
HAL Id: hal-00197306
https://telearn.hal.science/hal-00197306v1

Submitted on 14 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Student Modelling based on Belief Networks
Jim Reye

To cite this version:
Jim Reye. Student Modelling based on Belief Networks. International Journal of Artificial Intelligence
in Education, 2004, 14, pp.63-96. �hal-00197306�

https://telearn.hal.science/hal-00197306v1
https://hal.archives-ouvertes.fr


International Journal of Artificial Intelligence in Education 14 (2004) 1–33
IOS Press

1560-4292/03/$8.00 © 2004 – IOS Press. All rights reserved

Student Modelling based on Belief Networks

Jim Reye, School of Information System, Queensland University of Technology, Brisbane,
Australia
j.reye@qut.edu.au

Abstract. Belief networks provide an important way to represent and reason about uncertainty –
significant factors for modelling students. These networks provide a way of structuring such
models, and allow a system to use a systematic approach when gathering information about the
scope of the student’s knowledge. This work also provides a theoretically-sound way to update the
student model, based on the concept of a dynamic belief network. The relationship to related
research is discussed. Finally, the paper describes why the barren node concept is important for
computational efficiency in belief-net-based student models.1

INTRODUCTION

Systems that try to model the student’s understanding of subject material face a number of major
issues. One of these is the inherent lack of certainty as to how much the student understands, at
any given point in time. Even though there may be surface evidence that the student does (or
does not) know a particular topic in the subject domain, this evidence may just reflect a lucky
guess (or a temporary slip). Systems that are able to weigh each new item of evidence, in
conjunction with (any) previous evidence about the student’s state of knowledge, have a firmer
foundation for making pedagogical decisions than those systems which ignore this issue.

While it is possible to design a system in which the student model is merely a collection
of isolated, independent beliefs, this is clearly an unrealistic model for many domains. For
example, in the database language SQL, it is extremely unlikely that a student would be familiar
with the "having" clause while being unfamiliar with the "group by" clause. To model such
interdependencies of knowledge, an ITS system could have an ad hoc set of rules so that a
change in belief, in one part of the student model, leads (via the rules) to corresponding updates
in one or more other parts of the student model. However, rule-based approaches to handling
uncertainty usually result in a set of rules that produce inconsistent results.

To avoid such problems, we need a better approach. Fortunately, belief networks (Pearl,
1988; Villano, 1992) provide a foundation for building interdependencies of knowledge into the
student model itself. Not only does this automatically guarantee consistency of beliefs, but it is
also pleasing to have such knowledge (about interdependencies) as part of the same modelling
technique (rather than needing a separate set of rules).

                                                
    1 Preliminary versions of this work have appeared in Reye (1996) and Reye (1998).
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This paper describes the use of belief networks from several perspectives, commencing
with the section “Structuring Knowledge about Related Beliefs” that explains why belief networks
are appropriate for modelling an ITS’s beliefs about a student. That section also provides a
limited introduction to the concepts of belief networks for those who are unfamiliar with them,
but such readers should also refer to chapters 14 and 15 of Russell and Norvig (1995) for a much
more comprehensive introduction. On the other hand, the reader who is already knowledgeable
about belief networks can skip most of that section without loss.

The section “Making use of a Belief-Net-Based Student Model”  shows how such networks
can be applied to efficiently gather information about the student's current state of knowledge, as
well as showing how to model students as (somewhat) unreliable sources of information. Again,
the reader who is already knowledgeable about belief networks can skip most of that section
without loss. The next section introduces the concept of a belief net backbone, as a way of
integrating the ideas described in the second and third sections. In the section “Updating the
Student Model: Dynamic Belief Networks”, I describe how the updating of the student model
should be modelled as a dynamic belief network, and show how this updating relates to the
previous work of Corbett and Anderson (1992) and Shute (1995). The section !“Computational
Efficiency in a Belief-Net-Based Student Model” focuses on computational efficiency by
describing why the barren node concept is important in belief-net-based student models.

STRUCTURING KNOWLEDGE ABOUT RELATED BELIEFS

In this section, I explains why belief networks are appropriate for modelling an ITS’s beliefs
about a student. In general, such beliefs should not be entirely independent of each other. In an
ITS, an important interdependency relationship is that representing prerequisites.

The importance of the prerequisite relationship, for structuring beliefs

For tutoring by humans, the prerequisite relationship is clearly a very important one, both for
instructional planning purposes and for gathering information about the current state of a student's
knowledge. In discussing the approaches of human instructors, Collins and Stevens (1982) state:

Rather we assume only a partial ordering on the elements in the teacher's theory of the
domain. ... The teacher's assumption is that students learn the elements in approximately this
same order. Therefore, it is possible to gauge what the student will know or not know based
on a few correct and incorrect responses. These responses are used to determine a criterion
point in the partial ordering; above this point, the student is likely to know any element and
below it, the student is unlikely to know any element.

How should we model such a partial ordering? Where knowledge of topic A is a prerequisite for
knowledge of topic B, there are two aspects of this relationship that we wish to model.
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(a) Firstly, the obvious constraint that lack of a student's knowledge of A implies lack of
knowledge of B. In terms of predicate logic, we can express this as:

¬student-knows (A)  fi  ¬student-knows (B)

or equivalently:

student-knows (B)  fi  student-knows (A)

(b) Secondly, the more subtle reasoning that evidence of a student's knowledge of A can be
taken as evidence for revising our belief that the student also has knowledge of B.

Where there is a close relationship between A and B, we may wish to assert that it is
more likely that the student's "frontier of knowledge" includes both A and B, compared to
falling between A and B. For example, in SQL, understanding the "group by" clause is a
prerequisite for understanding the "having" clause, and because of their close relationship, if
we encounter a student who already knows about the "group by" clause, then it is more
likely that they know about the "having" clause. In such circumstances, evidence for
knowledge of A increases our belief that the student also has knowledge of B.

On the other hand, where there is a weaker relationship between A and B, we may
wish to make no such assertions. For example, in SQL, understanding the "select" statement
is a prerequisite for understanding the "view" statement, but knowledge of the former is little
or no evidence for knowledge of the latter (for students in the process of learning SQL).

As shown above, aspect (a) can be modelled using predicate logic. But, aspect (b) involves
reasoning under uncertainty. Even when knowledge of A makes it highly likely that the student
also knows B, we cannot be absolutely certain. Modelling this reasoning as part of the student
model enables all reasoning about uncertainty to be done within the student model. Belief
networks provide a foundation for representing prerequisite relationships, in a way that satisfies
both aspects (a) and (b) above, and automatically guarantees consistency of beliefs about the
student's current state of knowledge.

Over the next few pages, I describe an approach using belief networks to formally model
prerequisite relationships.

Representing simple prerequisite relationships as probabilistic relationships

As described in the preceding section, where knowledge of topic A is a prerequisite for knowledge
of topic B, there are two aspects of this relationship that we wish to model.

Firstly, the obvious constraint that lack of a student's knowledge of A implies lack of
knowledge of B. In probabilistic terms, it is inconsistent to assert that, at any single point of time:

both: p (student-knows (A))  =  0
and: p (student-knows (B))  =  1
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In probability theory, this constraint is represented as a conditional probability. That is, the
probability of a proposition being true is dependent upon what is known about the probability of
other propositions. This is written (with the conclusion first) as:

p (student-knows (B) | ¬student-knows (A))  =  0

This may be read formally as "the probability that student-knows (B) is true, given that student-
knows (A) is not true, is 0", or informally as: "You can't know B, if you don't know A." (From an
instructional planning perspective, this formula can also be interpreted as specifying that lack of
knowledge of topic A is an inhibitor of topic B, which must be removed before B can be covered.)

