet complete itself - i.e., that is ready to be completed - is the step Apply Eval , so in Student
Focus0 it is in_focus with probability 1.0. The option has been set for CTDT to consider only

ready or in_focus steps (plus any step that was just completed) and their related rules as tutorial



action topics, so the Tutor Action Topic1 alternatives are null (no topic), the step Apply Eval , and

the rule Eval LHS (the parent rule of Apply Eval). For a calculus student, there is a high
probability that step Apply Eval  (setting the goal of applying evaluation to an equation for dx/dz

using the value z=c) and its related rule are known. CTDT selects action null / null
3
, allowing the

student to attempt the step on her own. The simulated student completes the step correctly. The
next step is to set the goal Find dx/dz:z, which again is most likely known. Instead of proactive

help, the tutor gives positive feedback on the previous student action (Apply Eval / positive

feedback). The student completes step Find dx/dz:z correctly.
The next step is Apply Chain (setting the goal of applying the chain rule). The prior

probabilities that this step and its related rule, Chain LHS, are known are low. CTDT selects the

action Apply Chain / teach. The student's subsequent action is Apply Chain / error, decreasing
probabilities that the step and its related rule are known and decreasing probabilities for high

morale and independence values. On its next turn, CTDT selects the action Chain LHS / teach,
increasing probabilities that the rule and its related step are known but decreasing the probability

that the student's independence is high. The student completes the step correctly, further

increasing probabilities that the step and the rule are known and increasing probabilities that
morale and independence are high.

Two steps are now ready or in_focus: Find dx/dy:? and Find dy/dz:z, both with rule parent

Chain Ops, which has a middling value of being known. CTDT selects action Chain Ops / hint,
which not only increases the probability that the rule is known, but also increases the probability

that both of the steps are known. The student correctly sets the goal Find dx/dy:?.

There is a relatively high prior probability that the student knows how to set the next goal
(depth-first), Apply Diff1, so CTDT just provides positive feedback on the previous student

action. Instead, the student sets the goal Find dy/dz:z. CTDT follows the student in switching to

the part of the solution path below Find dy/dz:z for depth-first topic preference, now preferring
topic Apply Diff2 to Apply Diff1. However, there is still a high probability that the student knows

how to set the goal of applying differentiation, so CTDT just provides positive feedback on the

previous student action. The next few steps along both branches of the solution path (which are
identical in form) - Apply Diff1, dx/dy=bay

b-1
, Apply Diff2, and dy/dz=fez

f-1
 - all have a high prior

probability of being known, so CTDT continues to provide positive feedback on previous student

actions as the student completes them correctly.
The next step is dx/dz=bay

b-1
fez

e-1
, the application of the chain rule to the two differentiated

equations, with parent rule Chain Exec (a rule about how to execute the chain rule). There is only
a middling probability that Chain Exec is known, so CTDT selects tutorial action Chain Exec /

hint, which is less likely than a teaching action to increase the student's knowledge, but also less

likely to decrease the student's independence. Unfortunately, the subsequent student action is an
impasse. The tutor teaches the step directly (dx/dz=bay

b-1
fez

e-1
 / teach). The student completes

the step successfully.

The last step is dx/dz= bay
b-1

fec
e-1

 with parent rule Eval Exec - how to execute evaluation.
There is a high probability that the student knows the rule and therefore how to arrive at the

answer, so CTDT just provides positive feedback on the previous student action. The student

executes the step correctly, completing the problem.

                                                                        
3
 In this section, tutor and student actions are specified in the format <topic> / <type>, where the first

position indicates the action topic and the second position indicates the action type.



Conclusions Regarding Tutorial Action Selections

On the tests described above, DT Tutor's action selection engines behaved rationally in a variety
of tutorial situations, both when analyzed in terms of functional components and as a whole. The

tests demonstrated that DT Tutor is sensitive to changes in its beliefs and utilities, adapting its

actions accordingly. We presented testing scenarios which suggest that, by weighing some of the
same considerations that may influence human tutors' decisions, DT Tutor's action selection

engines may be able to emulate some of their behaviors. Since there is good evidence that people

often reach different conclusions than decision-theoretic systems (see, e.g., Kahneman et al.,
1982), we anticipate that in at least some cases the actions of human and decision-theoretic tutors

will diverge, not necessarily always to the discredit of decision-theoretic tutors.

We also showed that, by considering combinations of tutorial state attributes over a
continuous range of probability and utility values, DT Tutor's applications can select rational

actions not just in selected situations to which heuristic rules might apply, but also:

•  In environments where it may not be practical to encode a heuristic for each situation - for

example, when the number of combinations of tutorial state attributes is unbounded.

•  In unanticipated situations - for example, when a tutorial action that has a less positive
impact on the student's affective state in the short-term has a more positive impact on the

student's affective state in the long-term (due to learning and successful problem solving).

