
HAL Id: hal-00191049
https://telearn.hal.science/hal-00191049

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specification of the CoP-oriented knowledge
management tool offering basic CoP-adapted KM

services
Rose Dieng-Kuntz, Olivier Corby, Sylvain Dehors, Priscille Durville, Adil El
Ghali, Christina Evangelou, Fabien Gandon, Alain Giboin, Thibault Latour,

Patrick Plichart, et al.

To cite this version:
Rose Dieng-Kuntz, Olivier Corby, Sylvain Dehors, Priscille Durville, Adil El Ghali, et al.. Specification
of the CoP-oriented knowledge management tool offering basic CoP-adapted KM services. 2006. �hal-
00191049�

https://telearn.hal.science/hal-00191049
https://hal.archives-ouvertes.fr

Project no. FP6-028038

Palette

Pedagogically sustained Adaptive LEarning Through the exploitation of

Tacit and Explicit knowledge

Integrated Project

Technology-enhanced learning

D.KNO.03

Specification of the CoP-oriented Knowledge Management

Tool offering basic CoP-adapted KM services

Due date of deliverable: July 31, 2006

Actual submission date: August 16, 2006

Start date of project: 1 February 2006

Duration: 36 months

Organisation name of lead contractor for this deliverable: INRIA

Project co-funded by the European Commission within the Sixth Framework Programme

Dissemination Level

R & P Public PU

Keywords: Knowledge Management, Services, Semantic Web, Ontologies, Annotations

Responsible Partner: rose Dieng-Kuntz (INRIA)

FP6-028038

PALETTE D.KNO.03 2 of 103

MODIFICATION CONTROL
Version Date Status Modifications made by
0.9 05/08/2006 Draft Adil El Ghali
1.0 06/08/2006 Sent to Reviewers Rose Dieng-Kuntz
1.1 09/08/2006 Feedback of Reviewer Manfred Kunzel
1.2 11/08/2006 Feedback of Reviewer Nikos Karacapilidis
1.3 11/08/2006 Corrections Adil El Ghali
2.0 12/08/2006 Sent to SC Rose Dieng-Kuntz

Deliverable manager: Adil El Ghali (INRIA)

List of contributors:
Olivier Corby (INRIA)
Sylvain Dehors (INRIA)
Rose Dieng-Kuntz (INRIA)
Priscille Durville (INRIA)
Adil El Ghali (INRIA)
Christina Evangelou (CTI)
Fabien Gandon (INRIA)
Alain Giboin (INRIA)
Thibault Latour (CRP-HT)
Patrick Plichart (CRP-HT)
Amira Tifous (INRIA)
Géraldine Vidou (CRP-HT)

List of evaluators:
Nikos Karacapilidis
Manfred Kunzel

Summary

This deliverable proposes a preliminary specification of basic KM services interesting for
CoPs. It describes their functionalities, their possible interfaces with other services and
with the human user; as well as possible uses of these basic KM services by CoPs.
Various tools available among the partners, that could offer some of these basic services,
are presented. A web service-oriented architecture enabling to offer all such KM services
in a modular way with possible interoperability with other Palette services or with some
CoP tools, is proposed.

FP6-028038

PALETTE D.KNO.03 3 of 103

1 Introduction ..7

I Building Blocks of KM services 9

2 Knowledge Creation and Annotation ...11

2.1 Ontology Creation ...11
2.1.1 Definition ... 11
2.1.2 Functionalities .. 12
2.1.3 Examples of use in CoPs .. 14
2.2 Annotation..15
2.2.1 Functionalities .. 16
2.2.2 Interfaces of the service.. 17
2.2.3 Examples of use in CoPs .. 18
2.3 Cooperative Knowledge Creation..19
2.3.1 Functionalities .. 19
2.3.2 Interfaces of the service.. 19

3 Knowledge Retrieval and Dissemination..20

3.1 Definition..20
3.2 Knowledge Retrieval ...20
3.2.1 Functionalities .. 20
3.2.2 Interfaces of the service.. 21
3.2.3 Examples of use in CoPs .. 22
3.3 Knowledge Dissemination...25
3.3.1 Functionalities .. 25
3.3.2 Interfaces of the service.. 25
3.3.3 Examples of use in CoPs .. 26

4 Knowledge Presentation and Visualization..27

4.1 Functionalities...27
4.2 Interfaces of the service ..28
4.3 Examples of use ...28
4.3.1 Example of use in CoPs.. 30

5 Knowledge Evaluation ...32

5.1 Functionalities..32
5.2 Interfaces of the service ..32
5.3 Examples of use in CoPs ...34

FP6-028038

PALETTE D.KNO.03 4 of 103

6 Knowledge Evolution and Maintenance...37

6.1 Definition..37
6.2 Functionalities..37
6.3 Interface of the service ..38
6.3.1 Inputs and Outputs of the service ... 38
6.4 Examples of use in CoPs ...39

II Partners tools offering building blocks services 41

7 Generis4...43

7.1 Architecture ...43
7.2 Extension mechanisms ..44
7.3 User interfaces and Functional coverage ..46
7.4 A use case : “Testing Assisté par Ordinateur” and benchmarking........47
7.5 Generis Deployment ..48
7.6 Licence model and documentation ..48
7.7 Generis related works in progress ...49

8 Corese ..50

8.1 Introduction ...50
8.1.1 Theoretical Foundations of Corese... 50
8.1.2 Corese Ontology Representation Language ... 53
8.1.3 Corese Query Language ... 55
8.2 Approximate Semantic Web search ..57
8.2.1 Ontological Approximation.. 57
8.3 Corese Software...57
8.3.1 Architecture .. 57

9 SeWeSe ..60

9.1 Introduction ...60
9.2 Architecture ...60
9.3 Available components ...61
9.4 Links with elementary KM services ..63
9.4.1 Ontology editor (Ontology creation) .. 63
9.4.2 Annotation Editor (Annotation).. 64
9.4.3 Clustering (Presentation and Visualization) ... 65

10 Meat ...66

10.1 Introduction ...66
10.2 MEAT Components ..67

FP6-028038

PALETTE D.KNO.03 5 of 103

11 Virtual Staff...69

11.1 Introduction ...69
11.2 Examples of Queries...72

III Architecture 75

12 Architecture of KM services..77

12.1 Introduction ...77
12.2 SOA & SOAP...78
12.3 Architecture ...80
12.4 KM system components ..81
12.4.1 Services registries... 81
12.4.2 Complex services ... 81
12.4.3 Complex services front-end.. 82
12.4.4 Widgets... 82

IV Use cases and Integration 83

13 Scenarios of usage...85

13.1 The Scenario ..85
13.2 Use Cases..86

14 Integration with Mediation services ...89

14.1 KM and Mediation interrelation..89
14.2 KM and Mediation services integration scenario...................................90

15 Conclusion ...95

15.1 Integration with CoPs Tools...96
15.2 Further Work ..96

Bibliography 101

FP6-028038

PALETTE D.KNO.03 6 of 103

FP6-028038

PALETTE D.KNO.03 7 of 103

Chapter 1

Introduction
WP3 aims at offering knowledge management (KM) services for efficient and
effective management of the CoP knowledge resources, so as to improve: (i) the
access, sharing, and reuse of this knowledge, which can be tacit or explicit,
individual or collective, and (ii) the creation of new knowledge. A CoP
knowledge resource can be not only a document (report, mail, forum, etc.)
materializing knowledge acquired and shared through cooperation between the
CoP members but it can also be a person holding tacit knowledge.

Task 3.3 focuses on a CoP-oriented KM tool offering basic CoP-oriented KM
services such as knowledge creation and enrichment, knowledge retrieval and
dissemination, knowledge presentation and visualization, knowledge evaluation,
knowledge evolution and maintenance. As we chose a semantic web-based
approach, these KM services will rely on an ontology (describing useful
concepts about a CoP, its actors and their competences, its resources such as
documents used or produced, its activities, etc.) and on annotation of the CoPs
knowledge resources w.r.t. these ontologies.

The meta-models proposed in task 3.1 are useful for understanding a group
activity, collaboration, etc. A CoP being a specific kind of such a group, the CoP-
dependent ontology to be developed in Task 3.2 will be based on these meta-
models. It will consist of CoP-dependent concepts and relations, with which the
CoP resources can be annotated. The CoP-oriented KM tool to be specified and
developed in Task 3.3 will rely on this CoP-dependent ontology, itself linked to
the meta-ontology proposed in Task 3.1.
This deliverable constitutes the preliminary specification of the CoP-oriented
KM tool and of the basic KM services it will offer. This deliverable is composed
of four parts:

• The first part describes the building blocks of the KM tool: the
elementary KM services that will be offered. This first part comprises five
chapters, each aimed at describing a basic service potentially useful for a
CoP. We relied both on the CoP descriptions available in Palette and on
the semantic web approach adopted in Palette. For each of the basic
services, we specify its intended functionalities, its interfaces with other
services (e.g. input and output of the service) as well as its interfaces for
interaction with the human user, and we give examples of possible uses in
CoPs. The elementary services described in this first part are:
Knowledge creation and annotation (chapter 2), for enabling a CoP

member to create and enrich the CoP ontologies or to annotate the CoP
resources by textual annotations and by ontology-based semantic
annotations. CoP knowledge such as ontology, annotations or problem-
solving cases, can be created cooperatively through collaborative
activities.

FP6-028038

PALETTE D.KNO.03 8 of 103

Knowledge retrieval and dissemination (chapter 3): for retrieving
relevant resources (annotations, people, documents ...) in answer to a
user’s query or for pushing knowledge towards the user according to
his/her profile.

Knowledge presentation and visualization (chapter 4), for generating
friendly graphical interfaces aimed at presenting knowledge to the end-
users.

Knowledge evaluation (chapter 5), for evaluating CoP resources
according to a series of evaluation criteria.

Knowledge evolution and maintenance (chapter 6), for ensuring a
coherent evolution of the CoP knowledge resources.

• The second part describes several tools available among the partners, that
could offer such elementary services or more complex services
corresponding to a combination of such basic services. These tools are:
Generis, an ontology management tool (chapter 7) could offer ontology

creation services,
Corese, a semantic search engine (chapter 8) could offer knowledge

retrieval services,
SeWeSe, a platform for developing semantic web applications (chapter 9),

could offer ontology creation, knowledge annotation and knowledge
presentation or visualization services,

MEAT, an annotation tool based on Natural Language Processing Tools
(chapter 10), could offer services of semi-automatic annotation from
texts,

Virtual Staff, a cooperative tool (chapter 11) could offer cooperative
problem solving services as a specific kind of knowledge creation
services.

• The third part presents the KM tool modular architecture. Since the KM
services must be offered not only to human end-users but also to other
services, we will rely on a web service-oriented architecture. The
components of this architecture are presented in detail.

• The fourth part presents some scenarios of usage and studies about how
the KM services specified in WP3 will be interoperable with the mediation
services developed in WP4. We give some use cases of invocation of KM
services from the mediation tool developed in WP4.

In the conclusion, we will evoke the possible solutions of integration of the
proposed KM services with the tools presently used by the CoPs considered in
Palette.

Remark:

 It must be noticed that this deliverable is only a preliminary version that will be
refined after analysis of information on the CoPs to be delivered by WP1.

FP6-028038

PALETTE D.KNO.03 9 of 103

Part I

Building blocks of KM services

FP6-028038

PALETTE D.KNO.03 10 of 103

This part describes the building blocks of the KM tool: the elementary
KM services that will be offered. This first part comprises five chapters,
each aimed at describing a basic service potentially useful for a CoP:

• Knowledge creation and annotation (chapter 2). The CoP
knowledge underlies the CoP ontology, the annotation on the CoP
documents or on the CoP itself, and the problem-solving cases.
Therefore, we will study ontology creation, annotation (that may be
manual, semi-automatic or collaborative) and cooperative creation
of CoP knowledge (for example, through collaborative problem
solving).

• Knowledge retrieval and dissemination (chapter 3) Knowledge
retrieval will be guided by the ontology in order to retrieve relevant
resources (annotations, people, documents ...) in answer to a user’s
query, while knowledge dissemination will push relevant knowledge
resources towards the user according to his/her profile.

• Knowledge presentation and visualization (chapter 4), will enable
the generation of friendly graphical interfaces for presenting
knowledge to the end-users.

• Knowledge evaluation (chapter 5), will enable the evaluation of
CoP resources, according to well-defined evaluation criteria.

• Knowledge evolution and maintenance (chapter 6) will support a
coherent evolution of the CoP knowledge resources.

FP6-028038

PALETTE D.KNO.03 11 of 103

Chapter 2

Knowledge Creation and Annotation

2.1 Ontology Creation

2.1.1 Definition
The ontology creation service consists of supporting the creation of CoP-
dependent ontologies. The ontology creation process follows a number of
steps from analyzing the knowledge sources to formalizing the ontology in
an ontology description language (such as RDFS, OWL, etc.). At a given
stage of this process, the ontology elements are validated by a domain
expert; in our case, this task may be carried out through the evaluation
service. The Figure 2.1 summarizes this process.

Figure 2.1: Ontology creation process

FP6-028038

PALETTE D.KNO.03 12 of 103

The details of the creation process may vary according to the methodology
adopted, but it minimally consists of:

• identifying the knowledge sources (human sources or textual
sources),

• acquiring knowledge from these sources (through knowledge
acquisition from humans or through knowledge extraction from
texts, using linguistic tools for example),

• determining the terms of the domain (and solving the potential
terminological problems that may occur such as synonym terms,
homonymy of terms, polysemy, etc),

• determining the concepts and relations to be included in the
ontology, with the terms denoting these concepts and relations
(possibly in several languages), and with the definitions or
explanatory texts documenting these concepts and relations,

• structuring the ontology (e.g. into a hierarchy of concepts and a
hierarchy of relations),

• determining possible axioms linking these concepts and relations,
• formalizing the ontology and representing it in the knowledge

representation formalism adopted (e.g. RDF(S) language in our
case).

These stages in the process may be undertaken together or separately. And
the role of the ontology creation service is to provide support for their
achievement.

2.1.2 Functionalities
We may therefore envisage the following functionalities of the service:

• supporting linguistic analysis of knowledge sources, extracting
candidate terms (e.g. nominal syntagms and verbal syntagms) from
which concepts and relations would be determined,

• ontology edition through friendly interfaces for ontology developer
(either an ontologist or a CoP member): the ontology editor would
produce a formal ontology and offer ontology visualization services
(see Figure 2.2)

• exploiting existing ontologies in order to import them or to integrate
several of them into the new ontology being built.

Moreover, the ontology creation service may include or call a

verification service for checking the consistency and the coherence of the
ontology.

FP6-028038

PALETTE D.KNO.03 13 of 103

Figure 2.2: Ontology Editing Interface

Inputs and Outputs of the service

Input
The ontology creation service has as input the knowledge sources used to
create the ontology. These knowledge sources can be of different types,
such as documents, existing ontologies...

Output
The ontology creation service produces an ontology represented in the
knowledge representation formalism chosen (i.e. RDF(S) in our case).