The above conditional probability can also be expressed in a variety of logically-equivalent
forms (by using elementary probability theory). These are:

p (¬student-knows (B) | ¬student-knows (A))  =  1
p (  student-knows (A) |   student-knows (B))  =  1
p (¬student-knows (A) |   student-knows (B))  =  0
p (¬student-knows (A),    student-knows (B))  =  0

(where the “,” immediately above is read as "and").

A less formal way to see that these are logically equivalent is to turn them back into natural
language sentence. For example, the second of these forms may be read as: “If you know B, then
you must also know A”; and the last form may be read as: “You can’t not know A and still know
B.”

Although the above description was only in terms of a pair of related topics, conditional
probabilities allow the specification of relationships that are more complex than those given
above. For example, we can specify that both P and Q are prerequisites for R, as:

p (student-knows (R) | ¬student-knows (P),   student-knows (Q)) = 0
p (student-knows (R) |   student-knows (P), ¬student-knows (Q)) = 0
p (student-knows (R) | ¬student-knows (P), ¬student-knows (Q)) = 0

This set of conditional probabilities is equivalent to the predicate logic formula:

student-knows (R)  fi  (student-knows (P) Ÿ student-knows (Q))

The second requirement is the more subtle reasoning that evidence of a student's knowledge of A
can be taken as evidence for revising our belief that the student also has knowledge of B. This can
be specified by assigning an appropriate value to the conditional probability:

p (student-knows (B) | student-knows (A))

For example, if we let:
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p (student-knows (B) | student-knows (A))  =  0.95

then this models a close relationship between knowledge of A and B. That is, a student who knows
A is highly likely (95%) to also know B.

On the other hand, if we estimate that the prior probability of student-knows (B) is 0.01 and we
wish to assert that knowledge of A has no impact on the likelihood of knowledge of B, then we
simply specify this same value for the conditional probability:

p (student-knows (B) | student-knows (A))  =  0.01

So, probability theory allows us to represent a range of relationships, from strong to weak, between
knowledge of A and B, according to our modelling needs.

From prerequisite relationships to a belief network

As hinted at by the above examples, the concept of a conditional probability may be regarded as a
generalisation of material implication (…) in traditional logic. This is because it provides a basis for
reasoning, while not being restricted to cases where a proposition is known to be true or false with
certainty.

Belief networks provide a graphical way of designing probabilistic models based on the
concept of conditional probability. Figure 1 is a simple example.

Rather than just providing a picture, the structure of a belief network is used for automated
reasoning about uncertainty, in the most efficient manner that applies to that structure (see Pearl,
1988). A detailed discussion of the many properties of belief networks is beyond the scope of this
paper.

Because of the (previously mentioned) logical equivalence of the two formulae:

p (student-knows (A) |   student-knows (B)) = 1
p (student-knows (B) | ¬student-knows (A)) = 0

it is possible to represent "student-knows (A)" and "student-knows (B)" as two nodes in a belief
network, either with a directed arc from "student-knows (B)" to "student-knows (A)" or with an arc
in the reverse direction.

Fig. 1. A simple example of a belief network (showing a prerequisite relationship)

student-knows(A) student-knows(B)
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Here, I have chosen the latter approach, i.e. an arc from "student-knows (A)" to "student-
knows (B)". This choice results in a belief network in which the arc-directionality is in tune with
the sequence in which the topics must be learned. In other words, the direction of these arcs
provides a representation of the partial-ordering on the sequence in which topics must be learned.
Consequently, the designer of such a belief network for a particular domain may proceed by first
creating that partial-ordering (ignoring uncertainty) and then using it as the backbone for a belief
network.

There is another, more subtle reason for preferring to draw the arcs in this direction. Belief
networks are easier to create and understand when the arcs represent causal relationships (Pearl
(2000)). As a general example, it is more useful to model the relationship between clouds and
rain by drawing an arc from “clouds” to “rain”, because clouds cause rain, not the reverse. At
first, causality seems inappropriate when modelling the prerequisite relationship, because
knowing topic A does not cause knowledge of topic B. However, when causality is seen not just
to involve factors that have a positive influence, but also factors that have a negative influence,
then not knowing topic A is a cause for not knowing topic B. That is, these two topics are
causally related in an inhibitory sense, from topic A to topic B. So the arc should be drawn in this
direction, not the reverse.

In the above example, there is no uncertainty in the constraint itself. It can be interpreted as
"All students who know B, also know A." Being based on probability theory, belief networks also
allow the representation of constraints that are less certain.2 For example:

p (student-knows (A) | student-knows (B)) = 0.9

can be interpreted as "Most students who know B, also know A." Being able to represent and
reason with such knowledge is a valuable advantage over approaches based on traditional logic
alone.

Although the preceding description was only in terms of a pair of related topics, the use of
conditional probabilities easily extends to much longer chains and networks of prerequisite
dependencies. For example, if we know that A is a prerequisite for B, which is a prerequisite for C,
and so on up until Z (say), then if we discover that the student knows Z, then we don't have to ask
about the earlier prerequisites. Likewise, if we find out that the student knows F, but not G, then we
don't have to ask about A..E or H..Z.

As well as numeric values for the conditional probabilities, we also must specify the prior
probabilities of all propositions that are not determined by the conditional probabilities. These prior
probabilities specify the system's initial set of beliefs about a (typical) student, prior to the first
interaction with that student. As the student uses the system, it directly updates its beliefs about the
student's knowledge of topics, where these are observable. (In the simplest case, the probabilities of
these topics will be forced to 1 or 0, if it is clear that the student either knows or doesn't know the

                                                
2 Conditional probability values, such as 0.9, are not shown directly on the belief network. i.e., an arrow
from one node to another shows that there is a relationship, but not how strong it is. To fully specify a
belief network, a set of conditional probabilities – that match the structure of the network – must be
specified separately.
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topic.) These changes in belief are then propagated through the belief net, changing the system's
belief in the likelihood that the student knows other (as yet) unobserved topics.

Figure 2 shows another simple belief network, in which P and Q are prerequisites for R,
corresponding to the second example of conditional probabilities in the previous section.

MAKING USE OF A BELIEF-NET-BASED STUDENT MODEL

The preceding part of this paper argued that a belief network is an appropriate way to model
knowledge of the student, based on the need to represent uncertain knowledge. In this part of the
paper, we look at further advantages of belief networks for student modelling, by showing how
they can be used to support two important ITS tasks:

(a) efficient gathering of information about the student's current state of knowledge; and

(b) modelling  students as (somewhat) unreliable sources of information.

Efficient gathering of information about the student's state of knowledge

The earlier quote, from Collins and Stevens, describes how human teachers are able to gauge the
extent of a student's knowledge based on a small number of probing questions. This section shows
how the structure of a belief-network based student model supports the gathering of information
about a student's knowledge, while minimising the number of probing questions required.

