N

N

A study of the development of programming ability and
thinking skills in high school students
D. Midian Kurland, Roy D. Pea, Catherine Clement, Ronald Mawby

» To cite this version:

D. Midian Kurland, Roy D. Pea, Catherine Clement, Ronald Mawby. A study of the development
of programming ability and thinking skills in high school students. Journal educational computing
research, 1986, 2(4), pp.429-458. hal-00190539

HAL Id: hal-00190539
https://telearn.hal.science/hal-00190539
Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://telearn.hal.science/hal-00190539
https://hal.archives-ouvertes.fr

J. EDUCATIONAL COMPUTING RESEARCH, Vol. 2(4), 1986

A STUDY OF THE DEVELOPMENT
OF PROGRAMMING ABILITY AND
THINKING SKILLS IN
HIGH SCHOOL STUDENTS*

|
' D.MIDIAN KURLAND
ROY D. PEA
CATHERINE CLEMENT
RONALD MAWBY
Bank Street College of Education

ABSTRACT

This article reports on a year-long study of high school students learning com-
puter programming. The study examined three issues: 1) what is the impact of
programming on particular mathematical and reasoning abilities?; 2) what cog-
nitive skills or abilities best predict programming ability?; and 3) what do stu-
dents actually understand about programming after two years of high school
study? The results showed that even after two years of study, many students
had only a rudimentary understanding of programming. Consequently, it was
not surprising to also find that programming experience (as opposed to ex-
pertise) does not appear to transfer to other domains which share analogous
formal properties. The article concludes that we need to more closely study
the pedagogy of programming and how expertise can be better attained before
we prematurely go looking for significant and wide reaching transfer effects
from programming.

Psychologists, computer scientists, and educators have argued that computer
programming can be a powerful means of enhancing thinking and the develop-
ment of good problem-solving skills in children, in addition to being a powerful
method for teaching students fundamental concepts in mathematics, physics,
and logistics [1-3]. At first glance, the enthusiasm surrounding programming
scems well-founded. Observations of expert adult programmers indicate that

* The work reported here was supported by the National Institute of Education (Con-
tract No. 400-83-0016). The opinions expressed do not necessarily reflect the position or
policy of the National Institute of Education and no official endorsement should be inferred.

429

© 1986, Baywood Publishing Co., Inc.

430 / KURLAND ET AL,

programmers explicitly employ important problem-solving strategies such as de-
composing problems into modules, use analogical reasoning, and systematically
plan, code, and debug their programs. Programming seems to demand complex
cognitive skills such as procedural and conditional reasoning, planning, and
analogical reasoning [3-7].

In addition to problem-solving skills, programming utilizes fundamental con-
cepts such as variables and recursive structures, which are important in math and
physics. It is well-known that these concepts are difficult to teach with tradi-
tional media, and their employment in the functional context of a programming
language may make them more easily comprehended [1, 3].

Motivated by this enthusiasm for the potential of programming, as well
as by the pressure from business and the homes to make students “computer
literate,” schools have instituted programming courses or related activitics
at all grade levels. Yet, surprisingly, there has been very little rescarch to date
which has directly addressed the many broad claims that have been made for
programming. And in addition, there has been very little research examining
what students are learning about programming itself as the result of school-
based instruction. We know far too little about what to expect students will
learn in a reasonable period of time, how they learn, what conceptual diffi-
culties they encounter, what forms of cognitive support they may require
to guide them over these difficulties, or whether individual differences in
learning styles are reflected in programming and need to be guided differently
in instruction. And beyond what rational analyses suggest, we cannot say
with much assurance what knowledge and skills that students bring with them
when they first meet programming (e.g., natural language competencies; var-
ious reasoning skills) are likely to facilitate the acquisition of progranuning
knowledge and skills.

Addressing the issue of how well students actually learn to program in
precollege courses is thus an important matter. It is particularly important
because of two relations between level of expertise and transfer of learning.
First, it is primarily sophisticated programming activities that demand higher
level thinking skills and problem-solving techniques, and these activities require
expertise. They require a good model of the stucture of the language: you
cannot write a modular program and use variables unless you understand how
control is passed in the language and how logical tests operate on outputs of
operations, ’l'huz?, the thinking skills we hope will develop and transfer out of
programming depend upon students attaining certain proficiencies in program-
ming [8]. Simple tasks such as a four-line graphics program to draw a box do
not require the full range of complex reasoning skills that programming is pur-
ported to help develop.

Second, the transfer of concepts and skills across domains depends on the de-
tection of potential similarities between a known and a new domain [9-13].
Brown, Bransford, Ferrara and Campione note that this fact implies differences in

PROGRAMMING AND THINKING SKILLS / 431

the abilities of novices and experts to transfer since novices and experts classify
similarities between tasks differently [14]. Novices will be more limited in their
abilities for recognizing problem similarity since they tend to classify tasks
according to surface characteristics whereas experts focus on underlying con-
ceptual properties or casual structures. For example, Chi et al. examined the
categorization of physics problems by novice and experts [15]). Novices cate-
gorized problems in terms of particular objects referred to, terminology given in
a problem statement, and physical configurations of problem elements. In con-
trast, experts ignored these superficial features of problems and categorized
them in terms of physics-f principles relevant for problem solutions. Since the
novice and expert represent domains differently, they have different information
to use in classifying problems, and in accessing knowledge potentially useful in
a new problem-solving situation. Similar findings have been obtained for novice
and expert adult programmers [16].

Thus, in programming, even if novices begin to develop an understanding
of the workings of the language and to write relatively sophisticated pro-
grams, they may represent programming in terms of the surface code, for-
mat and syntactic properties of a language, and in terms of particular tasks.
Experts, on the other hand, are more likely to represent programming prob-
lems in terms of the general concepts which underlie particular programming
constructs such as recursive routines and variables, the underlying structure
of broad classes of problems, the solution strategies which crosscut many types
of problems, or routinized plans [17] or. “templates” [18] for solving com-
mon programming subproblems. Those aspects of programming problem-
solving skills we hope will transfer, and that could transfer, involve the general
structure of the problem-solving activity and general concepts. Further, the
ability to transfer these techniques and concepts from programming will de-
pend on recognizing problems in new domains where the techniques and con-
cepts apply by analogical extension [11,19].

Whether we are concerned about students learning to think better through
programming, or in their learning to program, it is essential to recognize
that we are in a very early state of knowledge about the psychology of pro-

* gramming. For this reason, any work in this area, has the nature of work in

progress. The technologies available to schools, both hardware and software,
arc in great flux, and teachers’ intuitions are being sharpened through their
experiences in helping students learn programming, and to think through pro-
granuning. So, as useful as any new findings in this area are likely to be for
the educator, they must be treated with caution. At the same time, the in-
fluence on education of grandiose and optimistic pronouncements that have
been made about the cognitive benefits of programming, and on the ease with
which students can learn to program, cry out for empirical assessment, even
in these early days in the field when the terrain changes faster then one’s “re-
search snapshot” develops.

432 ! KURLAND ET AL,
THE PRESENT STUDY

To begin to examine more directly some of the many claims that are being
made for and about programming we undertook a study designed to investigate
the relation between thinking skills and programming, and to investigate the pro-
gramming skills acquired by precollege students. We were interested in the devel-
opment of programming skill among well taught precollege students with signifi-
cantly more experience programming than most students who have participated
in previous research studies,

Our study had three aims. The first was to document the impact of program-
ming experience on a range of reasoning and math skills. The second was to ob-
serve the nature of the programming knowledge students attained. The third was
to replicate findings from a previous study [20] that certain of these cognitive
skills predict some aspects of programming skill acquisition.

Our choice of concepts and skills to investigate was based on a rational
analysis of the cognitive components of programming and on correlations, found
in previous research, between particular skills and programming mastery [6].
The tasks chosen involved procedural reasoning, decentering, planning, math
understanding, and algorithm design.

Our particular task designs were based on an analysis of how the target skills
are manifested in programming. Many of the skills we were interested in could
not be assessed by standard cognitive ability measures, either because no
measures of these skills exist or because existing measures demand skills in a
form inappropriate to programming. For instance, standard tests of conditional
reasoning examine comprehension of material implication as defined in standard
logic. This is not particularly relevant to the use of conditionals in programming;
rather the conditional reasoning skill practiced in programming involves reasoning
through a complex chain of nested condition-action structures.