•  In situations where heuristics involving different factors suggest conflicting actions - for
example, when proactive help would decrease the student's feeling of independence but

refraining from proactive help would leave the student highly likely to fail.

TRACTABILITY EVALUATION

We conducted a tractability evaluation to determine whether DT Tutor can be used to select

tutorial actions quickly enough to keep students engaged for real-world tutoring applications.

Probabilistic inference is NP-hard in the worst case for both exact (Cooper, 1990) and
approximate (Dagum & Luby, 1993) algorithms. DT Tutor's networks possess several

characteristics that can make inference challenging:

1. Multiply-connected, with some network nodes having three or more parents, for which
exact inference can be NP-hard (Cooper, 1990). Multiply-connected networks seem to be

necessary to represent many complex, real-world domains (Cooper, 1990).

2. Large (e.g., Cheng & Druzdzel, 2000; Russell & Norvig, 1995), also as seems to be
necessary for many complex, real-world domains (e.g., Cooper, 1990)

3. Temporal (Cooper et al., 1989), increasing both the number of nodes (for multiple slices)
and connectivity, with temporal as well as atemporal arcs (Ngo et al., 1996)

4. Large conditional probability tables (e.g., Cheng & Druzdzel, 2000)

5. Decision networks, requiring an update for each alternative (Russell & Norvig, 1995)

While some network characteristics can be addressed by specialized inference algorithms (see,



e.g., Lin & Druzdzel, 1999), DT Tutor's combination of characteristics and requirement for real-

time inference pose a stiff test. Therefore, it is critical to determine whether our approach can be
tractable for real-world tutoring applications and to see how the computation will scale.

For our purposes, it suffices to select the decision alternative that has maximum expected

utility. We do not need to know expected utility values or the posterior probabilities of chance
nodes at the time the decision is made. Hence, a decision algorithm that does not take the time to

compute these values (e.g., Shachter & Peot, 1992) would be most efficient for our application.

However, we did not have an implementation available that supports our large structured utility
models. Instead, we used Cooper's (1988) algorithm which converts the decision network into an

equivalent belief network and then updates the belief network for each decision alternative,

computing all expected utilities and posterior probabilities.
Cooper's algorithm supports the use of any belief network algorithm, so we tested with both

an exact clustering algorithm (Huang & Darwiche, 1996) and an approximate algorithm,
likelihood weighting (Shachter & Peot, 1989), with 1000 samples. Stochastic simulation

algorithms like likelihood weighting usually work well when any evidence is at the root nodes

(e.g., Russell & Norvig, 1995), as it is in our TACNs at the time the best decision is computed.
The exact algorithm was too slow with the larger problems. Since we do not require exact

probabilities and expected utilities, and state-of-the art rollup schemes for dynamic temporal

networks typically approximate the current belief state anyway (see, e.g., Boyen & Koller, 1998),
we present in Figure 9 results obtained using the approximate algorithm.

We tested response times for both CTDT and RTDT with a range of problem sizes on two

computer systems: a 667-MHz Pentium III with 512-Mb of RAM running Windows '98, and a
1.8-GHz Pentium 4 with 2-Gb of RAM running Windows 2000. We present only response times

for the tutorial action selection phase of the TACN life cycle, which are worst case since network

updates after the tutor's action has been decided are much faster. For RTDT, we present response
times before the student's first attempt at a sentence, which are worst case even for the tutorial

action selection phase because for subsequent attempts RTDT does not consider hinting on

words that the student has already read correctly.
For CTDT, we tested response times for calculus problems with problem solution graphs

representing from 5 to 23 problem-solving steps, with corresponding TACNs ranging from 123

to 318 nodes. The 5-step problem had only one solution path, while the 23-step problem had four
solution paths. The number of solution paths per problem depends on the types of solution paths

(many of which may be inefficient) allowed by the automated problem solver. The topologies of
the problem solution graphs vary depending on (1) the number and types of solution paths, and

(2) the particular steps and related rules required to solve the problems. The test results are

therefore sample points for problem sizes ranging from the smallest to approximately the largest
that we expect to encounter. Mean response times on the Pentium III system ranged from 1.07

seconds to 3.13 seconds, growing approximately linearly. Mean response times on the Pentium 4

system were faster on problems with up to 15 steps, ranging from 0.48 seconds for the 5-step
problem to 1.49 seconds for the 15-step problem. For the 19- and 23-step problems, response

time grew more than linearly and was actually slower than on the Pentium III system for reasons

related to the machines' configurations.



Fig. 9. Tutorial action selection response time for CTDT and RTDT on Pentium
III (P3) and Pentium 4 (P4) systems: mean over 10 trials using likelihood

weighting with 1000 samples.