Fig. 2. A topic with two prerequisites

student-knows (P)

student-knows (R)

student-knows (Q)
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Collins and Stevens’s teaching strategy can be modelled as a problem-solving procedure
within the framework of a classic AI diagnostic task. Although such AI research has typically been
concerned with the development of efficient procedures for the automated troubleshooting of faulty
mechanical systems, electronic circuits and computer programs, such research can be applied to
student modelling by regarding the student's knowledge as being faulty (while learning is
occurring), in the sense that certain inputs do not produce the correct outputs.

In particular, there is an analogy between the prerequisite structure of the domain (modelled
as part of the belief network) and a digital circuit. Each "student-knows (topic)" can be regarded as
an AND gate which has one input for each prerequisite topic (except for the base topics which have
no prerequisites). Such a gate only outputs a 1 if all its inputs are 1s (analogously, all prerequisites
are known) and it is working properly (analogously, that particular topic is known). When the
circuit is "functioning normally", all gate outputs are 1, i.e. the student knows everything.

When there is a fault, at least one gate output is 0, leading to zeros in all the gates that
follow. Analogously, if the student doesn't know a topic, then he doesn't know the follow-on topics.
In other words, the student's lack of knowledge of a topic can be seen as a fault which disables the
correct functioning of later parts of the (partially ordered) graph of all the prerequisite knowledge.

Some AI research into diagnosis assumes the simplest case that only a single fault must be
found. Because a student may initially know very little about a domain (i.e. have many faults),
previous work on diagnosing multiple faults is more useful. In particular, de Kleer and
Williams's (1987) research behind their General Diagnostic Engine (GDE) system is helpful. Self
(1993) describes the use of GDE for (non-probabilistic) student modelling, including an interesting
application of this approach: diagnosing student’s attempts at solving three-column subtraction.

The GDE approach is based on the idea of minimising the number of measurements
(analogously, minimising the number of questions asked of the student) by making a series of
measurements, each of which maximises the expected amount of information gained by that
measurement. Technically, minimising the expected entropy (H) of the belief network after making
that measurement:

H = -S pi log pi

So, the expected entropy (He) after asking a student whether they know topic tn is given by the
weighted sum of the two possible responses:

He(sk(tn)) = p (sk(tn)) H (sk(tn))  +  p (¬sk(tn)) H (¬sk(tn))

where "sk" is an abbreviation of the "student-knows" predicate.
One of the difficulties faced by the GDE procedure is that the number of possible

combinations of faults grows exponentially with the number of components. Fortunately, for
student diagnosis, the number of possible combinations is far less. This is because, whenever an
ITS considers a possible diagnosis involving a particular faulty node, then all subsequent (partially
ordered) nodes must also be faulty (at any one point in time). By comparison, in an electronic
circuit, subsequent nodes need not be faulty and so there are more cases to consider. For example,
consider a simple chain of four items:
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A Æ B Æ C Æ D

When this chain is read as representing an electronic circuit of buffers, then there are 16 (= 24)
possible combinations of possibly faulty components.

But, when this chain is read as a belief net representing the prerequisite relationships linking
four topics, then there are only five combinations which model possible states of the student's
knowledge, as given by the following sets: {}, {A}, {A, B}, {A, B, C}, {A, B, C, D}. Such linear
growth is clearly better than exponential growth, especially when creating domains containing
hundreds of topics.

A small example now illustrates the approach. (As above, I use "sk" as an abbreviation for
the "student-knows" predicate.)

An example:

A Æ B Æ C Æ D

with:

p (sk(A)) = 0.75 \ pprior(sk(A))  =  0.75

p (sk(B) | sk(A)) = 0.75 \ pprior(sk(B))  =  0.56

p (sk(C) | sk(B)) = 0.75 \ pprior(sk(C))  =  0.42

p (sk(D) | sk(C)) = 0.75 \ pprior(sk(D))  =  0.32

There are four topics, so there are four possible questions which could be asked. The expected
entropy for each of these possibilities are calculated as:

He(sk(A)) = p (sk(A)) H(sk(A)) + p(¬sk(A)) H(¬sk(A)) = 0.98

He(sk(B)) = p (sk(B)) H(sk(B)) + p(¬sk(B)) H(¬sk(B)) = 0.67

He(sk(C)) = p (sk(C)) H(sk(C)) + p(¬sk(C)) H(¬sk(C)) = 0.69

He(sk(D)) = p (sk(D)) H(sk(D)) + p(¬sk(D)) H(¬sk(D)) = 0.95

These values confirm what one would expect intuitively in this case, i.e. that more information is
gained by asking about B or C, rather than A or D. More precisely, topic B has the lowest expected
entropy (i.e. highest expected gain of information) and so should be asked first. The student's reply
can then be used to update the probabilities in the student model. These revised probabilities can
then be used in subsequent calculations of expected entropy, in order to determine which topic
should be queried next.
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This minimum expected entropy procedure is easily incorporated into a system, so that it can
pursue a series of dialogue goals aimed at minimising the uncertainty in the student model, while
minimising the number of questions asked. The resulting dialogue matches the behaviour of the
human teachers described previously. (Such goals may be pre-empted by other goals of higher
priority, both in an ITS and in a human.)

Having described how belief networks can be used to assist in the gathering of information
about a student's knowledge, we now turn to the issue of how to handle the fact that students are
not always entirely reliable sources of information about their own state of knowledge.

Modelling students as (somewhat) unreliable sources of information

Clearly, an ITS must make use of the student's actions and responses to questions, in order to
obtain information about the student's current knowledge. But, there is a catch. This source of
information is not always reliable: students sometimes make lucky guesses, sometimes make slips
and sometimes even give wrong answers deliberately (e.g. to see how the system will react).

Consequently, it is undesirable that an ITS uses such information to directly update its
beliefs about the student's current knowledge, For example, if the student gives the correct answer
to a multiple-choice question, then the ITS should not simply assume that the student knows the
correct answer. (This is especially important when the prerequisite relationship is considered. We
wouldn't want a single lucky guess to result in the system believing that the student also knew all
the prerequisite material.)

Instead, the system should weigh up all the evidence it has, including the student's response,
to decide how likely it is that the student knows the correct answer. This requires reasoning under
uncertainty, so a belief network is a better way to do this, rather than requiring a special set of
diagnostic rules.3

To explain this, we start by modelling the simplest possible case, a domain containing only a
single topic. Figure 3 illustrates this, where the upper node (the learned state) represents the
system's belief that the student knows the domain topic; the lower node (the outcome) represents
the evidence gained when the student is assessed on that topic; and the arrow represents a
(probabilistic) causal relationship, i.e. the student is more likely to give the correct answer if they
know the topic. As before, this relationship is represented as a conditional probability.

In this model, the learned state node has only two (unobservable) values: true and false, but
the outcome node either has two values (e.g. correct and incorrect) or more than this (e.g.
representing various levels of hints which the student can request before being able to give the
correct answer). Having more than two outcomes has no impact on the structure of the model,
although it does affect the number of conditional probability values which must be specified.

When looking at Figure 2, it is important to be aware that the direction of the arrow indicates
the natural direction of the causal link, but does restrict the direction of information flow. In other
words, given an observed outcome, the system revises its belief about the learned state node, even
though it may be regarded as having information flowing in the opposite direction to the arrow.

