N

N

Language-independent conceptual ”’bugs” in novice
programming
Roy D. Pea

» To cite this version:

Roy D. Pea. Language-independent conceptual "bugs” in novice programming. Journal educational
computing research, 1986, 2(1), pp.25-36. hal-00190538

HAL Id: hal-00190538
https://telearn.hal.science/hal-00190538
Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://telearn.hal.science/hal-00190538
https://hal.archives-ouvertes.fr

J. EDUCATIONAL COMPUTING RESEARCH, Vol. 2(1), 1986

LANGUAGE-INDEPENDENT CONCEPTUAL “BUGS”
IN NOVICE PROGRAMMING*

ROY D. PEA

ABSTRACT

This article argues for the cxistence of persistent conceptual “*bugs” in how
novices program and understand programs. These bugs arc not specific to a
given programming language, but appcar to be language-independent. Further.
more, such bugs occur for novices from primary school to college age. Three
different classes of bugs—parallelism, intentionality, and egocentrism—are
identified, and excmplified through student errors. It is suggested that these
classes of conceptual bugs are rooted in a “superbug,” the default strategy that
there is a hidden mind somewhere in the programming language that has intel-
ligent interpretive powers,

It is well known that students have such pervasive conceptual misunderstandings
as novice programmers that correct programs carly in the learning process come
as pleasant surprises. Even after a yecar or more of programming instruction, stu-
dents have great difficulty predicting what output a program will have, in what
order commands will be exccuted, or in writing and debugging original programs
to solve problems. Furthermore, these problems are not confined to the very
young student in clementary school [1-5] and junior high [6], but appear to
pervade the programming activities of high school, college [7, 8], aﬂ/d mature
adult students as well. What are the sources of these difficulties?

Many of these conceptual difficulties are confined to specific implementations
of particular programming languages, and presumably can be ameliorated by re-
designing the particular features of those implementations, or by means of auto-
matic error finders. In an exemplury study, Soloway, Bonar, and Ehrlich have
shown how an invented while looping construct nor available in Pascal was
easier for novices to use in writing programs than the standard Pascal looping

* The rescarch discussed in this article was supported by the Spencer Foundation and
the National Institute of Education (Contract No. 400-830016).

25

© 1986, Baywood Publishing Co., Inc.

26 / ROY D.PEA

constructs [9]. In this article, however, [plan to consider instead the kinds of
fundamental and widespread conceptual misunderstandings or “bugs” [10] in
program understanding that appear, from our own and others’ work, to be
relatively independent of specific commands or programming languages. These
misunderstandings, we will argue, have lessto do with the design of programming
languages than with the problems people have in learning to give instructions
to a computer.

Much of our programming instruction treats learning to program as a new and
independent skill having little to do with previous learning: “It is almost as close
to a situation of a tabula rasa as we are going to find in an adult” [11, 12].
Furthermore, in the classroom setting, students’ errors are commonly considered
to be idiosyncratic problems. But something much more interesting psychologi-
cally is happening, and we must come to understand it. It is not that students
don't know anything that is relevant to programming—they have an intuitive
understanding of much of what we say about programming. Depending on their
age and developmental level, students have available experiences, and a broad
range of concepts and strategies relevant to learning to program [13]. But one of
the most central aspects of their intelligence is misleading when it comes to
learning to program. The novice programmer works /ntuitively and pursues many
blind alleys in learning the formal skill of programming. But what does it mean to
work “intuitively?”

Specifically, students have a predominant analogy that guides their behavior
when, as novices, they write programming instructions to a computer. This
analogy is conversing with a human. Their pragmatic strategies for using natural
language with other humans lead them astray as they try to deal with program-
ming, because programming is a formal system that interprets each part of a pro-
gram (instructions to it) in terms of rules that are mechanistic. At least for the
programming languages we will be referring to in our examples, there are strict
rules for interpreting commands in a rigid sequential order, determined by how
flow of control is dealt with in the language. While people are intelligent inter-
preters of conversations, computer programming languages are not. This funda-
mental feature of programming systematically violates human conversational
maxims, such as the cooperative principlesoutlined by Grice {14],and developed
in theories of natural language pragmatics (e.g., Cole [15]; Searle [16]). For
cxample, a programming language cannot infer what a speaker means if she is
not absolutely explicit, whereas a listener in a human-human conversation can
query the speaker for clarification. There are similar problems in the develop-
mental transition from oral to written communication of natural language [17,
18], where the absence of the listener sets new constraints on the explicitness
with which meaning must be expressed.

