
HAL Id: hal-00190538
https://telearn.hal.science/hal-00190538

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Language-independent conceptual ”bugs” in novice
programming

Roy D. Pea

To cite this version:
Roy D. Pea. Language-independent conceptual ”bugs” in novice programming. Journal educational
computing research, 1986, 2(1), pp.25-36. �hal-00190538�

https://telearn.hal.science/hal-00190538
https://hal.archives-ouvertes.fr

J. EDUCATIONAL COMPUTING RESEARCH. Vol. 2 (1) , 1986

LANGUAGE-INDEPENDENT CONCEPTUAL "BUGS"
IN NOVICE PROGRAMMING*

ROY D. PEA

ABSTRACT

This article argues for tlic cs is tcncc 01' pcrsistcnt conccptual "bugs" in how
noviccs program and understand programs. Tlicsc bugs arc no t specific t o a
given programming language, but appcar t o be language-independcnt. Pur ther-
more, such bugs occur Tor noviccs from primary school t o college age. Three
different classcs of bugs-parallelisn~, intentionality, and egocentrism-are
identified, a n d cxcmplificd through student errors. It is suggested tha t these
classes of conccptual bugs arc rootcd in a "superbug," thc defaul t strategy that
t l~c rc is a hidden mind sorncwltcrc in tlic programtning lnngungc that has intel-
ligcnt intcrprctivc powcrs.

I t is well known tliat s tudcnts Iiavc such pcrvasivc conceptual misunderstandings
as novice programmers tliat correct programs carly in t he learning process come
as pleasant surprises. Even after a ycar o r niorc o f programming instruction, stu-
dents liavc grcat difficulty predicting what ou tpu t a program will have, in what
ordcr conirnands will hc cxccutcd , or i r ~ writing arid debugging original programs
lo solvc problcnis. Furtl icrlnorc, tlicsc problcliis arc no t confincd t o tlic vcry
young s t l ~ d c n t in clcmcntary scliool [I -51 and junior high [6] , bu t appear t o
pcrvadc tlic programniing activities of high scliool, college [7, 81, a n d mature

//

adult studcnts as wcll. What arc tlic sourccs o f these difficulties?
Many of tlicsc conccptual difficulties arc confincd to specific implementations

o f particular prograniniing lariguagcs, and presumably can be ameliorated by re-
designing the particular fcatures o f those implcnicntations, o r b y means o f auto-
matic crror finders. In an excniplary s tudy , Soloway, Bonar, a n d Ehrlich have
shown how a n invented while looping construct not available in Pascal was
easier for novices t o use in writing programs than the standard Pascal looping

* T h e rcscarch discussed in this articlc was supportcd by the Spcncer Foundat ion and
thc National Institute o f Education (Contract No. 400-83001 6) .

O 1986, Uaywood Publishing Co.. Inc.

26 / ROY D. PEA

constructs [9] . In this articlc, howcvcr, 1 plan t o consider instead the kinds of
fundamental and widespread conceptual misunderstandings o r "bugs" [lo] in
prograni understanding that appear, froni ou r own and others ' work , to be
relatively independent of specific commands or programming languages. These
misunderstandings, w e will argue, haveless to d o with the design o f programming
languages than wi th the problems people have in learning t o give instructions
to a computer.

Much o f our programming instruction treats learning to program as a new and
indcpcndcnt ski11 having little t o d o with previous learning: "It is almost as close
to a situation o f a tabula rasa as we arc going to find in an adult" [l l , 121.
Furthermore, in the classroom setting, students ' errors are commonly considered
to be idiosyncratic problems. But sonicthing ~ n u c l i more interesting psychologi-
cally is happening, and w e must comc to understand it. It is n o t that students
don't know anything that is relevant to programming-they have an intuitive
understanding o f much o f what we say about programming. Depending o n their
age and developmental level, studcnts have available expcriences, and a broad
range of conccpts and strategies relcvant t o learning to program [1 3] . But one o f
tlic most ccntral aspccts or thcir intclligcnce is niislcading when it comes to
learning to program. The novice programmer works inhlitiveiy and pursues many
blind alleys in learning the formal skill of programming. But what does it mean to
work "intuitively?"

