Roy D Pea

LANGUAGE-INDEPENDENT CONCEPTUAL "BUGS" IN NOVICE PROGRAMMING*

This article argues for tlic csistcncc 01' pcrsistcnt conccptual "bugs" in how noviccs program and understand programs. Tlicsc bugs arc not specific t o a given programming language, but appcar to be language-independcnt. Purthermore, such bugs occur Tor noviccs from primary school t o college age. Three different classcs of bugs-parallelisn~, intentionality, and egocentrism-are identified, a n d cxcmplificd through student errors. It is suggested that these classes of conccptual bugs arc rootcd in a "superbug," thc default strategy that tl~crc is a hidden mind sorncwltcrc in tlic programtning lnngungc that has intelligcnt intcrprctivc powcrs.

It is well known tliat studcnts Iiavc such pcrvasivc conceptual misunderstandings as novice programmers tliat correct programs carly in the learning process come as pleasant surprises. Even after a ycar or niorc o f programming instruction, students liavc grcat difficulty predicting what output a program will have, in what ordcr conirnands will hc cxccutcd, or i r ~ writing arid debugging original programs lo solvc problcnis. Furtlicrlnorc, tlicsc problcliis arc not confincd t o tlic vcry young s t l ~d c n t in clcmcntary scliool [I -51 and junior high [START_REF] Mawby | Proficiency Conditions for the Development of Thinking Skills Through Programming[END_REF] , but appear t o pcrvadc tlic programniing activities of high scliool, college [7, 81, a n d mature / / adult studcnts as wcll. What arc tlic sourccs o f these difficulties?

Many of tlicsc conccptual difficulties arc confincd to specific implementations o f particular prograniniing lariguagcs, and presumably can be ameliorated by redesigning the particular fcatures of those implcnicntations, or b y means o f automatic crror finders. In an excniplary study, Soloway, Bonar, a n d Ehrlich have shown how a n invented while looping construct not available in Pascal was easier for novices t o use in writing programs than the standard Pascal looping constructs [START_REF] Soloway | Cognitive Strategies and Looping Constructs: An Empirical Study[END_REF] . In this articlc, howcvcr, 1 plan t o consider instead the kinds of fundamental and widespread conceptual misunderstandings o r "bugs" [lo] in prograni understanding that appear, froni our own and others' work, to be relatively independent of specific commands or programming languages. These misunderstandings, w e will argue, haveless to d o with the design o f programming languages than with the problems people have in learning t o give instructions to a computer.

Much o f our programming instruction treats learning to program as a new and indcpcndcnt ski11 having little t o d o with previous learning: "It is almost as close to a situation o f a tabula rasa as we arc going to find in an adult" [l l , 121. Furthermore, in the classroom setting, students' errors are commonly considered to be idiosyncratic problems. But sonicthing ~n u c l i more interesting psychologically is happening, and w e must comc to understand it. It is n o t that students don't know anything that is relevant to programming-they have an intuitive understanding o f much o f what we say about programming. Depending o n their age and developmental level, studcnts have available expcriences, and a broad range of conccpts and strategies relcvant to learning to program [1 3] . But one o f tlic most ccntral aspccts or thcir intclligcnce is niislcading when it comes to learning to program. The novice programmer works inhlitiveiy and pursues many blind alleys in learning the formal skill of programming. But what does it mean to work "intuitively?" Specifically, students have a predominant analogy that guides their behavior when, as novices, they write programming instructions to a computer, This analogy is conversing with a human, Their pragmatic strategies for using natural language with other humans lead them astray as they try t o deal with programming, because programming is a formal system that interprets each part o f a program (instructions t o it) in terms o f rules that are mechanisric. At least for the programming languages w e will be referring t o in our examples, there are strict rules for interpreting commands in a rigid sequential order, determined by how flow of control is dealt with in the language. While people are intelligent interpreters o f conversations, computer programming languages are not. This fundamental feature o f programming systematically violates human conversational maxims, such as the cooperative principlesoutlined by Grice [14] , a n d developed in theories of natural language pragmatics (c.g., Cole [I S] ; Searle [16]). For cxaniple, a programming language a n n o t infer what a speaker means if she is not absolutely explicit, whereas a listener in a human-human conversation can query the speaker for clarification. There are similar problems in the developmental transition froni oral t o written communication of natural language [17, 181, where the absence o f the listener sets new constraints o n the explicitness with which meaning must be expressed.

