Roy D P E

T R O N A

L D Mawby

A STUDY O F THE DEVELOPMENT OF PROGRAMMING ABILITY AND THINKING SKILLS IN HIGH SCHOOL STUDENTS* I '

This article reports o n a year-long study of high school students learning computer programming. The study examined three issues: I) what is the impact of programming on particular mathematical and reasoning abilities?; 2) what cognitive skills or abilities best predict programming ability?; and 3) what d o students actually understand about programming after two years of high school study? The results showed that even after two years of study, many students had only a rudimentary understanding of programming. Consequently, it was not surprising to also find that programming experience (as opposed to expertise) does not appear to transfer to other domains which share analogous forrnal properties. The article concludes that we need to more closely study the pedagogy of programming and liow expertise can be better attained before we prematurely go looking for significant and wide reaching transfer effects from programming.

prograninicrs explicitly employ important problem-solving strategies such as deconlposing problenis into niodules, use analogical reasoning, and systeniatically plan, code, i~nd debug their programs. Prograniniing seems t o denland complex cognitive skills sucll as procedural and conditional reasoning, planning, a d analogical reasoning [3-71. In addition to problem-solving skills, prograniming utilizes fundamental concepts such as variables and recursive structures, which are important in mat11 and physics. It is well-known that tllese concepts are difficult t o teach with traditional media, and their enlployme~it in the functional context of a programniing language may make tllcni mole easily coriiprel~ended [1, 31 . Motivated by this entl~usiasn~ for tlle potential of programming, as well as by the pressure from business and the homes t o make students "computer literate," schools have instituted programniing courses or related activities at all grade levels. Yet, surprisingly, there has been very little research t o date wllicli has directly addressed the many broad clainis that have been made for prograniming. And in addition, there has been very little researcli exarni~iing what students are learning about programming itself as the result of scl~oolbased instruction. We know far too little about what to expect students will learn in a reasonable period of tinie, how they learn, what conceptual difficulties they encounter, wliat forms of cognitive support they may require to guide them over these difficulties, or wlictl~er individual differences in learning styles are reflected in progranlniing and need to be guided differently in instruction. And beyond wliat rational analyses suggest, we cannot say with niucl~ assurance what knowledge and skills that students bring with tlien~ wllen they first rneet programming (e.g., natural language competencies; various reasoning skills) are likely to facilitate the acquisition of programming knowledge and skills.

Addressing the issue of how well students actually learn to program in precollege courses is thus an important matter. It is particularly important because of two relatior~s between level of expertise and transfer of learning. First, it is primarily sophisticated programming activities that demand Iiigher level tliinking skills and probleni-solving tecl~niques, and these activities require expertise. T l ~e y require a good model of tlie stucture of tlie language: you cannot write a niodular program and use variables unless you understand how control is passed in the language arld how logical tests o1)crate on outputs of ope~ations. 'I'l~us, tllc tlli~lki~hg skills we 11opc will dcvclol) ; I I I ~ tri~nsfcr out o f progranlliiing depend upon students attilining certain proficiencics in progrilllimirig 18). Simple tasks such as a four-1i11c graphics program to draw a box d o not require tlie full range of conlplex reasoning skills that programming is purported to help develop.

Second, the transfer of concepts and skills across domains depends on the detection of potential similarities between a known and a new domain [9-131. Brown, Bransford, Ferrara and Campione note tliat tliis fact implies differences in PROGRAMMING A N D THINKING SKILLS / 431 the abilities o f novices and experts to transfer since novices and experts classify si~liilarities between tasks differently [START_REF] Drown | Learning, Remembering, and Understanding[END_REF]. Novices will be Inore limited in their abilities for recognizing proble~n similarity since they tend t o classify tasks according t o surface clia~acteristics wllereas experts focus on underlying conceptual properties o r casual structures. For example, Chi et al. examined the categorization of physics problenis by novice and experts [I S] . Novices categorized problems in ternis of particular objects referred to, terminology given in a problem statement, and physical configurations of problem elements. In contrast, experts ignored these superficial features of problems and categorized them in t e ~m s of physics principles relevant for problem solutions. Since the novice and expert represent donlairis differently, they have different inforniation to use in classifying proble~ns, artd in accessing knowledge potentially useful in a new p~oblem-solving situation. Similar findings liave been obtained for novice and expert adult prograninicrs [1 6] .

Thus, in programming, even if novices begin to develop an understanding of the workings of the language and to write relatively sophisticated prog r a m , they may represent progran~niing in terms of the surface code, forniat and syntactic properties of a language, and in terms of particular tasks. Experts, o n tlie other Iiantl, are more likely to represent programming problems in terms of the general concepts which underlie particular programming collstructs such as recursive routines and variables, the underlying structure of broad classes of problems, the solution strategies wllich crosscut many types of problems, or routinized plans [I71 or "templates" [START_REF] Linn | The Cognitive Consequences of Programming Instruction in Classroorns[END_REF] for solving common progranlnling subproble~ns. Those aspects of programming problemsolving skills we hope will transfer, and that could transfer, involve the general structure of tlie problem-solving activity and general concepts. Further, the ability t o transfer these tecliniques and concepts from programming will depend on recognizing problenls in new domains where tlie techniques and concepts apply by analogical extension [l 1, 191 .

Wl~etlier we are concerned about students learning to tliink better tlirougli prograniming, or in their learning t o program, it is essential to recognize tliat we are in a very early state of knowledge about the psychology of pro-" gramming. For this reason, any work in tliis area, has tlie nature of work in progress. Tlie teclinologies available to schools, both hardware and software, arc in great flux, a d teacl~ers' i ~~t u i t i o n s are being sl~arpened tlirougli tl~eir cxpcricnccs in Ilelping students Ie;trn program~i~irig, ant1 to think t l ~r o u g l ~ pro-grani~ning. So, as useful as any new findings i l l this area are likely to be f o ~ t l ~e educator, tllcy must be tre;~ted with cnution. At the sanie time, tlie influence on education of grandiose arid optimistic pronouncements that liave been made about the cognitive benefits of programming, and on the ease with whicli students can learn t o program, cry out for empirical assessment, even in these early days in the field when the terrain changes faster then one's "research snapshot" develops.

THE PRESENT STUDY

To begin to examine more directly some of tlie many claims that are being made for and about prograninling we undertook a study designed to investigate the relation between thinking skills and programming, and t o investigate the programming skills acquired by precollege students. We were interested in the development of programming skill among well taught precollege students with significantly more experience programming than most students who have participated in previous research studies.

Our study Ilad three aims. The first was to document the inlpact of programming experience on a range of reasoning and math skills. The second was to observe the nature of tlie programming knowledge students attained. The third was to replicate findings from a previous study [20] that certain of these cognitive skills predict some aspects of programming skill acquisition.

Our choice of concepts and skills t o investigate was based o n a rational analysis of the cognitive conlponents of programming and o n correlations, found in previous research, between particular skills and programming mastery [6] . The tasks chosen involved procedural reasoning, decentering, planning, mat11 understanding, and algorithm design.

Our particular task designs were based on an analysis of how the target skills are manifested in programming. Many of the skills we were interested in could not be assessed by standard cognitive ability measures, either because n o measures of these skills exist or because existing measures demand skills in a form inappropriate to progranlnling. For instance, standard tests of conditiorinl reasoning examine comprel~ension of material implication as defined in standard logic. This is not particularly relevant to tlie use of conditionals in programming; rather the conditional reasoning skill practiced in programming involves reasoning through a complex chain o f nested condition-action structures.