For the Reading Tutor's corpus of readings, sentence length ranges from 5 to 20 words as

reading level progresses from kindergarten through fifth grade, with about two-thirds content
words. We tested response times for sentences with 2 to 15 content words. The number of nodes

in the corresponding TACNs grew linearly with the number of content words from 52 to 273.

Network topologies for sentences with the same number of content words are identical, so our
results represent all such sentences. Our response time goal was 0.5 seconds in order to keep

readers engaged in a natural interaction. On the Pentium III system, mean response time met the
goal for up to 6 content words. Response time grew approximately linearly up to about 8 content



words, and was within about a second up to 9 content words. Thereafter, response time increases

accelerated for sentences with up to 14 content words, when the system ran out of RAM. The
system was unable to load the TACN for a sentence with 15 content words. On the Pentium 4

system, response time was close to the goal for up to 10 content words, ranging from 0.03 to 0.52

seconds. Response time grew approximately linearly up to about 10 content words, and was
within a second up to 11 content words. Response time increases then accelerated for sentences

with up to 15 content words, when RAM usage reached nearly 1 gigabyte.

Besides taking advantage of faster hardware, other speedups are practicable. A decision
network algorithm that does not compute all expected utilities and posterior probabilities (e.g.,

Shachter & Peot, 1992) should improve response time. Stochastic simulation algorithms are

amenable to parallel computing algorithms (Binder et al., 1997) which could practically divide
the response time by the number of machines that can be used effectively. Furthermore, many

approximate algorithms have an anytime property that allows an approximate result to be
obtained at any point in the calculation (while further calculation yields more precise results), so

that an approximate result can be obtained at any time that it is needed.

In summary, if reasonable response time is defined as 1.0 seconds for CTDT and 0.5
seconds for RTDT, DT Tutor on the faster system can already select tutorial actions within

reasonable response time for half of CTDT's problems and for 8 out of 14 of RTDT's sentences.

Response time was less than 1 second for 10 out of 14 of RTDT's sentences. Response time grew
approximately linearly with the size of the problem or sentence except on the most challenging

scenarios. A faster system with more RAM bought faster response times except on the most

challenging CTDT problems, and for RTDT increased the number of sentences for which
response time grew approximately linearly. These results were obtained using prototype action

selection engines for diverse, real-world domains. Moreover, significant speedups are practicable

using currently available hardware and software solutions. With such speedups applied, and as
hardware and software capabilities continue to improve, it seems realistic to anticipate that DT

Tutor can be used to select tutorial actions within reasonable response time for real-world

tutoring applications.

RELATION TO PRIOR WORK

Related work extends beyond ITSs to include other types of user modeling research because

many systems that are not explicitly educational model the user (for an ITS, the student) to
inform decisions about what actions to take in order to facilitate the interaction. Below, we

describe related work in terms of important elements of the design space for a user modeling
system: deciding what actions to take, modeling change in the user and the situation over time,

modeling only observable or also unobservable attributes, modeling the user's focus of attention,

modeling the user's affective state, and predicting the user's next action.

Making Decisions

Applications that use a belief network representation often resort to heuristics to decide which

action to take. For instance, Andes1, the first version of a physics ITS from which DT Tutor is
descended, used heuristics to decide the topic of what-next? help (Gertner et al., 1998). Like



many other belief network applications, Andes1 incorporated no explicit notion of the utilities of

the possible outcomes of its actions. Such applications cannot integrate considerations regarding
the probabilities and utilities of the possible action outcomes. Instead, Andes1 selected actions

using probability thresholds and rules which reflect implicit priorities.

Some applications take outcome probabilities computed by a belief network and multiply
them by their associated utilities outside the network to compute expected utilities for decision-

theoretic action selection. These include an ITS for English capitalization and punctuation

(CAPIT, Mayo & Mitrovic, 2001) and various other user modeling applications (e.g., Horvitz et
al., 1999). An advantage of computing expected utility outside the network is potentially faster

inference due to a smaller network (no decision or utility nodes with associated arcs) and the

flexibility to consider only subsets of actions or outcomes in the expected utility calculations.
However, the potential speedup is mitigated by (1) forgoing the option to use specialized

decision network algorithms such as those that find the decision with maximum expected utility
without computing exact expected utility values for all alternatives (e.g., Shachter & Peot, 1992),

and (2) the potential to miss less obvious decision alternatives or outcome combinations with

higher expected utility, resulting in decisions with less than maximum expected utility.
A few user modeling applications use decision network or equivalent representations to

directly compute the decision with maximum expected utility. DT Tutor and Conati's

representation (2002) for an educational game use DDN architectures to select actions for
helping a user with a task. iTutor  (Pek, 2003) uses a DDN for deciding actions at a different grain

size: pre-computing a policy for selecting curriculum topics such as which problems to present to

a student. Jameson and colleagues (2001) use a decision network to decide whether to present
instructions individually or several at a time.

