
HAL Id: hal-00190539
https://telearn.hal.science/hal-00190539v1

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A study of the development of programming ability and
thinking skills in high school students

D. Midian Kurland, Roy D. Pea, Catherine Clement, Ronald Mawby

To cite this version:
D. Midian Kurland, Roy D. Pea, Catherine Clement, Ronald Mawby. A study of the development
of programming ability and thinking skills in high school students. Journal educational computing
research, 1986, 2(4), pp.429-458. �hal-00190539�

https://telearn.hal.science/hal-00190539v1
https://hal.archives-ouvertes.fr

J. EDUCATIONAL COMPUTING RESEARCH, Vol. 2(4), 1986

A STUDY O F THE DEVELOPMENT
OF PROGRAMMING ABILITY AND

THINKING SKILLS IN
HIGH SCHOOL STUDENTS*

I
' D. M l D l A N K U R L A N D

I
ROY D. P E A

C A T H E R I N E C L E M E N T

R O N A L D MAWBY
Bank Street College of Education

ABSTRACT

This article reports o n a year-long study of high school students learning com-
puter programming. The study examined three issues: I) what is the impact of
programming on particular mathematical and reasoning abilities?; 2) what cog-
nitive skills or abilities best predict programming ability?; and 3) what d o stu-
dents actually understand about programming after two years of high school
study? The results showed that even after two years of study, many students
had only a rudimentary understanding of programming. Consequently, it was
not surprising to also find that programming experience (as opposed to ex-
pertise) does not appear to transfer to other domains which share analogous
forrnal properties. The article concludes that we need to more closely study
the pedagogy of programming and liow expertise can be better attained before
we prematurely go looking for significant and wide reaching transfer effects
from programming.

Psychologists , c o m p u t e r scientis ts , a n d e d u c a t o r s h a v e a rgued t h a t c o m p u t e r

p r o g r a m m i n g c a n b e a p o w e r f u l m e a n s o f e n h a n c i n g t h i n k i n g a n d t h e deve lop-
'- m e u t of g o o d problem-solv ing skills in c l d d r e n , i n a d d i t i o n t o b e i n g a p o w e r f u l

nlel l lod for teacl l ing s t u d e n t s f u ~ i d a m e n ~ a l c o n c e p t s i n ~ n a t h e ~ i i a t i c s , phys ics ,
a n d logist ics [I-31. A t f irst g lance , t h e err thusiasm s u r r o u n d i n g p r o g r a n m i n g
s e e m s wel l - founded . Observa t ions o f e x p e r t a d u l t p rogran ln ie rs ind ica te t h a t

* The work reported here was supported by the National Institute of Education (Con-
tract No. 400-83-0016). 'The opinions expressed do not necessarily reflect the position or
policy of the National Institute of Education and no official endorsement should be inferred.

O 1986, Beywood Publishing Co., Inc.

I 430 1 KURLAND E T A L .

prograninicrs explicitly employ important problem-solving strategies such as de-
conlposing problenis into niodules, use analogical reasoning, and systeniatically
plan, code, i~nd debug their programs. Prograniniing seems t o denland complex
cognitive skills sucll as procedural and conditional reasoning, planning, a d
analogical reasoning [3-71.

In addition to problem-solving skills, prograniming utilizes fundamental con-
cepts such as variables and recursive structures, which are important in mat11 and
physics. I t is well-known that tllese concepts are difficult t o teach with tradi-
tional media, and their enlployme~it in the functional context of a programniing
language may make tllcni mole easily coriiprel~ended [1, 31 .

Motivated by this ent l~usiasn~ for tlle potential of programming, as well
as by the pressure from business and the homes t o make students "computer
literate," schools have instituted programniing courses or related activities
at all grade levels. Yet, surprisingly, there has been very little research t o date
wllicli has directly addressed the many broad clainis that have been made for
prograniming. And in addition, there has been very little researcli exarni~iing
what students are learning about programming itself as the result of scl~ool-
based instruction. We know far too little about what to expect students will
learn in a reasonable period of tinie, how they learn, what conceptual diffi-
culties they encounter, wliat forms of cognitive support they may require
to guide them over these difficulties, or wlictl~er individual differences in
learning styles are reflected in progranlniing and need to be guided differently
in instruction. And beyond wliat rational analyses suggest, we cannot say
with niucl~ assurance what knowledge and skills that students bring with t l i en~
wllen they first rneet programming (e.g., natural language competencies; var-
ious reasoning skills) are likely to facilitate the acquisition of programming
knowledge and skills.

Addressing the issue of how well students actually learn to program in
precollege courses is thus an important matter. It is particularly important
because of two relatior~s between level of expertise and transfer of learning.
First, it is primarily sophisticated programming activities that demand Iiigher
level tliinking skills and probleni-solving tecl~niques, and these activities require
expertise. T l ~ e y require a good model of tlie stucture of tlie language: you
cannot write a niodular program and use variables unless you understand how
control is passed in the language arld how logical tests o1)crate on outputs of
ope~ations. 'I'l~us, tllc tlli~lki~hg skills we 11opc will dcvclol) ; I I I ~ tri~nsfcr out o f
progranlliiing depend upon students attilining certain proficiencics in progrillli-
mirig 18) . Simple tasks such as a four-1i11c graphics program to draw a box d o
not require tlie full range of conlplex reasoning skills that programming is pur-
ported to help develop.

Second, the transfer of concepts and skills across domains depends on the de-
tection of potential similarities between a known and a new domain [9-131.
Brown, Bransford, Ferrara and Campione note tliat tliis fact implies differences in

PROGRAMMING A N D THINKING SKILLS / 431

the abilities o f novices and experts to transfer since novices and experts classify
si~liilarities between tasks differently [14] . Novices will be Inore limited in their
abilities for recognizing prob le~n similarity since they tend t o classify tasks
according t o surface clia~acteristics wllereas experts focus on underlying con-
ceptual properties o r casual structures. For example, Chi et al. examined the
categorization of physics problenis by novice and experts [I S] . Novices cate-
gorized problems in ternis of particular objects referred to , terminology given in
a problem statement, and physical configurations of problem elements. In con-
trast, experts ignored these superficial features of problems and categorized
them in t e ~ m s of physics principles relevant for problem solutions. Since the
novice and expert represent donlairis differently, they have different inforniation
to use in classifying proble~ns, artd in accessing knowledge potentially useful in
a new p~oblem-solving situation. Similar findings liave been obtained for novice
and expert adult prograninicrs [1 6] .

Thus, in programming, even if novices begin to develop an understanding
of the workings of the language and to write relatively sophisticated pro-
g r a m , they may represent progran~niing in terms of the surface code, for-
niat and syntactic properties of a language, and in terms of particular tasks.
Experts, o n tlie other Iiantl, are more likely to represent programming prob-
lems in terms of the general concepts which underlie particular programming
collstructs such as recursive routines and variables, the underlying structure
of broad classes of problems, the solution strategies wllich crosscut many types
of problems, or routinized plans [I71 or "templates" [18] for solving com-
mon progranlnling subproble~ns. Those aspects of programming problem-
solving skills we hope will transfer, and that could transfer, involve the general
structure of tlie problem-solving activity and general concepts. Further, the
ability t o transfer these tecliniques and concepts from programming will de-
pend on recognizing problenls in new domains where tlie techniques and con-
cepts apply by analogical extension [l 1, 191 .

Wl~etlier we are concerned about students learning to tliink better tlirougli
prograniming, or in their learning t o program, it is essential to recognize
tliat we are in a very early state of knowledge about the psychology of pro-

" gramming. For this reason, any work in tliis area, has tlie nature of work in
progress. Tlie teclinologies available to schools, both hardware and software,
arc in great flux, a d teacl~ers' i ~ ~ t u i t i o n s are being sl~arpened tlirougli t l~e i r
cxpcricnccs in Ilelping students Ie;trn program~i~irig, ant1 to think t l ~ r o u g l ~ pro-
grani~ning. So, as useful as any new findings i l l this area are likely to be f o ~
t l ~ e educator, tllcy must be tre;~ted with cnution. At the sanie time, tlie in-
fluence on education of grandiose arid optimistic pronouncements that liave
been made about the cognitive benefits of programming, and on the ease with
whicli students can learn t o program, cry out for empirical assessment, even
in these early days in the field when the terrain changes faster then one's "re-
search snapshot" develops.

432 1 K U R L A N D ET AL.

THE PRESENT STUDY

To begin to examine more directly some of tlie many claims that are being
made for and about prograninling we undertook a study designed to investigate
the relation between thinking skills and programming, and t o investigate the pro-
gramming skills acquired by precollege students. We were interested in the devel-
opment of programming skill among well taught precollege students with signifi-
cantly more experience programming than most students who have participated
in previous research studies.

Our study Ilad three aims. The first was to document the inlpact of program-
ming experience on a range of reasoning and math skills. The second was to ob-
serve the nature of tlie programming knowledge students attained. The third was
to replicate findings from a previous study [20] that certain of these cognitive
skills predict some aspects of programming skill acquisition.

Our choice of concepts and skills t o investigate was based o n a rational
analysis of the cognitive conlponents of programming and o n correlations, found
in previous research, between particular skills and programming mastery [6] .
The tasks chosen involved procedural reasoning, decentering, planning, mat11
understanding, and algorithm design.

Our particular task designs were based on an analysis of how the target skills
are manifested in programming. Many of the skills we were interested in could
not be assessed by standard cognitive ability measures, either because n o
measures of these skills exist o r because existing measures demand skills in a
form inappropriate to progranlnling. For instance, standard tests of conditiorinl
reasoning examine comprel~ension of material implication as defined in standard
logic. This is not particularly relevant to tlie use of conditionals in programming;
rather the conditional reasoning skill practiced in programming involves reasoning
through a complex chain o f nested condition-action structures.