My aim here is to explicate a few of the major obstacles to programming ex-
pertise presented by three major classes of students’ conceptual bugs in under-
standing. This division is offered as a first attempt at defining a taxonomy for

LANGUAGE-INDEPENDENT CONCEPTUAL “BUGS” [/ 27

guiding discussion of these problems. These errors are bugs in the sense that they
are systematic—that is, not random crrors or sloppy work—and that they need
revision and further instruction for students to make progress in learning to pro-
gram. The data on which these arguments are based consisted of several years of
Logo programming studies, with eight- to tweclve-yecar-olds, and fourteen- to
scventeen-ycar-olds, and obscrvations of high school students learning Basic pro-
gramming. Details follow where appropriate. | will close by suggesting some
implications of these findings for how programming is taught.

CLASSES OF BUGS

Parallelism Bugs

The parallelism bug is revealed in diverse contexts, but its essence is the
assumption that different lines in a program can be active or somehow known by
the computer at the same time, or in parallel. Though there may be others, we
can distinguish two different kinds of programs in which the parallelism mis-
understanding is common.

Onc context in which the bug occurs is programs where conditional statements
(IF ... THEN) occur outside of loops. A common example is one where, early
in a program, a conditional statement appears. SIZE will be our variablg®hame in
this case. The program says:

IF SIZE =10, THEN PRINT “HELLO

Later in the program, a countup loop is encountered, where a variable is incre-
mented by one each time until it reaches ten.

FOR SIZE =1 to 10, PRINT "SIZE
NEXT SIZE

Now we may ask: What do students think the computer will do? If they under-
stand the control structure of the programming language (in this case, BASIC),
they know that the IF statement is first evaluated for its truth, If SIZE is equal
to ten, HELLO is printed, and control passes to the next statement. If the
variable is not equal to ten, nothing is printed, and control passes to the next
statement. The knowledgeable programimer knows that after the first line of the
program—the IF line—is exccuted, it is inactive, and irrelevant to whatever the
rest of the program instructions say because the control cycle never returns to it.

But a recurrent problem for students—in this case, high schoolers in their
sccond year of computer sciencc—to whom we have offered problems of this
type is that a very different prediction is offered for what will happen. In one
study, eight out of the fifteen students interviewed predicted that during the

28 / ROY D.PEA

looping process, when the variable SIZE became equal to ten, HELLO would be
printed. When asked to explain why, the student observed that, since variable
SIZE was now equal to ten (i.e., within the loop) and the IF statement was
“waiting for™ the SIZE to be cqual to ten, it could now print HELLO. But in
fact, once the IF statement was cvaluated and found false, it was never returned
to in the program. There is a sensc in which these students believe that all the
lines in the program are active or alive at once. As onc junior high student pro-
nounced: “It looks at the program all at once because it is so fast.” The program
is thought to have an intelligence under the surface that monitors the action
status of every line in the program simultancously.

Now think about the logic of IF statements in natural conversation [19].
When | say to you, “If you want to go to the store, I'll drive you,” there is more
than an instantaneous duration to my |F statement. It may not be active for a
week, or even all day, but your response does not have to be immediate. If in an
hour you want to go to the store, | am still likely to drive you there. (The tem-
poral period will vary according to context in ways currently little understood.)
The idea of an IF statement being evaluated and then taken off the books, as it
were, is odd from a natural language perspective. So the student has applied her
intuitions about the duration of IF statements in natural Janguage discourse to
the initially mysterious domain of computer language discourse. It is possible
that a different notation for if . . . then (e.g., condition-action pairs) could atten-
uate this interpretive problem.