Specifically, s tudents have a predominant analogy that guides their behavior
when, as novices, they write programming instructions to a compute r , This
analogy is conversing with a human, Their pragmatic strategies for using natural
language with o ther humans lead them astray as they try t o deal w i th program-
ming, because programming is a formal system that interprets each part o f a pro-
gram (instructions t o i t) in terms o f rules that are mechanisric. At least for the
programming languages w e will be referring t o in our examples, there are strict
rules for interpreting commands in a rigid sequential order , determined by how
flow of control is dealt with in the language. While people are intelligent inter-
preters o f conversations, computer programming languages are no t . This funda-
mental feature o f programming systematically violates human conversational
maxims, such as the cooperative principlesoutlined by Grice [14] , a n d developed
in theories of natural language pragmatics (c.g., Cole [I S] ; Searle [16]). For
cxaniple, a programming language a n n o t infer what a speaker means if she is
not absolutely explicit, whereas a listener in a human-human conversation can
query the speaker for clarification. There are similar problems in the develop-
mental transition froni oral t o written communication of natural language [17,
181, where the absence o f the listener sets new constraints o n the explicitness
with which meaning must be expressed.

My aim here is t o explicate a few of the major obstacles t o programming ex-
pertise presented by three major classes of students' conceptual bugs in under-
standing. This division is offered as a first a t tempt at defining a taxonomy for

LANGUAGE-INDEPENDENT CONCEPTUAL "BUGS" 1 27

guiding discussion o f these problenis. These errors are bugs in the sense that they
are systematic-that is, no t random crrors o r sloppy work-and that they need
rcvision and further instruction for students to make progress in learning to pro-
gram. Thc data o n which these a rgu~nen t s are based consisted o f several years o f
Logo programming studies, with eight. t o twclvc-ycar-olds, and fourteen- to
scvcntccn-ycar-vlcls, and observations of high sc l~ov l s tudcnts learning Basic pro-
gramming. Details follow wherc appropriate. I will close b y suggesting some
implications o f these findings for how programming is taught.

CLASSES OF BUGS

Parallelism Bugs

Thc parallelism bug is rcvcaled in divcrsc contexts, but its essence is the
assunlption that different lincs in a program can be active o r somehow known by
the cornputcr at t h e same timc, or in parallel. Though there may b e others, we
can distinguish t w o different kinds of programs in which t h e parallelism mis-
~rnclcrs~anding is common.

Onc contcxt in which the bug occurs is programs wherc conditional statcnients
(IF . . . THEN) occur outside o f loops. A common cxample is o n e where, early
in a program, a conditional s ta tement appears. Sl ZE will be o u r variablf'nanie in
this case. The program says:

IF SIZE = 10. THEN PRINT "HELLO

h t c r in the program, a coun tup loop is cncountcred, where a variable is incre-
niented by o n e each time until it reaches ten.

FOR SIZE = 1 to 10, PRINT "SIZE
NEXT SlZE

Now we may ask: What d o s tudents think the computer will do? If they under-
stand the control s t ructure o f tlic programniing language (in this case, BASIC),
they know that the IF s ta tement is first evaluated for its t ru th . If SlZE is equal
t o ten, HELLO is printed, and control passes to the next statement. If the
variable is not equal t o t en , nothing is printed, and control passes to the next
statement. The knowledgeable prograni~ner knows that after the first line o f the
program-thc IF line-is cxccutcd, it is iuactivc, and irrelevant t o whatever the
rest o f thc program instructions say because tlic control cycle never returns t o i t .

