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ABSTRACT 

This article reports o n  a year-long study of high school students learning com- 
puter programming. The study examined three issues: I )  what is the impact of  
programming on particular mathematical and reasoning abilities?; 2) what cog- 
nitive skills or abilities best predict programming ability?; and 3) what d o  stu- 
dents actually understand about programming after two years of high school 
study? The results showed that even after two years of study, many students 
had only a rudimentary understanding of programming. Consequently, it was 
not surprising to  also find that programming experience (as opposed to  ex- 
pertise) does not appear to  transfer to other domains which share analogous 
forrnal properties. The article concludes that we need to  more closely study 
the pedagogy of programming and liow expertise can be better attained before 
we prematurely go looking for significant and wide reaching transfer effects 
from programming. 

Psychologists ,  c o m p u t e r  scientis ts ,  a n d  e d u c a t o r s  h a v e  a rgued  t h a t  c o m p u t e r  

p r o g r a m m i n g  c a n  b e  a p o w e r f u l  m e a n s  o f  e n h a n c i n g  t h i n k i n g  a n d  t h e  deve lop-  
'- m e u t  of g o o d  problem-solv ing  skills in  c l d d r e n ,  i n  a d d i t i o n  t o  b e i n g  a p o w e r f u l  

nlel l lod for  teacl l ing s t u d e n t s  f u ~ i d a m e n ~ a l  c o n c e p t s  i n  ~ n a t h e ~ i i a t i c s ,  phys ics ,  
a n d  logist ics  [I-31. A t  f irst  g lance ,  t h e  err thusiasm s u r r o u n d i n g  p r o g r a n m i n g  
s e e m s  wel l - founded .  Observa t ions  o f  e x p e r t  a d u l t  p rogran ln ie rs  ind ica te  t h a t  
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policy of the National Institute of Education and no  official endorsement should be inferred. 
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prograninicrs explicitly employ important problem-solving strategies such as de- 
conlposing problenis into niodules, use analogical reasoning, and systeniatically 
plan, code, i~nd debug their programs. Prograniniing seems t o  denland complex 
cognitive skills sucll as procedural and conditional reasoning, planning, a d  
analogical reasoning [3-71. 

In addition to problem-solving skills, prograniming utilizes fundamental con- 
cepts such as variables and recursive structures, which are important in mat11 and 
physics. I t  is well-known that tllese concepts are difficult t o  teach with tradi- 
tional media, and their enlployme~it in the functional context of a programniing 
language may make tllcni mole easily coriiprel~ended [ 1, 31 . 

Motivated by this ent l~usiasn~ for tlle potential of  programming, as well 
as by the pressure from business and the homes t o  make students "computer 
literate," schools have instituted programniing courses or related activities 
at all grade levels. Yet, surprisingly, there has been very little research t o  date  
wllicli has directly addressed the many broad clainis that have been made for 
prograniming. And in addition, there has been very little researcli exarni~iing 
what students are learning about programming itself as the result of  scl~ool-  
based instruction. We know far too little about what to expect students will 
learn in a reasonable period of  tinie, how they learn, what conceptual diffi- 
culties they encounter, wliat forms of  cognitive support they may require 
to  guide them over these difficulties, or wlictl~er individual differences in 
learning styles are reflected in progranlniing and need to be guided differently 
in instruction. And beyond wliat rational analyses suggest, we cannot say 
with niucl~ assurance what knowledge and skills that students bring with t l i en~  
wllen they first rneet programming (e.g., natural language competencies; var- 
ious reasoning skills) are likely to facilitate the acquisition of  programming 
knowledge and skills. 

Addressing the issue of how well students actually learn to  program in 
precollege courses is thus an important matter. It  is particularly important 
because of two relatior~s between level of expertise and transfer of learning. 
First, it is primarily sophisticated programming activities that demand Iiigher 
level tliinking skills and probleni-solving tecl~niques, and these activities require 
expertise. T l ~ e y  require a good model of  tlie stucture of  tlie language: you 
cannot write a niodular program and use variables unless you understand how 
control is passed in the language arld how logical tests o1)crate on  outputs  of  
ope~ations. 'I'l~us, tllc tlli~lki~hg skills we 11opc will dcvclol) ; I I I ~  tri~nsfcr out  o f  
progranlliiing depend upon students attilining certain proficiencics in progrillli- 
mirig 18) .  Simple tasks such as a four-1i11c graphics program to draw a box d o  
not require tlie full range of conlplex reasoning skills that programming is pur- 
ported to help develop. 

Second, the transfer of  concepts and skills across domains depends on the de- 
tection of potential similarities between a known and a new domain [9-131. 
Brown, Bransford, Ferrara and Campione note tliat tliis fact implies differences in 
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the abilities o f  novices and experts to  transfer since novices and experts classify 
si~liilarities between tasks differently [14] .  Novices will be Inore limited in their 
abilities for recognizing prob le~n  similarity since they tend t o  classify tasks 
according t o  surface clia~acteristics wllereas experts focus on  underlying con-  
ceptual properties o r  casual structures. For example, Chi et al. examined the 
categorization of physics problenis by novice and experts [ I S ] .  Novices cate- 
gorized problems in ternis of particular objects referred to ,  terminology given in 
a problem statement, and physical configurations of  problem elements. In con- 
trast, experts ignored these superficial features of problems and categorized 
them in t e ~ m s  of physics principles relevant for problem solutions. Since the 
novice and expert represent donlairis differently, they have different inforniation 
to  use in classifying proble~ns,  artd in accessing knowledge potentially useful in 
a new p~oblem-solving situation. Similar findings liave been obtained for novice 
and expert adult prograninicrs [ 1 6 ] .  

Thus, in programming, even if novices begin to  develop an understanding 
of the workings of the language and to write relatively sophisticated pro- 
g r a m ,  they may represent progran~niing in terms of  the surface code,  for- 
niat and syntactic properties of  a language, and in terms of particular tasks. 
Experts, o n  tlie other Iiantl, are more likely to  represent programming prob- 
lems in terms of the general concepts which underlie particular programming 
collstructs such as recursive routines and variables, the underlying structure 
of broad classes of  problems, the solution strategies wllich crosscut many types 
of problems, or routinized plans [I71 or "templates" [18] for solving com- 
mon progranlnling subproble~ns. Those aspects of  programming problem- 
solving skills we hope will transfer, and that could transfer, involve the general 
structure of  tlie problem-solving activity and general concepts. Further, the 
ability t o  transfer these tecliniques and concepts from programming will de- 
pend on recognizing problenls in new domains where tlie techniques and con- 
cepts apply by analogical extension [ l  1, 191 . 

Wl~etlier we are concerned about students learning to tliink better tlirougli 
prograniming, or in their learning t o  program, it is essential to  recognize 
tliat we are in a very early state of  knowledge about the psychology of pro- 

" gramming. For this reason, any work in tliis area, has tlie nature of work in 
progress. Tlie teclinologies available to  schools, both hardware and software, 
arc in great flux, a d  teacl~ers' i ~ ~ t u i t i o n s  are being sl~arpened tlirougli t l~e i r  
cxpcricnccs in Ilelping students Ie;trn program~i~irig, ant1 to  think t l ~ r o u g l ~  pro- 
grani~ning. So, as useful as any new findings i l l  this area are likely to  be f o ~  
t l ~ e  educator, tllcy must be tre;~ted with cnution. At the sanie time, tlie in- 
fluence on education of  grandiose arid optimistic pronouncements that liave 
been made about the cognitive benefits of programming, and on  the ease with 
whicli students can learn t o  program, cry out for empirical assessment, even 
in these early days in the field when the terrain changes faster then one's "re- 
search snapshot" develops. 
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THE PRESENT STUDY 

To begin to examine more directly some of  tlie many claims that are being 
made for and about prograninling we undertook a study designed to investigate 
the relation between thinking skills and programming, and t o  investigate the pro- 
gramming skills acquired by precollege students. We were interested in the devel- 
opment of programming skill among well taught precollege students with signifi- 
cantly more experience programming than most students who have participated 
in previous research studies. 

Our study Ilad three aims. The first was to  document the inlpact of program- 
ming experience on a range of  reasoning and math skills. The second was to  ob- 
serve the nature of tlie programming knowledge students attained. The third was 
to replicate findings from a previous study [20] that certain of these cognitive 
skills predict some aspects of programming skill acquisition. 

Our choice of concepts and skills t o  investigate was based o n  a rational 
analysis of the cognitive conlponents of programming and o n  correlations, found 
in previous research, between particular skills and programming mastery [ 6 ] .  
The tasks chosen involved procedural reasoning, decentering, planning, mat11 
understanding, and algorithm design. 