FP6-028038

PALETTE D.KNO.03 14 of 103

Interfaces to other services
 • The Knowledge Creation service may rely on the Knowledge

Evaluation service for validating the elements of ontology (i.e.
human validation by a human specialist domain of the domain, or
verification of the ontology consistency by the system)..

• The Knowledge Evolution service can be used when the creation
process uses only ontologies as knowledge sources.

• The Annotation service may appeal to the ontology creation service
in the case of manual or semi-automatic annotation, when the user’s
proposed annotation does not correspond to an element of the
ontology. In this case, it may mean that the ontology needs to be
enriched by relevant concepts or relations.

• The Knowledge Visualization service for visualizing the ontology
with various presentations according to the user.

Interface for Human-Computer interaction
An ontology editor allows the user to introduce concepts and relations but
also to have one (or several) global view(s) on the object he/she is about to
create. See for instance the ontology editing interface in the Figure 2.2.
Moreover, it must be noted that the ontology builder may not only be an
ontologist but a member of the CoP (i.e. he/she may be not specialist in
knowledge modeling or in knowledge representation languages).
Therefore the interfaces should be friendly enough for to hide the
complexity of the ontology and the knowledge representation language.

2.1.3 Examples of use in CoPs
Within the framework of the CoP “Telecom-INT - UX11 Module”, the
introduction of a new unit to the course (such as Linux kernel
programming) which corresponds to a sub-domain (system programming),
may require the creation of an ontology of this sub-domain, which could
subsequently make possible the annotation of documents introduced in the
system in this section of the course. In this case, an ontology of the sub-
domain needs to be created and integrated to the existing ontology (via the
evolution and maintenance services).

FP6-028038

PALETTE D.KNO.03 15 of 103

2.2 Annotation
Let us give a few definitions:
Indexation of a textual document consists of locating in this document

some words or expressions considered as significant (called terms) in a
given context, and of creating a link between these terms and the
original text. [Wikipedia]

Metadata is a data about a data (it can be in a paper-based form or in an
electronic form).

Annotation is additional information associated to a resource (document,
element of document). It can describe as well a comment on the
resource, an interpretation on its semantic contents, or metadata (e.g. in
the way of the Dublin Core) enabling to index this resource.

Semantic (or Ontological) Annotation is an annotation based on an
ontology.

In the context of Semantic Web, annotations must be:

(a) Formal in order to be handled by programs and
(b) Understandable by humans in order to be validated and used by

them.
The Annotation service to be offered in Palette aims at:
• Allowing the CoP’s members to attach opinions, comments or

assessments to resources of the CoP;
• Generating corresponding semantic annotations with regards to the

CoP-dependent ontology, so as to enable programs to reason on
these annotations.

Hence, these cooperative annotations and assessments provide the CoP
with more knowledge about the annotated resources and allow to
externalize knowledge since the individual comments, made by a member
of the CoP on a resource, can thus be shared with the whole CoP.

Therefore, this awareness of the others comments on a resource builds
a framework for encouraging interactions among the CoP’s members.
Then, this Cooperative Annotation service can be considered as a specific
kind of “Cooperative Knowledge Creation”.

The Annotation service constitutes a support to other services such as
“Knowledge Retrieval and Dissemination”. In this case, the relevance of a
document, for example, can be evaluated according to its semantic
annotation.

An annotation is characterized by:
• Its author;
• The addressees of the annotation;
• The form of the annotation (text, graphical, video format, RDF,

etc.);

FP6-028038

PALETTE D.KNO.03 16 of 103

• The annotated resource and its nature (textual document, mail,
forum discussion, even an annotation);

• The content of the annotation.
Therefore, the Annotation service must enable to capture and manage

these different kinds of information at least.

2.2.1 Functionalities

Manual annotation
An annotation editor can provide forms that can be predefined or
dynamically generated, on the basis of the CoP-dependent ontology. This
assumes that the elements/parts of the ontology that are relevant for the
annotation have already been identified.

Semi-automatic annotation
The service will use natural language processing tools such as term
extractor (enabling to recognize in texts terms associated to the ontology
concepts) and relation extractor (enabling to recognize in texts relations of
the ontology), so as to generate the corresponding annotations. It can use
relation patterns to help determine the relevant relations in the resources to
be annotated, as well as the arguments of these relations, in order to
provide annotations with related to the CoP-dependent ontology.

For validation purposes, the user must be involved in the process of the
semi-automatic annotation.

Collaborative Annotation
The Collaborative Annotation service may use natural language
processing tools to assist the user in producing free-text annotations,
suggesting him the instances according to the other members (their
annotations on the resource), the resource to be annotated (for example, it
would be relevant to annotate a scientific article according to the domain it
deals with; it would be interesting to annotate a discussion on a forum it
according to the domain as well as the arguments and positions
mentioned).
In the case of collaborative annotation, the Annotation service should
support user authentication (in case where annotating would be restricted
to particular members of the CoP) and users profiles, thus allowing to
know, the identity of the author of each annotation. This might be the
starting point for a discussion or a debate between the members, as the
members could see the others’ annotations and send them a notification or
a message so as to suggest them a discussion on the annotated
resource/topic. This latter point constitutes a specific kind of “Cooperative
Knowledge Creation”.

FP6-028038

PALETTE D.KNO.03 17 of 103

2.2.2 Interfaces of the service
In all cases, the Annotation service needs to have as:

Input
The resources to be annotated;

Output
The obtained annotations (textual annotation plus formal semantic
annotation represented in RDF);

Interface to human
The interface for a human (see Figure 2.3) will be a graphical interface
consisting of forms to be filled and enabling to indicate the resource to be
annotated, as well as to give the additional (previously mentioned)
information (the addressees of the annotation, its content, etc.).

Figure 2.3: Interfaces of the Annotation service

FP6-028038

PALETTE D.KNO.03 18 of 103

Interfaces to other services
• The annotations created by the Annotation service can be accessed

and used by the “Knowledge Retrieval and Dissemination service”.
• The “Cooperative Knowledge Creation service”: as mentioned

above, the “cooperative” Annotation service represents a specific
case of this service.

• The “Knowledge Evaluation service” can use the Annotation service
in order to get feedback from the CoP members, if a feedback can
be expressed through an annotation.

• Other services, such as Inference services or Clustering services
could also rely on the annotations generated through the Annotation
service.

2.2.3 Examples of use in CoPs
Let’s take the “Telecom-INT - UX11 Module” (engineer-students) as an
example of CoP (see Table 2.1).

 Environment/situation Making choices about the practical trainings;

During the practical trainings: interactions to
share knowledge, solve problems, debate, etc.

 Practice/ activity System installation; System administration
 Actors Students; Teachers; Tutors (at the training site,

enterprise); Colleagues at the training site.
 Resources A list of the training proposals; Student

profiles; Tutor profiles; Teacher profiles;
Courses of C language, Unix, etc. Requests for
trainings.

Table 2.1: Annotation scenario in “Telecom-INT - UX11 Module”

In this CoP, the Annotation service can be invoked for multiple
purposes: the annotation of courses, requests for trainings, training
proposals, discussions and debates, etc.

FP6-028038

PALETTE D.KNO.03 19 of 103

2.3 Cooperative Knowledge Creation

2.3.1 Functionalities
This service aims to support collaborative problem solving. To allow this,
the service must enable:

• Identification of the author (user) of a proposal or an argument;
• Support to discussion and argumentation (link with the related

Mediation services):
• Filtering according to the user (to provide and keep track on the

user’s participation throughout the discussion);
 This service can be applied to:
• Collective ontology creation;
• Collective annotation creation;
• Collective problem solving or collective case resolution.

2.3.2 Interfaces of the service

Interface to human
The service could provide :
Free discussion support: in this case, there must be a person (with a

particular role in the CoP) or a tool that will analyze the content and
issues of the discussion;

Structured discussion support, which supports reasoning mechanisms
(we can mention in this context the QOC - Question, Option, Criteria -
formalism for the decision making process);

White board, that enables the members’ cooperation by means of a
virtual support that they can manipulate synchronously.
 Among these options and supports to discussion, the second one

seems to be the most realistic and the most likely to be implemented in the
context of the Palette project.

Interfaces to other services
This service produces knowledge resources that will be annotated by the
“Annotation service”.

FP6-028038

PALETTE D.KNO.03 20 of 103

Chapter 3

 Knowledge Retrieval and Dissemination

3.1 Definition
This service aims at allowing the CoP’s members to access resources
which constitute an interest, considering their content, annotations and the
members’ profiles. The Knowledge Retrieval requires the active
participation of the members, since they have to formulate and submit a
query so as to get the relevant resources in response; while Knowledge
Dissemination does not require the members’ explicit participation,
because it consists of transmitting notifications or resources to the
members who may be interested in.

The other difference between Retrieval and Dissemination is that the
first provides knowledge in response to ad hoc informational needs, while
the second disseminates knowledge which may interest a member,
according to his interests/profile (which constitutes his interests, that is
his/her stable/long-term needs).

3.2 Knowledge Retrieval
 This service is characterized by the following elements:

• The user who performs the search;
• The user’s query, which corresponds to the information need;
• The results/answers to the query, in the form of resources or

resources annotations.

3.2.1 Functionalities
This service, that offers semantic search, can be decomposed into:
Query formulation, for which the service provides an interface that:

• Facilitates the query formulation by guiding the user, allowing
him/her to navigate through the concepts of the CoP-dependent
ontology. In addition to the fact that this will provide a semantic
search, we can assume that, depending on the part of the
ontology that will be used to formulate the query, it will also
restrict the search space (for example, the kind of resources to
query). For example, if the query is about finding particular
competencies, then the retrieval process will consider the CVs of
the CoP’s members, if available, or their profiles;

FP6-028038

PALETTE D.KNO.03 21 of 103

• Allows the user to introduce elements of annotations in his
query.

Query processing, in which the service uses:
• The ontology and the annotations to determine the list of relevant

resources matching the user’s query (possibly after an ontology-
based reasoning);

• The user’s profile to constitute and enrich the list of relevant
resources matching his/her query and interests.

Answers/results ranking, in which the service uses:
• The annotations in order to re-rank the relevant resources for a

query;
• The user’s profile to re-rank the relevant resources with regards

to his/her interests.
Answers/results presentation, where the service interacts with the

“Knowledge Presentation and Visualization service” (see Chapter 4).

3.2.2 Interfaces of the service
As shown in Figure 3.1, the Knowledge Retrieval service needs to have as:

Figure 3.1: Interfaces of the Knowledge Retrieval service

FP6-028038

PALETTE D.KNO.03 22 of 103

Input
A query with possibly sorting parameters;

Output
The list of resources found as results to the query, together with, their
annotations;

Interface to human
An interface to the query formulation (see 3.2.1 - Query formulation);

Interfaces to other services
• As said before, the Knowledge Retrieval service uses the

annotations created by the “Annotation service”;
• The results provided by the Knowledge Retrieval service can be

evaluated through the “Knowledge Evaluation service”;
• These results can also be presented through the “Presentation and

Visualization service”.

 Resources used:
• The user’s profile;
• The ontology;
• The annotation base;
• The knowledge resources used in the CoP (documents, mails,

forums, etc.).

3.2.3 Examples of use in CoPs
Let’s consider the “Telecom-INT - UX11 Module” CoP (engineer-
students).

Use case 1
In this example, we assume that a member of the CoP is seeking for a
practical training. The Knowledge Retrieval service provides him/her with
an interface through which he/she formulates his/her query, following the
scenario proposed in Table 3.1.

 Query/input A set of subjects, place, a list of the related professions, and

eventually the teacher and the tutor.
 Resources The student’s profile;
 The ontology;
 The annotation base;
 The trainings proposals.
Table 3.1: Example of Knowledge Retrieval in “Telecom-INT - UX11 Module”

FP6-028038

PALETTE D.KNO.03 23 of 103

The purpose is to supply the student with training proposals which
correspond to his/her query. Therefore, we propose the annotations
presented in Table 3.2.

Resources Semantic annotations on the resources
Trainings proposals Subject, place, tutor, the related profession, the required competencies.
Students profiles Static information about the student;

 A list of courses (which he/she attends);
 A list of the tutors he/she had, a list of the teachers who supervised
him/hers;
 A list of the professions he/she is interested in.

Table 3.2: Annotations for trainings (following the above example)

Based on these annotations, we propose the following scenario (Figure
3.2) on filtering the training proposals according to the request of the
student.

Figure 3.2: Knowledge retrieval scenario

If at a level of filtering, the set of resulting proposals is empty, it

means that there is no exact match. In this case, the content of the
annotations should be modified (approximated or enlarged). For example,
if the first set of proposals is empty, there should be a change on the user’s
query: there should be an enrichment on the “set of subjects” and the “list
of professions” (using the ontology and the annotation base, or requesting
the user).

FP6-028038

PALETTE D.KNO.03 24 of 103

We mention that the validity of annotations should be checked. For
example, the “competencies” required for a training (“training proposal”)
can be linked to the “subject” of the student’s query.

Use case 2:
In this example, we assume that a member of the CoP is seeking for
“relevant surveys about the C programming language”.

 Query/input Survey, programming language: C.

 The student’s profile;
 The ontology;
 The annotation base;

 Resources

 The courses.
Table 3.3: Example of Knowledge Retrieval in “Telecom-INT - UX11 Module”

Assume that there are three documents: D1, D2 and D3, with the

annotations presented in Table 3.4.

 Doc Annotations with the
ontology concepts

Textual
annotations

Semantic annotations

D1 Programming language: C Good survey [Survey:D1]-(evaluated)-
[Literal:good]-(subject)-
[Programming-language:C]

D2 Programming
language: C Survey

 [Survey:D2]-(subject)-
[Programming-language:C]

D3 Object languages Prerequisites
for a survey
about the C
language

[Document:D3]-(subject)-
[Object-languages]-
(prerequisites)-[Survey]-
(subject)-[Programming-
language:C]

Table 3.4: Annotations of the documents

Without the annotations expressing comments or assessments, the
results to the query would be D1 and D2 (with D2 being considered more
relevant than D1).

But, considering the semantic annotations of the three documents,
which include the comments, and depending on the importance given to
the annotations that express assessments and comments, the score of D1
might increase so much that it would become higher than that of D2.

As for D3, if we introduce these annotations, then it should appear in
the list of the results to the user’s query. Of course, this document
shouldn’t appear at the top level of the list, but as it is somehow relevant
to the user’s query, it should be considered as a potential result.

FP6-028038

PALETTE D.KNO.03 25 of 103

3.3 Knowledge Dissemination

3.3.1 Functionalities
 This service uses the annotations and the member’s profile to capture and
disseminate relevant resources or send notifications to him/her;

 It is characterized by:
• The user to which knowledge must be disseminated;
• The resource(s) to be disseminated;
• The moment of the dissemination (e.g. the event that triggers the

dissemination).

3.3.2 Interfaces of the service

Input
An event or a particular situation triggering the dissemination.

Output
The list (or a notification or the resource itself) of new or modified
resource(s) that match the interests of a particular member (or group of
members) and their annotations, together with, the member(s) concerned.

Interfaces to other services
As said before, the Knowledge Dissemination service uses:

• The annotations created by the “Annotation service”;
• The resources provided by the Knowledge Dissemination service

can be evaluated through the “Knowledge Evaluation service”;
• These resources can also be presented through the “Presentation and

Visualization service”.