METHOD

Design

Three groups of high school students were tested at the beginning and end of
the school year. One group of students, the Ixperimental group, was enrolled in
their second year of programming. A second group, the Some-CP group, had
taken one year of programming but had elected not to continue. A third group,
the No-CP group, had no experience programmning.

A battery of posttests administered at the end of the year was intended to
assess the cognitive benefits resulting from the programming course, and for the
Experimental group, programming knowledge and skill. Performance on these
measures was compared among the three groups of students. The prefests ad-
ministered at the beginning of the year were selected as potential predictors of

PROGRAMMING AND THINKING SKILLS / 433

Table 1. Distribution of Subjects in Each Group According to Sex,
Grade in School and Grade Point Average

Sex Grade GPA
Group Male Female 10th 11th 12th Mean Range
Experimental 1 4 9 3 3 74.3 40-93
No Prior

Programming 9, 7 8 2 6 78.0 68-96
Some Prior

Programming 6 ' 7 4 6 3 77.7 46-94

Total 26 18 21 11 12 76.6 40-96

!

performance in the programming class. These tests also served as measures of the
initial ability level of students on many of the skills were were posttested.

Students

All students for the study were drawn from a large urban public high school
with an ethnically and socio-economically mixed student body. The experimental
group consisted of a full class of fifteen students who ranged widely in ability as
indicated by their grade point average. Control students were selected from a
pool of volunteers and matched with the experimental students on math back-
ground, overall GPA, and grade level. Students in the Some-CP group had taken
an introduction to computers through the BASIC language course the previous
year, Table 1 gives the breakdown of the three groups by sex, grade, and GPA.!

Programming Instruction

Students in the experimental group had taken the same introductory course
as the Some-CP students. They were currently enrolled in a second, more inten-
sive programming course taught by an excellent programming teacher with five
years experience.? Class met for forty minutes, five days a week in one of the
school’s computer labs. Over the year students studied six programming lan-
guages. They spent nine weeks each on BASIC, COBOL, and Logo and three
weeks each on FORTRAN, MACRO, and Pascal.

! The number of students reported for results of certain measures varies since we were
unable to administer some tests to one or two students in each group.

2 The teacher of the Experimental students had a B.A. in Mathematics from Yale Univer-
sity, an M.A. in Interactive Educational Technology from Harvard University, and five years
of teaching experience. Her students have won the department’s prize exam for first year
students in each of her five years, and her AP students placed very highly in national compe-
" tition and on the Advance Placement Exam.

434 /| KURLAND ET AL.

The nine week Logo section came at the end of the year. While the program-
ming teacher designed and taught the curriculum for the other five languages, we
designed, then had the teacher teach, the Logo curriculum, Qur aim in designing
the Logo curriculum was to help students develop a richer mental model of Logo
than students in our previous studies seemed to develop. The focus was on
control structure. Work was done solely in list processing—no turtle graphics
were Laught. In turtle graphics it is too easy for students to continue to generate
interesting screen effects without understanding the code [21]. In list processing
work, to obtain interesting effects requires a deeper understanding of the lan-
guage. This approach has its own costs—students need to understand more of the
language before they can do much of interest in it.

In our design of the Logo curriculum, we emiphasized comprehension over
production. Students were given handouts covering concepts and commands,
worksheets that stressed program comprehension, and a glossary of Logo primi-
tives, written in flow-of-control language (i.e., in terms of inputs and outputs of
Logo command operations). And we supplied utilities for file management to
encourage a tool-kit approach.

We designed a series of weekly projects, each building on the previous ones,
so that in principle each project could be a modular tool for the next project.
The final project was to program a simple version of ELIZA, the program that
mimics a non-directive psychotherapist [22]. Topics covered in the course in-
cluded Logo commands (primitives, procedures, inputs, outputs, and outcomes,
creating and editing procedures, words, lists, and list processing, input and out-
put commands, workspace management commands, debugging, trace and error
messages, subprocedures, procedures with input variables, naming and creating
variables with the MAKE command, the OUTPUT cominand, conditionals, and
tail and embedded recursion,

Measures

The specific rationale and design of each of the tasks used in the study is de-
scribed fully elsewhere [23]. A brief review of the tasks is provided below.

Pretests — To assess the extent to which skills acquired in programming
transfer to other domains, we developed transfer tasks in both “far” and “near”
contexts. Our far transfer tasks (the majority of the tasks), demanded skills we
believed to be deeply ingredient to programming, but they bore no obvious sur-
face similarities to programming tasks. One near transfer task, in addition to
bearing deep structural similarities to programming, resembled programming
tasks in scveral surface features, The pretests were divided into three types:
procedural reasoning, planning, and mathematics.

Procedural Reasoning Tests — Rational analysis suggests that programming re-
quires instrumental reasoning, particularly procedural reasoning. Designing, com-
preliending, and debugging programs requires this type of means-ends reasoning.

PROGRAMMING AND THINKING SKILLS / 435

Programmers must make explicit the antecedents necessary for different ends,
and must follow through the consequences of different antecedent conditions.
Designing and following the flow of control of a program requires understanding
different kinds of relations between antecedent and consequent events, and or-
ganizing and interrelating the local means-end relations leading to the final
end. Therefore we designed a set of tasks to measure procedural/conditional rea-
soning with conditional structures in complex contexts. One task was non-verbal
and two were verbal. The tasks involved following the flow of control in systems
having logical structures ‘analogous to the logical structures in computer lan-
guages. The systems involved reasonable though arbitrary and artificial rules to
make them analogous to a programming language and to prohibit students’ use
of prior world knowledge.

Nonverbal Reasoning Task One. This task was designed using non-English
symbolisins so that verbal ability and comprehension of the “if-then” connective
would not be an inhibiting factor for students.

Students had to negotiate passage through tree diagrams having an embedded
conditional structure. The task tapped ability to discover which goals could be
legally reached given that a set of antecedents were true, and ability to deter-
mine the antecedents necessary to reach given goals.

Passage through the trees required satisfaction of conditions set by nodes in
the tree. Each node required a differing logical combination of various shaped
“tokens.” Nodes with a disjunctive structure offered a choice of tokens to be
used, and nodes with a conjunctive structure required a combination of tokens.
Some nodes were combinations of disjuncts and conjuncts.

The task had two parts, In the first part (Part A), for each question students
were given a set of tokens and were asked to determine all goals that could be
legally reached with that set. The second part (Part B) included additional com-
ponents aimed at hypothetical reasoning and planning abilities. In some instances
many routes were legal but students were encouraged to find the most efficient
route. Here we were interested in the student’s sense for elegant problem solu-
tions. In other cases students were required to test a large number of possibil-

“ities to discover the one legal path.

Verbal Reasoning Task One. The first verbal procedural reasoning task was
analogous to the Non-verbal Procedural Reasoning tasks, but given in verbal
form. This task used the “if ., .. then . .. else” structure often found in program-
ming. The task assessed ability to follow complex verbal instructions consisting
of nested conditionals, Students had to understand the hierarchical relations be-
tween instructions, e.g., that some condition was only relevant given the out-
come of a prior condition.

The task involved following instructions within a precisely defined set of rules
(determining a student’s tuition from a complex set of rules based on the stu-
dent’s background and current academic level). Like the non-verbal task, stu-
dents were given different types of questions to test their mastery of the complex

436 /| KURLAND ET AL.

logical structure. In some questions (Type A) students were given a set of ante-
cedents and were asked for the consequence. In other questions (Type B), the
goal or answer was given and the student had to determine what antecedent
conditions must have been satisfied. Finally, other questions (Type C) asked
what are all and only the decisions that must be made in order to determine a
particular outcome given partial knowledge about the conditions. These ques-
tions required a good understanding of the structure of the instructions. Students
had to separate irrelevant from relevant conditions and understand the hier-
archical relation among conditions.

Verbal Reasoning Task Two. This task had a complex conditional struc-
ture with a number of goals and conditions for satisfaction. The problem had
two conditional structures, in addition to the *“if ... then . .. else” structure,
that were isomorphic to programming conditionals. There was a “do-until” loop
structure, and a structure isomorphic to an “on gosub” or “Jump match” struc-
ture where a match between variables determines what you do.