Our particular task designs were based on  an analysis of  how the target skills 
are manifested in programming. Many of the skills we were interested in could 
not be assessed by standard cognitive ability measures, either because n o  
measures of these skills exist o r  because existing measures demand skills in a 
form inappropriate to progranlnling. For instance, standard tests of  conditiorinl 
reasoning examine comprel~ension of material implication as defined in standard 
logic. This is not particularly relevant to tlie use of  conditionals in programming; 
rather the conditional reasoning skill practiced in programming involves reasoning 
through a complex chain o f  nested condition-action structures. 

METHOD 

Design 

Three groups of high scl~ool students were tested at the beginning and end of  
the school year. One group of students, tlie Ikperimentnl group, was enrollctl in 
their second year of progranlming. A second group, the ,%mc.-CP group, llad 
taken one year of  programming but had elected not to continue. A third group, 
the No-C'I' group, 11atl I I O  experier~ce progra~ll~llir~g. 

A battery of postrests admir~istered at  the end of  the year was intended to 
assess the cognitive benefits resulting from the programming course, and for the 
Experirner~tal group, programming knowledge and skill. Performance on these 
measures was compared among the three groups of students. The pretests ad- 
ministered at the beginning of the year were selected as potential predictors o f  
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Table 1. Distribution of Subjects in Each Group According t o  Sex, 
Grade in School and Grade Point Average 

Sex Grade G PA 

Group Male Feniale 10th 11th 12th Mean Range 

Experimental 1 1  4 9 3 3 74.3 40-93 

No Prior 
Programming 9 , 7 8 2 6 78.0 68-96 

I Some Prior 
Programming 6 7 4 6 3 77.7 46-94 

Total 26 18 2 1 11 12 76.6 40-96 

I 

I performance in the programming class. These tests also served as measures of  the 
initial ability level of students o n  many of the skills were were posttested. 

I Students 

All students for the study were drawn from a large urban public higll scl~ool  
wit11 an etllnically and socio-econonlically mixed student body. The experimental 
group consisted o f  a full class of  fifteen students who ranged widely in ability as 
indicated by their grade point average. Control students were selected from a 
pool of volunteers and matched wit11 the experimental students on  math back- 
ground, overall GPA, and grade level. Students in the Some-CP group had taken 
an introduction t o  computers through the BASIC language course the previous 
year. Table 1 gives the breakdown of the tliree groups by sex, grade, and GPA.' 

i Programming Instruction 

Students in the experimental group liad taken the same introductory course 
as tlie Some-CP students. They were currently enrolled in a second, more inten- 

.. sive prograrnnling course taught by an excellent programming teacher with five 
years experience.' Class met for forty minutes, five days a week in one of tlie 
scl~ool's computer labs. Over the year students studied six programming lan- 
guages. Tlley spcnt nine weeks ench on BASIC, COBOL, and Logo and t l ~ r e c  
weeks each on FORTRAN, MACRO, and Pascal. 

The nun~ber of students reported for results of rerlain Incusures varies since we wcrc 
unable to administer some tests to one or two stutlenls in each group. 

2 The teacher of the Experimental students had a B.A. in Matl~ernatics from Yale Univer- 
sity, an M.A. in Interactive Educational Tecl~nology from Harvard University, and five years 
of teaching experience. Her students have won the department's prize exam for first year 
students in each of her five years, and her AP students placed very highly in national compe- 

' tition and on the Advance Placement Exam. 
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The nine week Logo section came at the end of  the y e u .  While the prograln- 
ming teacher designed and taught the curriculunl for the other  five languages, we  
designed, tllcn llatl the teacller teach, the Logo cur r icu lu~n.  Our ail11 in designing 
the Logo curriculum was to  help students develop a richer n ~ e n t a l    nod el o f  Logo 
t l ~ a ~ l  students in our  previous studies seemed t o  develop. The focus was o n  
control structure. Work was done  solely in list processing-no turtle graphics 
were taught. In turt le  graphics it is too  easy for s tudents  to  continue t o  generate 
interesting screen effccts without  understanding the code  1211. 111 list ploccssi~lg 
work, to  obtain interesting effects requires a deeper understanding o f  the  lan- 
guage. This npproacl~ has its own costs-students need t o  understand more  of  the 
language before they car1 (lo 1111rc1l of  interest in it.  

In our design of the Logo curriculunl, we en;pliasized comprehension over 
production. Students  were given handouts covering concepts  and corn l~ iauds ,  
worksheets tllat stressed program cornprel~ension,  and a glossary of Logo primi- 
tives, written in flow-of-control language (i.e., in terms o f  inputs  and o u t p u t s  of  
Logo con~ri land operations). And we supplied utilities for file nianagement t o  
encourage a tool-kit approach. 

We designed a series of weekly projects, each building o n  the previous ones,  
so that in principle each project could be a modular  tool for the  next project. 
The final project was to  program a s i n ~ p l e  version o f  ELIZA, l l ~ e  I3rogr:trtl t11:1t 
mimics a non-directive psycllotherapist 1221. Topics covered in the  course in- 
cluded Logo commantls (primitives, procedures, inputs ,  ou tputs ,  and outcomes ,  
creating and editing procedures, words, lists, and list processing, input  and  o u t -  
put conlniands, workspace management c o ~ n ~ ~ l a n d s ,  debugging, trace and error  
Iiiess:lges, subprocedures, procedures with input variables, naming and creating 
variables with the MAKE coninland, the OUTPUT comrnand,  conditionals, and 
tail a d  enlbcdded recursion. 

Measures 

The specific rationale and design o f  each of  the  tasks used in the s tudy  is de-  
scrihctl fully clsewllcre 1231. A brief review o f  the tasks is provided below. 

Pre/es/s - T o  assess the extent  to  wl~icl l  skills acquired in programming 
transfer to  other  domains, we  developed transfer tasks in bo th  "far" and "near" 
contexts. Our far trnrlsfer tasks ( the majority o f  the tasks), demanded skills we  
believed to be deeply ingredient to p r o g r a n ~ ~ n i n g ,  bu t  they bore n o  obvious stir- 
face si~uihri t ics  t o  prog~.;~nlming ti~sks. One near tr;~nsfcr I :~sk,  in ntltliliotl t o  
bearing deep structural sinlil;~rities t o  p r o g r a ~ l l ~ ~ l i n g ,  rescr~~hled  prog~ii~llnl ing 
tasks in sevc~nl surface fcilt\lres. 'l'l~e prclcsts wcrc divitlcd illto t l ~ r c e  ~ y p c s :  
procedural re;lsoning, pI:mning, and n l i ~ l l l e ~ ~ l ; ~ ~ i c s .  

Proced~trul Reasot~itrg Tes t s  - Rational analysis suggests that programming re- 
quires instrumental reasoning, particularly procedural reasoning. Designing, c o n  
prel~ending, and debugging programs requires this type  o f  ~oeans-ends reasoning. 
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Progranl~ners tnust ~ n a k e  explicit the  antecedents  necessary for d i f fe re~l t  ends,  
and must  follow tllrough the consequences o f  different antecedent condit ions.  
Designing and following the  flow of control  of  a program requires understanding 
different kinds o f  relations between antecedent  and consequent events, and or -  
ganizing and interrelating the  local means-end relations leading to the final 
end.  Therefore we  designed a set o f  tasks to  measure procedural/conditional rea- 
soning wit11 conditional structures in cornplex contexts .  O n e  task was non-verbal 
and two were verbal. The  tasks involved following the flow of control in systems 
l ~ a v i r ~ g  logical s tructures analogous t o  tlie logical s tructures in computer  lan- 
guages. The  systems involved reasonable t l iougl~  arbitrary and artificial rules t o  
make  them analogous t o  a prograniming language and t o  prohibit students' use 
of  prior world knowledge. 

Nonverbal Reasoning Task One. This task was designed using non-English 
syrnbolisnls so  that verbal ability and comprellension of  the  "if-then" connective 
would no t  be an inllibiting factor for  students. 

Students  had t o  negotiate passage tllrougll t ree diagrams having an embedded 
contl i t io~l:~l  structure. T h e  task tapped ability to  discover wllich go;ds could be  
legally reaclled given that  a set o f  antecedents  were t rue ,  and ability to  deter- 
mine the  antecedents  necessary t o  reach given goals. 

Passage tlirough t l ~ e  trees ~equi re t l  satisfaction of  condit ions set by rlotles in 
the  tree. Each node  required a differing logical combination of various shaped 
"tokens." Nodes wi th  a disjirtictive structure offered a choice of tokens t o  be  
used, and nodes with a cnrtjrrnctive structure required a combination o f  tokens. 
Sotne nodes were combinations o f  disjuncts and conjuncts .  

