
HAL Id: hal-00197296
https://telearn.hal.science/hal-00197296

Submitted on 14 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The framework for easy intelligent tutor programs
creation

Anatoly Kulik, Andrey Chukhray, Vitaly Symon

To cite this version:
Anatoly Kulik, Andrey Chukhray, Vitaly Symon. The framework for easy intelligent tutor programs
creation. Conference ICL2007, September 26 -28, 2007, 2007, Villach, Austria. 5 p. �hal-00197296�

https://telearn.hal.science/hal-00197296
https://hal.archives-ouvertes.fr

Conference ICL2007 September 26 -28, 2007 Villach, Austria

The framework for easy intelligent tutor programs creation

A. Kulik, A. Chukhray, V. Symon

National Aerospace University (Ukraine)

Key words: framework, intelligent tutor program

Abstract:

In this paper the framework for intelligent tutor programs creation is described. It
separates the logical part of tutor program and technical parts like user interface,
database connectivity, etc. The intelligent program is built in specially developed graphical
tool by means of performing primitive actions to create task model as a graph with states
and conditional transitions. So it may be composed by a teacher with base programming
skills.

1. Introduction

Creation of quality intelligent tutor program is a very complicated task. Such program has many
criteria of quality: e.g. quality of tutor content, intelligence with deep diagnosing and adaptive
remediation of knowledges and skills [1,2], usability, scalable, performance, etc. Therefore, the
developers should have experience in complicated software development, knowledges in
application domain the program is creating for and methods of training. In this paper, the
framework for easy creating intelligent tutor programs by a teacher, who is a not professional
programmer, is considered.

2. Problem definition

This problem can be solved by creation of universal framework for intelligent tutor programs.
This framework should separate the logical part of tutor program and other, technical parts, like
user interface, database connectivity, etc. In this case, teacher, the person who knows the
application domain of tutor program, doesn’t require some programming skills.
The program should be flexible, scalable and easy for understanding. It consists of some
modules, and every module provides a special functionality. For example, user interface is
provided by user interface agent and the tutor workflow is supported by control agent. All
modules can be plugged or unplugged in every moment and that will not damage the workflow
or state of some other module. These modules can be provided by third-party developers as well.
All modules communicate through data container called “global facts dictionary”. That will
provide high flexibility of the program.
The tutor workflow will be designed by teachers, and no programming skills are required. The
workflow consists of some little actions and these actions can be described using very simple
expressions like “a=2” or “d=sqrt (b*b-4*a*c)”. Teacher can bind these actions using some
graphical interface without using some special programming language expressions and operators
like “if”, “goto”, “while” and so on.
The tutor program can appear as desktop application or web-application. Change user interface
agent is enough to switch the type of application. Web is the best way to create m-learning
solutions.

Conference ICL2007 September 26 -28, 2007 Villach, Austria

:IRunnable

Requirement
: IRunnable

Body
:string

PostRequire-
ment

: IRunnable

com.server.action1

set(“result”, 2+2);

com.server.agent1

get("result")==get("user_result")

Global facts
dictionary
result 1

user_result 2

interface.agent

…

3. Our solution

Most of requirements concern tutor program architecture. Tutor program is considered to be a
sequence of some basic actions. Actions are scripts, written in JScript.NET. Every action has
some requirement to run. It is some simple expression that can be “true” or “false”. If result of
evaluating the expression is “false” the action will not be performed. Every action changes the
state of the program using “global facts dictionary”. Action implements IRunnable interface. It
means that action object can be executed. IRunnable interface is built using “composite” design
pattern(fig. 1)[3].

Figure 1. IRunnable interface

Also there are agents in the system. Agent responds for some special functionality. For example
user interface, network collaboration can be implemented using agents. Agents are executed after
any action (not IRunnable) execution completed. Agent class implements IRunnable too. Agents
can be loaded with tutor program automatically or manually by administrator. For example,
administrator can enable or disable network collaboration.
Every IRunnable has its unique name and is identified using this name. The recommended name
of IRunnable is: zone.domain.project.method.name like
edu.khai.sample.QuadraticEquation.InitAction. These names are required to identify IRunnable
when it is stored or restored, some other IRunnable references it. Also these names are used to
create namespaces. For example, the variable “d” can be “determinant” in some action and
“discriminator” in other. These two actions work in one program. At some moment value of this
variable is “discriminator” or “determinant”. So one of the actions gets wrong information. But if
these actions use namespaces there is no any conflict: variables names will be action1.d and
action2.d, every action will get access to its local “d”.
Collaboration of agents and actions is provided through “global facts dictionary”. Global facts
dictionary is a dictionary that contains objects as values and strings as keys. This dictionary is
visible to all modules of program. Agents and actions communicate through this dictionary.