One benefit of decision-theoretic representations is support for value of information

computations to guide user queries and other information-seeking behaviors. Applications that
utilize value of information include those of Horvitz and colleagues (Horvitz et al., 1998; Paek &

Horvitz, 2000) and iTutor (Pek, 2003). DT Tutor does not currently query the user or make

decisions about other information-seeking behaviors and so it does not utilize value of
information at this time.

Modeling Change over Time

Systems that have used probabilistic networks to model change over time include POLA and
Andes1, ancestors of DT Tutor, which employ a static atemporal belief network for each

problem. POLA avoided temporal representation by dynamically adding nodes to represent
problem-solving actions as the student completed them, along with nodes to represent the

student's related physics knowledge (Conati & VanLehn, 1996). In effect, the semantics of each

version of the incrementally-built networks changed with each time step to represent the tutorial
state at the current point in time (Schäfer & Weyrath, 1997). Because POLA built its networks

incrementally, it could not use them to model student knowledge related to uncompleted steps or

to predict which action the student was most likely to attempt next (Conati et al., 2002). Andes1's
networks do include nodes to represent uncompleted problem-solving actions and related

knowledge, but the semantics of these nodes does not distinguish between steps that have already

been completed and steps that Andes1 believes the student can complete (Conati et al., 2002).
Thus, Andes1's networks cannot track the student's most recent action or current focus of



attention (Conati et al., 2002). Andes1 models the evolution of a student's knowledge at a high

level by copying updated beliefs about the student's knowledge between the atemporal networks
for each successive problem, but this modeling is at too coarse a grain size to influence tutorial

actions while the student is working on any particular problem.

Horvitz and colleagues have modeled change over time with a set of single-slice network
models by embedding the notion of time within variable definitions (e.g., "attribute a at time t")

(Horvitz et al., 1998) or by encoding time-dependent conditional probabilities (Horvitz et al.,

1998) or utilities (e.g., Horvitz & Barry, 1995). Usually, each successive network represents the
current point in time. The state evolution model is specified externally to the networks and is

implicit in the changing variable definitions, conditional probabilities and utilities. Without arcs

across slices or an equivalent mechanism, many temporal dependencies may be neglected, such
as the conditional dependence of attributes on their previous values Without nodes to represent

beliefs in more than one slice, a network cannot model changes in beliefs about the present
through evidence-based revision of beliefs about the past.

CAPIT (Mayo & Mitrovic, 2001) uses a two-slice static temporal belief network to predict

student problem-solving actions in terms of constraints. It adapts conditional probabilities to the
current student while she works, using an algorithm for atemporal models heuristically modified

to give greater weight to more recent events. Thus, CAPIT adapts its static temporal belief

network to reflect changes in the tutorial state beyond its two-slice limit. However, the network
does not track the order in which constraints have been attempted or feedback has been given, so

it cannot track the student's focus of attention or make a more specific prediction about the

student's next action. CAPIT's student model is limited to observable constraints, so it cannot
model the evolution of the student's knowledge or other unobservable tutorial state attributes.

Dynamic belief network representations can model the temporal evolution of the model's

state over any number of slices, including projections about future slices (Russell & Norvig,
1995), by dynamically creating new slices and removing old slices as they are no longer needed.

Reye (1996) proposed dynamic belief network representations for ITSs to model the evolution of

the student's knowledge over time and showed (Reye, 1998; 2004) how two probabilistic ITSs
(Corbett & Anderson, 1992; Shute, 1995) can be characterized as special cases of a dynamic

belief network approach. Other user modeling applications include a game (Albrecht et al., 1998)

and office productivity tools (e.g., Horvitz et al., 1999), among others. Dynamic belief networks
share with static belief networks the lack of an integrated provision for decision-making.

A DDN extends a dynamic belief network representation to include decision-making
capability. Both DT Tutor and Conati (2002) employ DDN architectures for both user modeling

and decision-making. iTutor (Pek, 2003) uses a DDN to pre-compute which curriculum topics to

present to the student but then uses a dynamic belief network to track the student's knowledge as
she progresses through the curriculum.

Which Attributes to Model

The set of attributes that an application considers should naturally influence the actions that it
selects. For instance, if a help or tutoring application does not consider the user's focus of

attention, its help is liable to be directed towards a topic that the user is not concerned about,

which may confuse the user (e.g., Gertner et al., 1998). Many ITSs consider only one or two sets
of attributes, such as the student's knowledge and task progress. A strength of decision-theoretic



approaches is the ability to smoothly integrate considerations involving multiple sets of

attributes. Below, we describe research related to modeling some of the more important attributes
that DT Tutor can model.