METHOD

Design

Three groups of high scl~ool students were tested at the beginning and end of the school year. One group of students, tlie Ikperimentnl group, was enrollctl in their second year of progranlming. A second group, the ,%mc.-CP group, llad taken one year of programming but had elected not to continue. A third group, the No-C'I' group, 11atl IIO experier~ce progra~ll~llir~g.

A battery of postrests admir~istered at the end of the year was intended to assess the cognitive benefits resulting from the programming course, and for the Experirner~tal group, programming knowledge and skill. Performance on these measures was compared among the three groups of students. The pretests administered at the beginning of the year were selected as potential predictors o f PROGRAMMING AND THINKING SKILLS

I

I performance in the programming class. These tests also served as measures of the initial ability level of students o n many of the skills were were posttested.

I

Students

All students for the study were drawn from a large urban public higll scl~ool wit11 an etllnically and socio-econonlically mixed student body. The experimental group consisted o f a full class of fifteen students who ranged widely in ability as indicated by their grade point average. Control students were selected from a pool of volunteers and matched wit11 the experimental students on math background, overall GPA, and grade level. Students in the Some-CP group had taken an introduction t o computers through the BASIC language course the previous year. Table 1 gives the breakdown of the tliree groups by sex, grade, and GPA.' i

Programming Instruction

Students in the experimental group liad taken the same introductory course as tlie Some-CP students. They were currently enrolled in a second, more inten-.. sive prograrnnling course taught by an excellent programming teacher with five years experience.' Class met for forty minutes, five days a week in one of tlie scl~ool's computer labs. Over the year students studied six programming languages. Tlley spcnt nine weeks ench on BASIC, COBOL, and Logo and t l ~r e c weeks each on FORTRAN, MACRO, and Pascal.

The nun~ber of students reported for results of rerlain Incusures varies since we wcrc unable to administer some tests to one or two stutlenls in each group. [START_REF] Feurzeig | Prograrfltnirtg L,ar~grragcs as a Cor~ceptltal Frarr~e~vork for 'I'eacl~it~g Afa/l~e~r~atics (BBN Report No. 1889[END_REF] The teacher of the Experimental students had a B.A. in Matl~ernatics from Yale University, an M.A. in Interactive Educational Tecl~nology from Harvard University, and five years of teaching experience. Her students have won the department's prize exam for first year students in each of her five years, and her AP students placed very highly in national compe-' tition and on the Advance Placement Exam.

The nine week Logo section came at the end of the y e u . While the progralnming teacher designed and taught the curriculunl for the other five languages, we designed, tllcn llatl the teacller teach, the Logo curriculu~n. Our ail11 in designing the Logo curriculum was to help students develop a richer n ~e n t a l nod el of Logo t l ~a ~l students in our previous studies seemed t o develop. The focus was o n control structure. Work was done solely in list processing-no turtle graphics were taught. In turtle graphics it is too easy for students to continue t o generate interesting screen effccts without understanding the code 1211. 111 list ploccssi~lg work, to obtain interesting effects requires a deeper understanding o f the language. This npproacl~ has its own costs-students need t o understand more of the language before they car1 (lo 1111rc1l of interest in it.

In our design of the Logo curriculunl, we en;pliasized comprehension over production. Students were given handouts covering concepts and cornl~iauds, worksheets tllat stressed program cornprel~ension, and a glossary of Logo primitives, written in flow-of-control language (i.e., in terms of inputs and outputs of Logo con~riland operations). And we supplied utilities for file nianagement t o encourage a tool-kit approach.

We designed a series of weekly projects, each building on the previous ones, so that in principle each project could be a modular tool for the next project. The final project was to program a sin~ple version o f ELIZA, l l ~e I3rogr:trtl t11:1t mimics a non-directive psycllotherapist 1221. Topics covered in the course included Logo commantls (primitives, procedures, inputs, outputs, and outcomes, creating and editing procedures, words, lists, and list processing, input and output conlniands, workspace management c o ~n ~~l a n d s , debugging, trace and error Iiiess:lges, subprocedures, procedures with input variables, naming and creating variables with the MAKE coninland, the OUTPUT comrnand, conditionals, and tail a d enlbcdded recursion.

Measures

The specific rationale and design o f each of the tasks used in the study is descrihctl fully clsewllcre 1231. A brief review of the tasks is provided below.

Pre/es/s -T o assess the extent to wl~icll skills acquired in programming transfer to other domains, we developed transfer tasks in both "far" and "near" contexts. Our far trnrlsfer tasks (the majority of the tasks), demanded skills we believed to be deeply ingredient to progran~~ning, but they bore n o obvious stirface si~uihritics t o prog~.;~nlming ti~sks. One near tr;~nsfcr I:~sk, in ntltliliotl t o bearing deep structural sinlil;~rities t o progra~ll~~ling, rescr~~hled prog~ii~llnling tasks in sevc~nl surface fcilt\lres. 'l'l~e prclcsts wcrc divitlcd illto tl~rce ~y p c s : procedural re;lsoning, pI:mning, and n l i ~l l l e ~~l ; ~~i c s .

Proced~trul Reasot~itrg Tests -Rational analysis suggests that programming requires instrumental reasoning, particularly procedural reasoning. Designing, c o n prel~ending, and debugging programs requires this type of ~oeans-ends reasoning.

PROGRAMMING A N D THINKING SKILLS 1 [START_REF] Clement | At~nlogicalReasot~irrg atld Cottiptrrer Progrart~t~ritrg[END_REF] Progranl~ners tnust ~n a k e explicit the antecedents necessary for differe~lt ends, and must follow tllrough the consequences of different antecedent conditions. Designing and following the flow of control of a program requires understanding different kinds of relations between antecedent and consequent events, and organizing and interrelating the local means-end relations leading to the final end. Therefore we designed a set of tasks to measure procedural/conditional reasoning wit11 conditional structures in cornplex contexts. One task was non-verbal and two were verbal. The tasks involved following the flow of control in systems l ~a v i r ~g logical structures analogous t o tlie logical structures in computer languages. The systems involved reasonable tliougl~ arbitrary and artificial rules t o make them analogous t o a prograniming language and t o prohibit students' use of prior world knowledge.

Nonverbal Reasoning Task One. This task was designed using non-English syrnbolisnls so that verbal ability and comprellension of the "if-then" connective would not be an inllibiting factor for students.

Students had t o negotiate passage tllrougll tree diagrams having an embedded contlitio~l:~l structure. The task tapped ability to discover wllich go;ds could be legally reaclled given that a set o f antecedents were true, and ability to determine the antecedents necessary t o reach given goals.

Passage tlirough t l ~e trees ~equiretl satisfaction of conditions set by rlotles in the tree. Each node required a differing logical combination of various shaped "tokens." Nodes with a disjirtictive structure offered a choice of tokens t o be used, and nodes with a cnrtjrrnctive structure required a combination of tokens. Sotne nodes were combinations o f disjuncts and conjuncts.

T11e task had t w o parts. In the first part (I'art A), for each question students were given a set of tokens and were asked t o determine all goals that could b e leg;tlly reaclled with that set. The second part (Part B) included additional cornponerlts airned at Ilypothetical reasoning and planning abilities. In some instances nlany routes were legal but students were encouraged t o find the most efficient route. Here we were interested in tlie student's sense for elegant problem solutions. In other cases students were required t o test a large number of possibill i e s t o discover t l ~e one legal path.

