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ON THE COGNITIVE EFFECTS OF LEARNING
COMPUTER PROGRAMIDMING

ROY D. PEA and D. MIDIAN KURLAND

Center for Children and Technoiogy Bank Street College of Education. 510 West
112th 3creer. New York. NY 10025, U 5 A,

Abstract —This paper cnidcallv examines current thinking about whether learming
computer programming promotes the development of general higher mental func-
nons. We show how rne available evidence. and the underlying assumptions about
the process of learning to program. fail to address this issue adequatelv. Our analysis
is based on a deveiopmentai coynirive science perspective on learning to program.
incorporaung developmental and cogqniuve science considerations of the mental
acuviues involved 1n programmung. It nighlights the importance tor rfuture research
of invesugaung students’ interactions with instructional and programming contexis.
deveiopmental ransformauons of their programming skills. and their background
knowledge and reasoning abiiines.

There are revolutionary changes afoot in education, in its contents as well as its
methods. Widespread computer access bv schools is at the heart of these
changes. Throughout the world. but particularly in the U.S A, educators are
using computers for learning activities across the curriculum. even designing
their own software. But virtually all educators are as anxious and uncertair.
about these changes and the directions to take as thev are optimistic about their
ultimate effects. **Now that this admittedly powertul svmbolic device is in our
schools, " they ask, ‘*what should we do with 1t?”’

We believe that educators and social scientists are at an important watershed
in American education. Important new opportunites abound for research and
development work that can influence directly the quality of education. Hard
questions are emerging about the design of educational activities that integrate
the computer with other media. The volatile atmosphere of choices for schools
(and parents), as new hardware and software appear daily. calls for principles
and knowledge that educators can use, derived from systematic empirical
studies, in laboratories and classrooms. of how children learn with these new
information technologies. We also need theoretical debates on the aims and
priorities for education in an information age. We believe that a developmentai

We would like to acknowledge with thanks the Spencer Foundation and the Natonal Institute
of Education (Contract $#00-83-0016) for supporting the research reported here, and for providing
the opportunity to write this essay. The opinions expressed do not necessarilv retlect the position
or policy of these institutions and no official endorsement should be inferred. Jan Hawkins.
Karen Sheingoid. Ben Shneiderman and a group of anonvmous reviewers provided very useful
critical discussions of the data and issues covered in this report. Requests for reprints should be
sent to Rov Pea ar the address given above.
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approach to the understanding of information technologies will be required. one
that incorporates the new insights of cognitive science. and that will guide both
research on. and design of. computer-based learning environments. Such a
discipline of developmental cognitive science would merge theory and practice
to dovetail the symbolic powers of human thinking with those of the computer
in the service of human development.

In this essav our goals are considerably more modest, but nonetheless a
timelv subtask of the larger enterprise. Our aim is to examine two widespread
beliefs about the mental activities engaged by programming a computer and
their expected cogmitive and educational benefits. The two beliefs are polar
opposites and neither is acceptable. Together, thev express the two predomi-
nant tendencies in thinking about learning to program today.

The first belief is linked to an atomistic, behaviorist tradition that views
learning narrowlv. This is the traditional and deeply-engrained idea that
learning is simply an accumulation of relatively autonomous ‘‘facts’’. On this
view, what one learns when learning to program is the vocabulary of commands
(primitives) and svntactic rules for constructing acceptable arrangements of
commands. This belief underlies most programming instru<tion. Its other facet
is that what one learns when learning programming is just a programming
language.

The contrasting belief, in part a reaction to the first belief, is that through
learning to program. children are learning much more than programming, far
more than programming ‘*facts’ ~It is said that children will acquire powerfully
general higher cognitive skills such as planning abilities, problem-solving heu-
nistics. and reflectiveness on the revisionarv character of the problem solving
process itself. This belief. although new in its application to this domain, is an
old idea in a new costume which has been worn often before. In its common
extreme form, it is based on an assumption about learning - that spontaneous
experience with a powerful svmbolic system will have beneficial cognitive conse-
quences, especially for higher order cognitive skills. Similar arguments have
been offered in centuries past for mathemarics, logic. writing svstems, and
Latin (e.g. see Bruner, 1966; Cole & Griffin, 1980; Goody, 1977; Olson, 1976
Ong, 1982; Vygotsky, 1978).

The intuitively plausible claims for the cognitive benefits of programming
have broadened in scope and in public attention. Although evidence does not
support these claims as vyet, their presumed validity is nonetheless affecting
important decisions in public education, and leading to high expectations for
outcomes of programming in the school and home. In the current climate of
uncritical optimism about the potential cognitive benefits of learning to
program, we run the risk of having naive ‘‘technoromantic’’ ideas become
entrenched in the school curriculum by affirmation, rather than by empirical
verification through a cyclical process of research and development. Already at
the pre-high school level, programming is taught primarily because of its
assumed impacts on higher cognitive skills, not because proficiency in pro-
gramming is itself an educational goal. This assumption takes on added signifi-
cance since several million pre-college age children in the U.S.A. are already
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receiving instruction in computer programming each vear. and France has
recently made programming compulsory in their precollege curriculum, on a
par with mathematics and native language studies.

With the rapid rise in the teaching of programming it has become critical for
decision-makers in education to understand how programming is learned, what
may be the cognitive outcomes of learning to program. what levels of pro-
gramming skill may be required to obtain different types of outcomes, and what
the relationships are between the cognitive constraints on learning to program
and its cognitive consequences. Research directly addressing these questions is
only beginning.

Throughout our paper we will highlight major issues and fundamental
complexities for researchers in designing studies responsive to these critical
questions. We discuss these issues in terms of a hybrid developmental frame-
work. incorporating cognitive science and developmental psychology, and
review relevant research in cognitive science and its cognate disciplines. This
svnthesis recognizes the inadequacies of either an extreme knowledge-building
account of learning to program, or the naive technoromanticism that postulates
spontaneous higher order cognitive skills as outcomes from programming
experiences. Although claims about the spontaneous cognitive impacts of pro-
gramming have an intuitive appeal, we show them to be mitigated by consider-
ations of factors involved in learning and development. We also demonstrate
how, embodied in practice, the fact-learning approach to programming often
leads to incomplete programming skills. Cognitive studies of what expert pro-
grammers know, the level of the student’s programming skills, the goals and
purposes of those learning to program, the general difficulty of transferring
"'powerful ideas’’ across,domains of knowledge, all contribute to our rejection
of these two views. Programming in the classroom may fundamentally alter the
ways in which learning and cognitive development proceed. But we must
examine whether such bold claims find, or are likely to find, empirical support.

We have felt throughout our analvsis of these issues that a developmental
perspective that incorporates the seminal work in the last decade of the inter-
disciplinary field of cognitive science will illuminate our understanding of the
potentialities of information technologies for advancing human cognition.
Fundamental contributions to thinking about and concretely establishing the
educational roles of information technologies could be gained from the synthesis
of these two important theoretical traditions.

Developmental theorists such as Piaget and Inhelder (1969), Werner (1957)
and Vygotsky (1978) have provided accounts of developmental processes with
profound implications for the roles of technologies in education. On all these
views, cognitive development consists not of an accumulation of facts. but of a
series of progressive reorganizations of knowledge driven bv the child’s active
engagements with physical and social environments In these views, learning
(i.e. the accumulation of new knowledge) is important for driving the develop-
mental process. but at the same time is mediated by the current developmental
capabilities of the learner.