But a recurrcnt problem for students-in this casc, high schoolers in their
second ycar o f computcr science-to whom wc have offered problems of this
type is that a very different prediction is offered for wha t will happen. In one
s tudy, eight ou t o f the fifteen students interviewed predicted that during the

28 1 ROY D. PEA

looping process, when thc variablc SlZE bccame equal t o ten , HELLO would be
printed. When asked to explain w h y , tlic s tudent observed tha t , since variable
SlZE was now equal t o ten (i.e., within the loop) and the IF s ta tement was
"waiting for" tlic S lZE to b c cqual l o tcn , i t could now print HELLO. But in
Ihct, oncc the IF s ta tement was cvaluatcd and found false, it was never returned
to in tlic program. Thcrc is a scnsc in wliicli tlicsc s tudcnts bclievc that all the
lincs in tlic program arc active or alivc a t oncc . As onc junior lligh student pro-
nounccd: "It looks a t tlic program all at oncc bccausc it is so fast." Thc program
is thought t o liavc on intclligcncc u~itlcr tlic surracc tliat moni tors tlic action
status of every line in the program si~iiultancously.

Now think about thc logic of IF statcmcnts in natural conversation [1 9] .
When I say t o you , "If you want t o go t o tlic s tore , I'll drive you," t h e z is more
than an instantaneous duration t o my IF statenlent. It may not be active for a
weck, o r even all day , bu t your responsc docs not have to be immediate. l f in an
hour you want t o go t o thc s tore , 1 an1 still likely t o drive you there. (The tem-
poral period will vary according t o context in ways currently little understood.)
The idea o f an IF s ta tement being evaluated and then taken off the books, as it
were, is o d d f rom a natural language perspective. So the student has applied her
intuit ions abou t the durat ion o f IF statements in natural language discourse t o
the initially mysterious domain o f computer language discourse. It is possible
that a different nota t ion for i f . . . thcn (e.g., condition-action pairs) could atten-
uate this interpretive problem.

A related finding involved notive Pascal programmers [7, 201. A "while
demon" bug was revealed when as many as a third o f the college students
assumed for simple Pascal programs that the actions in the while l oop were con-
ti~tuously monitored for the exit condition to become true. For example, one
student explained that "every t ime 1 [the variable tested in the while condition]
is assigned a new value, t he machine nccds t o check that value." The authors
note tliat this interpretation is consistent with English while, a s in "while the
Iiighway is two lanes, cont inue north."

The generality o f t he phenonicnon may bc observed in a second example o f
the parallelism bug revealed by students a t tempt ing t o comprehend programs
not involving conditionals-in this case, variable assignment statements which
occur in a program after lines rcfcrring to tliat variable. The s tudent thinks (in-
correctly) that what will liappcn latcr in a program influences what happens
carlier. For example, considcr tlic following four-line program:

AREA = Height X Width
lnpu t Height
l npu t Width
PRINT "AREA

Many s tudents assume that there is no problem with this program (which
would essentially be true were it writ ten in Prolog, in which the interpreter does

LANGUAGE-INDEPENDENT CONCEPTUAL "BUGS" / 29

do infercncc!), and prcdict that it will print ou t tlic product o f the height and
width values the program user has input . But this is not t rue . When the first
statement is executed, that is, the one that defines AREA as height t imes width ,
it has riot yet rcccivcd the input valucs. So it trcats Iicight and width a s equal to
thc default value of zero. What is printed is no t , a s t he s tudent assumes, the
product of tlic input valucs o f Iiciglit and widtli, but tlic product o f the values o f
those variables available a t tlic timc tlie first line in the program was executed,
that is, 0 X 0 = 0.

tlcre, oncc again, wc can scc thc influcncc o f natural language conversational
strategies, where implicit knowledge or cxpcctations o f what will come later
can guidc tlic intcrpretation o f what occurs carly in a convcrsation (or text) . In
natural language, apar t f rom procedural instructions such as recipes o r building
plans, thcrc is of tcn n o rcason not t o skip alicad. But in computer programming,
tlie novicc studcnt must think: "What conditions regarding inputs are in effect
as th is line is executed?" In natural language, one rarely violates the meaning o f
a tcxt by reading parts o f it ou t o f order, since linc-by-line comprehension is not
essential. In fact , we even teach scanning ahead for structure as a reading
strategy. Nonetheless, natural language out-of-ordcr reading does of ten disrupt
tcxt comprelicnsion, a s research o n story grammars reveals.