Planning Task. Several analyses of the cognitive components of program-
ming jsolate planning as a central activity [4-7,24] . After defining the problem
to be solved, the programmer develops a plan or “‘structured description” of the
processes required to solve the problem [S], that will then be written in pro-
gramming code. Observations of expert programmers reveal that a major portion
of their time is devoted to planning and that they have available many general
plan-design strategies. Pea and Kurland provide an indepth discussion of the
nature of planning as it is manifested in programming [24] .

The task used to assess planning skill was & slightly modified version of that
described in Pea, Hawkins and Kurland [21] (also see [24]). The task involved
scheduling a set of classroom chores: students had to design a plan which spe-
cified the sequence in which chores should be completed in order to clean-up a
classroom in as little time as possible. The chores were to be executed by a hypo-
thetical “robot” who responded to a minimum set of commands, and required a
specified amount of time to perform specific actions.

This was a computer-based task. A graphics interface depicted a classroom in
which the chores were to be done. Students gave English commands to instruct
the robot how to clean up the room and the experimenter typed the commands
into the computer. Students designed three plans. After each plan, students were
told how much time the Robot would take to actually execute the plan,

The programming and nonprogramming students were each further divided
into two subgroups. One subgroup received ““feedback” after each plan and the
other subgroup did not. Although all students were told of the time that would
be required to complete their plans, “feedback” students also received a paper
print-out of their plan listing each action and the amount of time it required,
They were also shown a screen display of the classroom, in which a step by step
enactment of the student’s plan (the path of the robot as he completed each
chore) was carried out under the student’s control. We proposed that there may

PROGRAMMING AND THINKING SKILLS / 437

be group differences in the extent to which students benefited from the feed-
back information.

The planning task was administrated for both the pretests and posttest. Two
types of data yielded by this task were used in the analyses to be reported, One
was the time required to execute the students’ plans. The second was the plan-
ning behavior of the students. This was assessed by their use of the plan monitor-
ing aids, which was recorded by the computer, and the amount of time they
spent thinking about their plan, also recorded automatically by the computer.

Math Test. Math ability has been hypothesized to be both a cognitive de-
mand and an outcome of programming experience [6, 25] . Similarities between
high school inath and programming exist at several levels. Math and programming
languages are both formal systems with well-defined syntactic rules. Both
employ the concepts of variable and algorithm. At the procedural level, both
may demand representing relatively rich situations in relatively abstract for-
malisms, and then operating on these formalisms to compute an outcome. Math
word problems require extracting essential relations from a prose description of
a situation and representing them in mathematical terms. Programming involves
giving an explicit procedural representation of a desired output.

Thus we included a math task that we felt would be relevant to programming.
Since the math backgrounds of our students varied, and we did not want the
task to demand special knowledge, we considered the most basic algebraic con-
cept—the use of letters to represent variables. All students had enough math so
that this notation was familiar, The task was designed to depend more on the
ability to systematically operate with variables, and on insight during mathema-
tical thinking, than on domain-specific mathematical knowledge.

These salient similarities guided our task design. We gathered a set of math
problems that tested either grasp of variables, especially evaluating functions,
which is analogous to keeping track of a variable in programming, or ability to
relate a symbolic expression to a prose description,

We wanted the variables task to reflect the use of variables in programming.
Since values of variables are often passed, modified and printed in programming,
we chose problems in which students had to determine the values of variables
which were defined in terms of other variables. They thus had to evaluate nested
functions, following a chain of several variables to reach a constant. To follow
the calculation through would be analogous to tracing the value of a variable
through the execution of a program,

Posttests

The battery of posttests included mesaures of procedural reasoning, decenter-
ing, planning, math ability, and algorithm design and comprehension. All but the
algorithm test can be seen as measures of “far transfer:” the tests demanded
skills and concepts we believed to be ingredient to programming, but the tests

438 / KURLAND ET AL.

bore no obvious surface similarities to a programming task. The algorithm task was
our measure of “near transfer;” in addition to deep structural similarities to pro-
gramming, the task also resembled a programming task in several surface features.

Non-Verbal Procedural Reasoning Task Two — This was a slight modification
of the non-verbal procedural reasoning pretest. The rationale was the sanie—to
test procedural and conditional reasoning ability in a non-verbal situation in
which reasonable though arbitrary rules must be followed.

This task, like the pretest, had two parts. Rules were similar to Part B of the
original non-verbal task. However, unlike the previous task, there was no ques-
tion designed to assess elegance. In Part A of the posttest students were given a
set of passes and were asked to find all the goals they could reach with the passes.
These questions assessed ability to exhaustively test conditions in order to dis-
cover all legal routes through the tree with the given passes.

In Part B, students were given a set of passes and were asked to find the cor-
rect path leading to a particular goal. There was only one legal path for cach
question. Again, students had to plan, and evaluate several possible routes in
order to arrive at the legal route. For the first problem, possibilities could be
easily reduced if students compared the number of passes they were given with
the number required to reach the goal. The second problem was more difficult
since more possibilities had to be tested.

Debugging Task — Programming, especially debugging, demands decentering—
programmers must differentiate between their knowledge and intentions and the
actua) programming code the computer reads. This is a common problem for
novice programmers [26] . In program construction the programmer must realize
the level of explicitness required to adequately instruct the computer, and in
debugging must distinguish expectations from what the computer actually exe-
cuted. We hypothesized that after learning to program, students might be better
at writing and debugging instructions in general.

The debugging task required both instrumental reasoning and decentering.
Students were required to detect bugs in a set of driving instructions written for
another person to follow. Students had to follow the given instructions, assess
their accuracy, and correct “buggy” instructions. This required them to use
means-ends analysis and temporal reasoning to assess the consequences and con-
nections among temporally ordered actions. Students had to decenter, making a
distinction between the subject’s and the driver’s knowledge, in order to tell
whether instructions were sufficiently explicit and accurate. Bugs included were:

1. Ambiguous information bug — instructions not sufficiently explicit to enable
the driver to correctly make a choice between alternative routes.

2. Temporal order bug — one instruction was stated at the wrong time.

Insufficient or missing information bug.

4. Complex bugs — problems due to unusual input conditions, and embedding,
in which obvious corrections fail because they introduce and/or leave a bug.

(8]

PROGRAMMING AND THINKING SKILLS / 439

For each line of instructions with a bug, students were scored for whether
they caught the bug, and whether they correctly rewrote the instruction (fixed
the bug). For lines of instruction not containing a bug, students were scored for
whether they left the line unchanged, or instead inserted information which
resulted in a new bug.

Math Test — The math posttest focused on calculating values of variables and
translating prose descriptions into symbolic expressions. The rationale was
that by programming in six different languages students would have explicit
knowledge of variables and ! considerable practice in setting up equations with
variables and tracing the calculation of values of variables.

We used three symbolic expression problems that have been used by Erhlich,
Abbot, Salter, and Soloway in studying the transfer of programming abilities
to math tasks [27}. The tasks gave prose descriptions and asked for an equa-
tion that expressed the same information. For one of the problems we gave
students a partial equation to be completed. Ehrlich et al. gave programmers and
nonprogrammers partial equations of different forms, and found that the ad-
vantage of a programming background was most evident when the equation was
written with a single variable on one side, e.g., R = 3/4 X D, rather than when
written as a multiple expression, e.g., 4R = 3D, Ehrlich er al. suggested that pro-
grammers benefited from the single variable expression because in programming
one thinks of an active generation of a value, rather than a static description of
a relationship.

Two of the three variable problems were the same as given on the math pre-
test. The third was a simpler problem, based directly on the sort of functional
evaluation one finds in Logo list processing,ie.,“A=8+1;8=C+10,C=D+
100; D = 0; What is the value of A7 Because of poor average performance on
the pretest we sought to reduce the difficulty of the easiest problems.