METHOD

Design

Three groups of high scl~ool students were tested at the beginning and end of
the school year. One group of students, tlie Ikperimentnl group, was enrollctl in
their second year of progranlming. A second group, the ,%mc.-CP group, llad
taken one year of programming but had elected not to continue. A third group,
the No-C'I' group, 11atl I I O experier~ce progra~ll~llir~g.

A battery of postrests admir~istered at the end of the year was intended to
assess the cognitive benefits resulting from the programming course, and for the
Experirner~tal group, programming knowledge and skill. Performance on these
measures was compared among the three groups of students. The pretests ad-
ministered at the beginning of the year were selected as potential predictors o f

PROGRAMMING AND THINKING SKILLS 1 433

Table 1. Distribution of Subjects in Each Group According t o Sex,
Grade in School and Grade Point Average

Sex Grade G PA

Group Male Feniale 10th 11th 12th Mean Range

Experimental 1 1 4 9 3 3 74.3 40-93

No Prior
Programming 9 , 7 8 2 6 78.0 68-96

I Some Prior
Programming 6 7 4 6 3 77.7 46-94

Total 26 18 2 1 11 12 76.6 40-96

I

I performance in the programming class. These tests also served as measures of the
initial ability level of students o n many of the skills were were posttested.

I Students

All students for the study were drawn from a large urban public higll scl~ool
wit11 an etllnically and socio-econonlically mixed student body. The experimental
group consisted o f a full class of fifteen students who ranged widely in ability as
indicated by their grade point average. Control students were selected from a
pool of volunteers and matched wit11 the experimental students on math back-
ground, overall GPA, and grade level. Students in the Some-CP group had taken
an introduction t o computers through the BASIC language course the previous
year. Table 1 gives the breakdown of the tliree groups by sex, grade, and GPA.'

i Programming Instruction

Students in the experimental group liad taken the same introductory course
as tlie Some-CP students. They were currently enrolled in a second, more inten-

.. sive prograrnnling course taught by an excellent programming teacher with five
years experience.' Class met for forty minutes, five days a week in one of tlie
scl~ool's computer labs. Over the year students studied six programming lan-
guages. Tlley spcnt nine weeks ench on BASIC, COBOL, and Logo and t l ~ r e c
weeks each on FORTRAN, MACRO, and Pascal.

The nun~ber of students reported for results of rerlain Incusures varies since we wcrc
unable to administer some tests to one or two stutlenls in each group.

2 The teacher of the Experimental students had a B.A. in Matl~ernatics from Yale Univer-
sity, an M.A. in Interactive Educational Tecl~nology from Harvard University, and five years
of teaching experience. Her students have won the department's prize exam for first year
students in each of her five years, and her AP students placed very highly in national compe-

' tition and on the Advance Placement Exam.

434 1 K U R L A N D ET AL.

The nine week Logo section came at the end of the y e u . While the prograln-
ming teacher designed and taught the curriculunl for the other five languages, we
designed, tllcn llatl the teacller teach, the Logo cur r icu lu~n. Our ail11 in designing
the Logo curriculum was to help students develop a richer n ~ e n t a l nod el o f Logo
t l ~ a ~ l students in our previous studies seemed t o develop. The focus was o n
control structure. Work was done solely in list processing-no turtle graphics
were taught. In turt le graphics it is too easy for s tudents to continue t o generate
interesting screen effccts without understanding the code 1211. 111 list ploccssi~lg
work, to obtain interesting effects requires a deeper understanding o f the lan-
guage. This npproacl~ has its own costs-students need t o understand more of the
language before they car1 (lo 1111rc1l of interest in it.

In our design of the Logo curriculunl, we en;pliasized comprehension over
production. Students were given handouts covering concepts and corn l~ iauds ,
worksheets tllat stressed program cornprel~ension, and a glossary of Logo primi-
tives, written in flow-of-control language (i.e., in terms o f inputs and o u t p u t s of
Logo con~ri land operations). And we supplied utilities for file nianagement t o
encourage a tool-kit approach.

We designed a series of weekly projects, each building o n the previous ones,
so that in principle each project could be a modular tool for the next project.
The final project was to program a s i n ~ p l e version o f ELIZA, l l ~ e I3rogr:trtl t11:1t
mimics a non-directive psycllotherapist 1221. Topics covered in the course in-
cluded Logo commantls (primitives, procedures, inputs , ou tputs , and outcomes ,
creating and editing procedures, words, lists, and list processing, input and o u t -
put conlniands, workspace management c o ~ n ~ ~ l a n d s , debugging, trace and error
Iiiess:lges, subprocedures, procedures with input variables, naming and creating
variables with the MAKE coninland, the OUTPUT comrnand, conditionals, and
tail a d enlbcdded recursion.

Measures

The specific rationale and design o f each of the tasks used in the s tudy is de-
scrihctl fully clsewllcre 1231. A brief review o f the tasks is provided below.

Pre/es/s - T o assess the extent to wl~icl l skills acquired in programming
transfer to other domains, we developed transfer tasks in bo th "far" and "near"
contexts. Our far trnrlsfer tasks (the majority o f the tasks), demanded skills we
believed to be deeply ingredient to p r o g r a n ~ ~ n i n g , bu t they bore n o obvious stir-
face si~uihri t ics t o prog~.;~nlming ti~sks. One near tr;~nsfcr I :~sk, in ntltliliotl t o
bearing deep structural sinlil;~rities t o p r o g r a ~ l l ~ ~ l i n g , rescr~~hled prog~ii~llnl ing
tasks in sevc~nl surface fcilt\lres. 'l'l~e prclcsts wcrc divitlcd illto t l ~ r c e ~ y p c s :
procedural re;lsoning, pI:mning, and n l i ~ l l l e ~ ~ l ; ~ ~ i c s .

Proced~trul Reasot~itrg Tes t s - Rational analysis suggests that programming re-
quires instrumental reasoning, particularly procedural reasoning. Designing, c o n
prel~ending, and debugging programs requires this type o f ~oeans-ends reasoning.

PROGRAMMING A N D THINKING SKILLS 1 435

Progranl~ners tnust ~ n a k e explicit the antecedents necessary for d i f fe re~l t ends,
and must follow tllrough the consequences o f different antecedent condit ions.
Designing and following the flow of control of a program requires understanding
different kinds o f relations between antecedent and consequent events, and or -
ganizing and interrelating the local means-end relations leading to the final
end. Therefore we designed a set o f tasks to measure procedural/conditional rea-
soning wit11 conditional structures in cornplex contexts . O n e task was non-verbal
and two were verbal. The tasks involved following the flow of control in systems
l ~ a v i r ~ g logical s tructures analogous t o tlie logical s tructures in computer lan-
guages. The systems involved reasonable t l iougl~ arbitrary and artificial rules t o
make them analogous t o a prograniming language and t o prohibit students' use
of prior world knowledge.

Nonverbal Reasoning Task One. This task was designed using non-English
syrnbolisnls so that verbal ability and comprellension of the "if-then" connective
would no t be an inllibiting factor for students.

Students had t o negotiate passage tllrougll t ree diagrams having an embedded
contl i t io~l:~l structure. T h e task tapped ability to discover wllich go;ds could be
legally reaclled given that a set o f antecedents were t rue , and ability to deter-
mine the antecedents necessary t o reach given goals.

Passage tlirough t l ~ e trees ~equi re t l satisfaction of condit ions set by rlotles in
the tree. Each node required a differing logical combination of various shaped
"tokens." Nodes wi th a disjirtictive structure offered a choice of tokens t o be
used, and nodes with a cnrtjrrnctive structure required a combination o f tokens.
Sotne nodes were combinations o f disjuncts and conjuncts .

T11e task had t w o parts. In the first part (I'art A), for each question students
were given a set of tokens and were asked t o determine all goals that could b e
leg;tlly reaclled with that set. T h e second part (Part B) included additional corn-
ponerlts airned at Ilypothetical reasoning and planning abilities. In some instances
nlany routes were legal b u t s tudents were encouraged t o find the most efficient
route. Here we were interested in tlie student's sense for elegant problem solu-
tions. In o ther cases s tudents were required t o test a large number o f possibil-

l i e s t o discover t l ~ e o n e legal path.
Verbal Reasoning Task One. The first verbal procedural reasoning task was

analogous t o the Non-verbal Procedural Reasoning tasks, but given in verbal
form. This task used t h e " i f . . . then . . . else" structure often found in prograni-
ming. The task assessed ability t o follow complex verbal instr l~ct ions consisting
of t~esletl c o ~ ~ t l i l i o l ~ ; ~ l s . S t u t l e ~ ~ l s Ilatl to ~ ~ r r t l c r s l : ~ ~ ~ t l t l ~ c I~icr;lrcllicnl ~ c l a t i o ~ l s be-
tween instructions, e.g., t l ~ t solue condit ion was o11ly relevant given the o u t -
c o m e ol' ;I prior co~lt l i t ion.

l'llc task involved following i r~s t ruc t io~ls willlin a 111-ccisely tlcfirretl set o f tules
(deterrnir~i~lg a student's tuition from a complex set of rules based on the stu-
dent's background and current acade~il ic level). Like the non-verbal task, s tu-
den ts were given different types of questions to test their mastery of tlie complex

1 436 1 K U R L A N D ET AL.

logical structure. In some questions (Type A) students were given a set of ante-
cedents and were asked for the consequence. In other questions (Type R), the
goal or answer was given and the student had t o determine what antecedent
conditions must have been satisfied. Finally, other questions (Type C) asked
what are all and only the decisions that must be nlade in order to tlctern~ine a
particular outcome given partial knowledge about the conditions. Tl~ese ques-
tions required a good understanding of the structure o f the instructions. Students
had t o separate irrelevant from relevant conditions and understand the hier-
archical relation among conditions.