Verbal Reasoning Task One.

The first verbal procedural reasoning task was analogous t o the Non-verbal Procedural Reasoning tasks, but given in verbal form. This task used t h e "if. . . then . . . else" structure often found in prograniming. The task assessed ability t o follow complex verbal instrl~ctions consisting of t~esletl c o ~~t l i l i o l ~; ~l s . S t u t l e ~~l s Ilatl to ~~r r t l c r s l : ~~~t l t l ~c I~icr;lrcllicnl ~c l a t i o ~l s between instructions, e.g., t l ~t solue condition was o11ly relevant given the o u tcome ol' ;I prior co~ltlition.

l'llc task involved following ir~structio~ls willlin a 111-ccisely tlcfirretl set of tules (deterrnir~i~lg a student's tuition from a complex set of rules based on the student's background and current acade~ilic level). Like the non-verbal task, students were given different types of questions to test their mastery of tlie complex what are all and only the decisions that must be nlade in order to tlctern~ine a particular outcome given partial knowledge about the conditions. Tl~ese questions required a good understanding of the structure o f the instructions. Students had t o separate irrelevant from relevant conditions and understand the hierarchical relation among conditions.

Verbal Reasoning Task Two. This task had a complex conditional structure with a number of goals and conditiorls for satisfaction. T l ~e prohlenl had two conditional structures, in addition to the "if. . . then . . . else" st~rlcture, t l ~a t were isomorpl~ic to progr;~rn~ning contlitionals. 'I'l~ere was a "do-until" loop structure, and a structure isomorpl~ic to an "on gosub" or "Jump match" structure where a matcl~ between vari;~bles determines what you do.

Planning Task.

Several analyses of the cognitive components of prograniming isolate planning as a central activity 14-7,241. After defining the problem to be solved, the programmer develops a plan or "structured description" of the processes required to solve the problem IS], that will then be written in programming code. Observations of expert programmers reveal that a major portion of their time is devoted t o planning and that they have available many general plan-design strategies. Pea and Kurland provide an indepth discussion of the nature of planning aa it is manifested in programming [24].

The task used to assess planning skill was s slightly modified version of that described in Pea, Ilawkins and Kurland 121) (also see 1241). The task involved scheduling a set of classroom chores: students had t o design a plan which specified the sequence in which chores should be completed in order to clean-up a classroon~ in as little time as possible. The chores were to be executed by a hypothetical "robot" who responded to a minimum set o f co~nnlands, and required a specified amount of time to perform specific actions.

This was a computer-based task. A graphics interface depicted a classroom in which the chores were to be done. Students gave English c o ~n ~n a r d s to instruct the robot how to clean up the room and the experimenter typed the com~uands into the computer. Students designed three plans. After each plan, students were told how much time the Robot would take to actually execute the plan.

The programming and nonprograrnming students were each further divided into two subgroups. One subgroup received "feedback" after each plan and the other subgroup did not. Altl~ough all students were told o f the time that would be required to complete their plans, "feedback" students also received a paper print-out of their plan listing each action and the amount of time it requi~ed. They were also shown a screen display of the classroom, in which a step by step enactment of the student's plan (the path of the robot as he completed each chore) was carried out under the student's control. We proposed that there may PROGRAMMING AND THINKING SKILLS 1 437 be group differences in the extent to which students benefited from the feedback information.

The planning task was administrated for both the pretests and posttest. Two types of data yielded by this task were used in the analyses to be reported. One was the time required to execute the students' plans. The second was the planning bel~avior of the students. This was assessed by their use of the plan monitoring aids, which was recorded by the computer, and the amount of time they spent thinking about their plan, also recorded automatically by the computer.

Math Test.

Math ability has been hypothesized to be both a cognitive demand and an outcome of programming experience [6, 251. Similarities between l~igh school 1nat11 and programming exist at several levels. Math and programming 1:1ng11ages are both forn~al syste~ns with well-defined syntactic rules. Dot11 employ the concepts of v:~ri;hle and algo~ithnl. At the procetlural level, both may den~and representing relatively rich situations in relatively abstract fornlalisrns, and then operating or1 these formalis~l~s to compute an outcome. Math word problerlls require extracting essential relations from a prose description of a situation and representing then1 in ruathernatical terms. Programming involves giving an explicit procedural representation of a desired output.

Thus we included a math task that we felt would be relevant t o programming. Since the math backgrounds of our students varied, and we did not want the task t o dewand special knowledge, we considered the most basic algebraic concept-the use of letters to represent variables. All students had enough math so that this notation was familiar. The task was designed to depend more on the ability to systen~atically operate with variables, and on insight during mathernatical thinking, than on domain-specific matllematical knowledge.

These salient similarities guided our task design. We gathered a set of math problems that tested either grasp of variables, especially evaluating functions, which is analogous to keeping track of a variable in programming, or ability t o relate a syn~bolic expression t o a prose description.

We wanted the variables task lo reflect the use of variables in programming. Since values of variables are often passed, modified and printed in programming, we chose problems in wllicll students 11ad t o determine the values of variables which were defined in terms of other variables. They thus had to evaluate nested functions, following a chain of several variables to reach a constant. To follow the calculation through would be analogous t o tracing the value of a variable through the execution of a program.

Posttests

The battery of posttests included mesaures of procedural reasoning, decentering, planning, math ability, and algoritl~rn design and comprehension. All but the algorithm test can be seen as measures of "far transfer:" the tests demanded skills and concepts we believed to be ingredient to progranming, but the tests bore no obvious surface si~nilsrities t o a programming task. The algorithm task was our measure of "near transfer;" in addition to derp s t r ~~c t u r a l similarities t o pro-gran~nling, the task also rescn~bled a progranl~l~irlg t a 8 in several surface features.

NOII-Verbnl I'rocedrrral Reasor~irrg Task 7ivo -This was a slight modification of tlle non-verbal procedural reasoning pretest. The rationale was the same-to test procedural and conditional reasoning ability in a non-verbal situation in which reason;~l>le tllough arbitrary rules must be followed.

T l ~i s task, like the pretest, had two parts. Rules wcre sinlilar to Part I3 of the origin;~l non.ve~bal task. Ilowever, unlike the previous task, there was n o question designed to assess elegance. 111 Part A o f the posttest students were given a set of passes and were asked to find all the goals they could reach with the passes. These questions assessed ability t o exl~austively test conditions in order t o discover all legal routes through the tree with the given passes.

111 h r t 13, students were given a set of passes and were asked to find the correct p a t l ~ Ic;~di~lg t o a p;~rticular goal. T l ~e r e was o ~~l y o n e legal pat11 for eac11 cluestion. Again, stutlerits I ~a d to pl;~rl, and evaluate several possible routes in order to arrive at the Ieg;~l route. For the first prol)le~ll, possil)ilitics could I)e easily rctluced if students conlpared the number o f passes they were given with the number reqr~ired t o reach the goal. The second problem was more difficult since more possibilities had to be tested.