Algorithm Design and Analysis Task

This task assessed comprehension and production of an algorithm within a
task designed to closely resemble a programming task. An Analysis part asked
students to understand a program-like algorithm or “plan;” a Design part asked
them then to develop an improved algorithim of their own. The task employed a
meaningful rather than an abstract programming-language, but its structure re-
sembled the structure of a computer program with sub-routines. The steps of
the algorithms were functionally equivalent to programming language commands,
as the task description will make clear. Thus, the task served both as: 1) a mea-
sure of general algorithmic concepts and skills employed in programming, which
might develop through programming, and 2) a measure of “near” transfer to test
whether skills employed in programming transferred more readily when the task
structure is more transparently analogous to a program,

Students were presented with a goal and a series of legal operators (e.g.,
count, increment, decrement, test), The algorithms consisted of organizing the

440 / KURLAND ET AL,

operations in such a way so as to achieve the goal efficiently. Efficient correct
algorithms had to have a looping structure. Students were given one algorithm,
a looping structure with two flaws that made it inefficient. They were asked to
calculate the time required to achieve the goal if the algorithm were executed
(assuming 10 seconds per operations). This required students to understand the
algorithm. Students were then asked to devise a better algorithm. The students’
algorithms were scored for the overall design, use of an iterative structure, ac-
curacy, and conformity to the rules of the system,

Programming Skill Measures

Measures of the programming skills of students in the experimental group in-
cluded both final scores on regular class tests given for each language, and a spe-
cially constructed test administered at the time of the posttest. The teacher de-
signed the regular class tests with the exception of a ‘‘Conditional-Iteration”
question designed by us and included on the final test for four of the languages.

The Conditional-Iteration question was designed to assess procedural reason-
ing and understanding of variables within each of the languages taught. For this
question, students were asked to show the output (values of variables) of a short
program which was structurally analogous, across the four languages tested
(BASIC, FORTRAN, COBOL, Logo). Success required ability to follow the flow
of control and keep track of variable values. Each program had an iterative
(looping or recursive) structure, multipte variables, and conditional tests. The
antecedent of each conditional test evaluated the value of a variable; the con-
sequent either incremented a variable, stopped an iteration, or printed a state-
ment. Like the problems on the math tests which asked students to evaluate vari-
ables, many variables in these programs were defined in terms of each other,
rather than in terms of constants. To fully test students’ understanding of how
control is passed and of the order of execution of statements, each program con-
tained a line of code designed to detect students’ “order bugs,” misconceptions
of flow of control. This was a conditional test whose consequent prints a state-
ment, but whose antecedent is never satisfied given the order of execution of
commands. If students included the statement as output in their answer, they
did not correctly follow the flow of the program. A correct answer to each prob-
lem displayed the correct values of three variables printed after three iterations.

Logo Test — The second programming measure was a comprehensive Logo
test designed by us and administered by the classroom teacher as the students’
final exam. This test assessed program comprehension and program production.
The program comprehension questions included:

1. A matching task: examples of Logo expressions must be identified as expres-
sions of a certain kind. For example, given the expression: “4, does Logo
read this as a word, number, list, procedure, variable or primitive?

PROGRAMMING AND THINKING SKILLS [/ 441

2. A flow of control task: students must show the screen effects for a procedure
containing three subprocedures each of which prints a certain word.

3. Four program comprehension tasks which focused on list processing primi-
tives, the MAKE and OUTPUT commands, tail recursion, and embedded re-
cursion, respectively. Students needed to show the screen effects for four,
2. to 4-line programs, written with these structures. Each program contained
local variables, and students were given particular input values.

The program production part of the task required students to write programs
(on paper) to generate three given screen effects. They were told to use separate
super-procedures to generate each display, but that the super-procedures could
share subprocedures. They were also to give the appropriate run commands. An
example task was given. The first screen effect the students were to generate was
a display of two short English sentences; the second was identical to the first
with two sentences added; the third screen effect was identical to the second
with the exception that the subject and object of the added sentences was dif-
ferent. Thus, an ideal approach to this task involved the creation of two subpro-
cedures. One would produce the first screen effect. The second would produce
the remaining two sentences for the other two effects, by using variables for the
subject and object of the sentence.

PROCEDURE

All groups of students received all the pre- and posttest measures, with the
exception of the measures of planning skill, and programming skill. The plan-
ning task was only administered to the experimental group and to the No-CS
control group.®> The programming tests were only given to the Experimental
group. :
Pretests were given during the first month of classes in the fall and the post-
tests were given during the last month of classes in the spring. We were able to
give the Experimental group and most control students the math and procedural
reasoning tasks during class time; other students were given the math and reason-
ing tasks individually. The planning task was always individually administered.
Ali tasks, with the exception of the Planning Task, were administered under time
constrainted conditions (S to 17 minutes per task).

RESULTS
The study was designed to address three questions:

1. Did learning programming for two years occasion advances in reasoning and
math skills? Did these second-year programming students perform better, at

3 The planning task was individually administered. Consequently, logistics did not
permit administration of this task to both control groups.

442 |/ KURLAND ET AL.

the end of the year, on tasks assessing reasoning and math skills, than stu-
dents who had only one introductory course?

2. Were certain math and reasoning skills good predictors of success in a pro-
gramming course? What were the correlations between performance on
reasoning, math and programming tasks?

3. Were students able to program at an advanced level after their second year
of programming?

Performance of Programming and Nonprogramming Students
on Pretest Measures of Reasoning, Math and Planning Skills

To make meaningful posttest comparisons between programmers and nonpro-
grammers, we first examined the comparability of the groups in terms of the
skills measured. One purpose of our pretest battery was to make this assessment,
The pretests were designed 1o measure many of the same skills as the posttests,
and in two instances the pre and post measures were identical. We compared the
three groups on the pretestsusing analyses-of-variance. Also, correlations between
pre- and postiests were examined to provide evidence for the underlying equiva-
lence of the measures.

To conduct these analyses, composite scores were computed for each pretest
measure. The analyses-of-variance on each composite showed tliere were no sig-
nificant differences between groups for any measures.

The means and standard deviations for the math pretest scores are shown in
Table 2. One score consisted of the combination of the two variables problems, An-
other score consisted of performance on the remaining three questions. As shown
in the table, performance was generally low and highly variable. Students had diffi-
culty computing the values of variables except in the simplest cases. They were also
generally unable to create the symbolic expression for a word problem.

Table 2. Performance on the Math Prestest: Mean Number
of Points in Each Group

Table 3. Performance on theNon-Verbal Procedural Reasoning Pretest:
Mean Number of Points in Each Group

PROGRAMMING AND THINKING SKILLS / 443

Group
Control Control
Experimental (Some-CS) {No-CS)
(N =15) (N =13) (N =16)
Mean SD Mean SD Mean SD
Part A (max = 60) *19.47 19.38 3239 1634 2863 17.85
Part B (max = 6) 73 1.10 92 1.71 1.69 2.15

Group
Control Control
Experimental {Some-CP) {No-CP)
(N =15} N=12) (N = 16)
Mean SD Mean SD Mean SD
Variables Questions
{max = 8) 3.67 2.66 2.50 2.71 2.3 2.85
Other Questions
{(Max = 8) 1.60 1.12 2,00 1.86 3.06 2.69

Table 4. Performance on the Verbal Procedural Reasoning Pretests:
Mean Number of Points in Each Group

Group
Control Control
Experimental (Some-CS) {No-CS)
(N = 15) (N=13) (N = 16)

Mean SD Mean SD Mean SD

Verbal Task 1
Type A and B Questions

{max = 18) 6.40 4.37 9.54 5.09 7.88 5.33
Type C Questions
{max =7) 1.00 .93 2.15 1.14 1.38 1.89
Verbal Task 2
(max = 6) 1.33 1.80 1.31 1.65 1.31 1.92
)

- Table 3 shows performance on composite scores for Part A and Part B of the
nonverbal reasoning task. Again performance was fairly low for each group. Stu-
dents could discover some of the correct goals in Part A (which asked them to
discover all possible legal goals given a set of tokens), but were often not exhaus-
tive. For Part B, students were usually able to find a legal, but not the best, path
to a goal.

Results for Verbal Reasoning Task One are shown in Table 4. For all of the
verbal tasks, performance indicated that all groups of students had difficulty
following the complex nested conditionals given in the verbal instructions.

Table 5 shows performance by each group on the planning task. There were
no group differences due to feeeback condition, so scores were collapsed for this
factor. Two general measures of performance are shown: the amount of time it

444 | KURLAND ET AL.

