
HAL Id: hal-00190537
https://telearn.hal.science/hal-00190537

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Children’s mental models of recursive logo programs
D. Midian Kurland, Roy D. Pea

To cite this version:
D. Midian Kurland, Roy D. Pea. Children’s mental models of recursive logo programs. Journal
educational computing research, 1985, 1(2), pp.235-243. �hal-00190537�

https://telearn.hal.science/hal-00190537
https://hal.archives-ouvertes.fr

J. EDUCATIONAL COMPUTING RESEARCH, Vol. 1(2) , 1985

CHILDREN'S MENTAL MODELS
OF RECURSIVE LOGO PROGRAMS*

D. MlDlAN KURLAND
ROY D. PEA

Center for Children and Technology
Bank Street College of Education, New York

ABSTRACT

Children who had a year of Logo programming experience were asked t o think-
aloud about what brief Logo recursive programs will do, and then t o predict
with a hand-simulation of the programs what the Logo graphics turtle will
draw when the program is executed. If discrepancies arose in this last phase,
children were asked to explain them. A prevaient but misguided "looping"
interpretation of Logo recursion was identified, and this robust mental model
persisted even in the face of contradiction between what the program did
when executed and the child's predictions for what it would do.

The power and elegance of recursion as a development in the history of program-
ming languages (such as LISP, the lingua franca of artificial intelligence, and
Logo) and its conceptual importance in mathematics, music, art and cognition
generally is widely acknowleged [I] . Far less attention has been given, however,
to the fundamental developmental problem of how people learn to use the
powers of recursive thought and recursive programming procedures. Our approach
to this research question has been influenced by several findings basic to a de-
velopmental cognitive science, s p e ~ ~ c a l l y , the role of mental models in guiding
learning and problem solving, and the widespread use of systematic, rule-guided
approaches to problem solution by children, not only adults [2] . Understanding
recursive functions in programming involves (programming language) notational
and conceptual problems, the latter includmg problems with understanding flow
of control. In programming, the novice is guided by a mental model of how pro-
gram code controls the computer's operations. For novices, this model is adapted

* This work was supported b y a grant from the Spencer Foundation.

O 1985, Baywood Publishing Co.. Inc.

236 / D. M. KURLAND AND R. D. PEA

over time as the result of both direct instruction and feedback from their own
programming and debugging experiences. in which conflicts between their cur-
rent theory and the behavior of the program is reflected upon.

A widespread belief among computer educators of precollege age popula-
tions is that young children can "discover" many of the powerful ideas formally
present in programming simply through experimenting within a rich programming
environment, as if unconstrained by prior understandings. This belief has been
largely due to Papert's popularization of Logo [3] , a LISP-like language designed
for use by children to allow them to develop powerful ideas. such as recursion,
in "mind sized bites." Papert and others assume that children can learn recur-
sion through self-guided explorations of programming concepts in the Logo lan-
guage. However, our observations of eight- to twelve-year-olds who have had a
year of experience programming in Logo indicates that most avoid all but simple
iterative programs, which do not require the deep understanding of control
structure prerequisite for an understanding of recursion.

In a study examining children's ability to develop recursive descriptions of
problems, Anzai and Uesato have shown how adolescents' understandings of
recursive formulations of the factorial function is facilitated by a prior under-
standing of iteration [4] . They demonstrate that for mathematics, recursion can
be learned via a discovery process by most children, particularly if they have first
experimented with iterative functions. Of their subjects who correctly identified
the iterative structure in a set of problems, 64 percent were also able to work
out recursive solutions to a second set of problems. However, only 33 percent of
the subjects who did not have prior experience with iteration were able to work
out the recursive functions. Anzai and Uesato conclude that understanding re-
cursion is aided by an understanding of iteration, but that "we should be cautious
when we try to extend the consideration to more complex domains such as com-
puter programming . . . [since] a complex task necessarily involves many differ-
ent cognitive subprocesses, and it is not always easy to extract from them only
the part played by recursion." [4, p. 1021