My aim here is t o explicate a few of the major obstacles t o programming expertise presented by three major classes of students' conceptual bugs in understanding. This division is offered as a first attempt at defining a taxonomy for guiding discussion o f these problenis. These errors are bugs in the sense that they are systematic-that is, not random crrors o r sloppy work-and that they need rcvision and further instruction for students to make progress in learning to program. Thc data o n which these argu~nents are based consisted o f several years o f Logo programming studies, with eight. t o twclvc-ycar-olds, and fourteen-to scvcntccn-ycar-vlcls, and observations of high scl~ovl studcnts learning Basic programming. Details follow wherc appropriate. I will close b y suggesting some implications o f these findings for how programming is taught.

CLASSES OF BUGS

Parallelism Bugs

Thc parallelism bug is rcvcaled in divcrsc contexts, but its essence is the assunlption that different lincs in a program can be active o r somehow known by the cornputcr at t h e same timc, or in parallel. Though there may b e others, we can distinguish t w o different kinds of programs in which t h e parallelism mis-~rnclcrs~anding is common.

Onc contcxt in which the bug occurs is programs wherc conditional statcnients But a recurrcnt problem for students-in this casc, high schoolers in their second ycar o f computcr science-to whom wc have offered problems of this type is that a very different prediction is offered for what will happen. In one study, eight out o f the fifteen students interviewed predicted that during the looping process, when thc variablc SlZE bccame equal to ten, HELLO would be printed. When asked to explain w h y , tlic student observed that, since variable SlZE was now equal to ten (i.e., within the loop) and the IF statement was "waiting for" tlic SlZE to b c cqual lo tcn, it could now print HELLO. But in Ihct, oncc the IF statement was cvaluatcd and found false, it was never returned to in tlic program. Thcrc is a scnsc in wliicli tlicsc studcnts bclievc that all the lincs in tlic program arc active or alivc at oncc. As onc junior lligh student pronounccd: "It looks a t tlic program all at oncc bccausc it is so fast." Thc program is thought t o liavc on intclligcncc u~itlcr tlic surracc tliat monitors tlic action status of every line in the program si~iiultancously. Now think about thc logic of IF statcmcnts in natural conversation [1 9] . When I say t o you, "If you want t o go t o tlic store, I'll drive you," t h e z is more than an instantaneous duration t o my IF statenlent. It may not be active for a weck, o r even all day, but your responsc docs not have to be immediate. lf in an hour you want t o go t o thc store, 1 an1 still likely t o drive you there. (The temporal period will vary according t o context in ways currently little understood.) The idea o f an IF statement being evaluated and then taken off the books, as it were, is o d d from a natural language perspective. So the student has applied her intuitions about the duration o f IF statements in natural language discourse t o the initially mysterious domain o f computer language discourse. It is possible that a different notation for i f . . . thcn (e.g., condition-action pairs) could attenuate this interpretive problem.

A related finding involved notive Pascal programmers [7, 201. A "while demon" bug was revealed when as many as a third o f the college students assumed for simple Pascal programs that the actions in the while loop were con-ti~tuously monitored for the exit condition to become true. For example, one student explained that "every time 1 [the variable tested in the while condition] is assigned a new value, the machine nccds t o check that value." The authors note tliat this interpretation is consistent with English while, a s in "while the Iiighway is two lanes, continue north."