Table 5. Performance on the Planning Pretest

PROGRAMMING AND THINKING SKILLS / 445

Table 6. Performance on the Non-Verbal Procedural Reasoning
Posttest: Mean Number of Points in Each Group

Group
Control
Experimental {No-CS)
(N = 15) (N = 16)
Mean SD Mean SD
Plan Execution Time—
In Minutes?
Mean Plan Time
{across 3 plans) 21.42 1.93 21.73 2.65
Best Plan Time 19.57 1.58 19.67 2.12
Planning Behavior

Mean “Think"” Time—

In Minutes 33.34 13.12 30.02 9.34
Mean Number of Pauses 4.44 2.61 413 1.83
Mean Number of Reviews 1.02 1.19 56 .69
Mean Number of Checks .27 .38 .56 71

8 Optimal time = approximately 17 minutes.

would take to execute their plans (lower times indicate more efficient plans)
and the amount of “planning behavior” on the part of the students. Measures of
planning behavior include the amount of time students.spent thinking about
their plans while creating them, the number of pauses between commands
(where a pause was defined as any time a student waited five seconds or more
between two consecutive steps in their plan) and the extent to which they took
advantage of the plan monitoring aids available: the number of times they re-
viewed a listing of their plan so far, and the number of times they checked a
list of remaining chores. As shown in the table, there are no differences between

groups on any of these measures. This allowed us to compare groups directly on
the posttest.

Performance of Programming and Nonprogramming
Students on Posttests of Reasoning and Math Skills

Non-Verbal Procedural Reasoning Posttest — Composite scores were devel-
oped for Part A and for Part B of the nonverbal reasoning test. Performance on
these measures for each group is shown in Table 6. There were no significant
between-group differences. As on the pretest, students were often able to dis-
cover some of the correct goals in Part A, but tended not to be exhaustive. For
Part B, many students were unable to find the one legal path for either one or
both of the questions asked.

Group)
Control Control
Experimental {Some CS) {No CS)
(N =15) {N=13) (N =16)
Mean SD Mean SD Mean SD
Part A {max = 90) 59.27 24.14 55.08 23.13 58.56 21.23
Part B {max = 2) 73 .88 .85 .80 .88 .96

Debugging Posttest — Table 7 shows students’ performance on the four spe-
cific types of bugs. The groups did not differ in their ability to detect or correct
any of the classes of bugs. For all groups the temporal order bug was relatively
easy to detect. For the remaining types of bugs, students in each group, on the
average, were able to detect half of the bugs present. For these bugs, once a bug
was detected, most students could successfully correct it. Few students were
able to completely detect and correct the complex, embedded bugs.

Planning Posttest — Table 8 shows performance on the planning task. Again,
there were no significant differences between groups on any of the measures of
plan execution time or planning behavior.

It was of particular interest to compare the groups performance on this task
to their performanée on it at the beginning of the year. A repeated-measure
ANOVA was carried out with Group and Feedback Condition as between-
subject variables and Session (pre/post) as a within-subject variable. Mean plan-
time (the average of the three plans) was the dependent measure. This analysis
revealed that there was a main effect for session—mean plan-times improved
slightly overall from the pre- to posttests~but there was no effect for Group,
or Feedback Condition, and no interactions. Thus, there were improvements on

.the planning task over the year but the programming students did not improve

any more than the non-programming students, nor did they respond differently
to the feedback.

Math Test — As shown in Table 9, no significant differences between groups
were found on either the variables problems or the symbolic expressions prob-
lems. Thus our findings were not consistent with previous resutts [27] in which
college-level programming appeared to provide advantages for solving word prob-
lems given partial equations of the form used here.

A second analysis of performance on the math test involved comparing per-
formance on the subset of those problems which were identical to problems
on the pretest. There were eight variable value calculation questions in common
between the two tests and the composite scores for these were compared. A

446 / KURLAND ET AL.

Table 7. Performance b i
y Each Group on the Debuggin
g Posttest:
Mean Number of Bugs Detected and Corrected in Each Catego:s‘y

PROGRAMMING AND THINKING SKILLS / 447

Table 9. Performance on the Math Posttest:
Mean Number of Points in Each Group

Group
c) Control Cantrol
xperimental (Some CS) (No CS)
(N =15) (N =13) (N =16)
Mean SD Mean SD Mean SD
Bug Types
Ambiguous Information
{max = 2)
Detect 1.13 83
. . 1.15 .80 1.06
Correct 1.07 80 100 82 75 'Sg
Insufficient Information ‘ '
{max = 4)
ggrtre;:;t 1.67 1.1 2.00 1.15 1.94 1.18
1.27 86 177 17 175 124
Temporal Order ‘ .
{max = 1)
Detect 80 4
. A1 .77 A4 9
Correct 0 51 52 51 o8 ‘g?
Complex . .
(max = 2)
Detect 73 59
. . .92 .64
Correct 40 63 82 65 :gg ;g

Table 8. Performance on the Planning Posttest

Group
_ Contro/
Experimental {No CS)
(N = 15) (N =16)
Mean SD Mean SD
Plan Execution Time—
In Minutes?
Mean Plan Time
(across 3 plans) 20,22
. . 1.69 21.04
Best Plan Time 18.85 1.23 Yo17 :;g
Planning Behavior ' .
Mean “Think" Time—
In Minutes 23.17
. 12.
Mean Number of Pauses 2.87 g ?(1) 23;3 e
Mean Number of Reviews 40 46 56 e
Mean Number of Checks 49 :55 -31 2;

a . N
Optimat time = approximately 17 minutes,

Group
Control Controf
Experimental {Some CS) {No CS)
(N =14) (N=13) (N =15)
Mean SD Mean SD Mean SO
Variables Problems !
{(max = 9) 5.64 3.05 5.77 2.31 5.00 2.04
Equation Problems
{max = 3) 1.29 1.20 1.15 1.14 1.20 94

Table 10. Performance by Each Group on the Algorithm Analysis and
Design Task: Number of Subjects in Each Response Category
for Algorithm Analysis

Group
Control Control
Experimental {Some CS) {No CS)
(N =14) (N=13) (N = 15)
Gave approximately
correct time 5 2 2
Understood but
calculated incorrectly 4 4 9
Response indicates
no understanding 3 6 4
No answer 2 1 0

repeated-measures ANOVA (group by session) indicated that posttest performance
was significantly better (F(1,38) =26.25; p <.00). However, there was no main
effect for group nor an interaction. This result was surprising given the degree to
which students in the programming course had to work with variables, and the
number of different ways they encountered them in their programming tasks.

Algorithm Design and Analysis Test — The two parts of this task—analysis
and design of an algorithm—were analyzed separately. Students’ ability to analyze
an existing algorithm is shown in Table 10. No significant differences between
groups were found. ‘

Groups were compared for the style and adequacy of the algorithm they gen-
erated. Although there were no between-group differencesonan overall composite

448 / KURLAND ET AL.

Table 11. Algorithm Analysis and Design Task:
Number of Algorithms in Each Group Receiving Each Score

Group
' Contro/ Control
Experimental {Some CS) {No CS)
(N =14) (N=13) (N =15)
Scoring Dimensions
Scope of Intended Design?
No design apparent 5 4 6
Specific to given input 5 4 2
Specific to input of a
multiple of 4 coins 2 1 3
General Solution 2 4 4
Used Programming
Structures
Loop 5
Repeat 2 ? 113
Conditional Test? 7 3 1
Counter® 10 3 2
Structural Errors Present
In Counter/Counting 12
In Sequencing 7 " 13
Quality of Design?
No design apparent 5
Many flaws 1 ; :
Few flaws 7 0 ?
Working design 1 2 2

Few algon(luns would actually run if executed, but wi sessed w ¥ ea P
v e assessed whether th ttempted
de5|g 1 was intended to be general or specific,

g Ch? Square test on number of students using a conditional test = 7,13 p < .05
Chi Square on number of students using a counter = 11.95, p < .05 , o

d Chi Square o : X
p <00 q n number of students falling into each quality of plan category = 16,04,

score, there were differences on some subscores. As shown in Table 11 program-
ming students were more likely to use three of the four programming ,structures
possible: a loop, a conditional test, and a counter (differences in the frequenc
of use of the latter two structures were significant), ! ¢

T.here was also a significant difference in the score for overall algorithm
quality. While only one programming student wrote an algorithm that would
ac.tually work successfully, many more programming students than nonprogram-
ming students wrote algorithms with only a few flaws. Only one programmin
student wrote an algorithm with many flaws, although six students in the nong-
programming groups wrote such algorithms.