Modeling Observable and Unobservable Attributes

Some applications have used statistical methods to probabilistically model only observable user
attributes. These include a machine learning system for predicting the details of subtraction

errors (Chiu & Webb, 1998), CAPIT (Mayo & Mitrovic, 2001), and ADVISOR (Beck & Woolf,

2000), an ITS for grade school arithmetic. Limiting modeling to observable user attributes
affords the considerable advantage of simplifying machine learning efforts (e.g., Jameson et al.,

2001). All required data can be gathered from log files and other readily observable sources that

record values for the attributes of interest (e.g., Horvitz et al., 1998). Data that the system can
observe (e.g., keystrokes, mouse actions and timing data in context) can even be used to adjust

prior and conditional probabilities while the system is in use in order to further adapt to specific
users or populations (e.g., Horvitz et al., 1998; Mayo & Mitrovic, 2001).

However, there are also important advantages to modeling unobservable attributes (Jameson

et al., 2001). Perhaps foremost among these for ITSs is that they are usually concerned with the
student's knowledge - often to influence and sometimes to assess - which is unobservable. An

application must model attributes if it is to reason about them (Großmann-Hutter et al., 1999).

Second, unobservable attributes often influence observable attributes. For instance, a student's
knowledge influences the correctness of her problem-solving actions. So even if an application is

concerned only with observable outcomes, it may be advantageous to consider its influence on

unobservable attributes as well. In particular, ITSs often influence their students' observable
behaviors through discourse and other actions intended to influence the student's mental state.

Modeling conditional dependencies between observable and mental attributes allows one to

leverage and even to test research from such fields as education and psychology (Großmann-
Hutter et al., 1999). Finally, networks with hidden variables representing unobservable attributes

can be more concise (e.g., Heckerman, 1995), making them faster to learn (Binder et al., 1997)

and to update (Martin & VanLehn, 1995), with a structure that is easier to elicit from experts
(Binder et al., 1997) and more amenable to interpretation in terms of theoretical and empirical

knowledge (e.g., Binder et al., 1997; Großmann-Hutter et al., 1999) . DT Tutor, like many other

ITSs and other user modeling systems, models both observable and unobservable attributes.

Modeling the User's Focus of Attention

Identifying the user's focus of attention can be critical to providing assistance that is timely and
relevant to the user's needs (e.g., Horvitz et al., 1999). According to Grosz and Sidner (e.g.,

1986), knowledge of focus of attention as well as task structure is necessary for understanding

and generating task-oriented discourse. CTDT follows Grosz in modeling focus of attention
relative to a hierarchical task structure. However, instead of modeling focus with a stack as in the

work of Grosz and colleagues (e.g., Grosz & Sidner, 1986), CTDT's probabilistic approach has

more in common with Walker's (1996) cache model of attentional state. The cache model
accounts for phenomena such as the influence of the recency of discourse content as well as the

influence of the hierarchy of intentions related to the task. The cache model is also consistent



with Albrecht and colleagues' (1998) observation that users may interleave actions to achieve

multiple goals. Reye (1995) criticizes the stack model's inflexibility regarding the order in which
goals may be pursued within an ITS. DT Tutor also models focus aging, or decreasing

probability of focus on task elements that were in focus at earlier times, which is consistent with

both the cache model and Horvitz and colleagues' (1998) approach of associating observations
seen at earlier times with decreased relevance to the user's current goals.

Andes1 uses a hierarchically-structured atemporal belief network to narrow in on a set of

task steps that may be in the student's task-related focus of attention when she requests what-
next? help. However, Andes1's network does not distinguish completed steps and cannot track

the student's most recent action, so Andes1 uses a heuristic procedure to guess the student's

specific focus of attention (Conati et al., 2002; Gertner et al., 1998). The Adele ITS for medical
diagnosis (Ganeshan et al., 2000) likewise models focus of attention relative to a hierarchically-

structured atemporal belief network. However, Adele does not model uncertainty about the
student's focus of attention probabilistically, instead directing the discourse and asking

disambiguating questions to limit the possibilities. The Lumière Project's help systems for office

productivity programs probabilistically model focus of attention for non-ITS applications, but at
least initially avoided detailed modeling of domain-specific content (Horvitz et al., 1998). Some

other applications by Horvitz and colleagues (e.g., Horvitz et al., 1999; Paek & Horvitz, 2000)

model focus of attention at mostly a coarser level, such as which agent or application program
the user is attending to.

Modeling the User's Affective State

Considering the student's affective or motivational state can be vital for effective tutoring.
Lepper and colleagues (1993) observed that their expert human tutors appeared to give as much

weight to affective and motivational outcomes as to informational and cognitive outcomes,

knowing that a negative affective state can interfere with learning (Goleman, 1995). Many ITSs
consider the student's affective state at most implicitly, with corresponding effects on the

affective sensitivity of the tutoring that they provide. Most ITSs and other user modeling

applications that do consider the student's affective state pay relatively scant attention to other
considerations.