While Anzai and Uesato focus on the insight necessary to generate a recur-
sive description of a math function. in programming one must acquire that in-
sight and be able to implement it in specific programming formalisms [4]. In
addition to an understanding of recursion, the child requires an understanding of
the logic and terminology governing the control structure of the language. Adult
novices have trouble with both. Learning to program they have great difficulties
in thinking through flow of control concepts such as Pascal's while loop con-
struction [S] , and tail recursion in SOLO, a Logo-like language [6] , even follow-
ing extensive instruction. Furthermore, Bonar has found that prior natural lan-
guage understandings of programming terms misleads novice programmers in
their attempts at explaining how a program works [7] . Prior meaning is brought
to the task of constructing meaning from lines of programming code. We expect
children will also be guided in their interpretation of programming language

CHILDREN'SMENTALMODELSOF LOGOPROGRAMS / 237

constructs by their natural language meanings, and by faulty mental models of
flow of control structure. Indeed, a widespread experience among programming
instructors is that novices have great trouble acquiring the concept of recursion
and the abhty to use recursive formalisms in their programs.

HOW RECURSION WORKS I N LOGO:
A USER'S PERSPECTIVE

In this study, children worked with recursive programs composed of proce-
dures written in Logo. When a Logo program is run, if a procedure references
itself, execution of that procedure is temporarily suspended, and control is
passed to a copy of the named procedure. Passing of control is active in the sense
that the programmer is explicitly directing the program to execute a specific
procedure. However, when the execution of this instantiation of the procedure
is finished, control automatically is passed back to the suspended procedure, and
execution resumes at the point where it left off. Passing of control in this case
is passive since the programmer did not need to specify where control should
be passed in the program.

To understand how recursive procedures work in Logo one must know:

1. The rule that execution in Logo programs proceeds line by line. However,
when a procedure calls another procedure or itself, this acts to insert all lines
of the named procedure into the executing program at the point where the
call occurred. Control then proceeds through each of these new lines before
carrying on with the remaining lines of the program. Thus control is passed for-
ward to the called procedure, and then is passed back to the calling procedure.
That when a procedure is executed. if there are no further calls to other pro-
cedures or to itself, execution proceeds line by line to the end of the pro-
cedure. The last command of all procedures is the END command. END sig-
nifies that execution of the current procedure has been completed and that
control is now passed back to the procedure from which the current one was
called. END thus 1) signals the completion of the execution of one logical
unit in the program, and 2) directs the flow of control back to the calling pro-
cedure so the program can carry on.
That there are several exceptions to the line by line execution rule. An irn-
portant one for recursion is the STOP command. STOP causes the execution
of the current procedure to be halted and control to be passed back to the
procedure from which the currently executing one was called. Functionally,
then, STOP means to branch immediately to the nearest END statement.

How well novice programmers' mental models of the workings of recursive
procedures took into account these three central points was our research focus.

238 / D. KURLAND AND R. D. PEA

CENTRAL POINTS

Subjects

Seven children (two girls and five boys, eleven- to twelve-years-old) in their
second year of Logo programming participated in the study. The chlldren were
highly motivated to learn Logo programming, and had averaged over fifty hours
of classroom programming time under the supervision of experienced classroom
teachers knowledgeable in the Logo language, who followed the "discovery"
logo pedagogy set out by Papert [3]. All seven children had received instruction
in iteration and recursion, and had demonstrated in their classroom programming
that they could use iteration and recursion in some contexts.