Intentionality Bugs

There is another class o f important language-independent conceptual bugs
that we will call Intentionality Bugs. lntcntionality Bugs are those in which the
student a t t r ibutes goal directedness or foresiglitedncss t o the program and, in so
doing, "goes beyond the inforniation given" in tlie lines o f programming code
being cxccuted when thc program is run. Students adopt what Dennett callsan
"intentional stance" toward thc co~i ip lcx systcni representcd by the programming
language, and assume that it has capacities o r a t t r ibutes o f a human [21] .

In one example which we have studied in dctail [I ? ,] , w e ask students t o talk
o u t loud as they draw on graph papcr what thc graphics pcn will draw as the fol-
lowing tail-recursive Logo program is executed. As depicted in the figure below,
wlicn one typcs SHAPE 40, tlic program draws a large square, a medium-sized

TO SHAPE :SIDE
IF :SIDE = 10 STOP
REPEAT 4 [FORWARD :SIDE RIGHT 901
SHAPE :SfDE/2
END

squarc insidc i t , and then stops. More specifically, tlic prograni draws a square
with a variable sidc tha t , when initialized on tlic first call, is forty units long, The
first line of thc program is a conditional counter with the purpose o f stopping

30 1 R O Y D. PEA

~ h c drawing af ter the two squarcs arc drawn. Wlicn cxccuted. t he next line draws
a square tlic length o f the variable SlDE (i.c., 40): REPEAT 4 [FORWARD
:SIDE RIGHT 901 . The last line o f the recursive program divides thsyar iable
SlDE by t w o , and since the program bcgins with a conditional statemcnt that
says when thc variable SlDE equals 1 0 s top , the program draws the t w o squares
of size forty and twcnty and stops, bcc;~usc tlic vnriablc SIDE then equals 10.

Wlicn encountering the sccond linc of thc program, a conditional that says IF
thc value o f t h e variable SIDE equals 1 0 STOP, sonic s tudents erroneously pre-
dict tha t when the program is run , a box o f side 10 will be drawn. When asked
why , their comment s are revealing. The studcnts have glanced ahead in the pro-
gram to see what is t o them a familiar programming schema o r "plan" [22] -a
comniand line that results in the drawing o f a square: REPEAT 4 [FORWARD
(SOME DISTANCE) R IGHTANGLETURN (9 0 DEGREES)] . They then read
the IF s ta tement a s if t he program is c o ~ n m a ~ i d i n g the computer t o draw a
square with sides equal t o ten , because "it will draw a square," o r "because i t
wants to draw a square." Other students recognize that the variablc a t the IF
statement equals fo r ty , but then say that the prograni sees the b o x statement
line ahead which it wants t o draw, bu t has t o s t o p a t t en !

In each case-the parallelisnl and intentionality bugs-the program has been
given the s ta tus o f a n intentional being which hasgoals , and knows o r sees what
will happen elsewhere in itself.

Egocentrism Bugs

Egocentrism bugs are t h e flip side of intentionality bugs. Whereas intention-
ality bugs involve comprehending and rracing what a program will d o , egocen-
trism bugs are involved in creating a program to do something. Each bug type
presupposes that the computer can d o what it has not been told to d o in the
program.

Egocentrism, an overemphasis on tlic pcrspcctivc o f self relative to that o f
othcrs, is a pervasive characteristic of children's thinking, manifested in spatial
cognition [23] , communication [2 4] , and otlicr problem domains. Under the
strcnuous cognitive demands o f a ncw task environment, it may also surface as a
characteristic o f the perforniances o f novicc programmcrs w h o are adolescents
and adults. It should thus come as no surprise tliat tlic task performances of
novice programmers are also subject to egoccntric biases. Egocentrism bugs are
those where s tudents assume tliat there is rnore o f their meaning for what they
want to accomplish in the program than is actually present in the code they have
writ ten. Students giving evidence of this bug egocentrically assume that the
computer can follow the advice fornicr Mayor o f Chicago Richard Daley used t o
give reporters:

"Don't print what I s ay , print what I mean!"

ri-

LANGUAGE-INDEPENDENT CONCEPTUAL "BUGS" 1 31

For example , lines of code or variablc valucs arc omit ted b y these students
bccause it is assumed that t hc computer "knows" o r can "fill in," as a human
listener can, what the s tudent wishes it t o do.'

