
HAL Id: hal-00190562
https://telearn.hal.science/hal-00190562

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VCLab as an Example of GRIDifying Virtual Scientific
Experiments
Piotr Szczytowski

To cite this version:
Piotr Szczytowski. VCLab as an Example of GRIDifying Virtual Scientific Experiments. 1st In-
ternational ELeGI Conference on Advanced Technology for Enhanced Learning, 2005, Vico Equense
(Naples), Italy. pp.9. �hal-00190562�

https://telearn.hal.science/hal-00190562
https://hal.archives-ouvertes.fr

VCLab as an Example of GRIDifying Virtual Scientific Experiments

VCLab as an Example of GRIDifying Virtual
Scientific Experiments

Piotr Szczytowski

Institute of Automation and Computer Control, Ruhr-Universität Bochum
pszczytowski@atp.rub.de

Abstract

This paper describes and summarizes the current state of the development for making the Virtual Con-
trol Laboratory (VCLab) a GRID application within the ELeGI project. It introduces shortly into GRID
techniques and shows how this GRIDifying process is performed to offer virtual scientific experiments
(VSE) on the GRID. The architecture and some technical details of the prototype implementation are pre-
sented. The next steps in the development are outlined concerning the collaboration aspects of
conducting VSEs. The authoring of VSEs is sketched by some proposals of authoring tools. A vision
into the future emphasizes the VCLab as a component in a learning environment with a new learning
paradigm.

1. INTRODUCTION

The Virtual Control Laboratory (VCLab) [1] has been originally developed as a tool to support students in control
system design using professional simulations of automation processes. Because of its generic character, there are
no restrictions to make use of it also in other scientific domains. VCLab uses a 3D virtual user environment to rec-
reate and to visualize experimenting plants. One can interact with a displayed scene in a similar fashion like with
real devices. The dynamical behavior of the plant is generated by a simulator driven by simulation models.
The first implementation of this system to perform Virtual Scientific Experiments (VSE) was running locally on a
computer inside an internet browser, with the content being delivered from the web. Similar solutions are quite
common [2] [3]. They have obviously drawbacks: the user is required to pose the machine capable of running de-
manding simulations and has to develop or install simulation software.
From the system type of viewpoint, VCLab is not a learning system, it should be rather considered as a technologi-
cal system, which can deliver components for a learning system with VSE. One task within the European Union
funded ELeGI project [4] aims at the redesign and reimplementation of the current solution in order to make it GIRD
aware. Implemented as a GRID service it will be later integrated into the Intelligent Web Teacher (IWT), which is a
learning system currently also under reimplementation within the ELeGI project.
This paper presents the first results from the VCLab reimplementation within the ELeGI project. At first, for the in-
experienced a short introduction into the terminology of GRID computing [5] is given and into the software platforms
used in the context of the VCLab reimplementation. The second chapter is of technical character and is devoted to
the discussion of the new VCLab implementation in a GRID environment. This chapter reflects the current imple-
mentation state. The following chapters are less technical and concern about future plans. In the focus are works
for adding new GRID-based collaborative features to VSEs. The fourth and fifth chapter covers proposals for future
implementations of learning modes and for developing GRID-based tools supporting the authoring of the content to
be used by VCLab.

1.2. The GRID
GRID computing means applying resources of many computers in a network to solve larger problems – commonly
seen as computational problems. In the case of our project, we consider computer resources as services delivered
by participants of the ELeGI project, which are used for enriching and improving the e-learning environment.

1.3. OGSA, OGSI.NET, WSRF.NET and GrASP
OGSA stands for Open Grid Service Architecture. It is a standard defining which requirements must be met by a
service implementation in order to function as a GRID service.