For ITSs, detailed models of the student's affective state have been implemented by, for

example, del Soldato and du Boulay (1995) and de Vicente and Pain (e.g., 2002). However, these
models have at least two shortcomings. First, they do not model the ITS's uncertainty about the

student's affective state. Arroyo and Woolf (2001) address this issue with a statistical approach
for predicting the student's behavior and affective state. Second, they do not satisfactorily resolve

what the tutor should do when there is a conflict between the best tutorial action based on

affective outcomes and the best tutorial action based on cognitive or other outcomes.
Decision-theoretic approaches provide a way to take into account the tutor's uncertainty

about the student's affective state while balancing considerations regarding affective and other

outcomes. CTDT uses a DDN to weigh uncertain beliefs and multiple objectives regarding the
student's changing affective state along with other tutorial outcomes. Conati (2002) likewise

proposes a DDN representation to consider both the user's affective state and "learning state" for

an educational game, employing a detailed model of the user's affective state but leaving the
model of the user's learning state unspecified.



CTDT sports a relatively impoverished model of the student's affective state, and RTDT

does not currently model affective state at all. DT Tutor's main contribution in this area is
providing a framework for weighing uncertain, changing beliefs and priorities regarding any

number of outcomes, including the user's affective state, at various levels of detail, depending on

the needs and capabilities of the application.

Predicting and Learning from the User's Actions

ITSs and other user modeling applications often choose actions, at least implicitly, on the basis

of beliefs about how they will influence the user's performance. Conversely, the user's
performance can be used as evidence to update the application's user model. Therefore, it can be

important for a user modeling application to predict the user's performance and to learn from the

user's actual performance.
An application's prediction capabilities depend in part on the factors that it considers. For

instance, Chiu and Webb (1998) consider the student's past subtraction performance in detail to
arrive at detailed predictions about future subtraction performance, but they do not consider the

influence of help. ADVISOR (Beck & Woolf, 2000), on the other hand, models many other

factors, including the help provided, to predict the time required for a student to solve an
arithmetic problem and whether she will be correct, but does not model or predict the student's

performance on problem subskills. Jameson and colleagues (2001) likewise predict a user's

execution time and errors based in part on the system's delivery of instructions. CAPIT (Mayo &
Mitrovic, 2001) models and makes predictions about student performance in terms of 25

constraints.

All of the systems above model the user and make predictions strictly in terms of observable
attributes, which facilitates empirical learning both prior to and during interaction with the user.

However, modeling relationships between unobservable attributes, such as the user's knowledge

and focus of attention, and observable user actions can help in predicting observable user actions.
Furthermore, such models can be used for diagnostic learning about unobservable attributes

based on observed user actions.

Albrecht and colleagues (1998) model an unobservable attribute, the user's quest in a game,
as part of predicting the user's next action and location within the game space. Horvitz and

colleagues (1999) and DT Tutor both model the user's focus of attention as part of predicting the

user's next action. DT Tutor models focus of attention along with student knowledge at a finer
grain size - particular task steps and rules within the tutorial domain - to predict the topic and the

correctness of, but not the time required for, the student's next action.
ADVISOR (Beck & Woolf, 2000) and the systems that use probabilistic networks (e.g.,

Albrecht et al., 1998; Horvitz et al., 1999; Jameson et al., 2001; Mayo & Mitrovic, 2001; Murray

& VanLehn, 2000) model the system's inherent uncertainty by predicting the user's next action
probabilistically. The systems that use probabilistic networks also have the capability to learn

diagnostically about unobserved attributes (e.g., the user's goal, knowledge, focus of attention,

and even potentially observable attributes) based on observed user actions.



DISCUSSION AND FUTURE WORK

DT Tutor's main contribution is a decision-theoretic framework for a user modeling application
to select actions rationally by weighing uncertain, changing beliefs and priorities regarding any

number of outcomes. To create practical instantiations of our framework, our first challenge was

to build sufficiently accurate yet computationally feasible models of the action selection problem
in decision-theoretic form. Our second challenge was automatically creating effective TACNs

from simple problem representations. We presented our solution for two domains, evaluating

their response times and action selection capabilities. Next, we plan to extend CTDT into a full-
fledged ITS and evaluate it with students.