The generality o f the phenonicnon may bc observed in a second example o f the parallelism bug revealed by students attempting t o comprehend programs not involving conditionals-in this case, variable assignment statements which occur in a program after lines rcfcrring to tliat variable. The student thinks (incorrectly) that what will liappcn latcr in a program influences what happens carlier. For example, considcr tlic following four-line program: AREA = Height X Width lnput Height lnput Width PRINT "AREA Many students assume that there is no problem with this program (which would essentially be true were it written in Prolog, in which the interpreter does do infercncc!), and prcdict that it will print out tlic product o f the height and width values the program user has input. But this is not true. When the first statement is executed, that is, the one that defines AREA as height times width, it has riot yet rcccivcd the input valucs. So it trcats Iicight and width as equal to thc default value of zero. What is printed is not, as the student assumes, the product of tlic input valucs o f Iiciglit and widtli, but tlic product o f the values o f those variables available a t tlic timc tlie first line in the program was executed, that is, 0 X 0 = 0. tlcre, oncc again, wc can scc thc influcncc o f natural language conversational strategies, where implicit knowledge or cxpcctations o f what will come later can guidc tlic intcrpretation o f what occurs carly in a convcrsation (or text). In natural language, apart from procedural instructions such as recipes o r building plans, thcrc is oftcn n o rcason not to skip alicad. But in computer programming, tlie novicc studcnt must think: "What conditions regarding inputs are in effect as this line is executed?" In natural language, one rarely violates the meaning o f a tcxt by reading parts o f it out o f order, since linc-by-line comprehension is not essential. In fact, we even teach scanning ahead for structure as a reading strategy. Nonetheless, natural language out-of-ordcr reading does often disrupt tcxt comprelicnsion, as research o n story grammars reveals.

Intentionality Bugs

There is another class o f important language-independent conceptual bugs that we will call Intentionality Bugs. lntcntionality Bugs are those in which the student attributes goal directedness or foresiglitedncss t o the program and, in so doing, "goes beyond the inforniation given" in tlie lines o f programming code being cxccuted when thc program is run. Students adopt what Dennett callsan "intentional stance" toward thc co~iiplcx systcni representcd by the programming language, and assume that it has capacities o r attributes o f a human [START_REF] Dennett | Brainstorms[END_REF].

In When the interviewer asked whether (l a) was the "same kind o f statement" as (?a), it became clear "that she thinks tlie Pascal translator knows far more about these roles than it does": I Scveral counterexaniplcs and, pcrhaps, part of a growing trend, are Teitelbaum's DWlhf (Do What I Mean) systcms added to thc Interlisp programming environment, which corrects spelling errors by using syntactic contcxt, and commercially available syntax-correcting compilers. Such painlcss crror rcvisions are the subject of feverous debates among programmers.

Are they the same kind. Ahhh,ummm, not exactly, because with this [la] you are adding-you initialize it as zero and you're adding one to it [points to the right side of la] ,which is just a constant kind of thing. [Points to 2al Sum, initialized to, uhh, Sum to Sum plus Num, ahh-that's [points to left side of 2a] storing two values in one, two variables [points t o Sum and Num on the right side of 2a]. That's [now points to 1 a] a counter, that's what keeps the whole loop under control. Whereas this thing [points to 2 a] , this was probably the most interesting thing. . .about Pascal when I hit it. That you could have the same, you sorta have the same thing here [points to l a] , it was interesting that you could have-you could save space by having the Sum re-storing information on the left with two different things there [points to right side of 2 a] , so 1 didn't need to have two. No, they're different to me. I think of this [points to l a] as just a constant, something that keeps the loop under control. And this [points to 2a] has something t o do with something that you are gonna, that stores more kinds of information that you are going t o take out of the loop with you [7, p. 51.

Hcre, again, we see the student believing that the programming language knows more about her intentions than it possibly can.