VCLab as an Example of GRIDifying Virtual Scientific Experiments

VCLab as an Example of GRIDifying Virtual Scientific Experiments

OGSI.NET [6] (Open Grid Service Infrastructure) and its successor WSRF.NET [7] (Web Service Resource
Framework) are two implementations of the OGSA. Both were developed at the Virginia University and both, as
theirs names indicate, are based on the Microsoft .NET Framework. They deliver software base classes and port-
types to implement user defined GRID services.
WSRF.NET is a successor of OGSI.NET and the conversion of the service program code from OGSI.NET to
WSRF.NET is a pure mechanical task. The WSRF tends to extend the idea of Web Services by adding statefulness
and management capabilities to them.
GrASP [8] (Grid-based Application Service Provision) is a GRID middleware for hosting and management of GRID
services compatible with the OGSI.NET implementation. GrASP allows the dynamic instantiation of services, their
accounting and publishing in web catalogs. GrASP is currently considered to be converted from OGSI.NET to
WSRF.NET, because only the second option is under further development.

2. VCLAB AS A GRID APPLICATION

VCLab in its new GRIDified version has been split into:
• GRID services, namely the Computation Service responsible for the execution of simulations and for streaming

results, and the DataSupply Service providing content delivery,
• Web Application consisting of a client and server side, which delivers an interface for the user and monitors the

execution of the GRID services,
• GRID middleware responsible for the management of services, mainly their creation and disposal.
This modular architecture according to Figure 1 has some added value; it allows the reuse of the services created
for VCLab within other applications and it preserves the scalability of the software. Such applications may run on
many machines still being accessible from one central place.
In the following, the technical details of functioning and implementation of this architecture are described.

Browser

VRMLProxy
ActiveX

Component
or

 HotOGSI
Java Applet

VRML scene

Ja
va

sc
rip

t

Server

Server

Server

Server

G
R

ID
 V

C
La

b
W

eb
 A

pp
lic

at
io

n

Server(s) side

GrASP
Gateway

HTTP

HTTP

SOAP

SOAP

Client side

O
G

SI

C
om

pu
ta

tio
n

Se
rv

ic
e

O
G

SI

C
om

pu
ta

tio
n

Se
rv

ic
e

O
G

SI

C
om

pu
ta

tio
n

Se
rv

ic
e

O
G

SI
D

at
aS

up
pl

y
Se

rv
ic

e
O

G
SI

D
at

aS
up

pl
y

S
er

vi
ce

create
service()

service
handle

 in
st

an
tin

at
e

se
rv

ic
e

 in

st
an

tin
at

e
se

rv
ic

e

SOAP
stream

FIGURE 1. Overview about the VCLab GRID-based architecture

2.1. Computation Service
The Computation Service mainly delivers computational capabilities by means of the evaluation of mathematical
expressions and allows running simulations of dynamical systems. Simulation output is delivered in a XML format-
ted stream. Mathematical expressions in symbolical or numerical form can be pushed to the service or received
from it in LaTeX format.

VCLab as an Example of GRIDifying Virtual Scientific Experiments

VCLab as an Example of GRIDifying Virtual Scientific Experiments

It is implemented as an OGSI.NET-based service and is easily integrated in the GRID environment by GrASP, see
Figure 1. From the implementation perspective, this service in fact mainly acts as a proxy between the client and
the Computation Engine installed on the same server. It provides the required interface for integrating with the
GRID, as shown in Figure 2.
Each server that hosts this service may run several instances of it. The communication between a client or a pro-
gram that acts on behalf of the client and this service is performed by HTTP SOAP binding. This makes it mainly
transparent to firewalls and NAT solutions. In order to avoid running the Computation Engine inside the service
process itself and to move the management of the Computation Engine processes to a centralized location, the
Computation Engine Proxy Server has been developed as an additional application. The communication with this
application is performed using the .NET Remoting inter-process communication mechanism. The instances of this
service make calls to this single proxy server. For all computational sessions the proxy hosts an instance of a COM
control, which takes the responsibility for the direct communication with the Computation Engine. The COM ap-
proach is necessary, because the managed version of a runtime environment not always provides a mechanism for
the interoperability with an engine. The use of the COM allows a greater flexibility of choosing the Computation En-
gine. In the case of switching to another engine, only a revision of the COM library is necessary and the GRID ser-
vice and its interface remains still intact.