Decision-Theoretic Framework

For CTDT, we devised a DDN representation that includes the student's changing knowledge,
focus of attention, morale, feeling of independence, and next action, along with task progress,

discourse relevance and discourse coherence. RTDT does not explicitly model the student's
affective state or most aspects of the discourse state, but it adds models of the efficacy of tutorial

actions and multiple student reading actions per turn. Few previous systems have modeled any of

these tutorial state attributes decision-theoretically, let alone in combination.
Although not a requirement of the approach, modeling a spectrum of tutorial state attributes

gives DT Tutor's action selection engines a flexible basis for making decisions. For instance,

CTDT explicitly models tradeoffs between action types such as hint, teach, and do in terms of
their effects on task progress, student knowledge and student affect, among other attributes, with

none of the action types dominant along all dimensions. As a result, CTDT might progress from

hinting about a rule related to a task step to teaching the step directly, or possibly even tell the
student exactly how to do the step, as we demonstrated above. A heuristic tutor can achieve the

same behavior by fiat. For instance, Andes1 (Conati et al., 2002) and the Cognitive Tutors

(Anderson et al., 1995) always work through a sequence of hints starting with the least specific
until they terminate at a bottom-out hint that is equivalent to CTDT's action type do. Because

they use a fixed tutorial strategy, they do not need to explicitly represent tutorial state attributes

such as student affect, so their representational requirements may be less complex. However,
they pay for their simplicity by being less flexible. As our tests illustrated, DT Tutor's

applications can adapt to a variety of circumstances, including selecting action type do first when

appropriate. Moreover, CTDT and RTDT use the same sets of considerations to provide
proactive as well as reactive help, which Andes1 and the Cognitive Tutors do not do. Despite

increased representational requirements, it proved possible to implement action selection engines
for both domains that require reasonable amounts of computational resources.

Another benefit of using the normative foundation of decision theory is clarifying a

rationale for tutorial decisions (Jameson et al., 2001). Since the earliest ITSs, developers have
used fixed policies such as "Do not tutor on two consecutive moves, no matter what" (Burton &

Brown, 1982, p.91). Some were probably invented when developers observed that their tutor was

ineffective or even "oppressive" (Burton & Brown, 1982, p.91). With a fixed decision-theoretic
foundation, the only way to debug a decision-theoretic tutor is to understand why its behavior is

wrong, and in particular, what objective is adversely impacted by the behavior and how the tutor

could have predicted and thus avoided the situation. This might spur a developer to, for instance,



add a new kind of utility, provide more accurate probabilities or utilities, or add overlooked

probabilistic influences. Thus, implementing decision-theoretic tutoring engines moves us one
step closer to exposing a rational basis for tutorial actions, and thus perhaps to a deeper

understanding of tutoring itself.

An important element of DT Tutor's design is looking ahead to explicitly predict the effects
of the decision-maker's actions. While this is natural for a decision-theoretic application, it is rare

for an intelligent tutoring system. Modeling the tutor's influence on the tutorial state enables the

tutor to select the actions that it believes will be most beneficial to the student and to the resulting
tutorial state. This requires probabilistically predicting how the tutor's actions will influence, for

example, the student's knowledge, affective state, and focus of attention.

A novel component of DT Tutor's representation is its model of the user's focus of attention.
Separate representations for the user's focus of attention and knowledge allow the system to

probabilistically predict both the topic(s) of the user's next turn, based on the user's focus of
attention, and the type(s) of action(s) in the user's next turn (e.g., whether the action(s) will be

correct), based on the user's knowledge. Modeling the user's focus of attention also enables the

system to be a cooperative discourse partner and to address topics at times when the user is likely
to be interested.

DT Tutor's models of some tutorial state attributes, such as the student's affective state, are

overly simple thus far. While we believe that considering the user's affective state is a key to
improving effectiveness and usability for ITSs and other user modeling applications - and this is

important future work - this has not been the main thrust of our research to date. Even with a

simple model of the student's affective state as just one of several outcomes considered, DT
Tutor is able to move beyond simply presenting a kinder, gentler or more entertaining interface

to adapting its tutoring based on the perceived affective and cognitive needs of the user, just as

expert human tutors appear to do (Lepper et al., 1993). DT Tutor adapts not only actions with
apparent affective impact, such as positive feedback, but also actions with subtler affective

impact, such as proactive help. Within DT Tutor's framework, models related to various

attributes can vary in richness and detail depending on the needs and capabilities of the
application.

We would like to extend DT Tutor's knowledge representation to include a more detailed

model of the discourse state, to support user queries about task-related domain rules, to generate
multiple system (e.g., tutor) actions on a single turn, and to use value of information to decide

when to query the user about what.