1)ebrrggitrg 7bsk -Programnli~~g, esl~ccially debugging, demands decenteringprogramlners must differentiate between their knowledge and intentions and tlie actual progranl~ni~lg code the computer reads. This is a common problem for novice progralnmers 1261. In program construction tlie programmer nlust realize the level o f explicitness required t o adequately instruct the computer, and in debugging must distinguisll expectations from what the computer actually executed. We I~ypotl~esized that after learning t o program, students might be better at writing and debugging instructions in general.

The debugging task required both instrumental reasoning and decentering. Students were required t o detect bugs in a set of driving instructions written for another person t o follow. Students had t o follow the given instructions, assess their accuracy, and correct "buggy" instructions. This required them t o use means-ends analysis and temporal reasoning to assess the consequences and connections alllong tenlpor:~lly ordered actions. Students had to tlecenter, making a distinction between the subject's and the driver's knowledge, in order t o tell wlietl~er i~~structions wcre sufficiently explicit ant1 accurate, llugs includctl wcre: I . Atrrhi~~rorts itifortrrntior~ b~cg -instructions 11ot sufficiently explicit to cn:~ble the driver to correctly make a clwice between alternative routes. For each line o f instructions with a bug, students were scored for wlietller they caught the bug, and wl~etller they correctly rewrote the instruction (fixed the hug). For lines o f instruction not containing a bug, students were scored for whether they left the line uncl~anged, or instead inserted infornlation which resulted in a ticw I~ug.

Alacltlr

Algorithm Design and Analysis Task

This task assessed con~prellension and production o f a n algoritl~m within a task designed t o closely resemble a programming task. An Atialj~sis part asked silldc~lts to understand a program-like algoritl~rl~ o r "plan;" a Design part asked them then t o develop a n i~nproved algorith~n of their own. The task employed a meani~lgful rather than a n abstract programr~~ing-lar~gu;~ge, but its structure resenlblcd the structure o f a computer plogram with sub-routines. The steps o f t l ~c ; ~l g o r i t l l ~~i s w e ~e f u ~~c l i o n a l l y e q u i v a l c ~~t to p r o g r ; ~~i ~~l l i n g 1;11ig11;1ge C O I ~I I I I ; I I I ~S , as the task description will ~n a k e clear. Thus, the task served both as: I) a measure of gene1;11 algorith~nic concepts and skills en~ployetl in progr;~~llming, w l ~i c l ~ ~n i g l ~t develop tlirougl~ progra~nming, and 2) a measure o f "near" t~ansfer t o test wlietl~er skills employed in p r o g r a n l ~n i ~~g transferred more readily when t h e task structure is more tramparently analogous to a program.

Students were presented with a goal and a series of legal operators (e.g., count, increment, decrenlent, test). The algorithnrs consisted of organizing the operations in such a way so as to achieve the goal efficiently. Efficier~t correct algoritluns had to have a looping structure. Students were given one algorithm, a looping structure with two flaws that made it inefficient. They were asked t o calculate the time required to achieve the goal if the algoritlin~ were executed (assuming 10 seconds per operations). This required students to understand the algorithm. Students were then asked t o devise a better algorithm. The students' algorithms were scored for the overall design, use of an iterative structure, accuracy, and conformity to the rules of the system.

Programming Skill Measures

Measures of the programn~ing skills of students in the experimental group included both final scores on regular class tests given for each language, and a specially constructed test administered at the time of the posttest. The teacher designed the regular class tests with the exception of a "Conditional-Iteration" question designed by us and included on the final test for four of the languages.

The Conditional-Iteration question was designed to assess procedural reasoning and understanding of variables within each of the languages taught. For this question, students were asked to show the output (values of variables) of a short program wl~ich was structurally analogous, across the four languages tested (BASIC, FORTRAN, COBOL, Logo). Success required ability to follow the flow of control and keep track of variable values. Each program had an iterative (looping or recursive) structure, multiple variables, and conditional tests. The antecedent of each conditional test evaluated the value of a variable; the consequent either incremented a variable, stopped an iteration, or printed a statement. Like the problemson the math tests which asked students t o evaluate variables, many variables in these programs were defined in terms of each other, rather than in t e r m of constants. T o fully test students' understanding of how control is passed and of the order of execution of statements, each program contained a line of code designed t o detect students' "order bugs," nlisconceptior~s of flow of control. This was a conditional test whose consequent prints a statement, but whose antecedent is never satisfied given the order of execution of commands. If students included the statement as output in their answer, they did not correctly follow the flow of tlie program. A correct answer to each problem displayed the correct values of three variables printed after three iterations.

Logo Test -The second programming measure was a comprelle~~sive Logo test designed by us and administered by the classroom teacher as the students' final exam. This test assessed program comprellension and program production. The program conlprel~ension questions included:

1. A nratclring task: examples o f Logo expressions must be identified as expressions of a certain kind. For example, given the expression: " A , does Logo read this as a word, number, list, procedure, variable or primitive?

2. A flow of corltrol task: students niust show tlie screen effects for a procedure containing three subprocedures each of which prints a certain word. 3. Four progrartt cotnprel~er~sion tasks which focused on list processing primitives, the MAKE and OUTPUT corn~nands, tail recursion, and embedded recursion, respectively. Students needed to show the screen effects for four, 2to 4-line programs, written with these structures. Each program contained local variables, and students were given particular input values.

The program production part o f the task required students to write programs (on paper) to generate three given screen effects. They were told to use separate super-procedures t o generate each display, but that the super-procedures could share subprocedures. They were also t o give the appropriate run commands. An example task was given. The first screen effect the students were to generate was a display of two short English sentences; the second was identical to the first with two sentences added; the third screen effect was identical t o the second with the exception that the subject and object of the added sentences was different. Thus, an ideal approach to this task involved the creation of two subprocedures. One would produce the first screen effect. The second would produce the remaining two sentences for the other two effects, by using variables for the subject and object of the sentence.

PROCEDURE

All groups of students received all the pre-and posttest measures, with the exception of the measures of planning skill, and prograrnnling skill. The planning task was only adn~inistered t o the experimental group and t o the No-CS control group. [START_REF] Nickerson | Computer Programming as a Vehicle for Teaching Thinking Skills[END_REF] The programming tests were only given t o the Experirmntal group.

Pretests were given during the first month of classes in the fall and the posttests were given during the last month of classes in the spring. We were able t o give the Experimental group and most control students the rnath and procedural reasoning tasks during class time; other students were given the rnatlt and reasoning tasks individually. The planning task was always individually administered. AII tasks, with the exception of the Planning Task, were administered under time constrainted conditions (5 t o 17 minutes per task).

RESULTS

The study was designed to address three questions:

1. Did learning programming for two years occasion advances in reasoning and math skills? Did these second-year programming students perform better, at

The planning task was individually administered. Consequently, logistics did not permit administration of this task lo both control groups.

the end of the year, on tasks assessing reasoning and nlath skills, than students who had only one introductory course? 2. Were certain 1nat11 and reasoning skills good predictors of success in a pro-gran~nling course? What were the co~relations between perforn~ance o n reasoning, rnatl~ and programniing tasks? 3. Were students able to program at an advanced level after their second year of prograniniing?

Performance of Programming and Nonprogramming Students on Pretest Measures of Reasoning, Math and Planning Skills

To make ~neaningful posttest comparisons between progranirners and nonprograrnrners, we first exan~ined tlie coniparability of the g ~o u p s in terms of the skills measured. One purpose of our pretest battery was t o make this assessment. The pretests were designed to measure many of the same skills as the posttests, and in two instances the pre and post measures were identical. We compared the three groups on tlie pretestsusir~gar~alyses-of-variance. Also,correlations between pre-and posltests were examined t o provide evidence for the underlying equivalence of the measures, To conduct these analyses, coniposite scores were computed for each pretest measure. The ;rt~alyses-of-valiance on each composite showed there were no significant differences between groups for any measures.

