
HAL Id: hal-00197258
https://telearn.hal.science/hal-00197258

Submitted on 14 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Patterns Instruction in Software Engineering
Cornelia Novac-Ududec, Diana Stefanescu

To cite this version:
Cornelia Novac-Ududec, Diana Stefanescu. Patterns Instruction in Software Engineering. Conference
ICL2007, September 26 -28, 2007, 2007, Villach, Austria. 8 p. �hal-00197258�

https://telearn.hal.science/hal-00197258
https://hal.archives-ouvertes.fr

Conference ICL2007 September 26 -28, 2007 Villach, Austria

 1(8)

Patterns Instruction in Software Engineering

Cornelia Novac- Ududec1, Diana Stefanescu1

 „Dunarea de Jos” University of Galati, Romania

Keywords: Design patterns, software engineering, OOP design, multi-agent system,
tutoring system.

Abstract:

The paper deals with a training system with a client-server architecture created for
students who are learning to design and implement object-oriented software systems
with reusable components, and also targeting those users who wish become
accustomed with (or improve their skills related to) software design. The paper briefly
presents the design patterns which are to be found in the software library, as well as
the manner of applying them. The user of such a system has five types of patterns at
his/her disposal (Factory Method, Builder, Command, Mediator, Observer), out of
which will be able to chose one/more than one, depending on the requirements of the
system proposed for design.

1. Introduction

Motto: “The software design patterns help you learn more from other people’s successes than
from your own failures” [Mark Johnson] .
A software system is a dynamic entity that undergoes multiple changes during its life-cycle,
under the influence of factors such as: new user requirements, adding new functionalities,
environment adjustment, etc. Therefore, apart from fulfilling those functions which it was
designed to fulfill, a software application must be easily changeable, with some of its modules
eventually re-used. Having this goal, the application must fulfill certain requirements
regarding robustness, mobility, flexibility, scalability, etc. The software design principles are
regarded as ways of obtaining the right and re-usable design. By applying abstractization and
OOP languages polymorphic techniques, the open-shut principle and the substitution principle
(Liskov) upon classes of problems, common solutions were reached – solutions which make
up the so-called design patterns. The software patterns facilitate re-using design and
architecture. If the design and/or architecture of a system were built with design patterns
(techniques which have proven efficient), then they will be more accessible and easier to
understand by those software developers who build new systems based on old design. The
patterns help the software specialist chose that design that makes the system re-usable. In
software engineering, “design pattern” (DP) [2] means a solution applicable to a certain type
of problems. A design pattern is a description / model of how a problem should be solved. A
pattern cannot be directly transformed in source code.
The purpose of design patterns is to enable a “good” object-oriented design, and more than
that – to make it reusable (which is more important than reusing the code, regardless of the
fact that reusing the design often implies reusing the code). The quality of software design is
proportional to the experience and previous knowledge of the one performing it. An expert
applies solutions previously used and proven efficient for similar problems. When the expert
finds a solution considered acceptable, he/she uses it again. Design patterns solve specific
design problems, making the OO more flexible, elegant and reusable. DP help beginners with
software design, proposing patterns based on previous experience. A user who is familiar with
the DP-s can apply them instantly in order to solve specific problems, without having to

Conference ICL2007 September 26 -28, 2007 Villach, Austria

 2(8)

rediscover them. By using the software design patterns while designing an object-oriented
architecture, one is guaranteed to obtain system compliance to software engineering
principles, while also preserving the qualities of “good design”: reusable, flexible, robust [3].

2. Design Patterns

Depending on the DP purpose, the authors of GoF [4] proposed three main categories of
patterns: creational patterns, structural patterns and behavioral patterns. These are the most
well-known DP, but not the only ones. Other types of patterns emerged – more or less popular
– as well as variations of the GoF patterns.
A pattern has four essential components:

1. Name: the name of the DP must describe in a few words a design pattern problem, its
solutions and the solution’s effects.

2. Problem: describes the situations when the pattern is applicable, explaining the
problem as well as its context.

3. Solution: describes the components of the design, the relationships between them, the
responsibilities of each component and the way they interact. The solution does not
describe a specific design for a certain situation or a correct implementation, because a
pattern has a general character, referring to a plethora of contexts. The DP presents an
abstract description of a problem and a general arrangement of the components
(classes and objects) that solve the described problem.

4. Effects: refer to the results of applying the pattern, which are very important when we
evaluate the alternatives and we estimate the costs and benefits of applying the pattern.
The effects of a pattern are also to be perceived in the flexibility, extensibility and
portability of a system.

DP identifies the classes and instances which participate, their role, collaboration and
responsibility sharing between them.