Creating Effective Tutor Action Cycle Networks

Because TACNs can include hundreds of nodes, we needed to find a way to create them

automatically from simpler problem representations (a problem solution graph for CTDT;
sentence text for RTDT). Part of the challenge involved populating the model with many

thousands of probabilities and utilities. While this remains an important area for future work, our

solution for conditional probabilities was to develop a rule-based system with a relatively small
number of easily modified parameters. Alternatively, DT Tutor's conditional probability table

entries could be simplified using standard parametric representations such as Noisy-OR and

Noisy-AND nodes. An advantage of a decision-theoretic representation is that it supports
obtaining probabilities and utilities from any combination of the best sources available. For



instance, they can be based on (1) pedagogical, cognitive, or psychological theory, and (2)

empirical data such as results from pretests, logged student interactions with the system, and post
tests. Even the subjective beliefs and objectives of an ITS designer or administrator can be used

in the absence of better information. In addition, RTDT's Tutor Efficacys subnetworks reduce the

need for accurate conditional probabilities regarding the influences of the tutor's actions on the
student's knowledge. It is encouraging to note that Bayesian systems are often surprisingly

insensitive to imprecision in probabilities (e.g., Henrion et al., 1996; VanLehn & Niu, 2001) and

that decision quality is generally even less sensitive (Henrion et al., 1996) because only the rank
of the decision alternative with maximum expected utility matters.

Even with an automated method for populating TACNs with probability and utility values,

we still needed to control the number of arcs and conditional probability table entries. First, we
employ factoring methods such as filter nodes to limit the number of conditional probability table

entries without detracting from the normative status of TACNs. Second, we selectively specify
arcs and associated conditional probability table entries as each new TACN is created: For

CTDT, we included an option to limit the Tutor Action Topic1 alternatives to ready and in_focus

steps and related rules, along with any step that was just completed. Similarly, for RTDT's
corrective feedback, we do not consider helping the student on words that she has already read

correctly. Also, for CTDT, only ready and in_focus steps influence Student Action Topic2

(although Student Action Topic2 may still be any step). Only the last of these restrictions is
required (to limit the size of Student Action Topic2's conditional probability table); the other

restriction for CTDT and the only restriction for RTDT are optional for improving response time.

These restrictions, when applied, detract from DT Tutor's normative status because (1) the tutor
does not always consider tutoring on all topics, and (2) for CTDT, we assume that some steps

have a uniformly low probability of being the topic of the student's next action. However, as we

discussed, such steps or words are unlikely to be the topic of tutor or student actions, so the
restrictions may have little practical effect on applications similar to ours. The restrictions also

require DT Tutor to wait to specify some arcs and conditional probability table entries for the

next TACN until after the current TACN's student action has been observed, meaning that DT
Tutor cannot plan several tutorial actions in advance. However, response time requirements and

decreasing marginal benefits of computation currently limit lookahead anyway, so this is not a

significant additional limitation for our applications at this time. We intend to improve upon our
current naïve network rollup scheme by employing an algorithm for approximate summarization

of past dependencies (e.g., Boyen & Koller, 1998).
As a result of these efforts, DT Tutor is space-efficient enough to load on common personal

computers (our original research with CTDT used a 200-MHz Pentium PC with 64-Mb of

RAM). Response time on faster PCs is already reasonable, and sometimes quite fast, for many of
the problems faced by our two action selection engines for real-world tutoring domains.

Response time for CTDT has already dropped by an order of magnitude (compare to Murray &

VanLehn, 2000), and speedups using both hardware- and software-based solutions are currently
practicable. Furthermore, we can realistically expect faster hardware to be commonplace in the

near future, and perhaps more efficient software as well.



Evaluating Action Selection Capabilities

By sampling from the space of tutoring scenarios using action selection engines for two domains,
we determined that DT Tutor can rationally select tutorial actions that emulate some of the

interesting behaviors of human and other tutors.

More recently, we have created a Java-based graphical user interface for CTDT that is
accessible over the web using popular browsers. To empirically determine prior and conditional

probabilities, we have collected log data from 60 students solving problems using a version of

the interface that randomly selects from among appropriate tutorial actions. Random action
selection was employed so that we can calculate the effects of individual tutorial actions while

controlling for the effects of sequences of tutorial actions by randomizing over the sequences of

tutorial actions that were presented to students. We also administered pretests and post tests of
key skills required by CTDT. This data will enable us to begin to empirically determine many of

CTDT's prior and conditional probabilities. Next, we plan to have human judges rate the tutorial
actions selected for identical situations by DT Tutor, random tutorial action selection, and a

simulation of the actions that would be selected by a model tracing tutor (e.g., Anderson et al.,

1995; Koedinger et al., 1997)

Conclusions

This research has shown that a decision-theoretic approach can be used to select rational tutorial

actions, given the tutor's beliefs and objectives, for real-world-sized problems in reasonable
response time. The dynamic, decision-theoretic representation handles uncertainty about the

student in a theoretically rigorous manner, balances tradeoffs among any number of objectives,

models the evolution of the tutorial state, and automatically adapts to changes in beliefs or
objectives. Rich models of the tutorial state enable decision-theoretic action selection engines to

select correspondingly interesting tutorial actions.
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