The means and stantlard deviations for tlie mat11 pretest scores are shown in 4. For all of the verbal tasks, p e r f o r ~n a ~~c e indicated that all groups of students had difficulty following the complex nested conditionals given in the verbal instructions.

Table 5 shows performance by each group on tlie planning task. There were no group differences due t o feeeback condition, so scores were collapsed for this factor. Two general measures of performance are shown: the amount of tinie it would take to execute their plans (lower times indicate more efficient plans) and the amount of "planning behavior" on the part of the students. Measures of planning behavior include the arnount of time students. spent thinking about their plans while creating them, the number of pauses between co~nnlnnds (where a pause was defined as any time a student waited five seconds or more between two consecutive steps in their plan) and the extent t o which they took advantage of the plan nlonitoring aids available: the number of times they reviewed a listing of their plan so far, and the number of times they checked a list of renlaining chores. As shown in the table, there are n o differences between groups on any of these measures. This allowed us to compare groups directly on the posttest.

Performance of Programming and Nonprogramming Students on Posttests of Reasoning and Math Skills

Now Verbal l'rocal~tml Reaso~ring Posttest -Coniposite scores were clcveloped for Part A and for Part B of tlte po on verbal reasoning test. 1'erform;tnce on these Ineasures for each group is shown in Table 6. Tl~ere wele no significa~tt between-group differences. As on tlte pretest, students were oftctl d)le to tliscover some of the correct goals in Part A, but tended not to be exhaustive. For Part B, many students were unable to find the one legal pat11 for either one or both of the questions asked. 7 shows students' performance on the four specific types of bugs. The groups did not differ in their ability to detect or correct any of the classes of bugs. For all groups the temporal order bug was relatively easy to detect. For the remaining types of bugs, students in each group, on the average, were able to detect half of t l ~e bugs present. For these bugs, once a bug was detected, most students could successfully correct it. Few students were able to cotnpletely detect and correct the co~nplex, embedded bugs. Plarrnitrg Posttest -Table 8 sllows performance on the planning task. Again, there were no significant differences between groups on any of the measures of plan execution time or planning behavior.

It was of particukr interest to compare the groups perfornlance on this task to their performance on it at the beginning of the year. A repeated-measure ANOVA was carried out with Group and Feedback Condition as betweensubject variables and Session (prelpost) as a within-subject variable. Mean plantime (the average of the three plans) was the dependent measure. This analysis revealed that there was a main effect for session-mean plan-times improved sligl~tly overall from the pre-t o posttests-but there was no effect for Croup, or Feedback Condition, and no interactions. Thus, there were inlprovements on ..the planning task over the year but the programn~ing students did not improve any more than the non-programming students, nor did they respond differently to the feedback.

Math Test -As sl~own in Table 9, no significant differences between groups were found on either the variables problenls or the synibolic expressions prob-le~ns. 1'1111s our fintlirlgs were not consistent with previous results 1271 in which college-level progranlnling appeared to provide advantages for solving wold problems given pi11 tiill cqu:ltions of t l ~e form used here.

A second analysis of pe~forn~ance on the 1nat11 test involved comparing performance on the subset of those problems which were identical to problems on the pretest. There were eight variable value calculation questions in common between the two tests and the composite scores for these were compared. A

Response indicates no understanding

No answer 2 1 0 repeated-measures ANOVA (group by session)indicated that posttest performance was sig~~ificantly better (1;(1,38) = 26.25; p < .00). Ilowever, there was no main effect for group nor an interaction. This result was surprising given the degree to which students i n the p r o g r a ~n ~n i ~l g course had to work with variables, and the number o f different ways they encountered tlren~ i n their program~ning tasks.

Algoritltlrl &sip, a r ~d Amlysis Test -The two p:~rts o f this task-analysis and design of an algoritll~rl-we~ear~alyzed separately. Students' ability to analy7e an existing ;~lgorithln i s shown i n Ti~ble 10. N o sigr~ificant differences between groups were found.

Groups were compared for the style and adequacy of the algorithln they generated. A l t l ~~u g l ~ tl~ere were 110 between-group differences 011 an overall ca~~lposite score, there were differences on some subscores. As shown in Table 11, programming students were more likely to use three of the four programming structures possible: a loop, a conditional test, and a counter (differences in the frequency of use of the latter two structures were significant).

There was also a significant difference in the score for overall algoritlin~ quality. While only one programming student wrote an algorithm that would actually work successfully, many more programming students than nonprogramming students wrote algorithms witli only a few flaws. 011ly one progran~ming student wrote an algoritllm with many flaws, altliouglr six students in the nonprogramming groups wrote such algorith~ns.

PROGRAMMING AND THINKING SKILLS 1 449

The picture that emerges from these results is that programming students recognized this task as analogous t o progran~nling and could employ some of their knowledge from that domain to construct an algorill~rn. 111 comparison t o nonprogramniing students, they were better able to develop an algoritl~~n which used efficient programming-like constructs, and wlrich could be fairly easily debugged. IIowever, their work was not flawless; there was usually at least one error either in the sequencing, in the use of the counter, or due t o violation of the complex task constraints, wliicli prevented their algoritllriis from actually working. They also did not usually writeta general algorithm which would work for any number of input values.

Correlation of Math and Reasoning Pretests with Posttests

The math and reasoning pre-and posttests were alniost all significantly correlated, even withgrade point average partialed out. Results are shown in Table 12.

(Math pretest scores are presented in Table 9.)

Correlation of Math and Reasoning Pre-and Posttests with Programming

We correlated performance o n pre-and posttests with a coniposite of the test scores for each language and with subscores on the Logo tests. Table 13 shows correlations witli the composite test scores. The procedural reasoning pretest scores and the math variables pretest score correlated significantly with the Table 12. Correlations

Math

. [START_REF] Pea | Tratrsfer of Tlritrkrt~g Skillr: lssrres for Softtunre Use atlrl Desigr~[END_REF] .

69

. 74

Algorithm

Analysis Design progratllnling score. Of the posttests, tllc proced~rral reaso~~irlg, del)uggi~lg, algorillrm, and 1nat11 scores correlated signil'ica~ltly with the programming tests.

The 1nat11-variables pre-and posttest scores, and the algorill~rn task scores correlated particularly well with the prograniming measures.

Table 14 shows the correlation o f the co~nprehension and productiorl parts o f the Logo Test with the pre-and posttests. Almost all correlations are significant. With grade point average partialed out, the pattern o f significance renlains essentially unchanged.

The correlations found between procedural reasoning, decentering and progranming replicate findings o f an earlier study o f high scllool stude~~ts learning Logo 1201. These skills, as well as the ability to evaluate the values o f variables, to translate word problems into symbolic equations, and to design and conipre-Ilend an algorithm, appear to be centrally related to the developnlent o f pro-gran~ming skill.