PROGRAMMING AND THINKING SKILLS / 449

The picture that emerges from these results is that programming students rec-
ognized this task as analogous to programming and could employ some of their
knowledge from that domain to construct an algorithm. In comparison 10 non-
programming students, they were better able to develop an algorithm which used
efficient programming-like constructs, and which could be {airly easily debugged.
However, their work was not flawless; there was usually at least one error either
in the sequencing, in the use of the counter, or due to violation of the complex
task constraints, which prevented their algorithms from actually working. They
also did not usually write a general algorithm which would work for any number
of input values. l

Correlation of Math and Reasoning Pretests with Posttests

The math and reasoning pre- and posttests were almost all significantly corre-
lated, even with grade point average partialed out. Resuits are shown in Table 12.
(Math pretest scores are presented in Table 9.)

Correlation of Math and Reasoning Pre- and Posttests with Programming

We correlated performance on pre- and posttests with a composite of the test
scores for each language and with subscores on the Logo tests. Table 13 shows
correlations with the composite test scores. The procedural reasoning pretest
scores and the math variables pretest score correlated significantly with the

Table 12. Correlations Between Pretests and Posttests
for All Subjects; Grade Point Average is Partialed Out (N = 44)

PRETESTS
Procedural Reasoning
Non-Verbal Verbal Math
Posttests
Procedural Reasoning
Non-Verbal 2 45" .64° 72
Debugging Test 56" .60* 61°
Math .39° 69" .74°
Algorithm
Analysis 35" 50* 56"
Design 19 39" 23
*p<.01

450 / KURLAND ET AL.

Table 13. Correlation of Performance on Programming Tests
with Performance on Pre- and Posttests {Experimental Group) (V = 15)2

Composite Programming
Tests Score

Pretests
Non-Verbal Procedural Reasoning 48"
Verbal Procedural Reasoning 66"*
Math AN
Planning {mean time) .09
Posttests
Non-Verbal Procedural Reasoning .65**
Debugging .63**
Algorithm (analysis} ' B
Algorithm (design) 74"
Math a1t
Planning (mean time) -.65"*

9 N =15 for correlations with ail pretests, and the procedural reasoning and debugging
posttests. N = 14 for correlations with the math and algorithm posttests.
*p < .05
**p <.01

programming score. Of the posttests, the procedural reasoning, debugging,
algorithm, and math scores correlated significantly with the programniing tests.
The math-variables pre- and posttest scores, and the algorithm task scores
correlated particularly well with the programming measures.

Table 14 shows the correlation of the comprehension and production parts of
the Logo Test with the pre- and posttests. Almost all correlations are significant,
With grade point average partialed out, the pattern of significance remains
essentially unchanged.

The correlations found between procedural reasoning, decentering and pro-
gramming replicate findings of an earlier study of high school students learning
Logo [20]. These skills, as well as the ability to evaluate the values of variables,
to translate word problems into symbolic equations, and to design and compre-

hend an algorithm, appear to be centrally related to the development of pro-
gramming skill,

Programming Ability in the Experimental Group

All measures of programming skill showed that most students had gained only
a modest understanding of any of the languages taught. Only performance on
the Logo test will be reported here along with the conditional flow of control
question which we included on each of the tests for three other languages. Per-
formance on the Logo test is representative of understanding of other languages

PROGRAMMING AND THINKING SKILLS / 451

Table 14. Correlation of Performance on Logo Test with Performance
on Pre- and Posttests {Experimental Group} (N = 13)

Logo Scores

Production Comprehension Total

Pretests . " »
Non-Verbal Procedural Reasoning .59“ .23” -gg“
Verbal Procedural Reasoning gg‘ . .69“ .70“ .
b i ! -02 —.11 .01
Planning {mean time} ! . .

Posttests !) . . -
Non-Verbal Procedural Reasoning .73” .58“ .72“
Debugging : 1 .69 .
Algzritrm i 17 8o** .8a**

a s's ’ " L) LR 3
Dzsign .66"’ 83" .2113”
Math 57 '65. _.44
Planning (mean time) -.34 -.59 .
*p<.05
" p<.01
Table 15. Performance of the Experimental Group on the Final
Programming Tests in Each Language
Mean Scores on Each Test
Mean SD
18.60
69.80
SIC
ggBOL ' 64.07 gggé
~-FORTRAN 57.40 25.08
Logo 53.47 .
Correlations Among Test Scores
BASIC COBOL FORTRAN
BASIC .
COBOL .80* Jar
FORTRAN gg* .91’ 79°
Logo . .
*p< O

452 [/ KURLANDET AL.

by the students; as shown in Table 15, performance in each language is highly
correlated.

Logo Proficiency Test — In general, students exhibited a somewhat confused
overall understanding of Logo. For example, when asked to identify Logo
expressions as variables, procedure names, words, lists, or numbers, on the
average only half of the students correctly identified the expressions. They had
greatest difficulty recognizing a variable. On following the flow of control
through a short Logo program only five of the students were successful. Several
students showed understanding of the passage of control among subprocedures
but they failed to exhaustively follow the passing of control. The remaining stu:
dents demonstrated no understanding of how the order of execution of the lines
in a program is determined by particular flow of control commands and the
current value of variables.

On the program comprehension problems, students were successful on a pro-
gram which required understanding of a simple use of list processing primitives
and an input variable. When the problem, requiring understanding of Make and
Output, several understood that the OUTPUT command in a subprocedure
passes information to a calling procedure, but they did not understand that the
OUTPUT command ends the execution of a procedure. Only four students
showed a good understanding of tail recursion and none could follow a program
involving embedded recursion (also see [28]).

On the program production part of the Logo Test, approximately half of the
students could produce the correct screen effects. Only three students used vari-
ables and only five students used subprocedures, even though much of the con-
tent for the three screen effects was similar or identical, and effectively created
a demand for use of subprocedures and variables. The reamining students wrote
linear “brute force” programs (lists of outputs preceded by the print comimand)
or were unable to approach a successful program.

Overall, more students evidenced comprehension of variables and flow of
control when given short simple programs than when asked to produce their own
programs. This may indicate both the fragility of their understanding, and a lack
of appreciation of the utility of variables and subprocedures.

Conditional Iteration Problems in Four Languages — Few students could suc-
cessfully produce the output of short programs given in each language which had
an iterative structure with conditional tests and multiple variables to be incre-
mented. Many did understand lines of code which contained a conditional stop
rule, incremented a variable, or created a global variable (in Logo). However
they often seemed to evaluate these lines out of context; many could not follow’
the flow of control and did not demonstrate understanding of the order of
execution. A few students followed the order correctly but stopped the pro-
grams oo soon (wrong number of iterations); they seemed to interpret the

C(?mparatives in the stop rule incorrectly, or to have some other difficulty
with flow of control.

PROGRAMMING AND THINKING SKILLS / 453

With the exception of the Logo version of this task, most students could not
systematically keep track of values of variables. This was easier in Logo, where
the program did not compare variables to each other (i.e., IF X' = Y)but instead
compared them to constants (i.e., IF X = 3). Also, the Logo task had only three
variables whereas the other tasks had a fourth, counter variable. It is important
to note that the “variables” problems on the math pre- and posttests were analo-
gous to this programming problem. There were four variables, most of which had
values defined in terms of other variables. Each of these tasks demanded a sys-
tematic approach in order to reduce working memory load. Students did not
demonstrate skills for such systematic reasoning in their programming nor in

their solving of the math problem.
|

DISCUSSION

Programming students were found to range greatly in their understanding of
even basic programming principles and commands. For the most part they ex-
hibited a weak understanding of flow of control or of the structure of the lan-
guages in which they worked, Observations of the students as they worked in
their programming class indicated that students frequently shared ideas and code
(compare [29]). While exploiting pre-written code is an honorable programming
technique among professionals, in schools it is a double-edged sword. Some stu-
dents relied on the understanding of a few good students and never bothered to
learn the material themselves. Many students used a trial-and-error approach to a
task, or immediately asked for help when stuck. Though several were concerned
with understanding what to do, they did not seem to have techniques or rules
for systematically analyzing buggy programs and for developing corrections.

