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Résumé 
La connaissance des « chunks » (tronçons) lexicaux est maintenant reconnue comme une compétence essentielle 
pour l’apprentissage d'une seconde langue. Nous étudions deux des principaux problèmes que les « chunks » 
posent en lexicographie et nous présentons des méthodes de résolution informatiques. Le premier problème est 
celui de l’apprentissage de connaissances lexicales, c'est-à dire la nécessité de définir quelles suites de mots 
constituent des « chunks » utiles à l’apprenant. Le deuxième problème est celui de la représentation, c'est-à-dire 
comment mettre cette connaissance à la disposition de l’apprenant. Pour résoudre le premier problème, nous 
proposons un algorithme glouton exécuté sur un corpus de 20 millions de mots du BNC qui reproduit des mesures 
d'associations de mot sur des n-grams de plus en plus longs. Cette approche donne la priorité à un rappel élevé et 
tente d’isoler les faux positifs à l’aide de mécanismes de tri. Pour résoudre le problème de la représentation, nous 
nous proposons d'associer cet algorithme à un navigateur en tant qu'extension de notre outil de détection de 
collocations. 

Mots-clés : « chunks » (tronçons) lexicaux, lexicographie computationnelle, association de mots, apprentissage de 
langues étrangères. 

Abstract  
Lexical chunks have in recent years become widely recognized as a crucial aspect of second language competence. 
We address two major sorts of challenge that chunks pose for lexicography and describe computational approaches 
to addressing these challenges. The first challenge is lexical knowledge discovery, that is, the need to uncover 
which strings of words constitute chunks worthy of learners’ attention. The second challenge is the problem of 
representation, that is, how such knowledge can be made accessible to learners. To address the first challenge, we 
propose a greedy algorithm run on 20-million words of BNC that iterates applications of word association 
measures on increasingly longer n-grams. This approach places priority on high recall and then attempts to isolate 
false positives by sorting mechanisms. To address the challenge of representation we propose embedding the 
algorithm in a browser-based agent as an extension of our current browser-based collocation detection tool. 

Keywords: lexical chunks, computational lexicography, word association, foreign language learning. 

1. Introduction 
There has been a recent growing trend in foreign language education research to recognize 
words as inextricably entwined with a range of syntagmatic contexts and contextual patterns 
as opposed to viewing them as discrete units that can be mastered in isolation. With this has 
come the recognition that multiword expressions are a central rather than peripheral aspect of 
lexical knowledge (See Wray 2002 for an extensive review). Among the range of multiword 
phenomena, certain types, such as phrasal verbs and collocations, have enjoyed a long 
tradition of attention in lexicography and language pedagogy. Other sorts of multiword 
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expressions such as lexical chunks and formulaic sequences, however, have only recently 
begun to attract this sort of attention. Knowledge resources concerning these expressions are 
thus correspondingly scarce. The work reported here is part of a larger project aimed at filling 
this gap in resources for the learning of lexical chunks.  

2. Lexical Chunks and the Two Challenges to Lexicography 
Lexicography traditionally has faced two kinds of challenges: lexical knowledge discovery 
and lexical knowledge representation. We want to suggest that lexical chunks introduce novel 
requirements to both sorts of challenge. In what follows we consider these two in turn and 
present our approach to each as we go. The literature on chunks includes a variety of criteria 
for defining what constitutes a chunk (see Weinert 1995 for an overview) from semantic and 
syntactic criteria such as (non-)compositionality and (non-)productivity to processing criteria, 
the most commonly cited of the latter being that users store and retrieve chunks as single 
multiword units rather than by rule-governed composition in real time. Implementing any of 
these criteria computationally for real world applications involves serious problems of 
scalability. The most promising trait of chunks in this respect is frequency of occurrence, yet 
the implementation of frequency must be appropriately nuanced. Taking inspiration from the 
achievements of statistical approaches to collocation extraction (Church et al 1991; Smajda 
1993, inter alia), we choose as a practical starting point to operationalize the notion of lexical 
chunk statistically. Our specific implementation of a statistical approach is elucidated in what 
follows as part of our approach to lexical chunk discovery. 