                                                
3 See chapter 1 of Pearl (1988) for a discussion of the limitations of rule-based systems for reasoning under
uncertainty.
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Later in the paper, I give the mathematical formula that specifies how such updating occurs,
but we start with two simple examples that illustrate the basic nature of such updating. For the sake
of these examples, assume that:

(a) the conditional probability of a correct outcome when in the learned state is 0.95 (allowing
for the occasional slip), i.e.

p (outcome = correct | learned) = 0.95; and

(b) the conditional probability of a correct outcome when in the unlearned state is 0.20 (allowing
for lucky guesses), i.e.

p (outcome = correct | ¬learned) = 0.20.

Example 1

In this example, let the initial ("prior") probability of the learned state being true be 0.5, i.e. we
really have no initial idea as to whether the student knows the topic or not. From this, we can
calculate that the initially expected probability of a correct outcome is 0.575.

Case 1: If the student then gives a correct response, the revised ("posterior") probability that
of the learned state is approximately 0.78. This value is higher than the initial value, but is not
extremely high, because there is a substantial chance of lucky guesses.

Case 2: If the student instead gives an incorrect response, the revised ("posterior")
probability that of the learned state is approximately 0.06. This value is much lower than the initial
value and is therefore a fairly good indication that the student is in the unlearned state (although
there is still a small chance that the student's response was just a slip).

Fig. 3. Using a belief network to model an unreliable source of information
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Example 2

In this example, let the initial ("prior") probability of the learned state being true be 0.9, i.e. we are
fairly confident that the student already knows the topic. From this, we can calculate that the
initially expected probability of a correct outcome is 0.875.

Case 1: If the student then gives a correct response, the revised ("posterior") probability that
of the learned state is approximately 0.98, further increasing our confidence.

Case 2: If the student instead gives an incorrect response, the revised ("posterior")
probability that of the learned state is approximately 0.36, a big drop in confidence, because the
likelihood of a slip is fairly small.

These examples illustrate the basic use of belief networks for revising beliefs in the light of new
evidence. But clearly, a domain containing only one topic is not of any practical use. An obvious
expansion of this technique, from just a single domain topic to n topics, is to simply replicate the
structure, in Figure 3, n times. While straightforward, the resulting model ignores the prerequisite
relationship, which is an important part of the student model. In the next section, we see how these
two desirable aspects, prerequisites and indirect evidence, can be incorporated into the same
student model.

A BELIEF NET BACKBONE

Introduction

As mentioned previously, a belief network is a set of beliefs, together with a set of conditional
probabilities linking those beliefs. In the general theory of belief networks, there are no restrictions
on the structure of the network, apart from the prohibition of directed cycles. However, in any
system that uses a belief network, an actual structure must be specified.

In this paper, it is proposed that the appropriate belief network structure for an ITS is based
on three connected ideas:

(a) a belief net backbone, which links all the "student-knows (topic)" nodes together in a partial
ordering, according to their prerequisite relationships;

(b) a set of topic clusters, each of which comprises a single "student-knows (topic)" node,
together with a set of additional belief nodes for the purpose of modelling factors that
directly or indirectly relate to the system's belief that the student knows the topic, e.g.
"when-opportune--student-demonstrates-usage-of (topic)";

(c) a (relatively-small) set of global nodes that represent the system's belief in overall student
characteristics, i.e. beliefs not focussed on a specific topic, e.g. "student-is-bored ()" and
"student-overall-aptitude ()".
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Figure 4 presents a very simple example of this approach, in which the global nodes are not shown,
for clarity of presentation. In this figure, the backbone is represented by the vertical arrows, and
each topic cluster is represented by the four nodes in each horizontal plane. In comparison, Figure 5
gives a more detailed example of a topic cluster, showing a larger number of nodes. (The detailed
meanings of the nodes and the links, in Figure 5, are explained in the section that follows.)

As Figure 4 shows, the backbone and the topic clusters intersect in a deliberately restricted
way, i.e. each of the "student-knows" nodes occurs once in the backbone and once in its own topic
cluster. So, in an example domain with 100 topics, there will be: (i) one instance of the backbone,
containing 100 student-knows nodes; (ii) 100 instances of the topic cluster, each with the same
structure, but not the same probability values; and (iii) one instance of the set of global nodes.

For ease of reference in the following, the nodes in the topic clusters are often referred to as
local nodes (excluding the "student-knows (topic)" node). This is because such nodes primarily
have only local importance, i.e. primarily affect the system's belief in the cluster's single
"student-knows (topic)" node, unlike the backbone nodes and the global nodes, which can affect
the system's belief in many "student-knows (topic)" nodes.

This backbone approach to student modelling has two advantages. Firstly, it gives the
designer a standard methodology for creating the structure of an ITS belief network, regardless of
the particular domain.

Secondly, there are computational advantages in that updates to the beliefs in any one topic
cluster only affects the other topic clusters via the backbone, rather than there being any direct
connection. In particular, this means that the impact of belief updates in a given topic cluster on its
"student-knows" node can be calculated locally by considering just the nodes in that topic cluster,

Fig. 4. A belief net backbone
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rather than having to propagate such updates through the entire network in order to determine their
nett results. The efficiency gained by such local computation is very important during planning,
when the impacts of large numbers of possible plans must be determined rapidly. (Once a plan has
been chosen and is executed, its effects update one or more topic clusters, and these effects must be
propagated through the backbone. Although computationally more expensive, such updates occur
much less frequently than those needed during planning.)

The concept of a belief net backbone is fairly straightforward, as it only ever involves links
between "student-knows" nodes, and those links only ever involve the prerequisite relationship.
Consequently, I do not discuss it further. In comparison, the concepts of topic clusters and global
nodes are more complex, because they involve other types of nodes and other types of
relationships. So, in the following sections, I give a more detailed description of the types of nodes
and relationships that occur within typical topic clusters and with global nodes.

Topic clusters and their local nodes

As described in the preceding section, and illustrated by the example in Figure 5, each topic cluster
comprises a single "student-knows (topic)" node, together with a set of additional belief nodes for
the purpose of modelling factors that directly or indirectly relate to the system's belief that the
student knows the particular topic, e.g. "when-opportune-student-demonstrates-usage-
of (topic)".

Although the "student-knows ( topic)" node is very important for determining what an
ITS should say and do, the system cannot directly observe whether this node is true or false, with
100% accuracy, but must instead make inferences about how likely it is that a particular student
knows a given topic, based on the observations that can be made, e.g. whether a student claims to
have such knowledge. Supporting such inferencing is the primary purpose of such nodes
(although some have other usages, such as providing a basis for determining how well motivated
a student is).

To support such inferencing, it is necessary to introduce additional relations (or "nodes")
that are not present in the domain-model. It is expected that the same topic cluster structure be
used for all topics in the student model, i.e. uniformly across the entire student model. (This does
not mean the same level of belief across the entire student model, because each topic cluster has its
own associated probabilities.)

This uniformity of structure is not required by the theory of belief networks. Rather, it is
intended as a relatively low design-cost approach to constructing student models that support
reasoning about the student’s knowledge. As section “Updating the Student Model: Dynamic
Belief Networks”  shows later, it does no computational harm if some nodes in some clusters are
never used. So there is no reason to adopt a non-uniform approach because of concerns for run-
time efficiency.

On the other hand, I do not claim that an identical topic cluster structure be used across all
ITSs. The different user interfaces in different systems provide different opportunities (and
restrictions) on what information can be gathered about the student’s knowledge, and so the topic
cluster structure should reflect these.
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Because of this, the examples of these presented in this paper are meant to be illustrative, not
comprehensive. For clarity, I use the nodes in Figure 5 to describe the general categories of such
nodes, in the following.