T11e task had t w o  parts. In the first part (I'art A), for each question students  
were given a set of  tokens and were asked t o  determine all goals that  could b e  
leg;tlly reaclled with that  set. T h e  second part (Part B) included additional corn- 
ponerlts airned at  Ilypothetical reasoning and planning abilities. In some instances 
nlany routes were legal b u t  s tudents  were encouraged t o  find the most efficient 
route.  Here we were interested in tlie student's sense for elegant problem solu- 
tions. In  o ther  cases s tudents  were required t o  test a large number o f  possibil- 

l i e s  t o  discover t l ~ e  o n e  legal path.  
Verbal Reasoning Task One. The  first verbal procedural reasoning task was 

analogous t o  the Non-verbal Procedural Reasoning tasks, but  given in verbal 
form.  This task used t h e  " i f .  . . then . . . else" structure often found in prograni- 
ming. The  task assessed ability t o  follow complex verbal instr l~ct ions consisting 
of  t~esletl c o ~ ~ t l i l i o l ~ ; ~ l s .  S t u t l e ~ ~ l s  Ilatl to ~ ~ r r t l c r s l : ~ ~ ~ t l  t l ~ c  I~icr;lrcllicnl ~ c l a t i o ~ l s  be- 
tween instructions, e.g., t l ~ t  solue condit ion was o11ly relevant given the o u t -  
c o m e  ol' ;I prior co~lt l i t ion.  

l'llc task involved following i r~s t ruc t io~ls  willlin a 111-ccisely tlcfirretl set o f  tules 
(deterrnir~i~lg a student's tuition from a complex set of  rules based on  the stu-  
dent's background and current  acade~il ic  level). Like the non-verbal task, s tu-  
den ts  were given different types of  questions to  test their mastery of tlie complex  
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logical structure. In some questions (Type A) students were given a set of ante- 
cedents and were asked for the consequence. In other questions (Type R), the 
goal or answer was given and the student had t o  determine what antecedent 
conditions must have been satisfied. Finally, other questions (Type C) asked 
what are all and only the decisions that must be nlade in order to tlctern~ine a 
particular outcome given partial knowledge about the conditions. Tl~ese  ques- 
tions required a good understanding of the structure o f  the instructions. Students 
had t o  separate irrelevant from relevant conditions and understand the hier- 
archical relation among conditions. 

Verbal Reasoning Task Two. This task had a complex conditional struc- 
ture with a number of goals and conditiorls for satisfaction. T l ~ e  prohlenl had 
two conditional structures, in addition to the " i f .  . . then . . . else" st~rlcture,  
t l ~ a t  were isomorpl~ic to progr;~rn~ning contlitionals. 'I'l~ere was a "do-until" loop 
structure, and a structure isomorpl~ic to  an "on gosub" or "Jump match" struc- 
ture where a ma tc l~  between vari;~bles determines what you do. 

Planning Task. Several analyses of the cognitive components of prograni- 
ming isolate planning as a central activity 14-7,241. After defining the problem 
to  be solved, the programmer develops a plan or "structured description" of the 
processes required to solve the problem IS], that will then be written in pro- 
gramming code. Observations of expert programmers reveal that a major portion 
of their time is devoted t o  planning and that they have available many general 
plan-design strategies. Pea and Kurland provide an indepth discussion of the 
nature of planning aa it is manifested in programming [24]. 

The task used to  assess planning skill was s slightly modified version of that 
described in Pea, Ilawkins and Kurland 121) (also see 1241). The task involved 
scheduling a set of classroom chores: students had t o  design a plan which spe- 
cified the sequence in which chores should be completed in order to  clean-up a 
classroon~ in as little time as possible. The chores were to  be executed by a hypo- 
thetical "robot" who responded to  a minimum set o f  co~nnlands,  and required a 
specified amount of time to  perform specific actions. 

This was a computer-based task. A graphics interface depicted a classroom in 
which the chores were to  be done. Students gave English c o ~ n ~ n a r d s  to  instruct 
the robot how to clean up the room and the experimenter typed the com~uands  
into the computer. Students designed three plans. After each plan, students were 
told how much time the Robot would take to  actually execute the plan. 

The programming and nonprograrnming students were each further divided 
into two subgroups. One subgroup received "feedback" after each plan and the 
other subgroup did not. Altl~ough all students were told o f  the time that would 
be required to complete their plans, "feedback" students also received a paper 
print-out of their plan listing each action and the amount o f  time i t  requi~ed.  
They were also shown a screen display of the classroom, in which a step by step 
enactment of the student's plan (the path of the robot as he completed each 
chore) was carried out under the student's control. We proposed that there may 
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be group differences in the extent to  which students benefited from the feed- 
back information. 

The planning task was administrated for both the pretests and posttest. Two  
types o f  data yielded by this task were used in the analyses to be reported. One 
was the  time required to  execute the students' plans. The second was the plan- 
ning bel~avior of the students. This was assessed by their use of  the plan monitor- 
ing aids, which was recorded by the computer, and the amount of time they 
spent thinking about their plan, also recorded automatically by the computer. 

Math Test. Math ability has been hypothesized to  be both a cognitive de- 
mand and an outcome of programming experience [6, 251. Similarities between 
l~igh school 1nat11 and programming exist at several levels. Math and programming 
1:1ng11ages are both forn~al  sys te~ns  with well-defined syntactic rules. Dot11 
employ the concepts of v:~ri;hle and algo~ithnl.  At the procetlural level, both 
may den~and  representing relatively rich situations in relatively abstract for- 
nlalisrns, and then operating or1 these formalis~l~s to compute an outcome. Math 
word problerlls require extracting essential relations from a prose description of 
a situation and representing then1 in ruathernatical terms. Programming involves 
giving an explicit procedural representation of a desired output .  

Thus we included a math task that we felt would be relevant t o  programming. 
Since the math backgrounds of our students varied, and we did not want the 
task t o  dewand special knowledge, we considered the most basic algebraic con- 
cept-the use of letters to  represent variables. All students had enough math so  
that this notation was familiar. The task was designed to  depend more on the 
ability to  systen~atically operate with variables, and on insight during matherna- 
tical thinking, than on domain-specific matllematical knowledge. 

These salient similarities guided our task design. We gathered a set of math 
problems that tested either grasp of variables, especially evaluating functions, 
which is analogous to  keeping track of a variable in programming, or ability t o  
relate a syn~bolic expression t o  a prose description. 

We wanted the variables task lo  reflect the use of variables in programming. 
Since values of variables are often passed, modified and printed in programming, 
we chose problems in wllicll students 11ad t o  determine the values of variables 
which were defined in terms o f  other variables. They thus had to evaluate nested 
functions, following a chain of several variables to  reach a constant. To  follow 
the calculation through would be analogous t o  tracing the value of a variable 
through the execution of a program. 

Posttests 

The battery of posttests included mesaures of procedural reasoning, decenter- 
ing, planning, math ability, and algoritl~rn design and comprehension. All but the 
algorithm test can be seen as measures of "far transfer:" the tests demanded 
skills and concepts we believed to  be ingredient to  progranming, but the tests 
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bore no obvious surface si~nilsrities t o  a programming task. The  algorithm task was 
our measure of "near transfer;" in addit ion t o  d e r p  s t r ~ ~ c t u r a l  similarities t o  pro- 
gran~nling,  the task also rescn~bled a p rogran l~ l~ i r lg  t a 8  in several surface features. 

NOII- Verbnl I'rocedrrral Reasor~irrg Task 7ivo - This was a slight modif icat ion 
of tlle non-verbal procedural reasoning pretest. The  rationale was the same-to 
test procedural and conditional reasoning ability in a non-verbal s i tuat ion in 
which reason;~l>le tllough arbitrary rules must  b e  followed. 

T l ~ i s  task, like the pretest, had two parts. Rules wcre sinlilar t o  Part I3 of  the  
origin;~l non.ve~bal  task. Ilowever, unlike the  previous task,  there was n o  ques- 
tion designed t o  assess elegance. 111 Part A o f  the  posttest s tudents  were given a 
set o f  passes and were asked t o  find all the goals they could reach with the  passes. 
These questions assessed ability t o  exl~aust ively test condit ions in order t o  dis- 
cover all legal routes through the tree with the  given passes. 

111 h r t  13, s tudents  were given a set  o f  passes and were asked t o  find t h e  cor-  
rect p a t l ~  Ic ;~d i~ lg  t o  a p;~rticular goal. T l ~ e r e  was o ~ ~ l y  o n e  legal pat11 for  eac11 
cluestion. Again, stutlerits I ~ a d  t o  pl;~rl, and evaluate several possible routes in 
order t o  arrive a t  the Ieg;~l route. For the first prol) le~ll ,  possil)ilitics could I)e 
easily rctluced if s tudents  conlpared the number  o f  passes they were given with 
the number reqr~ired t o  reach the goal. T h e  second problem was more  difficult 
since more possibilities had t o  be tested. 