Resources used
• The user’s profile;
• The ontology;
• The annotation base;
• The new or modified knowledge resources used in the CoP

(documents, mails, etc.) together with their annotations (can include
its addressees, which constitutes then a dissemination criterion).

• Initially, a CoP member should use an appropriately designed form
to describe his/her profile, the topics or resources he/she is
interested in, and when he/she wants to receive alerts about new (or
modified) resources, or the new resources directly. These elements
rather constitute the resources used by the service than its input.

FP6-028038

PALETTE D.KNO.03 26 of 103

The interfaces of the Knowledge Dissemination service are summarized in
Figure 3.3.

Figure 3.3: Interfaces of the Knowledge Dissemination service

3.3.3 Examples of use in CoPs
In the case of the “Telecom-INT - UX11 Module” CoP (engineer-
students), if a new training proposal is posted, then all the CoP’s members
which are interested in its subject, its tutor, its related profession or its
required competencies (these elements annotate the training proposal),
should be made aware of it, so that they can apply for it. The content of
the proposal, which is used to index it, can also be used to capture the
relevant terms and concepts describing the training proposal.

FP6-028038

PALETTE D.KNO.03 27 of 103

Chapter 4

Knowledge Presentation and
Visualization
The Presentation and Visualization service is in charge of presenting the
knowledge to end users. This presentation can take different forms
depending on the types of knowledge and resources involved.

4.1 Functionalities
When a user receives the result of a query or browses a knowledge base
(the annotations base or a resources base) the interface requirements
depend on:

• the type of search the user is performing (e.g. looking for a
particular item vs. looking for an overview of the contributions in a
domain);

• the type of task that triggered the search (e.g. learning on a subject,
writing a report, comparing opinions);

• the type of items that is being searched (e.g. searching for
documents, for persons, etc.);

• the profile of the user (e.g. expert of a domain, random web surfer);
• the device of visualization (e.g. on a computer, on a PDA, on a

cellular phone);
• etc.
Therefore, more generally speaking and depending on the context, the

visualization of a piece of knowledge will require different types of
interfaces providing different views, different interaction means and
different customization capabilities.

The idea then is to rely on an open pool of visualization services and
widgets among which users can choose the most appropriate one. Some of
these services may be extremely simple (e.g. generate an HTML table of
the answers to a query) and some may be more complex (e.g. generate a
graphical view of the classes of answers to a query) and require a post-
processing of the results to be finally visualized (e.g. clustering
algorithm).

FP6-028038

PALETTE D.KNO.03 28 of 103

4.2 Interfaces of the service

Input
The inputs will most probably vary with the complexity of the service and
some of them will be fetched by the service itself depending on the data it
has to display (e.g. ontologies referenced in a result). We can distinguish
three types of inputs:
(a) the content to be visualized: RDF chunk or XML SPARQL Binding to

be displayed
(b) the specific parameters of the service (e.g. preferred language, user

profile, etc.)
(c) the resources needed to generate the view and that will be fetched at

runtime, depending on the actual content to be visualized (e.g.
ontologies, pictures, etc.).

Output
The output is a web-based interface rendering the result.

4.3 Examples of use
The Visualization service provides CoPs users with an interface to access
the resources handled by the KM system. In this respect, it is the access
point to knowledge in the system. The users can access to these
resources/knowledge items either by (i) nequesting the knowledge base, or
by (ii) navigating in it.

Here we give a few examples of different services applied to display a
result of a query. These examples have been implemented using SeWeSe
(see Chapter 9).

Query results presentation

The example shown in Figure 4.1 presents the result of a query in an
HTML table. Another possible presentation is to give a graphical view of
the results of a query, as depicted in Figure 4.2.

FP6-028038

PALETTE D.KNO.03 29 of 103

Figure 4.1: Result of a query

Figure 4.2: Graphical view of the results of a query

FP6-028038

PALETTE D.KNO.03 30 of 103

Navigation
Another possible scenario for the visualization service is the navigation in
the annotations base. For example if the user wants to search visually in all
the existing resources, rather than formulate a specific query. The service
should be able to present a general view of these resources, using some
complex visualization operations, such as clustering illustrated (see
Figure 4.3). It could enable to zoom on some part of the resources.

Figure 4.3: Example of clustering

4.3.1 Example of use in CoPs
In the case of the “Telecom-INT - UX11 Module” CoP (engineer-
students), the visualization service is involved as shown in Figure 4.4.

FP6-028038

PALETTE D.KNO.03 31 of 103

Figure 4.4: Knowledge visualization scenario

FP6-028038

PALETTE D.KNO.03 32 of 103

Chapter 5

Knowledge Evaluation
The purpose of building a Knowledge Evaluation service in Palette is to
provide support for the evaluation of CoP tools and resources, such as the
CoP-dependent ontology, the annotations, the documents used or produced
by the CoP (e.g. the lessons learnt), etc.

The Knowledge Evaluation service is characterized by:
• The resource to be evaluated;
• The tool to be evaluated;
• The type of evaluation performed (automatic, semi-automatic,

manual);
• The evaluation criteria (for a resource: correctness, usefulness,

quality, etc.; for a service: performance criteria, such as efficiency);
• The evaluation grid through which the evaluation is made explicit.

5.1 Functionalities
Given a particular resource, this service aims to provide an evaluation grid
to be filled either by:

• CoP member(s) who give their feedback concerning a resource: this
corresponds to the manual evaluation;

• An automated module of the service itself: in this case, the
evaluation grid is filled according to the knowledge conveyed by the
CoP-dependent ontology and the annotations, and using reasoning
mechanisms. This corresponds to the automatic evaluation;

• Semi-automatically: in this case, the Evaluation service uses its
reasoning mechanisms to produce an evaluation, which will be then
checked for validation or completion by a particular member of the
CoP.

5.2 Interfaces of the service
In all cases, the Knowledge Evaluation service needs to have as:

Input
• The resource to be evaluated or the necessary information to

evaluate a tool (depending on what is to be evaluated);
• The evaluation grid, which contains the evaluation criteria;

FP6-028038

PALETTE D.KNO.03 33 of 103

• The information provided by CoP members, in case they contribute
to the evaluation (their feedback).

Output
The evaluation grid, which may be filled with:

• A binary information (yes/no, true/false);
• A qualitative result: formal annotations or free-text generated

according to the CoP-dependent ontology and annotations;
• A quantitative result based on evaluation scores or statistics.
This service may also offer mechanisms to provide a support to

comparative evaluation between multiple resources.

Interface to human
In the case of manual or semi-automatic evaluation, it will be a graphical
interface enabling one to fill, validate or complete the evaluation grid
(with evaluation feedbacks or evaluation criteria). It will also enable a CoP
member to indicate the resource to be evaluated.

This interface may also consist of a form or a questionnaire to be filled
by the members and then interpreted by the service.

Interface to other services
The Knowledge Evaluation service uses the knowledge provided by:
• “Annotation service” when validating the annotations made on a

resource: to check whether the annotation is made with respect to the
CoP-dependent ontology (automatic evaluation) or whether the
resource is completely annotated. If not, the Knowledge Evaluation
service identifies the missing annotations to be made (semi-automatic
evaluation);

• “Knowledge Creation service” in this case, the evaluation concerns
the CoP-dependent ontology, to be then evaluated by the Knowledge
Evaluation service which will check for the coherence and the validity
of its structure;

• “Knowledge Retrieval and Dissemination service” for diverse
purposes, such as:

• the evaluation of the retrieval efficiency according to the time of
response to the user’s query, for example;

• a preliminary evaluation of the resources retrieved (and
presented to the user who submitted the query), based on the
user’s profile, to determine his search preferences and the
relevance threshold to respect when retrieving resources for him;

• the evaluation of the retrieved or disseminated resources, using
the Annotation service to create the annotations expressing the
relevance judgment of the user who submitted the query (case of

FP6-028038

PALETTE D.KNO.03 34 of 103

the retrieval) or of the users to whom the resources are
disseminated (case of the dissemination);

The interfaces of the Evolution service are summarized in the Figure 5.1.

Figure 5.1: Evaluation service interfaces

5.3 Examples of use in CoPs
Let’s take, as an example, the context of “lessons learnt” evaluation in a
CoP. We describe, in the following, the scenario of evaluation with respect
to the lessons learnt model developed in the “D.KNO.01 CoP-independent
meta-ontologies and support ontologies” deliverable.

Figure 5.2 is the part of the lessons learnt model that we refer to.

FP6-028038

PALETTE D.KNO.03 35 of 103

Figure 5.2: Lessons learnt model

The Tester proceeds to the experimentation of the proposed solutions to

the problem and gives his/her feedback;
The Expert is in charge of assessing the proposed solutions, using his

expertise on the domain and, at the same time, taking into account the
feedback of the Testers.
The Knowledge Evaluation service plays the role of the Expert

(see Table 5.1). More specifically, it:
• Fills the evaluation grid using the Testers’ feedbacks;
• Completes this grid using its own expertise (the ontology, the

annotations).

 Inputs Proposed solution(s);
 - Testers’ feedback.
 Resources used Problem description;
 - Domain elements of expertise (ontology, annotations);
 - Evaluation grid.
 Outputs Qualitative and quantitative evaluation (e.g. the percentage of

Testers who give a good feedback on the lesson learnt);
 - Automatic binary evaluation (yes/no, true/false: e.g. the

lesson learnt is added to the lessons learnt repository).
Table 5.1: Example of Knowledge Evaluation of lesson-learnt.

FP6-028038

PALETTE D.KNO.03 36 of 103

Figure 5.3: Knowledge evaluation

The “Evaluation of the Testers’ feedbacks” depends on the Tester: the

evaluation note or score he/she puts on the proposed solution may be
weighted according to the level of domain expertise of the Tester. This
assumption depends on the considered CoP and its organization. Figure
5.3 show a detailed scenario of Knowledge evaluation.

FP6-028038

PALETTE D.KNO.03 37 of 103

Chapter 6

Knowledge Evolution and Maintenance

6.1 Definition
Knowledge evolution service consists of supporting the consistency of the
CoP memory in case of evolution of CoP’s knowledge resource: new
document or document modified, new version of the ontology, new
annotations or annotation modified, etc.

6.2 Functionalities
Regarding functionalities, we can envisage the following:
• Processing of the ontology evolution: in particular support to the CoP

ontology manager in order to re-establish consistency of annotations
influenced by the changed ontology; notification to the CoP members
possibly concerned by this change according to their user profile;

• Processing of the annotation base evolution: in particular detection of
possible inconsistencies generated from this change; notification to the
CoP members possibly concerned by this change according to their
user profile;

• Processing of the evolution (e.g. creation, modification, removal) of a
document (e.g. report, mail, element of discussion in a forum)
considered as a knowledge resource of the CoP: in particular warning
about possible influence on its annotations; notification to the CoP
members possibly concerned by this change according to their user
profile;

• Processing of the CoP members evolution (i.e. the introduction,
change of role, or removal of a CoP member, constitution of
subgroups in the CoP, evolution of competences of a member, etc):
influence on the annotations about these members, notification to the
CoP members possibly concerned by this change according to their
user profile.

FP6-028038

PALETTE D.KNO.03 38 of 103

6.3 Interface of the service

6.3.1 Inputs and Outputs of the service

Input
The element that evolved (e.g. ontology, annotation, document, CoP actor,
etc.), and the description of its change (for example, its past state and its
new state)

Output
The new state of the set of knowledge resources once the coherence
restored, and the CoP members alerted of this evolution.

Interface in Human-Computer interaction
An editor for showing to the user the consequences of a change on the
CoP knowledge resource and for helping to process the evolution, in
particular in case of several alternatives to re-establish the coherence of
the knowledge resources base (annotations, ontologies, documents, etc.)

Interfaces to other service
• The Knowledge Evolution service uses the annotations created by

the “Annotation service”, in particular the annotations on CoP
members and their user profiles describing their interest in some
resources;

• It could call the Knowledge Dissemination service in order to alert
the CoP members influenced by the evolution of a given CoP
knowledge resource (which can in turn be evaluated through the
Knowledge Evaluation service);

• The support offered by the Knowledge Evolution service to the user
can rely on the “Knowledge Retrieval” service in order to access the
resources influenced by a change and it can rely on the
“Presentation and Visualization service”.

Resources used
• The user’s profile;
• The ontology;
• The annotation base.
Figure 6.1 summarizes the interfaces of the evolution service.

FP6-028038

PALETTE D.KNO.03 39 of 103

Figure 6.1: Knowledge evolution interfaces

6.4 Examples of use in CoPs
In the context of “Telecom-INT - UX11 Module” (engineer-students), a
new training proposal, a change of a student’s tutor, the introduction of a
teacher in charge of a new course with new documents dedicated to this
course, and the modification of annotations on student profiles after the
results of an exam, are examples of events that could trigger the
knowledge evolution module.

FP6-028038

PALETTE D.KNO.03 40 of 103

FP6-028038

PALETTE D.KNO.03 41 of 103

Part II

Partners Tools offering building blocks
services

FP6-028038

PALETTE D.KNO.03 42 of 103

This second part describes several tools available among the Palette
partners. These tools which could offer such elementary services or more
complex services (corresponding to a combination of the services
mentioned above), are:
Generis, an ontology management tool (chapter 7) could offer ontology

creation services,
Corese, a semantic search engine (chapter 8) could offer knowledge

retrieval services,
SeWeSe, a platform for developing semantic web applications (chapter 9),

could offer ontology creation, knowledge annotation and knowledge
presentation or visualization services,

MEAT, a memory of experiments that contains an annotation tool
(MeatAnnot) based on Natural Language Processing Tools (chapter
10), could offer services of semi-automatic annotation from texts,

Virtual Staff, a cooperative tool (chapter 11) could offer cooperative
problem solving services as a specific kind of knowledge creation
services.

Some of these tools are generic (e.g. Generis, Corese, SeWeSe), while
others are so far dedicated to biomedical applications (MEAT, Virtual
Staff) but could be adapted for other domains.

FP6-028038

PALETTE D.KNO.03 43 of 103

Chapter 7

Generis4

Generis is an ontology management tool which enables collaborative
annotation of any kind of resources in a distributed way. A Peer-to-Peer
network can be constituted using a set of interconnected modules to reflect
the geographically distributed knowledge. Generis enables the
management of an ontology in the form of a web resource (according to
RDF1 and RDFS2 standards). RDFS being fully implemented, Generis
enables to manage (creation, edition removal) any kind of resource on all
abstraction levels of resources modeling. According to the model or meta-
model, user interfaces are dynamically generated to enable the user to
manage lower level resources. Generis also provides facilities to perform
full text queries or structured queries (queries expressed according to the
model) on the knowledge base. Generis may be accessed using three
different interfaces provided consisting in a Graphical User Interface
(GUI), an Application Programming Interface (API), and a series of Web
Services (WS). Furthermore, Generis provides services for the
management of users and their access privileges with respect to resources,
as well as the communication with other modules, including the
management of module subscribers and subscriptions and associated
rights.