(a) Nodes that can be directly observed (from interactions with the student)

when-opportune--student-expresses-interest-in-learning (topic)

Whenever a suitable opportunity arises, the student expresses an interest in being
tutored on the topic, either by making an explicit request, or in response to a question
from the system.

when-opportune--student-demonstrates-usage-of (topic)

Whenever a suitable opportunity arises, the student demonstrates her knowledge of
the topic by solving problems or answering questions that require such knowledge.

when-opportune--student-claims-to-know (topic)

Whenever a suitable opportunity arises, the student claims to know the topic, either
explicitly (e.g. in response to a question from the system), or implicitly (e.g. by not
objecting when the system tries to move the dialogue focus on to a new topic).

Fig. 5.  Example of a topic cluster, containing local nodes
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The repetitive use of the prefix "when-opportune" is somewhat clumsy, but it is helpful to try to
make it clearer that the system's belief only applies to student responses in appropriate
circumstances. If this prefix was omitted, the reader may be mislead in a number of ways.

For example, if the last predicate was just named "student-claims-to-know (topic)", then
some readers might take this to be true, only if it happened in the most recent interaction, while
others might take this to be true, if it happened in any past interaction, while still other readers
might take it to be a prediction about the next interaction. Using the "when-opportune" prefix with
"student-claims-to-know (topic)", (hopefully) makes it clear that the predicate represents the
system's current beliefs about possible future claims that the student might make, if the opportunity
ever arises. Thus, purely through inferencing (e.g. via the backbone), the system could have a high
degree of belief in "when-opportune--student-claims-to-know (topic)", for a given topic, even
though the particular student has never made such a direct claim, and may never need to do so, in
future interactions.

I also emphasise that I use the phrase "Whenever a suitable opportunity arises" in the
broadest sense. For example, if a student is totally uninterested in the system's most recent question
(or exercise), then she may legitimately regard it as an opportunity to express interest in another
topic, rather than having to wait for the system to directly ask about any such interest. For this
reason, I rejected other possible prefixes, such as "when-asked", which are shorter but
unfortunately imply a narrower scope.

(b) Nodes that cannot be directly observed

student-knows (topic)

Indicates whether the student is familiar with the topic (concept or skill).

student-interested-in-learning (topic)

Indicates whether the student is interested in being tutored on the topic.

Here, the prefix "when-opportune" is unnecessary, as there is never an opportunity to directly
observe the truth values of these nodes.

(c) Relationships among these nodes

The relationships numbered 1 through 3, in Figure 5, should be thought of as causal relationships,
in that an increase in belief for the node from which the arrow leaves (e.g. "student-knows") should
lead to an increase in belief for the node to which the arrow goes (e.g. "when-opportune--
student-demonstrates-usage-of"). As the reader may have already realised, these relationships, and
the associated "when-opportune..." nodes, are intended simply to model the fact that the student is
not usually an entirely reliable source of information, due to lucky guesses, slips, etc. This issue
was described in the earlier section “Representing simple prerequisite relationships as probabilistic
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relationships”, for the isolated case of just two nodes. Here, the same idea is just being used in three
separate instances.

While the specification of precise conditional probabilities is not a major concern of this
paper, it is worth mentioning that, in general, one would expect such causal relationships to be
fairly strong (otherwise, there is no point in gathering evidence from the student). For example, one
would typically expect:

p(when-opportune--student-demonstrates-usage-of (topic)|student-knows(topic))

to be close in value to 1.0, i.e. just a small allowance for the occasional slip; and:

p(when-opportune--student-demonstrates-usage-of (topic)|¬student-knows(topic))

to have a fairly small value, i.e. allowing for the occasional lucky guess. (The harder it is to guess,
then the lower the value.)

By comparison, the relationship numbered 4, in Figure 5, should be thought of as an inverse
causal relationship, because an increase in belief for the node from which the arrow leaves
(i.e. "student-knows (topic)") should lead to a decrease in belief for the node to which the arrow
goes (i.e. "student-interested-in-learning (topic)"). This is because someone who already knows a
topic is unlikely to be interested in learning it again (assuming, for the moment, that the student is
genuine, and does not have an ulterior motive for trying to get the system to present material that
the student has learned previously, e.g. if forced to use the system against their own wishes,
because of some reward, such as credit towards passing a subject).

In using conditional probabilities to represent this relationship, one would typically expect:

p (student-interested-in-learning (topic) |   student-knows (topic))

to have a value of zero (or very close to it). But, not much can be generally stated about the value
of the other required conditional probability:

p (student-interested-in-learning (topic) | ¬student-knows (topic))

If this was a topic of broad appeal to students, then one might assign a value close to 1.0, i.e. if they
don't know it, then they'll be interested in learning it. But, if the topic has very limited appeal, then
a value close to zero would be more appropriate. Obviously, values between these two extremes
also make sense in the right circumstances.

Global nodes

Global nodes represent the system's belief in overall student characteristics, i.e. beliefs not focussed
on a specific topic. For example:
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student-overall-aptitude ()

Measures the system's overall impression of the student's aptitude.

student-reliability-of-claims ()

Measures the system's overall impression of how reliable the student is in making
claims about what they do and don't know, etc.

student-is-bored ()

Indicates the system's overall impression that the student is generally bored with the
subject material.

In a relatively-simple student model, each such node may have a range of only two values. For
example, "student-overall-aptitude ()" may just allow the values "has-aptitude" and "does-not-have-
aptitude". In a more complex model, a greater range of values may be desired, e.g.: very-good-
aptitude; good-aptitude; average-aptitude; poor-aptitude and very-poor-aptitude. Likewise
"student-is-bored ()" could be simple "true" or "false", or it could be broader, e.g.: very-keen;
somewhat-keen; somewhat-bored and very-bored.

One of the advantages of using a probabilistic model is that it allows the system to model its
uncertainty about these characteristics. For example, for a given student at some point in time, the
system might contain the following probabilities for the "student-overall-aptitude ()" node:

p (very-good-aptitude) = 0.1
p (good-aptitude) = 0.4
p (average-aptitude) = 0.3
p (poor-aptitude) = 0.15
p (very-poor-aptitude) = 0.05

(which must total to 1.0, of course). Figure 6 provides an example of the kinds of relationships one
might want to include in a student model. Note that the global nodes are not really part of the topic
cluster, but are just shown in this same figure for clarity.

As before, these relationships are modelled using conditional probabilities. But these are
now more complex than in the earlier examples, when global nodes were not yet introduced, e.g.:
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p (when-opportune--student-interested-in-learning (topic)
  | student-knows(topic), student-overall-aptitude()="good-aptitude")=0
p (when-opportune--student-interested-in-learning (topic)
  |  student-knows(topic), student-overall-aptitude()="poor-aptitude")=0
p (when-opportune--student-interested-in-learning (topic)
  | ¬student-knows(topic), student-overall-aptitude()="good-aptitude")=0.7
p (when-opportune--student-interested-in-learning (topic)
  | ¬student-knows(topic), student-overall-aptitude()="poor-aptitude")=0.05

and:

p (when-opportune--student-claims-to-know (topic)
| student-knows(topic),student-reliability-of-claims()="good-reliability")=0.99

p (when-opportune--student-claims-to-know (topic)
|  student-knows(topic),student-reliability-of-claims()="poor-reliability")=0.7

p (when-opportune--student-claims-to-know (topic)
| ¬student-knows(topic),student-reliability-of-claims()="good-reliability")=0.1

p (when-opportune--student-claims-to-know (topic)
| ¬student-knows(topic),student-reliability-of-claims()="poor-reliability")=0.6

Fig. 6. Relationships between two global nodes and the local nodes in a topic cluster
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In terms of the topic clusters, the global nodes can really be regarded as global parameters that fine-
tune the conditional probabilities, based on what is known about the student in overall terms. So,
even though they complicate the model, these global nodes are important for supporting better
inferencing about the individual student's knowledge of a particular topic, taking into account both
the local characteristics of that topic (e.g. some topics are harder to learn) and the global
characteristics of that student. (Global nodes can also be used for other purposes, such as planning
to increase the student's motivation.)