Programming Ability i n the Experimental Group All nleasures of progranlniing skill showed that most strlde~lts Ilad gi~inetl only a modest understanding o f any of the languages taught. Only performance on the Logo test will be reported here along with the conditional l l o w o f control question wllich we included on each o f the tests for three other languages. Performance o n the Logo test is representative of understanding o f other languages On the program comprel~ension problems, students were successful o n a program wllich required understanding of a simple use of list processing primitives and an input variable. When the problem, requiring understanding of Make and O u p r t , several understood that the OUTPUT command in a subprocedure passes information t o a calling procedure, but tliey did not understand that the OUTPUT co~nmarid ends the execution of a procedure. Only four students showed a good rrnderstending of tail recursion and none could follow a program involvi~lg embedded recursion (also see 1281).

On the program production part o f the Logo Test, approximately half of the students could produce the correct screen effects. Only tllree students used variables and only five students used subprocedures, even though much o f the content for the three screen effects was similar o r identical, and effectively created a demand for use of subprocedures and variables. The reatmining students wrote linear "brute force" programs (lists of outputs preceded by the print command) or were unable to approach a successful program.

Overall, more students evidenced comprel~ension of variables and flow of control wlien given short siniple programs than w l ~e n asked to produce tlleir own progratns. This may indicate both the fragility of their understanding, and a lack of appreciation of the utility of variables and subprocedrrres.

Cor~tlilior~allIeratior~ Problerrrs it1 h r t r Larrgrrages -Few students could successfully produce the output of short programs given in each language which had an iterative structure wit11 conditional tests and multiple variables t o be incremented. Many did understand lines of code wl~icll contained a cotiditiorral stop rule, incremented a variable, or created a global variable (in Logo). lIowever, they often seemed to evaluate these lines out o f context; many could not follow the flow of control and did not demonstrate understanding of the order o f execution. A few students followed the order correctly but stopped the programs too soon (wrong number of iterations); they seemed to interpret the comparatives in the stop rule incorrectly, o r t o have some other difficulty with flow of control.

With the exception of the Logo version of this task, most students could n o t systematically keep track of values of variables. This was easier in Logo, w l ~e r e the program did not compare variables t o each otller (i.e., I F X = Y) but instead compared them t o constants (i.e., I F X = 3). Also, the Logo task had only three variables whereas the otller tasks had a fourth, counter variable. It is important t o note that the "variables" problerns o n the math pre-and posttests were analogous t o this programmirlg problen~. T l ~e r e were four variables, most of whicl~ l i d values defined in terms of otller variables. Each of t l m e tasks demanded a systematic a p p r o x l ~ in order t o reduce working memory load. Students did not demonstrate skills for such systematic reasoning in their programming nor in their solving of tlle m a t h problem.

DISCUSSION

Prograrntnil~g students were found t o range greatly in tlleir understanding o f even basic programming principles and commands. For t h e most part they exhibited a weak understanding of flow of control or of the structure o f the languages in wlliclr they worked. Observations of the students as they worked in their programming class indicated that students frequently shared ideas and code (compare 1291). While exploiting pre-written code is an honorable progra~nmirlg t e c l r ~i i ~u e among professionals, in scl~ools it is a double-edged sword. Some students relied o n the understanding of a few good students and never bothered t o learn the material themselves. Many students used a trial-and-error approach t o a task, or inlnlediately asked for help wlien stuck. Thoug11 several were concerned wit11 understallding what t o do, tliey did not seem t o have tecl~niques o r rules for systematically analyzing buggy programs and for developing corrections.

Given the generally low level of programming understantii~~g, even after t w o years of instruction, it did not come as a major surprise that there were no significant differences between the experimental and control groups for any of o u r measures of "far" transfer. This was the case even tl1oug11 our reasoning and mat11 measures correlated with programming mastery indicating, as expected, that prograniming taps a number of specific complex cognitive skills.

'

The transfer tasks all proved to be fairly difficult for most students regardless of programming experience. Students had difficulty with exhaustive and accurate procedural reasoning, evaluating variables defined in terms of other variables, setting u p an equation for a word probletn expressing proportiorial relations, decentering sufficiently t o exhaustively detect "buggy" instructions and constructing and monitoring a plan for efficient chore execution.

One reason postulated for previous failures t o find far transfer still reigns central: students did not attain a very high level of expertise in programming. The significant gains we did find for prograrnmir~g students o n the near transfer task-the Algorithm Design and Analysis Task-liigl~ligl~t the important relationship between the nature of knowledge transferred and the acquisition of expertise.

The algoritl~nl ask, to wllich prograniming students did apply some o f their skills, was different from our other transfer measures in two ways: First, the possible knowledge t o be transferred included specific progranming concepts such as a "counter" arid a conditional stop rule, as well as cognitive operutiorls used in programming (such as procedural reasoning, or the systematic evaluation of variables). Second, it bore relatively obvious silnilariiies to a progra~rlming task (tlle goal was to perform numerical cornpl~tatiolls given a set offullctions analogous to programming conlnlarlds or subprocedures). We found that students recognized the conditiorls for application of some of their progranlming concepts t o the task. Also, to some extent they showed superior procedural r e a s o n i ~~g ability; their overall plan quality was better than the nonprogramn~ing students tllougll rnany still nlade procedural errors.

Time positive results exemplify the tight relation betweell transfer and what has been learned. The concepts transferred-the use of a counter, a loop and a conditional stop rule-are saliellt features of prograrnrning, explicitly represented in the code, and presented early in programming instruction. Thus they are familiar to, even if not fully nlastered by, most novices. Giver1 the transfer of the operational skills here and not t o our other tasks, it is apparent that relatively context specific rather than general operations were learned.

Because most students' knowledge o f the fundamental aspects of progralnming was quite limited, we d o not c o n c l ~~d e that developnient and far. transfer of skills from progranimi~lg cannot in principle occur. We can conclude, however, that such far transfer is unlikely t o occur given the type of programining curriculum and amount of experience provided for tllese students, wllich if anything is misrepresentatively rigorous and unrealistically more intensive than that found in most scl~ools today. Such experience is insufficient for mastery of the programming concepts and practices that engage and make more probable the far transfer of Iligli level thinking skills. Until a population with greater progratrl~ning expertise is studied longitudinally, the far transfer question remains open.

In conclusion, two things seem clear. First, mastery of at least basic programming skills appears t o be essentiai for transfer, but is hard to achieve within the constraints imposed by the organization of scl~ools. And second, if progralnlning is to continue to play such a rnajor role in the school curriculrlni, we need t o develop nlucll more effective ways of teaclling children to prograni. Explicit devices for llelpirlg students see how flow of control structures work appear promising 130.331. But better prograrnrning environments are not enough by tllemselves. Instruction must explicitly focus o n llelping the student build a model of how the progrnm~ning language works. If the operation of the language is a mystery 1261, then students cannot write complex and cognitively demanding programs. Early on and Illrougllout instruction, understandir~g the control and data structures sl~ould be stressed. Trial-and-error creation of screen effects typical of pure discovery learning environrnents common in precollege progranlnling should be tempered with directed teaching o f the principles wliicll urltlerlie the effects.

PROGRAMMING AND THINKING SKILLS / 455

Trial-and-error generation of screen effects neitller engages high level thinking skills nor supports increased l~iastery of the language.