Verbal Reasoning Task Two. This task had a complex conditional struc-
ture with a number of goals and conditiorls for satisfaction. T l ~ e prohlenl had
two conditional structures, in addition to the " i f . . . then . . . else" st~rlcture,
t l ~ a t were isomorpl~ic to progr;~rn~ning contlitionals. 'I'l~ere was a "do-until" loop
structure, and a structure isomorpl~ic to an "on gosub" or "Jump match" struc-
ture where a ma tc l~ between vari;~bles determines what you do.

Planning Task. Several analyses of the cognitive components of prograni-
ming isolate planning as a central activity 14-7,241. After defining the problem
to be solved, the programmer develops a plan or "structured description" of the
processes required to solve the problem IS], that will then be written in pro-
gramming code. Observations of expert programmers reveal that a major portion
of their time is devoted t o planning and that they have available many general
plan-design strategies. Pea and Kurland provide an indepth discussion of the
nature of planning aa it is manifested in programming [24].

The task used to assess planning skill was s slightly modified version of that
described in Pea, Ilawkins and Kurland 121) (also see 1241). The task involved
scheduling a set of classroom chores: students had t o design a plan which spe-
cified the sequence in which chores should be completed in order to clean-up a
classroon~ in as little time as possible. The chores were to be executed by a hypo-
thetical "robot" who responded to a minimum set o f co~nnlands, and required a
specified amount of time to perform specific actions.

This was a computer-based task. A graphics interface depicted a classroom in
which the chores were to be done. Students gave English c o ~ n ~ n a r d s to instruct
the robot how to clean up the room and the experimenter typed the com~uands
into the computer. Students designed three plans. After each plan, students were
told how much time the Robot would take to actually execute the plan.

The programming and nonprograrnming students were each further divided
into two subgroups. One subgroup received "feedback" after each plan and the
other subgroup did not. Altl~ough all students were told o f the time that would
be required to complete their plans, "feedback" students also received a paper
print-out of their plan listing each action and the amount o f time i t requi~ed.
They were also shown a screen display of the classroom, in which a step by step
enactment of the student's plan (the path of the robot as he completed each
chore) was carried out under the student's control. We proposed that there may

PROGRAMMING AND THINKING SKILLS 1 437

be group differences in the extent to which students benefited from the feed-
back information.

The planning task was administrated for both the pretests and posttest. Two
types o f data yielded by this task were used in the analyses to be reported. One
was the time required to execute the students' plans. The second was the plan-
ning bel~avior of the students. This was assessed by their use of the plan monitor-
ing aids, which was recorded by the computer, and the amount of time they
spent thinking about their plan, also recorded automatically by the computer.

Math Test. Math ability has been hypothesized to be both a cognitive de-
mand and an outcome of programming experience [6, 251. Similarities between
l~igh school 1nat11 and programming exist at several levels. Math and programming
1:1ng11ages are both forn~al sys te~ns with well-defined syntactic rules. Dot11
employ the concepts of v:~ri;hle and algo~ithnl. At the procetlural level, both
may den~and representing relatively rich situations in relatively abstract for-
nlalisrns, and then operating or1 these formalis~l~s to compute an outcome. Math
word problerlls require extracting essential relations from a prose description of
a situation and representing then1 in ruathernatical terms. Programming involves
giving an explicit procedural representation of a desired output .

Thus we included a math task that we felt would be relevant t o programming.
Since the math backgrounds of our students varied, and we did not want the
task t o dewand special knowledge, we considered the most basic algebraic con-
cept-the use of letters to represent variables. All students had enough math so
that this notation was familiar. The task was designed to depend more on the
ability to systen~atically operate with variables, and on insight during matherna-
tical thinking, than on domain-specific matllematical knowledge.

These salient similarities guided our task design. We gathered a set of math
problems that tested either grasp of variables, especially evaluating functions,
which is analogous to keeping track of a variable in programming, or ability t o
relate a syn~bolic expression t o a prose description.

We wanted the variables task lo reflect the use of variables in programming.
Since values of variables are often passed, modified and printed in programming,
we chose problems in wllicll students 11ad t o determine the values of variables
which were defined in terms o f other variables. They thus had to evaluate nested
functions, following a chain of several variables to reach a constant. To follow
the calculation through would be analogous t o tracing the value of a variable
through the execution of a program.

Posttests

The battery of posttests included mesaures of procedural reasoning, decenter-
ing, planning, math ability, and algoritl~rn design and comprehension. All but the
algorithm test can be seen as measures of "far transfer:" the tests demanded
skills and concepts we believed to be ingredient to progranming, but the tests

438 1 KURLAND E T A L . PROGRAMMING AND THINKING SKILLS 1 439

bore no obvious surface si~nilsrities t o a programming task. The algorithm task was
our measure of "near transfer;" in addit ion t o d e r p s t r ~ ~ c t u r a l similarities t o pro-
gran~nling, the task also rescn~bled a p rogran l~ l~ i r lg t a 8 in several surface features.

NOII- Verbnl I'rocedrrral Reasor~irrg Task 7ivo - This was a slight modif icat ion
of tlle non-verbal procedural reasoning pretest. The rationale was the same-to
test procedural and conditional reasoning ability in a non-verbal s i tuat ion in
which reason;~l>le tllough arbitrary rules must b e followed.

T l ~ i s task, like the pretest, had two parts. Rules wcre sinlilar t o Part I3 of the
origin;~l non.ve~bal task. Ilowever, unlike the previous task, there was n o ques-
tion designed t o assess elegance. 111 Part A o f the posttest s tudents were given a
set o f passes and were asked t o find all the goals they could reach with the passes.
These questions assessed ability t o exl~aust ively test condit ions in order t o dis-
cover all legal routes through the tree with the given passes.

111 h r t 13, s tudents were given a set o f passes and were asked t o find t h e cor-
rect p a t l ~ Ic ;~d i~ lg t o a p;~rticular goal. T l ~ e r e was o ~ ~ l y o n e legal pat11 for eac11
cluestion. Again, stutlerits I ~ a d t o pl;~rl, and evaluate several possible routes in
order t o arrive a t the Ieg;~l route. For the first prol) le~ll , possil)ilitics could I)e
easily rctluced if s tudents conlpared the number o f passes they were given with
the number reqr~ired t o reach the goal. T h e second problem was more difficult
since more possibilities had t o be tested.

1)ebrrggitrg 7bsk - Programnl i~~g , esl~ccially debugging, demands decentering-
programlners must differentiate between their knowledge and intent ions a n d tlie
actual p rogran l~ni~ lg code the computer reads. This is a c o m m o n problem for
novice progralnmers 1261. In program construct ion tlie programmer nlust realize
the level o f explicitness required t o adequately instruct the computer , and in
debugging must distinguisll expectat ions f rom what the computer actually exe-
cuted. We I~ypot l~es ized that after learning t o program, s tudents might be bet ter
at writing and debugging instructions in general.

The debugging task required bo th instrumental reasoning a n d decentering.
Students were required t o detect bugs in a set o f driving instructions wr i t t en for
another person t o follow. Students had t o follow t h e given instructions, assess
their accuracy, and correct "buggy" instructions. This required them t o use
means-ends analysis and temporal reasoning t o assess the consequences and con-
nections alllong tenlpor:~lly ordered act ions. S tudents had t o tlecenter, making a
distinction between the subject's and the driver's knowledge, in order t o tell
wliet l~er i ~ ~ s t r u c t i o n s wcre sufficiently explicit ant1 accurate, llugs includctl wcre:

I . Atrrhi~~rorts itifortrrntior~ b~cg - instruct ions 11ot sufficiently explicit to cn :~ble
the driver t o correctly make a clwice between alternative routes.

2 . Ter l~pora lorder bug - one instruction was s tated a t t h e wrong time.
3 It~s~cjficierrt o r ti~issitrg i t~fir t l~at iorl blrg.
4. Cotup1e.u hugs - problems due t o unusual input condit ions, and e n ~ b e d d i ~ l g ,

in wl~icl i obvious corrections fail because they introduce and /or leave a bug.

For each line o f instruct ions with a bug, s tuden ts were scored for wlietller
they caught t h e bug, a n d wl~e t l l e r they correct ly rewrote the instruction (fixed
the hug). For lines o f instruct ion not containing a bug, s tudents were scored for
whether they left the line unc l~anged , or instead inserted infornlation which
resulted in a ticw I ~ u g .

Alacltlr 7'est - ? h e m a t h post test focused o n c a l c u l a t i ~ ~ g values o f variables and
translating prose descr ip t io~ ls in to symbolic expressions. The rationale was
t l ~ a t by progra~nnl ing in six different languages s tudents would have explicit
k r~owlcdge of variables a n d c o n s i d e r a b l e practice in set t ing up equations w i t h
variables and tracing the calculation o f values o f variables.

We used three synlbolic expression p r o b l e n ~ s tha t have been used b y E r l d i c l ~ ,
A b b o t , Sal ter , and Soloway in s tudying the transfer o f programming abilities
t o mat11 tasks [2 7] . T h e tasks gave prose descript ions and asked Tor an equa-
t i o ~ ~ tllal expressed t l ~ e sarne i n f o r ~ l l a l i o ~ ~ . For o ~ i c o f the p r o l) l e ~ w w e gave
s t u t l c ~ ~ t s ;I p a ~ t h l ecluation t o be c o ~ ~ ~ p l e t e t l . E l ~ r l i c l ~ e t nl. gave progralnnlers a n d
nonprogranlnlers partial e q ~ ~ a t i o r ~ s of different f o r ~ l ~ s , : ~ n d found that the ad-
v ; ~ i ~ t ; ~ g e of a ~ i r o g r i ~ ~ ~ l ~ n i ~ ~ g I) i~ckprou~id W ~ I S I I I O S ~ evident W ~ I C I I ~ I I C c q u : ~ t i o ~ i was
wri t ten with a single variable o n o n e side, e.g., R = 314 X L), rather tllan w h e n
wr i t t en as a mult iple expression, e.g., 4R = 3 0 . Ehrlich e t al. suggested that pro-
grammers benefited f rom the single variable expression because in programming
o n e thinks o f an active generat ion of a value, rather than a s tat ic descript ion o f
a relationship.