1)ebrrggitrg 7bsk - Programnl i~~g ,  esl~ccially debugging, demands  decentering- 
programlners must  differentiate between their knowledge and intent ions a n d  tlie 
actual p rogran l~ni~ lg  code  the computer  reads. This is a c o m m o n  problem for  
novice progralnmers 1261. In program construct ion tlie programmer nlust realize 
the level o f  explicitness required t o  adequately instruct the  computer ,  and  in 
debugging must  distinguisll expectat ions f rom what  the  computer  actually exe-  
cuted. We I~ypot l~es ized  that after learning t o  program, s tudents  might be bet ter  
at writing and debugging instructions in general. 

The  debugging task required bo th  instrumental  reasoning a n d  decentering. 
Students  were required t o  detect  bugs in a set o f  driving instructions wr i t t en  for  
another person t o  follow. Students  had t o  follow t h e  given instructions, assess 
their accuracy, and correct "buggy" instructions. This required them t o  use 
means-ends analysis and temporal reasoning t o  assess the  consequences and  con-  
nections alllong tenlpor:~lly ordered act ions.  S tudents  had t o  tlecenter, making a 
distinction between the subject's and the  driver's knowledge,  in order  t o  tell 
wliet l~er  i ~ ~ s t r u c t i o n s  wcre sufficiently explicit ant1 accurate,  llugs includctl wcre:  

I .  Atrrhi~~rorts  itifortrrntior~ b~cg  - instruct ions 11ot sufficiently explicit to  cn :~ble  
the driver t o  correctly make a clwice between alternative routes. 

2 .  Ter l~pora lorder  bug - one instruction was s tated a t  t h e  wrong time. 
3 It~s~cjficierrt o r  ti~issitrg i t~fir t l~at iorl  blrg. 
4. Cotup1e.u hugs - problems due  t o  unusual input  condit ions,  and e n ~ b e d d i ~ l g ,  

in wl~icl i  obvious corrections fail because they  introduce and /or  leave a bug. 

For  each line o f  instruct ions with a bug, s tuden ts  were scored for  wlietller 
they  caught  t h e  bug,  a n d  wl~e t l l e r  they correct ly rewrote the  instruction (fixed 
the  hug). For  lines o f  instruct ion not  containing a bug,  s tudents  were scored for  
whether  they left the  line unc l~anged ,  or  instead inserted infornlation which 
resulted in a ticw I ~ u g .  

Alacltlr 7'est - ? h e  m a t h  post test  focused o n  c a l c u l a t i ~ ~ g  values o f  variables and  
translating prose descr ip t io~ ls  in to  symbolic expressions. The  rationale was  
t l ~ a t  by  progra~nnl ing  in six different  languages s tudents  would have explicit 
k r~owlcdge  of  variables a n d c o n s i d e r a b l e  practice in set t ing up  equations w i t h  
variables and tracing the  calculation o f  values o f  variables. 

We used three synlbolic expression p r o b l e n ~ s  tha t  have been used b y  E r l d i c l ~ ,  
A b b o t ,  Sal ter ,  and Soloway in s tudying the transfer o f  programming abilities 
t o  mat11 tasks [ 2 7 ] .  T h e  tasks gave prose descript ions and  asked Tor an  equa-  
t i o ~ ~  tllal expressed t l ~ e  sarne i n f o r ~ l l a l i o ~ ~ .  For o ~ i c  o f  the p r o l ) l e ~ w  w e  gave 
s t u t l c ~ ~ t s  ;I p a ~ t h l  ecluation t o  be c o ~ ~ ~ p l e t e t l .  E l ~ r l i c l ~  e t  nl. gave progralnnlers a n d  
nonprogranlnlers partial e q ~ ~ a t i o r ~ s  of different f o r ~ l ~ s ,  : ~ n d  found that the  ad-  
v ; ~ i ~ t ; ~ g e  of a ~ i r o g r i ~ ~ ~ l ~ n i ~ ~ g  I ) i~ckprou~id  W ~ I S  I I I O S ~  evident W ~ I C I I  ~ I I C  c q u : ~ t i o ~ i  was  
wri t ten with a single variable o n  o n e  side, e.g., R = 314 X L),  rather tllan w h e n  
wr i t t en  as a mult iple  expression,  e.g., 4R = 3 0 .  Ehrlich e t  al. suggested that  pro-  
grammers benefited f rom the single variable expression because in programming 
o n e  thinks o f  an  active generat ion of  a value, rather  than a s tat ic  descript ion o f  
a relationship. 

T w o  of  the t l ~ r e e  variable problems were the same a s  given o n  t h e  math  pre- 
test .  T h e  third was a simpler p rob lem,  based direct ly o n  the sort  o f  funct ional  
evaluation o n e  finds in Logo list processing, i.e., "A = I1 t 1 ; B = C t 10;  C = D + 
1 0 0 ;  D = 0 ;  What  is t h e  value o f  A?" Because of  poor  average performance o n  
t h e  pretest w e  sought  t o  reduce the  difficlllty o f  t h e  easiest problems. 

Algori thm Design and  Analysis Task 

This  task assessed con~pre l lens ion  and produc t ion  o f  a n  a lgor i t l~m within a 
task designed t o  closely resemble a programming task. An Atial j~sis  part asked 
s i l ldc~l t s  t o  understand a program-like a lgor i t l~ r l~  o r  "plan;" a Design part asked 
them then  t o  develop a n  i ~ n p r o v e d  a lgor i th~n  of  their o w n .  T h e  task employed a 
meani~ lgfu l  rather  than a n  abstract  p rogramr~~ing- la r~gu;~ge ,  bu t  its s t ructure re- 
senlblcd the  s tructure o f  a c o m p u t e r  plogram with sub-routines.  The  steps o f  
t l ~ c  ; ~ l g o r i t l l ~ ~ i s  w e ~ e  f u ~ ~ c l i o n a l l y  e q u i v a l c ~ ~ t  to p r o g r ; ~ ~ i ~ ~ l l i n g  1;11ig11;1ge C O I ~ I I I I ; I I I ~ S ,  
as t h e  task description will ~ n a k e  clear. Thus ,  the  task served both as: I )  a mea- 
sure of gene1;11 a lgor i th~nic  concepts  and skills en~ploye t l  in progr;~~llming,  w l ~ i c l ~  
~ n i g l ~ t  develop t l i rougl~ progra~nming ,  and 2) a measure o f  "near" t ~ a n s f e r  t o  test  
wl ie t l~er  skills employed  in p r o g r a n l ~ n i ~ ~ g  transferred more readily when  t h e  task 
s tructure is more  t ramparen t ly  analogous to a program. 

S tudents  were presented with a goal and a series of legal operators  (e.g., 
c o u n t ,  inc rement ,  decrenlent ,  test). The  algorithnrs consisted of  organizing t h e  
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operations in such a way so as to  achieve the goal efficiently. Efficier~t correct 
algoritluns had to have a looping structure. Students were given one  algorithm, 
a looping structure with two flaws that made it inefficient. They were asked t o  
calculate the time required to  achieve the goal if the algoritlin~ were executed 
(assuming 10 seconds per operations). This required students to  understand the 
algorithm. Students were then asked t o  devise a better algorithm. The students' 
algorithms were scored for the overall design, use o f  an iterative structure, ac- 
curacy, and conformity to the rules of the system. 

Programming Skill Measures 

Measures o f  the programn~ing skills o f  students in the experimental group in- 
cluded both final scores on regular class tests given for each language, and a spe- 
cially constructed test administered a t  the time o f  the posttest. The teacher de- 
signed the regular class tests with the exception o f  a "Conditional-Iteration" 
question designed by us and included on the final test for four of the languages. 

The Conditional-Iteration question was designed to  assess procedural reason- 
ing and understanding of variables within each of the languages taught. For this 
question, students were asked to  show the output (values o f  variables) of a short 
program wl~ich was structurally analogous, across the four languages tested 
(BASIC, FORTRAN, COBOL, Logo). Success required ability to  follow the flow 
of control and keep track of variable values. Each program had an iterative 
(looping or recursive) structure, multiple variables, and conditional tests. The 
antecedent of each conditional test evaluated the value o f  a variable; the con- 
sequent either incremented a variable, stopped an iteration, or printed a state- 
ment. Like the problemson the math tests which asked students t o  evaluate vari- 
ables, many variables in these programs were defined in terms of each other, 
rather than in t e r m  of constants. T o  fully test students' understanding of how 
control is passed and of the order o f  execution of statements, each program con- 
tained a line of code designed t o  detect students' "order bugs," nlisconceptior~s 
of flow of control. This was a conditional test whose consequent prints a state- 
ment, but whose antecedent is never satisfied given the order of execution of 
commands. If students included the statement as output in their answer, they 
did not correctly follow the flow of tlie program. A correct answer to  each prob- 
lem displayed the correct values of three variables printed after three iterations. 