A related finding involved notive Pascal programmers [7, 20]. A “while
demon” bug was revealed when as many as a third of the college students
assumed for simple Pascal programs that the actions in the while loop were con-
tinuously monitored for the exit condition to become true. For example, one
student explained that “every time I {the variable tested in the while condition]
is assigned a new value, the machine nceds to check that value.” The authors
note that this interpretation is consistent with English while, as in “while the
highway is two lanes, continue north."

The generality of the phenomenon may be observed in a second example of
the parallelism bug revealed by students attempting to comprehend programs
not involving conditionals—in this case, variable assignment statements which
occur in a program after lines referring to that variable. The student thinks (in-
correctly) that what will happen later in a program influences what happens
carlier. For example, consider the following four-line program:

AREA = Height X Width
Input Height

Input Width

PRINT “AREA

Many students assume that there is no problem with this program (which
would essentially be true were it written in Prolog, in which the interpreter does

LANGUAGE-INDEPENDENT CONCEPTUAL “BUGS” / 29

do inference!), and predict that it will print out the product of the height and
width values the program user has input. But this is not true. When the first
statement is executed, that is, the one that defines AREA as height times width,
it has not yet received the input values. So it treats height and width as equal to
the default value of zero. What is printed is not, as the student assumes, the
product of the input values of height and width, but the product of the values of
those variables available at the time the first line in the program was executed,
that is,0 X 0 =0,

Here, once again, we can sec the influence of natural language conversational
strategies, where implicit knowledge or expectations of what will come later
can guide the interpretation of what occurs early in a conversation (or text). In
natural language, apart from procedural instructions such as recipes or building
plans, there is often no rcason not to skip ahcad. But in computer programming,
the novice student must think: “What conditions regarding inputs are in effect
as this line is executed?” In natural language, one rarely violates the meaning of
a text by reading parts of it out of order, since line-by-line comprehension is not
essential. In fact, we even teach scanning ahead for structure as a reading
strategy. Nonetheless, natural language out-of-order reading does often disrupt
text comprehension, as research on story grammars reveals,

Intentionality Bugs

There is another class of important language-independent conceptual bugs
that we will call Intentionality Bugs. Intentionality Bugs are those in which the
student attributes goal directedness or foresightedness to the program and, in so
doing, “goes beyond the information given™ in the lines of programming code
being executed when the program is run. Students adopt what Dennett callsan
“intentional stance” toward the complex system represented by the programming
language, and assume that it has capacities or attributes of a human [21].

In one example which we have studied in detail [12], we ask students to talk
out loud as they draw on graph paper what the graphics pen will draw as the fol-
lowing tail-recursive Logo program is executed. As depicted in the figure below,
when one types SHAPE 40, the program draws a large square, a medium-sized

TO SHAPE :SIDE

IF :SIDE = 10STOP

REPEAT 4 [FORWARD :SIDE RIGHT 90]
SHAPE :SIDE/2

END

square inside it, and then stops. More specifically, the program draws a square
with a variable sidc that, when initialized on the first call, is forty units long. The
first line of the program is a conditional counter with the purpose of stopping

30 / ROY D.PEA

the drawing after the two squares are drawn. When exccuted, the next line draws
a square the length of the variable SIDE (i.e., 40): REPEAT 4 [FORWARD
:SIDE RIGHT 90]. The last line of the recursive program divides the yariable
SIDE by two, and since the program begins with a conditional statement that
says when the variable SIDE equals 10 stop, the program draws the two squares
of size forty and twenty and stops, because the variable SIDE then equals 10,

When encountering the second line of the program, a conditional that says IF
the value of the variable SIDE cquals 10 STOP, somc students erroneously pre-
dict that when the program is run, a box of side 10 will be drawn. When asked
why, their comments are revealing. The students have glanced ahead in the pro-
gram to see what is to them a familiar programming schema or “plan” [22]-a
command line that results in the drawing of a square: REPEAT 4 [FORWARD
(SOME DISTANCE) RIGHTANGLETURN (30 DEGREES)]. They then read
the |F statement as if the program is commanding the computer to draw a
square with sides equal to ten, because ‘it will draw a square,” or “because it
wants to draw a square.” Other students recognize that the variable at the IF
statement equals forty, but then say that the program sees the box statement
line ahead which it wants to draw, but has to stop at ten!