In the field of cognitive science during the last decade, researchers in the
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constituent disciplines of cognitive psvchology. computer science. linguistics.
anthropologv, and philosophy have begun intensive collaborative research
projects (e.g. Gentner & Stevens, 1983; Greeno, Glaser & Newell, 1983
Norman. 1981). The combination of careful analysis of cognitive processes and
the techniques of computer simulation hasled to important new insights into the
nature of mental representations, problem solving processes, self knowledge,
and cognitive change. Cognitive science has revealed the enormous importance
of extensive. highly structured domain-specific knowledge and the difficulty of
developing general purpose problem solving strategies that cut across different
knowledge domains. Also, within particular domains, cognitive science
research has been able to specify in great detail the natve **mental models’ held
by novices, such as Aristotelian beliefs about objects in motion, which are often
very resistant to change through spontaneous world experience (Gentner &
Stevens, 1983).

Cognitive science shares with the older tradition of developmental psychology
a concern with how new learning must be integrated with prior knowledge, but
it transcends earlier work in analvzing problem solving and learning processes
for specific knowledge domains, and finds littde role for general structural prin-
ciples invoking "‘stages’’.

For a student interacting with a programming environment. for example, a
developmental perspective would indicate the importance of studving how these
students’ current knowledge of the computer system is organized, how they
regulate and monitor their interactions with it, and how their knowledge and
executive routines affect the ease or pace of acquisition of abilities to use new
programming constructs. Also, it would investigate the students’ exploration of
the svstem, and the ways that they are able to assimilate it to their current level
of understanding and to appropriate it in terms of their own purposes. including
play and competition. Learning to use the programming language may require
successive developmental reorganizations not only of the students’ naive under-
standing of the language being learned. but also of the computer system as a
whole. Complex cognitive changes are unlikely to occur through either spon-
taneous exploration or explicit instruction alone, since students must be en-
gaged in the task in order to interpret the new concepts. This perspective
suggests that rather than arguing, as many currently are, over global questions
such as which computer language is ‘‘best’’ for children, we would do better in
asking: how can we organize learning experiences so that in the course of
learning to program students are confronted with new ideas and have oppor-
tunities to build them into their own understanding of the computer system and
computational concepts?

In complementary terms, cognitive science raises such important questions
as: How can common svstematic misconceptions in particular domains of
knowledge be diagnosed and remediated through either informal or formal
learning activities? For example, what does a student specifically need to know
in order to comprehend and use expert strategies in designing a computer
program? What component mental processes are engaged in programming
activities?
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The svnthesis of developmental cognitive science focuses on diagnosing the
mental models and mental processes that children as well as aduit novices bring
to understanding computer programming. since these models and processes
serve as the basis for understanding transtormations of their svstemns of knowl-
edge as theyv learn. Bevond the tvpicallv agenetic cognitive science, a develop-
mental cognitive science would ask: How are the various component mentai
processes involved in expert programming constructed and recontigured
throughout ontogenesis, and accessed and organized during problem solving
episodes? Through what processes of reorganization does an exisung svstern of
thought become more highly developed? Through what learning acuvities in
what kinds of environments does the novice programmer develop into an
expert? Developmental cognitive science asks how the mind and its wavs of

- knowing are shaped. not onlv by biological constraints or physical objects, but
by the available cultural interpretive svstems of social and educational inter-
action. As we shall see, the currenty available research is impoverished in
response to these questons. but current progress in understanding the develop-
ment of mathematical and scientific thinking (reviewed. for example, in Siegler,
1983) leads us to be opumistic about the prospects for comparable work on the
psvchoiogy of programming.

The critique of the literature on learning to program that we present below
has been strongly influenced by this developmental cognitive science perspec-
tive. We do not adopt the usual computer programming perspective assuming
that all programming students are adults or have the same goals as marture
learners. Instead, the perspective is geared to the learning experiences and
developmental transformartions of the child or novice adult in interactive en-
vironments. The kinds of preliminarv questions that we ask from this perspec-
tive in addressing the question: **What are the cognitive effects of learning to
program?’’ lead us to draw on studies from diverse fields that we see as relevant
to a developmental cognitive science of programming, and we have categorized
them according to the topics of **Whart are the developmental roies of contexts
in learning to program?’’, ‘*What is skilled programming?’". ~*What are the
levels of programming skill development?”’. and *What are the cogniuve
constraints on learning to program?’’. First, however. we will begin bv
examining the bold claims abour the etfects of learning 0 program.

CLAIMS FOR COGNITIVE EFFECTS OF LEARNING TO PROCGRAM

Current claims for the effects of learning programming upon thinking are
best exemplified in the writings of Papert and Feurzeig (e.g. Feurzeig, Papert.
Bloom, Grant & Solomon, 1969; Feurzeig. Horwitz & Nickerson. 1981:
Goldstein & Papert, 1977, Papert. 1972a, 1972b, 1980: Papert. Wartt, DiSessa
& Weir. 1979) concerning the Logo programming language. although such
claims are not unique to Logo (cf. Minsky, 1970).

Early claims

Two key catalysts underlie beliefs that programming will discipline thinking.



142 Rov Pzaand D Mudian Kuriane

The tirst1s from aruncial intelligence. where constructng programs tha: mode!
the compiexines of human cogniton is viewed as a wav of understanding that
behavior. In explicitly teaching the computer 10 do something. it is contended
that vou learn more about vour own thinking. Bv analogyv (Papert. 1972a..
programming students wouid learn about problem solving processes by the
necessariiv explicit nature of programming, as they articulate assumptions and
preciseiv specify steps to their problem solving approach. The second influence
is the widespread assimilation of constructivist epistemologies of learning. most
tamiliar through Piaget’s work. Papert (1972a. 1980) has been an outspoken
advocate of the Pragetian account of knowledge acquisition through self-guided
probiem solving experiences. and has extensivelyv influenced conceptions of the
benetits of learning programming, through "*a process that takes place without
deliberate or organized teaching’ 1 Papert, 1980. p. 8).

Ross and Howe (1981, p. 143) have summarized Feurzeig ¢t al."s (1969) four
claims for the expected cognitive benefits of learning programming. Initially.
most outcomes were postulated for the development of mathematical thought:
(1) that programming provides some justification for, and illustration of.
formal mathematical rigour; (2) that programming encourages children to
study mathematics through exploratory activity: (3) that programming gives
kev insight into certain mathematical concepts: and (4) that programming
provides a context for problem soiving, and a language with which the pupil
may describe his own problem solving.”™”

Paper: (1972b) argued for claims (2) to (4) in noting that writing programs of
Logo turtle geometry is a *'new piece of mathematics with the property thar it
allows ciear discussion and simple models of heuristics [such as debugging] that are
foggy and confusing for beginners when presented in the context of more
traditional elementary mathematics™’ (our emphasis). He provides anecdotes of
children *spontaneously discovering’ phenomena such as the effects that
varving numerical inputs to a procedure for drawing a spiral have on the spiral’s
shape. He concludes that learning to make these *‘small discoveries™" puts the
child *closer to mathematics™ than faultlessly learning new math concepts.