T w o of the t l ~ r e e variable problems were the same a s given o n t h e math pre-
test . T h e third was a simpler p rob lem, based direct ly o n the sort o f funct ional
evaluation o n e finds in Logo list processing, i.e., "A = I1 t 1 ; B = C t 10; C = D +
1 0 0 ; D = 0 ; What is t h e value o f A?" Because of poor average performance o n
t h e pretest w e sought t o reduce the difficlllty o f t h e easiest problems.

Algori thm Design and Analysis Task

This task assessed con~pre l lens ion and produc t ion o f a n a lgor i t l~m within a
task designed t o closely resemble a programming task. An Atial j~sis part asked
s i l ldc~l t s t o understand a program-like a lgor i t l~ r l~ o r "plan;" a Design part asked
them then t o develop a n i ~ n p r o v e d a lgor i th~n of their o w n . T h e task employed a
meani~ lgfu l rather than a n abstract p rogramr~~ing- la r~gu;~ge , bu t its s t ructure re-
senlblcd the s tructure o f a c o m p u t e r plogram with sub-routines. The steps o f
t l ~ c ; ~ l g o r i t l l ~ ~ i s w e ~ e f u ~ ~ c l i o n a l l y e q u i v a l c ~ ~ t to p r o g r ; ~ ~ i ~ ~ l l i n g 1;11ig11;1ge C O I ~ I I I I ; I I I ~ S ,
as t h e task description will ~ n a k e clear. Thus , the task served both as: I) a mea-
sure of gene1;11 a lgor i th~nic concepts and skills en~ploye t l in progr;~~llming, w l ~ i c l ~
~ n i g l ~ t develop t l i rougl~ progra~nming , and 2) a measure o f "near" t ~ a n s f e r t o test
wl ie t l~er skills employed in p r o g r a n l ~ n i ~ ~ g transferred more readily when t h e task
s tructure is more t ramparen t ly analogous to a program.

S tudents were presented with a goal and a series of legal operators (e.g.,
c o u n t , inc rement , decrenlent , test). The algorithnrs consisted of organizing t h e

440 1 KURLAND ET AL.

operations in such a way so as to achieve the goal efficiently. Efficier~t correct
algoritluns had to have a looping structure. Students were given one algorithm,
a looping structure with two flaws that made it inefficient. They were asked t o
calculate the time required to achieve the goal if the algoritlin~ were executed
(assuming 10 seconds per operations). This required students to understand the
algorithm. Students were then asked t o devise a better algorithm. The students'
algorithms were scored for the overall design, use o f an iterative structure, ac-
curacy, and conformity to the rules of the system.

Programming Skill Measures

Measures o f the programn~ing skills o f students in the experimental group in-
cluded both final scores on regular class tests given for each language, and a spe-
cially constructed test administered a t the time o f the posttest. The teacher de-
signed the regular class tests with the exception o f a "Conditional-Iteration"
question designed by us and included on the final test for four of the languages.

The Conditional-Iteration question was designed to assess procedural reason-
ing and understanding of variables within each of the languages taught. For this
question, students were asked to show the output (values o f variables) of a short
program wl~ich was structurally analogous, across the four languages tested
(BASIC, FORTRAN, COBOL, Logo). Success required ability to follow the flow
of control and keep track of variable values. Each program had an iterative
(looping or recursive) structure, multiple variables, and conditional tests. The
antecedent of each conditional test evaluated the value o f a variable; the con-
sequent either incremented a variable, stopped an iteration, or printed a state-
ment. Like the problemson the math tests which asked students t o evaluate vari-
ables, many variables in these programs were defined in terms of each other,
rather than in t e r m of constants. T o fully test students' understanding of how
control is passed and of the order o f execution of statements, each program con-
tained a line of code designed t o detect students' "order bugs," nlisconceptior~s
of flow of control. This was a conditional test whose consequent prints a state-
ment, but whose antecedent is never satisfied given the order of execution of
commands. If students included the statement as output in their answer, they
did not correctly follow the flow of tlie program. A correct answer to each prob-
lem displayed the correct values of three variables printed after three iterations.

Logo Test - The second programming measure was a comprelle~~sive Logo
test designed by us and administered by the classroom teacher as the students'
final exam. This test assessed program comprellension and program production.
The program conlprel~ension questions included:

1. A nratclring task: examples o f Logo expressions must be identified as expres-
sions of a certain kind. For example, given the expression: " A , does Logo
read this as a word, number, list, procedure, variable or primitive?

PROGRAMMING AND THINKING SKILLS 1 441

2. A flow of corltrol task: students niust show tlie screen effects for a procedure
containing three subprocedures each of which prints a certain word.

3. Four progrartt cotnprel~er~sion tasks which focused on list processing primi-
tives, the MAKE and OUTPUT corn~nands, tail recursion, and embedded re-
cursion, respectively. Students needed to show the screen effects for four,
2- to 4-line programs, written with these structures. Each program contained
local variables, and students were given particular input values.

The program production part o f the task required students to write programs
(on paper) to generate three given screen effects. They were told to use separate
super-procedures t o generate each display, but that the super-procedures could
share subprocedures. They were also t o give the appropriate run commands. An
example task was given. The first screen effect the students were to generate was
a display o f two short English sentences; the second was identical to the first
with two sentences added; the third screen effect was identical t o the second
with the exception that the subject and object o f the added sentences was dif-
ferent. Thus, an ideal approach to this task involved the creation of two subpro-
cedures. One would produce the first screen effect. The second would produce
the remaining two sentences for t he o ther two effects, by using variables for the
subject and object o f the sentence.

PROCEDURE

All groups of students received all the pre- and posttest measures, with the
exception o f the measures o f planning skill, and prograrnnling skill. The plan-
ning task was only adn~inistered t o the experimental group and t o the No-CS
control group.3 The programming tests were only given t o the Experirmntal
group.

Pretests were given during the first month of classes in the fall and the post-
tests were given during the last month o f classes in the spring. We were able t o
give the Experimental group and most control students the rnath and procedural
reasoning tasks during class time; other students were given the rnatlt and reason-
ing tasks individually. The planning task was always individually administered.
AII tasks, with the exception of the Planning Task, were administered under time
constrainted conditions (5 t o 17 minutes per task).

RESULTS

The study was designed to address three questions:

1. Did learning programming for two years occasion advances in reasoning and
math skills? Did these second-year programming students perform better, at

The planning task was individually administered. Consequently, logistics did not
permit administration of this task lo both control groups.

442 1 K U R L A N D ETAL.

the end of the year, on tasks assessing reasoning and nlath skills, than stu-
dents who had only one introductory course?

2. Were certain 1nat11 and reasoning skills good predictors o f success in a pro-
gran~nling course? What were the co~relations between perforn~ance o n
reasoning, rna t l~ and programniing tasks?

3. Were students able to program at an advanced level after their second year
of prograniniing?

Performance of Programming and Nonprogramming Students
on Pretest Measures of Reasoning, Math and Planning Skills

To make ~neaningful posttest comparisons between progranirners and nonpro-
grarnrners, we first exan~ined tlie coniparability of the g ~ o u p s in terms of the
skills measured. One purpose of our pretest battery was t o make this assessment.
The pretests were designed to measure many of the same skills as the posttests,
and in two instances the pre and post measures were identical. We compared the
three groups on tlie pretestsusir~gar~alyses-of-variance. Also,correlations between
pre- and posltests were examined t o provide evidence for the underlying equiva-
lence of the measures,

To conduct these analyses, coniposite scores were computed for each pretest
measure. The ;rt~alyses-of-valiance on each composite showed there were no sig-
nificant differences between groups for any measures.

The means and stantlard deviations for tlie mat11 pretest scores are shown in
Table 2. One score consisted of thecombination of the two variablesproblerns. An-
other score consisted of performance o n the remaining three questions. As sliown
in the table, perforn~ance was generally low and l~ ig l~ ly variable. Students had diffi-
culty computing the values of variables except in the simplest cases. They were also
generally unable to create the symbolic expression for a word problenl.

Table 2. Performance o n the Math Prestest: Mean Number
of Points in Each Group

Group

Con trol Control
Experimental (Some-CP) (No-CP)

(N = 15) (N = 12) (N = 16)

Mean SD Mean SD Mean SD

Variables Questions
(max = 8) 3.67 2.66 2.50 2.71 2.31 2.85

Other Questions
(Max = 8) 1.60 1.12 2.00 1.86 3.06 2.69

PROGRAMMING A N D THINKING SKILLS / 443

Table 3. Performance on theNon-Verbal Procedural Reasoning Pretest:
Mean Number of Points in Each Group

Group

Con fro1 Control
Experimental (Some-CS) (No-CS)

(N = 15) (N = 13) (N = 16)

Mean SD Mean SD Mean SD

Part A (max = 60) ! 19.47 19.38 32.39 16.34 28.63 17.85

Part B (max = 6) .73 1.10 .92 1.71 1.69 2.15

Table 4. Performance on the Verbal Procedural Reasoning Pretests:
Mean Number of Points in Each Group

Group

Con tro 1 Control
Experin~ental (Some-CS) (No-CS)

(N = 15) (N = 13) (N = 16)

Mean SD Mean SD Mean SD

Verbal Task 1
Type A and B Questions

(max = 18) 6.40 4.37 9.54 5.09 7.88 5.33
Type C Questions

(max = 7) 1.00 .93 2.15 1.14 1.38 1.89

Verbal Task 2
(max = 6) 1.33 1.80 1.31 1.65 1.31 1.92

1%

 able 3 shows perfor~nance o n composite scores for Part A and Part B of the
nonverbal reasoning task. Again perfor~riance was fairly low for each group. Stu-
dents could discover some of the correct goals in Part A (wliicli asked them t o
discover all possible legal goals given a set of tokens), but were often not exl~aus-
tive. For Part B, students were usually able to find a legal, but not the best, path
t o a goal.