In each case—the parallelism and intentionality bugs—the program has been
given the status of an intentional being which has goals, and knows or sees what
will happen elsewhere in itself.

Egocentrism Bugs

Egocentrism bugs are the flip side of intentionality bugs. Whereas intention-
ality bugs involve comprehending and tracing what a program will do, egocen-
trism bugs are involved in creating a program to do something. Each bug type
presupposes that the computer can do what it has not been told to do in the
program.

Egocentrism, an overemphasis on the perspective of self relative to that of
others, is a pervasive characteristic of children's thinking, manifested in spatial
cognition [23], communication [24], and other problem domains, Under the
strenuous cognitive demands of a new task environment, it may also surface asa
characteristic of the performances of novice programmers who are adolescents
and adults, It should thus come as no surprise that the task performances of
novice programmers are also subject to egocentric biases. Egocentrism bugs are
those where students assume that there is more of their meaning for what they
want to accomplish in the program than is actually present in the code they have
written. Students giving evidence of this bug egocentrically assume that the
computer can follow the advice former Mayor of Chicago Richard Daley used to
give reporters:

“Don’t print what I say, print what I mean!”

-

LANGUAGE-INDEPENDENT CONCEPTUAL “BUGS” / 31

For example, lines of code or variable valucs are omitted by these students
because it is assumed that the computer “knows"” or can “fill in,” as a human
listener can, what the student wishes it to do.!

Students do not literally say that the program knows what to do; the errors
generated by this bug are almost perceptual in nature—their current conceptions
do not guide their attention to these problems as relevant reasons for their pro-
grams' not working as planned. A common problem of this kind is the omission
of punctuation or control characters, and the nonprovision of values for vari-
ables. Lest these omissions be thought of only as careless work, one can probe
the students to test our current hypothesis, which attributes more significance to
these omissions than oversight. When asked to explain what programs they have
written will do, they gloss over the specific commands in a line of Logo code
just written, asserting that a line of graphics code draws a square when, for ex-
ample, they have included a move command to send the graphic turtle forward,
- but no turn command for making the necessary right angles:

REPEAT 4 [FORWARD 30]

It is as if they do not see that the nccessary specifications to the computer have
been omitted. All they have provided is the skeleton of a program, assuming that
in some way the computer can fill in.the rest, can say what they “mean.”

Bonar and Soloway provide another clear case of egocentrism, manifested by
a college student writing a program in Pascal {7]. The student was writing
pseudo-code for the problem: “Write a program which reads in ten integers and
prints the average of those integers.” She wrote out:

Repeat
(1) Read a number (Num)
(1a) Count := Count + 1
(2) Add the number to Sum
(2a) Sum := Sum + Num
(3) until Count :=10
(4) Average := Sum div Num
(5) writeln (‘average = ’,Average)

When the interviewer asked whether {1a) was the *‘same kind of statement” as
(2a), it became clear “that she thinks the Pascal translator knows far more about
these roles than it does™:

! Several counterexamplcs and, perhaps, part of a growing trend, are Teitelbaum's DWIM
(Do What [Mean) systems added to the Interlisp programming environment, which corrects
spelling errors by using syntactic context, and commercially available syntax-correcting com-
pilers. Such painless crror revisions are the subject of feverous debates among programmers.