The design patterns that the user of the proposed system has at hand are: Factory Method and
Builder (from the Creational Patterns category), Command, Mediator and Observer, (from the
Behavioral Patterns category).

2.1. Factory Method Pattern

Factory Method, also known as Virtual Constructor, defines an interface for creating an
object, but allows the sub-classes decide which one of them will be instanced. Factory
Method defers to the sub-classes the instancing operation.
Factory Pattern is quite common to object-oriented programming. It returns an instance of a
class out of many more classes possible, according to the data received. Ordinarily, all classes
that can be returned have a common super-class and common methods, but accomplish tasks
differently and accept different types of data. Figure 1 presents the general structure of the
Factory Method pattern.
In this diagram:

- Product is the interface of the objects created by factoryMethod();
- ConcreteProduct implements the interface Product;
- Creator declares the method factoryMethod() which returns an object of the type

Product. In some cases factoryMethod() can be a specific method which returns
directly an object ConcreteProduct.

- ConcreteCreator re-writes factoryMethod() so that it returns an object
ConcreteProduct.

Conference ICL2007 September 26 -28, 2007 Villach, Austria

 3(8)

Figure 1. Factory Method Structure

The class Creator counts on its sub-classes, ConcreteCreator, for them to define the
factoryMethod() so that it returns an instance ConcreteProduct.
The Factory Method DP should be used when:
• A class can’t anticipate which should be instanced;
• A class uses its own sub-classes to specify which objects are created;
• The decisions of creating objects are localized.
Conclusions:

By using Factory Method:
- There is a separation of the code which represents the logic of the data program. The
logic is established by Factory Method. By separating the logic from the program data, the
extensibility of the programs improves;
- Creating an object by Factory Method is much more flexible than creating an object
directly;
- The code of the Client class doesn’t need to know the sub-classes, it works with the
interface Product, so, if the programmer subsequently wants to add subclasses to Product,
the class Client can use them without any alterations.

One disadvantage of the Factory Method is that a class Client will have to derive from the
class Creator, just to create an object ConcreteProduct.

2.2. Builder Pattern

The Builder design pattern separates the process of building a complex object from its
representation, so that the same building process can create different representations. Figure 2
presents the general structure of the Builder as established by GoF.

Figure 2. Builder Pattern Structure. Classes Diagram

Conference ICL2007 September 26 -28, 2007 Villach, Austria

 4(8)

In this diagram:

- Builder is the interface used to create the parts of the object Product;
- ConcreteBuilder implements the method builderPart() of building and assembling

the parts of Product and offers an interface to obtain the object Product built;
- Director builds an object using the interface Builder, as this class is the one which

knows the internal representation of the object to be built;
- Product represents the complex structure of the object to be built. ConcreteBuilder

builds internal representation and defines the process of assembling the parts of the
object Product. The abstract class Product includes classes which define the
components, as well as interfaces used for assembling the parts with a view to reach
the final goal.

This pattern is advisable when:
- The algorithm of creating a complex object must be independent of its components and of

the process of assembling them;
- We need more representations for the same object which is to be built.
The Builder pattern can be compared to the Abstract Factory pattern (another one of the
Creational Patterns category), as they both return classes consisting of a certain number of
methods and objects. The main difference is that, while Abstract Factory returns a family of
kindred classes, Builder builds a complex object, depending step by step on the data received.

2.3. Command Pattern

The Command pattern encapsulates a request in an object which is submitted towards a
specific module that deals with the request. The object that encapsulates the request
implements a public interface. Thus, a class Client is given the possibility to make requests
without knowing anything about the operation to be executed, because Client uses the public
interface. Also, action implementation code changes can be made without needing Client
program to be changed.

Figure 3. Command Pattern Structure

The classes of Figure 3 are:

- Command an interface used to execute an operation;
- ConcreteCommand

o Sets a connection between Receiver and an action;
o Implements the method execute(), invoking the object Receiver, the method

that performs the operation itself.
- Client creates an object ConcreteCommand and sets the object Receiver;
- Invoker asks the object Command to complete the request;

Conference ICL2007 September 26 -28, 2007 Villach, Austria

 5(8)

- Receiver is the class that implements the operations of completing the request. Any
class can be a Receiver.

This pattern is advisable when:
- An object is called as having as parameter the action it is about to perform. For

example, if there is a request to open a document, this request is used as parameter in
the call;

- The incoming requests are placed in a pile and completed later, at different moments
in time. For example, if one wants to copy a document in another document, one must
open the first document, select the content, copy the content then Paste it into the
second document, which must be open as well;

- The application offers the user possibilities like Undo-Redo;
- The application offers support for tracking changes in the system (“logging changes”),

so that the system‘s status can be restored in case of failure. It is also possible to keep
into a persistent log the actions performed against the system, so that - through Load
and Restore operations implemented by means of the Command interface – to restore
the status of the system. That restoration means loading the operations from the log
and then re-executing them.