Soloway et a/. have found among college Pascal programmers a set of errors that we believe also stems from egocentrism bugs [START_REF] Soloway | What Do Novices Know about Programming? in Direcriorrs in Human-Computer Interactions[END_REF] . They describe what they call a "mushed variables" bug. After a semester of Pascal, more than one quarter of their novice programmers used the santc variable incorrectly for more than one role. For example, in the following program, the variabIe X is used both to store a value being read in [read (X)] and to hold a running total [X := X t X I :

program Student26-Problem2; var X, Ave : integer - begin - repeat Read (X) X : = X + X until X + X [greater-than sign] 100; - Ave := X div Nx;
Write (Ave) end.

-They observe that students making thesc errors may have assumed that the computer would recognize that thc same variable played two different r o l e w n d that it could use the different values appropriately.

CONCLUSIONS

All the bugs discussed-parallelism, intentionality, and egocentrism-appear to derive from what might be called a superbug, T i e superbug may be described as the idea that there is a hidden mind somewhere in the programming language that has intelligent, interpretive powers. It knows wliat has happened or will happen in lines o f the program other than the linc being executed; it can bcnevolently go beyond the information given to help the student achieve her goals in writing thc program. This "hiddcn mind supcrbug" interpretation providcs a dccp explanation o f the various n~isconccptions that plague the novice progra mmc r.

But thcre is too facile a n interpretation o f this argurncnt that must be avoided because it is false. It is not that studcnts literally bclieve that the computer has a mind, o r can think, o r can intcrpret wliat was not explicitly stated. In our experience, novice programming students are likely to vehemently deny that the computer can think or that it is intelligent. Besides, instructors are very good at highlighting this point at thc beginning o f courses: Computers arc d u m b and can d o nothing but what you tcll tlicni! But students' behaviors whcn working with programs oftcn contradict tlicir denials; they act as if the programming language is more than mechanistic. Their default strategy for makittg sense when encountering difficulties o f program interpretation or when writing programs is t o resort to the powerful analogy o f natural language conversation, t o assume a disambiguating mind which can understand. It is not clear at the current time wlicther tliis strategy is consciously pursued by students, o r whether it is a tacit overgeneralization o f conversational principles t o computer programming "discourse." The central point is that this personal analogy should be seen as expected rather than bizarre behavior, for the students have n o other analog, n o other procedural device than "person" to which they can give written instructions that are then followed. Rumelhart and Norman have similarly emphasized the critical role o f analogies in early Icarning o f a domain-making links bctwcen thc to-be-learned domain and known domains pcrccived by thc student to be rclevant [START_REF] Rumelhart | Analogical Processes in Learning[END_REF]. But, in this case, tilapping conventions for natural language instructions o n t o programming rcsults in error-riddcn pcrformanccs.

A rival explanation for the aforcnicntioncd classcs o f bugs is that the novice programmer does not impute interpretive intelligence to the machine. It is not that thc programmer assumes that a distinction needs t o be expressedgnd that the cornputcr can makc that distinction. Instead, he or she simply does not u n d e r s ~a n d that there are anibiguitics to bc resolved in the code that has been written. From this pcrspective, thc common developmental problem o f coming to distinguish alternatives which are initially fused o r collapsed in thought is viewed as t h e source of the kinds o f errors we have discussed. While this possibility should be considered for some error-ridden programs, there are types o f errors, such as the parallelism bugs, which are unlikely to result from such conceptual fusion. And ~t is difficult t o see o n this rival interpretation why we find that novice prograninicrs often utilize intentional terms to describe the process by which the coniputer executes the commands prescnted by the program.