Logo Test - The second programming measure was a comprelle~~sive Logo 
test designed by us and administered by the classroom teacher as the students' 
final exam. This test assessed program comprellension and program production. 
The program conlprel~ension questions included: 

1. A nratclring task: examples o f  Logo expressions must be  identified as expres- 
sions of a certain kind. For example, given the expression: " A ,  does Logo 
read this as a word, number, list, procedure, variable or primitive? 
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2. A flow of corltrol task: students niust show tlie screen effects for a procedure 
containing three subprocedures each of which prints a certain word. 

3. Four progrartt cotnprel~er~sion tasks which focused on list processing primi- 
tives, the MAKE and OUTPUT corn~nands,  tail recursion, and embedded re- 
cursion, respectively. Students needed to  show the screen effects for four, 
2- to  4-line programs, written with these structures. Each program contained 
local variables, and students were given particular input values. 

The program production part o f  the task required students to  write programs 
(on paper) to  generate three given screen effects. They were told to  use separate 
super-procedures t o  generate each display, but that the super-procedures could 
share subprocedures. They were also t o  give the appropriate run commands. An 
example task was given. The first screen effect the students were to  generate was 
a display o f  two short English sentences; the second was identical to  the first 
with two sentences added; the third screen effect was identical t o  the second 
with the exception that the subject and object o f  the  added sentences was dif- 
ferent. Thus, an ideal approach to  this task involved the creation of two subpro- 
cedures. One would produce the first screen effect. The second would produce 
the  remaining two sentences for t he  o ther  two effects, by using variables for the  
subject and object o f  the sentence. 

PROCEDURE 

All groups of students received all the pre- and posttest measures, with the 
exception o f  the measures o f  planning skill, and prograrnnling skill. The plan- 
ning task was only adn~inistered t o  the experimental group and t o  the No-CS 
control group.3 The programming tests were only given t o  the Experirmntal 
group. 

Pretests were given during the first month of classes in the fall and the post- 
tests were given during the last month o f  classes in the spring. We were able t o  
give the Experimental group and most control students the rnath and procedural 
reasoning tasks during class time; other students were given the rnatlt and reason- 
ing tasks individually. The planning task was always individually administered. 
AII  tasks, with the exception of the Planning Task, were administered under time 
constrainted conditions (5 t o  17 minutes per task). 

RESULTS 

The study was designed to address three questions: 

1. Did learning programming for two years occasion advances in reasoning and 
math skills? Did these second-year programming students perform better, at 

The planning task was individually administered. Consequently, logistics did not 
permit administration of this task lo both control groups. 
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the end of the year, on tasks assessing reasoning and nlath skills, than stu- 
dents who had only one introductory course? 

2. Were certain 1nat11 and reasoning skills good predictors o f  success in a pro- 
gran~nling course? What were the co~relations between perforn~ance o n  
reasoning, rna t l~  and programniing tasks? 

3. Were students able to program at an advanced level after their second year 
of prograniniing? 

Performance of Programming and Nonprogramming Students 
on Pretest Measures of Reasoning, Math and Planning Skills 

To  make ~neaningful posttest comparisons between progranirners and nonpro- 
grarnrners, we first exan~ined tlie coniparability of the g ~ o u p s  in terms of the 
skills measured. One purpose of our pretest battery was t o  make this assessment. 
The pretests were designed to  measure many of the same skills as the posttests, 
and in two instances the pre and post measures were identical. We compared the 
three groups on tlie pretestsusir~gar~alyses-of-variance. Also,correlations between 
pre- and posltests were examined t o  provide evidence for the underlying equiva- 
lence of the measures, 

To conduct these analyses, coniposite scores were computed for each pretest 
measure. The ;rt~alyses-of-valiance on each composite showed there were no  sig- 
nificant differences between groups for any measures. 

The means and stantlard deviations for tlie mat11 pretest scores are shown in 
Table 2. One score consisted of thecombination of the two variablesproblerns. An- 
other score consisted of performance o n  the remaining three questions. As sliown 
in the table, perforn~ance was generally low and l~ ig l~ ly  variable. Students had diffi- 
culty computing the values of variables except in the simplest cases. They were also 
generally unable to  create the symbolic expression for a word problenl. 

Table 2. Performance o n  the  Math Prestest: Mean Number 
of Points in Each Group 

Group 

Con trol Control 
Experimental (Some-CP) (No-CP) 

(N = 15) (N = 12) (N = 16) 

Mean SD Mean SD Mean SD 

Variables Questions 
(max = 8) 3.67 2.66 2.50 2.71 2.31 2.85 

Other Questions 
(Max = 8) 1.60 1.12 2.00 1.86 3.06 2.69 
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Table 3. Performance on theNon-Verbal Procedural Reasoning Pretest: 
Mean Number of Points in Each Group 

Group 

Con fro1 Control 
Experimental (Some-CS) (No-CS) 

(N = 15) (N = 13) (N = 16) 

Mean SD Mean SD Mean SD 

Part A (max = 60) ! 19.47 19.38 32.39 16.34 28.63 17.85 

Part B (max = 6) .73 1.10 .92 1.71 1.69 2.15 

Table 4. Performance on the Verbal Procedural Reasoning Pretests: 
Mean Number of Points in Each Group 

Group 

Con tro 1 Control 
Experin~ental (Some-CS) (No-CS) 

(N = 15) (N  = 13) ( N  = 16) 

Mean SD Mean SD Mean SD 

Verbal Task 1 
Type A and B Questions 

(max = 18) 6.40 4.37 9.54 5.09 7.88 5.33 
Type C Questions 

(max = 7) 1.00 .93 2.15 1.14 1.38 1.89 

Verbal Task 2 
(max = 6) 1.33 1.80 1.31 1.65 1.31 1.92 

1% 

 able 3 shows perfor~nance o n  composite scores for Part A and Part B of the 
nonverbal reasoning task. Again perfor~riance was fairly low for each group. Stu- 
dents could discover some of the correct goals in Part A (wliicli asked them t o  
discover all possible legal goals given a set of tokens), but were often not exl~aus-  
tive. For Part B, students were usually able to  find a legal, but not the best, path 
t o  a goal. 

Resl~lls  for Verbal Reasoning Task One are shown in Table 4. For all of the 
verbal tasks, p e r f o r ~ n a ~ ~ c e  indicated that all groups of students had difficulty 
following the complex nested conditionals given in the verbal instructions. 

Table 5 shows performance by each group on tlie planning task. There were 
no  group differences due  t o  feeeback condition, so scores were collapsed for this 
factor. Two general measures of performance are shown: the amount of tinie i t  
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Table 5. Performance o n  the Planning Pretest 

G r o w  

Control 
Experimental (No-CS) 

(N = 15) (N = 16) 

Mean S D  Mean SD 

Plan Execution Time- 
In Minutesa 

Mean Plan Time 
(across 3 plans) 21.42 1.93 21.73 2.65 

Best Plan Time 19.57 1.58 19.67 2.12 

Planning Behavior 
Mean "Think" Time- 
In Minutes 33.34 13.12 30.02 9.34 

Mean Number of Pauses 4.44 2.61 4.13 1.83 
Mean Number of Reviews 1.02 1.19 .56 .69 
Mean Number of Checks .27 .38 .56 .7 1 

Optimal time = approximately 17 minutes. 

would take to  execute their plans (lower times indicate more efficient plans) 
and the amount of "planning behavior" on the part of  the students. Measures of 
planning behavior include the arnount of time students. spent thinking about 
their plans while creating them, the number of pauses between co~nnlnnds 
(where a pause was defined as any time a student waited five seconds or more 
between two consecutive steps in their plan) and the extent t o  which they took 
advantage of the plan nlonitoring aids available: the number of times they re- 
viewed a listing of their plan so far, and the number of times they checked a 
list of renlaining chores. As shown in the table, there are n o  differences between 
groups on any of these measures. This allowed us to  compare groups directly on 
the posttest. 