Given the generally low level of programming understanding, even after two
years of instruction, it did not come as a major surprise that there were no sig-
nificant differences between the experimental and control groups for any of our
measures of “far” transfer. This was the case even though our reasoning and
math measures correlated with programming mastery indicating, as expected,
that programming taps a number of specific complex cognitive skills.

The transfer tasks all proved to be fairly difficult for most students regardless
of programming experience. Students had difficulty with exhaustive and accurate
procedural reasoning, evaluating variables defined in terms of other variables, set-
ting up an equation for a word problem expressing proportional relations, decen-
tering sufficiently to exhaustively detect “buggy” instructions and constructing
and monitoring a plan for efficient chore execution.

One reason postulated for previous failures to find far transfer still reigns cen-
tral: students did not attain a very high level of expertise in programming. The sig-
nificant gains we did find for programming students on the near transfer task—the
Algorithm Design and Analysis Task—highlight the important relationship be-
tween the nature of knowledge transferred and the acquisition of expertise.

454 | KURLAND ET AL,

The algorithm task, to which programming students did apply some of their
skills, was different from our other transfer measures in two ways: First, the pos-
sible knowledge to be transferred included specific programming concepts such
as a “counter” and a conditional stop rule, as well as cognitive operations used in
programming (such as procedural reasoning, or the systematic evaluation of vari-
ables). Second, it bore relatively obvious similarities to a programming task (the
goal was to perform numerical computations given a set of functions analogous
to programming commands or subprocedures). We found that students recog-
nized the conditions for application of some of their programming concepts to
the task. Also, to some extent they showed superior procedural reasoning ability;
their overall plan quality was better than the nonprogramming students though
many still made procedural errors.

These positive results exemplify the tight relation between transfer and what
has been learned, The concepts transferred—the use of a counter, a loop and a
conditional stop rule—are salient features of programming, explicitly represented
in the code, and presented early in programming instruction. Thus they are
familiar to, even if not fully mastered by, most novices. Given the transfer of
the operational skills here and not to our other tasks, it is apparent that rela-
tively context specific rather than general operations were learned.

Because most students’ knowledge of the fundamental aspects of programming
was quite limited, we do not conclude that development and far transfer of skills
from programming cannot in principle occur. We can conclude, however, that
such far transfer is unlikely to occur given the type of programming curriculum
and amount of experience provided for these students, which if anything is mis-
Tepresentatively rigorous and unrealistically more intensive than that found in
most schools today. Such experience is insufficient for mastery of the program-
ming concepts and practices that engage and make more probable the far
transfer of high level thinking skills. Until a population with greater programming
expertise is studied longitudinally, the far transfer question remains open,

In conclusion, two things seem clear. First, mastery of at least basic program-
ming skills appears to be essentiai for transfer, but is hard to achieve within the
constraints imposed by the organization of schools. And second, if progranining
is to continue to play such a major role in the school curriculum, we need to de-
velop much more effective ways of teaching children to program. Explicit devices
for helping students see how flow of contro) structures work appear promising
{30-33]. But better programming environments are not enough by themselves.
Instruction must explicitly focus on helping the student build a model of how
the programming language works. If the operation of the Janguage is a mystery
[26], then students cannot write complex and cognitively demanding programs.
Early on and throughout instruction, understanding the control and data struc-
tures should be stressed. Trial-and-error creation of screen effects typical of pure
discovery learning environments common in precollege programming should be
tempered with directed teaching of the principles which underlie the effects.

PROGRAMMING AND THINKING SKILLS / 4565

Trial-and-error generation of screen efft;cts neither engages high level thinking
i upports increased mastery of the language. o .
Skll.llxsx::ilrlzrI[iossibility often proposed is that, .since transfer of tl.lmkn:.% slccnlls
may involve representation of knowledge at 8 lugh lew?l ol: abst'ractlon[.al l,e(:el o
from particular contexts, one might teach thlnkmg'skllls at .tlns gerllje : o
abstraction. Perhaps in this way the need for donmmfxperhse can be ypas(s t
Unfortunately, we know {rom previous research that m.clhods without con‘ e.nh
are blind,” that students have great difficulty .deducmg' examples to w1:cd
general thinking skills or rules they are taught w1|l'app.ly if lhe’y arfe E'resel;(.til
with abstractions alone [34-38]. Insofar as instructlo.n in general thm] mgsl ;VZ
programs has been effective in promoting tran§fer, it appears t'hat]t rere lms
been explicit conditions for transfer desigl?ed n‘1to the mslructlzt(i)na {Jlr:é:r:olvi
including multiple examples of skill application, links to.rea.l-wor d {)Irf))kin o
ing situations, content area instruction, abstract descriptions of thin tghere
methods, and so on [39, 40]. These issues are too' complex for treat.men y ,
but will be important to systematically consider in future }ns?ruct}:c_)lrl\ an hr:;
search with the aim of helping students learn generalizable lhmkmg's ll sts.u'ctieq
planning and problen solving methods through computer programml(l]\g :lcem [20
From our perspective, based on data from the present s‘tu('ly an 1(1) h r.sn Ot:
21, 41-43], we do not believe that the current. hol.)e for .m?tdent:jz earlnd1 tgake
generalizable thinking skills through programming is realls.llc, an V\IIOU ke
these broader lessons about conditions for transfer oflea.mmg frrom tle\{)"sl)gher
jogical literature into account in designing for t.ransfer .ln the duture. hothet
with better programming environments, better 1nstructl@1, ax? mo.ret p '
attention to designing instruction for transfer, .programnnng will begin to mor
fully live up to its potentials and promises remains to be seen.

REFERENCES

] i York, 1980.

Papert, Mindstorms, Basic Books, New , .
;- \SN ;Eurzeig S. Papert, M, Bloom, R. Grant, and C. Solomon, I?rogrammmg
' [z;nguagc's a,s a Conceptual Framework for Teaching Ma‘thematm (BBN Re-
plort No. 1889). Bolt, Beranek, and Newman, Cambridge, Massachusetts,

1969‘ N . L E .
3. R, S. Nickerson, Computer Programming as a Vehicle for Teaching "Ih;r;k:;nsg
. SI;ills, Thinking: The Journal of Philosophy for Children, 4, pp. 42-48,

982. - .

4 :l E. Brooks, Towards a Theory of the Cognitive Progesses in Con;p;lStelr
' l’;og;a|11n1ing,InternationalJournalofMan-Machine Studies, 9, pp. 137- R

1977.
5 R. Jeffries, A. A. Tumer, P. G. Polson, and M. E. Atwoqd,.The Prc.)c.e.sws
. ln'volved in’ Designing Software, in Cognitive Skills and Their Acquisition,

J. R. Anderson (ed.), Erlbaum, Hillsdale, New Jersey, pp. 255-283, 1981,

12.

13.

14.

18.

19.

20.

21,

6.

~

456 / KURLAND ET AL,

R. D, Pea and D. M, Kurland, On the Cognitive Prerequisites of Learning
Computer Programming, (Technical Report No, 18), Center for Children
and Technology, Bank Street College of Education, New York, 1983,

N. Pennington, Cognitive Components of Expertise in Computer Program-
ming: A Review of the Literature, (Technical Report No. 46), University of
Michigan, Center for Cognitive Science, Ann Arbor, 1982,

. R. Mawby, Proficiency Conditions for the Development of Programming

Skill, paper presented at the International Conference on Thinking, Harvard
University, Cambridge, Massachusetts, August, 1984,

. 1. G. Carbonell, Derivational Analogy: A Theory of Reconstructive Problem

Solving and Expertise Acquisition, Technical Report CMU-CS-85-115,

Carnegie-Mellon University, Computer Science Department, Pittsburgh,
March 1985,

. D. Gentner, Are Scientific Analogies Metaphors? in Metaphor: Problems and

Perspectives, D. Miall (ed.), Harvester Press Ltd., Brighton, England, 1982.