EC2(1)

32 / ROY D.PEA

Are they the same kind, Ahhh,ummm, not exactly, because with this [1a)
you are adding—you initialize it aszero and you're adding one to it [pointsto
the right side of 1a}, which is just a constant kind of thing. [Points to 2a]
Sum, initialized to, uhh, Sum to Sum plus Num, ahh—that’s [points to left
side of 2a) storing two values in one, two variables [points to Sum and Num
on the right side of 2a], That’s [now points to 1a] a counter, that’s what
keeps the whole loop under control. Whereas this thing [points to 2a], this
was probably the most interesting thing..,about Pascal when I hit it, That
you could have the same, you sorta have the same thing here [pointsto la],
it was interesting that you could have—you could save space by having the
Sum re-storing: information on the left with two different things there
[points to right side of 2a], so 1 didn’t need to have two. No, they'’re
different to me. I think of this [pointsto la] asjust a constant, something
that keeps the loop under control. And this [points to 2a] has something
to do with something that you are gonna, that stores more kinds of
information that you are going to take out of the loop with you (7, p. 5].

Here, again, we see the student believing that the programming language knows
more about her intentions than it possibly can,

Soloway et al. have found among college Pascal programmers a set of errors
that we believe also stems from egocentrism bugs [8]. They describe what they
call a “mushed variables” bug. After a semester of Pascal, more than one quarter
of their novice programmers used the same variable incorrectly for more than
one role. For example, in the following program, the variable X is used both to
store a value being read in [read (X)] and to hold a running total (X := X+X]:

program Student26_Problem2;
var X, Ave : integer
repeat
Read (X)
X =X+X
until X + X [greater-than sign] 100;
Ave := X div Nx;
Write (Ave)
end.

They observe that students making these errors may have assumed that the com-
puter would recognize that the same variable played two different rolesyand that
it could use the different values appropriately.

CONCLUSIONS

All the bugs discussed—parallelism, intentionality, and egocentrism—appear to
derive from what might be called a superbug. The superbug may be described as
the idea that there is a hidden mind somewhere in the programming language that

LANGUAGE-INDEPENDENT CONCEPTUAL “BUGS” / 33

has intelligent, interpretive powers. It knows what has happened or will hap-
pen in lines of the program other than the linc being executed; it can benevo-
lently go beyond the information given to help the student achieve her goals
in writing the program. This “hidden mind superbug™ interpretation provides
a deep explanation of the various misconceptions that plague the novice pro-
grammer.

But there is too facile an interpretation of this argument that must be avoided
because it is false. It is not that students /irerally believe that the computer
has a mind, or can think, or can interpret what was not explicitly stated. In
our experience, novice programming students are likely to vehemently deny
that the computer can think or that it is intclligent. Besides, instructors are
very good at highlighting this point at the beginning of courses: Computers
arc dumb and can do nothing but what you tell them! But students’ behaviors
when working with programs often contradict their denials; they act as if the
programming language is more than mechanistic. Their default strategy for
making sense when encountering difficulties of program interpretation or
when writing programs is to resort to the powerful analogy of natural language
conversation, to assume a disambiguating mind which can understand. It is
not clear at the current time whether this strategy is consciously pursued by
students, or whether it is a tacit overgeneralization of conversational prin-
ciples to computer programming “discourse.” The central point is that this
personal analogy should be seen as expected rather than bizarre behavior, for
the students have no other analog, no other procedural device than “person”
to which they can give written instructions that are then followed. Rumelhart
and Norman have similarly emphasized the critical role of analogies in early
learning of a domain—making links between the to-be-learned domain and
known domains perceived by the student to be relevant [25]. But, in this
case, mapping conventions for natural language instructions onto programming
results in error-ridden performances.

A rival explanation for the aforementioned classcs of bugs is that the novice
programmer does not impute interpretive intelligence to the machine. It is not
that the programmer assumes that a distinction needs to be expressed._and that
the computer can make that distinction. Instcad, he or she simply does not
understand that there are ambiguities to be resolved in the code that has been
written, From this perspective, the common developmental problem of
coming to distinguish alternatives which are initially fused or collapsed in
thought is viewed as the source of the kinds of errors we have discussed. While
this possibility should be considered for some ecrror-ridden programs, there
are types of errors, such as the parallelism bugs, which are unlikely to result
from such conceptual fusion. And it is difficult to see on this rival interpre-
tation why we find that novice programmecrs often utilize intentional terms
to describe the process by which the computer executes the commands pre-
sented by the program.