Resl~lls for Verbal Reasoning Task One are shown in Table 4. For all of the
verbal tasks, p e r f o r ~ n a ~ ~ c e indicated that all groups of students had difficulty
following the complex nested conditionals given in the verbal instructions.

Table 5 shows performance by each group on tlie planning task. There were
no group differences due t o feeeback condition, so scores were collapsed for this
factor. Two general measures of performance are shown: the amount of tinie i t

444 1 K U R L A N D E l AL.

Table 5. Performance o n the Planning Pretest

G r o w

Control
Experimental (No-CS)

(N = 15) (N = 16)

Mean S D Mean SD

Plan Execution Time-
In Minutesa

Mean Plan Time
(across 3 plans) 21.42 1.93 21.73 2.65

Best Plan Time 19.57 1.58 19.67 2.12

Planning Behavior
Mean "Think" Time-
In Minutes 33.34 13.12 30.02 9.34

Mean Number of Pauses 4.44 2.61 4.13 1.83
Mean Number of Reviews 1.02 1.19 .56 .69
Mean Number of Checks .27 .38 .56 .7 1

Optimal time = approximately 17 minutes.

would take to execute their plans (lower times indicate more efficient plans)
and the amount of "planning behavior" on the part of the students. Measures of
planning behavior include the arnount of time students. spent thinking about
their plans while creating them, the number of pauses between co~nnlnnds
(where a pause was defined as any time a student waited five seconds or more
between two consecutive steps in their plan) and the extent t o which they took
advantage of the plan nlonitoring aids available: the number of times they re-
viewed a listing of their plan so far, and the number of times they checked a
list of renlaining chores. As shown in the table, there are n o differences between
groups on any of these measures. This allowed us to compare groups directly on
the posttest.

Performance of Programming and Nonprogramming
Students on Posttests of Reasoning and Math Skills

Now Verbal l 'rocal~tml Reaso~ring Posttest - Coniposite scores were clcvel-
oped for Part A and for Part B of tlte po on verbal reasoning test. 1'erform;tnce on
these Ineasures for each group is shown in Table 6. T l~e re wele no significa~tt
between-group differences. As on tlte pretest, students were oftctl d) le to tlis-
cover some of the correct goals in Part A, but tended not to be exhaustive. For
Part B, many students were unable to find the one legal pat11 for either one or
both of the questions asked.

PROGRAMMING AND THINKING SKILLS 1 445

Table 6. Performance o n the Non-Verbal Procedural Reasoning
Posttest: Mean Number of Points in Each Group

-- - -

Control Control
Experimental (Some CS) (No CS)

(N = 15) (N = 13) (N = 16)

Mean S D Mean S D Mean S D

P a r t A (m a x = 9 0) 59.27 24.14 55.08 23.13 58.56 21.23
Part B (max = 2) .73 .88 .85 .80 .88 .96

I

Debugging Posttest - Table 7 shows students' performance on the four spe-
cific types of bugs. The groups did not differ in their ability to detect or correct
any of the classes of bugs. For all groups the temporal order bug was relatively
easy to detect. For the remaining types of bugs, students in each group, on the
average, were able to detect half of t l ~ e bugs present. For these bugs, once a bug
was detected, most students could successfully correct it. Few students were
able to cotnpletely detect and correct the co~nplex, embedded bugs.

Plarrnitrg Posttest - Table 8 sllows performance on the planning task. Again,
there were no significant differences between groups on any of the measures of
plan execution time or planning behavior.

It was of particukr interest to compare the groups perfornlance on this task
to their performance on it at the beginning of the year. A repeated-measure
ANOVA was carried out with Group and Feedback Condition as between-
subject variables and Session (prelpost) as a within-subject variable. Mean plan-
time (the average of the three plans) was the dependent measure. This analysis
revealed that there was a main effect for session-mean plan-times improved
sligl~tly overall from the pre- t o posttests-but there was no effect for Croup,
or Feedback Condition, and no interactions. Thus, there were inlprovements on

..the planning task over the year but the programn~ing students did not improve
any more than the non-programming students, nor did they respond differently
to the feedback.

Math Test - As s l~own in Table 9, no significant differences between groups
were found on either the variables problenls or the synibolic expressions prob-
le~ns . 1'1111s our fintlirlgs were not consistent with previous results 1271 in which
college-level progranlnling appeared to provide advantages for solving wold prob-
lems given pi11 t i i l l cqu:ltions of t l ~ e form used here.

A second analysis of pe~fo rn~ance on the 1nat11 test involved comparing per-
formance on the subset of those problems which were identical to problems
on the pretest. There were eight variable value calculation questions in common
between the two tests and the composite scores for these were compared. A

446 I KURLAND ET AL.

Table 7. Performance by Each Group on the Debugging Posttest:
Mean Number of Bugs Detected and Corrected in Each Category

Group

Control Con trol
Experimental (Some CS) (No CS)

(N = 15) (N = 13) (N = 16)

Mean SD Mean SD Mean SD

Bug Types
Ambiguous Information

(max = 2)
Detect 1.13 -83 1.15 .a0
Correct 1.07 .80 1 .OO -82

Insufficient Information
(max = 4)

Detect 1.67 1.11 2.00 1.15
Correct 1.27 .96 1.77 1.17

Temporal Order
(max = 1)

Detect .80 .41 .77 .44
Correct .60 -51 .62 .51

Complex
(max = 2)

Detect .73 .59 .92 .64
Correct .40 .63 .62 .65

Table 8. Performance on the Planning Posttest

Group

Control
Experimental (No CS)

(N = 15) (N = 16)
Mean SO Mean SD

Plan Execution Time-
In Minutesa

Mean Plan Time
(across 3 plans) 20.22 1.69 2 1 .04 1.78

Best Plan Time 18.85 1.23 19.17 1.23
Planning Behavior

Mean "Think" Time-
In Minutes 23.17 12.30 23.73

9.32 Mean Number of Pauses 2.87 2.1 1 2.79 1.34
Mean Numhcr of Reviews .40 .4 6 .56 .5 1
Mean Number of Checks .49 .55 .3 1 .45

a Optimal time = spproxirnately 17 minutes.

PROGRAMMING AND THINKING SKILLS 1 447

Table 9. Performance on the Math Posttest:
Mean Number of Points in Each Group

Group

Control Control
Experimental (Some CS) (N o CS)

(N = 14) (N = 13) (N = 15)

Mean SD Mean SD Mean SD

Variables Problems 1

(max = 9) 5.64 3.05 5.77 2.31 5.00 2.04

Equation Problems
(max = 3) 1.29 1.20 1.15 1.14 1.20 .94

Table 10. Performance by Each Group on the Algorithm Analysis and
Desiqn Task: Number of Subjects in Each Response Category

for Algorithm Analysis

Group

Control Con trol
Experimental (Some CS) (No cs)

(N = 14) (N = 13) (N = 15)

Gave approximately
correct time 5 2 2

Understood but
calculated incorrectly 4 4 9

Response indicates
no understanding

No answer 2 1 0

repeated-measures ANOVA (group by session)indicated that posttest performance
was sig~~ificantly better (1;(1,38) = 26.25; p < .00). Ilowever, there was no main
effect for group nor an interaction. This result was surprising given the degree to
which students i n the p rogra~n~n i~ lg course had to work with variables, and the
number o f different ways they encountered t l ren~ in their program~ning tasks.

Algoritltlrl &sip, a r ~ d Amlysis Test - The two p:~rts o f this task-analysis
and design of an algori t l l~rl-we~ear~alyzed separately. Students' ability to analy7e
an existing ;~lgorithln i s shown in Ti~ble 10. N o sigr~ificant differences between
groups were found.

Groups were compared for the style and adequacy of the algorithln they gen-

erated. A l t l ~ ~ u g l ~ t l~ere were 110 between-group differences 011 an overall ca~~lposite

448 1 KURLAND ET AL.

Table 11. Algorithm Analysis and Design Task:
Number of Algorithms in Each Group Receiving Each Score

Group

Control Control
Experimental (Some CS) (No CSI

IN = 14) (N = 13) IN = 15)

Scoring Dimensions
Scope of Intended Designa

No design apparent 5
Specific t o given input 5
Specific to input of a

multiple o f 4 coins 2
General Solution 2

Used Programming
Structures

Loop 5 2 1
Repeat 2 1 3
Conditional Testb 7 3 1
CounterC 10 3 2

Structural Errors Present
In Counter/Counting 12 1 1 13
In Sequencing 7 5 9

Quality of Oesignd
No design apparent 5 4 6
Many flaws 1 7 6
Few flaws 7 0 1
Working design 1 2 2

a Few algorithms would actually run i f executed, but we assessed whether t h e attempted
design was intended to be general or specific.

b Chi Square test on number of students using a conditional test = 7.13.p < .05.
Chi Square o n number of students using a counter = 11.95, p < .05.

d ~ h i Square on number of students falling in to each quali ty of plan category = 16.04,
P < .01.

score, there were differences on some subscores. As shown in Table 11, program-
ming students were more likely to use three of the four programming structures
possible: a loop, a conditional test, and a counter (differences in the frequency
of use of the latter two structures were significant).