Materials

Short Logo programs were constructed of procedures which reflected four
distinct levels of complexity: 1) procedures involving only direct commands to
move the turtle; 2) procedures using the iterative REPEAT command; 3) tail
recursive procedures; and 4) embedded recursion procedures. This article focuses
on the revealing features of children's performance at levels 3 and 4. Examples
of programs at levels 3 and 4 are:

Level 3: tail recursion program (:SIDE = 80)

TO SHAPEB :SIDE
IF :SIDE = 20 STOP
REPEAT 4 [FORWARD :SIDE RIGHT 901
RIGHT 90 FORWARD :SIDE LEFT 9 0
SHAPEB :SIDE12

END

Level 4: embedded recursion program (:SIDE = 80)

TO SHAPEC :SIDE
IF :SIDE = 10 STOP
SHAPEC :SIDE12
REPEAT 4 [FORWARD :SIDE RIGHT 901
RIGHT 90 FORWARD :SIDE LEFT 90

END

Experimental Procedures

Our choice of a method was guided by comprehension studies which utilize
"runnable mental models" or simulations of operations of world beliefs in re-
sponse to specific program inputs [S] . Chddren were asked to give a verbal

CHILDREN'S MENTAL MODELS OF LOGO PROGRAMS 1 239

account of how a Logo procedure would work, then to hand simulate the run-
ning of the program line by line by using a graphic turtle "pen" on paper. Then
they were shown the consequences of running the program they had just ex-
plained, and if their simulation mismatched the turtle's actions during drawing,
they were asked to explain the discrepancies, and one additional problem at
that level was presented, with the same procedure.

RESULTS

All seven children made accurate predictions for programs at the first two
complexity levels with only minor difficulties. They expressed no problems with
the recursive call of the tail recursive programs of level 3; however, two children
treated the IF statement as an action command to the turtle. and another as-
sumed that since she did not understand the IF statement the computer would
ignore it. No child made accurate predictions for either embedded recursion pro-
gram at level 4. The children's problems with explaining embedded recursion
may be traced to two related sources. The first involves general bugs in their
mental model for how lines of programming code dictate the computer's opera-
tions when the program is executed, while the second concerns the particular
control structure of embedded recursive procedures.

General Bugs in Program Interpretation

Decontextualized interpretation of commands - Children carried out "surface
readings" of programs during their simulations. They attempted to understand
each line of programming code individually, ignoring the context provided by
previous program lines. They stated the d e f ~ t i o n of each command, rather than
treating program lines as parts of a functional structure in which the purpose of
particular lines is context-sensitive and sequence-dependent. Thls caused partic-
ular trouble during their simulations in keeping track of the current value of the
variable SIDE, and in determining the actual order in which lines of code would
be executed. Understanding recursion is impossible without this knowledge
about sequential execution. The child must learn to ask: "How does the line I'm
reading relate to what has already happened and affect the lines to follow?"
The two bugs which follow concern an opposite tendency, an overrich search for
meaning in other program lines.

Assignment of intentionality to program code - The children often did not
differentiate the meaning of a command line they were simulating from the
meaning of lines of commands they expected to follow (e.g., lines that if executed
would draw a BOX). For example, in the program SHAPEC. one child came to
the IF statement and said: "If :SIDE equals 100 stop. O.K.. I think this wdl
make a box that has a hundred side." Another child at the same point in that
procedure, simply said: "this makes it draw a square."

240 / D. KURLAND AND R. D. PEA

Treating programs as conversation-like - As in understanding conversation,
and in the problems non-schooled people encounter in formal reasoning (where
bt:lefs about the truth of an argument's premises are focused on rather than the
validity of its form 19, 101 , children appropriate for problem solving any knowl-
edge they believe will help them understand. In the case of Logo program com-
prehension, this empirical strategy has the consequence of "going beyond the
information given" to comprehend the meaning of lines of code, such as deriving
implications from one line of code (e.g., an IF statement) about the meaning of
another line. For example. one child interpreted the recursive statement in
SHAPEC as having the intention of drawing a square, predicting that the turtle
would immediately draw a square before proceeding to the next command.

Overgeneralization of natural language semantics - Children interpreted the
Logo commands END and STOP by analogy to their natural language meanings,
which led them to believe that when they appear the program comes to a com-
plete halt. Several children thus concluded that procedure SHAPEC would not
draw at all, since when :SIDE reaches the value of 10, the program "stops, it
doesn't draw anything." In fact, STOP and END each passively return control
back to the most recently active procedure.