Server

O
G

S
I C

om
pu

ta
tio

n
S

er
vi

ce

Computation Engine
Proxy Server

Computation
Engine

Computation
Engine

Computation
EngineO

G
S

I C
om

pu
ta

tio
n

S
er

vi
ce

.NET Remoting

 .N
ET

Rem
oti

ng

C
O

M

 C
O

M

 COM

SOAP

SOAP

SOAP

SOAP

Client

Client

Client

Client

streamClient

streamClient

FIGURE 2. Computation Service architecture

Each instance of the Computation Service may instantiate multiple instances of the engine. The proxy server takes
the responsibility of synchronized access to these instances. But the responsibility for the closure of orphaned in-
stances of engines still remains on the service side. The proxy server acts also as some type of cache. This cach-
ing means that the server - instead of shutting down engines - clears only their environments and keeps them in an
idle state. This guarantees a quicker response in case of new requests.
As shown in Figure 3, the execution of the Computation Service is performed within threads. The task of the Socket
Threads - each running for a simulation session - is to retrieve results from the Computation Engine and to forward
it to the clients reformatted in XML format. For streaming purposes the User Datagram Protocol (UDP) is used for
the sake of efficiency. It is a connectionless protocol; therefore it does not carry transmission control data within
packets. It is an information overhead because for streaming purposes there is no need for the detection or trans-
mission of lost packets. Unfortunately, this protocol has limitations when it comes to establish this connection with a
client within NAT networks. The Listening Thread helps to establish the connection with clients, which do not have a
public IP address and therefore are unable to receive the default stream. In this case the client has to initiate a TCP
connection on a port, which is retrieved by a call to the service. After establishing a connection the client sends a
session identifier and the new connection is added to the connection pool of the proper Socket Thread. Moreover,
the Computation Service needs one more thread called Monitoring Thread, which has to monitor for orphaned ses-
sions and to close them in order to release the associated resources.

VCLab as an Example of GRIDifying Virtual Scientific Experiments

VCLab as an Example of GRIDifying Virtual Scientific Experiments

OGSI Computation Service

Worker
ThreadWorker

ThreadSocket
Thread

Monitoring
Thread

Listening
Thread

open connection

stream
stream

ad
d

co
nn

ec
tio

n
to

 p
oo

l

SOAP

SOAP

.NET
Remoting

FIGURE 3. Details of the Computation Service

2.2. DataSupply Service
The tasks of the DataSupply Service are storing and managing simulation models. It provides the capabilities of
uploading new simulation models, querying the database about its current content and deleting obsolete simulation
data.

Server

O
G

S
I

D
at

aS
up

pl
y

S
er

vi
ce

O
G

S
I

D
at

aS
up

pl
y

S
er

vi
ce

SOAP

SOAP

SOAP

SOAP

Client

Client

Client

Client

V
irt

ua
l

D
ire

ct
or

yHTTP

Data Base

File RepositoryHTTP

query

query

store file

FIGURE 4. DataSupply Service architecture

The DataSupply Service, similarly to the Computation Service, is implemented as an OGSI.NET service. Its archi-
tecture is shown in Figure 4. The server may host several instances of the DataSupply Service. The communication
with the outside world is using HTTP SOAP binding. The access to simulation models is provided in form of a Vir-
tual Directory, which publishes the content of the File Repository. All instances inside the server share a common
database and File Repository. Calls to this service cause the executions of queries to the database and their results
are returned to the client. When uploading, new files are stored and the database is updated to point to their loca-
tion.
There remain two problems for the DataSupply Service not yet solved. One of them is the user authentication. It is
obvious that the access to such an option like uploading and deleting simulation data should be allowed only for
trusted users. This problem can be solved by an own authentication service or by relying on the built-in GrASP se-
curity subsystem. The other problem requiring consideration is the synchronization of the content of the DataSupply
Services spread across the GRID. One possible solution is a static internal service responsible for replication, which
would be situated on each of the servers hosting a DataSupply Service.