Recent claims )

We find expanded claims for the cognitive benefits of programming in a new
generation of theoretical writings. In Mindstorms, Papert (1980) discusses the
pedagogy surrounding Logo. and argues that cognitive benefits will emerge
from taking *"powerful ideas'’ inherent in programming (such as recursion and
variables) in "‘mind-size bites’’ (e.g. procedures). One of trie more dramatic
claims is that if children had the extensively different experiences in thinking
about mathematics that Logo allows: ‘I see no reason to doubt thar this differ-
ence could account for a gap of five years or more between the ages at which
conservation of number and combinatorial abilities are acquired’ (p. 173).
Paper: is referring to extensively replicated findings of a large age gap between
the early conservation of number (near age 7) and later combinatorial abilities
(e.g. constructing all possible pairings of a set of different colored beads, near
age 12).
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Feurzeig =z 2/, (1981) provide the most extensive set of cognitive outcomes
expected from learning to program. Thev argue that "the teaching of the se: of
concepts related to programming can be used to provide 2 natural foundation
‘or the teaching of mathematics. and indeed for the nouons and art of logical
and rigorous thinking in generai.”’ Learning to program is expected to bring
about seven {undamen:al changes in thought:

« !} rigorous thinking. precise =xpression. recognized need to make assump-
nuns explicit {since computers run specific algorithms):

{2} understanding of general concepts such as formal procedure, variable.
tfunction. and transtormation (since these are used in programming);

(3) greater facility with the art of "‘heuristics’’, explicit approaches to
problems useful for solving problems in any domain, such as planning. finding
a related problem. soiving the probiem by decomposing it into parts, etc. (since
“programming provides highly motivated models for the principle heuristic
concepts’ ')

i+) the general idea that ""debugging’” of errors is a “‘construcrive and
piannabie acuvity’' applicable 10 anyv kind of problem soiving (since it is so
integral to the interactive nature of the task of getting programs to run as
intended);

(3) the general idea that one can invent small procedures as building blocks
tor gradually constructing solutions to large probiems (since programs
composed of procedures are encouraged in programming);

6, generallv enhanced *"seif-consciousness and literacy about the process of
solving problems’ (due to the practice of discussing the process of problem
solving in programming by means of the language of programming concepts”j:

(7) enhanced recognition for domains bevond programming that there is
rarelv a single “‘best’”” way to do something. but different wavs thar have
comparative costs and benefits with respect to specific goals (learning the
disuinction between “*process’’ and ‘product’’, as in Werner, 1937).

Asking whether programming promotes the development of higher cognitive
skills raises two central issues in developmental cognitive science. First, 15 it
reasonable to expect transfer across knowledge domains? Even adult thinkers
are notorious for their difficultv in spontaneously recognizing connections
between “‘problem isomorphs.’’ problems of identical logical structure but

Hopes that learning the concepts and language that underlie programming will change the
way a learner thinks of non-programming problems recalls the strong formulation of the Sapir-
Whor{ hvpothesis: that available linguistuc labels constrain available thoughts. The strong form
of this nvpothesis has been extensively refuted (e.g. Cromer, 1974). only a weak version is
consistent with evidence on language - thought relationships. Availabie labels in one’s language
may facilitate. but are neither necessarv nor sufficient for particular forms of thinking, or
conceptual distinctions. Categories of thought mav provide the foundation for linguistic
categories. not only the reverse. The same point appiies to the language of programming.
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developed in one coniext to new probiem formas. With problems of “near’
iransi=r so acui=, the possibility of spcnzanect us r.rans'"e' must be viewed
cautiousiv. In.ater discussions. we provide a renzative des Iopm nrai mode! for
thinking abour reiations berween ditferen: tvpes of :ransfer bevond pro-
grammung. and aitferent fevels of programmus
Toe second ana related quesiion 1y wheiae: .n‘e‘.}.ctua.l activity is guided by
genera domat -z-"“"ep ndent probizm solving skiils o by a coniuction of idio-
svneratic domaimn-dependent probier solving skils : Goidstein & Papert. 1577;
Newell. 1980 Sumon. 16801 An extensive literarure on metamemory develop-

differen: surtace torm - Gick & Holveak, 1282 Haves & Simon. 1977,
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ment indicates that the tasks used (0 measuce the functioning of ““abstract
ininking' T are exrricablv linked 1o the speafic D”obiemt used to assess
metaf‘ocmtion {2.3. Brown. 19352+ And as Ross and Howe (1981) note, “'in
most problem solving tasks. it is impossible (o applv the supoosed context-free
skills Al(hO"’ m;t'.all'v having essen tia 1}\ ddmdh.-speaﬁc knowiedge.”” Within
domalns. howeser, better ;;)r:rforma nces by learnz2rs are commonly ac-
compamed bv retflecnion on the control of their own mental actuvites ( Brown,
Branstord. Ferrara & Campione, 1983,

THE DEVELOPMENTAL ROLE OF CONTEMNTS IN LEARNING TO PRCGRAN!

¥ar a developmentalist. there is a masor problem pervading each of these
crnaracterizations nf the etfects on higher thinking skills expected from learning
10 program. Programming ser.e

a

s 35 a 'piack box.” an unanalvzed acrtivity,

».I"o e effects are DI‘":UF"N‘d to irraciate those exposed 1o it. But Hucsnon: about
the development of programming :kills require a breakdown of the skills into

smponent abilities. and studies of how specific aspects of programming skiil
are acquired. Thev require especially serious consideration of the develop-

mental rolzs plaved by the contexts inzerpeqct:azinq the black box: the pro-
gramming environment, the instructionai environment, and the relevant
understandings and performdnces of the learner.

The quecnon of the role of contexts in learning oroqrammmg " 1s complex.
because programming’ is not a untrarv skill. Like reading. it is comprised of
a larze number of abilites that interrelate with the organizaton of the learner’s
knowledge base. memorv and processing capacites, repertoire of compre-
hension strategies. and general problem-soiving abilities such as comprehensior
monltering. inferencing, and h'v-pomcn; generation. This lesson has been
etched in high relief through (ntensive effors to develop artificial intelligence
svstems that “"understand’’ natural language text (e.g. Schank & Abelson,
1977: Schank, 1982). Skilled reading also requires wide experience with
different genres{e.g. narrative, =ssavs. poetry, debate) and with different goais
of'eading (e.g. reading for gist. content, stvle). Asreading is often equated with
skill in decoding, ‘‘learning w0 program’ in schoois is often equated with
learning the vocabulary and svntax of a programming language. But skilled
programming. iike read:ng. is complex and context-dependent, so we must
begin to unpﬂcr.. the contexts in which pregramming is carried out and iearn=zd.
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Environments in which children learn to read are usuallv overiocked because
adequate environments (e.g. plenty of books. good lighting, picture dictionar-
les. good readers to help with hard words, vocabulary cards, phonics charts) are
taken for granted. Bv contrast. good programming environments are not
generally available to schools. Determining how children develop programming
skills will not be possible without due considerarion of the programming en-
vironment in which learning and development takes place. and of how learning
activites are organized.