Performance of Programming and Nonprogramming 
Students on Posttests of Reasoning and Math Skills 

Now Verbal l 'rocal~tml Reaso~ring Posttest - Coniposite scores were clcvel- 
oped for Part A and for Part B of tlte po on verbal reasoning test. 1'erform;tnce on 
these Ineasures for each group is shown in Table 6. T l~e re  wele no significa~tt 
between-group differences. As on  tlte pretest, students were oftctl d) le  to  tlis- 
cover some of the correct goals in Part A, but tended not to be exhaustive. For 
Part B, many students were unable to find the one legal pat11 for either one or 
both of the questions asked. 
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Table 6. Performance o n  the Non-Verbal Procedural Reasoning 
Posttest: Mean Number of Points in Each Group 

-- - - 

Control Control 
Experimental (Some CS) (No CS) 

(N = 15) (N = 13) (N = 16) 

Mean S D  Mean S D  Mean S D  

P a r t A ( m a x = 9 0 )  59.27 24.14 55.08 23.13 58.56 21.23 
Part B (max = 2) .73 .88 .85 .80 .88 .96 

I 

Debugging Posttest - Table 7 shows students' performance on  the four spe- 
cific types of bugs. The groups did not differ in their ability to  detect or correct 
any of  the classes of bugs. For all groups the temporal order bug was relatively 
easy to detect. For the remaining types of bugs, students in each group, on  the 
average, were able to detect half of t l ~ e  bugs present. For these bugs, once a bug 
was detected, most students could successfully correct it. Few students were 
able to cotnpletely detect and correct the co~nplex,  embedded bugs. 

Plarrnitrg Posttest - Table 8 sllows performance on the planning task. Again, 
there were no significant differences between groups on  any of the measures of 
plan execution time or planning behavior. 

It was of particukr interest to compare the groups perfornlance on  this task 
to their performance on it at  the beginning of the year. A repeated-measure 
ANOVA was carried out with Group and Feedback Condition as between- 
subject variables and Session (prelpost) as a within-subject variable. Mean plan- 
time (the average of the three plans) was the dependent measure. This analysis 
revealed that there was a main effect for session-mean plan-times improved 
sligl~tly overall from the pre- t o  posttests-but there was no effect for Croup, 
or Feedback Condition, and no interactions. Thus, there were inlprovements on 

..the planning task over the year but the programn~ing students did not improve 
any more than the non-programming students, nor did they respond differently 
to the feedback. 

Math Test - As s l~own in Table 9, no significant differences between groups 
were found on  either the variables problenls or  the synibolic expressions prob- 
le~ns .  1'1111s our fintlirlgs were not consistent with previous results 1271 in which 
college-level progranlnling appeared to provide advantages for solving wold prob- 
lems given pi11 t i i l l  cqu:ltions of t l ~ e  form used here. 

A second analysis of pe~fo rn~ance  on the 1nat11 test involved comparing per- 
formance on  the subset of those problems which were identical to problems 
on the pretest. There were eight variable value calculation questions in common 
between the two tests and the composite scores for these were compared. A 
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Table 7. Performance by Each Group on the Debugging Posttest: 
Mean Number of Bugs Detected and Corrected in Each Category 

Group 

Control Con trol  
Experimental (Some CS) (No CS) 

(N = 15) (N = 13) (N = 16) 

Mean SD Mean SD Mean SD 

Bug Types 
Ambiguous Information 

(max = 2) 
Detect 1.13 -83 1.15 .a0 
Correct 1.07 .80 1 .OO -82 

Insufficient Information 
(max = 4) 

Detect 1.67 1.11 2.00 1.15 
Correct 1.27 .96 1.77 1.17 

Temporal Order 
(max = 1)  

Detect .80 .41 .77 .44 
Correct .60 -51 .62 .51 

Complex 
(max = 2) 

Detect .73 .59 .92 .64 
Correct .40 .63 .62 .65 

Table 8. Performance on the Planning Posttest 

Group 

Control 
Experimental (No CS) 

(N = 15) (N = 16) 
Mean SO Mean SD 

Plan Execution Time- 
In Minutesa 

Mean Plan Time 
(across 3 plans) 20.22 1.69 2 1 .04 1.78 

Best Plan Time 18.85 1.23 19.17 1.23 
Planning Behavior 

Mean "Think" Time- 
In Minutes 23.17 12.30 23.73 

9.32 Mean Number of Pauses 2.87 2.1 1 2.79 1.34 
Mean Numhcr of Reviews .40 .4 6 .56 .5 1 
Mean Number of Checks .49 .55 .3 1 .45 

a Optimal time = spproxirnately 17 minutes. 
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Table 9. Performance on the Math Posttest: 
Mean Number of Points in Each Group 

Group 

Control Control 
Experimental (Some CS) (N o CS) 

(N = 14) (N = 13) (N = 15) 

Mean SD Mean SD Mean SD 

Variables Problems 1 

(max = 9) 5.64 3.05 5.77 2.31 5.00 2.04 

Equation Problems 
(max = 3) 1.29 1.20 1.15 1.14 1.20 .94 

Table 10. Performance by Each Group on the Algorithm Analysis and 
Desiqn Task: Number of Subjects in Each Response Category 

for Algorithm Analysis 

Group 

Control Con trol  
Experimental (Some CS) (No cs )  

(N = 14) (N = 13) (N = 15) 

Gave approximately 
correct time 5 2 2 

Understood but 
calculated incorrectly 4 4 9 

Response indicates 
no understanding 

No answer 2 1 0 

repeated-measures ANOVA (group by session)indicated that posttest performance 
was sig~~ificantly better (1;(1,38) = 26.25; p < .00). Ilowever, there was no main 
effect for group nor an interaction. This result was surprising given the degree to 
which students i n  the p rogra~n~n i~ lg  course had to work with variables, and the 
number o f  different ways they encountered t l ren~ in  their program~ning tasks. 

Algoritltlrl &sip, a r ~ d  Amlysis Test - The two p:~rts o f  this task-analysis 
and design of an algori t l l~rl-we~ear~alyzed separately. Students' ability to  analy7e 
an existing ;~lgorithln i s  shown in  Ti~ble 10. N o  sigr~ificant differences between 
groups were found. 

Groups were compared for the style and adequacy of the algorithln they gen- 

erated. A l t l ~ ~ u g l ~  t l~ere were 110 between-group differences 011 an overall ca~~lposite 
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Table 11. Algorithm Analysis and Design Task: 
Number of Algorithms in Each Group Receiving Each Score 

Group 

Control Control  
Experimental (Some CS) (No CSI 

IN = 14) (N = 13) IN = 15) 

Scoring Dimensions 
Scope of Intended Designa 

No design apparent 5 
Specific t o  given input 5 
Specific to input of a 

multiple o f  4 coins 2 
General Solution 2 

Used Programming 
Structures 

Loop 5 2 1 
Repeat 2 1 3 
Conditional Testb 7 3 1 
CounterC 10 3 2 

Structural Errors Present 
In Counter/Counting 12 1 1  13 
In Sequencing 7 5 9 

Quality of Oesignd 
No design apparent 5 4 6 
Many flaws 1 7 6 
Few flaws 7 0 1 
Working design 1 2 2 

a Few algorithms would actually run i f  executed, but we assessed whether t h e  attempted 
design was intended to be general or specific. 

b Chi Square test on number of students using a conditional test = 7.13.p < .05. 
Chi Square o n  number of students using a counter = 11.95, p < .05. 

d ~ h i  Square on number of students falling in to  each quali ty of plan category = 16.04, 
P < .01. 

score, there were differences on some subscores. As shown in Table 11, program- 
ming students were more likely to  use three of the four programming structures 
possible: a loop, a conditional test, and a counter (differences in the  frequency 
of use of the latter two structures were significant). 

There was also a significant difference in the score for overall algoritlin~ 
quality. While only one programming student wrote an algorithm that would 
actually work successfully, many more programming students than nonprogram- 
ming students wrote algorithms witli only a few flaws. 011ly one progran~ming 
student wrote an algoritllm with many flaws, altliouglr six students in the non- 
programming groups wrote such algorith~ns. 
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The picture that emerges from these results is that programming students rec- 
ognized this task as analogous t o  progran~nling and could employ some o f  their 
knowledge from that domain to  construct an algorill~rn. 111 comparison t o  non- 
programniing students, they were better able to develop an a lgor i t l~~n which used 
efficient programming-like constructs, and wlrich could be  fairly easily debugged. 
IIowever, their work was not flawless; there was usually at least one error either 
in the sequencing, in the use of the counter, or due  t o  violation of the complex 
task constraints, wliicli prevented their algoritllriis from actually working. They 
also did not usually writeta general algorithm which would work for any number 
of input values. 

Correlation of Math and Reasoning Pretests with Posttests 

The math and reasoning pre- and posttests were alniost all significantly corre- 
lated, even withgrade point average partialed out.  Results are shown in Table 12. 
(Math pretest scores are presented in Table 9.) 

