
HAL Id: hal-00197217
https://telearn.hal.science/hal-00197217

Submitted on 14 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An adaptive learning environment in DICE system with
TDD model

Li-Ren Chien, Daniel J. Buehrer, Chin Yi Yang

To cite this version:
Li-Ren Chien, Daniel J. Buehrer, Chin Yi Yang. An adaptive learning environment in DICE system
with TDD model. Conference ICL2007, September 26 -28, 2007, 2007, Villach, Austria. 8 p. �hal-
00197217�

https://telearn.hal.science/hal-00197217
https://hal.archives-ouvertes.fr

Conference ICL2007 September 26 -28, 2007 Villach, Austria

An adaptive learning environment in DICE system with TDD
model

Li-Ren Chien 1, Daniel J. Buehrer2, Chin-Yi Yang3

National Chung Cheng University

Key words: DICE, Test-Driven Development, Test-based Grader, Parse-Tree
based, Automatic Grading, Computer Aided Assessments, Adaptive Learning

Abstract:

We introduce an adaptive learning environment named DALM (DICE adaptive
learning model) based on DICE test-driven development (TDD) model that was
implemented in a parse-tree based automatic on-line grader. In our opinion, there are
three variables in DALM. The individual differences (I) classify the learners into
several groups. The training method (T) that equivalent to TDD model in DICE can be
controlled by DICE system. The learning outcome (O) presents the learning
performance of learners with an individual difference level after chosen TDD model.
The learning outcome is related to the individual difference and the training method
denotes as O = f (I, T). A model learning phase will rank the <I, T> pair by learning
outcome. The learner will be adapted to the best fit training method (T) by his/her
individual difference (I) base on the result of model learning phase. We expect such an
environment can adapt different kinds of learner to suitable DICE TDD teaching unit.

1 Introduction

We aim to develop an adaptive learning system for improving the learning performance of
programming learning. To achieve our aim, we segment our research plan into four stages.
In first stage, we need an automatic grading system. Since 2005, we have commenced to
establish DICE system for test-based assignment tutoring and problem solving environment.
[1] All training work including assign practise, turn-in and assessment could be run on DICE
system. Dice has worked in HKHS for 1 year.
As following, we refer training method criteria and TDD concept to establish a new training
model for programming learning which named DICE TDD Model [2]. It provides sixteen
kinds training methods for learners.
In the third stage, we conduct Kolb’s [3, 4] learning style instrument as the test item of
individual difference. We will unearth the best fitness between learning styles and training
methods which will result in satisfying learning outcome. We will prove different learner
needs different training method in DICE system.
As educational psychologists suggested to match training methods to individual difference is
important, we will develop an adaptive learning system for individuals. Reliable instruments
about individual difference and student database in school will be conducted in DICE. In early
work, we will discover the best fitness between the variable of individual and learning
performance. When having a big population, we will classify the best fitness between learning
performance and training criteria. Finally, DICE will get a new criterion for best learning.

1(8)

Conference ICL2007 September 26 -28, 2007 Villach, Austria

2 Brief Introduction to DICE

DICE [1] was implemented in an OS-independent, distributed, client-server environment,
with a parse-tree-based automatic assessment system. The teacher starts the testing plan of a
programming language (C or Java) by making a problem set. He is asked to organize his

problem descriptions, input datasets, and standard output to a specified directory. The
students’ data can be stored in either text files, Excel spreadsheets or a database that could be
connected to by JDBC. After the teacher starts the server at a particular port, the students can
login from an IP network, and so can other teachers.

Figure 2: Grading result
Figure 1: Client of student

Figure 4: Client of instructor
Figure 3: Monitor a particular client

The servers can be deployed on the same host by using different ports or on different hosts by
using the same port. A load balancer will distribute the clients to the different hosts based on
the loading on each host. At the server side, the system manager can monitor the actions of
the whole system. He can dialog every client and supervise what the client is doing, or
terminate the client’s session.
The teachers can get all of the functions of the server from any client computer. He also can
get the parse tree of each student’s answer. Throughout the term, the teacher can merge the
testing results over the semester into an Excel file.
A student will login and be assigned to a server after a teaching unit. He is asked to solve
those problems within a stipulated time range. After login, he can look over the problem set,

2(8)