3. Lexical Chunks and Knowledge Discovery 
A fundamental task of the lexicographer is to uncover facts concerning the behavior and 
meaning of words. These facts constitute the substance of any dictionary. One of the most 
important developments in this work over the past few decades has been the rise of 
machine-readable corpora and computational tools that aid in their analysis. Learner 
dictionaries in particular have benefited from the lexicographers’ extended capacity to distill 
patterns and nuances governing the use of specific words made possible by access to massive 
collections of texts and tools for mining them (Sinclair 1987, inter alia). Certain multiword 
expressions have proven particularly susceptible to discovery with such tools. Inspired by the 
work of Church and his colleagues in the late 1980’s (Church et al., 1991), researchers have 
found, for example, that collocations are detectable by well-understood statistical measures of 
word association strength such as mutual information (MI). There are certain characteristics 
of collocations and, say, phrasal verbs as well, that render them especially vulnerable to 
detection by these statistical tools. Word association measures can detect the association 
strength between two event types. Construing a pair of lexemes occurring in close proximity 
to each other to be a pair of events in running text, lexicographers can use these word 
association measures to determine the strength of association between these two events and 
thus detect which word pairs have sufficiently strong association to be collocations. 

Lexical chunks as a class of multiword expression, however, are much less homogeneous in 
this respect. A chunk could consist of two words (e.g., in fact) or five words (as a matter of 
fact). In fact, there would seem to be no principled limit to the size of a chunk. What we want 
to suggest is, first, that this property of chunks creates a non-trivial challenge to 
computational lexicography and, second, that it is tractable.  

We have developed a computational approach to the extraction of lexical chunks from very 
large corpora. Our algorithm takes as its kernel a simple word association measure (any such 
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measure can serve as this kernel, for example, mutual information or simple conditional 
probability, inter alia) and iterates its application. Unlike traditional word association 
measures, then, our algorithm is greedy. As a consequence, our approach is insensitive to 
chunk size. The same algorithm that detects in fact also detects as a matter of fact.  

The current interface is designed for lexicographers, not for learners (the design of a 
representation for learners is the topic of the next section). The algorithm takes as its input a 
single word/POS pairing. A sample input would be fact/N (i.e., the noun fact). The current 
version of the algorithm runs both a conditional probability measure and MI for the target 
word paired with each possible candidate collocate occurring within a five-word window of 
the target word in a 20-million-word portion of BNC (See Wible et al., 2004a for details). The 
user selects a minimum association score to set as a threshold for each of the two measures; a 
default threshold is used if the user makes no selection of score threshold. Word association 
scores are then tabulated for every word that has tokens which occur within the five-word 
span of any token of the target word (e.g., fact). These pairings are sensitive to linear order; 
for example, tokens of the pair in…fact and fact…in are scored separately. Those pairings 
with association scores that satisfy the threshold are considered hits and are highlighted in the 
results display.1 To this point, this process resembles closely the extraction of collocations. 
Since chunks are not limited to word pairs, however, we iterate this process, and all (ordered) 
pairings with the target word (e.g., X fact or fact X) serve as the input to the next iteration. We 
therefore refer to these inputs as bigrams. Word association measures look at the strength of 
association between two events x and y. In traditional collocation detection, as in our first 
iteration, x and y are individual words. At the second iteration, however, we use the same 
measures but change the definition of the events x and y. Here x is a word pairing (or bigram) 
from the first iteration (rather than just a word) and y is a word. This iteration then is 
measuring the association between each bigram (or a word pair) on the one hand and each 
word appearing within the five-word span of that bigram on the other. The output of this next 
iteration would consist of a set of ordered trigrams (potentially discontinuous due to our 
five-word window). Those trigrams that achieve the threshold word association score at this 
iteration are considered hits and highlighted in the results representation. All trigrams from 
this iteration in turn serve as input to the next iteration, and so on, in greedy fashion until no 
candidate strings meet the threshold association score. A hit for this algorithm, then, is a 
string of any number of words that results from satisfying the threshold score at the last 
iteration of any number of iterations. The system then creates a link from each such string to a 
display of all of the BNC sentences that instantiate that string. 