Having described the way that the student model is structured in terms of a belief network, I
next address the issue of how the local nodes in the student model are updated, in response to
tutorial interactions.

UPDATING THE STUDENT MODEL: DYNAMIC BELIEF NETWORKS

Introduction

When a belief network is used to represent a student model (e.g. Villano, 1992), we must have a
theoretically-sound way to update this model. Such updates are based on information from two
sources: (i) the student, via their inputs to the system (e.g. requests for help, answers to questions,
and attempts at exercises); and (ii) the system, via its outputs (e.g. descriptions and explanations
given). In this paper, I give a general approach as to how such updates should be made, and show
how this work relates to previous research in this area.

In ordinary belief networks, it is assumed that the properties of the external world,
modelled by the network, do not change as we go about gathering evidence related to those
properties. That is, even though the system gathers information from the external world that causes
it to modify its measures of belief about items in that world, those items remain either true or false.
This is useful, for example, in medical diagnosis, where the cause of a disease is assumed not to
change during a (single) medical examination.

But, such an approach is clearly inadequate for student modelling in a tutoring system,
where we must be able to reason about:

(a) the dynamic evolution of the student's knowledge, over a period of time, as we gain new
information about the student; and

(b) the likely effects of future tutorial actions (relative to what is currently known about the
student), so that the action with maximum likely benefit to the student can be chosen.

Dynamic belief networks (Dean and Kanazawa, 1989) allow for reasoning about change over time.
This is achieved by having a sequence of nodes that represent the state of the external item over a
period of time, rather than having just a single temporally-invariant node. For real-world
continuous processes, the sequence of nodes may represent the external state as it changes over a
sequence of time-slices. For tutoring, it is often more useful to represent changes in the student
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model over a sequence of interactions, rather than time-slices (as illustrated by the example in the
following section).

Two-phase updating of the student model

In general, an interaction with a student must cause the system to revise its beliefs about the
student's state of knowledge. On first consideration, it might appear that this updating of beliefs
should be modelled as a single process, representing the transition from prior beliefs to posterior
beliefs.

However, in the general case, an interaction with a student may provide clues about two
distinct (but related) pieces of information: (i) how likely it is that the student knew a topic before
the interaction; and (ii) how likely it is that the student knows a topic after the interaction, i.e. what
change (if any) is caused by the interaction.

Consequently, I advocate a two-phase approach to updating the student model, at each
interaction:

(a) phase 1: the incorporation of evidence (if any) from the interaction, about the student's state
of knowledge as it was prior to the interaction; and

(b) phase 2: the expected changes (if any) in the student's state of knowledge as a result of the
interaction.

Many ITS architectures have clearly distinguishable Analysis (input-processing) and Response
(output-generating) components. The two-phase approach maps naturally onto these architectures:
phase 1 covers updates made by the Analysis component; and phase 2 covers updates made when
executing tutorial actions chosen by the Response component.

This two-phase approach is applicable to any architecture that uses probability theory for
student/user modelling. This is true even if probability theory is just used to model uncertainty
about isolated nodes (rather than structuring these into a belief network).

As an example of this broad applicability, the two-phase approach applies to a relatively
simple system that just goes through a list of topics, giving the student multiple-choice or fill-in-
the-blank type questions and provides multiple-level hints when the student requests help or gives
an incorrect answer. The restricted instructional capabilities of such a system may mean that any
prerequisite constraints are implicit in the ordering of the list of topics, rather than being explicitly
represented in a belief network. But, such a system still needs probability theory to correctly model
the facts that: (i) students sometimes make slips and lucky guesses, and (ii) there are different
likelihoods of learning, from different levels of hints4. Hence, such a system needs phase 1 to

                                                
    4For example, a brief hint may be a concise reminder to some students who have previously studied the
topic, but useless to others who have never seen it before. For students in this latter group, a detailed hint may
increase their chance of learning the topic, but has the disadvantages of verbosity and reduced challenge to
the student.
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updates its beliefs after receiving a student's answer, and phase 2 to update its beliefs after giving
the student a hint at a particular level.

In any system, phase 1 is clearly important for gathering information at the first interaction
on a given topic, i.e. topics for which there has not been any previous interaction with the particular
student. But phase 1 is especially important for gathering information at each interaction, because
the model must allow for the possibility that the student's knowledge will change independently of
interactions with the system, i.e. the student may forget, may study independently, etc. It is
necessary that the system be able to handle the fact that substantial periods of time (hours, days,
weeks) may elapse from one interaction to the next, depending on how the student wishes to make
use of the system.

Fig. 7.  Two-phase updating

Phase 1: incorporation of evidence about the student's knowledge

With regard to Figure 7, let:

(a) On be an element in a set of possible outcomes of a given tutorial interaction involving a
given domain topic, i.e. the set of allowed student responses for that interaction, e.g.
(a) correct or incorrect; (b) no-help, level-1-help, level-2-help, etc;

(b) p (Ln-1) represent the system's belief that the student already knows the given domain topic,
prior to the n'th interaction (where n = 1, 2, ...);
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(c) p (On | Ln-1) represent the system's belief that outcome On will occur when the student
already knows the domain topic;

(d) p (On | ¬Ln-1) represent the system's belief that outcome On will occur when the student does
not know the domain topic;

where (c) and (d) are the two conditional probabilities needed to fully define the single link
between the "Ln-1 learned state" node and the "On Outcome" node, shown in Figure 7.

Given values for each of these, the system must be able to revise its belief in p (Ln-1) when
outcome On occurs. This is done by using the well-known Bayes's rule:

Let g(On) be the likelihood ratio:

Then, Equation!1 can be simplified to:

In passing, I point out that this equation clearly shows why phase 1 is insufficient for
updating the student model on its own, i.e. why phase 2 cannot be omitted. When the prior belief
p!(Ln-1) is 0, then the posterior belief p!(Ln-1!|!On!) must also be 0. Without phase 2, p!(Ln) would be
the same as p!(Ln-1!|!On!) and so would be 0 also, in this case. Similarly, when p!(Ln-1) is 1, then
p!(Ln) would also be 1. That is, without phase 2, values 0 and 1 represent absorbing states.

Consequently, if the system ever became absolutely convinced that a student did (or didn't)
know a topic, then this equation would never allow the system to change that belief. Further, if
p!(Ln-1) is very close to 0 or 1, then p!(Ln) will also be close to that same value (unless g(On) is very
large). This makes it hard for the system to move away from values close to 0 or 1, when revising
its beliefs using phase 1 alone.
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Phase 2: expected changes in the student's knowledge due to tutoring

In phase 2, we model the expected changes in the student's knowledge as a result of the interaction.
Doing this requires a formula for p (Ln | On ), so that we know what probability to assign to p (Ln)
for each possible outcome, On, in the set of possible outcomes.