There was also a significant difference in the score for overall algoritlin~
quality. While only one programming student wrote an algorithm that would
actually work successfully, many more programming students than nonprogram-
ming students wrote algorithms witli only a few flaws. 011ly one progran~ming
student wrote an algoritllm with many flaws, altliouglr six students in the non-
programming groups wrote such algorith~ns.

PROGRAMMING A N D THINKING SKILLS 1 449

The picture that emerges from these results is that programming students rec-
ognized this task as analogous t o progran~nling and could employ some o f their
knowledge from that domain to construct an algorill~rn. 111 comparison t o non-
programniing students, they were better able to develop an a lgor i t l~~n which used
efficient programming-like constructs, and wlrich could be fairly easily debugged.
IIowever, their work was not flawless; there was usually at least one error either
in the sequencing, in the use of the counter, or due t o violation of the complex
task constraints, wliicli prevented their algoritllriis from actually working. They
also did not usually writeta general algorithm which would work for any number
of input values.

Correlation of Math and Reasoning Pretests with Posttests

The math and reasoning pre- and posttests were alniost all significantly corre-
lated, even withgrade point average partialed out. Results are shown in Table 12.
(Math pretest scores are presented in Table 9.)

Correlation of Math and Reasoning Pre- and Posttests with Programming

We correlated performance o n pre- and posttests with a coniposite o f the test
scores for each language and with subscores on the Logo tests. Table 13 shows
correlations witli the composite test scores. The procedural reasoning pretest
scores and the math variables pretest score correlated significantly with the

Table 12. Correlations Between Pretests and Posttests
for All Subjects; Grade Point Average is Partialed Out (N = 4 4)

PRETESTS
Procedural Reasoning

Non- Verbal Verbal Math

Posttests
Procedural Reasoning

Non-Verbal 2 .4 5 * .64 .72*

Debugging Test .56* .6OU .6 1

Math .39 .69 .74
Algorithm

Analysis
Design

450 1 KUR LAND ET AL. PROGRAMMING AND THINKING SKILLS 1 451

Table 13. Correlation of Performance on Programming Tests
with Performance on Pre- and Posttests (Experimental Group) (N = 15)a

Composite Programming
Tests Score

Pretests
Non-Verbal Procedural Reasoning
Verbal Procedural Reasoning
Math
Planning (mean time)

Posttests
Non-Verbal Procedural Reasoning .65" *
Debugging .63"
Algorithm (analysis) .85 "
Algorithm (design) .74" "
Math .77""
Planning (mean time) -.65""

a N - 15 for correlations with a l l pretests, and the procedural reasoning and debugging
posttests. N = 14 for correlations with the math and algorithm posttests.

p < .05
* * p < .O1

progratllnling score. Of the posttests, tllc proced~rral reaso~~irlg, del)uggi~lg,
algorillrm, and 1nat11 scores correlated signil'ica~ltly with the programming tests.
The 1nat11-variables pre- and posttest scores, and the algoril l~rn task scores
correlated particularly well with the prograniming measures.

Table 14 shows the correlation o f the co~nprehension and productiorl parts o f
the Logo Test with the pre- and posttests. Almost all correlations are significant.
With grade point average partialed out, the pattern o f significance renlains
essentially unchanged.

The correlations found between procedural reasoning, decentering and pro-
granming replicate findings o f an earlier study o f high scllool s tude~~ts learning
Logo 1201. These skills, as well as the ability to evaluate the values o f variables,
to translate word problems into symbolic equations, and to design and conipre-
Ilend an algorithm, appear to be centrally related to the developnlent o f pro-
gran~ming skill.

Programming Ability in the Experimental Group

All nleasures of progranlniing skill showed that most strlde~lts Ilad gi~inetl only
a modest understanding o f any of the languages taught. Only performance on
the Logo test will be reported here along with the conditional l l ow o f control
question wllich we included on each o f the tests for three other languages. Per-
formance on the Logo test is representative of understanding o f other languages

Table 14. Correlation of Performance on Logo Test with Performance
on Pre- and Posttests (Experimental Group) (N = 13)

Logo Scores

Production Comprehension Total

Pretests
Non-Verbal Procedural Reasoning 5 9 ' .68"" .69""

Verbal Procedural Reasoning .62' " .67 " " .66"'

Math .68* .69"* .70*"
I

Planning (mean time) ! .02 - . I 1 .o 1

Posttests
Non-Verbal Procedural Reasoning .73*" .58" .7OU"

Debugging . 7 l U " .69'" .72""

Algorithm I

Analysis
1 .84" " .8OU* .84""

Design .66" .63'"
.68" "

Math .57" .65"' .61'"

Planning (mean time) -.34 -.59' -.44

Table 15. Performance of the Experimental Group on the Final
Programming Tests in Each Language

Mean Scores on Each Test

Mean S D

BASIC 69.80
COBOL 64.07

..FORTRAN 57.40
Logo 53.47

Correlations Among Test Scores

BASIC COBOL FORTRAN

BASIC
COBOL .BO*
FORTRAN .88" .74"
Logo .88" .9 1 .72*

452 1 KURLAND ETAL. PROGRAMMING AND THINKING SKILLS 1 453

by the students; as shown in Table 15, performance in each language is l ~ i g l ~ l y
correlated.

Logo 13.oficietlcy Test - In general, s tudents exhibited a somewllat confused
overall understanding of Logo. For example, when asked t o identify Logo
expressions as variables, procedure nanies, words, lists, or numbers, o n t h e
average only half of the students correctly identified tlle expressions. They had
greatest difficulty recognizing a variable. O n following t h e flow o f control
tllrougl~ a short Logo program only five of tlle s tudents were successful. Several
students showed understanding of the passage of control among subprocedures,
but tlrey failed to exl~austively follow the passing of control. The remaining stu-
dents demonstrated no understanding of h o w the order of execution o f the lines
in a program is determined b y particular flow o f control c o t n n ~ a n d s and the
current value o f variables.

On the program comprel~ension problems, s tudents were successful o n a pro-
gram wllich required understanding o f a simple use of list processing primitives
and an input variable. When the problem, requiring understanding of Make and
O u p r t , several understood that the O U T P U T command in a subprocedure
passes information t o a calling procedure, bu t tliey did no t understand that the
OUTPUT co~nmarid ends the execution o f a procedure. Only four s tudents
showed a good rrnderstending o f tail recursion and none could follow a program
involvi~lg embedded recursion (also see 1281).

On the program production part o f the Logo Test , approximately half of the
students could produce the correct screen effects. Only tllree students used vari-
ables and only five students used subprocedures, even though much o f the con-
tent for the three screen effects was similar o r identical, and effectively created
a demand for use of subprocedures and variables. T h e reatmining students wrote
linear "brute force" programs (lists o f ou tputs preceded by the print command)
or were unable to approach a successful program.

Overall, more students evidenced compre l~ens ion o f variables and flow o f
control wlien given short siniple programs than w l ~ e n asked to produce tlleir own
progratns. This may indicate bo th the fragility o f their understanding, and a lack
of appreciation of the utility of variables and subprocedrrres.

Cor~tlilior~allIeratior~ Problerrrs it1 h r t r Larrgrrages - Few students could suc-
cessfully produce the output of short programs given in each language which had
an iterative structure wit11 conditional tests and multiple variables t o be incre-
mented. Many did understand lines o f code wl~ic l l contained a cotiditiorral s top
rule, incremented a variable, o r created a global variable (in Logo). lIowever,
they often seemed to evaluate these lines o u t o f contex t ; many could no t follow
the flow o f control and did no t demonstrate understanding o f the order o f
execution. A few students followed the order correctly but s topped t h e pro-
grams too soon (wrong number o f iterations); they seemed to interpret the
comparatives in the stop rule incorrectly, o r t o have some o ther difficulty
with flow of control .

With the exception of the Logo version of this task, most s tudents could n o t
systematically keep track of values of variables. This was easier in Logo, w l ~ e r e
the program did not compare variables t o each otller (i.e., I F X = Y) b u t instead
compared them t o constants (i.e., I F X = 3). Also, t h e Logo task had only three
variables whereas t h e otller tasks had a four th , counter variable. It is important
t o no te that t h e "variables" problerns o n the math pre- and posttests were analo-
gous t o this programmirlg p r o b l e n ~ . T l ~ e r e were four variables, most of w h i c l ~ l i d
values defined in terms o f otller variables. Each o f t l m e tasks demanded a sys-
tematic a p p r o x l ~ in order t o reduce working memory load. Students did no t
demonstrate skills for such systematic reasoning in their programming nor in
their solving o f tlle m a t h problem.

DISCUSSION

Prograrntnil~g students were found t o range greatly in tlleir understanding o f
even basic programming principles and commands. F o r t h e most part they ex-
hibited a weak understanding of flow o f control o r of the structure o f t h e lan-
guages in wlliclr they worked . Observations o f t h e students as they worked in
their programming class indicated that s tudents frequently shared ideas and c o d e
(compare 1291). While exploiting pre-written code is an honorable progra~nmirlg
t e c l r ~ i i ~ u e among professionals, in sc l~ools it is a double-edged sword. Some stu-
dents relied o n t h e understanding of a few good students and never bothered t o
learn the material themselves. Many students used a trial-and-error approach t o a
task, o r inlnlediately asked for help wlien stuck. Thoug11 several were concerned
wit11 understallding what t o d o , tliey did no t seem t o have tec l~niques o r rules
for systematically analyzing buggy programs and for developing corrections.