A n o t l ~e r possibility often proposed is that, since transfer of tllilikirig skills may involve representation of knowledge at a high level of abstraction, divorced from particular contexts, one might teach thinking skills at this general level of abstraction. I'erl~aps in this way the need for domain expertise can be bypassed. U n f o ~ tunately, w e k ~w w from previous research that "n~etllods without content are blind," that students llave great difficulty deduci~lg c x a ~~l p l e s t o which general thinking skills or rules they are tal~gllt will apply if they are presented with abstractions alone (34.381 . Insofar as instruction in general thinking skills programs has been effective in pro~noting transfer, it appears that there have been explicil corrdi/iorls fi)r trarrsfer desigrled itlto the b~sfrrrctior~al proflun~s, including multiple exan~ples of skill application, links t o real-world probleln solving situations, content area instruction, abstract descriptions of thinking skill methods, and so o n [39, 401. These issues are t o o complex for treatment here, but will be important to systenlatically consider in fulure instruction and research with tlle aim of Ilelping students learn generali7able thinkirlg skills such as planning and proble~n solving methods througl~ c o ~n p u t e r programming activities.

From o u r perspective, based o n data from the present study and others [20, 21, 41-43], w e d o not believe that the current hope for ir~cidet~/al learning of generalizable thinking skills through programming is realistic, and would take tllese broader lessons about conditions for transfer of learning from t h e psycllological literature into account in designing for transfer in the future. Whether with better programming environrnents, better instruction, and m o r e expl~cit attention t o designing instructioll for transfer, progratnil~ing will begin t o more fully live u p t o its potentials and promises remains to be seen.

A SUMMARY OF MlSCONCEPTlONS

ABSTRACT

This study examined high scl~ool students' knowledge about constrttcts in the BASIC progran~niing language. A screening test was administered to ninety-six students, fifty-six o f wliom were interviewed. Students were asked to trace simple progranls and predict their oulput. 1:rrors in virtually all BASIC constructs we examined were observed, with many of the ~nisconceytions arising from the application of knowledge and reasoning from infornlal donlains to programming. It is argued that a lack of knowledge of basic features of programming language will prevent students frorn developing tlie Iiiglier-level cognitive skills that much program~ning instruction is intended to foster.

1 436 1

 11 KURLAND ET AL. logical structure. In some questions (Type A) students were given a set of antecedents and were asked for the consequence. In other questions (Type R), the goal or answer was given and the student had t o determine what antecedent conditions must have been satisfied. Finally, other questions (Type C) asked

2 .

 2 Terl~poralorder bugone instruction was stated at the wrong time. 3 It~s~cjficierrt o r ti~issitrg it~firtl~atiorl blrg.

 4. Cotup1e.u hugsproblems due t o unusual input conditions, and e n ~b e d d i ~l g , in wl~icli obvious corrections fail because they introduce and/or leave a bug.

 7'est -? h e math posttest focused o n c a l c u l a t i ~~g values o f variables and translating prose descriptio~ls into symbolic expressions. The rationale was t l ~a t by progra~nnling in six different languages students would have explicit kr~owlcdge of variables andconsiderable practice in setting up equations with variables and tracing the calculation o f values o f variables. We used three synlbolic expression problen~s that have been used b y Erldicl~, Abbot, Salter, and Soloway in studying the transfer of programming abilities t o mat11 tasks [2 7] . T h e tasks gave prose descriptions and asked Tor an equat i o ~~ tllal expressed t l ~e sarne i n f o r ~l l a l i o ~~. For o ~i c o f the p r o l) l e ~w w e gave s t u t l c ~~t s ;I p a ~t h l ecluation t o be c o ~~~p l e t e t l . E l ~r l i c l ~ e t nl. gave progralnnlers and nonprogranlnlers partial e q ~~a t i o r ~s of different f o r ~l ~s , : ~n d found that the adv ; ~i ~t ; ~g e of a ~i r o g r i ~~~l ~n i ~~g I)i~ckprou~id W ~I S I I I O S ~ evident W ~I C I I ~I I C c q u : ~t i o ~i was written with a single variable o n one side, e.g., R = 314 X L), rather tllan when written as a multiple expression, e.g., 4R = 3 0 . Ehrlich et al. suggested that programmers benefited from the single variable expression because in programming one thinks of an active generation of a value, rather than a static description o f a relationship. T w o of the t l ~r e e variable problems were the same as given o n the math pretest. T h e third was a simpler problem, based directly o n the sort o f functional evaluation o n e finds in Logo list processing, i.e., "A = I1 t 1 ; B = C t 10; C = D + 100; D = 0 ; What is the value o f A?" Because of poor average performance o n the pretest w e sought t o reduce the difficlllty o f the easiest problems.

 PROGRAMMING AND THINKING SKILLS 1 445

 Coniputer p r o g r a ~l ~n i n g courses a r e o f t e n offered b y higll scllools o n t h e grounds that learning programming is a powerful way t o develop problern solving a n d reasoning skills. Linn has suggested that such problem solving skills are t h e culmination o f a chain o f cognitive consequences o f programming instruction [I] . This chain includes c o ~n p e t e n c e with specific features o f t h e prograrn~ning language being learr~ed, skills f o r designing programs within t h e language, and general problem solving skills applicable t o o t h e r f o r ~n a l systems. While knowledge o f specific features o f t h e language being studied is o n l y t h e first link in this chain, it is a prerequisite t o t h e learning o f nlore general desigt~ and problem solving skills. F o r students t o engage in tasks such as debugging proglams or designing algorilllrns b y a n a l y ~i n g complex tasks, they must have n certain a m o u n t o f knowledge a b o u t t h e s y n t a x a n d semantics o f a progran~~ni~lgla~~grrage. A s t u d e n t O 1886. B a y w o o d P u b l i s h i n g Co.. Inc.

1 433Table 1 .

 1 Distribution of Subjects in Each Group According t o Sex, Grade in School and Grade Point Average

			Sex		Grade			G PA
	Group	Male	Feniale	10th	11th	12th	Mean	Range
	Experimental	1 1	4	9	3	3	74.3	40-93
	No Prior Programming	9 , 7	8	2	6	78.0	68-96
	Programming I Some Prior Total	6 26	7 18	4 2 1	6 11	3 12	77.7 76.6	46-94 40-96

Table 2 .

 2 One

score consisted of thecombination of the two variablesproblerns. Another score consisted of performance o n the remaining three questions. As sliown in the table, perforn~ance was generally low and l~igl~ly variable. Students had difficulty computing the values of variables except in the simplest cases. They were also generally unable to create the symbolic expression for a word problenl.

Table 2 .

 2 Performance o n the Math Prestest: Mean Number of Points in Each Group

				Group		
				Con trol	Control
		Experimental	(Some-CP)	(No-CP)
		(N = 15)	(N = 12)	(N = 16)
		Mean	SD	Mean	SD	Mean	SD
	Variables Questions						
	(max = 8)	3.67	2.66	2.50	2.71	2.31	2.85
	Other Questions						
	(Max = 8)	1.60	1.12	2.00	1.86	3.06	2.69

Table 3 .

 3 Performance on theNon-Verbal Procedural Reasoning Pretest: Mean Number of Points in Each Group

			Group			
			Con fro1	Control
	Experimental	(Some-CS)	(No-CS)
	(N = 15)	(N = 13)	(N = 16)
	Mean	SD	Mean	SD	Mean	SD

! 19.

47 19.38 32.39 16.34 28.63 17.85

	Part B (max = 6)	.73	1.10	.92	1.71	1.69 2.15

Table 4 .