EC2(1)

34 / ROY D.PEA

What are the implications of thesc findings for programming instruction?
First, we need to be aware of the pervasiveness of programming misunderstand-
ings that arise from the tacit applications of human conversational metaphor
to programming. This is powerful transfer, to be sure, but it is misleading and
does not work. Second, beyond being aware of these bugs, we have to arrange
many more kinds of learning activities for students, and diagnostic activities for
teachers, in which the bugs can be made obvious. We believe the persistence of
these bugs is in part linked to the infrequency with which they are explicitly
confronted by students and tcachers alike. Bugs like these could be snared if
one used program reading or debugging activitics as central components of pro-
gramming instruction. It was not until we did the tedious work of having stu-
dents walk through every command in a program, thinking aloud and explaining
how the computer would interpret it, that we became aware of the prevalence
of these bugs. After that, we saw them everywhere.

There are additional complexities to be faced from a pedagogical perspective.
From the programmer’s viewpoint, it is not true that every operation to be carried
out has to be made explicit. There are many things which programming languages
automatically carry out, without, as it were, specific instructions to do so (e.g.,
physical address management; stack storage allocation; Pascal compiler disam-
biguation of the meaningof the semicolon from context). So the lesson the novice
programmer needs to learn is that some meanings do not need to be explicitly ex-
pressed in the code he or she writes, while others do. Since the boundaries of
required explicitness are conventions that vary across programming languages,
the learner must realize the necessity of identifying in exactly what ways the lan-
guage he or she is learning “invisibly " specifies the meaning of code written.

Much more research is needed on how best to help students see that com-
puters read programs through a strictly mechanistic and interpretive process,
whose rules are fairly simple once understood. We think this can best be
achieved by providing clear models that show how the processing of control and
data is regulated by the specific programming language under study. These ex-
planations can be supported by explicit think-aloud examples of how the facile
programmer thinks about and makes decisions with respect to program creation
and understanding, and through instruction in comprchension-monitoring
processes for computer programs similar to those that have been effective for
written language understanding [26] . Other uscful lcads will come from artificial-
intelligence, knowledge-based programmers’ assistants {27] , and debugging aides
that seck to identify and remediate students’ pervasive misconceptions in learning
how to program [28]. -

Finally, we can be assured of (although not comforted by) the fact that
such conceptual difficulties are not specific to the programming domain. There
are other formal systems with abstract rules of interpretation—logic, physics,
and mathematics—that are also very challenging for students to learn, rife with
bugs [29], but well worth our concerted efforts to help students understand.

LANGUAGE-INDEPENDENT CONCEPTUAL "BUGS” / 35
ACKNOWLEDGMENT

1 would like to thank my colleagues at the Center for Children and Tech-

nology for discussing these issues, and I hereby express my appreciation for the
constructive comments of several anonymous reviewers.

10.

11.

12.

13.

14,

REFERENCES

. D. M. Kurland and R. D. Pea, Children’s Mental Models of Recursive Logo

Programs, Journal of Educational Computing Research, 2, in press.

. U. Leron, Some Problems in Children’s Logo Leaming, in Proceedings of the

Seventh International Conference for the Psychology of Mathematics Edu-
cation, Weizmann Institute, Jerusalem, 1983. -

. J. D. Milojkovic, “Children Learning Computer Programming: Cognitive and

Motivational Consequences,” doctoral dissertation, Department of Psy-
chology, Stanford University, 1983,

. R. Nachmias, D. Mioduser, and D, Chen, Acquisition of Basic Computer

Programming Concepts by Children, (Technical Report Number 14), The
Computers in Education Research Lab, School of Education, Tel Aviv Uni-
versity, Tel Aviv, 1985,

. R. D. Pea, Logo Programming and Problem Solving, (Technical Report

Number 12), Bank Street College of Education, Center for Children and
Technology, New York, 1983,

R. Mawby, Proficiency Conditions for the Development of Thinking Skills
Through Programming, paper presented at the Harvard University Confer-
ence on Thinking, Cambridge, Massachusetts, 1984,