Conference ICL2007 September 26 -28, 2007 Villach, Austria

and turn answers to the server. DICE will judge the answers by executing the executable file
or recompiling the code and executing it. The student’s program will be fed with the input
dataset that was prepared by teachers. The system compares the answers of students with
standard results to decide the score that he gets. The result is immediately sent to the student.
For a lightweight and database-free system, all information is stored in files. The system
information, like the examination questions from the teachers, the answers and scores of the
students and so on, are organized with pure text files and directories. We also have a
connection by JDBC to traditional databases for student information for some built-in
environments. We provide four levels of plagiarism detection to avoid some cheating actions
like answer resending, adding white space, variable renaming, semantic copying and so on.
We used SableCC [5], a parser tool that was developed by Etienne Gagnon. An Abstract
Syntax Tree (AST) is built by a C or Java parser for each student’s program. The AST is
translated to a Polish Reverse Notation (PRN) form for the evaluation. As we translate the
student’s answer to a PRN string then we can do pattern matching on it. Because the PRN was
translated from the AST, we can treat it as semantic symbols of the original string.
Some screenshots of DICE were shown from Figure 1 to Figure 4.
In summary, we have implemented an Automated Assessment System for test-based
assignment tutoring. According to this system, we can push the students of a computer
language course to put more effort into improving their coding ability and significantly reduce
the burden of grading the programs.

3 DICE TDD Model

After running DICE for years, we found some well-known problems of a test-based grader.
These caused the underachievers to be eliminated from the DICE system. One problem is that
only clearly defined questions with a completely specified interface can be used. It leads
students to focus on output correctness first and foremost, and it does not encourage or reward
for good performance while testing [6]. One of the perceived shortcomings is that its
inflexibility prevents assessment of more complex questions [7]. When a complex question
arrived, we found that some underachievers just sat before the computer and waited for the
bell ringing. We need a more sophisticated mechanism to help underachievers.
Over the past five years, the idea of including software testing practices in programming
assignments within the undergraduate computer science curriculum has grown from a fringe
practice to a recurring theme [8]. Some researchers may argue that starting too early with a
test-first approach can lead to the “paralysis of analysis” [9]. We believe the TDD with
instructor made-test suites will help overcome the shortcomings of test-based graders.
As Figure 5 showing, a program assignment was given after each teaching unit. The instructor
makes a test plan consisting of problems (or so called test cases). A test case was composed
by the test-based grader, like data sets and TDD-like data sets.
In our opinion, the TDD model in DICE [2] can be coordinated to two dimensions, one for
test cases in a teaching unit (XΩ) and the other for the test units in a test case (YΓ). The axis
XΩ represents the coupling degree of test case sequences in a teaching unit. At the same time,
the axis YΓ represents the coupling degree of test unit sequences in a test case. In our aspect,
XΩ represents more concepts in a teaching unit than YΓ, since YΓ represents more
programming skills than XΩ.

3(8)

Conference ICL2007 September 26 -28, 2007 Villach, Austria

4 DICE Adaptive Learning Model (DALM)

As educational psychologists suggested that matching training methods to individual
differences is important, we introduce an adaptive learning model in DICE for individuals.
Individual differences are never equal to learning style. According to the literature review of
individual differences, it could be classified by developed taxonomy.

Figure 5: The TDD Model in DICE

Table 1, DICE TDD classification by XΩ- YΓ
XΩ

YΓ

XΩø

(x=0)
XΩ>

(x=1)
XΩm

(x=2)
XΩ╞
(x=3)

YΓø
(y=0)

Exploration
(0)

Concept-like
(2)

Concept-modular
(4)

Concept-
Instruction

(7)
YΓ>

(y=1)
Skill-like

(1)
Like
(5)

Concept-
modular,
Skill-like

(9)

Concept-
Instruction,
Skill-like

(11)
YΓm

(y=2)
Skill-Modular Concept-like, Modular Concept-

Instruction, (3) Skill-Modular (12)
(8) Skill-Modular

(14)
YΓ╞

(y=3)
Skill-

Instruction
(6)

Concept-like,
Skill-Instruction

(10)

Concept-
modular,

Skill-Instruction
(13)

Instruction
(15)

4(8)

Conference ICL2007 September 26 -28, 2007 Villach, Austria

In our opinion, there are three variables in DICE adaptive learning model (DALM). The
individual differences (I) are discrete attributive explanatory variables that classify the
learners into several groups by learner’s individual differences. We will take Kolb’s learning
style inventory (KLSI) as an instance and will be described in following section. The second
one will focus on the training method (T) that equivalent to TDD model in DICE is also a
discrete explanatory variable but can be controlled by DICE system.
Finally, the learning outcome (O) is a continuous dependent variable presents the learning
performance of learners with an individual difference level after chosen TDD model. In our
aspect, the learning outcome is related to the individual difference and the learning method
denotes as O = f (I, T).
As figure 6, DALM consist of learning parse, learning parse and grouping parse.