2.3. VCLab Web Application and interaction with the services
In order to deliver the capabilities of the described services, the Web Application has been developed to control
services and to provide an interface suitable for the user, see Figure 1. The Web Application consists of a compo-
nent on the client and an application on the server side.

VCLab as an Example of GRIDifying Virtual Scientific Experiments

VCLab as an Example of GRIDifying Virtual Scientific Experiments

On the client side, inside the internet browser, the VRMLProxy ActiveX Component or the corresponding HotOGSI
Java Applet is running. The task of these controls is to provide a binding between simulation results retrieved by a
stream from the Computation Service to the 3D scene displayed in the browser. These controls also provide the
communication in reverse direction. Actions taken by the user during interaction with the 3D scene are translated
into commands for the Computation Service and sent to it using the HTTP SOAP binding. The installation of the
client side components is done automatically. Therefore the user does not need to download the software manually,
to install and to configure it.
On the server side the task of the Web Application is to call for the creation of the underlying services and their later
coordination. So it is an extension of the GrASP middleware for visualizing the resources in a suitable manner for
the user. The Web Application, the OGSI services and the GrASP Gateway may run on separate computers or
share the same server or severs.
On start of the Web Application, it requests the GrASP Instantiation Service to create instances of those services
required to run the application, in this case the Computation and DataSupply Service. The services to be created
are described by a SLA document, which allows the customization of the Quality of Service aspects of newly cre-
ated services. In the case of a successful instantiation of these services, GrASP returns their handles to the Web
Application. GrASP can instantiate the service on any of the servers, which provide the corresponding factory for
the service being created and which match the requirements specified by the requestor contained in the SLA. The
Web Application uses handles to communicate directly with the services. When a user opens the main page of ap-
plication, it invokes the DataSupply Service methods for listing accessible simulations and displaying them to the
user. The communication between the application and the user takes place using the HTTP protocol. When a user
decides to start a simulation, the Web Application calls the Computation Service to create a new instance of the
Computation Engine and returns its session identifier. The Web Application renders the simulation page to the user.
It provides for the component handle to the Computation Service and for the session identifier earlier obtained.
In case of more clients willing to run a simulation than a single instance of the Computation Service can handle, the
Web Application requests the GrASP Instantiation Service to create an additional instance of the service. After re-
ceiving the new handle, the Web Application adds it to its pool of services. The same steps are undertaken in the
case of the DataSupply Service. Thresholds are defined by the configuration file of the Web Application for adding
new instances of the service.

3. THE COLLABORATION ASPECT OF VCLAB

VCLab in its original form provides a very limited support for experiments in a collaborative learning environment.
Simulations running on the server can be observed by participants other than the simulation creator, but only in
passive mode. This means that they cannot interact with running simulations. Nonetheless, this option provided by
the Computation Service may be the basis for further developments of a fully fledged collaboration environment.
Each simulated experiment can be made accessible to all participants, which will take part in it. Participants may
pass control over the experiment to each other. This conception is described in the following sections.

3.1. Participants roles in the collaborative environment
One of the important aspects of defining collaboration in e-learning is the definition of roles of participants and the
assign of these roles to them. In Figure 5, similarly to many pedagogical approaches, we propose to model four dis-
tinct roles within a collaboration environment. These roles are Author, Tutor, Learner and Experimental Plant.