 4 Performance on the Verbal Procedural Reasoning Pretests: Mean Number of Points in Each Group

			Group			
			Con tro 1	Control
	Experin~ental	(Some-CS)	(No-CS)
	(N = 15)	(N = 13)	(N = 16)
	Mean	SD	Mean	SD	Mean	SD

Table 5 .

 5 Performance o n the Planning Pretest

			G r o w		
				Control	
		Experimental	(No-CS)	
		(N = 15)		(N = 16)
		Mean	S D	Mean	SD
	Plan Execution Time-				
	In Minutesa				
	Mean Plan Time				
	(across 3 plans)	21.42	1.93	21.73	2.65
	Best Plan Time	19.57	1.58	19.67	2.12
	Planning Behavior				
	Mean "Think" Time-				
	In Minutes	33.34	13.12	30.02	9.34
	Mean Number of Pauses	4.44	2.61	4.13	1.83
	Mean Number of Reviews	1.02	1.19	.56	.69
	Mean Number of Checks	.27	.38	.56	.7 1

Optimal time = approximately 17 minutes.

Table 6 .

 6 Performance o n the Non-Verbal Procedural Reasoning Posttest: Mean Number of Points in Each Group

			Control	Control
	Experimental	(Some CS)	(No CS)
	(N = 15)	(N = 13)	(N = 16)
	Mean	S D	Mean	S D	Mean	S D

I

Debugging Posttest -Table

Table 7 .

 7 Performance by Each Group on the Debugging Posttest: Mean Number of Bugs Detected and Corrected in Each Category

				Group	
		Experimental	Control (Some CS)	Con trol (No CS)
		(N = 15)	(N = 13)	(N = 16)
		Mean	SD	Mean	SD	Mean	SD
	Bug Types					
	Ambiguous Information					
	(max = 2)					
	Detect	1.13	-83	1.15	.a0	
	Correct	1.07	.80	1 .OO	-82	
	Insufficient Information					
	(max = 4)					
	Detect Correct	1.67 1.27	1.11 .96	2.00 1.77	1.15 1.17	
	Temporal Order					
	(max = 1)					
	Detect Correct	.80 .60	.41 -51	.77 .62	.44 .51	
	Complex					
	(max = 2)					
	Detect Correct	.73 .40	.59 .63	.92 .62	.64 .65	

Table 8 .

 8 Performance on the Planning Posttest

			Group		
		Experimental	Control (No CS)
		(N = 15)	(N = 16)
		Mean	SO	Mean	SD
	Plan Execution Time-				
	In Minutesa				
	Mean Plan Time				
	(across 3 plans) Best Plan Time	20.22 18.85	1.69 1.23	2 1 .04 19.17	1.78 1.23
	Planning Behavior				
	Mean "Think" Time-				
	In Minutes Mean Number of Pauses Mean Numhcr of Reviews Mean Number of Checks	23.17 2.87 .40 .49	12.30 2.1 1 .4 6 .55	23.73 2.79 .56 .3 1	9.32 1.34 .5 1 .45

a Optimal time = spproxirnately 17 minutes.

PROGRAMMING AND THINKING SKILLS 1 447

Table 9 .

 9 Performance on the Math Posttest: Mean Number of Points in Each Group

				Group			
				Control	Control
		Experimental	(Some CS)	(N o CS)
		(N = 14)	(N = 13)	(N = 15)
		Mean	SD	Mean	SD	Mean	SD
	Variables Problems	1					
	(max = 9)	5.64	3.05	5.77	2.31	5.00	2.04
	Equation Problems (max = 3)	1.29	1.20	1.15	1.14	1.20	.94

Table 10 .

 10 Performance by Each Group on the Algorithm Analysis and Desiqn Task: Number of Subjects in Each Response Category for Algorithm Analysis

		Group	
		Control	Con trol
	Experimental	(Some CS)	(No c s)
	(N = 14)	(N = 13)	(N = 15)

Table 11 .

 11 Algorithm Analysis and Design Task: Number of Algorithms in Each Group Receiving Each Score

			Group	
			Control	Control
		Experimental	(Some CS)	(No CSI
		IN = 14)	(N = 13)	IN = 15)
	Scoring Dimensions			
	Scope of Intended Designa			
	No design apparent	5		
	Specific t o given input	5		
	Specific to input of a			
	multiple of 4 coins	2		
	General Solution	2		
	Used Programming			
	Structures			
	Loop Repeat Conditional Testb CounterC	5 2 7 10	2 1 3 3	1 3 1 2
	Structural Errors Present			
	In Counter/Counting In Sequencing	12 7	1 1 5	13 9
	Quality of Oesignd			
	No design apparent Many flaws Few flaws Working design	5 1 7 1	4 7 0 2	6 6 1 2

a

 Few algorithms would actually run if executed, but we assessed whether t h e attempted design was intended to be general or specific.b Chi Square test on number of students using a conditional test = 7.[START_REF] Llolyoak | Analogical Thinking and Iluman Intelligence, in A d w n c e s in the I'syclrology of Iluman Intelligence[END_REF].p < .05. Chi Square o n number of students using a counter = 11.95, p < .05. Square on number of students falling into each quality of plan category = 16.04,

	d ~h i

P < .01.

 Between Pretests and Posttests for All Subjects; Grade Point Average is Partialed Out (N = 4 4)

			PRETESTS	
			Procedural Reasoning	
		Non-Verbal	Verbal	Math
	Posttests			
	Procedural Reasoning			
	Non-Verbal 2	.4 5 *	.64	.72*
	Debugging Test	.56*	.6OU	.6 1

Table 13 .

 13 Correlation of Performance on Programming Tests with Performance on Pre-and Posttests (Experimental Group) (N = 15)a N -15 for correlations with a l l pretests, and the procedural reasoning and debugging posttests. N = 14 for correlations with the math and algorithm posttests.

	Composite Programming
	Tests Score

a p < .05 * * p < .O1

Table 14 .

 14 Correlation of Performance on Logo Test with Performance on Pre-and Posttests (Experimental Group) (N = 13)

	Logo Scores	
	Production Comprehension	Total

Table 15 .

 15 Performance of the Experimental Group on the Final by the students; as shown in Table15, performance in each language is l ~i g l ~l y correlated.Logo 13.oficietlcy Test -In general, students exhibited a somewllat confused overall understanding of Logo. For example, when asked t o identify Logo expressions as variables, procedure nanies, words, lists, or numbers, on the average only half of the students correctly identified tlle expressions. They had greatest difficulty recognizing a variable. On following the flow of control tllrougl~ a short Logo program only five of tlle students were successful. Several students showed understanding of the passage of control among subprocedures, but tlrey failed to exl~austively follow the passing of control. The remaining students demonstrated no understanding of how the order of execution of the lines in a program is determined by particular flow o f control cotnn~ands and the current value of variables.

		Programming Tests in Each Language	
			Mean Scores o n Each Test
		Mean		S D
	BASIC	69.80		
	COBOL	64.07		
	..FORTRAN	57.40		
	Logo	53.47		
		Correlations Among Test Scores
		BASIC	COBOL	FORTRAN
	BASIC			
	COBOL	.BO*		
	FORTRAN Logo	.88" .88"	.74" .9 1	.72*

* The work reported here was supported by the National Institute of Education (Contract No. 400-83-0016). 'The opinions expressed do not necessarily reflect the position or policy of the National Institute of Education and no official endorsement should be inferred.