4.1 Grouping phase
The purpose of grouping phase is to classify learners to different group by their individual
differences.

 I-Step: Individual difference grouping. The learners will be grouped to different levels
by their individual differences. DALM will support two kinds of mechanics to accept the
classification of learner made by instructor.
The first one is to deliver a reliable questionnaire beforehand to learners to group their
individual differences. For example, KLSI [3] divides learning style to AC (Abstract
Concept) -CE (Concrete Experience) and AE (Active Experimentation) -RO (Reflective
Observation) plane. KLSI was assigned two discrete values in 1984 [3] and 14 values in

Model learning phase

I-Step,
Individual
difference
grouping

T-Step, O-Step,
Examining DICE TDD

classification
Training

Outcome

R-Step,
Ranking
pair <I, T>
by O

A teaching unit

Figure 6, DICE adaptive learning model

A teaching cycle

A teaching process

A-Step,
DICE TDD
classification
adaptive
learning

Learner training phase

Model learning phase
Learner training phase
Common

A teaching unit

5(8)

Conference ICL2007 September 26 -28, 2007 Villach, Austria

2005 [4] on every coordinate. We linarite KLSI by I = C*d +E where C present AC-CE
axis as E present AE-RO axis and d = 2 for KLSI in 1984 as d=14 for KLSI in 2005.
Now we can classify the learner’s individual differences to d2

 levels by developed
questionnaire.
The other way to classify learners is adapted DICE to a database by JDBC that stored
learner’s information. The attributes in tables or views can be combined arbitrary to
group the learners. For example, an instructor can group his leaner by their sex and
mathematic score from a known view to some levels.

4.2 Model learning phase

The purpose of model learning phase is to build a best adaptive learning pair <Individual
difference, DICE TDD classification training> by learning outcome.
In DALM learning phase, DICE will group learners in the system to different levels by
system manager’s setting before course commencing. After that, the teaching unit will be
classified by DICE TDD model to different levels. The learners are assigned to different
DICE TDD training level by statistics methods during a teaching cycle. After a teaching cycle
with teaching units, an examination will be held to measure the learning outcome of learners.
Finally, DICE system will collect set of triple < I, T, O> to DALM database year after year.
DALM rank dynamical < I, T> pair by O at each end of learning phase.
The model learning parse circulates from I step, T step, O step to R in a learning cycle. As
figure 6, TOP steps are described as following:

 T-step: DICE TDD classification training. In DICE TDD model [2] we have defined a
plane with conceptual (X) and training (Y) axes. The value in each axis was descried
from exploration to instruction by the relationship of content of a teaching unit. As table
1, we linarite DICE TDD classification from exploration to instruction to sixteen levels.
For each teaching unit in DICE system was classified by the relationship of test suites
and the connection of test units. The classification could be assigned by the instructor or
by the machine learning use the definition of DICE TDD classification. Different kinds
of DICE TDD teaching unit of the same concepts in a teaching unit will be random
assigning to number in groups of I step for statistics. A teaching process may involve
many such steps. For example, an instructor may decide a teaching process consists of
three teaching units and each teaching unit possesses three different kinds of DICE TDD
practical training.

 O-step: Examining outcome. After period of T step, the system will take a normal exam
by the grader or by traditional methods to assess the outcome of training. The level of
outcome is set to a continue value form 0 to 100 as a common evaluation for different <I,
T> pairs. A teaching process should take many different T-O cycles to collect triple <I, T,
O> to DICE system.

 R-step: Ranking pair <I, T>. After a teaching process, DICE system will ranking those
<I, T, O> triples by statistics for instances by ANOVA. The result of ranking will be
simplified to a triple <I, T, P> that means I kinds of learner using T training method will
get the priority of P. The R step will be repeated over and over again to make the priority
of <I, T> can be modified dynamically. This mechanic should make the adaptive
performance of DALM more facilely.