Our searches provide two levels of results, which we will refer to as string types and string 
tokens. An example of a string type would be the string point of view whereas string tokens 
would be specific attested instances in the corpus that instantiate this string type. One reason 
this distinction becomes important is that our algorithm allows a five-word span for 
co-occurrence at any iteration. Thus, the string type point of view includes not only tokens 
where the three words are contiguous (e.g., According to her point of view…), but also tokens 
where the same three words are non-contiguous (e.g., The point of mentioning this view is 
to…).  

There is no way of us predicting a priori which of these patterns within the tokens of one 
string type constitutes a true positive, so we cast our net wide in this way for the sake of recall 
at the cost of introducing noise. In the case of point of view, for example, it is the completely 
                                                 

1 The results display distinguishes three conditions: word pairs that meet the conditional probability threshold 
only are highlighted in red, those meeting the MI threshold only are displayed in blue, and those meeting both in 
purple. This makes it easy to compare the performance of the two measures or the value of using both. 
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contiguous string tokens that are the true positives while the non-contiguous example (the 
point of mentioning this view…) illustrates a false positive. There are cases, however, where 
the reverse holds, that is, where discontinuity is a true property of a particular chunk. For 
example, our algorithm detects the longer string type from point of view as well. Notice, 
however, that for this case, in the true positives, from and point are non-adjacent (from a 
logical point of view; from their point of view, etc).  

Thus, while our use of a five-word window at each iteration is motivated, it also introduces 
substantial noise in the results. To address the noise, we apply to these results some sorting 
mechanisms intended to help distinguish noise from the true positives. While this sorting falls 
short of actually affecting the precision of the results, it is aimed at organizing the results into 
groups of patterns for the hand inspection of the lexicographers at the user end.  

We illustrate our approach to the sorting with a specific string type: tell the time. This string 
token is extracted by taking the noun time as the query target. At the second iteration, the 
trigram tell the time is detected as satisfying both the conditional probability and the MI 
thresholds. Moreover, 54 tokens of this type are found in the 20-million-word portion of BNC 
that we use. While the string type tell the time would appear at first glance to be a true 
positive, a look at the 54 tokens shows the noise. Our original version of the system left these 
54 tokens unsorted and displayed them in the order they were detected in BNC. A sample of 
these 54 tokens is provided here: 

She told herself sternly that the time had passed when sympathy 
You tell me lies all the time 
and one half could not tell the time or correctly select a medicine bottle 
He found messages telling him that the time was not ripe 
observation of the sun was a useful way of telling the time 
I’m telling you for the last time, Harvey 
I was told at the time that this system had been adopted because… 
No mechanical indicator can tell you the right time to strike 
…activities of daily living (such as counting money, telling the time, reading…) 
observation of the sun was a useful way of telling the time 

Our current version of the algorithm adds two stages of sorting to these 54 examples. The first 
step sorts the examples according to the patterns of contiguity of the string members. Thus, at 
this stage, all tokens where the string members (tell, the, time) are contiguous (tell the time) 
are grouped together, then all tokens where the first and second word (tell and the) are 
separated by one word are grouped together (tell him the time; tell of the time), and those with 
two words intervening there (tell him that the time), and so on. This stage of sorting, thus, is 
sensitive to the existence and location of any gaps separating the words in the string type and 
to how many words appear in those intervening gaps. These patterns are displayed in order of 
frequency. Thus, in the case of tell the time, the most frequent pattern is the one with no 
intervening words, such as So what if you can’t tell the time? These comprise 16 of the 54 
tokens. The second most common is the pattern where three words separate tell from the time, 
as in She told herself sternly that the time has passed. There are 8 tokens of this pattern. A 
look at these 8 tokens, however, will illustrate the motivation for adding a second stage to this 
sorting. Specifically, there is no coherent pattern shared by these 8 tokens. The fact that tell 
and the time are separated by three words in all eight examples follows from nothing 
interesting.  

1. The court was told that teenagers were made to suck dummies and wear nappies , were 
bathed like babies and told to regress to the time they were last happy. 
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2. But , I told myself , by the time you are standing at the airport terminal (not the train or 
the bus station) , you have burned off the top ones and , come on , lad , you can afford 
to relax a little. 

3. She told herself sternly that the time had passed when sympathy , hope , tender care , 
even love could have anything to do with the figure on the bed. 