Overextension of mathematical operators - Children expressed confusion
about the functions of numbers as inputs, and in arithmetic functions such as
dividing the variable value, or addition of a constant to it, during successive pro-
cedure calls.For example, one child explained SHAPEC this way:

. . . if SIDE equals 10 then stop. See, instead of going all forward 80,
you just go forward 10. Then you're gonna stop. Then you're gonna go.
Then (line 3) I guess what you're gonna do is keep on repeating that two
times, so it'd be forward about 20 instead of forward 10, forward 20 (line
4), and you're gonna repeat 4, so it'd be forward 80 because it says repeat
4 forward side . . .
Numbers were also often pointed to as the mysterious source of discrepancies

between the child's predictions and the results of program execution.
Mental model of embedded recursion as looping - The children were funda-

mentally misled by thinking of recursion as looping. While this mental model is
adequate for active tail recursion, it wdl not do for embedded recursion, which
requires an understanding of both active and passive flow of control. The most
pervasive problem for all children was this tendency to view all forms of recur-
sion as iteration. For example, one child explained the recursive call in program
SHAPEB in the following manner:

[the child explained what the first four lines did, then said] : "line 5
tells it to go back u p t o SHAPE, tells it to go back up and do the process
called SHAPEB, this is the process [points to lines 2-41. It loops back up ,
and it divides SIDE by 2 so then SIDE becomes 4 0 . . . [carries on explain-
ing correctly that the procedure will draw two squares]"

CHILDREN'S M E N T A L MODELS OF LOGO PROGRAMS 1 241

In this example, the child clearly views tail recursion as a form of looping,
rather than as a command to suspend execution of the currently executing pro-
cedure and pass control over to a new version of SHAPEB. However, in this case
his wrong model leads to the right prediction, so he is not compelled to probe
deeper into what the procedure is actually doing. This same child explained that
SHAPEC:

". . . checks to see if SIDE 80 equals 10. If it does, end the program.
Next, line 3 [the recursive call] tells it to go back to the beginning except
to divide SIDE by 2 which ends up with 40. Then it goes down there (line
2) checks to see if SIDE is 1 0 . . . [then] back to the beginning. . . [con-
tinues to loop back until SIDE equals 10 then] checks to see if it equals
10, it does, stops. OK, a little extra writing there (points to lines 4 and 5).
[Draws a dot in the paper to indicate his prediction of what the procedure
will do and comments] and that is about as far as it goes because it never
gets past this SHAPE (line 3). I t is in a loop which means it cannot get past
'cause every time it gets down there (line 3), it loops back up."

This time the child's explanation and'prediction were incorrect since the
SHAPEC program makes the turtle draw a series of three squares in a line, each
twice as big as the previous one. The child expressed complete bewdderment
when the procedure was executed, and could offer no explanation to account
for the discrepancies. On the second program of this type, which makes the
turtle draw three squares of different sizes inside one another, the child worked
down to the recursive call and then said:

"um. Wait a minute. I don't understand this. Well anyway, from past
experience, like just now, I guess it's not going to listen t o that command
(points to the recursive call) and it's going t o go past it , and it's going to
[draw a square] and I guess it's going to end then."

Again, when the procedure was run and the child saw he was wrong he ex-
pressed confusion, but instead of trying to explain what might cause the procedure
to behave as it did he instead asked:

"Is this the same language we used last year? Because last year if you
said SHAPE, if you named the program in the middle of the program, i t
would go to that program. We did that plenty of times, but it's not doing
that here. I don't know why."

The child blamed the language for not conforming to h ~ s expectations, but in
doing so he indicated that at some level he knew the correct meaning of a recur-
sive call: "It would go to that program." However, though he seemed to know
the rule, when he worked through a program, his simpler, and in many cases
successful, looping model prevailed.

242 / D. KURLAND AND R. D. PEA

DISCUSSION A N D CONCLUSIONS

We believe these findings are important because they reveal that the children's
conceptual bugs in thinking about the functioning of recursive computer pro-
grams are systematic in nature, and the result of weaker theories that do not cor-
respond to procedural computation in Logo.