S tudents d o not literally say tliat thc program knows wha t t o d o ; tlie errors
generated b y this bug are almost perceptual in nature-their current conceptions
d o no t guide thcir a t tent ion to thcse p rob lc~ns as relcvant reasons for their pro-
grams' not working as planned. A common problcm of this kind is the omission
of punctuation o r control characters, and thc nonprovision o f values for vari-
ables. Lest these omissions be thought o f only a s careless work, o n e can probe
the s tudcnts t o test ou r current l iypotl~csis, which a t t r ibutes more significancc to
thcse onlissions than oversight. Wlicn asked to explain what programs they have
writ ten will d o , they gloss over the specific commands in a line o f Logo code
just wri t tcn , asserting tliat a line o f graphics codc draws a square when, for ex-
arnplc, they havc included a rnovc command to send t h e graphic turtle forward,
but no turn command for making the ncccssary right angles:

REPEAT 4 [FORWARD 301

It is as if they d o no t see tha t t he ncccssary specifications t o the computer have
bccn o ~ n i t t e d . All they have provided is thc skclcton o f a program, assuming that
in somc way the computer can fill in. thc rest, can say what they "mean."

Bonar and Soloway provide anotlicr clear case o f egocentrism, manifested by
a college s tudent writing a program in Pascal [7] . The student was writing
pseudo-code for the problem: "Write a program which reads in ten integers and
prints the average o f those intcgcrs." Shc wrotc o u t :

Repeat
(1) Read a number (Nurn)

(l a) Coun t := Count + 1
(2) Add the number t o Sum

(2a) S u m := S u m + Num
(3) until Coun t :=I0
(4) Average := S u m div Nurn
(5) writeln ('average = ',Average)

When the interviewer asked whether (l a) was the "same kind o f statement" as
(?a), it became clear "that she thinks tlie Pascal translator knows far more about
these roles than it does":

I Scveral counterexaniplcs and, pcrhaps, part of a growing trend, are Teitelbaum's DWlhf
(Do What I Mean) systcms added to thc Interlisp programming environment, which corrects
spelling errors by using syntactic contcxt, and commercially available syntax-correcting com-
pilers. Such painlcss crror rcvisions are the subject of feverous debates among programmers.

32 / ROY D, PEA

Are they the same kind. Ahhh,ummm, not exactly, because with this [la]
you are adding-you initialize it as zero and you're adding one to it [points to
the right side of la] ,which is just a constant kind of thing. [Points to 2al
Sum, initialized to, uhh , Sum to Sum plus Num, ahh-that's [points to left
side of 2a] storing two values in one, two variables [points t o Sum and Num
on the right side of 2a] . That's [now points to 1 a] a counter, that's what
keeps the whole loop under control. Whereas this thing [points to 2 a] , this
was probably the most interesting thing. . .about Pascal when I hit it. That
you could have the same, you sorta have the same thing here [points to l a] ,
it was interesting that you could have-you could save space by having the
Sum re-storing information on the left with two different things there
[points to right side of 2 a] , so 1 didn't need to have two. No, they're
different to me. I think of this [points to l a] as just a constant, something
that keeps the loop under control. And this [points to 2a] has something
t o do with something that you are gonna, that stores more kinds of
information that you are going t o take out of the loop with you [7 , p. 51.

Hcre, again, we see the student believing that the programming language knows
more about her intentions than it possibly can.

Soloway et a/. have found among college Pascal programmers a set of errors
that we believe also stems from egocentrism bugs [8] . They describe what they
call a "mushed variables" bug. After a semester of Pascal, more than one quarter
of their novice programmers used the santc variable incorrectly for more than
one role. For example, in the following program, the variabIe X is used both to
store a value being read in [read (X)] and to hold a running total [X := X t X I :

program Student26-Problem2;
var X, Ave : integer -
begin -
repeat

Read (X)
X : = X + X

until X + X [greater-than sign] 100; -
Ave := X div Nx;
Write (Ave)
end. -

They observe that students making thesc errors may have assumed that the com-
puter would recognize that thc same variable played two different r o l e w n d that
it could use the different values appropriately.