4. You tell me lies all the time ! 

5. Once the commotion had died down , he told them to break the time pencils and get to 
work. 

6. I told her I thought The Times would probably have a man on the spot and it was late , 
and I prised my Toshiba away from her grasping hands. 

7. Junior accountants at Price Waterhouse , one of the big six firms , have been told that 
now is the time to take their once-in-a-lifetime world tour or perhaps a summer stint as 
a yacht deckhand and that applications for extended unpaid leave bquo will be looked 
on favourably. 

8. Carter had told the police at the time they had a row over money and his wife had 
walked out , never to return. 

While this group is the second most common pattern for tell the time string type, it is a false 
pattern, one that represents no interesting regularity. In this case, then, the first stage of 
sorting does not contribute directly to chunk detection. Part of the motivation of the second 
stage is to bring us closer to detecting such results as noise automatically, eventually enabling 
us to not only sort examples but also filter out noise. To help achieve this, the second stage 
examines the POS of the intervening words in the string tokens within a pattern. The POS 
tags are from the CLAWS tagset used to tag BNC2. Listed here are the eight different POS 
trigrams representing the three words separating tell from the time in this group. 

1. TO0_VVI_PRP   3. PNX_AV0_CJT 5. PNP_TO0_VVI 7. CJT-DT0_AV0_VBZ 
2. PNX_PUN_PRP  4. PNP_VVZ_DT0 6. PNP_PNP_VVD 8. AT0_NN2_PRP 

The fact that the eight sentences, while all sharing a 3-word gap between tell and the time, 
each has a different POS trigram in that gap can serve as readily detectable indication that this 
group of eight tokens does not reflect an interesting regularity concerning tell the time. 
Eventually our goal is to represent results to learners and teachers, not only to lexicographers. 
For this reason, such strategies for automatically detecting false positives and increasing 
precision will be important to ensure such examples are not presented to learners as instances 
of the chunk tell the time. In what follows, we describe our approach to representing our 
lexical chunk knowledge for learners and teachers. 

4. Lexical Chunks and Knowledge Representation 
A second challenge for lexicography concerning chunks is how to represent them to learners. 
We propose embedding the representation of chunk knowledge within the contexts where 
learners encounter chunks. As learners encounter the target language in contexts of authentic 
use, they are exposed to chunks (whether they recognize them as such or not). Our aim is to 
identify these chunks in real time directly within digital contexts. We illustrate how we have 
implemented this approach with collocations and describe the challenges in extending this 
approach to chunks. Our collocation tool (called Collocator) is a browser-based tool that can 

                                                 
2 http://www.natcorp.ox.ac.uk/what/garside_allc.html 
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detect collocations in real time within the web pages that the user browses (Wible et al., 
2004a).  

The core component of Collocator that detects collocations in web pages in real time works 
much like the first iteration of our chunk detecting algorithm. The collocation-extracting 
scheme is part-of-speech sensitive, which means we have to detect the part-of-speech 
information of each word in browsed web pages in real time. We train a Markov Model-based 
POS tagger (Brants, 2000) and use British National Corpus (BNC)3 as our training data. The 
internal evaluation shows this tagger has 93 % precision including identifying unknown 
words. After part-of-speech tagging, the agent uses the following equation from (Wible et al., 
2004b) to measure the word association score for all candidate word pairs: 

( ) ( )
( )

( )
( )

( )



⋅







=

ysn
yP

xsn
xP

yxPyxnormMI ,log, 2  

 
where x, y mean the word with specific part-of-speech and sn means the number of distinct 
senses for that word listed in WordNet. This adaptation of traditional MI takes into account 
the polysemy of the words x and y by normalizing for the number of senses of x and y, 
helping overcome traditional MI’s under-extraction of collocations that contain high 
frequency words. For example, traditional MI does not detect take as a collocate of the noun 
temperature (The nurse took the patient’s temperature), but our normalized MI does detect 
take in this case.  