7.1 Architecture

 Figure 7.1: Generis Architecture

1 Resource Description framework (http://www.w3.org/RDF/)
2 Resource Description Framework Schema (http://www.w3.org/rdf-
schema/)

FP6-028038

PALETTE D.KNO.03 44 of 103

Generis is built according to a traditional 3-tiers architecture (see
Figure 7.1s) with a persistence layer, an application layer implemented in
PHP3 , and an interface layer (also in PHP). The interface layer consists
in a Graphical User Interface (GUI), an Application Programming
Interface (API), and a series of Web Services (WS). The database can be
theoretically any relational database, using an abstraction layer. In
practice, we built the kernel using MySQL while PostgreSQL and
ORACLE has been tested and found compatible without problem. The
application layer implements all the necessary data management methods,
i.e. the RDF and RDFS associated methods plus some extra methods such
as the structured search functionality, the communication services, and the
administration of the kernel and user management. A basic GUI is
proposed with the kernel enabling the manipulation of the model and the
data, as well as the administration of the module. The kernel also proposes
a series of services enabling the creation of more specific interfaces (either
using directly the API when the interface is implemented in PHP, or using
the WS via the SOAP4 or XML-RPC5 protocols when interfaces are
written in JAVA or Flash).

7.2 Extension mechanisms
Several extensions mechanisms were implemented into Generis to face
specific needs according to its use context. It is possible to specialize a
Generis node in a specific domain by defining a model and to restrict the
user to manage resources according to this higher level model (these
resources should be protected because they fundamentally define the
nature of the module). Nevertheless, it is still possible for the user to
define his own lower level model to manage his resources. Such
specialization of Generis can be completed by adding plug-ins which will
provide the user with functionalities specific to the domain.

Plug-ins can be added to Generis to enable custom meta-data process
automation or custom presentation to end user. Plug-ins use the API of
Generis to retrieve, or store data. User-defined plug-ins can be integrated
in any of the existing modules; provided that the specialized resources and
their associated model where the plug-in relies on have also been imported
in the module where the plug-in is installed. A plug-in can use all the
methods present in the Kernel API. Hence, a plug-in can exploit the
communication facilities and implement automatic treatment of data
originating from different modules. This is possible only if the two
following conditions are fulfilled: i) the local module where the plug-in is
installed must be a valid subscriber of the external modules where the data

3 PHP Home Page: (http://www.php.net)
4 Simple Object Access Protocol (http://www.w3.org/TR/soap/)
5 XML Remote Procedure Call (http://www.xmlrpc.com)

FP6-028038

PALETTE D.KNO.03 45 of 103

come from; ii) the specialized resources and ontologies the plug-in relies
on must be present (at least the necessary part with respect to the treatment
logics) in the distant modules. Plug-in installation is extremely simple.
The PHP file containing the valid plug-in code must simply be placed in
the ad hoc directory.

A plug-in is not necessarily bounded to a graphical interface or to a
specific area such as the one used to display the resource structure for
instance. However, most plug-ins use the GUI working area either for
interactivity or for parameterization. Plug-ins can be as complex as little
applications with many functions accessible through drop-down menus.
Plug-in specific menus defined in the plug-in manifest will automatically
appear in the first GUI area under the menu bar of the kernel general
functions.

Currently, the default standard interface of a module includes three
standard plug-ins. The first plug-in is used to access the resources. It
updates the display of resource structure in the corresponding area of the
interface, and uses the working area to execute interactively its basic
functionalities: display resource content, manipulate resource structure,
edit resources, search resources, create associations with other local or
external resources (resources present in subscribed modules). The second
standard plug-in enables the user personal data management (ID and
password, access mask to be automatically applied on resources created by
the user, e-mail, affiliation, etc.). The third standard plug-in is only
accessible by the administrator and proposes several functions such as
user, module subscriber, and module subscription management. The
management of users is strictly local within a module. They are identified
by an ID and a password and interact with the GUI and can, depending on
their access privilege and the user group they belong to, read or create
resource with different levels of detail). The module subscription
mechanism does not allow altering distant (or non-local) resources.

The graphical aspect of the GUI can be modified using skins
implemented as a CSS6 file. These CSS should be implemented by the
users and copied in the appropriate platform directory. Currently, there are
no GUI functions enabling the dynamic skin management directly by the
user. This should be added in further versions, as well as a basic CSS
editor to help a user creating his own skin.

6 Cascading Style Sheet (http://www.w3.org/Style/CSS/)

FP6-028038

PALETTE D.KNO.03 46 of 103

7.3 User interfaces and Functional coverage

Figure 7.2: Annotation editor

The basic PHP/DHTML interface provided with the kernel is divided
in four distinct areas. The first gathers the general functionalities and
information: export, import, load, logout, connected user and access to
functionalities (data manipulation). The second includes the data language
management functionalities. Languages are managed on two levels: the
language of the interface (as a general function), and the language of the
resources. This later is directly managed with the ontology using language
attribute associated to each resource. The management of the interface
languages is made using a configuration file (Language Package)
containing the label of the different terms appearing on the display. All
alphabets and character sets can be used since the character encoding is
UTF-8. Any number of language packages can be defined or personalized
by the users. The two remaining areas are dedicated to the resource
management. The third area consists in a graphical display of the resource
structure stored in the database and the queries to obtain detailed
information on these resources. By default, the resource structure is
displayed as a tree to the user but can be easily changed or modified.
Currently the tree is implemented in Javascript and runs on the client side.
This implementation should soon disappear to eliminate problems when
displaying very large structure and database contents. The fourth area is
the working area where forms associated to resources management and
queried data are displayed. Contextualized functionalities, i.e.

FP6-028038

PALETTE D.KNO.03 47 of 103

functionalities that only appear on the screen depending on the type of
resource currently being focused on in the working area, are also displayed
in this area. In some circumstances, some other windows (pop-ups) can be
used temporarily.

Finally, a set of utilities is proposed to the user to facilitate the access
to and the management of modules the user has a subscription to (they can
be local or distant). To do so, user can access to an Internet portal with
personal account where the different modules the user has an access to can
be registered. This enables the user to navigate from one module to
another without entering several times the different user ID’s and
passwords for each single module. In the personal module management
portal, the user can select the modules he wants direct access to during the
session. The selected list will then appear in a special “Module” menu in
the GUI menu bar (see Figure 7.2).

7.4 A use case : “Testing Assisté par Ordinateur”
(TAO) and benchmarking
TAO is the French acronym for computer based assessment. TAO is a
project performed in collaboration between the Centre de Recherche
Public Henri Tudor and the University of Luxembourg. The main
objective is to provide teachers, HR managers, pedagogues, etc. with a
versatile and distributed platform to manage e-testing resources (tests
creation, subjects management, large scale test delivery, results
management) and, also, to deliver on line test to the subjects. For this
purpose Generis was specialized into six kinds of different modules.
Different plug-ins were implemented for e-testing specific needs (Test and
Item authoring tool, results presentation). Due to the large scale test
delivery requirements, several benchmarks and Generis optimizations
were performed on the Generis kernel. (for instance, ests had to be
delivered to more than 300 subjects in one second).

FP6-028038

PALETTE D.KNO.03 48 of 103

Figure 7.3: Computer based assessment

Generis was also used in different projects of the CRP Henri Tudor for
many purposes like knowledge management, e-learning resource
management (see Figure 7.3), leading to the development of new plug-ins
or Generis improvements.

7.5 Generis Deployment
The installation procedure is very simple and non intrusive. Indeed, all the
required services and third party applications such as the web server
(Apache), the database management system and the PHP engine are
installed in a unique directory without any modification to the host
platform configuration. Uninstalling the kernel is as straightforward as
deleting a directory and its content. However it is still possible to install
Generis on its own web server configuration.

7.6 License model and documentation
Generis is an open source product however it is not yet released under the
GPL7 license, expected to be releases it soon. But at this time, we prefer
to finish the documentation completely before releasing it to an open
source community. Nevertheless, it’s still possible to simply agree on a
non disclosure document.

Main components of the source code are documented (API), a user
guide in the state of draft is available and a programmer’s guide should be
written soon.

7 GNU Public License:
http://www.gnu.org/licenses/licenses.html

FP6-028038

PALETTE D.KNO.03 49 of 103

7.7 Generis related works in progress
Currently, search in a resource is only possible in the local repository
(local module). The possibility to make more extended search in all the
external modules that have granted access to the local module through
valid subscriptions is under study. In the same fashion, there are currently
no possibilities to discover automatically Generis modules that are
installed on the web. This makes the localization of existing helpful
modules rather cumbersome without maintaining a central repository of
installed modules together with their descriptions. The possibility to create
such directories or to exploit fully the P2P network formed by the
subscription scheme must be studied. The later implies that an
administrator should be able to enable or disable the public accessibility of
the URL of its own subscriptions (or as subset of) to a third party module.
The anonymous resource querying by another module or simply by
requesting the RDF-like URL of the module (in this case the system
returns an RDF file with all public resources) without passing through the
identification protocol must be added.

Furthermore, new modeling facilities will be added to Generis which
will enable the user to define constraints on its model or to define
inference rules. Such rules will allow implicit knowledge to be created in
the knowledge base.

FP6-028038

PALETTE D.KNO.03 50 of 103

Chapter 8

Corese

8.1 Introduction
Corese [Corby et al., 2004, Corby et al., 2006] is an ontology-based
semantic search engine for the Semantic Web that implements such a
matching function using the projection operator defined in the Conceptual
Graphs (CG) formalism [Sowa, 1984]. Its general principle is presented in
Figure 8.1.

Figure 8.1: Corese general principle

8.1.1 Theoretical Foundations of Corese
The Corese engine internally works on conceptual graphs. When matching
a query with an annotation, according to a shared ontology, these are
translated in the conceptual graph model [Sowa, 1984, Chein et al., 1998].
Through this translation, Corese takes advantage of the existing work of
this knowledge representation community, in particular the results on
operators and reasoning capabilities of the Conceptual Graphs formalism.

Conceptual Graph (CG) and RDF(S) models share many common
features and a mapping can easily be established between RDF(S) and a
large subset of the CG model. An in-depth comparison of both models has
been the starting point of the development of Corese [Corby et al., 2000,
Delteil et al., 2001].

Both models distinguish between ontological knowledge and
assertional knowledge. In both models, the assertional knowledge is
positive, conjunctive and existential and it is represented by directed
labeled bipartite graphs. In Corese, an RDF graph G representing an
annotation or a query is thus translated into a conceptual graph CG.

FP6-028038

PALETTE D.KNO.03 51 of 103

Regarding the ontological knowledge, the class (resp. property)
hierarchy in a RDF Schema corresponds to the concept (resp. relation)
type hierarchy in a CG support. RDF properties are declared as first class
entities like RDFS classes, in just the same way that relation types are
declared independently of concept types in a CG support. This is this
common handling of properties that makes relevant the mapping of RDFS
and CG models. In particular, it can be opposed to object-oriented
language, where properties are defined inside classes.

There are some differences between the RDF(S) and CG models in
their handling of classes and properties. However they can be quite easily
handled when mapping both models. Mainly, the RDF data model
supports multi-instantiation whereas the CG model does not and a RDF
property declaration may specify several constraints for the domain (resp.
range) whereas in the CG model, a relation type declaration specifies a
single constraint for the domain (resp. range). However, the declaration of
a resource as an instance of several classes in RDF can be translated in the
CG model by generating the concept type corresponding to the most
general specialization of the concept types translating these classes.
Similarly, the multiple domain (resp. range) constraints of an RDF
property can be translated into a single domain (resp. range) constraint of
a CG relation type by generating the concept type corresponding to the
most general specialization of the concept types constraining the domain
(resp. range) of the property.

As a result, the management of RDF(S) through conceptual graphs
consists in compiling the type hierarchies of the CG support, the
association of a compiled type to each resource, and, finally, the use of the
projection operation of the CG model as the keystone of an optimized
query processing based on compiled type hierarchies.

This projection operation is the basis of reasoning in the conceptual
graph model. A conceptual graph G1 logically implies a conceptual graph
G2 iff it is a specialization of G2 (noted G1 ≤ G2). A graph G1 is a
specialization of G2 iff there exists a projection G2 of into G1 such that
each concept or relation node of G2 is projected on a node of G1 whose
type is the same as the type of the corresponding node of G2 or a
specialization of it, according to the concept type hierarchy and the
relation type hierarchy.

Formally, let us define a CG as a labeled bipartite graph G=(C,R,E,l)
where C and R are the sets of its concept nodes and of its relation nodes, E
is the set of its edges and l is a mapping which labels each relation node r
of R by a relation type type(r) of the relation type hierarchy Tr and each
concept node c of C by a couple (type(c), ref(c)) where type(c) is a concept
type of the concept type hierarchy Tc and ref(c) is an individual marker or
the generic referent ∗. The projection operation is then defined as follows

FP6-028038

PALETTE D.KNO.03 52 of 103

[Chein et al., 1998]: A projection from a CG G=(CG,RG,EG,lG) to a CG
H=(CH,RH,EH,lH) is a mapping Π from to and from to which:
- preserves adjacency and order on edges: ∀rc∈EG , Π(r) Π(c) ∈ EH, and
if c is the ith neighbor of r in G then Π(c) is the ith neighbor of Π(r) in H;
- may decrease labels: ∀x∈CG ∪ RG, lH(Π(x)) ≤ lG(x).

A query is thus processed in the Corese engine by projecting the
corresponding conceptual graph into the conceptual graphs translated from
RDF(S). The retrieved web resources are those for which there exists a
projection of the query graph into their annotation graphs.

For example the following query graph enables us to search for
documents about science and their authors.

When processing this query, Corese retrieves a technical report of a
researcher about cognitive science and a book of a professor about social
science: these documents are annotated with the following graphs upon
which there exists a projection of the query graph.

The node [Document:*] of the query graph is projected upon

[TechReport:techr2871] in the first graph and upon
[Book:book9638] in the second, the types TechReport and Book
being subclasses of Document in the ontology shared by these annotation

FP6-028038

PALETTE D.KNO.03 53 of 103

graphs and the query graph, and the uri doc1 and doc2 specializing the
generic referent *; the node [Person:*] is projected upon
[Researcher:john-smith] and [Professor:david-
dupond], their types being subclasses of Person and the uri john-
smith and david-dupond specializing the generic referent *; the node
[Science:*] is projected upon [CognitiveScience:*] and
[SocialScience:*], their types being subclasses of Science; the
node (createdBy) is projected upon the node of the same type in both
graphs; and the node (subject) is projected upon the node of the same
type in the first graph and upon the node (topic) in the second, topic
being a subtype of subject in the ontology.

8.1.2 Corese Ontology Representation Language
The first ontology representation language of Corese was RDFS. It has
progressively been extended to handle some major features of OWL Lite.
Our choice of RDFS is mainly historical: the first implementations of
Corese with RDF(S) preceded the emergence of OWL. However the
different projects in which Corese has been experimented have shown us
that the expressivity of RDF(S) is sufficient in many applications - if
extended with inference rules and approximation in the query language.
We think that OWL Lite features are quite sufficient to handle most
knowledge representation problems encountered in Semantic Web
applications. Corese provides OWL value restrictions, intersection,
subclass and algebraic properties such as transitivity, symmetry and
inverse. It also provides the annotation, versioning and ontology OWL
statements. Corese does not yet provide cardinality restrictions, property
and class equivalences, owl:sameAs and loops in subsumption
hierarchy.