VR Environment

Master

Experimental Plant

Learner
1 Tutor AuthorLearner

2
Learner

n
collaborate collaborate

control

collaborate

contro
l

observe

observe

ob
se

rv
e

assign/revoke priviliges

FIGURE 5. Simplified model of a collaborative environment

VCLab as an Example of GRIDifying Virtual Scientific Experiments

VCLab as an Example of GRIDifying Virtual Scientific Experiments

The Author does not directly take part in the collaboration activities. Its tasks are preparing the environment by
means of defining experiments, tasks for learners, instructions, designing graphics and so on. The Author object
does not have to represent a single person, it may be a team responsible for authoring the learning content (mod-
els, graphics, sounds, etc.)
The Tutor is a privileged participant of the collaboration activities. Its tasks are to provide the content to learners, to
monitor their progress, to supervise experiments, to give hints, explanations and advice, to answer learners’ ques-
tions, which may occur during the learning process.
The Experimental plant represents the modeled knowledge, which learners should gain during experimenting with it.
The Learner role is described by a learner model. The Learner is allowed to interact with the experiment in active
and in passive mode. Only one Learner is allowed to work with the plant at a moment. Such a Learner is marked in
Figure 5 as a “Master”.
Besides roles, there is also a need for relations between them to be defined.
The Author - Tutor relation requires the collaboration between these two figures. The Tutor has to be instructed
about the created content and has to be provided with possible scenarios. The Tutor has to provide feedback re-
lated to the pedagogical aspect of the content.
Author - Experimental Plant, this relation may be described using term transpose. The Author models the university-
level knowledge in form of the experimental plant. The plant is being described by a set of model equations using
tools designed for this purpose. Such a created simulation model is being connected to the 3D visual representation
of the experiment. The Author decides also how knowledge should be delivered to the learners. That means he/she
creates scenarios for the usage of experiments.
The Author - Learner relation is not direct, an indirect connection is maintained by the knowledge.
The Tutor - Learner relation may be described using the terms guide and advice. The Tutor has the responsibility
for providing the knowledge in understandable and accessible manner to the learners. The Learner may ask the
Tutor for guidance in case of difficulties in solving a particular problem and may also confront their findings with ex-
pected results. The Tutor decides about assigning and revoking privileges to control the simulation to the Learners.
He/She may also himself control the simulation to show an example or explain an experiment.
The Tutor - Experimental plant relation is based on the management of knowledge by the Tutor. The Tutor has to
define the course in the frame of experiments and scenarios delivered by the Author.
The Learner - Learner relation is mainly collaborative. The Learners work with each other by communicating and
passing among each other the control over the Experimental Plant.

3.2. Collaborative environment - architecture
Our approach for implementing a collaborative environment with the roles sketched above would incorporate exist-
ing GRID services by means of orchestration to build a new collaboration service as it is shown in Figure 6.
The task of the Collaboration Service is to provide a virtual environment, in which participants of a learning course
could meet in a similar fashion to a classroom meeting. The service should act as a collaboration server, which
communicates with all participants of a course/meeting/lesson both in visual and textual form, and controls their
access to experiments. Experiments within the Collaboration Service are maintained by the orchestrated Computa-
tion and DataSupply Services.

Collaboration Service

DataSupply service
DataSupply ServiceComputation

service

Computation
Service

GrASP Service Orchestrator

Collaboration Server

FIGURE 6. Collaboration Service architecture

The virtual world can be implemented using VRML technology in the same way as it is implemented in the current
version of VCLab. Every instance of the Computation Service could be responsible for simulations connected to the
experiment.

VCLab as an Example of GRIDifying Virtual Scientific Experiments

VCLab as an Example of GRIDifying Virtual Scientific Experiments

The participants of an experiment will be represented by their avatars capable of operating the plant, displaying
mimics and gestures, which will simplify the communication by imitating a real world behavior. This is illustrated in
Figure 7.

FIGURE 7. VR Collaborative environment

3.3. Collaborative learning techniques in the context of VCLAB
Implementing a 3D collaboration environment supported by the Collaboration Service, in which people can meet,
being represented by avatars imitating persons, allows main techniques for collaborative learning.
One of them is the so called Jigsaw method. It is based on organizing learners in groups and specializing members
of every group in one particular problem. After completing the tasks by groups, groups are reorganized in such
manner that each new group consists of one member of every previously existing group. Learners within new
groups share experiences gathered in the previous phase. We may easily imagine such a form of collaboration in
the context of the proposed collaboration environment. In the first step, every group of learners may be assigned to
one of each simulation. After completing the experiment the groups may be reformed in respect of the described
technique and members of the group may meet in a virtual classroom for a chat session, during which they ex-
change their gained knowledge.
Similarly, the concept of learning circles may be realized. Each local learning group may be represented by an ava-
tar in the 3D collaboration environment.