CONCLUSIONS

All the bugs discussed-parallelism, intentionality, and egocentrism-appear to
derive from what might be called a superbug, T i e superbug may be described as
the idea that there is a hidden mind somewhere in the programming language that

L A N GUAGE-IN DEPENDENT CONCEPTUAL "BUGS" 1 33

has intelligent, interpretive powers. It knows wliat has happened or will hap-
pen in lines o f t he program other than the linc being executed; it can bcnevo-
lently go beyond the information given to help the s tudent achieve her goals
in writing thc program. This "hiddcn mind supcrbug" interpretation providcs
a dccp explanation o f the various n~isconccptions that plague the novice pro-
gra mmc r.

But thcre is t oo facile a n interpretation o f this argurncnt that must be avoided
because it is false. It is not that studcnts literally bclieve that the computer
has a mind, o r can th ink, o r can intcrpret wliat was not explicitly stated. In
ou r experience, novice programming students are likely to vehemently deny
that the computer can think or that it is intelligent. Besides, instructors are
very good a t highlighting this point at thc beginning o f courses: Computers
arc d u m b and can d o nothing but what you tcll tlicni! But students ' behaviors
whcn working with programs oftcn contradict tlicir denials; they act as if the
programming language is more than mechanistic. Their default strategy for
makittg sense when encountering difficulties o f program interpretation or
when writing programs is t o resort t o the powerful analogy o f natural language
conversation, t o assume a disambiguating mind which can understand. It is
not clear a t the current t ime wlicther tliis strategy is consciously pursued by
students, o r whether it is a tacit overgeneralization o f conversational prin-
ciples t o computer programming "discourse." The central point is tha t this
personal analogy should be seen as expected rather than bizarre behavior, for
the students have n o o the r analog, n o other procedural device than "person"
to which they can give writ ten instructions that are then followed. Rumelhart
and Norman have similarly emphasized the critical role o f analogies in early
Icarning o f a domain-making links bctwcen thc to-be-learned domain and
known domains pcrccived by thc student to be rclevant [25]. But, in this
case, tilapping conventions for natural language instructions o n t o programming
rcsults in error-riddcn pcrformanccs.

A rival explanation for the aforcnicntioncd classcs o f bugs is that the novice
programmer does not impute interpretive intelligence to the machine. It is not
that thc programmer assumes that a distinction needs t o be expressedgnd that
the cornputcr can makc that distinction. Instead, he or she simply does not
u n d e r s ~ a n d that there are anibiguitics to bc resolved in the code that has been
writ ten. From this pcrspective, thc common developmental problem o f
coming to distinguish alternatives which are initially fused o r collapsed in
thought is viewed as t h e source of the kinds o f errors we have discussed. While
this possibility should be considered for some error-ridden programs, there
are types o f errors, such as the parallelism bugs, which are unlikely to result
from such conceptual fusion. And ~t is difficult t o see o n this rival interpre-
tation why we find that novice prograninicrs of ten utilize intentional terms
to describe the process by which the coniputer executes the commands pre-
scnted by the program.

34 / ROY D. PEA

What are the implications o f tlicsc findings for programming instruction?
First, wc need to be aware o f t hc pcrvasivcncss o f programming misunderstand-
ings that arise f rom the tacit applications of human conversational metaphor
to programming. This is powcrful transfer, t o bc sure, b u t it is misleading and
does not work . Second, beyond bcing awarc o f these bugs, w e have t o arrange
many more kinds o f learning activities for studcnts, and diagnostic activities for
tcachcrs, in which t h c bugs can bc madc obvious. Wc bclicvc thc persistcncc of
thcse bugs is in part linked to the itifrcyiro~cy with which they are explicitly
confronted by s tudcnts and tcaclicrs alikc. Bugs likc thcse could be snared if
one used program reading or dcbugging activitics as ccntral components o f pro-
grarnnling instruction. It was not until wc did the tedious work o f having stu-
dents walk through every command in a program, thinking aloud and explaining
h o w the computer would interpret it, tliat we bccamc aware of the prevalence
o f these bugs. After t ha t , we saw thcm everywhere.