Given the generally low level of programming unders tan t i i~~g , even after t w o
years of instruction, it did no t c o m e as a major surprise that there were no sig-
nificant differences between the experimental and control groups for any of o u r
measures o f "far" transfer. This was the case even tl1oug11 our reasoning and
mat11 measures correlated with programming mastery indicating, as expected,
that prograniming taps a number of specific complex cognitive skills.

' T h e transfer tasks all proved to be fairly difficult for most students regardless
of programming experience. Students had difficulty with exhaustive and accurate
procedural reasoning, evaluating variables defined in terms of other variables, set-
ting u p an equation for a word probletn expressing proportiorial relations, decen-
tering sufficiently t o exhaustively detect "buggy" instructions and constructing
and monitoring a plan for efficient chore execution.

O n e reason postulated for previous failures t o find far transfer still reigns cen-
tral: s tudents did no t at tain a very high level of expertise in programming. T h e sig-
nificant gains we did find for prograrnmir~g students o n the near transfer task-the
Algorithm Design and Analysis Task-liigl~ligl~t the important relationship be-
tween t h e nature o f knowledge transferred and t h e acquisition of expertise.

454 1 KURLAND ETAL.

The algoritl~nl ask, to wllich prograniming students did apply some o f their
skills, was different from our other transfer measures in two ways: First, t h e pos-
sible knowledge t o be transferred included specific p rogranming concepts such
as a "counter" arid a conditional s top rule, as well as cognitive operutiorls used in
programming (such as procedural reasoning, o r the systematic evaluation o f vari-
ables). Second, it bore relatively obvious silnilariiies to a progra~rlming task (tlle
goal was to perform numerical cornpl~tat iol ls given a set o f fu l lc t ions analogous
to programming conlnlarlds or subprocedures). We found that s tudents recog-
nized the conditiorls for application o f some o f their progranlming concepts t o
the task. Also, to some extent they showed superior procedural r e a s o n i ~ ~ g ability;
their overall plan quality was better than the nonprogramn~ing students tllougll
rnany still nlade procedural errors.

Time positive results exemplify the tight relation betweell transfer and what
has been learned. The concepts transferred-the use of a counter , a loop and a
conditional s top rule-are saliellt features of prograrnrning, explicitly represented
in the code, and presented early in programming instruction. Thus they are
familiar to , even if not fully nlastered b y , most novices. Giver1 the transfer of
the operational skills here and not t o o u r other tasks, it is apparent that rela-
tively context specific rather than general operations were learned.

Because most students' knowledge o f the fundamental aspects o f progralnming
was quite limited, we d o not c o n c l ~ ~ d e that developnient and far. transfer o f skills
from progranimi~lg cannot in principle occur. We can conclude, however, tha t
such far transfer is unlikely t o occur given the type of programining curriculum
and amount of experience provided for tllese students, wllich if anything is mis-
representatively rigorous and unrealistically more intensive than that found in
most sc l~ools today. Such experience is insufficient for mastery of the program-
ming concepts and practices that engage and make more probable the far
transfer of Iligli level thinking skills. Until a population with greater progratrl~ning
expertise is studied longitudinally, the far transfer question remains open.

I n conclusion, two things seem clear. First, mastery o f a t least basic program-
ming skills appears t o be essentiai for transfer, but is hard to achieve within the
constraints imposed by the organization of scl~ools. And second, if progralnlning
is to continue to play such a rnajor role in the school curriculrlni, we need t o de-
velop nlucll more effective ways o f teaclling children to prograni. Explicit devices
for llelpirlg students see how flow of control structures work appear promising
130.331. But better prograrnrning environments are not enough by tllemselves.
Instruction must explicitly focus o n llelping the student build a model o f how
the progrnm~ning language works. If the operat ion o f the language is a mystery
1261, then students cannot write complex and cognitively demanding programs.
Early o n and Illrougllout instruction, understandir~g the control and data struc-
tures s l~ould be stressed. Trial-and-error creation o f screen effects typical of pure
discovery learning environrnents c o m m o n in precollege progranlnling should be
tempered with directed teaching o f the principles wliicll urltlerlie the effects.

PROGRAMMING AND THINKING SKILLS / 455

Trial-and-error generation o f screen effects neitller engages high level thinking
skills nor suppor t s increased l~ ias te ry o f the language.

A n o t l ~ e r possibility often proposed is tha t , since transfer of tllilikirig skills
may involve representation o f knowledge at a high level of abstraction, divorced
f rom particular contex ts , one might teach thinking skills at this general level o f
abstraction. I 'erl~aps in this way the need for domain expertise can be bypassed.
U n f o ~ tunately, w e k ~ w w f rom previous research that "n~et l lods without conten t
are blind," that s tudents llave great difficulty deduci~ lg c x a ~ ~ l p l e s t o which
general thinking skills o r rules they are tal~gll t will apply if they are presented
with abstractions alone (34.381 . Insofar as instruction in general thinking skills
programs has been effective in p r o ~ n o t i n g transfer, it appears that there have
been explicil corrdi/iorls fi)r trarrsfer desigrled itlto the b~sfrrrct ior~al p r o f l u n ~ s ,
including multiple e x a n ~ p l e s of skill application, links t o real-world probleln solv-
ing situations, conten t area instruction, abstract descriptions o f thinking skill
methods , and so o n [39 , 401 . These issues are t o o complex for t reatment here,
but will be important to systenlatically consider in fulure instruct ion and re-
search with tlle aim of Ilelping students learn generali7able thinkirlg skills such as
planning and p r o b l e ~ n solving methods t h r o u g l ~ c o ~ n p u t e r programming activities.

F r o m o u r perspective, based o n da ta f rom the present s tudy and o thers [20,
2 1 , 4 1 - 4 3] , w e d o not believe that the current h o p e for i r ~ c i d e t ~ / a l learning of
generalizable thinking skills through programming is realistic, and would take
tllese broader lessons about condit ions for transfer o f learning from t h e psycllo-
logical literature into account in designing for transfer in t h e future. Whether
with bet ter programming environrnents, bet ter instruction, and m o r e e x p l ~ c i t
at tention t o designing instructioll for transfer, progratnil~ing will begin t o more
fully live u p t o its potentials and promises remains to be seen.

REFERENCES

1. S. Papert , Mirzdstorrns, Basic Books, New York , 1980.
2. W. Feurzeig, S. Papert, M . Bloom, R. Grant , and C. Solotnon, Prograrfltnirtg

L,ar~grragcs as a Cor~ceptl tal F r a r r ~ e ~ v o r k for 'I 'eacl~it~g A f a / l ~ e ~ r ~ a t i c s (BBN Re-
por t No. 1889) , Bolt, Beranek, and Newman, Cambridge, Massachusetts,
1969.

3. R. S. Nickerson, Computer Programming as a Vehicle for Teaching Thinking
Skills, Tl~inki~zg: The Jortrr~al of Pll i losopl~y f i r Cltildrer~, 4 , p p 42-48,
1982.

4. R . E. Brooks, Towards a Theory of t h e Cognitive Processes in Computer
I'rogramming, Ir~fert~aliortal Jotrrnal of n f a r ~ - A f ~ c l ~ i r ~ e Slrrdies, 9 , pp. 737-7 5 1 ,
1977.

5 . I<. Jeffries, A. A. Turner, P. G. l'olson, and M . E. Atwood, T h e Processes
Involved in Designing Software, in Cognitive Skills a r ~ d Their Acqctisi/ior~,
J . R. Anderson (ed.) , Erlbaurn, Hillsdale, New Jersey, pp. 255-283, 1981.

456 1 KURLAND ET AL.

6 . R. D. Pea and D. M. Kurland, On the Cognitive Prerequisites of 1,earrring
Conlprrler Prografnnring, ('Technical Report No. 18) , Center for Children
and Technology, Bank Street College of Education, New York, 1983.

7. N. Pennington, Cognitive Components of Expertise in Computer I'rograrn-
nting: A Review of the Literature, (Technical Report No. 46), University of
Michigan, Center for Cognitive Science, Ann Arbor, 1982.

8. R. Mawby, I'roficienc)~ Conditions for tlre Development of Progmtt~tning
Skill, paper presented at t h e International Conference o n Thinking, IIarvard
University, Cambridge, Massachusetts, August, 1984.

9. J . G . Carbonell, 1)errvatiotral Analogy: A 7'heory of Reconstructive Problem
Solving and Expertise A cqrrisition, Technical Report CMU-CS -85 -1 15 ,
Carnegie-Mellon University, Computer Science D e p a r t n ~ e n t , Pittsburgh,
March 1985.

10. D. Gentner, Are Scientific Analogies Metaphors? in Metaphor: Probletns and
Perspectives, I). Miall (ed.), IIarvester Press Ltd., Brighton, Iingland, 1982.

11. , Structure-Mapping: A Theoretical Framework for Analogy and Sim-
ilarity, Cogn~tive Science, 1983.

12 . M. B. Ilesse, Models and Analogies in Science, University of Notre Dame
Press, Notre Dame, 1966.

13. K. J . llolyoak, Analogical Thinking and I luman Intelligence, in A d w n c e s in
the I'syclrology of I luman Intelligence, Vol. 2 , R. J . Sternberg (ed.),
Erlbauni, Ilillsdale, New Jersey, 1983.

14. A. I,. Drown, J . D. Bransford, R. A. Ferrara, and J . C . Campione, Learning,
Remembering, and Understanding, in Cognitive Development (Vol. I l l) ,
J . 11. Flavell and E. M. Markman (eds.), of P. H. Mussen (ed.), Handbook of
Child Psycholugy (4 th edit ion), Wiley, New York , 1983.

15. M. T. H. Chi, P. J . Feltovich, and R. Glaser, Categorization and Represen-
tation of Physics Problen~s by Experts and Novices, Cognitive Science, 5 ,
pp. 121-152, 1981.