These extensions to OWL features are based on domain axioms which
are taken into account when matching a query with an annotation [Corby
and Faron-Zucker, 2002]. We have proposed an RDF Rule extension to
RDF and Corese integrates an inference engine based on forward chaining
production rules. The rules are applied once the annotations are loaded and
before the query processing occurs: the annotation graphs are enriched
before the query graph is projected. This is the key to the scalability of
Corese to the web application in which we have used it.

The production rules of Corese implement conceptual graph rules
[Salvat, 1998]: a rule G1 ⇒ G2 is a pair of lambda abstractions (λx1, …
λxn G1, λx1, …, λxn G2) where the are co-reference links between
generic concepts of and corresponding generic concepts of that play the
role of rule variables.

For instance, the following CG rule states that if a person ? m is head
of a team ? t which has a person ? p as a member, then ? m manages ? p :

FP6-028038

PALETTE D.KNO.03 54 of 103

A rule G1 ⇒ G2 applies to a graph G if there exists a projection π from

to G, i.e. G contains a specialization of G1. The resulting graph is built by
joining G and G2 while merging each π(xi) in G with the corresponding xi
in G2. Joining the graphs may lead to specialize the types of some
concepts, to create relations between concepts and to create new
individual concepts (i.e. concepts without variable).

The Corese rule language is based on the triple model of RDF. The
syntax of a rule is the following:

<cos:rule>
 <cos:if>
 a triple pattern
 </cos:if>
 <cos:then>
 a triple pattern
 </cos:then>
 </cos:rule>

where cos is the prefix for the Corese namespace and where the triples
correspond to RDF statements whose conjunction is translated into a
conceptual graph.

For instance, the CG rule above is the translation of the following
Corese rule:

<cos:rule>
 <cos:if>
 ?m rdf:type s:Person
 ?m s:head ?t
 ?t rdf:type s:Team
 ?t s:hasMember ?p
 ?p rdf:type s:Person
 </cos:if>
<cos:then>
 ?m s:manage ?p
</cos:then>
</cos:rule>

FP6-028038

PALETTE D.KNO.03 55 of 103

This triple syntax is shared with the Corese query language, which is
further described in the next section.

8.1.3 Corese Query Language
The Corese query language is built upon the SPARQL query language : a
query is either a triple or a boolean combination of triples. For instance the
following query retrieves all the persons (line 1) with their names (line 2)
who are authors (line 3) of a thesis (line 4), and it returns their thesis title
(line 5):

 (1) ?p rdf:type kmp:Person
 (2) ?p kmp:name ?n
 (3) ?p kmp:author ?doc
 (4) ?doc rdf:type kmp:Thesis
 (5) ?doc kmp:Title ?t

The first element of a Corese triple is either a variable or a resource
qualified name (an XML qname); the third element is either a variable, a
value or a resource qname; the second element is either a property qname,
a variable or a comparison operator. Class and property names are thus
qnames whose namespaces are either standard and denoted by predefined
prefixes (rdf, rdfs, xsd, owl and cos for the Corese namespace) or user-
defined prefixes denoting namespaces, as shown in the following example.

 dc as http://purl.org/dc/elements/1.1/

Variable names begin with a question mark. Values are typed with the
XSD datatypes: numerical values, xsd:string, xsd:boolean and
xsd:date. The language of the value of a literal can be specified by
using the @ operator and based on the specification of xml:lang. For
instance, in the following example, we constrain the title to be in English.

 ?doc kmp:Title ?t@en

The comparison operators for equality and difference (=, ! =),
ordering (<, <=, >, >=) and string inclusion and exclusion (∼, ! ∼)
enable us to compare a variable with a value or with another variable. For
instance in the following example, we constrain the title so that it must
include the word ’web’.

 filter (?t ~ "web")

FP6-028038

PALETTE D.KNO.03 56 of 103

Type comparators enable us to specify constraints on some types in a
query: strict specialization (<:), specialization or same type (<=:), same
type (=:), generalization or same type (>=:), strict generalization (>:).

For instance, by using the <: operator in the following example, we
constrain the document to be a strict specialization of a thesis (e.g. a PhD
thesis, a MSc thesis, etc.).

 filter (?doc <: kmp:Thesis)

By default, a list of triples is a conjunction. The union operator is
also available and brackets enable us to combine conjunctions and
disjunctions in a query. Corese handles such queries by putting them in
disjunctive normal form, processing each conjunctive sub-query and
juxtaposing all the results.

Let us note that the Corese query language supports ontological
reasoning by querying ontologies just like annotations, since RDF
Schemas are RDF data. For instance, the following query retrieves all the
properties whose domain is a subclass of the kmp:Document concept.

 ?p rdf:type rdf:Property
 ?p rdfs:domain ?c
 ?c rdfs:subClassOf kmp:Document

Some SQL-like operators extend the core Corese query language to
improve the presentation of the retrieved answers:

• By default, the matching of all the variables occurring in a query are
returned from the retrieved annotations. A select operator allows
to select the only variables whose matching are desired in the
answers.
For instance, in the following example, we select only the title of the
document and the name of its author.

 select ?t ?n where

• A group operator corresponding to the SQL group-by allows to
group the retrieved answers according to one or more concepts
instead of listing separately answers about the same concept(s) (in
case an annotation is answering a query several times).
For instance, when querying for documents on a specific subject and
written by an author, a group on the document variable will avoid
that a document written by several authors appears several times,
once for each of its authors. By default, a group is applied to the
first variable of a query.

FP6-028038

PALETTE D.KNO.03 57 of 103

• A count operator, combined with a group allows the counting of
the (different) documents retrieved. For instance, to mention the
number of documents written on each subject, count is applied to
the document variable and group to the subject one.

8.2 Approximate Semantic Web search
We have extended the core query language of Corese to address the
problem of possible mismatch between end-user and ontological concepts.
Corese is able to cope with queries for which there is no exact answer by
approximating the semantics of the query, its structure, or both.

8.2.1 Ontological Approximation
The first principle of the Corese semantic approximation is to evaluate
semantic distances between classes in the ontology. Based on this
ontological distance, Corese not only retrieves web resources whose
annotations are specializations of the query, it also retrieves those whose
annotations are semantically close.

8.3 Corese Software

8.3.1 Architecture
Corese is a software tool developed in Java. A stand-alone version is
publicly available under the INRIA license at
http://www.inria.fr/acacia/corese including Java packages, a
documented API and a Swing query GUI. A Corese semantic web server
has also been developed. It is designed according to a 3-tier architecture
(Figure 8.2): the presentation layer responsible for the presentation of data,
the application layer implementing the application business logic and the
persistent layer managing the persistence of the application data.

Presentation Layer

This layer, also called the Corese web server, is responsible for generating
the content to be presented in the users’ browser (ontology views and
browsing controls, query edition interfaces, annotation forms, answer
presentation, etc.). This part relies on a model-view-controller architecture
to handle HTTP requests from the client (users’ Web browser) and
generate HTTP responses fed by the Corese services as appropriate (i.e.
upper modules of the Business Logic Layer: Query Parser, CG-to-RDF

FP6-028038

PALETTE D.KNO.03 58 of 103

Pretty Printer) and formatted using XSLT or JSP templates. This layer is
implemented by a set of servlets and provides the front-end of what we
call a Semantic Web Server: an HTTP server able to solve semantic web
queries submitted through HTTP requests; able to provide JSP tags to
include semantic web processing and rendered results in web pages; able
to provide XSLT extensions to include semantic web functions in XPath
expressions, thus improving RDF/XML transformation capabilities; able
to provide a form description language to dynamically build forms using
queries for instance to populate the different choices of a drop-down box.

Figure 8.2: Corese 3-tier architecture

Application Layer
The Corese application layer (or Business Logic Layer) is a platform that
implements three main services accessible through a well defined API: a
Conceptual Graph server (whose CG manager is based on the Notio API
[Southey and Linders, 1999]), a Query engine and an Inference Engine
handling forward chaining rules. A set of parsers transforms RDF to CG,
Rules to CG Rules and Queries to CG graphs to be projected on the base.
The core CG server implements the management of the CG base, the
projection and join operators and type inference on the type lattices. A
CG-to-RDF pretty-printer allows us to produce any result in RDF/XML
syntax. This layer is also an independent package and API that can be

FP6-028038

PALETTE D.KNO.03 59 of 103

downloaded and used by developers to add semantic web capabilities to
their applications.

Data Layer
It comprises the RDF(S) data (ontology and annotations) accessed by
means of the ARP [HP,] parser which produces triple events interpreted
and translated by the RDF-to-CG Parser. In addition rules are saved in
separate files and parsed by the Rule Parser of the Business Logic Layer.

FP6-028038

PALETTE D.KNO.03 60 of 103

Chapter 9

SeWeSe

9.1 Introduction
All semantic web applications using a semantic engine (like Corese)
provide common functionalities that can be factorized into a semantic web
application development platform. This is what the SeWeSe platform
does. The goal of such a platform is to provide reusable, configurable and
extensible components in order to reduce the amount of time spent to
develop new semantic web applications and to allow these applications to
focus on their domain specificities.
 SeWeSe is built upon Corese engine and provides a set of functionalities
like generation of interfaces for queries, edition and navigation, and for
the management of the transverse functions of a portal (presentation,
internationalization, security, etc.). An ontology editor, a generic
annotation editor and a basic rule editor are parts of the SeWeSe platform.

9.2 Architecture
Concerning its architecture, SeWeSe relies on Tomcat: and provides a set
of filters, servlets, JSP tags and libraries as well as some templates to build
new applications.

Figure 9.1: SeWeSe architecture

FP6-028038

PALETTE D.KNO.03 61 of 103

 SeWeSe is a Java 1.5 application, using the XSLT engine Xalan 2.7.0, the
logging library Log4J 1.2.12. It can be deployed under Tomcat 5.5.x and
uses JSP 2.0 and the standard JSP Tag library 1.1.2. Relying on the tomcat
architecture, SeWeSe provides several mechanisms to customize and
extend its functionalities. For instance filters can be added to implement
pre and post processing and the existing filter handling sessions can be
parameterized to extract and memorize characteristics of the user for the
whole session (e.g. her interests).

9.3 Available components
The architecture of SeWeSe is organized around four main types of
components:
Toolkits that group back-end interfaces (e.g. accesses to Corese) and

transversal functionalities (e.g. applying an XSLT style-sheet) . These
toolkits have documented API and their instance is placed in the
context of the web application so that developers of applications based
on SeWeSe can reuse them directly.

JSP tags are extensions of the standard JSP library to provide tags
handling recurrent task in developing a semantic web application (e.g.
submit a query) . These tags can be used by developers of applications
based on SeWeSe anywhere in their JSP.

Filters provide mechanisms to implement transversal processing on
requests and response without duplicating code or multiplying
references (e.g. template filter adding header and trailer to every page
served) . Filters provided by SeWeSe are customizable and any new
filter can be added.

Servlets implement responses requiring important processing (e.g.
modifying an existing ontology) . Existing servlets can be called by
developers of applications based on SeWeSe and new one can be
added.

A number of toolkits are available to develop new applications, among
which:

• concurrentToolkit: provides functionalities to handle concurrent
accesses to the resources of the application

• xsltToolkit: to apply efficiently XSLT style-sheets (caching
mechanisms)

• domToolkit : to manipulate elements of an XML document
• I18nToolkit: to handle internationalization
• engineToolkit: to submit queries to the semantic search engine (e.g.

SPARQL queries to Corese)

FP6-028038

PALETTE D.KNO.03 62 of 103

• ontologyToolkit: to manage the ontologies
• notionToolkit: to handle objects representing RDF resources
• annotationToolkit: to manage RDF annotations

A number of JSP tags are predefined:

• tags to lock resources to manage concurrency
• tags to provide graphic widgets (e.g. calendar to select a date, dialog

pop-ups, tool-tips) ;
• tags to locally (i.e. in a page) or transversally (i.e. in external files)

handle internationalization;
• tags to display and navigate in all or sub-parts of RDFS schemas;
• tags to create new annotations in the knowledge base;
• tags to modify existing annotations;
• tags to include the result of a query and specify the style-sheet to

format it;
• tags to handle security and access control;
SeWeSe also includes a number of administration tags (e.g. to reset the

server).

Using these tags and an additional complete set of tools and models,
SeWeSe also support the generation of ontology-based forms. These forms
can be used to create, modify or query the annotations.

A number of browser-independent javascript libraries are available,
among which:

• A library of usual functions for HTML interfaces (e.g. to validate
forms, to hide or show an HTML DIV, to modify a form as it is
filled, etc.);

• A library to use AJAX (e.g. for auto-completion) ;
• A library to support graphical components;
• A WYSIWYG HTML editor.

 Several filters are shipped with SeWeSe:

• The session filter provides standard login and session management
functionalities plus a declarative way to handle the data about a user
that are persistent through the session (e.g. name, access rights,
department, language, etc.);

• The template filter provides a simple way to apply a template to a
set of pages (e.g. include headers and trailers) ;

FP6-028038

PALETTE D.KNO.03 63 of 103

• The Access filters allow to set restrictions on access rights for
targeted resources using a set of extensible profiles.

9.4 Links with elementary KM services
In addition to the development bricks stated above, SeWeSe comes with a
customizable web-based ontology editor, a simple rule base editor and a
generic annotation editor that can be used for development or
administration purposes and that can be reused in dedicated editors.

9.4.1 Ontology editor (Ontology creation)
The ontology editor (see Figure 9.2) allows users to navigate into the
application ontology by visualizing existing concepts and properties (and
how often they are used in the application). Different views can be
displayed: a hierarchical one, a flat one and a filtered one.

Each concept or property (see Figure 9.3) can be modified. And it is
possible to add new concepts and new properties. In addition, the editor
allows us to merge several concepts into a new one.

Figure 9.2: Ontology editor: hierarchical view of ontology

FP6-028038

PALETTE D.KNO.03 64 of 103

Figure 9.3: Ontology editor: concept edition

 It is possible to customize the ontology editor in order to get a graphical
interface dedicated to an administrator that will manage the application
ontology (or a part of the application ontology) evolution. This
management tasks will be, for example, to add new concepts that have
been suggested by the application users, to merge concepts, to get the most
popular concepts (the concept that are frequently used) and so on.

9.4.2 Annotation Editor (Annotation)
The annotation editor (see Figure 9.4) allows users to edit annotations in a
generic way. It is possible to create new instances and add relations
between existing instances, to modify a relation between two instances, to
modify an instance ID and update this ID elsewhere, to remove relations
and instances. Because the editor relies on the RDF/RDFS structure and
not on the interpretation of the application annotations and ontologies, the
editor user never minds the domain of working. He will work with
instances and relations between them directly.

FP6-028038

PALETTE D.KNO.03 65 of 103

Figure 9.4: Annotation editor: view of an annotation

9.4.3 Clustering (Presentation and Visualization)
SeWeSe allows us to display global views of the used concepts and their
repartitions i.e. if the added value of a set of answers to a query is no in an
individual answer but in the repartition of the answers among different
classes, then one can use the subsumption tree as a dendrogram to cluster
answers at a chosen level of details. The result is the ability to control the
precision/specialisation of the vocabulary used to answer your query. The
Figure 9.5 display the repartition of instances retrieved by a query over a
more or less specific set of classes.