To fully define the double link from the "Ln-1 learned state" node and the "On Outcome"
node to the "Ln learned state" node shown in Figure 7, requires two conditional probabilities for
each possible outcome:

(a) p (Ln | Ln-1, On)

This function represents the probability that the student will remain in the learned state as
a result of the outcome, i.e. it is the rate of remembering (or "not forgetting"). An ITS's
interaction will not cause the student to forget something they already know, so this
probability will have the value 1 when On is the best outcome, e.g. giving the correct answer
without any help. Progressively poorer outcomes should therefore have progressively
lower values.5

(b) p (Ln | ¬Ln-1, On)

This function represents the probability that the student will make the transition from the
unlearned state to the learned state as the result of the outcome, i.e. it is the rate of learning.

From this, the revised belief after the interaction is simply given by:

                                                
5 It might be thought that we could better estimate the rate of remembering if we took into account the
length of time between the n-1’th and the n’th interaction, especially if such intervals may sometimes be
large, e.g. between tutoring sessions on different days or weeks. In terms of the basic theory in this paper,
this would simply require us to condition on the interval as well, i.e. use conditional probabilities of the
form: p (Ln | Ln-1, On, Intervaln). However, it is extremely difficult to create a psychologically-accurate
model of human memory retention, especially if we don’t know whether the student was studying the
domain material independently during the same interval, i.e. while not using the ITS. Because of these
difficulties, there is no guarantee that a more complex model would be more effective than the simple
approach used here.
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For notational simplicity, let:

(a) r(On) = p (Ln | Ln-1, On); and

(b) l(On) = p (Ln | ¬Ln-1, On).

Then Equation!4 can be simplified to:

The equations for each phase, (3) and (5), can be used separately, but it is also useful to combine
together, so that one can conveniently describe the effects of an entire interaction. This
combination is given in the following section.

Combining the two phases

Combining Equation!5 with Equation!3 gives:

which can be rewritten as:

When p(Ln-1) = 1, Equation!7 gives:

That is, r(On) is the same as p(Ln | On) if the student previously knows the topic, illustrating the
earlier description of r(On) as the "rate of remembering".

When p(Ln-1) = 0, Equation!7 gives:

That is, l(On) is the same as p(Ln | On) if the student previously does not know the topic, illustrating
the earlier description of l(On) as the "rate of learning".
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Figure 8 illustrates Equation 7 for some particular values of g, r and l. For each tuple of
such values, there is a direct visual interpretation of these three parameters: the height of each end-
point directly portrays the values of parameters r and l (in accord with Equations 8 and 9; and the
curvature depends directly on the value of g, i.e. concave when g > 1, convex when g < 1, and
straight when g = 1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p(Ln-1)

p
(L

n
|O

n
)

gamma = 10

gamma = 3

gamma = 1

gamma = 0.3

gamma = 0.1

Fig. 8. Example curves for Equation 7

A dynamic belief network for probabilistic modelling in the ACT Programming
Languages Tutor

The ACT Programming Languages Tutor (Corbett and Anderson, 1992) uses a two-state
psychological learning model, which is updated each time that the student has an opportunity to
show their knowledge of a production rule in the (ideal) student model. In an appendix to their
paper, the authors briefly state equations for calculating the probability that a production rule is
in the learned state following a correct (Cn) or erroneous (En) student response, at the nth
opportunity.

In this section, I illustrate the applicability of dynamic belief networks by showing how
Corbett and Anderson's equations can be derived as a special case of the equations given above.
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In their paper, Corbett and Anderson did not describe how they derived these equations. Even
though they did not make any use of the concept of dynamic belief networks, their learning
model is clearly based on the mathematics of probability theory. So, it is not too surprising that
there should be a direct relationship between their work and mine. In the following, I add
constraints to my model until I obtain their equations, showing that the approach in this paper
generalises their’s. The authors make the following simplifying assumptions:

(a) the set of outcomes has only two values: Cn (i.e. correct) and En (i.e. error).

(b) p (Ln | Ln-1, On) = r (On) = 1, i.e. no forgetting.

(c) p (Ln | ¬Ln-1, On) = l (On) is a constant, i.e. the probability that the student will make the
transition from the unlearned to the learned state is independent of the outcome. The
authors use the symbol p(T) for this constant.

(d) there are no conditional probabilities linking different rules, i.e. no prerequisite
constraints.

Assumption (c) means that there is no direct dependency between the Ln node and the On node
shown previously in Figure 7. By dropping this arrow, it should be clear that this is the simplest
possible (structurally) dynamic belief network for student modelling (and simplicity may be a
virtue rather than a vice).

Under the above assumptions, Equation 5 becomes:
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which are the two equations that Corbett and Anderson number as [1] and [2], in their paper.
Under these same assumptions, Equation 2 becomes:
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when On has the value Cn. Substituting this into Equation 3, a version of Bayes's theorem, gives:
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which is the same as the equation marked [3] in Corbett and Anderson's paper, except for:
(i) some rearrangement of terms;  and (ii) they use the symbol "Un-1" (for "unlearned") where I
use "¬Ln-1". For brevity, I omit the analogous derivation of their equation [4] for p (Ln-1|En).

As a result of their assumptions, Corbett and Andersen's model has only four parameters
associated with each rule. I list these parameters below, and, for clarity of reference, use the same
notation utilised by the authors:

p(L0) the probability that a rule is in the learned state prior to the first opportunity
to apply the rule (e.g. from reading text);

p(C|U) the probability that a student will guess correctly if the applicable rule is in
the unlearned state (same as my p (On=Cn|¬Ln-1));

p(E|L) the probability that a student will slip and make an error when the applicable
rule is in the learned state (same as my p (On=En|Ln-1));

p(T) The probability that a rule will make the transition from the unlearned state to
the learned  state following an opportunity to apply the rule (same as my l
(On) ).

In the most general case, the values of these parameters may be set empirically and may vary
from rule to rule. Corbett and Anderson (1992) describe a study in which these parameters were
held constant across 21 rules, with p(L0) = 0.5, p(C|U) = 0.2, p(E|L) = 0.2 and p(T) = 0.4. In my
notation, these values are equivalent to g (Cn) = 4, g (En) = 0.25 and l (Cn) = l (En) = 0.4.

Another example of a dynamic belief network: SMART

Shute’s (1995) SMART student modelling approach uses a number of functions for updating the
student model, as illustrated in Figure 9. The points in this figure were developed mainly by hand,
based on the opinions of domain experts. These points were used to compute best-fitting curves –
see Shute (1995) for details. These curves were then used within her Stat Lady system. This
system’s estimates of the final knowledge obtained by a group of students correlated well with an
independent post-test measure of their knowledge. The success of her approach encourages us to
study it further.

As is clear from Figure 9, Shute's model is a probabilistic one, raising the interesting
question as to how it relates to the approach described in this paper. Like Corbett and Anderson,
Shute does not make any use of the concept of dynamic belief networks. However, in this section, I
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show that such networks are a good way to provide a theoretical foundation for her work, by
showing how Shute's graphs can be represented using my equations.