Figure 2. Communication through global facts dictionary.

Conference ICL2007 September 26 -28, 2007 Villach, Austria

com.server.action1

set(“@result”, 2+2);
set(“global_result”, 5);

com.server.action2

set(“@result”, 3+3);

Global facts
dictionary

com.server.action1.result 4
com.server.action2.result 6
global_result 5

com.server.agent1

get(“com.server.action1.result”);//4

Control Agent

Actions

Global
facts

dictionary

JScript.NET interpreter

Agents

Functions “get” and “set” are used in scripts to get access to “global facts dictionary”. Example
using “get”: get("result")==get("user_result") // check if the answer is true.
The symbol @ in front of variable will enable using local namespace for this variable. For
example: expression set(“@myvar”) will store the variable using name <action name>.myvar
(action name is name of action the expression was stored in).
There are some standard namespaces for communication between modules. They are: interface –
to build interface/get data from it, student – to get/set data about student, network – for
cooperation using network and some other.

Figure 3. Using namespaces in global facts dictionary.

All objects in tutor program are controlled by control agent. This is the main object of the
program. It responds for executing actions, plugging and unplugging agents, global facts
dictionary.

Figure 4. Control agent

Control agent runs the action following to the sequence. After each action is executed, control
agent runs all agents, loaded in that moment. All scripts are executed using JScript.NET
interpreter.

4. Sample tutor program

Let’s create sample tutor program for quadratic equation.
The program will offer to find roots of the quadratic equation. First of all, it is necessary to
create task model of the program (fig.5):

Conference ICL2007 September 26 -28, 2007 Villach, Austria

Generate equation Wait for roots

Diagnose
Test passed

Test failed

Answer is right

Errors == 3

Answer is wrong and errors < 3;
errors ++,

Figure 5. Task model

This diagram should be implemented using special tool that is a part of framework (fig.6). The
actions can be added using context menu. Connections can be created clicking right mouse
button on two actions. Condition of the connection is set in dialog that appears after double-click
on the connection. Example of such condition:
!get(“right”)&&(get(“errors”)<3) – this connection is valid only when answer is wrong and
number of errors is below 3.
After the sequence is created the actions scripts should be written. To edit script of action press
“edit action” button. Example simple window creation using GUI agent:
set("interface.invoke", true) – sets flag for GUI agent;
set("interface.form.my", true) – creates form with the name “my”;
set("interface.form.my.text", "sample form") – set caption;
…
set("interface.textbox.nroots", true) – create textbox and show it in the window;
set("interface.textbox.nroots.text", "0");
set("interface.textbox.nroots.x", 100);
set("interface.textbox.nroots.y", 50);
set("interface.textbox.nroots.parent", "my");

Figure.6. Action sequence designer

Created window is presented on fig.7.

Conference ICL2007 September 26 -28, 2007 Villach, Austria

Figure.7. Sample form of intelligent tutor program

After all scripts are ready press “Run” button on form, presented on fig.6. Enter answers into
new dialog that will appear (fig. 7) and then close it. If your answer is right program finish its
work, otherwise give you one more try. After three tries the test ends with negative result.

5. The Conclusion

The main contribution of the paper is the idea and the features of the framework for intelligent
tutor programs easy creation by a teacher who is not a qualified programmer. The architecture of
such framework is considered.
Now we are implementing different intelligent tutor programs for mathematic tasks solving
training in such a way.

References:

[1] Kulik, А.; Chukhray, A.; Chukhray, M.: Diagnostic models of intelligent tutor system for
teaching skills to solve algebraic equations // In Proceedings of the Interactive Computer Aided
Learning Conference, Villach, Austria, Sept. 26-28 2006, International Journal of Emerging
Technologies in Learning.– 2007. –Vol. 2. – № 1, http://www.i-jet.org.

[2] Kulik, A.; Chukhray, A.: Intelligent tutor system for teaching skills to solve algebraic
equation // In Proceedings of the East-West Fuzzy Colloquium, Germany, Zittau, IPM, 2006, P.
120-128.

[3] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional Computing Series, 1995. – 395 p.

Author(s):

Anatoly Kulik, Doctor of Technical Science, Professor, Laureate of Ukraine State Prize, head of
Control Systems department, dean of Control Systems faculty in National Aerospace University,
Kharkov, Ukraine (e-mail: kulik@d3.khai.edu).
Andrey Chukhray, Candidate of Technical Science, deputy head of Control Systems department,
deputy dean of Control Systems faculty in National Aerospace University, Kharkov, Ukraine
(e-mail: chukhray@d3.khai.edu).
Vitaly Symon, student of National Aerospace University, Kharkov, Ukraine (e-mail:
symon@gmail.com).