What are the implications o f tlicsc findings for programming instruction? First, wc need to be aware o f thc pcrvasivcncss o f programming misunderstandings that arise from the tacit applications of human conversational metaphor to programming. This is powcrful transfer, to bc sure, b u t it is misleading and does not work. Second, beyond bcing awarc o f these bugs, w e have t o arrange many more kinds o f learning activities for studcnts, and diagnostic activities for tcachcrs, in which t h c bugs can bc madc obvious. Wc bclicvc thc persistcncc of thcse bugs is in part linked to the itifrcyiro~cy with which they are explicitly confronted by studcnts and tcaclicrs alikc. Bugs likc thcse could be snared if one used program reading or dcbugging activitics as ccntral components o f prograrnnling instruction. It was not until wc did the tedious work o f having students walk through every command in a program, thinking aloud and explaining h o w the computer would interpret it, tliat we bccamc aware of the prevalence o f these bugs. After that, we saw thcm everywhere.

'There are additional complexities to be faccd from a pedagogical perspective. From the programmer's viewpoint, it is not true that every operation to be carried out has to be made explicit. There are many things which programming languages automatically carry o u t , without, as it were, specific instructions t o d o so (e.g., physical address management; stack storage allocation; Pascal compiler disambiguation o f t h e meaning o f the semicolon from context). S o thelesson the novice programmer needs t o learn is that some meanings d o not need t o be explicitly expressed in the code he o r she writcs, while others do. Since the boundaries o f required explicitness are conventions that vary across programming languages, the learner must realize the necessity o f identifying in exactly what ways the language he or she is learning "invisibly" specifies the meaning o f code written.

Much more research is needed on h o w best to help students see that computers read programs through a strictly mechanistic and interpretive process, whose rules are fairly simple once understood. We think this can best be achievcd by providing clear modcls that show how the processing o f control and data is rcgulatcd by the specific programniing language under study. Tliese cxplanations can bc supported by explicit think-aloud examples o f how the facile programmer thinks about and rnakcs dccisions with respect t o program creation arid undcrstanding, and through instruction in coniprchcnsion-monitoring proccsscs for colnputcr programs similar to thosc tliat have bccn effective for writtcn languagc undcrstanding [26] . Other uscful lcads will comc from artificialintclligcncc, knowlcdgc-based programmers' assistants [2 7] , and debugging aides that seek to idcntify and remcdiatc studcnts' pervasive misconceptions in learning / / how to program [2 8] .

Finally, wc can be assurcd of (althougli not c o ~n f o r t e d b y) the fact that such conceptual difficulties are not specific to thc programming domain. There are other formal systems with abstract rules of interpretation-logic, physics. and mathematics-that are also very challenging for students t o learn, rife with bugs [START_REF]Mental Models[END_REF] , b u t well worth our concerted efforts to help students understand.

3)(4)