4. LEARNING MODES

Our proposal foresees three learning modes: guided, supported and free. Figure 8 shows a course in form of con-
nected task nodes with possible paths. This kind of approach is called project oriented [9]. In the guided mode the
learner follows a predefined path of tasks and subtasks, which must be followed and lead to the goal.

Start
End

Task

Task
Task

Task

Task

Task

Task
Task

FIGURE 8. Example model of learning course

The supported mode means that the learner sees all direct connections to the next tasks and the recommended
task is suggested, although the learner can choose the next step on his/her own.
In the free mode, all direct connections to the next task are visible and the user has to choose on his/her own, which
path to follow. If a path is not chosen wisely it may lead to a dead end.
In order to implement the proposed learning modes, it is necessary to implement the software, which would handle
the task of controlling learner doings. Such software is called Task Machine.

4.1. Task Machine
The Task Machine stores tasks and subtasks and associate with them paths. These data are being used to let the
learners navigate through the content of the course. The combination of tasks and paths defines a finite amount of

VCLab as an Example of GRIDifying Virtual Scientific Experiments

VCLab as an Example of GRIDifying Virtual Scientific Experiments

states in which the user can find oneself. The Task Machine stores for every user the history of the progress and
the current state. So by a new visit to the course site, the user may continue from the point he/she left.
The Task Machine will be implemented also as a GRID service. So course data will be stored on a server side as-
suring that they won’t be temper with and won’t be lost. Implementing the Task Machine as a service one important
aspect must be taken into consideration, namely, whether the task machine can be created dynamically or there
should be only one instance of this service. In the case of a dynamic creation of the service by each visit of the
learner, the Task Machine could be instantiated on another server that causes problems localizing data associated
with the user. If only one instance of this service existed, the problem would have disappeared. But such a solution
would be probably too radical. Another approach would be, placing a few static instances of the service on several
servers and add a replication capability to the service.

5. THE AUTHORING TOOLS

In order to take full advantage of the new environment a set of tools is required, which would aid in the creation of
the necessary content for the GRID e-learning environment. There are a few tools, which we take into considera-
tion, both for the learner itself and for the author.

5.1. The Simulation Authoring Tool
Tools such as Simulink provided within the Matlab environment are too complex for the purpose of creating the con-
tent for our environment. Such tools still can be used, but it is obvious that some additional intermediate tool is
needed, which would simplify this process. Such a tool should deliver predefined elements for designing experi-
ments. The repository of such elements could be stored and managed by a new GRID service or an extended ver-
sion of the DataSupply Service. Newly built simulation models should be also stored back to the repository to be-
come building blocks for further more complex simulations. The tool itself should be accessible through the web or
even embedded into the virtual collaboration environment. So it could be used by the learner to build ad-hoc new
experiments or to redesign existing ones to check new theories.
This tool should also allow automatically publication of a newly created content, so that it would be accessible for
other tools.

5.2. The Visual Object Authoring Tool
Similarly to the Simulation Authoring Tool, the Visual Object Authoring Tool should consist of a repository of prede-
fined elements. It should provide an easy way for interfacing simulation models with the virtual environment by map-
ping handles automatically to the scenes with the simulation variables. Newly built objects should be stored back to
the DataSupply Service and then can be reused as elements for building larger environments.

5.3. The Task Machine Content Creator
Preparing the content for the Task Machine also requires additional support in the shape of the authoring tool. It is
important that such a tool would be capable of the validation of the created learning paths. It should also make use
of the repository of already created simulation models by the previously described tools. The main principle, on
which such a creator would work, is to use author input to automatically generate the GRID service code and to
compile it. Such a compiled service would be added to the GRID.