P"Jgr:zmmz'ng environment

The distinction between a programming language and a programming en-
vironment is crucial. A programming language is a set of commands and rules
for command combinations that are used to instruct the computer to perform
svecinied operanions. The programming environment, on the other hand. is the
.arger coliecticn of sottware (operating svstems and programming tools) and
hardware (memorv. disk storage. hard copv capability) available 0 the pro-
grammer. [t can include an editor program to facilitate program writing, code
revising. and copving useful lines of code from one program to another:
debugging aids: elaborate trace routines for following the program’s tlow ot
control; automatic documenters; cross-reference utilities for keeping track of
variabies: and subroutine libraries.

Good programming environments (for example, those most extensively
developed for working on large computers in Lisp and PL/I) make the coding
aspect of programming far more efficient. allowing the programmer to concen-
trate on higher level issues of program design, efficiencv, and elegance. In
contrast, the programming environments provided for today’s school micro-
computers are so impoverished (typicallv consisting of onlyv a crude editor and
limited trace funcuons) that entering the code for a program and just getting it
to execute correctly is the central problem.

Finally, despite vigorous arguments about the educational superiority of
different programming languages, there are no data on whether different
languages lead 1o significant differences in what children need to know prior to
programming. or what cognitive benefits they derive from it. Although such
differences between languages may exist. they do not affect our point, since
these differences can be manipulated radically by restructuring the pro-
gramming environment. Attention is best directed to general issues about pro-
gramming, rather than those that are programming language specific.

Instructional environment

While features of the programming environment are important for learning to
program, how successfully a child will master programming also depends on the
instructional environment and the way in which resources such as computer access
time and file storage are allocated. Each of these points concerns the context of
cognitive activities. which we know from cognitive science and developmental
psvchologv to be critical to the level of performance achieved in cognitive tasks
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Deciding how to introduce programming and assist students in learning to
program is hampered todav by the paucity of pedagogical theory. That current
““fact learning’’ approaches to programming instruction are inadequate has
become apparent from studies of the kinds of conceptual errors made bv novice
programmers instructed in that way. For example. novice adult programmers
reveal deep misunderstandings of programming concepts, and of how different
lines of programming code reiate to one ancther in program organization
i Bonar & Solowav. 1982 Jeffries. 1982 Sheil. 1980, 1981a; Soloway, Bonar &
Ehriich. 1983: Soiowav. Enrlich. Bonar & Greenspan, 1982). As expected from
what thev are taught. thev know the vocabularv and syntax of their program-
ming language. Their misunderstandings are much deeper (Jeffries, 1982),
such as assuming that all variables are global (when some may be specific to one
procedure), and expecting that observing one pass through a loop allows them
to predict what will happen on all subsequent passes (although the outputs of
programming statements which fes* for certain conditions mav change whart will
happen during any specific loop) Research by Maver (1976), Miller (1974,
and Sime, Arblaster and Green (1977) has revealed that adult novice pro-
grammers have a difficult time generallv with the flow of control concepts
expressed by conditonals (for a review of these findings, see duBoulav, O’'Shea
& Monk, 1981). These conceprual difficulues, even among professional pro-
grammers. have been lamented by such programming polvmaths and vision-
aries as Minsky (1970) and Flovd (1979) as due to problems with how
programming is taught. Too much focus is placed on low level form such as
grammar, semantc rules. and some pre-established algorithms for solving
classes of probiems, while the pragmatics* of program design are left for students
to discover for themselves. Interestingly. these complaints about writing

* One manv disunguish for {artific:al ) programming languages, just as in the case of natural
languages. between three major divisions of semiotics. or the scientific study of properties of such
signalling svstems (Crvstal, 1980). These three divisions, rooted in the philosophical studies of
Peirce, Carnap. and Morns, are ‘Semanucs. the study of the relations between linguistic
expressions and the objects in the world which they refer to or describe: syntactics, the study of the
relation of these expressions to each other; and pragmatics, the study of the dependence of the
meaning of these expressions on their users fincluding the social situation in which they are
used)’" (ibid.. p. 316}. Studies of natural language pragmatics have focused on the *'study of the
language from the point of view of the user, especially of the choices he makes. the constraints he
encounters in using language in social interacuon. and the effects his use of language has on the
other participants in an act of communication’’ (ibid., p. 278).

Although there are important disanalogies (o0 natural language. a pragmatics of programming
languages concerns at least the study of programming language(s) from the viewpoint of the user.
especiallv of the idesign choices that he or she makes in the organization of lines of programming
code within programs tor software svstems). the constraines that he or she encounters (such as the
requirements of a debuggable program that is well-documented for future comprehension and
modification) in using programming language in social contexts, and the effects that his or her
uses of programming language have on the other participants (such a< rhe computer, as ideal
interpreter, or other humans) in an ac: of communication involving the  : of the programming

language.

—
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programs are similar to those voiced about how writing in general is taught (e.g.
Scardamalia & Bereiter, 1983).

What do we know about conceptual problems of children learning to
program? Problems similar to those of adult novices are apparent. To take one
example. in our research with 8- to 12-vear-old Logo programmers (Kurland &
Pea, 1983), we tind through their think-aloud protocols and manual simulation
of programs that children trequently adopt a systematic but misguided
conception of how control is passed® between Logo procedures. Manv children
beiieve that placing the name of the executing procedure within that procedure
causes execution‘to “‘loop’’ back through the procedure, when in fact what
happens is that control is passed to a copy of the executing procedure. This
procedure is then executed, and when that process is complete, passes control
back to the procedure that last called it. Children adopted mental models of flow
of control which worked for simple cases, such as programs consisting of onlv
one procedure, or tail recursive procedures, but which proved inadequate when
the programming goal required more complex programming constructions.

In other developmental studies of Logo programming skills (Pea, 1983). even
among the 25% of the children (8- and 9-year-olds: 11- and !2-vear-olds) who
were extremely interested in learning programming, the programs that they
wrote reached but a moderate level of sophistication after approximately 30
hours of on-line programming experience during the vear. Children’s grasp of
tundamental programming concepts such as variables, tests, and recursion, and
of specific LLogo primitive commands such as "*"REPEAT,"" was highlyv context-
specific. For example, a child who had written a procedure using REPEAT
which repeatedlv printed her name on the screen did not recognize the applica-
bilitv of REPEAT in a program to draw a square. Instead, the child redun-
dantly wrote the same line-drawing procedure four different times. We expect
that carefullv planned sequences of instruction will be important to ensure that
programming knowledge is not ‘‘rigid’”’ (Werner, 1957), or **welded™" (Shif.
1969) to its contexts of first learning or predominant use. Such rigidity is a
common finding for early developmental levels in diverse domains (Brown ez al.,
1983).