, Structure-Mapping: A Theoretical Framework for Analogy and Sim-
ilarity, Cognitive Science, 1983,

M. B. Hesse, Models and Analogies in Science, University of Notre Dame
Press, Notre Dame, 1966.

K. J. Holyoak, Analogical Thinking and Human Intelligence, in Advances in
the Psychology of IHuman Intelligence, Vol. 2, R,], Sternberg (ed.),
Erlbaum, Hillsdale, New Jersey, 1983,

A. L. Brown, J. D. Bransford, R. A. Ferrara, and J. C. Campione, Learning,
Remembering, and Understanding, in Cognitive Development (Vol. 11I),
J. H. Flavell and E, M, Markman (eds.), of P. H, Mussen (ed.), Handbook of
Child Psychology (4th edition), Wiley, New York, 1983,

. M_T. H. Chi, P. J. Feltovich, and R, Glaser, Categorization and Represen-

tation of Physics Problems by Experts and Novices, Cognitive Science, 5,
pp. 121-152, 1981,

. B. Adelson, Problem Solving and the Development of Abstract Categories in

Programming Languages, Memory and Cognition, 9, pp. 422-433, 1981,

. E. Soloway, From Problems to Problems via Plans: The Content and Struc-

ture of Knowledge for Introductory LISP Programming, Technical Report
No. 21, Cognition and Programming Project, Yale University, Department
of Computer Science, New Haven, Connecticut, 1984,

M. C. Linn, The Cognitive Consequences of Programming Instruction in
Classrooms, Educational Researcher, 14, pp. 14-29, 1985,

D. N, Perkins and G. Salomon, Transfer and Teaching Thinking, in Thinking:
Progress in Research and Teaching, J. Bishop, J. Lochhead, and D, Perkins
(eds.), Erlbaum, Hillsdale, New Jersey, in press.

D. M. Kurland, C, A, Clement, R. Mawby, and R, D, Pea, Mapping the Cog-
nitive Demands of Learning to Program, in Thinking: Progress in Research
and Teaching, J, Bishop, J. Lochhead, and D, Perkins (eds.), Erlbaum, Hilis-
dale, New Jersey, in press.

R. D. Pea, J. Hawkins, and D. M, Kurland, LOGO and the Development of
Thinking Skills, in Children and Microcomputers: Research on the Newest
Medium M, Chenand W, Paisley (eds.), Sage, Beverly Hills, California, 1985,

22.

23,

24,

25.

26.

27.

28.

29,

30.

31.

32.

33.

34,
35.
36.

37.

38.

PROGRAMMING AND THINKING SKILLS [/ 457

J. Weizenbaum, Computer Power and Human Reason: From Judgment to
Calculation, W, H, Freeman, San Francisco, 1976.
D.M. Kurland, R, D, Pea, C. Clement, and R, Mawby, 4 Study of the Devel-
opment of Programming Ability and Thinking Skills in High School Stu-
dents, Technical Report, with Appendices, Center for Children and Tech-
nology, Bank Street College of Education, New York, 1985,
R. D. Pea and D. M. Kurland, Logo Programming and the Development of
Planning Skills, (Technical Report No. 16), The Center for Children and
Technology, Bank Street College of Education, New York, 1984,
, On the Cognitive Effects of Learning Computer Programming, New
Ideas in Psychology ,2:1, pp. 137-168, 1984,
R. D. Pea, Language-Independent Conceptual Bugs in Program Understand-
ing, Journal of Educational Computing Research, 2:1, pp. 25-36, 1986.
K. Ehrlich, V. Abbot, W, Salter, and E. Soloway, Issues and Problems in
Studying Transfer Effects of Programming, in Developmental Studies of
Computer Programming Skills, D. M. Kurland (ed.), (Technical Report No.
29), The Center for Children and Technology, Bank Street College of Edu-
cation, New York, 1984,
D. M. Kurland and R, D, Pea, Children's Mental Models of Recursive Logo Pro-
grams, Journal of Educational Computing Research, 1:2,pp. 235-243, 1985.
N. M. Webb, Microcomputer Learning in Small Groups: Cognitive Require-
ments and Group Processes, Journal of Educational Psychology, 76:6,
pp. 1076-1088, 1984,
D.duBoulay, T. O’Shea, and J. Monk, Presenting Computing Concepts to Nov-
ices, International Journal of Man-Machine Studies, 14, pp. 237-249, 1981,
B. duBoulay, Children Learning Programming, Journal of Educational Com-
puting Research, in press.
D. Mioduser, R. Nachmias, and D, Chen, Teaching Programming Literacy to
Non-Programmers; The Use of Computerized Simulation, (Technical Report
No. 15), The Computers in Education Research Lab, Center for Curriculum
Research and Development, School of Education, Tel Aviv University, Tel
Aviv, Israel, 1985.
R. Nachmias, D. Mioduser, and D, Chen, A Cognitive Curriculum Model for
Teaching Computer Programming to Children, in Computers in Education,
K. Duncan and D. Harris (eds.), Elsevier Science Publishers, B, V. North
Holland IFIP, 1985.
N. Frederiksen, Implications of Cognitive Theory for Instruction in Problem
Solving, Review of Educational Research, 54, pp. 363-407, 1984,
R. M. Gagne, Learnable Aspects of Problem Solving, Educational Psycholo-
gist, 15, pp. 84-92, 1980.
R. Glaser, Education and Thinking: The Role of Knowledge, American Psy-
chologist, 39, pp. 93-104, 1984,
R, E. Mayer, The Elusive Search for Teachable Aspects of Problem Solving,
in A History of Educational Psychology, J. A. Glover and R, R, Ronning
(eds.), Plenum, New York, in press.
A. Schoenfeld, Mathematical Problem Solving, Academic Press, New York,
1985,

458 / KURLAND ET AL,

39. R. D, Pea, Transfer of Thinking Skills: Issues for Software Use and Design
p‘ap'er‘pre’s‘entefi at a national conference on “Computers and Complex’

20 Thinking, 'Natlo‘nal Academy of Sciences, Washington, D.C,, 1985
. II:J_’ B Rlesmck, I:ducariorz' and Learning to Think: Subcommittee Report
ationa Rf:search Council Commission on Behavioral and Social Sciences,

and Education, Washington, D.C., NRC, 1985,
41, [\Zml,{,é Cgaln?]znts ‘andc D. F. Gullo, Effects of Computer Programming on
ildren’s Cognition, Journal of Ed]) '

on 1051-1058. 1964 f Ucational Psychology, 76,
42. :,1 D: Ml.lekOViC, “Children Learning Computer Programming: Cognitive and
otivational Consequences,” Doctoral dissertation, Department of Psychol
ogy, Stanford University, 1983, yener
43. C. Clement, . M. Kurland, R, Mawby, and R, D, Pea, Analogical Reasoning

and Computer Programmin
; . g, paper presented at the Conf Thi
ing, Cambridge, Massachusetts, 1984, rence on Think-

Direct reprint requests to:

D. Midian Kurland

Center for Children and Technology
Bank Street College of Education
610 West 112th Street

New York, NY 10025

J. EDUCATIONAL COMPUTING RESEARCH, Vol. 2{4), 1986

A SUMMARY OF MISCONCEPTIONS
OF HIGH SCHOOL BASIC PROGRAMMERS

RALPH T, PUTNAM
University of Pittsburgh

D. SLEEMAN
, JULIET A, BAXTER
LAIANI K. KUSPA
Stanford University

ABSTRACT

This study examined high school students’ knowledge about constructs in the
BASIC programming language. A screening test was administered to ninety-six
students, fifty-six of whom wete interviewed. Students were asked to trace
simple programs and predict their output. Errors in virtually all BASIC con-
structs we examined were observed, with many of the misconceptions arising
from the application of knowledge and reasoning from informal domains to
programming. It is argued that a lack of knowledge of basic features of pro-
graming language will prevent students from developing the higher-level cog-
nitive skills that much programming instruction is intended to foster.

Computer programming courses are often offered by high schools on the grounds
that learning programming is a powerful way to develop problem solving and rea-
soning skills. Linn has suggested that such problem solving skills are the culmin-
ation of a chain of cognitive consequences of programming instruction [1]. This
chain includes competence with specific features of the programming language
being learned, skills for designing programs within the language, and general
problem solving skills applicable to other formal systems. While knowledge of
specific features of the language being studied is only the first link in this chain,
it is a prerequisite to the learning of more general design and problem solving
skills. For students to engage in tasks such as debugging programs or designing
algorithms by analyzing complex tasks, they must have a certain amount of
knowledge about the syntax and semantics of a programming language. A student

459

© 1986, Baywood Publishing Co., Inc.