16. B. Adelson, Problem Solving and the Development of Abstract Categories in
Pmgrarnming Languages, Memory and Cognition, 9, p p . 422-433 , 1981.

17. E. Soloway, From Problenrs t o Problems via Plans: The Conten t a n d Struc-
ture of Knowledge for In t roduc tory LISP Programnting, Technical Report
No. 21, Cognition and Programming Project, Yale University, Department
of Computer Science, New Haven, Connecticut , 1984.

18. M . C. Linn, The Cognitive Consequences of Programming Instruction in
Classroorns, Bducational Researclrer, 1 4 , pp. 14-29, 1985.

19. L). N. Perkins and G. Salonion, Transfer and Teaching Thinking, in Thinking:
I'rogress in Research a n d Teacl~rng, J . Bishop, J . Lochhead, and I). I'erkins
(eds.), E r l b a u ~ n , Ilillsdale, New Jersey, in press.

20. 1). M. Kiirlantl, C. A. Clement, I<. Mawby, and R. 11. Pea, Mapping the Cog-
nitive I h n a n t l s of Learning t o I'rograln, in 7'ltirrking: I'rogress in I<esecrrd~
and Teachrrlg, J . Bishop, J . Lochhead, and D. Perkins (eds.), Erlbaum, IIi11s-
dale, New Jersey, in press.

21. 11. I). Pea, J . Ilawkins, and D. M. Kurland, LOGO and the I)evelopmenl of
'I'hinking Skills, in Clrildren a n d hlicrocon~prrters: Re.rearch o n the Newest
M e d i u n ~ , M. Chen and W. Paisley (eds.), Sage, Beverly Hills, California, 1985.

PROGRAMMING A N D T H I N K I N G SKILLS 1 457

22. J . Weizenbaun~, Cotnprrter Power a n d I l t rrr~at~ Reasorr: F r o m Judgment to
Calculation, W. 11. Freeman, San Francisco, 1976.

23. D. M. Kurland, R. D. Pea, C . Clement, and R. Mawby, A S t u d y of the Devel-
o p m e n t of Progra~nrning Ability and 7'11inking Skills in iligh School Strr-
den ts , Technical Repor t , with Appendices, Center for Children and Tech-
nology, Bank Street College of Education, New York , 1985.

24. R. D. Pea and D. M. Kurland, Logo Prograrnn~i r~g and the Developmer~t of
Plar~ning Skills, (Technical Report No. 16), T h e Center for Children and
Technology, Bank Street College of Education, New York , 1984.

25. , O n the Cognitive Effects of Learning Computer Programming, New
Ideus in Psyc l~ology , 2: I , pp. 137-168, 1984.

26. 11. I). Pea, Language-Independent Conceptual Bugs in Program Understand-
ing, Journal of Educa t ior~a l Con~pcrfing Researclt, 2 : 1, pp. 25-36, 1986.

27. K . Ehrlich, V. Abbot , W . Salter, and E. Soloway, Issues and Problems in
Studying Transfer Effects of Programming, in D e v e l o p ~ ~ ~ e t ~ l a l Studies of
Cotrlputer Prograrnrnittg Skills, D. M. Kurland (ed.), (Technical Report No.
29) , T h e Center for Children and Technology, Bank Street College of Edu-
cation, New York, 1984.

28. D. M. Kurland antl R. D. Pea, Children's Mental Models of Recursive Logo Pro-
grams, Jo~rrt~alofEtl~rcatiot~alC'ort~~~rrtir~gIlesearch, 1:2 , pp. 235-243, 1985.

29. N. M. Webb, Microcomputer Learning in Small Groups: Cognitive Require-
ments and Group Processes, Journa l of Edtrcatiotral Psycholog)', 76:6,
pp. 1076-1088, 1984.

30. D. duBoulay, T. O'Shea, and J . Monk, Presenting Comput ing Concepts t o Nov-
ices,It~~ert~ationalJo~rrnalofh~an-h,faclrine Studies, 14, pp . 237-249, 1981 .

3 1 . B. duBoulay, Children Learning Programn~ing, Jourrlal of Educational Com-
puting Research, in press.

3 2 . D. Mioduser, R. Nachmias, and D . Chen , Teacl~ing Progranlrr~i?~g Liferacy t o
Nor~-Progra t t~r~~ers : The Use of Cotnputerized Sitlrulation, (Technical Report
No. 15) , T h e Computers in Education Research Lab, Center for Curriculum
Research and Development, School of Education, Tel Aviv University, Tel
Aviv, Israel, 1985.

33. R . Nachmias, D. Mioduser, and D. Chen, A Cognitive Curriculum Model for
Teaching Computer Programming t o Children, in Cor?~ptrters in Education,
K. Duncan and D. Harris (eds.), Elsevier Science Publishers, B. V. North
llolland IFIP, 1985.

34 . N. Frederiksen, Implications of Cognitive Theory for Instruction in Problem
Solving, Review of I:'ducatior~al R e s e a r c l ~ , 54, pp. 363-407 , 1984.

35. R. M. Gagne, Learnable Aspects of I'robleni Solving, I:'dtrcatiorral IJ.~ysyclrolo-
gist , 1.5, pp. 8 4 - 9 2 , 1980.

36 . R . (;laser, Education antl Thinking: The Role of Knowledge, Arnericnrt I'sy-
clrologist, 39 , pp. 93-104, 1984 .

3 7 . I<. E. Mayer, 'lie Elusive Search for Teachable Aspects of I'roblem Solvirig,
in A Ilistory of t:'tlitcutionc~l i ' s y c l ~ o l o g ~ ~ , J . A. Glover and R. R. Ronning
(eds.), Plenum, New York , in press.

38. A. Schoenfeld, Mathematical P r o b l e n ~ Solving, Academic Press, New York,
1985.

458 / K U R LAND ET AL

39. R. D. Pea, Tratrsfer of Tlritrkrt~g Skillr: lssrres fo r Softtunre Use atlrl Des ig r~ ,
paper presented at a national conference o n " C o ~ l ~ p u t e r s and Cotrlplex
~ h i n k i n g , " National Academy of Sciences, Washington, D.C., 1985 .

40. L. B. Kesnick, i ~ d ~ r c a t i u r ~ atrd 1.eartritrg t o Tlrrrtk: Subcor~r rn i t fee R e p o r t ,
~ a t i o n a l Research Council C o n m i s s i o n o n Behavioral and Social Sciences

and Education, Washington. D.C.. NRC 1 9 8 5
7

41 . 1). I I . Clements and b. F. ~ u l i o , Effects o f Co~nptc te r P r o g r a n ~ n ~ i n g o n
Young Children's Cognition, Jo t t rna l of Edircc~tlorlal P s ~ ~ c h o l o ~ ~ ~ , 76,
pp. 1051-1058, 1984.

42 . J . D. Milojkovic, "Children Learning C o n ~ p ~ ~ t e r Progran~ming: Cognitive and
Motivational Consequences," Doctoral dissertation, I l e p a r t n ~ e r ~ t o f Psyc l~o l -
ogy, Stanford University, 1983.

43. C. Clement , i). M. Kurland, R. Mawby, and R. 1). Pea, At~n log ica lReaso t~ i r rg
atld Cottiptrrer Progrart~t~ritrg, paper presented a t t h e Conference o n 'I'hink-
ing, Cambridge, Massachusetts, 1984 .

Direct reprint requests to:

D. Midian Kurland
Center for Children and Technology
B a l ~ k Streel College o f Educat ion
610 West 112111 Street
New York, NY 1 0 0 2 5

J. EDUCATIONAL COMPUTING RESEARCH. Val. 2(4) , 1986

A SUMMARY OF MlSCONCEPTlONS
O F 11ICH S C I i 0 0 L IIASIC PROGRAMMERS

RALPH T. PUTNAM
University of Pittsburgh

I
D. SLEEMAN

, J U L I E T A. BAXTER
LAlANl K. KUSPA
Stan ford University

ABSTRACT

This study examined high scl~ool students' knowledge about constrttcts in the
BASIC progran~niing language. A screening test was administered to ninety-six
students, fifty-six o f wliom were interviewed. Students were asked to trace
simple progranls and predict their oulput. 1:rrors in virtually a l l BASIC con-
structs we examined were observed, with many of the ~nisconceytions arising
from the application of knowledge and reasoning from infornlal donlains to
programming. It is argued that a lack of knowledge of basic features of pro-
gramming language will prevent students frorn developing tlie Iiiglier-level cog-
nitive skills that much program~ning instruction is intended to foster.

Conipu te r p r o g r a ~ l ~ n i n g courses a r e o f t e n offered b y higll scllools o n t h e g rounds
tha t learning programming is a powerful way t o develop problern solving a n d rea-
soning skills. Linn has suggested tha t such p rob lem solving skills are t h e culmin-
a t ion o f a cha in o f cognitive consequences o f programming instruction [I] . Th i s
chain includes c o ~ n p e t e n c e wi th specific features o f t h e prograrn~ning language
being l ea r r~ed , skills f o r designing programs within t h e language, and general
problem solving skills applicable t o o t h e r f o r ~ n a l systems. While knowledge o f
specific features o f t h e language being s tudied is o n l y t h e first link in this cha in ,
it is a prerequisi te t o t h e learning o f nlore general des ig t~ and problem solving
skills. F o r s tuden t s t o engage in tasks such as debugging proglams or designing
algorilllrns b y a n a l y ~ i n g complex tasks, they must have n certain a m o u n t o f
knowledge a b o u t t h e s y n t a x a n d semantics o f a progran~~ni~lgla~~grrage. A s t u d e n t

O 1886. B a y w o o d Pub l i sh ing Co.. Inc.