More broadly, in the National Assessment of Educational Progress survev of
2500 13-vear-olds and 2500 17-vear-olds during the 1977 — 1978 school vear
{National Assessment of Educational Progress, 1980), even among the small
percentage who claimed to be able to program. '‘performance on flowchart
. reading exercises and simple BASIC programs revealed verv poor under-

* The concept of ““flow of control’" refers to the sequence of operations that a computer
program specifies. The need for the term emerges because not all control is linear. [n linear
control, lines of programming instructions would be executed in strict linear order: first, second.
third. and so on. But in virtually all programming languages, various "*control structures’™’ are
used to allow nonlinear control. For example, one may **GOTO’’ other lines in the program than
the next one in BASIC, in which case flow of controi passes to the line of programming code
referred to in the GOTO statement. Because a program’s **flow of controi'’ mav be complex.
programmers often uulize programming tlowcharts, either to serve as a high level plan for
creaung their program. or to document the flow of control in their program
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standing of algorithmic processes involving conditionai branching "tcited bv
Arnderson. 1982, p. 14,

Educators oiten assume that adult programmers are not beleaguered by

conceptual problems in their programming. but we have seen that they are.
Once we recognize that programming by ‘intellectuallv mature’ " adults is not
characterized bv error-free. routine performances. we might better understand
dirticulues of children learning to program. who devote onlv small amounts of
thzir school ime to learning to program. ’

These findings lead us to two central questions about programmlrg
instruction. which we define broadly to include the direct teaching provided by
educators as well as the individual advice. modelling, and use of metaphors with
which they support instruction and learning. How much instruction. and what
tvpes of instruction, should be offered? How much direct instruction: is best for
children to learn programming is a controversial questlon (e.g. H0we 1981;
Papert. 1980). At one extreme schools teach programming as any other subject
with "*fact sheets’” and tests: at the other, thev provide minimal instruction.
encouraging children to explore possibilities, experiment, and creaté their own
probiems to solve. This second approach. popularized by Papert {19807, argues
that litle overt instruction is necessarv if the programming language is suf-
ficiently engaging and simple to use. while at the same time powerful enough for
chidren 1o do projects that they find meaningful. Though this discoverv
lear mng perspective is not universally shared. even by Logo devotees (Howe.
1981). it has had a pervasive influence over uses of Logo bv schools.

W hat type of instruction should be offered. and when in the course of pro-
gramming skill development specific concepts, methods, and advice should be
introduced are also critcal questions. Two central factors are implicated by
cognitive science studies. One is the current mental model or svstem of knowl-
edge that the student has available at the time of instruction. A second is the
goal-relevance of the probiem solving activity required of the student. On the
first point, there are no careful studies of the success of different instructional
acts as a function of a student’s level of understanding for programming akin to
those carried out by Siegler (1983) for such concepts as time, speed. and vel-
ocitv. At a more general level, Maver (1979, 1981) has shown that a concrete
conceptual model of a programming svstem aids college students:in learning
BASIC by acting as an advance organizer of the details of the language. With
the conceptual model, learners were able to assimilate the details of the pro-
gramming language to the model rather than needing to induce the -model from
the details.

On the second point, we would ask how compatible are the teacher’s instruc-
tional goals with children’s. goals and purposes in learning programming’
Recent developmental cognitive science and cross-cultural studies of cognition
(e.g. Brown, 1982; Laboratory of Comparative Human Cognition, 1983), have
shown that assessing task performance within a goal structure familiar to the
person is necessarv for determining the highest developmental level of an indi-
vidual's performances. For learning to program, goals of the programming
ac:ivity need to be contexted for the child in terms of other meaningful and goal-

Y
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direcred activities. connecting either to evervday world affairs, to other aspects
of the curriculum. or to both. Papert (1980) has described this as ““svntonic’
learning. For exampie, in our studies Logo classroom children found two
contexts especiallv motvating: creating videogames and simulaung conver-
sations. The most intensive and advanced programming efforts were in the
service of children’s goals such as these. Dewev's (1900) point about the import-
ance for any iearning that developments in the new skill serve as more adequate
means tor desired ends thus again receives new support. A similar emphasis
underlies the successtul use of electronic message and publishing svstems in
classrooms (e.g. Black. Levin. Mehan & Quinn, 1983; Laboratory of Compara-
tive Human Cognition, 1982). Embedding computer programming activities of
increasing cognitive complexity in children’s goal structures may promote
learning to program and support the transfer of what is learned in programming
to problem solving activites in other domains.

Our point throughout this section has been that programming is not taught
bv computers or by programming languages but by teachers, with the aid of the
supports of a programming environment. How effectively children of different
ages and with different background knowledge learn programming will be
contngent upon the capabilities of their teachers, the appropriateness of their
learning activites to their current level of understanding in programming, and
the features available in their programming environment. Studies to date have
not incorporated these considerations that a developmental cognitive science
perspective recognizes as central.

WHAT IS SKILLED PROGRAMNDMIING?

How to define and assess the constellation of skills which comprise program-
ming has long been a major problem for industrv (Pea & Kuriand. 1983b), and
is becoming so tor schools. We define the core sense of '‘programming’’ as the
set of activities involved in developing a reusable product consisting of a series
of written instructions that make a computer accomplish some task. Butin order
to move from definition to instruction. one must begin to unpack '‘program-
ming skill"", in contrast to the black box approach 1o programming prevalent in
schools. Promising moves in this direction have alreadv been provided by
careful analvses of what expert programmers 4o, and what types and organiz-
autions of knowledge they appear to have in memory that they access during
programming. This research strategy, characteristic of cognitive science, has
revealed significant general teatures of expert problem solving skills for diverse
domains.” such as algebra (Lewis, 1981), -chess (Chase & Simon. 1973).
geometry (Anderson. Greeno, Kline & Neves. 1981), phvsics (Chi. Feltovich &
Glaser, 1981: Larkin. McDermott. Simon & Simon, 1980), physical reasoning
(deKleer & Brown, 1981). and writing (Bereiter & Scardamalia. 1982), and it
is providing new insights into components of programming skill. In terms of
what a programmer does, a set of activities is involved in programming for either
novices or experts, which constitutes phases of the problem solving process (e.g.
Newell & Simon. 1972: Polva, 1957). These activities. which mav be invoked
at anv ume and recursively during the development of a program, are: (1)
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understanding the programming probiem. 1) designing or planning a pro-
gramming soiution: {3. wriung the programming code that impiements the
pian. and (4) comprehension of the written program and program debugging.
Ar extensive review of these cognitive subtasks of programming mav be found
in Pea and Kurland {1983b).

In terms of what an expert programmer «nows. findings on the knowledge
schemas. memory organizauons and debugging strategies which expert pro-
grammers possess are of particular interest. R=cent studies of programmers
characterize high-level programming skill as 1 giant assembiage of highh
specific. low-level knowiedge fragments (Atwood & Ramsev, 1978. Brooks.
1977). The design of funcrional *"programmer’s apprentices’” such as Barstow s
11979) Knowledge Based Program Construction. and Rich and Shrobe’s **Lisp pro-
grammer's apprentice’ (Rich & Shrobe, 1978: Shrobe. Waters & Sussman,
1979: Waters, 1982}, and the MENO Programming Tutor (Soloway, Rubin.
Woolf, Bonar & Johnson. 1982) has involved compiling a **plan library'" of the
basic programming “‘schemas.’’ or recurrent functional chunks of program-
ming code that programmers are alleged 10 use Observations of programmers
support these introspective analvses of "chunk;’" of programming knowledge.
Eisenstadt. Laubsch and Kahnev (1981) found that most novice student
programs were constructed from a small set of program schemas. and Jeffries
11982}, in comparing the debugging strategies of novice programmers and
graduate computer science students, found that experts saw whole blocks of
code as instantiations of well-known problems such as calculating change.
Solowav and colleagues (Bonar. 1982, Ehrlich & Soloway, 1983; Johnson.
Draper & Solowav. 1983: Solowav & Ehrlich, 1982: Soloway, Ehrlich, Bonar &
Greenspan. 1982: also see Kahneyv & Eisenstadt. 1982) postulate a mode! in
which programmers use recurrent plans as **chunks’’ in program composition.
and identified such plans in programs written by Pascal novices (e.g. the
“‘counter variable plan’"). But for developmental cognitive science we will need
studies of how students mentally construct such plan schemas from program-
ming instruction, experience, and prior knowledge.