Figure 9.5: Clustering view

FP6-028038

PALETTE D.KNO.03 66 of 103

Chapter 10

Meat

10.1 Introduction
The MEAT project [Khelif et al., 2006, Khelif et al., 2005b, Khelif et al.,
2005a] aims at building a memory of experiments in the DNA micro-array
domain, and at supporting biologists in their interpretation and validation
of the results of their experiments, through analysis of semantically
annotated Medline scientific articles (see Table 10.1).

 System MEAT, a memory of experiments of biologists on DNA

micro-arrays
Context Memory of DNA-micro-array experiments
Domain Bio-medical
Company IPMC
Semantic Web Approach External, open web
Resources Scientific articles useful for interpretation or validation

of results of DNA micro-array experiments
Information sources Human experts
Ontology UMLS ontology (i.e. the semantic network of UMLS)

that contains 134 concept types and 54 relations, and is
linked to millions of terms via UMLS meta-thesaurus.

Expert validation Validation of extracted relations and of generated
annotations, by biologists of IPMC

Typical user query - “ Find all the articles asserting a given (resp. any)
relation between a given biological entity (gene,
protein, ...) and another biological entity ”
- “ Find all the articles asserting a given (resp. any)
relation between a given gene and a given (resp. any)
disease ”

Used reasoning Classic projection
Corese functions used Corese new query language

 - Use of rules
 - Use of approximate reasoning

End-user evaluation Evaluation by biologists of IPMC
Services offered - Automatic extraction of relations and term from texts

 - Automatic generation of RDF annotations

Table 10.1: Summary of MEAT project

FP6-028038

PALETTE D.KNO.03 67 of 103

10.2 MEAT Components
 The MEAT system (see Figure 10.1) comprises:

• the MeatOnto ontology composed of:
• UMLS semantic network considered as a general ontology

for the bio-medical domain: the UMLS hierarchy of semantic
types can be regarded as a hierarchy of concept types and the
terms of the meta-thesaurus can be considered as instances of
these concept types.

• The MGED ontology proposed by Microarray Gene
Expression Data Group to describe DNA experiments,

• DocOnto, an ontology for describing metadata on
documents.

• MeatAnnot that offers a service of annotation of a text with respect
to an existing ontology (here the UMLS ontology) .

• MeatSearch that offers a search service based on the Corese
semantic search engine, with dedicated interfaces for visualizing
graphically the annotations satisfying the user’s query.

Figure 10.1: Architecture of MEAT system

FP6-028038

PALETTE D.KNO.03 68 of 103

More precisely, the MeatAnnot system relies on analysis of scientific
articles through NLP tools (GATE modules, TreeTagger, RASP) in order
to generate automatically RDF annotations (not only concepts but also
relations among concepts). See Figure 10.2 for a general view on
MeatAnnot methodology.
Based on an analysis of occurrences of relations in a corpus of biological
texts, a relation detection grammar is offered for detecting UMLS
relations such as (interacts_with, expressed_in, has_role ...)
in the texts. Then, in the sentences where relations were detected,
MeatAnnot relies on UMLS Knowledge Server in order to recognize terms
corresponding to UMLS concepts and constituting the arguments linked
by the relation detected. Then MeatAnnot generates an RDF annotation
that is validated by the biologist and then stored. The annotations base is
then used by Corese semantic search engine for retrieving the articles
possibly relevant for answering the biologist’s query and supporting
him/her in the interpretation of a DNA micro-array experiment.
The MEAT project illustrates the reuse of an existing ontology and the use
of linguistic tools for generating RDF annotations. Provided that some
adaptations are performed, MeatAnnot could be used with a CoP-
dependent ontology and could thus offer to CoPs such a service of semi-
automatic annotation from texts.

Figure 10.2: MeatAnnot Methodology for semi-automatic annotation of

texts

FP6-028038

PALETTE D.KNO.03 69 of 103

Chapter 11

Virtual Staff

11.1 Introduction
The Life Line project [Dieng-Kuntz et al., 2006, Dieng-Kuntz et al., 2004]
aims at developing a knowledge management tool for a health care
network (see Table 11.1).

System A Virtual staff in the framework of the “Ligne de Vie” (Life

Line) project
Context or scenario Support to cooperative reasoning of members of a health

care network
Domain Medicine
Company Nautilus, a society specialised in marketing medical software
Scope of Semantic Web
Approach

Medical semantic Web among several distributed health
partners

Resources Medical documents such as patient records, guide of best
practices

Information sources A medical database that we translated automatically into
RDF(S)

Ontology Nautilus ontology comprising 26432 concepts and 13
relations

Expert validation Validation by our industrial partner Nautilus
Typical User query “Find the past sessions of virtual staff where a given therapy

was chosen for the patient and what were the arguments in
favour of his solution”
“Find a past session of virtual staff where the patient
suffered from a given symptom and what was the disease
diagnosed and the therapy protocol decided”

 Used reasoning Classic projection
CORESE functions used CORESE past query language
End-user evaluation Evaluation by our industrial partner
Services Support to cooperative problem solving + Integration of an

ontology with SOAP and QOC graphs
Table 11.1: Summary of Life Line Project

The “Virtual Staff” [Dieng-Kuntz et al., 2006, Ruzicka et al., 2004]

allows the members of a healthcare network to visualize their collective
reasoning when formulating diagnosis assumptions or when making

FP6-028038

PALETTE D.KNO.03 70 of 103

decisions of therapeutic procedures. This application corresponds to an
organisational semantic Web dedicated to a medical community
cooperating in the context of a health care network.
In the Virtual Staff, the dependencies between the various diagnostic and
therapeutic hypotheses are represented through a graph using the concepts
defined in the Nautilus ontology. The doctor reasons by linking the health
problems to the symptoms, the clinical signs and the observations in order
to propose care procedures. The Virtual Staff thus relies on the SOAP
model (Subjective, Objective, Assessment, Plan) [Weed, 1971], used by
the medical community. In this model:
• the S nodes describe current symptoms and clinical signs of the

patient,
• the O nodes describe analyses or observations of the physician,
• the A nodes correspond to the diseases or health problems of the

patient,
• and the P nodes correspond to the procedures or action plans set up in

order to solve the health problems.

Figure 11.1: Interface of the Virtual Staff

Sometimes, the doctor may need to visualize (see Figure 11.1) all the
possible solutions and the arguments in their favour or against them. The
QOC model (Question Options Criteria) [Moussavi, 1999], used by
CSCW community for support to decision-making, can then be useful. In

FP6-028038

PALETTE D.KNO.03 71 of 103

this model, a question Q corresponds to a problem to solve. To solve the
question Q, several Options are possible, with, for each option, the criteria
in its favour and the criteria against it: each option is thus connected
positively or negatively to criteria. Two types of questions are possible for
the Virtual Staff:
• Diagnosis of a pathology: Which pathology explains the clinical signs

of the patient?
• Search of a prescription: Which action plan will enable to treat the

diagnosed pathology?
In the Virtual Staff, SOAP graphs enable to visualize the medical

record and in phase of decision, QOC graphs enable to choose between
pathologies or between action plans. Using the Nautilus ontology, the
system can propose a list of possible concept types to help the users to
build SOAP and QOC graphs. Table 11.2 indicates the concept types
among the subtypes of which each category of node must be chosen.

 Node Category Possible concept types
S node in a SOAP graph Symptom PathologicalAgent ForeignBody
O node in a SOAP graph LaboratoryTest
A node in a SOAP graph Malformation Pathology PsychoProblem
P node in a SOAP graph Treatment DiagnosticGesture.
Option in a QOC graph Pathology Treatment
Criterion in a QOC graph Symptom LaboratoryTest Pathology Treatment

Table 11.2: Nodes of Virtual Staff graphs and ontology concept types

The arcs between the nodes correspond to relations among concepts:

FP6-028038

PALETTE D.KNO.03 72 of 103

The arcs between the nodes of a QOC tree can be interpreted by
«Question has-solution Option» or by «Option has-positive-criteria
Criterion» or by «Option has-negative-criteria Criterion».

11.2 Examples of Queries
• “Find the past sessions of virtual staff where a given therapy was

chosen for the patient and what were the arguments in favour of this
solution ”

• “Find a past session of virtual staff where the patient suffered from

a given symptom and what was the disease diagnosed and the
therapy protocol decided”

FP6-028038

PALETTE D.KNO.03 73 of 103

The Virtual Staff could be extended to cooperative problem solving for
CoPs, not especially in medical domain: a correspondence could be made
between the SOAP model (resp. the QOC models) and the CoP domain
concepts.

For example, if the CoP members perform cooperatively a diagnosis
on an artefact:

• the S nodes would correspond to the possible symptoms of faulty
system,

• the O nodes to the possible observations on the system,
• the A nodes to the possible diagnoses,
• the P nodes to the possible plans or procedures for repairing the

problem diagnosed.
By the same way, if the CoP members must decide between several

possible diagnoses or between several repair procedures, they can build a
QOC graph where:

• The Q nodes correspond to the issue to be solved
• The O nodes correspond to the possible options (i.e. the possible

diagnoses) ,
• The C nodes associated to a given option correspond to the possible

positive criteria in favor of this option and the possible negative
criteria against this option.

A session of the Virtual Staff can be seen as a specific case of problem

solving (see Figure 11.2). Through Corese, a kind of case-based reasoning
allows to retrieve past cases satisfying some constraints;

• Find a past case where a given option had been chosen and give the
positive criteria in favor of this option,

• Find a past case where the choice was between a given option and
another one,

• For a given kind of issue, find all the options proposed by a member
of s given class of users.

• Find the participant whose proposed options were the most often
finally chosen

• Etc

FP6-028038

PALETTE D.KNO.03 74 of 103

Figure 11.2: Architecture of Virtual Staff

As a conclusion, the Virtual Staff could be useful for cooperative

problem solving in a CoP needing to visualize such a collective resolution
and to access to past cases.

FP6-028038

PALETTE D.KNO.03 75 of 103

Part III

Architecture

FP6-028038

PALETTE D.KNO.03 76 of 103

This third part presents the KM tool modular architecture. Since the KM
services must be offered not only to human end-users but also to other
services, we will rely on a web service-oriented architecture. In chapter 12,
after the description of the principles of a service-oriented architecture and
some W3C standards dedicated to web services, the components of the
KM tool architecture are detailed.

FP6-028038

PALETTE D.KNO.03 77 of 103

Chapter 12

Architecture of KM services

12.1 Introduction
The Knowledge management services in Palette must be offered to CoPs
members to help them in their activities inside the CoPs. To achieve this
objective, KM services can be provided as tools that provide a number of
functionalities, but they should also be accessible by other services or
tools. This observation was the starting point of the conception of the
architecture of KM system and of the definition of elementary KM
services (Part I) that we designed to be the building blocks of the KM
system. Since the needs of CoPs cover a large spectrum. We try to identify
and specify the elementary KM services in order to be able to use them for
developing more specific and CoPs oriented tools.

Web services8 offer the possibility to implement such architecture. A
generic architecture of the KM system has been already proposed in
Palette’s DoW (see Figure 12.1)

Figure 12.1: Web services architecture

8 According to the W3C a Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface that is described in
a machine-processable format. Other systems interact with the Web service in a manner prescribed
by its interface using messages.

FP6-028038

PALETTE D.KNO.03 78 of 103

The architecture of the KM services we present here is a realization of
such a generic architecture. It comprises a kernel of services (the KM
elementary services described in Part I) and define a new type of services,
namely a complex web services that will provide more complex
functionalities. These complex services can be used by CoPs members
directly through a human-computer interface or indirectly when they are
used by other services or tools. In order to meet these requirements we
need to use standards that help us:

• to improve integration;
• to facilitate the reuse of developed tools and services;
• to establish standardized data representation;
• to allow organizational agility.
We relay on a the SOA (Service Oriented-Architecture) and on the

SOAP (Simple Object Access Protocol) standard for communication
between services.

This chapter starts by presenting SOA [Krafzig et al., 2005] and SOAP
[Snell and Tidwell, 2001]. Then we give an overview of the architecture.
Finally we present some details of the different components that it
comprises.

12.2 SOA & SOAP

Service Oriented Architecture
Service Oriented Architecture was first proposed by [Schulte and Natis,
2003]. They specified SOA as "a style of multi-tier computing that helps
organizations share logic and data among multiple applications and usage
modes."

Figure 12.2: Elements of SOA [Krafzig et al., 2005]

FP6-028038

PALETTE D.KNO.03 79 of 103

SOA is usually based on Web services standards (e.g., using SOAP or
REST) that have gained broad industry acceptance. These standards (also
referred to as Web service specifications) also provide greater
interoperability and some protection from lock-in to proprietary vendor
software. This characteristic answers an important requirement of the
Palette project which is to provide open-source tools for CoPs.

SOA can also be regarded as a style of Information Systems
architecture that enables the creation of applications that are built by
combining loosely coupled and interoperable services.

The elements of a SOA are presented in Figure 12.2. We can see that a
service in SOA is defined by a contract, an interface and an
implementation. In Part I of this deliverable, we defined the contract
(functionalities) and the interface of the elementary services of Palette.
We also gave indications about the data used for their implementations.

Simple Object Access Protocol
SOAP is a web service W3C standard which provides a means of
communication between applications running on different operating
systems, with different technologies and programming languages. It is a
protocol for exchanging XML-based messages over a computer network,
normally using HTTP.

In the example below9, a GetStockPrice request is sent to a server.
The request has a StockName parameter, and a Price parameter will be
returned in response. The namespace for the function is defined in
http://www.example.org/stock address.

The SOAP request:

POST /InStock HTTP/1.1
Host: www.example.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <soap:Body xmlns:m="http://www.example.org/stock">
 <m:GetStockPrice>
 <m:StockName>IBM</m:StockName>
 </m:GetStockPrice>
 </soap:Body>

</soap:Envelope>

9 From W3 Schools SOAP Tutorial.

FP6-028038

PALETTE D.KNO.03 80 of 103

A SOAP response:

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <soap:Body xmlns:m="http://www.example.org/stock">
 <m:GetStockPriceResponse>
 <m:Price>34.5</m:Price>
 </m:GetStockPriceResponse>
 </soap:Body>

</soap:Envelope>

12.3 Architecture
The Knowledge Management system of Palette will comprise:
A kernel which is a set of (i) elementary services, providing the basic

operations of knowledge management, for instance: ontology creation,
annotation, cooperative knowledge creation, retrieval, dissemination,
visualization and presentation, evaluation, and evolution. And a
(ii) services registries provide the ability to register, discover, and
manage Web services in kernel and the complex services component
(see section 12.4.1).

Complex services which are a composition of elementary services (see
section 12.4.2) implemented to achieve some CoPs tasks. The set of
available complex services can be viewed as a virtual KM platform that
can be instantiated for each CoP or for each CoP user.