2.4. Mediator Pattern

When a system consists of more than one class, logic and algorithm are shared between the
classes. The more the classes in a program, the more problems are regarding communication
between them. If each class needs to know the methods of all the others, the structure of the
program becomes very complicated, the program becomes harder to read and understand, and
then, harder to maintain. The system will be hard to change, because a change will reflect
upon the code of more than one class. The Mediator pattern solves this aspect by reducing
the coupling between classes. Briefly, the classes inform the mediator when changes happen,
then class Mediator informs all the classes that they must know the respective changes, as it
will be the only one knowing the details of the methods of all classes, thus avoiding the class
objects to call themselves directly. Mediator is a class that encapsulates the interactions
between the objects of the system.
The structure proposed by the Mediator pattern is shown in Figure 4:

Figure 4. Structure of the Mediator Pattern

In this diagram:

- Mediator defines an interface for communication between objects of the type
Colleague;

- ConcreteMediator implements the behavior of the object Colleague. A
ConcreteMediator knows and coordinates all objects Colleague;

- Each class Colleague knows its Mediator, and each Colleague communicates with its
mediator when it has something to say to its colleagues.

Conference ICL2007 September 26 -28, 2007 Villach, Austria

 6(8)

This pattern is to be used when:
- A group of objects communicates in a well-defined, complex manner;
- Inter-dependencies between objects lack structure and are difficult to understand;
- Re-using an object is hard because it refers/communicates directly with many objects;
- A behavior distributed to more than one class must be customized without using too

many sub-classes.
Using the pattern Mediator is not limited to programs with visual interfaces, although this is
the most common situation. It can be used in any situation that deals with a complex
communication problem in a group of objects.

2.5. Observer Pattern

The Observer pattern defines an object inter-dependence of the type “one to more”, so that,
when one object changes status, the objects depending on it are automatically notified of the
change and update their status.
The Observer pattern proposes a solution for obtaining system consistency, simultaneously
with component objects being re-used independently. The objects are shared between
observers and subjects. A subject can have more observers (objects depending on the subject
status). As soon as the subject status changes, all observers receive automatic announcements.
In response, each observer synchronizes its status with the subject’s. Figure 5 presents the
general structure of the Observer pattern.

Figure 5. Structure of the Observer pattern

Classes participant in the Observer:

- Subject declares an interface for adding or extracting the observer objects.
- Observer defines an interface used to notify the observers when there are changes in

the subject’s status;
- ConcreteSubject preserves the status which is of interest for the observers and sends

notifications when it changes;
- ConcreteObserver implements the interface used to update, keeps a reference to the

subject and preserves the status which must be consistent to the subject’s status.
Using the Observer pattern is recommendable in the following situations:

- When an abstractization has two aspects depending upon each other. Encapsulating
these aspects in separate objects contributes to the possibility of re-using them in new
contexts, independent of each other. Also, the system becomes elastic, allowing the
modules to modify without a chain reaction of change;

- When an object must notify other objects without knowing who they are. In other

Conference ICL2007 September 26 -28, 2007 Villach, Austria

 7(8)

words, they are not characterized by strong, tight coupling;
- When the changing of an object leads to changes in other objects, without knowing

how many objects will have to be changed in the end.