A related aspect of programming skill is the set of rules that experts use to
solve programming problems, but again we lack genetic studies. In an analvsis
of a programmer's think-aloud work on 23 different problems, Brooks (1977)
demonstrated that approximately 104 rules were necessarv to generate the
protocol behavior. Similarly, Green and Barstow (1978) note that over a
hundred rules for mechanically generating simple sorting and searching
algorithms (e.g. Quicksort) are familiar to most programmers.

A third aspect of programming skill is the ability to build detailed *‘mental
models’" of what the computer will do when a program runs. An expert pro-
grammer can build dynamic mental representations,.or ‘‘runnable mental
models’" (Collins & Gentner, 1982) and simulate computer operations in
response to specific problem inputs. The complexities of such dynamic mental
models are revealed when skilled programmers gather evidence for program
bugs and sirmulate the program’s actions by hand (Jeffries. 1982). Not all
program understanding is mediated by hand simulation; experts engage in
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global searches for program organizational structure, guided bv adequate
program documentation, a strategyv akin to what expert readers do (Brown,
1983b. Brown & Smilev, 1978 Spiro. Bruce & Brewer. 1980). Hew individuals
develup such nich procedural understandings is currentlv unknown.

Expert programmers not only have available more knowledge schemas.
strategies. and rules applicabie to solving programming problems. but thew
percerve and remember larger “chunks’ of information than novices. The
ciassic Chase and Simon {1973 finding of short-term memorv span advantages
‘or chess experts over novices for meaningful chessboard configurations
but not tor random configurations has been replicated for programming
(Curus, Sheppard, Milliman, Borst & Love, 1979; McKeithen. Reitman.
Rueter & Hirtde, 1981: Sheppard, Curtis, Milliman & Love, 1979:
Schneiderman. 1977) For example, McKeithen er a/. (1981) found that experts
clustered xevword commands according to meaning ie.g. those tunctioming in
loop statements). whereas novices clustered according to a variety of surtace
ordinary language associations (such as orthographic similarity and word
length). intermediates falling between the two. Similarly, Adelson (1981) found
that recall clusters for experts were funcuonailv or “*deepiv’’ based: those of
novices were based on ““surtace " features of programming code. This is a major
developmental transformation. but we do not understand how it occurs
DiPersio. Isbister and Shneiderman (1980) extended this research by
demons:rating that performance . by college students on a program
memorization/reconstruction task provides a useful predictor of programming
test performances.

[t is also a widely replicated finding that expert programmers debug
programs in different wavs than novices (Atwood & Ramsev. 1978; Gould.
1975: Gould & Drongowski. 1974; Youngs. 1974). Jetfries (1982) found that
program debugging involves comprehension processes analogous to those for
reading ordinary language prose. Experts read programs for tlow of control
rexecution). rather than line-bv-line (as text). But how do programmers shift
from surtace to deep readings of programs as thev develop debugging skiils?

In conciusion, we make one important observarion. Expert programmers
know much more than the facts of programming language semantics and
svntax. However, the rich knowledge schemas. strategies. ruies. and memory
organizations that expert programmers reveal are directlv taught only rarelv
Manv students appear to run aground in programming for lack of such unden
standings. This does not mean that thev could not be taught. but for this to take
piace etfectivelv will require considerable rethinking of the traditional computer
science curricuium. These cognitive qualities appear instead to be a conse-
qguence of an active constructive process of capturing the lessons of program
writing experience for later use.

LEVELS OF PROGRAMMING SKILL DEVELOPMENT

To date, observations of levels of programming skill development {cf. Howe.
1980) have been extremelv general and more rauonally than empirically
derived. Accounts of novice — expert ditferences in programming ability among
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adulss coupled wuth observatons of children learning o program provias a
staring point tor devetoping a raxonomy of levels of programming proficiency
This raxonomvy can guide our research dy providing a developmental frame-
work within which to assess a student’s programming experuse and make
predictions tor tvpes of transfer bevond programming as a function of a
studen:'s level of expernse.

We believe that ar ieast four disunct levels of programming abilitv can be
idenntied that have disunct implications for what tvpe of skills might transter as
the resuit of their achierement. These levels represent pure (vpes and mayv not
be characterisuc of an individual. but thev capture some complex:iues in what
it means to develop programming skills. We view these levels onlv as quides
toward more adequate characterizations of the development of programming
abilinies. Further differentiauon will inevitably be required, in terms ot the
cognitive subtasks invoived in the levels, and refined sublevels.

Lziet I Program use-

A student tvpicallv learns te execute already written programs such as games.
demonstraucons. or compute--assisted instruction lessons before beginning
instruction in how 1o prograrn. What is learned here is important (i.e. what
specific kevs do. how to boot a disk. how to use screen menus), but does not
reveal how the program works or that a program controls what happens on the
screen. For many computer users this level is sufficient for effective computer
use (e g. for word processing. game plaving, electronic mail). But to be more in
control of the compurer and able to tailor its capabilities 1o one’s own goals.
some tvpe of programming is required.

From this level we would expect relatively little transfer bevond computer
use. but some transter on computer literacv issues. For example. given suf-
ficienty wide exposure to d:fferent tvpes of programs, a student would be
expected to know what computers are capable of doing. what thev cannot do.
and fundamental aspects of how they function in their everyday lives. As users,
then. children might learn when computers are appropriate tools to apply o a
problem.

Lecec [T Code generator

At this level the student knows the syntax and semantics of the more common
commands in a language. He or she can read someone else’s program and
expiain what each iine accomplishes. The student can locate **bugs’ preventung
commands from being executed (e.g. svntax errors), can load and save program
files to and from an external storage device, and can write simple programs of
the tvpe he or she has seen previouslv. When programming, the student does
very little preplanning and does not bother to document his or her programs.
There 1s no effort to opumize the coding, use error traps, or make the program
usable by others. A program created at this level might just print the student’s
name repeatedly on the screen or draw the same shape again and again in
different colors. The student operates at the level ot the individual command
and does not use subroutines or procedures created as part of other programs.
Thislevel of understanding of the programming process is sufficient for creating
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short programs. But to create more widely usetul and flexible programs. the
student needs to progress to at least the next level.

At level II. more specitic types of computer literacy related rranster would be
expected. Students should develop better skills for dealing with more sophisu-
cated software tools of the tvpe which are rapidlv permeating the business
world. Computer-naive users ot office information svstemns. even calculators.
have manv probiemse.g. Mann, 1975; Nickerson. 1981} and construct naive.
error-ridden menral models of how thev work (Maver & Bavman. 1981:
Newman & Sproull. 1979: Young. 1981). Knowledge characteristic of :his level
mav be required to attenuate these probiems. Sheil (1980, 1981a. b) provides
compelling arguments that most svstems require low level programming if the
user wishes to take advantage of system options, a basic competency he has
designated as '‘procedural literacv.”’