. J. Bonar and E. Soloway, Uncovering Principles of Novice Programming, in
~ SIGPLAN-SIGACT, tenth annual symposium on Principles of Programming

Languages, Austin, Texas, 1983,

. E. Soloway, K. Ehrlich, J. Bonar, and J, Greenspan, What Do Novices Know

about Programming? in Directions in Human-Computer Interactions,
B. Shneiderman and A. Badre (eds.), Ablex, Norwood, New Jersey, 1982,
. E. Soloway, J. Bonar, and K. Ehrlich, Cognitive Strategies and Looping Con-
structs: An Empirical Study, Communications of the ACM, November 1983.
J. S. Brown and R, Burton, Diagnostic Models for Procedural Bugs in Basic
Mathematical Skills, Cognitive Science, 2, pp. 155-192, 1978,
J. R. Anderson, R. Farrell, and R. Sauers, Learning to Program in LISP,
Cognitive Science, 8, pp. 87-129, 1984,
R. D. Pea and D. M. Kurland, On the Cognitive Effects of Learning Com-
puter Programming, New Ideas in Psychology, 2, pp. 131-168, 1984,
R. D. Pea and D. M, Kurland, On the Cognitive Prerequisites of Learning
Computer Programming project report to the National Institute of Educa-
tion. (Also Technical Report Number 18, Bank Street College of Education,
Center for Children and Technology), New York, 1983.
H. P, Grice, Logic and Conversation, in Syntax and Semantics 3. Speech
Acts, P, Cole and J. Morgan (eds.), Academic Press, New York, 1973,

EC2(1)

36

15.
16.
17.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29,

/ ROY D,PEA . JR

P. Cole, Radical Pragmatics, Academic Press, New York 1981

J.R. Searle Intentionality , Cambridge University Press, Cambndge 1983
D. R. Olson, From Utterance to Text: The Bias of Language in Speech and
Wntmg,Harvard Educational Review, 47, pp. 257-281, 1977,

. D. Tannen (ed.), Coherence in Spoken and Written Discourse, Ablex, Nor-

wood, New Jersey, 1983,

J. D. McCawley, Everything that Linguists Have Always Wanted to Know
about Logic (But Were Ashamed to Ask), University of Chicago Press
Chicago, 1981.

E. Soloway, J. Bonar, J. Barth, E. Rubin, and B. Woolf, Programmmg and
Cognition: Why Your Students Write Those Crazy Programs Proceedings
of the National Educational Computing Conference, pp.206-219, 1981,

D. Dennett, Brainstorms, Bradford Books, Montgomery, Vermont, 1978,

E. Soloway and K. Ehrlich, Empirical Studies of Programming Knowledge,
IEEFE Transactions on Software Engineering, in press.

J. Piaget and B, Inhelder, The Child's Conception of Space, Norton, New
York, 1967. '

J. H. Flavell, P. T. Botkin, C. L, Fry, J. W. Wright, and P. E. Jarvis, The
Development of Role- takmg and Communication Skills in Children, Wlley,
New York, 1968.

D. E. Rumelhart and D. A. Norman, Analogical Processes in Leammg, in
Cognitive Skills and Their Acquisition, J, R, Anderson (ed.), Erlbaum, Hills-
dale, New Jersey, 1981,

A. S. Palincsar and A. L. Brown, Reciprocal Teaching of Comprehension-
fostering and Comprehension-monitoring Activities, Cognition and Instruc-
tion, 1, pp.117-175,1984,

R. A. Waters, A Knowledge-based Program Editor, Proceedings of the 7th
International Joint Conference on Artificial Intelligence Vol.ll, pp. 920-926,
1982,

W. L. Johnson and E. Soloway, PROUST: Knowledge-based Program Under-
standing, (Technical Report Number 285), Department of Computer
Science, Yale University, New Haven, Connecticut, 1984,

D. Gentner and A. Stevens (eds.), Mental Models, Erlbaum, Hillsdale, New
Jersey, 1983,

Direct reprint requests to:

Dr.

Roy D. Pea .

Bank Street Seheo%CoHE_je,
610 W. 112th Street
New York, NY 10025 L