When solving each problem posed by Shute's SMART system, the student is allowed to
choose from four levels of help (or "hints"), where level-0 covers the case where the student
required no help at all. Unlike Corbett and Andersen, Shute does not make the assumption that the
probability of learning is independent of the outcome. This is obvious from the fact that there are
four separate curves in Figure 9.

Figure 10 shows the curves obtained when plotting Equation 7 with the following values for g, l and
r:

Outcome g l r

Level-0 help 2.35 0.33 1

Level-1 help 2.12 0.33 0.83

Level-2 help 0.66 0 0.83

Level-3 help 0.52 0 0.5

By inspecting this figure, it is clear that Equation 7 provides a good theoretical basis for Shute's graphs. Her
graphs were not directly derived from empirical data. So, there is no point in doing a statistical analysis to
obtain more precise values for the three parameters. However, the development of methods for estimating
these parameters from empirical data is an interesting problem for future research.

This concludes the discussion of the applicability of this student modelling approach in which we
have seen that the student modelling approaches of Corbett and Anderson (1992) and Shute (1995) are
special cases of this approach, which is far from obvious at first glance.

COMPUTATIONAL EFFICIENCY IN A BELIEF-NET-BASED STUDENT
MODEL

For an arbitrarily connected belief network, the computational complexity of probabilistic
inferencing is NP-hard (Cooper, 1989). Clearly, the computational complexity of probabilistic
inferencing, within the student model, is a significant issue because:

(a) a complex domain may have thousands of fine-grained topics, e.g. full SQL-99;

(b) associated with each topic is a topic cluster that multiplies the total number of nodes in the
network, by a constant factor, e.g. typically by 5 to 10 times;

(c) tutoring takes place in real-time;

(d) more than one occurrence of probabilistic inferencing may be required to support a single
interaction, i.e. separate inferencing in phase 1 and in phase 2.
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Fig. 10.  Curves from Equation 7 for chosen values of g, l and r

Fig. 9.  SMART's Updating Functions
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While Cooper's computational complexity result applies to arbitrarily connected networks, it is
often possible to take advantage of the particular structure of a network to do probabilistic
inferencing in a relatively efficient manner. In particular, efficient algorithms exist for networks
that are only singly connected (Pearl, 1988). Unfortunately, student models are not usually singly
connected because:

(a) the prerequisite relationship may provide more than one path between two topics, e.g. if A is
a prerequisite for each of B and C, and both B and C are prerequisites for D;

(b) as well as being connected by the prerequisite relationship, two topic clusters will be
connected by each global node in the student model.

As already mentioned, even when networks are not singly connected, it is still often possible to use
structural features of a given network to reason efficiently. Pearl (1988) describes the concept of
d-separation, which can be used to determine those parts of the network that are affected by each
new set of belief revisions, e.g. as new evidence becomes available. In other words, if a given node
is d-separated from those nodes that have newly revised beliefs, then the given node is unchanged.
So, d-separation can be used to limit the propagation of the effects of each belief revision, rather
than propagating through the entire network.

Associated with the idea of d-separation is the concept of a barren node. A barren node is
one for which no evidence is available (as yet) and the same is true for all its descendant nodes, if it
has any. (A descendant node is one which can be reached by following the arrows in the belief
network.) As Baker and Boult (1991) discuss, the properties of d-separation mean that barren nodes
can be removed from the network without affecting the probability values calculated at the
remaining nodes. In other words, information about belief revisions cannot flow through a barren
node, so their removal has no impact on belief updating in the rest of the network. The removal of
such nodes aids computational efficiency by reducing the size of the network.

As far as student modelling is concerned, its temporally-evolving nature clearly means that
barren nodes should not be removed literally, but should be marked as being barren (while
applicable) so that they can be ignored by the belief propagation routines.

The importance of barren nodes in student modelling lies in the fact that, in a large domain,
there will often be large numbers of barren nodes. For each topic in the domain, if the system has
not yet gathered any information about whether the student knows that topic, then all the local
nodes in the corresponding topic cluster will be barren, including the "student-knows (topic)" node,
e.g. see Figure 5. In other words, the entire topic cluster can be omitted during belief propagation.
Taken to the extreme, it can be seen that the entire network is barren when starting with a new
student. (Although the global nodes are barren in this extreme case, they will not remain so for
long, so it is usual to view them as not being barren.)

As knowledge of the student accumulates, the number of barren nodes will diminish,
gradually increasing the computational overhead. However, unless the student model is a very
simple one (i.e. contains very few nodes), the system will be unable to gather sufficient information
to eliminate them all. So, recognising them as barren will still provide a computational benefit.
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To further illustrate this point, note that some nodes in a given topic cluster can remain
barren, even when information is gathered with respect to the student's knowledge of the
corresponding topic. For example, in Figure 5, if the only evidence we have is that the student
claims to know the given topic, then the "when-opportune--student-claims-to-know (topic)" node
and the "student-knows (topic)" node are no longer barren, but the other three nodes remain barren.
An important consequence of this is that we have the freedom to make the structure of the topic
cluster substantially more complex, without fearing that the extra complexity will cause a
proportional increase in execution time.

For clarity, the preceding description of the usefulness of barren nodes has deliberately
ignored one important detail. Even though a node is barren, we may need to know its current
probability value so that this can be used for diagnosis or instructional planning (rather than for
belief propagation). This is most likely to apply to the "student-knows (topic)" nodes (and less
likely to apply to the other local nodes).

Fortunately, there is an easy (rapid) way to determine the current probability value for a
barren node. It can be simply calculated from the probabilities of its parent nodes, together with the
condition probabilities that link the parents to the node of interest. (D-separation guarantees that we
do not have to consider other parts of the network in this calculation.)

If any of the parents are barren themselves, then we simply use a "pull-style" recursive
procedure to calculate their values first, before calculating the value for the node of interest. (This
could be inefficient, if care is not taken. For example, if an unbroken series of enquiries is made for
values of barren "student-knows (topic)" nodes, a naive implementation could calculate the same
ancestor node's value many times. A more sophisticated implementation would either remember
such values (as long as they remained valid), or use a "push-style" procedure to visit each such
node only once, e.g. using the belief net backbone to walk through all the "student-knows (topic)"
nodes before querying begins.)

Nodes without parents (i.e. some global nodes and those "student-knows (topic)" nodes
without prerequisites) must already have associated probability values (and there is no
computational advantage to marking such nodes as being barren, in any case).

In summary, the concepts of d-separation and barren nodes allow significant reductions to
be made in the computational complexity of belief propagation in belief-net-based student models.

CONCLUSION

This paper gives an approach to student modelling by using probability theory in the form of a
belief network. In addition to showing the basic approach of using probability theory to formally
model the uncertainty of isolated beliefs about the student, I've shown how to use a belief
network to structure knowledge about related beliefs, providing a foundation for two important
ITS tasks: gathering information about the student's current state of knowledge; and modelling
students as (somewhat) unreliable sources of information.

To further develop this approach of structuring knowledge, this paper proposes that the
appropriate belief network structure for an ITS is based on the ideas of a belief net backbone,
local nodes in topic clusters, and global nodes, and shown how these connect together. Such
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structures have advantages both for ITS designers and for efficient local computation in an
implemented system.

Finally, we have examined a general theory of how the student model should be updated,
based on the concept of a dynamic belief network. This theory is general in that it can be used in
any ITS that uses probabilistic modelling. There are, however, advantages in using this theory in
conjunction with other ideas presented here, e.g. topic clusters.
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