Whiie potental computer literacy transfer from low level programming
exposure seems a reasonable expectation., what tvpes of cognitive transfer
should ocur from this level of programming expertise is disputabl:. Our obser-
vations of children programming at this level suggest that some appreciation ot
the distinction between bugs and errors, degrees of correctness. and the value
of decomposing program goals into manageable subparts mav develop and
transfer to other domains. but that a student’s attention is tvpicallv so riveted to
simply geting a program to work that anv appreciation for more general
cognitive strategies is lost.

Level 111+ Program generator

At this level the student has mastered the basic commands and is beginning to
think in terms of higher level units. He or she knows sequences of commands
accomplish program goalse.g. locate and verifv a kevboard input: sort a list of
names or numbers; or read data into a program from a separate text file). The
student can read a program and explain its purpose, what functions different
parts of the program serve. and how the different parts are linked together. The
student can locate bugs that cause the program to fail to function properly (e.g.
a sort routine that fails to correctly place the last item in a list) or bugs that cause
the program to crash as a result of unanticipated conditions or inputs (e.g. a
division by zero error when the program is instructed to find the mean of a null
list). The student can load. save, and merge files and can do simple calls t0 and
from files from inside the main program. The student mav be writing fairle
lengthy programs for personal use. but the programs tend not to be user-
friendlv. While the student sees the need for documentation, he or she does not
plan programs around the need for careful documentation or clear coding so
that the program may be maintained by others. For this general level. one can
expect to identifv many sublevels of programming skill.

Within this level of expertise, students should develop some appreciation for
the process of designing a successiul program. Such understanding has poten-
tially powerful implications for their work in other domains. particularly if such
relationships are explicitlv drawn by the teacher for students, or exemplified in
other domains. However, it appears from our classroom observations and inter-
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views with teachers that for students to spontaneousiv transier computationz.
concepts or language constructs used 1n one area of programming :0 other pro-
gramming projects is a major a  mplishment. Ideas about when to use var:-
ables. or the vaiue of planning. as in designing program components so that
thev can be r=used in the future. and following svstematic conventions (such as
beqinning all graphics designs at their lower left corner) to make merging
components into programs easier are all important accomplishments at this
fevel that shouid not be taken for granted.

Lere J17 Sevtuars devetoper

Finaliv. at this level the student is ready to write programs that afe not or.ix
complex and take full advantage of the capabiliues of the computer, but are
intended to be used bv others. The student now has a full understanding of ail
the fearures of.a language and how the language interacts with the host
computer (e.g. how memory is allocated or how graphics buffers may be
protected from being overwritten). When given programs to read, the student
can scan the code and simulate mentally what the program is doing. see how the
goals are acaieved and how the programs could be better written or adaptec for
other purposes. Programs are now written with sophisticated error traps and
built-in tests to aid in the debugging process and to ensure the program is crash-
proof. Bevond writing code accomplishing the program’s objective, the student
can optimize coding to increase speed and minimize the memory requirec o0
run a program. To decrease the time needed to write programs, he or she draws
heavilv-on software libraries and programming utilities. Finally, he or she often

rafts a design for the program before generating the code. documents the
program fully, and writes the program in a structured. modular fashion so that
others can easxl_\ read and modify it. Major issues in software engineering at
high sublevels within this level of expertise are discussed by Thayer, Pyster and
Wood (1981). :

[t is at tnis level of programmmg sophistication that we would cxpect 10 see
most extensive evidence for cognitive transfer. The student can distance himself
or herself sufficiently from the low level coding aspects of program generation
to reflect on the phases and processes of problem solving involved. The issues of
programming which the student is concerned with at this level — issues of el-
egance. optimalizauon. efficiency. verification, proxabllm. and snle — begin
to transcend low level concerns with program execution, and may lead him or
her to consider wider issues. The need at this level to be conscious df the range of
intended users of programs forces the student to take the audience. fullv into
account. askill thathaswide applicability inmany otherdomains, suchaswriting.

Implicit in these distinctions between levels of programming skill and :heir
linking to predictions about tvpes of transfer is a theory of programming at odds
with the ''naive technoromanticism’ prevalent in educational computing.
While it is conceivable that even low levels of programming skill are sufficient
to produce measurable cognitive transfer to non-programming domains. we
contend that on the limited evidence available, this would be unlikely. Students
who can barely decode or comprehend text are not expected to. be proficient

—
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writers. Similariv. we doubt :hat students with a low level understanding of
programming and the skils that programming entais will write functional
programs or gain insights into other domains on the basis of their limited pro-
gramming skili.

COGNITIVE CONSTRAINTS ON LEARNING TO PROGRAM

Bevond asking what general cognitive characreristuics may be prerequisite 0
or substanavelv influence a child’s learning to program. some ask what
““developmental level”” children must be "‘at”’ in order to learn trom
programming experiences’ The concept of '‘developmental level” at the
abstract theoretical pianes of preoperatonal. concrete operational. and formal
operational inteilectual funcuoning has proved to be useful for instructional
psvchologv in understanding children’s abilitv to benefit from certain tvpes of
learning experiences (e.g. Inhelder, Sinclair & Bover, 1974). But the very
generaiity of these stage dezcripuons is not suitablv appiied to the development
of specific domains ot knowledge such as programming skills.

We have two reasons for not pursuing the development of programming skills
in terms of Piagetian *‘developmental levels' . First. there is strong evidence
that the development and display of the logical abilities defined by Piager is
importandy hinked to content domain (Feldman, 1980: Gardner, 1983; Piage:.
1972), to the eliciting context (Laboratory of Comparauve Human Cognition.
1983). and to the parucular experiences of individuals (Price-Williams, Gordon
& Ramirez, 1969). Since it 1s not apparent why and how different materials
affect the “*developmental level’” of children’s performances within Piagetian
experimental tasks. it 1s not feasible to predict relationships between learning to
program and pertormances on the Plageuan tasks. Our second objection is that
learning to program has neither been subjected to developmental analvsis nor
characterized in terms ot 1ts component skills that mav develop, although such
analvses are necessarv for artculanng measures that indicate the avaiability
and developmentai status of these skills for particular learners.

While no research has been directlv aimed at defining the cogniuve prerequi-
sites for learning programming, at least six factors are frequenty mentioned:
mathematical abilitv. memory capacity, analogical reasoning skills, conditional
reasoning skills. procedural thinking skills., and temporal reasoning skills.
These cogniuve abilittes, each of which have complex and well-researched
developmental histories, are presumed to impact on learning to program. and
could be promising directions for research.