5.4. The authoring tools interdependency
There is a possibility or even necessity for some level of integration between the tools mentioned and the VCLab
GRID infrastructure.
The authoring tools should be an essential part of a new GRIDified e-learning environment as shown in Figure 9.
The Simulation Authoring Tool should make use of the DataSupply Service in its extended version to retrieve the
collection of predefined elements and for storing created simulation models together with their meta-data descrip-
tion. Additionally, it should make use of the possibility of filtering objects only to required ones for a particular simu-
lation. Also the Simulation Authoring Tool could be embedded into the Collaboration Service and would allow di-
rectly forming a virtual world to create new or to modify those provided with the course simulations. The Visual Ob-
jects Authoring tool should also make use of the DataSupply Service in the same fashion. Besides, it could make
use of the Computation Service in order to test the binding of newly created objects with simulations. The Task Ma-
chine Authoring Tool potentially also would benefit from the central repository. Based on simulation resources it
would aid in constructing learning courses.

VCLab as an Example of GRIDifying Virtual Scientific Experiments

VCLab as an Example of GRIDifying Virtual Scientific Experiments

Task Machine service

extended DataSupply
Service

Computation Service

Simulation
Authoring Tool

Collaboration Service

Task Machine
Authoring Tool

 create

retrie

ve elements

sto
re

sim
ulat

ion

Visual Objects
Authoring Tool

Simulation
Authoring Tool

retrieve
elements

tes
t

re
trie

ve

ex
pe

rim
en

ts
ee

tri
ev

e
ele

m
en

ts

apply changes / simulate

store object

FIGURE 9. Authoring tools interdependency

6. CONCLUSIONS

This article describes in details problems and results of implementing VCLab as a GRID service. It may serve as a
general introduction into GRIDifying currently existing applications. It has been shown how the currently available
GRID-based version of VCLab is designed and implemented to conduct virtual scientific experiments. This proto-
type version is already available for users at [10] to be tested.
It is important to have a GRID-based support of the collaboration within the virtual scientific experiments. This has
been addressed by the presentation of the next step in the ELeGI project for developing the Collaboration Service. It
is also necessary to have a look into the far future when all those "executing" services discussed in this paper have
become mature to be used. The authoring aspect and its GRID-based implementation as a natural complement for
this environment have been foreseen.

REFERENCES

[1] Chr. Schmid, “A Remote Laboratory Using Virtual reality on the Web”, Simulation, Special issue: Web-Based
Simulation, Vol. 73, No.1, 1999, pp. 13-21.

[2] Bhandari, A. and M.H. Shor: Access to an Instructional Control Laboratory Experiment through the World Wide
Web, Proc. 17th American Control Conference ACC’98, Philadelphia (USA), 1998, 1319-1325.

[3] Karweit, M.: A Virtual Engineering/Science Laboratory Course. Department of Chemical Engineering, John
Hopkins University. http://www.jhu.edu/virtlab/virtlab.html

[4] ELeGI project web site, at: http://www.elegi.org/
[5] I. Foster, and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure, Second Edition, Elsevier,

San Francisco, 2004.
[6] OGSI.NET project web site, at: http://www.cs.virginia.edu/~humphrey/GCG/ogsi.net.html
[7] WSRF.NET project web site, at: http://www.cs.virginia.edu/~gsw2c/wsrf.net.html
[8] GrASP project web site, at: http://eu-grasp.net/
[9] M. Völker, A. Liefeldt, S. Engell and Chr. Schmid: “Learn2Control: A Project-oriented Approach to Teaching

Control Engineering.” Proc. IEEE Conference on Computer-Aided Control Systems Design 2004, Taipei, Tai-
wan, 2004, pp. 184-189.

[10] VCLab GRID-based version web site, at: http://quack. atp.rub.de/grid%20vclab