'There are additional complexities to be faccd from a pedagogical perspective.
From the programmer's viewpoint, it is not true that every operation to be carried
out has to be made explicit. There are many things which programming languages
automatically carry o u t , wi thout , a s it were, specific instructions t o d o so (e.g.,
physical address management ; stack storage allocation; Pascal compiler disam-
biguation o f t h e meaning o f the semicolon f rom context). S o thelesson the novice
programmer needs t o learn is that some meanings d o no t need t o be explicitly ex-
pressed in the code he o r she writcs, while o thers do . Since the boundaries o f
required explicitness are conventions that vary across programming languages,
the learner must realize the necessity o f identifying in exactly what ways the lan-
guage he or she is learning "invisibly" specifies the meaning o f code writ ten.

Much more research is needed on h o w best t o help s tudents see that com-
puters read programs through a strictly mechanistic and interpretive process,
whose rules are fairly simple once understood. We think this can best be
achievcd by providing clear modcls that show how the processing o f control and
data is rcgulatcd by the specific programniing language under s tudy. Tliese cx-
planations can bc suppor ted by explicit think-aloud examples o f how the facile
programmer th inks about and rnakcs dccisions with respect t o program creation
arid undcrstanding, and through instruction in coniprchcnsion-monitoring
proccsscs for colnputcr programs similar to thosc tliat have bccn effective for
writtcn languagc undcrstanding [26] . Other uscful lcads will comc from artificial-
intclligcncc, knowlcdgc-based programmers' assistants [2 7] , and debugging aides
that seek to idcntify and remcdiatc studcnts ' pervasive misconceptions in learning

//

how to program [28] .
Finally, wc can be assurcd of (althougli not c o ~ n f o r t e d b y) the fact that

such conceptual difficulties are not specific to thc programming domain. There
are o ther formal systems with abstract rules of interpretation-logic, physics.
and mathematics-that are also very challenging for s tudents t o learn, rife with
bugs [29] , b u t well wor th our concerted efforts to help s tudents understand.

LANGUAGE-INDEPENDENT CONCEPTUAL "BUGS" 1 35

ACKNOWLEDGMENT

1 would like t o thank my colleagues at the Ccnter for Children and Tech-
nology for discussing thcsc issucs, and I hcrcby cxprcss my appreciation for tlic
constructive commcnls ofscvcral anonymous rcvicwcrs.

REFERENCES

1 . D. M. Kurland and R. D. Pea, Children's Mental Models of Recursive Logo
Programs, Journal ofEducationa1 Computing Research, 2 , in press.

2. U. Leron, Some Problems in Children's Logo Learning, in Proceedings of rhr
Seventl~ International Confcrencc for tllc I ' S J ' C / ~ O ~ O ~ J ~ of Mathematics Edu-

-5'
cation, Weizmann Institute, Jerusalem, 1983.

3. J . D. Milojkovic, "Children Learning Computer Programming: Cognitive and
Motivational Consequences," doctoral dissertation, Department of Psy-
chology, Stanford University, 1983.

4 . R. Nachmias, D. Mioduser, and D. Chen, Acquisition of Basic Computer
Programming Concepts by Children , (Technical Report Number 14), The
Computers in Education Research Lab, School of Education, Tel Aviv Uni-
versity, Tel Aviv, 1985.

5. R. D. Pea, Logo Programming and Problem Solving, (Technical Report
Number 12), Bank Street College of Education, Center for Children and
Technology, New York, 1983.

6. R. Mawby, Proficiency Conditions for the Development of Thinking Skills
Through Programming, paper presented at the Harvard University Confer-
ence on Thinking, Cambridge, Massachusetts, 1984.

7 . J. Bonar and E. Soloway, Uncovering Principles of Novice Programming, in
S ICPLANSICACT, tenth annual symposium on Principles of Programming
Languages, Austin, Texas, 1983.