Correlation of Math and Reasoning Pre- and Posttests with Programming 

We correlated performance o n  pre- and posttests with a coniposite o f  the test 
scores for each language and with subscores on  the Logo tests. Table 13 shows 
correlations witli the composite test scores. The procedural reasoning pretest 
scores and the  math  variables pretest score correlated significantly with the  

Table 12. Correlations Between Pretests and Posttests 
for All Subjects; Grade Point Average is Partialed Out  (N = 4 4 )  

PRETESTS 
Procedural Reasoning 

Non- Verbal Verbal Math 

Posttests 
Procedural Reasoning 

Non-Verbal 2 .4 5 * .64 .72* 

Debugging Test .56* .6OU .6 1 

Math .39 .69 .74 
Algorithm 

Analysis 
Design 
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Table 13. Correlation of Performance on Programming Tests 
with Performance on Pre- and Posttests (Experimental Group) ( N  = 15)a 

Composite Programming 
Tests Score 

Pretests 
Non-Verbal Procedural Reasoning 
Verbal Procedural Reasoning 
Math 
Planning (mean time) 

Posttests 
Non-Verbal Procedural Reasoning .65" * 
Debugging .63" 
Algorithm (analysis) .85 " 
Algorithm (design) .74" " 
Math .77"" 
Planning (mean time) -.65"" 

a N - 15 for correlations with a l l  pretests, and the procedural reasoning and debugging 
posttests. N = 14 for correlations with the math and algorithm posttests. 

p < .05 
* *  p < .O1 

progratllnling score. Of the posttests, tllc proced~rral reaso~~irlg, del)uggi~lg, 
algorillrm, and 1nat11 scores correlated signil'ica~ltly with the programming tests. 
The 1nat11-variables pre- and posttest scores, and the algoril l~rn task scores 
correlated particularly well with the prograniming measures. 

Table 14 shows the correlation o f  the co~nprehension and productiorl parts o f  
the Logo Test with the pre- and posttests. Almost all correlations are significant. 
With grade point average partialed out, the pattern o f  significance renlains 
essentially unchanged. 

The correlations found between procedural reasoning, decentering and pro- 
granming replicate findings o f  an earlier study o f  high scllool s tude~~ts learning 
Logo 1201. These skills, as well as the ability to evaluate the values o f  variables, 
to translate word problems into symbolic equations, and to design and conipre- 
Ilend an algorithm, appear to be centrally related to the developnlent o f  pro- 
gran~ming skill. 

Programming Ability in  the  Experimental Group 

All nleasures of progranlniing skill showed that most strlde~lts Ilad gi~inetl only 
a modest understanding o f  any of the languages taught. Only performance on 
the Logo test will be reported here along with the conditional l l ow o f  control 
question wllich we included on each o f  the tests for three other languages. Per- 
formance on  the Logo test is representative of understanding o f  other languages 

Table 14. Correlation of  Performance on Logo Test with Performance 
on Pre- and Posttests (Experimental Group) (N = 13) 

Logo Scores 

Production Comprehension Total 

Pretests 
Non-Verbal Procedural Reasoning 5 9 '  .68"" .69"" 

Verbal Procedural Reasoning .62' " .67 " " .66"' 

Math .68* .69"* .70*" 
I 

Planning (mean time) ! .02 - . I 1  .o 1 

Posttests 
Non-Verbal Procedural Reasoning .73*" .58" .7OU" 

Debugging . 7 l U "  .69'" .72"" 

Algorithm I 

Analysis 
1 .84" " .8OU* .84"" 

Design .66" .63'" 
.68" " 

Math .57" .65"' .61'" 

Planning (mean time) -.34 -.59' -.44 

Table 15. Performance of the Experimental Group on the Final 
Programming Tests in Each Language 

Mean Scores on  Each Test 

Mean S D 

BASIC 69.80 
COBOL 64.07 

..FORTRAN 57.40 
Logo 53.47 

Correlations Among Test Scores 

BASIC COBOL FORTRAN 

BASIC 
COBOL .BO* 
FORTRAN .88" .74" 
Logo .88" .9 1 .72* 
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by the students; as shown in Table 15,  performance in each language is l ~ i g l ~ l y  
correlated. 

Logo 13.oficietlcy Test - In general, s tudents  exhibited a somewllat confused 
overall understanding of Logo. For example,  when asked t o  identify Logo 
expressions as variables, procedure nanies, words,  lists, or numbers,  o n  t h e  
average only half of the students  correctly identified tlle expressions. They had 
greatest difficulty recognizing a variable. O n  following t h e  flow o f  control  
tllrougl~ a short  Logo program only five of  tlle s tudents  were successful. Several 
students showed understanding of  the passage of  control  among subprocedures, 
but tlrey failed to  exl~austively follow the  passing of  control. The  remaining stu-  
dents demonstrated no  understanding of  h o w  the  order of  execution o f  the  lines 
in a program is determined b y  particular flow o f  control  c o t n n ~ a n d s  and the  
current value o f  variables. 

On the  program comprel~ension problems, s tudents  were successful o n  a pro-  
gram wllich required understanding o f  a simple use of  list processing primitives 
and an input variable. When the problem, requiring understanding of  Make  and 
O u p r t ,  several understood that  the O U T P U T  command in a subprocedure 
passes information t o  a calling procedure, bu t  tliey did no t  understand that  the  
OUTPUT co~nmarid ends the  execution o f  a procedure. Only four s tudents  
showed a good rrnderstending o f  tail recursion and none  could follow a program 
involvi~lg embedded recursion (also see 1281). 

On the program production part o f  the  Logo Test ,  approximately half of  the 
students could produce the correct screen effects. Only tllree students  used vari- 
ables and only five students used subprocedures, even though much o f  the  con-  
tent for the three screen effects was similar o r  identical, and effectively created 
a demand for  use of subprocedures and variables. T h e  reatmining students  wrote 
linear "brute force" programs (lists o f  ou tputs  preceded by the  print command)  
or were unable to  approach a successful program. 

Overall, more students evidenced compre l~ens ion  o f  variables and flow o f  
control wlien given short siniple programs than w l ~ e n  asked to  produce tlleir own 
progratns. This may indicate bo th  the fragility o f  their understanding, and a lack 
of  appreciation of  the utility of  variables and subprocedrrres. 

Cor~tlilior~allIeratior~ Problerrrs it1 h r t r  Larrgrrages - Few students  could suc- 
cessfully produce the output  of  short programs given in each language which had 
an iterative structure wit11 conditional tests and multiple variables t o  be incre- 
mented. Many did understand lines o f  code wl~ic l l  contained a cotiditiorral s top  
rule, incremented a variable, o r  created a global variable (in Logo). lIowever, 
they often seemed to  evaluate these lines o u t  o f  contex t ;  many could no t  follow 
the flow o f  control  and did no t  demonstrate understanding o f  the  order o f  
execution. A few students followed the order correctly but  s topped t h e  pro- 
grams too  soon (wrong number o f  iterations); they  seemed to  interpret the 
comparatives in the stop rule incorrectly, o r  t o  have some o ther  difficulty 
with flow of control .  

With the  exception of  the  Logo version of  this task, most s tudents  could n o t  
systematically keep track of  values of variables. This  was easier in Logo, w l ~ e r e  
the  program did not  compare  variables t o  each otller (i.e., I F  X = Y) b u t  instead 
compared them t o  constants  (i.e., I F  X = 3). Also, t h e  Logo task had only three 
variables whereas t h e  otller tasks had a four th ,  counter  variable. It is important  
t o  no te  that  t h e  "variables" problerns o n  the math  pre- and posttests were analo- 
gous t o  this programmirlg p r o b l e n ~ .  T l ~ e r e  were four variables, most of w h i c l ~  l i d  
values defined in terms o f  otller variables. Each o f  t l m e  tasks demanded a sys- 
tematic a p p r o x l ~  in order t o  reduce working memory  load. Students  did no t  
demonstrate skills for  such systematic reasoning in their programming nor in 
their solving o f  tlle m a t h  problem. 

DISCUSSION 

Prograrntnil~g students  were found t o  range greatly in tlleir understanding o f  
even basic programming principles and  commands.  F o r  t h e  most  part  they ex-  
hibited a weak understanding of  flow o f  control  o r  of  the structure o f  t h e  lan- 
guages in wlliclr they worked .  Observations o f  t h e  students  as they worked in 
their programming class indicated that  s tudents  frequently shared ideas and c o d e  
(compare 1291). While exploiting pre-written code is an honorable progra~nmirlg 
t e c l r ~ i i ~ u e  among professionals, in sc l~ools  it is a double-edged sword. Some stu-  
dents  relied o n  t h e  understanding of  a few good students  and never bothered t o  
learn the material themselves. Many students  used a trial-and-error approach t o  a 
task, o r  inlnlediately asked for help wlien stuck.  Thoug11 several were concerned 
wit11 understallding what  t o  d o ,  tliey did no t  seem t o  have tec l~niques  o r  rules 
for systematically analyzing buggy programs and for developing corrections. 