These findings also imply that, just as in the case of previous work with adults,
programming constructs often do not allow mapping between meanings of
natural language terms and programming language uses of those terms. Neither
STOP or END stop or end, but pass control back. The reason that this is impor-
tant for the Logo novice is that when their mental model of recursion as looping
fails, they have no way of inferring from the syntax of recursion in Logo how
flow of control does work. So they keep their inadequate looping theory, based
on their successful experience with it for tail recursion, or blame discrepancies
between their predictions and the program's outcomes on mysterious entities
such as numbers, or the "demon" inside the language itself. An important issue
of a development theory of programming then is: How do inadequate mental
models get transformed to better ones?

For a developmental psychology of programming, we require an account of
the various factors that contribute to learning central computational concepts.
So far efforts to help novices learn programming languages through utilizing
programming tutors or assistants have bypassed what we consider to be some of
the key factors contributing to novice's difficulties working with computational
formalisms. Beyond mistaken mental models ab.out recursion, we have found
these to involve atomistic thinking about how programs work, assigning inten-
tionality and negotiability of meaning as in the case of human conversations to
lines of programming code, and application of natural language semantics to
programming commands. In studies underway, it appears that none of these
sources of confusion will be intractable to instruction, although their pervasive-
ness in the absence of instruction, contrary to Papert's idealistic individual
"Piagetian learning," suggests that self-guided discovery needs to be mediated
within an instructional context.

ACKNOWLEDGMENTS

We wish to thank the participants of a workshop at MIT's Division for Studies
and Research in Education, from Geneva and Cambridge, for provocative discus-
sions of these issues. Sally MacKain provided invaluable assistance in running the
studies, and providing transcripts.

REFERENCES

1. D. R. Hofstadter, Godel, Escher and Bach: An Eternal Golden Braid, Vintage
Books, New York, 1979.

CHILDREN'S MENTAL MODELS OF LOGO PROGRAMS 1 243

2. R. S. Siegler, Developmental Sequences Within and Between Concepts,
Monographs o f the Society for Research in Child Development, 46 , (Serial
No. 189), 1981.

3. S. Papert, Mindstorms, Basic Books, New York, 1980.
4. Y. Anzai and Y. Uesato, Learning Recursive Procedures by Middleschool

Children, Proceedings of the Fourth Annual Conference of the Cognitive
Science Society, Ann Arbor, Michigan, August 1982.

5. E. Soloway, J. Bonar, and K. Ehrlich, Cognitive Strategies and Looping Con-
structs: An Empirical Study, (Technical Report No. 242), Yale University
Press, New Haven, Connecticut, 1982.

6. H. Kahney and M. Eisenstadt, Programmers' Mental Models o f Their Pro-
gramming Tasks: The Interaction o f Real- World Knowledge and Program-
ming Knowledge, Proceedings of the Fourth Annual Conference of the Cog-
nitive Science Society, Ann Arbor, Michigan, August 1982.

7. J. Bonar, Natural Problem Solving Strategies and Programming Language
Constructs, Proceedings of the Fourth Annual Conference of the Cognitive
Sciences Society, Ann Arbor, Mighxan, August 1982.

8. A. Collins and D. Gentner, Constructing Runnable Mental Models, Proceed-
ings of the Fourth Annual Conference of the Cognitive Science Society,
Ann Arbor, Michigan, August 1982.

9. A. R. Luria, Cognitive Development, Hanard University Press, Cambridge,
Massachusetts, 1976.

10. S. Scribner, Modes of Thinking and Ways of Speaking: Culture and Logic
Reconsidered, in Thinking, P. N. Johnson-Laud and P. C. Wason (eds.),
Cambridge University Press, Cambridge, 1977.

Direct reprint requests to:

Dr. Roy D. Pea
Center for Children and Technology
Bank Street College of Education
610 West 112th Street
New York, NY 10025