 34 one example which we have studied in dctail [I?,] , w e ask students t o talk o u t loud as they draw on graph papcr what thc graphics pcn will draw as the following tail-recursive Logo program is executed. As depicted in the figure below, wlicn one typcs SHAPE 40, tlic program draws a large square, a medium-sized TO SHAPE :SIDE I F :SIDE = 10 STOP REPEAT 4 [FORWARD :SIDE RIGHT 901 SHAPE :SfDE/2 END squarc insidc it, and then stops. More specifically, tlic prograni draws a square with a variable sidc that, when initialized on tlic first call, is forty units long, The first line of thc program is a conditional counter with the purpose o f stopping ~h c drawing after the two squarcs arc drawn. Wlicn cxccuted. the next line draws a square tlic length o f the variable SlDE (i.c., 40): REPEAT 4 [FORWARD :SIDE RIGHT 901 .The last line o f the recursive program divides thsyariable SlDE by t w o , and since the program bcgins with a conditional statemcnt that says when thc variable SlDE equals 1 0 stop, the program draws the t w o squares of size forty and twcnty and stops, bcc;~usc tlic vnriablc SIDE then equals 10. Wlicn encountering the sccond linc of thc program, a conditional that says IF thc value o f t h e variable SIDE equals 1 0 STOP, sonic students erroneously predict that when the program is run, a box o f side 10 will be drawn. When asked why, their comments are revealing. The studcnts have glanced ahead in the program to see what is t o them a familiar programming schema o r "plan" [22] -a comniand line that results in the drawing o f a square: REPEAT 4 [FORWARD (SOME DISTANCE) R IGHTANGLETURN (9 0 DEGREES)] . They then read the IF statement as if the program is c o ~n m a ~i d i n g the computer t o draw a square with sides equal t o ten, because "it will draw a square," o r "because it wants to draw a square." Other students recognize that the variablc at the IF statement equals forty, but then say that the prograni sees the b o x statement line ahead which it wants t o draw, but has t o s t o p at ten! In each case-the parallelisnl and intentionality bugs-the program has been given the status o f a n intentional being which hasgoals, and knows o r sees what will happen elsewhere in itself.Egocentrism Bugs Egocentrism bugs are t h e flip side of intentionality bugs. Whereas intentionality bugs involve comprehending and rracing what a program will d o , egocentrism bugs are involved in creating a program to do something. Each bug type presupposes that the computer can d o what it has not been told to d o in the program. Egocentrism, an overemphasis on tlic pcrspcctivc o f self relative to that o f othcrs, is a pervasive characteristic of children's thinking, manifested in spatial cognition [2 3] , communication [2 4] , and otlicr problem domains. Under the strcnuous cognitive demands o f a ncw task environment, it may also surface as a characteristic o f the perforniances o f novicc programmcrs w h o are adolescents and adults. It should thus come as no surprise tliat tlic task performances of novice programmers are also subject to egoccntric biases. Egocentrism bugs are those where students assume tliat there is rnore o f their meaning for what they want to accomplish in the program than is actually present in the code they have written. Students giving evidence of this bug egocentrically assume that the computer can follow the advice fornicr Mayor o f Chicago Richard Daley used t o give reporters: "Don't print what I say, print what I mean!" For example, lines of code or variablc valucs arc omitted b y these students bccause it is assumed that thc computer "knows" o r can "fill in," as a human listener can, what the student wishes it t o do.' Students d o not literally say tliat thc program knows what t o d o ; tlie errors generated b y this bug are almost perceptual in nature-their current conceptions d o not guide thcir attention to thcse problc~ns as relcvant reasons for their programs' not working as planned. A common problcm of this kind is the omission of punctuation o r control characters, and thc nonprovision o f values for variables. Lest these omissions be thought o f only as careless work, o n e can probe the studcnts t o test our current liypotl~csis, which attributes more significancc to thcse onlissions than oversight. Wlicn asked to explain what programs they have written will d o , they gloss over the specific commands in a line o f Logo code just writtcn, asserting tliat a line o f graphics codc draws a square when, for exarnplc, they havc included a rnovc command to send t h e graphic turtle forward, but no turn command for making the ncccssary right angles: REPEAT 4 [FORWARD 301 It is as if they d o not see that the ncccssary specifications t o the computer have bccn o ~n i t t e d . All they have provided is thc skclcton o f a program, assuming that in somc way the computer can fill in.thc rest, can say what they "mean." Bonar and Soloway provide anotlicr clear case o f egocentrism, manifested by a college student writing a program in Pascal [7] . The student was writing pseudo-code for the problem: "Write a program which reads in ten integers and prints the average o f those intcgcrs." Shc wrotc o u t : Repeat (1) Read a number (Nurn) (l a) Count := Count + 1 (2) Add the number t o Sum (2a) S u m := S u m + Num (until Count :=I0 Average := S u m div Nurn (5) writeln ('average = ',Average)

ACKNOWLEDGMENT

1 would like t o thank my colleagues at the Ccnter for Children and Technology for discussing thcsc issucs, and I hcrcby cxprcss my appreciation for tlic constructive commcnls ofscvcral anonymous rcvicwcrs.

* T h e rcscarch discussed in this articlc was supportcd by the Spcncer Foundation and thc National Institute of Education (Contract No. 400-83001 6) .