3. The Architecture of the System

The platform is designed as a distributed application, providing the option of distance
learning/tutoring by means of a computer network or the Internet.
The application can be classified as having “three - tier" architecture, the Client part being
represented by the configuration module and the tutoring material presentation module. The
user connects to the system by means of a Login module, monitored by an Administrator
agent (CerberusAgent).
After authentication the user may have access to a configuring instrument (if the user
connected to the system is the tutor) or to the user interface by means of which the learning
material will be presented (if the user is a student). This part of the application will be
monitored by an interface agent (InterfaceAgent).
The application server contains the agent platform that monitors the student activity, and a
web server responsible for delivering the learning material to the user interface (Apache
Tomcat).
The third level consists of a xml database (Apache Xindice), which stores information about
the structure of the course, student models, etc.
The MTS training system is designed for students which learn to design and implement
object-oriented software systems, with re-usable components, but also for those users who
wish to become familiar with (or improve) software design. We present the approach of a
multi-agent intelligent platform for tutoring student which provides a Student Model. The
“modeling student process” used the overlay architecture (common for many tutoring
systems) combined with the Bayesian Theory of Probability [5].
The system’s tasks are distributed among the intelligent agents (software agents), each having
clearly specified individual roles as following: administrator (Cerberus Agent); interface
(InterfaceAgent); tutor (Tutor Agent); student (Student Agent). Moreover, the system has
“three-tier” architecture and was implemented in Java language [5].
We may well imagine software agents attached to every application or tutoring environment,
each having an explicit representation of the users’ objectives, of their plans and resources.
These agents communicate and negotiate with each other in order to fulfill their individual or
group objectives.
The multi-agent tutoring system (MTS) was designed and implemented within the Computer
Science Department, in which research focused upon “modeling” the student with a view to
identifying the most suitable methods and tutoring strategies by taking into account individual
knowledge and abilities.
The user of this kind of system has all five types of previously described patterns at his/her
disposal (Factory Method, Builder, Command, Mediator, Observer), out of which will be
able to use one or more, depending on the requirements of the system that needs to be
designed.
Depending on the needs of the user that must fulfill the requirements of the system, one
selects from Tutor Agent the design patterns best suited for those functions. The patterns help
build the menus of the application and the user interface. Then the database is built, as the
user has permanent access to an example of application as similar as possible to the one which
needs to be carried out. In order to develop an application, the student must know the Java
programming language, must be familiar with MySql data servers and must be able to use the
Eclipse platform. The Eclipse platform is an open source framework from IBM which aims to
provide a variety of basic services for software developers [6].

Conference ICL2007 September 26 -28, 2007 Villach, Austria

 8(8)

4. Conclusions

The system wishes to be a useful working instrument for software application development
training, for both students and other types of users. A design pattern together with an example
of using that pattern may become a way of working in software design. Moreover, in this case
applying design patterns – therefore design principles - in carrying out an object-oriented
application results into a reusable design and reusable modules / components.
Also, the resulting code enjoys more robustness and flexibility, these two characteristics
being essential for developing new modules that would add new functionalities and operations
to the application; the design/code of the application is open to extension and closed for
changes, according to OCP.
Another important aspect relates to the maintenance activities which the designed
application will undergo along its life-cycle: they will more cost effective, as no change will
disseminate through the entire system, the application code being built so that it isolates the
volatile classes (according to the principle of reversing dependencies), the dependencies being
in the way”details depend upon abstractization” and not the other way around.
The software patterns ensure compliance to design principles, as they contribute to obtaining
a steady and efficient system, and they provide design discipline for students. Last but not
least, using such a system in software engineering learning makes the process much more
attractive and efficient. The design patterns approach in software engineering training fits the
pedagogical Schemas Theory (created by Bartlett at the beginning of the 20th century) [1]. A
brief representation of the particular knowledge of the training domain can help the trainee to
easier absorb the new information, while the organization and structuring of the knowledge as
patterns will guide him/her in finding (remembering) the necessary information in a certain
context [4]. We believe that within such an approach one can create a training ontology from
Software Engineering.

 References:

[1] Brewer W.F., Nakamura G. V., The Nature and Functions of Schemas, Wyer & Srull,

Eds. Handbook of Social Cognition, vol.1, pp.119-160, 1984.
[2] Design Patterns in C# and VB.NET- Gang of Four (GOF),
 http://www.dofactory.com/Patterns/Patterns.aspx.
[3] Design Pattern Tutorial-
 www.csc.calpoly.edu/~dbutler/tutorials/winter96/patterns/
[4] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns: Elements of
 Reusable Object-Oriented Software (GOF), Ed. Addison-Wesley, 1995
[5] Novac-Ududec C., Barla R., A Multi-Agent Intelligent Platform for Student
 Tutoring, Proc. SEFI-IGIP 2007, Miskolc, Hungary, July, 2007, pp.65-69
[6] Eclipse Project http://www.eclipse.org/

Author(s):
Cornelia Novac-Ududec, Professor, PhD
„Dunarea de Jos” University of Galati, Department of Computer Science and Applied
Informatics, 47 Domneasca Street, Galati, Romania
Cornelia.Novac@ugal.ro

Diana Stefanescu, lecturer, PhD candidate
„Dunarea de Jos” University of Galati, Department of Computer Science and Applied
Informatics, 47 Domneasca Street, Galati, Romania
Diana.Stefanescu@ugal.ro

http://www.dofactory.com/Patterns/Patterns.aspx
http://www.csc.calpoly.edu/%7Edbutler/tutorials/winter96/patterns/
http://www.eclipse.org/
mailto:Cornelia.Novac@ugal.ro
mailto:Diana.Stefanescu@ugal.ro