4.3 Leaner training parse
After model learning parse, DALM can be used on learner by A-step. The R-step via O-
step should be hold for model learning when need.

6(8)

Conference ICL2007 September 26 -28, 2007 Villach, Austria

 A-Step: TDD classification adaptive learning. For we have classified the learner to
different groups by individual difference at I step. And we have a priority set of <I,
T> in DALM after R step of model learning parse. Now we can assign a most
suitable TDD teaching unit for every leaner. The basis of adaptation is different
kind of individual difference learner is suite for different level learning of
exploration to instruction.

5 Conclusion and Future Work

In this paper, we introduce a new adaptive learning model based on the test driven
development training method and the individual difference by the learning outcome. We
developed a three phase stage consists of the grouping, the model learning and the TDD
training to adapt learner to the most suitable training method. DALM collects triple
<individual difference (I), DICE TDD classification (T), learning outcome (O)> as samples
year after year. For we set our DICE system to operate in a particular institution, we expect
those samples will adapt perfectly in the place. The future work of DALM is to develop a
mechanic to collect samples from different DICE servers that be distributed in difference
place. We plan to develop a comprehensive adaptive learning model to DICE in the future.

References:

[1] Li-Ren Chien, D. Buehrer and Chin Yi Yang, DICE. A Parse-Tree Based On-Line Assessment

System for a Programming Language Course. The Third Conference on Computer and Network
Technology. HsinChu, Taiwan, 19-20 April, 2007.

[2] Li-Ren Chien, D. Buehrer and Chin Yi Yang, Using Test-Driven Development in a Parse-tree
Based On-line Assessment System. The IADIS International Conference e-Learning 2007. Lisbon,
Portugal, 6-8 July, 2007 (accepted)

[3] Kolb, D.A. and Fry, R. Toward an applied theory of experiential learning. In Thories of Group
Process, G.L. Cooper(ed.), John Wiley and Sons, Inc., New York, NY, PP.33-54, 1975

[4] Kolb A.Y., Kolb D.A. The Kolb’s learning style inventory-version 3.1 2005 technical specifications,
Boston, MA: Hay Resource Direct. 2005.

[5] Gagnone, Hendren L J. SableCC-an Object-oriented Compiler Framework. Proceedings of Tools
26: Technology of Object-Oriented Languages. 1998.

[6] Stephen H. Edwards. Improving student performance by evaluating how well students test their
own programs. ACM Journal of Educational Resources in Computing, 3, 3, Article 01. 2003.

[7] Christopher, D., David, L. and Jams, O. Automatic Test-Based Assessment of Programming: A
Review, ACM Journal of Educational Resources in Computing, Vol. 5, No 3, Stempember 2005.
Article 4. 2005.

[8] Stephen H. Edwards. and Manuel A. Pérez-Quiñones. Experiences using test-driven development
with an automated grader. Journal of Computing Sciences in Colleges. Volume 22, Issue 3,
January 2007

[9] Don Colton., Leslie Fife., and Andrew Thompson. A Web-based Automatic Program Grader, Proc
ISECON 2006, v23.

Author(s):

Li-Ren, Chien, PhD candidate.
Chung Cheng University, Department of Computer Science and Information Engineering
#168, University Rd, Min-Hsing, Chia-Yi, Taiwan, R.O.C
clj@cs.ccu.edu.tw

Daniel J. Buehrer, Professor.
Chung Cheng University, Department of Computer Science and Information Engineering
#168, University Rd, Min-Hsing, Chia-Yi, Taiwan, R.O.C
dan@cs.ccu.edu.tw

7(8)

Conference ICL2007 September 26 -28, 2007 Villach, Austria

8(8)

Chin Yi Yang, Miss.
Chung Cheng University, Department of Information Management
#168, University Rd, Min-Hsing, Chia-Yi, Taiwan, R.O.C
vivian@hkhs.tnc.edu.tw

	An adaptive learning environment in DICE system with TDD model
	1 Introduction
	2 Brief Introduction to DICE
	3 DICE TDD Model
	4 DICE Adaptive Learning Model (DALM)
	4.1 Grouping phase
	4.2 Model learning phase
	4.3 Leaner training parse

	5 Conclusion and Future Work