A front-end that describes the way the user access the KM services and
can be of two types:
A stand-alone front-end: When a service can be used directly by

CoPs, we need to develop a front-end to access (see section 12.4.3);
Widgets: in case that KM services that will be integrated with existing

tools (see section 12.4.4).
Resources including ontologies, annotations, user profiles, etc.

The figure 12.4 presents a general view of this architecture.

FP6-028038

PALETTE D.KNO.03 81 of 103

Figure 12.4: Palette KM services architecture

12.4 KM system components

12.4.1 Services registries
The web services offered to the CoPs may cover a large scope of
functionalities. The number of web services that may be developed over
the elementary services offered by Palette may grow, if the KM system is
used by more CoPs. Centralized facilities for access and control of service
metadata and artifacts is critical. A service registry provides these
capabilities and is a key infrastructural component and cornerstone for
SOA deployments.

12.4.2 Complex services
Defining the abovementioned complex services will allow us to adapt
quite easily the services provided to a CoP, according to its needs and
function of the tasks to be accomplished by its members. This solution is
flexible enough to allow several manners of providing services to the
users. We may easily integrate these services to existing tools via a SOAP
interface, we may group them in a platform which meets certain needs of
the CoPs, and which may be customized according to the user’s needs and
constraints. An example of the integration of complex services in a
platform can be seen in SweetWiki10 [Buffa, 2006]

These complex services will resort to elementary services. For
instance, the complex service of running a query in the KB corresponds to

10 http://www-sop.inria.fr/acacia/soft/sweetwiki.html

FP6-028038

PALETTE D.KNO.03 82 of 103

a number of quite simple tasks in a CoP: finding the resources that match
the user’s request and presenting the results in the most adequate manner
for the recipient. This service will use elementary search and visualization
services. The front-end of this service will be made up of a component
corresponding to the request formulation and one corresponding to results
visualization; both of them need to be completely transparent for the user.
For these two components and associated tasks, the service resorts,
respectively, to the retrieval service and the visualization/presentation
service.

Complex services which correspond to a single elementary service
constitute a particular case of complex services. In this case, the service
the user has access to is a mere instantiation of the corresponding
elementary service.

These complex services will be either:
• integrated directly, as front-ends (HCI in Figure 12.4) with which

the user can communicate directly
• or as widgets in the existing tools.

12.4.3 Complex services front-end
Independent front-ends are user (web) interfaces for complex services.
They must be defined according toof the CoP members’ needs and they
have to use the ontology that is dependent on the CoP.

12.4.4 Widgets
Widgets are quite elementary tools which meet particular user needs,
when using a tool. They bring a series of improvements to the tool without
changing their fundamental architectures. The services associated to
widgets must be conceived in such a manner that satisfies this constraint.
Their interfaces differ from independent front-ends in that they must
integrate an existing tool.

An example of widget for which CoPs have shown a lot of interest is a
complex service of navigation/modification/creation of annotations, on
resources mentioned in a discussion (a forum or a chat). This widget must
be integrated to the chat or web forum tool. It will identify the resources
which annotations are present in the system and allow the users to
visualize these annotations, create annotations on the resources they
introduce or modify resource annotations.

Remark
The development of these interfaces (in most cases) is in our point of view
outside the scope of WP3 and should be discussed with people from WP5.

FP6-028038

PALETTE D.KNO.03 83 of 103

Part IV

Use cases and Integration

FP6-028038

PALETTE D.KNO.03 84 of 103

Part IV presents some scenarios of use (chapter 13) and studies how the
KM services thus specified in WP3 will be interoperable with the
mediation services developed in WP4 (chapter 14). We thus give some use
cases of invocation of KM services from the mediation tool developed in
WP4. The conclusion (chapter 15) recapitulates the possible solutions of
integration of the proposed KM services with the tools presently used by
the CoPs considered in Palette.

FP6-028038

PALETTE D.KNO.03 85 of 103

Chapter 13

Scenarios of use
This chapter presents a set of potential use cases in order to illustrate the
various probable ways of using the abovementioned KM services. More
specifically, the following paragraphs present a set of user-oriented
scenarios for using the “Knowledge Creation and Annotation”,
“Knowledge Retrieval and Dissemination”, “Knowledge Presentation and
Visualization”, “Knowledge Evaluation”, and “Knowledge Evolution and
Maintenance” services. The proposed KM services are to be properly
designed so as to support the various needs of various CoPs in different
contexts. In the following, we provide a comprehensive description of a
potential scenario of use, which comprises all the abovementioned
services. In other words, the proposed scenario consists of multiple use
cases, each one corresponding to a particular KM service.

Environment/situation Selection of name and packaging for a new product
Practice/activity Group thinking and decision making
Actors CoP members, i.e. marketing managers, executives,

advertising and marketing experts, packaging
designers, etc
A list of names and packaging descriptions proposals
and related marketing aims
A list of existing products’ names and packaging
descriptions (of the same category)
Product description
Product target group(s) profile(s) (e.g. age, country)
Related market statistical reports of preferences

Resources

Collaboration tools (e.g. brainstorming tools, decision
making tools, whiteboards, e-mail, forum, etc)

Table 13.1: The investigated Scenario

13.1 The Scenario
A potential Scenario to be addressed assumes that a CoP of managers has
been established to help decision making about the name and packaging of
a new product to be released in the market. Table 13.1 presents the
environment/situation, practice/activity, actors and resources related to
this Scenario.

FP6-028038

PALETTE D.KNO.03 86 of 103

13.2 Use Cases
CoP’s members may utilize the provided Knowledge Management
services as described in the following use cases. It is clearly noted that the
following use cases are potential, indicative, and by no means exhaustive.

 As far as the “Knowledge Creation and Annotation” service is concerned,
a set of potential use cases for the CoP members (in the context of the
above scenario) is described in Tables 13.2 and 13.3. These knowledge
creation and annotation use cases also apply to the development of the
CoP related ontologies.

Knowledge creation from : Description
Environment Creation of environment descriptions repository
Activities Creation of good and bad practices repository (this

service is closely related to the knowledge
evaluation service).
Creation of related activities repository (e.g. e-mails,
discussion boards)

Actors Creation of user profiles (e.g. static information,
domain of expertise, preferences, activity records,
etc)

Resources Creation of resources repository (e.g. reports, white
papers, statistical reports, market analysis, etc)

Table 13.2: Use cases of knowledge creation service

Annotations on : Description
List of names proposals Annotations regarding name/Packaging description,

proposal creator, aims
List of existing names Annotations regarding name/Packaging description,

owner company
Product description Annotations regarding the shape, colour, weight,

volume, fragile/non fragile, conservation conditions,
recycling options

Product target group(s)
profile

Annotations regarding static information about target
group(s) (e.g. average age, income, places of purchase,
country, etc.)

Decision making
activities

Annotations regarding the activity’s minutes, such as
actor, impact, reactions, etc
Annotations regarding other decision making related
activities, carried out through e-mails, brainstorming
sessions, whiteboards or forums

Table 13.3: Use cases of annotation service

FP6-028038

PALETTE D.KNO.03 87 of 103

 As far as the “Knowledge Retrieval and Dissemination” services is
concerned, potential use cases for the CoP members are described in
Tables 13.4 and 13.5, respectively.

Retrieval of : Description
Practice/activity Retrieve related past cases so as to avoid bad practices

Retrieve past decisions so as to evaluate past choices (this
service is related to the knowledge evaluation service)

Actors Retrieve knowledge regarding the users, such as their
domain of expertise

Resources Retrieve knowledge resources such as reports, white papers,
statistical reports, market analysis, etc

Table 13.4: Use cases of knowledge retrieval service

Dissemination of : Description
Resources Dissemination of documents such as minutes, white

papers, reports, supporting material, etc
Actor profiles Dissemination of actor profiles for expertise management

Dissemination of actor profiles to be considered for the
development of adaptive and/or awareness services

Activity records Dissemination of the activity records towards the shaping
of user profiles (this is related to the “Knowledge Creation
and Annotation” service) and the evolution of the decision
making activity

Table 13.5: Use cases of knowledge dissemination service

 As far as the “Knowledge Presentation and Visualization” service is
concerned, potential use cases are described in Table 13.6.

Presentation and
Visualization of :

Description

Activity Presentation and visualization of the users activities (e.g.
name/packaging proposal, argument supporting a
proposal, etc) Presentation and visualization of the users
interactions Presentation and visualization of the activity’s
outcomes (e.g. decision or inability to reach a decision,
consensus, veto, etc)

Resources Presentation and visualization of resources (see Table 1)
according to their significance, validity, etc (this is related
to the “Knowledge Evaluation” service)

User profiles Presentation and visualization of user profiles
Table 13.6: Use cases of presentation and visualization service

FP6-028038

PALETTE D.KNO.03 88 of 103

 As far as the “Knowledge Evaluation” service is concerned, potential use
cases are described in Table 13.7:

Evaluation of : Description
Name/packaging proposals
and related arguments

Evaluation of the knowledge expressed in the
proposals and arguments supporting (or speaking
against) them

Product target group profiles Evaluation of product target group profiles validity
User profiles Evaluation of user profiles validity
Decision making activity Evaluation of the decision making activity towards

the shaping of good or bad practices Evaluation of
the decision making activity towards the shaping
of good or bad decisions

Table 13.7: Use cases of the evaluation service

 As far as the “Knowledge Evolution and Maintenance” services are
concerned, potential use cases are described in Table 13.8:

Evolution and maintenance of : Description
User profiles Evolution and maintenance of user profiles given

the fact that these are dynamic. This could be
also related to the user activities and use of
Palette services

Resources Evolution and maintenance of resources (see
Table 13.1), in cooperation with the “Knowledge
Creation and Annotation” service

Table 13.8: Use cases of the evolution and maintenance service

FP6-028038

PALETTE D.KNO.03 89 of 103

Chapter 14

Integration with Mediation services
According to the Palette’s DoW (see pp. 30-31), one of the core aims of
our work is to achieve interoperability among the three different sets of
Palette services, i.e. information services, knowledge management
services, and mediation services. Acknowledging that one of the most
dominant practices of CoPs requiring mediation support is decision
making, the integration of KM and Mediation services in particular is
considered as a very important issue towards the satisfaction of CoP
collaboration and communication needs. In this chapter, we justify the
above argument and we present a scenario of KM and Mediation services
integration.

14.1 KM and Mediation interrelation
Empirical evidence shows that collaborative decision making is an
interplay between social and knowledge processes [Schwarz, 2003]. The
social perspective concerns the mechanisms of coordination in the
expression and discussion of views, on which the effects of power
structures and group-thinking play a significant role [Ackermann et al.,
2004]. These mechanisms are in turn responsible for the dynamics of
convergence or divergence of opinions as a CoP deals with an issue. On
the other hand, the conduct of argumentative discourses between decision
makers results in the pooling of group members’ individual knowledge
and expertise [Karan et al., 1996]. As argumentative discourses evolve, the
stakeholders’ knowledge is usually clustered around specific ideas,
solutions and views, while the whole collaboration process can result in
knowledge exchange and reconstruction [Evangelou and Karacapilidis,
2005]. At the same time, such discourses, when appropriately structured
and maintained, may stimulate active participation and encourage
knowledge sharing. Their final outcome is usually a decision, considered
as “piece of knowledge indicating the nature of an action commitment”
[Holsapple and Whinston, 1996]. When decisions are the result of
appropriate (e.g. argumentation-based) reasoning and evaluation
mechanisms, the decision making process also constitutes new knowledge.

Taking the above remarks into account, it becomes clear that the
collection and processing of knowledge is ubiquitous in a decision making
environment. As characteristically stated in [Li and Lai, 2005], the
efficiency and effectiveness of decision making is strongly related to the

FP6-028038

PALETTE D.KNO.03 90 of 103

appropriate exploitation of all possible organizational knowledge
resources. But, in common practice, issues such as information/knowledge
loss or distortion, as well as suboptimal decision making (i.e. not enough
issues and alternatives are explored) during argumentative discourses, are
primary problems of productivity loss. In addition to that, we argue that
the existing organizational knowledge can be made explicit through the
decision making process per se. Similarly, new state-of-the-art knowledge
can be also created and formally represented. As derives, the proper
integration of Knowledge Management and Mediation services can be of
great value for CoPs in such contexts.

14.2 KM and Mediation services integration
scenario
A potential scenario to be addressed in the context of Palette assumes that
a CoP has been established to help managers enhance their organizational
competitive position in the market. Activities such as the above, definitely
advance learning in a CoP. CoP’ members may exploit Mediation services
and register themselves as participants in the associated collaboration to be
conducted. Table 14.1 presents the environment/situation,
practice/activity, actors and resources related to this scenario.

Environment/situation CoP members collaboration towards learning
Practice/activity Mediation, communication, brainstorming,

collaboration, argumentation and decision making
Actors CoP members External actors, moderators (optional)
Resources CoP documents (local or remote) External sources (e.g.

internet) CoPe_it !

Table 14.1: The investigated scenario (CoP mediation activity)

CoPe_it! (see http://copeit.cti.gr) is a web-based prototype
that supports argumentative collaboration. It has been developed within
the Palette context to provide CoPs with the desired Mediation Services
(the final version of CoPe_it! is expected to be ready in M18). Discourses
being held in CoPs can be considered as social processes, and as such,
they often result in the formation of groups whose knowledge is clustered
around specific views of the problem. Following an integrated approach,
CoPe_it! provides CoPs members engaged in such discourses with the
appropriate means to collaborate towards the solution of diverse issues. In
addition to providing a platform for group reflection and capturing of
organizational memory, CoPe_it! augments teamwork in terms of
knowledge elicitation, sharing and construction, thus enhancing the quality
of the overall process and building a collective memory of a CoP. This is
due to its structured language for discussion and its mechanism for the
evaluation of alternatives. Taking into account the input provided by the

FP6-028038

PALETTE D.KNO.03 91 of 103

individual members of a CoP, CoPe_it! constructs an illustrative
discourse-based knowledge graph that is composed of the ideas expressed
so far, as well as their supporting documents. Moreover, through the
integrated reasoning mechanisms, discussants are continuously informed
about the status of each discourse item asserted so far and may reflect
further on them according to their beliefs and interests on the outcome of
the discussion. In addition, CoPe_it! aids group sense-making and mutual
understanding through the collaborative identification and evaluation of
diverse opinions. Furthermore, CoPe_it! provides a shared web-based
workspace for storing and retrieving the messages and documents of the
participants. The knowledge base of CoPe_it! maintains all the above
items (messages and documents), which may be considered, appropriately
processed and transformed, or even reused in future discussions.
Discourse items (e.g. goal, alternatives, and arguments in favor or against)
posted by CoP members in CoPe_it! can be considered as knowledge (or
knowledge to be retrieved from) items.

As derives from the above, CoPe_it! already provides a set of KM

services. Nevertheless, it could be integrated with more specialized KM
services in order to further support the CoP members’ needs. Figure 14.1
presents a possible Scenario of invoking KM services from CoPe_it!.

Figure 14.1: A potential scenario for invoking KM services from CoPe_it!