Similar to the first iteration in our chunk detector, Collocator takes as collocation candidates 
all possible pairings of POS-specific words (x and y above) in which the two words appear 
within a five-word window of each other in our 20 million-words of running text of the BNC. 
Using the above measure, each x,y ordered pair yields a word association score. Collocations 
are word pairs that show a sufficiently strong word association between the two words in the 
pair. Thus, a minimum score threshold is used to select which of the candidate word pairs 
constitute collocations. This threshold can be lowered or raised to adjust the agent’s precision 
and recall. The collocation knowledge thus extracted from our POS-tagged BNC feeds our 
browser-based Collocator, enabling it to detect and highlight collocations that appear in the 
web pages that the user browses (See figure 1). 

 

 

Figure 1. Toolbar’s dropdown menu with detected collocations and link to examples 
 

                                                 
3 http://www.natcorp.ox.ac.uk/ 
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Using Collocator as our reference point, we can now describe how our lexical chunk 
extraction is to be applied to learners. In brief, our purpose is to enrich Collocator so that it 
detects and represents not only collocations (typically, word pairs) but longer strings, that is, 
chunks. This tool will then detect and highlight chunks in real time within the web pages that 
the user browses. The approach to lexical chunk discovery described above is intended, then, 
as the knowledge source supporting this tool. The fundamental challenge this application 
poses is that of precision. 

 

Figure 2. Example sentences 

As shown above, each iteration of the chunking algorithm introduces noise and leads to more 
false positives with each iteration. A ubiquitous browser-based version of the chunker would 
detect strings in the web page that match any string types that have achieved a threshold word 
association measure at our ‘discovery’ stage. Recalling the example of tell the time, this 
means that a browser-based chunk detector would treat as a match not only the true positive 
He hasn’t learned to tell the time, but also false positives like Tell him that unfortunately the 
time has not arrived. These failures in precision, while forgivable for a tool intended for 
lexicographers, are unacceptable for a tool intended directly for learners as they browse the 
Web. We choose to retain the higher recall created by our 5-word window and focus on 
increasing precision by adding a second stage that sorts these results into patterns, as 
described above. While our current sorting method does make it much easier to filter out false 
positives by hand, this is not improvement enough for a browser-based version for learners. 
The sorting strategy that we mentioned early of exploiting POS patterns, though requiring 
refinements, does hold promise. For example, it would enable the chunker to discard false 
positives like Tell him that unfortunately the time has not arrived since, as we have seen, it 
can discover that cases like this with a 3-word gap between tell and the time exhibit no 
regularities in the POS sequences appearing in that gap. However, the implementation of this 
strategy must be much more fully articulated and tested. Recently, we have added entropy 
measures to detect how stable the POS patterns are that occur within the strings. Preliminary 
results suggest high entropy as a promising indicator of false positives, allowing for automatic 
filtering for increased precision of our results. 

 



A COMPUTATIONAL APPROACH TO THE DISCOVERY AND REPRESENTATION OF LEXICAL CHUNKS 

TALN 2006, Leuven, 10-13 avril 2006 

875

References 
BRANTS T. (2000). “TnT-A statistical part-of-speech tagger”. In Processings of ANLP-2000. Seattle, 

Washington. 
CHURCH K, GALE W., HANKS P., HINDLE D. (1991). “Using statistics in lexical analysis”. In U. 

Zernik (ed.), Lexical Acquisition: Exploiting Online Resources to Build a Lexicon. Lawrence 
Erlbaum Associates, Hillsdale: 115-164. 

SINCLAIR J. (ed.) (1987). Looking UP: An Account of the COBUILD Project in Lexical Computing. 
Collins, London. 

SMADJA F. (1993). “Retriving Collocations from Text: Xtract”. In Computational Linguistics 19: 
143-177. 

WIBLE D., KUO C.-H., TSAO N.-L. (2004a). “Contextualizing Language Learning in the Digital Wild: 
Tools and a Framework”. In Proceedings of IEEE International Conference on Advanced Learning 
Technologies (ICALT). Joensuu. 

WIBLE D., KUO C.-H., TSAO N.-L. (2004b). “Improving the Extraction of Collocations with High 
Frequency Words”. In Proceedings of International Conference on Language Resources and 
Evaluation (LREC). Lisbon. 

WEINERT R. (1995). “The Role of Formulaic Language in Second Language Acquisition: A Review”. 
In Applied Linguistics 16: 180-205. 

WRAY A. (2002). Formulaic Language in the Lexicon. Cambridge University Press, Cambridge. 