8. E. Soloway, K. Ehrlich, J . Bonar, and J . Greenspan, What Do Novices Know
about Programming? in Direcriorrs in Human-Computer Interactions,
B. Shneiderman and A. Badre (eds.), Ablex, Norwood, New Jersey, 1982.

9. E. Soloway, J. Bonar, and K . Ehrlich, Cognitive Strategies and Looping Con-
structs: An Empirical Study, Corn~nunications o f the ACM, November 1983.

10. J . S. Brown and R. Burton, Diagnostic Models for Procedural Bugs in Basic
Mathematical Skills, Cognitive Scicncc, 2, pp. 155-1 92, 1978.

11. J. R. Anderson, R. Farrell, and R. Sauers, Learning to Program in LISP,
Cognitive Science, 8, pp. 87-1 29, 1984.

12. R. D. Pea and D. M. Kurland, On the Cognitive Effects of Learning Com-
puter Programming, New Ideas in Psj~cl~ology, 2 , pp. 1 3 1-1 68, 1984.

13. R. D. Pea and D. M. Kurland, 011 the Cognirivc Prerequisites of Learning
Cotnputer I'rogramming, project report to the National Institute of Educa-
tion. (Also Technical Report Number 18, Bank Street College of Education,
Center for Children and Technolo'gy), New York, 1983.

14. H . P. Grice, Logic and Conversation, in Syntax and Senlantics 3: Speech
Acts, P. Cole and J . Morgan (eds.), Academic Press, New York, 1973.

36 / ROY D. PEA

15. P. Cole, Radical Pragmatics, Academic Press, New York, 1981. - - - -

16. J. R. Searle, Intentionality, Cambridge University Press, Cambridge, 1983.
17. D. R. Olson, From Utterance to Text: The Bias of Language in Speech and

Writing, Harvard EducationalReview, 47, pp. 257-281, 1977.
18. D. Tannen (ed.), Coherence in Spoken and Written Discourse, Ablex, Nor-

wood, New Jersey, 1983.
19. J . D. McCawley, Everything that Linguists Have Always Wanted to Know

about Logic (But Were Ashamed to Ask) , University of Chicago Press,
Chicago, 198 1.

20. E. Soloway, J. Bonar, J. Barth, E. Rubin, and B. Woolf, Programming and
Cognition: Why Your Students Write Those Crazy Programs, Proceedings
of the National Educational Computing Conference, pp. 206-219,1981.

21. D. Dennett, Brainstorms, Bradford Books, Montgomery, Vermont, 1978. ;
22. E. Soloway and K. Ehrlich, Empirical Studies of Programming Knowledge,

IEEE Transactions on Software Engineering, in press.
23. J. Piaget and B. Inhelder, The Child's Conception of Space, Norton, New

York, 1967.
24. J . H. Flavell, P. T. Botkin, C. L. Fry, J. W. Wright, and P. E. Jarvis, The

Development o f Role-taking and Communication Skills in Children, Wiley,
New York, 1968.

25. D. E. Rumelhart and D, A. Norman, Analogical Processes in Learning, in
Cognitive Skills and Their Acquisition, J. R. Anderson (ed.), Erlbaum, Hills-
dale, New Jersey, 198 1 .

26. A. S. Palincsar and A. L. Brown, Reciprocal Teaching of Comprehension-
fostering and Comprehension-monitoring Activities, Cognition and Instruc-
t ion, 1 , pp. 117-175, 1984.

27. R. A. Waters, A Knowledge-based Program Editor, Proceedings o f the 7th
International Joint Conference on ArtificialIntelligence Vol. 11, pp. 920-926,
1982.

28. W. L. Johnson and E. Soloway, PROUST: Knowledge-based Program Under-
standing, (Technical Report Number 285), Department of Computer
Science, Yale University, New Haven, Connecticut, 1984.

29. D. Gentner and A. Stevens (eds.), Mental Models, Erlbaum, Hillsdale, New
Jersey, 1983.

Direct reprint requests to:

Dr. Roy D. Pea
Bank Street SehebGIlege
61 0 W. 112th Street
New York. NY 10025