As shown in figure 14.1, CoPe_it! may communicate with the
“Knowledge Creation and Annotation” service that handles among others
the creation of members’ profiles. Whenever a user wants to contribute to
an ongoing collaboration, CoPe_it! invokes the “Knowledge

FP6-028038

PALETTE D.KNO.03 92 of 103

Representation and Visualization Tool” that handles the expression of tacit
and explicit knowledge. This last tool may communicate with the
“Knowledge Retrieval and Dissemination” services which in turn are able
to carry out activities related to searching and retrieving of related
documents from diverse (local or remote) knowledge and data bases.
Then, one may exploit the features and functionalities provided by either
the “Knowledge Evaluation” or the “Knowledge Evolution and
Maintenance” services, which enable the elaboration and synthesis of
knowledge to be shared among the members of the CoP. It is through the
“Knowledge Retrieval and Dissemination” service that knowledge is
uploaded to CoPe_it! , which in turn may handle issues of dissemination
of knowledge to the appropriate CoP’ members (e.g. based on their rights
and responsibilities). Furthermore, CoPe_it! may invoke the “Knowledge
Creation and Annotation” service that facilitates the annotation of already
expressed knowledge (before storage), according to the CoP-dependent
ontology models. Another potential use case concerns the evaluation of
the knowledge expressed (e.g. in terms of validity, etc.) from each user
through the “Knowledge Evaluation” service.

 Table 14.2 summarizes the abovementioned and presents additional use
cases of invoking KM services from CoPe_it!. It is noted again here that
the use cases presented in this section are potential, indicative, and by no
means exhaustive.

FP6-028038

PALETTE D.KNO.03 93 of 103

KM Service Description
Knowledge Annotation and
Creation

Creation of user profiles
Creation of new knowledge (e.g. by combining previous
pieces of knowledge, by reconsidering past cases, etc.)
Annotation of tacit and explicit knowledge expressed
during argumentation (e.g. creator, relative knowledge
items, etc)

Knowledge Presentation and
Visualization

Presentation and visualization of tacit and explicit
knowledge
Presentation and visualization of argumentation (includes
diverse discourse items)
Presentation and visualization of collaboration results
Presentation and visualization of decision making
Presentation and visualization of conflicts, alliances, etc.
Presentation of connections between the items and their
creators

Knowledge Retrieval and
Dissemination

Search and retrieval of related documents from diverse
(local or remote) knowledge and data bases
Dissemination of knowledge according to users expertise,
needs, interests
Knowledge retrieval from the connections between the
items and their creators

Knowledge Evaluation Evaluation of the tacit and explicit knowledge expressed
during argumentation
Evaluation of retrieved items validity
Evaluation of users’ credibility (according to his past
actions, position, authority etc.)
Evaluation of retrieved items relevance to issue under
consideration

Knowledge Evolution and
Maintenance

Elaboration and synthesis of knowledge to be shared among
the members of the CoP (appropriate handling of expressed
tacit and explicit knowledge)
Evolution and maintenance of user profiles
Evolution and maintenance of retrieved and new
knowledge
Synthesis (and maintenance) of knowledge expressed
during argumentative collaboration Synthesis (and
maintenance) of retrieved knowledge

Table 14.2: Use cases of invoking KM services from CoPe_it!

FP6-028038

PALETTE D.KNO.03 94 of 103

FP6-028038

PALETTE D.KNO.03 95 of 103

Chapter 15

Conclusion
This deliverable proposed a preliminary specification of basic KM
services interesting for CoPs:

• Individual or collaborative knowledge creation services with
support to ontology creation, and annotation;

• Knowledge retrieval and dissemination;
• Knowledge presentation and visualization;
• Knowledge evaluation;
• Knowledge evolution and maintenance.

We described their functionalities, their possible interfaces with other
services and their interfaces for interaction with the human user. Based on
the available descriptions of CoPs (for example, the CoP “Telecom-INT -
UX11 Module”), we gave examples of possible uses of these basic KM
services by CoPs.
We also described various tools available among the partners: Generis,
Corese, SeWeSe, MEAT, Virtual Staff. Provided that some extensions
and/or adaptations will be developed, in order for them to be usable in the
context of CoPs, these tools could offer some of these services.
We also proposed a web service-oriented architecture enabling to offer all
such KM services in a modular way, with interfaces both towards end-
users but also towards other KM services or even towards other Palette
services (such as Mediation services).
The interoperability of this architecture is illustrated by examples of use
cases of invocation of KM services from the mediation tool developed in
WP4. Another interoperability issue that needs to be investigated is how to
integrate the proposed KM services with the tools presently used by the
CoPs considered in Palette.

FP6-028038

PALETTE D.KNO.03 96 of 103

15.1 Integration with CoPs Tools
Several solutions may be envisaged in the interaction between CoPs tools
and KM services:
1. We may integrate new services to the existing tools. We will attempt

to integrate them as web services by modifying the existing tools
(keeping in mind the strong constraints related to legal and technical
issues).

2. We may keep the existing tools as such, but render them accessible as
web services (a SOAP Layer may have to be developed). This will
allow us to use proprietary software provided that they have an
available API. In this case, we will develop a portal allowing the
integration of several applications (ours and the other existing
applications). If a relative unification of approaches is necessary, a
service ensuring the connection between the different applications will
be vital (probably employing the meta-data repository around which
all services gravitate). The SOA architecture permits a user to log on
to a portal (possibly installed and configured by a CoP administrator)
and to choose the services (existing applications or Palette services)
which interest him from a given available set of applications and
services. He may therefore recognize tools he is already familiar with
as part of a vaster application.

3. We may ignore the tools already used, but try to preserve all
functionalities for the CoPs. Then we have the choice between (a)
developing the services implementing the functionalities of the
eliminated tools and (b) replacing these tools by other Open-Source
tools which we may adapt. In the latter case, the implementation effort
might obviously be enormous and the risk of and rejection by the CoPs
is very strong.

4. Last, we may ignore the tools already used, but simply propose our
new tools offering new functions in comparison with their previous
tools and let the members of the CoPs use both their previous tools and
our new tools according to their needs.

As we need more information both from the Palette’s CoPs (mainly
through WP1), we cannot take yet a decision on which solution will better
match the needs of Palette, since we aim at offering tools both generic
enough and usable by real CoPs. The decision will be taken in cooperation
with WP5, the Palette’s work package dedicated to integration.

15.2 Further Work
As a further work, we will:

FP6-028038

PALETTE D.KNO.03 97 of 103

• Study thoroughly the deliverables of WP1 and the descriptions of
the CoPs,

• Make explicit our methodology for building the CoP-dependent
ontologies (Task 3.2);

• Refine the KM services specified in this deliverable (Task 3.3) and
make explicit the concepts needed to be included in the CoP-
dependent ontologies, on which the foreseen KM services would
rely;

• Build the CoP-dependent ontologies according to this
methodology, using the CoP-available information, and being
guided by the meta-models defined in Task 3.1;

• Develop the KM services (with adaptation of the partners’ existing
tools when needed).

FP6-028038

PALETTE D.KNO.03 98 of 103

FP6-028038

PALETTE D.KNO.03 99 of 103

Table of authors

Introduction ___
___Rose Dieng-Kuntz & Adil El Ghali

Knowledge Creation & Annotation __________________________________
_______________________________ Amira Tifous, Rose Dieng-Kuntz & Adil El Ghali

Knowledge Retrieval & Dissemination________________________________
___ Amira Tifous & Rose Dieng-Kuntz

Knowledge Presentation & Visualization______________________________
___Adil El Ghali & Fabien Gandon

Knowledge Evaluation ___
______________________ Sylvain Dehors, Adil El Ghali, Alain Giboin & Amira Tifous

Knowledge Evolution & Maintenance ________________________________
__ Rose Dieng-Kuntz

Generis ___
____________________________ Thibault Latour, Patrick Plichart & Geraldine Vidou

Corese __
___ Olivier Corby

SeWeSe ___
___ Fabien Gandon & Priscille Durville

Meat__
__ Rose Dieng-Kuntz

Virtual Staff ___
__ Rose Dieng-Kuntz

Architecture of KM services __
__Adil El Ghali

Scenarios of usage___
__ Christina Evangelou

Integration with Mediation services __________________________________
__ Christina Evangelou

Conclusion___
___Rose Dieng-Kuntz & Adil El Ghali

FP6-028038

PALETTE D.KNO.03 100 of 103

FP6-028038

PALETTE D.KNO.03 101 of 103

Bibliography
[Ackermann et al., 2004] Ackermann, F., Eden, C., and Brown, I.

(2004). The Practice of Making Strategy : A Step-by-Step Guide.
Sage Publications Inc.

[Buffa, 2006] Buffa, M. (2006). Sweetwiki: Semantic web
enabled technologies in wiki. In Proc. of WikiSym 2006.

[Chein et al., 1998] Chein, M., Mugnier, M., and Simonet, G.
(1998). Nested graphs: A graph-based knowledge representation
model with FOL semantics. In Proc. of the 6th International
Conference on Principles of Knowledge Representation and
Reasoning, KR’98, pages 524–534, Trento, Italy.

[Corby et al., 2000] Corby, O., Dieng, R., and Hébert, C. (2000).
A conceptual graph model for W3C resource description
framework. In Proc. of the 8th International Conference on
Conceptual Structures, ICCS’00, number 1867 in LNCS, pages
468–482, Darmstadt, Germany. Springer-Verlag.

[Corby et al., 2004] Corby, O., Dieng-Kuntz, R., and Faron-
Zucker, C. (2004). Querying the semantic web with the CORESE
search engine. In de Mantaras, R. L. and Saitta, L., editors, Proc.
of the 16th European Conference on Artificial Intelligence
(ECAI’2004), pages 705–709, Valencia. IOS Press.

[Corby et al., 2006] Corby, O., Dieng-Kuntz, R., Faron-Zucker,
C., and Gandon, F. (2006). Searching the semantic web:
Approximate query processing based on ontologies. IEEE
Intelligent Systems Journal, 21(1).

[Corby and Faron-Zucker, 2002] Corby, O. and Faron-Zucker, C.
(2002). Corese: A corporate semantic web engine, in proc. of the
workshop on real world rdf and semantic web applications. In
Proc. of 11th International World Wide Web Conference,
WWW2002, Honolulu, Hawai, USA.

[Delteil et al., 2001] Delteil, A., Faron, C., and Dieng, R. (2001).
Extensions of RDFS based on the conceptual graph model. In
Proc. of the 9th International Conference on Conceptual
Structure, ICCS2001, number 2120 in LNAI, pages 275–289,
Stanford, CA, USA. Springer-Verlag.

[Dieng-Kuntz et al., 2004] Dieng-Kuntz, R., Minier, D., Corby,
F., Ruzicka, M., Corby, O., Alamarguy, L., and Luong, P.-H.
(2004). Medical ontology and virtual staff for a health network.
In Proc. of EKAW’2004, pages 187–202, Whittlebury Hall, UK.

[Dieng-Kuntz et al., 2006] Dieng-Kuntz, R., Minier, D.,
Ruzicka, M., Corby, F., Corby, O., and Alamarguy, L. (2006).
Building and using a medical ontology for knowledge

FP6-028038

PALETTE D.KNO.03 102 of 103

management and cooperative work in a health care network.
Computers in Biology and Medicine, 36(Issue 7-8):871–892.

[Evangelou and Karacapilidis, 2005] Evangelou, C. and
Karacapilidis, N. (2005). Knowledge-based strategy
development: An integrated approach. In Proceedings of I-
KNOW’05, pages 4–11, Graz, Austria.

[Holsapple and Whinston, 1996] Holsapple, C. and Whinston, A.
(1996). Decision Support Systems: A Knowledge Based
Approach. West Publishing Company.

[HP,] HP. Arp from hp. http://www.hpl.hp.com/semweb/arp.htm.
[Karan et al., 1996] Karan, V., Kerr, D., Murthy, U., and Vinze,

A. (1996). Information technology support for collaborative
decision making in auditing: An experimental investigation.
Decision Support Systems, 16:181–194.

[Khelif et al., 2005a] Khelif, K., Dieng-Kuntz, R., and Barbry, P.
(2005a). MEAT: An experiment memory for the biochip domain.
In Proc. of the Third International Conference on Knowledge
Capture KCAP’05 (Poster), Banff, Canada.

[Khelif et al., 2005b] Khelif, K., Dieng-kuntz, R., and Barbry, P.
(2005b). Semantic web technologies for interpreting DNA
microarray analyses: the MEAT system. In Proc. of the 6th
International Conference on Web Information Systems
Engineering WISE’05, New York.

[Khelif et al., 2006] Khelif, K., Dieng-kuntz, R., and Barbry, P.
(2006). Web sémantique pour la mémoire d’expériences d’une
communauté scientifique : le projet MEAT. In Actes des 6èmes
journées d’Extraction et de Gestion de Connaissances, EGC’06,
pages 175–186, Lille, France.

[Krafzig et al., 2005] Krafzig, D., Banke, K., and Slama, D.
(2005). Enterprise SOA: Service Oriented Architecture Best
Practices. Prentice Hall.

[Li and Lai, 2005] Li, E. and Lai, H. (2005). Collaborative
work and knowledge management in electronic business.
Decision Support Systems, 39(4):545–547.

[Moussavi, 1999] Moussavi, M. (1999). A case-based approach to
knowledge management. In Aha, D., editor, Proc. of the AAAI’99
Workshop on Exploring Synergies of Knowledge Management
and Case-Based Reasoning, volume WS-99-10, Orlando,
Florida. AAAI Press.

[Ruzicka et al., 2004] Ruzicka, M., Dieng-Kuntz, R., and Minier,
D. (2004). Virtual staff - software tool for cooperative work in a
health care network. Technical Report RR-5621, INRIA.

FP6-028038

PALETTE D.KNO.03 103 of 103

[Salvat, 1998] Salvat, E. (1998). Theorem proving using graph
operations in the conceptual graph formalism. In Proc. of the
13th European Conference on Artificial Intelligence, ECAI98,
pages 356–360, Brighton, UK.

[Schools, 2006] Schools, W. (2006). SOAP Tutorial.
http://www.w3schools.com/soap/default.asp.

[Schwarz, 2003] Schwarz, M. (2003). Strategy Process: Shaping the
Contours of the Field, chapter A Multilevel Analysis of the
Strategic Decision Process and the Evolution of Shared Beliefs,
pages 110–136. Blackwell Publishing, Oxford.

[Schulte and Natis, 2003] Roy W. Schulte and Yefim V. Natis,
Introduction to Service-Oriented Architecture, Research Note,
14 April 2003, Gartner.

[Snell and Tidwell, 2001] James Snell. Doug Tidwell. Pavel
Kulchenko. Programming Web Services with SOAP. 2001.
O'Reilly.

[Southey and Linders, 1999] Southey, F. and Linders, J. G.
(1999). Notio - a Java API for developing CG tools. In Proc. of
the 7th International Conference on Conceptual Structures,
ICCS’99, number 1640 in LNAI, pages 262–271. Springer-
Verlag.

[Sowa, 1984] Sowa, J. (1984). Conceptual structures: Information
Processing in Mind and Machine. Addison-Wesley.

[Weed, 1971] Weed, L. D. (1971). The problem oriented record as
a basic tool in medical education. Patient Care and Clinical
Research. Ann Clin Res, 3(3):131–134.