Given the generally low level of  programming unders tan t i i~~g ,  even after t w o  
years of instruction, it did no t  c o m e  as a major surprise that  there were no  sig- 
nificant differences between the  experimental and control  groups for any  of o u r  
measures o f  "far" transfer. This was the  case even tl1oug11 our  reasoning and  
mat11 measures correlated with programming mastery indicating, as expected,  
that  prograniming taps a number of specific complex cognitive skills. 

' T h e  transfer tasks all proved to  be  fairly difficult for most students regardless 
of  programming experience. Students  had difficulty with exhaustive and accurate 
procedural reasoning, evaluating variables defined in terms of  other  variables, set- 
ting u p  an equation for a word  probletn expressing proportiorial relations, decen- 
tering sufficiently t o  exhaustively detect  "buggy" instructions and constructing 
and monitoring a plan for efficient chore execution. 

O n e  reason postulated for previous failures t o  find far transfer still reigns cen- 
tral: s tudents  did no t  at tain a very high level of  expertise in programming. T h e  sig- 
nificant gains we did find for prograrnmir~g students  o n  the near transfer task-the 
Algorithm Design and  Analysis Task-liigl~ligl~t the important relationship be-  
tween t h e  nature o f  knowledge transferred and  t h e  acquisition of expertise. 
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The algoritl~nl  ask, to wllich prograniming students  did apply some o f  their 
skills, was different from our other transfer measures in two ways: First, t h e  pos- 
sible knowledge t o  be transferred included specific p rogranming  concepts  such 
as a "counter" arid a conditional s top  rule, as well as cognitive operutiorls used in 
programming (such as procedural reasoning, o r  the systematic evaluation o f  vari- 
ables). Second,  it bore relatively obvious silnilariiies to  a progra~rlming task (tlle 
goal was to perform numerical cornpl~tat iol ls  given a set o f fu l lc t ions  analogous 
to  programming conlnlarlds or  subprocedures). We found that  s tudents  recog- 
nized the conditiorls for application o f  some o f  their progranlming concepts  t o  
the task. Also, to  some extent they showed superior procedural r e a s o n i ~ ~ g  ability; 
their overall plan quality was better than the  nonprogramn~ing students  tllougll 
rnany still nlade procedural errors. 

Time positive results exemplify the  tight relation betweell transfer and what  
has been learned. The concepts transferred-the use of  a counter ,  a loop  and a 
conditional s top rule-are saliellt features of  prograrnrning, explicitly represented 
in the code,  and presented early in programming instruction. Thus  they are 
familiar to ,  even if not fully nlastered b y ,  most novices. Giver1 the  transfer of  
the operational skills here and not t o  o u r  other  tasks, it is apparent  that  rela- 
tively context  specific rather than general operations were learned. 

Because most students' knowledge o f  the fundamental aspects o f  progralnming 
was quite  limited, we d o  not c o n c l ~ ~ d e  that developnient and far. transfer o f  skills 
from progranimi~lg cannot in principle occur. We can conclude,  however, tha t  
such far transfer is unlikely t o  occur given the type of programining curriculum 
and amount  of  experience provided for  tllese students, wllich if anything is mis- 
representatively rigorous and unrealistically more intensive than that  found in 
most sc l~ools  today. Such experience is insufficient for mastery of  the program- 
ming concepts  and practices that engage and make more  probable the  far 
transfer of  Iligli level thinking skills. Until a population with greater progratrl~ning 
expertise is studied longitudinally, the far transfer question remains open.  

I n  conclusion, two things seem clear. First, mastery o f  a t  least basic program- 
ming skills appears t o  be essentiai for transfer, but  is hard to  achieve within the 
constraints imposed by the organization of  scl~ools.  And second,  if progralnlning 
is to continue to  play such a rnajor role in the  school curriculrlni, we need t o  de-  
velop nlucll more effective ways o f  teaclling children to  prograni. Explicit devices 
for llelpirlg students see how flow of control  structures work appear promising 
130.331. But better prograrnrning environments are not  enough by tllemselves. 
Instruction must explicitly focus o n  llelping the  student build a model  o f  how 
the progrnm~ning language works. If the  operat ion o f  the  language is a mystery 
1261, then students  cannot write complex  and cognitively demanding programs. 
Early o n  and Illrougllout instruction, understandir~g the control  and data struc- 
tures s l~ould  be stressed. Trial-and-error creation o f  screen effects typical of  pure 
discovery learning environrnents c o m m o n  in precollege progranlnling should be 
tempered with directed teaching o f  the  principles wliicll urltlerlie the  effects. 
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Trial-and-error generation o f  screen effects neitller engages high level thinking 
skills nor suppor t s  increased l~ ias te ry  o f  the  language. 

A n o t l ~ e r  possibility often proposed is tha t ,  since transfer of  tllilikirig skills 
may involve representation o f  knowledge at a high level of abstraction, divorced 
f rom particular contex ts ,  one  might teach thinking skills at  this general level o f  
abstraction. I 'erl~aps in this way the need for  domain expertise can be bypassed. 
U n f o ~  tunately, w e  k ~ w w  f rom previous research that  "n~et l lods  without  conten t  
are blind," that  s tudents  llave great difficulty deduci~ lg  c x a ~ ~ l p l e s  t o  which 
general thinking skills o r  rules they  are tal~gll t  will apply if they are presented 
with abstractions alone (34.381 . Insofar as instruction in general thinking skills 
programs has been effective in p r o ~ n o t i n g  transfer, it appears that there  have 
been explicil corrdi/iorls fi)r trarrsfer desigrled itlto the  b~sfrrrct ior~al  p r o f l u n ~ s ,  
including multiple e x a n ~ p l e s  of  skill application, links t o  real-world probleln solv- 
ing situations, conten t  area instruction, abstract descriptions o f  thinking skill 
methods ,  and so  o n  [39 ,  401 .  These issues are t o o  complex for t reatment here,  
but  will be important  to  systenlatically consider in fulure instruct ion and re- 
search with tlle aim of Ilelping students  learn generali7able thinkirlg skills such as 
planning and p r o b l e ~ n  solving methods t h r o u g l ~  c o ~ n p u t e r  programming activities. 

F r o m  o u r  perspective, based o n  da ta  f rom the  present s tudy and o thers  [20, 
2 1 ,  4 1 - 4 3 ] ,  w e  d o  not  believe that  the  current  h o p e  for i r ~ c i d e t ~ / a l  learning of  
generalizable thinking skills through programming is realistic, and would  take 
tllese broader lessons about  condit ions for transfer o f  learning from t h e  psycllo- 
logical literature into account in designing for transfer in t h e  future.  Whether 
with bet ter  programming environrnents, bet ter  instruction, and m o r e  e x p l ~ c i t  
at tention t o  designing instructioll for transfer, progratnil~ing will begin t o  more  
fully live u p  t o  its potentials and promises remains to  be seen. 
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ABSTRACT 

This study examined high scl~ool students' knowledge about constrttcts in the 
BASIC progran~niing language. A screening test was administered to ninety-six 
students, fifty-six o f  wliom were interviewed. Students were asked to trace 
simple progranls and predict their oulput. 1:rrors in virtually a l l  BASIC con- 
structs we examined were observed, with many of the ~nisconceytions arising 
from the application of  knowledge and reasoning from infornlal donlains to 
programming. It is argued that a lack of knowledge of basic features of pro- 
gramming language will prevent students frorn developing tlie Iiiglier-level cog- 
nitive skills that much program~ning instruction is intended to foster. 

Conipu te r  p r o g r a ~ l ~ n i n g  courses a r e o f t e n  offered b y  higll scllools o n  t h e  g rounds  
tha t  learning programming is a powerful  way  t o  develop problern solving a n d  rea- 
soning skills. Linn has  suggested tha t  such p rob lem solving skills are  t h e  culmin-  
a t ion  o f  a cha in  o f  cognitive consequences o f  programming instruction [ I ] .  Th i s  
chain includes c o ~ n p e t e n c e  wi th  specific features  o f  t h e  prograrn~ning language 
being l ea r r~ed ,  skills f o r  designing programs within t h e  language, and  general 
problem solving skills applicable t o  o t h e r  f o r ~ n a l  systems.  While knowledge o f  
specific features  o f  t h e  language being s tudied is o n l y  t h e  first link in this cha in ,  
it is a prerequisi te  t o  t h e  learning o f  nlore general des ig t~  and problem solving 
skills. F o r  s tuden t s  t o  engage in  tasks such  as debugging proglams or  designing 
algorilllrns b y  a n a l y ~ i n g  complex  tasks, they  must  have n certain a m o u n t  o f  
knowledge a b o u t  t h e s y n t a x  a n d  semantics  o f  a progran~~ni~lgla~~grrage.  A s t u d e n t  
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