Mathematical abriaty

Bevond “'general inteiligence’’. programming skill is said to be linked to
general mathemancal ability. Computers were first developed to help solve
difficult mathematical problems. Although many computer uses today are non-
mathematical (e.g. data base management. word processing), the notion
persists thar to program one must be mathematically sophisticated. Media
accounts of children using computers in schools have perpetuated the belief that
programming is the province of math whizzes. Although we doubt that math
and programming abilities are related once general intelligence 1s factored out.
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mathematical abilitv cannot be ruled out as a prerequisite to the mastery of
certain levels of programming skills.
Peviessing f1oacs

Programming 1s often a memorv-intensive enterprise requiring great
: sncentration and the akbility 1o juggle values of a number of parameters at a
ume. [ndividual ditferences in processing capacity are thus a likely candidate
ter influsncing who becomes a good programmer. Forward and backward span
tasks. and more recentiv devejoped transiormauonal span measures (¢f Case &
Kuriand 1980: Case. Kurland & Goidbe:g. 19821 assess how much information
one can coordinate at a given moment, and appear to index processes basic to
learning. Pertormances on such tasks have reliably correlated with general
intelligence. Piagetan developmental level. and ability to learn and use
problem soiving strategies {e.g. Hunt, 1978).
Analoowca: reasoning

A srudent mav have background knowledge and capacities relevant to
programming and ver neither connect them to the programming domain, nor
rranster knowledge acquired in programming to other domains. This “‘access”™
of knowledge is absolutelv fundamental to learning and problem solving
throughout life fe.g. Brown. 1982). Transfers of knowledge and strategies, both
into’ and “"out of " learning to program may depend on analogical thinking
skills. Tasks designed to measure abilities for engaging in analogical thinking
{e.g. Gick & Holvoak. 1980: Sternberg & Rifkin, 1979) mav predict level of
programming development and transfer outcomes. Maver (1975, 1981) argues
that students learn programming by comparing the flow of control intrinsic to
computational devices to that of phvsico-mechanical models that thev already
possess. Also. duBoulavand O Shea (1976 and du Boulay ezal. (1981) have suc-
cesstullv used extensive analogical modelling to explain computer functioning
to novice i2-vear-old programming students.
Cond:izonal reasoning

Working with condinonal statements 1s a major part of programming, since
thev guide the operation of loops, tests, input checking. and other programming
functions. It is thus reasonable to predict that a student who has sufficient
understanding of conditional logic. the various *'if . . . then'’ control structures
and the predicate logical connectives of negation. conjunction, and disjunction,
will be a more successful programmer than a student who has trouble
monitoring the flow of control through conditional statements.
P-oceaural tarnking

Several kinds of quasi-procedural* evervday thought mayv influence how easily

* What s “"quasi-procedural’’ rather than ““procedural’ about giving and following task
instructions. directions. and recipes, s that unlike procedural instructions in a computer
program, there is often amébiguity in the evervdav examples, such that the instructions. directions.
and recipes are not alwavs unequivocal in meaning. They are also not constrained by stnct
sequerttality. One many often choose to bypass steps in a recipe or set of instructions, or reorder
the steps. Neither option is available in the strict procedurality of programmed instructions. Yet
similarities between the evervday cases and programming instructions are compelling enough o0
make their designation as ‘"quasi-procedural”’ understandable.
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a learner masters the ““flow ot control’’ procedural metaphor central o
understanding programming, including giving and following complex
instructions (as in buiding a model), wriung or following recipes, :and
comcocting or carrving out directions for travel. Presumablv. learners more
familiar with these linear procedures, analogous to the tlow of control for
computer operarions expressed as instructions in a computer program.. will
more readilv come to grips with the “*procedurai thinking'’ touted as a central
facet of programming experuse (Papert. 1980:; Sheil. 1980). However: the
development of procedural thinking has been little studied to date. .

Temporal reasoming

The activity of temporal reasoning is related to procedural thinking, but with a
disunct emphasis. Creating and comprehending programs requires an
understanding of the temporal logic of sequential instructions: ‘it is the
intellectual heart of learning how to program’ (Galanter, 1983, p. 130). In
teaching programming, Galanter savs: " The centr-] theoretical concept that
guided this éffort was that classical forms of spacial - geometric - pictorial
thinking must be augmented. and occasionally replaced,” by
temnporal - imaginative - memorial logic. The child must learn to substitut_e an
inner temporal eve for the outer spacial eve’” (p. 163). Going somewhere in the
program nex:. running one subroutine or procedure 4¢fore another, ensuring one
counter does not exceed a certain value unt:/ another operation is performed —
these fundamental operations all require temporal understanding. Yet under-
standing temporal terms 1s a major developmental achievement, a challenge for
children vounger than 7 to 8 vears (e.g. Friedman, 1982. Piager, 1969).
Fururity also presents complex conceptual problems for the planning activities
involved in programming, such as imagining outcomes of the possible worlds
generated by program design opuons (Atwood, Jeffries & Polson. 1980), or the
"*symbolic executions'” while writing programming code (Brooks, 1977).

In sum, the cognitive constraints on developing programming skills are
currently unknown. Although a developmental cognitive science persécctjve
predicts that a student’s attainable level of programming skill may be con-
strained bv cognitive abilities required in programming. no studies relate level
ot programming skill to the abilities that we have described. Children may have
conceptual -and representational difficulties in constructing dvnamic fpental
models of ongoing events when the computer is executing program lines that
constrain their level of programming skill. Also, svstematic but “‘naive’’ mentai
models or intuitive epistemologies of computer procedural functioning mav
initially misiead children’s understanding of programming. as with' adult
novices. Since learning to program is difficult for many students, there is a
serious need for research findings that will guide decisions about tailoring pro-
gramming instruction according to a student’s relevant knowledge p'rior to
learning to program.

EVIDENCE FOR COGNITIVE EFFECTS OF PROGRAMMING

We now return to evidence for the claims for broad cognitive impacts of pro-
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zramming experience, with greater awareness of the complexities of iearning to
nrogram and issues of transter. {n sum. there is little evidence tor these claims.

Dramatic accounts have been offered of how some school-aged children’s
thinking about their own abilities to solve problems is transformed through
learning to program (e.g. Paperteral., 1979 Wart, 1982; Weir & Warr, 1981;
Werr, 1981 Important social interactional changes have been demonstrated in
ciassrooms where children are learning Logo programming (Hawkins,
Sheingold. Gearhart & Berger. 1983). and for some children programming is an
important and deeplv personal intellectual acuvity. Similariv. many teacher
reports focus on social and motvational rather than cognitive aspects of this
experience : Sheingold. Kane. Endreweit & Billings. 1981, Wart, 1982). Itis not
vet clear what the cognitive benefits of programming for such children mav be
in terms of the transfer claims reviewed earlier.

On the cogniuve side. Ross and Howe (1981) have reviewed ten vears of
relevant research to evaluate Feurzeig ¢ al.’s (1969) four general claims on the
cognitive impacts of programming. The relevant research has been with Logo.
and in nonrepresentative private schools. Below we summarize Ross and
Howe's review, and integrate summaries of other studie: relevant to these
clatms. In terms of our account of levels of programming skiil and expected
transfer outcomes from them, we must caution that studies so far. including our
own, have an important Iimitation. Theyv have all locked at what we have
designated as high level or cognitive transfer outcomes, expected to emerge only
at the higher levels in our account of programming skill. whereas the levels of
programming attained bv the students in these studies were low because thev
onlyv did six weeks to a vear or so of programming. In other words. there has
been a mismatch of “"treatment’” and transfer assessments because of a failure
to appreciate the different kinds of transfer to investigate and their likelv linkage
to different levels of programming skill. For example. there are no studies that
have assessed the low.level transfer or application of programming concepts
such as "'variable'" in different types of programming within a language (e.g.
graphics versus list processing in Logo). or from one programming language to
another. or of computer literacy outcomes.

First, there are no substantial studies to support the claim that programming
promotes mathematical rigor. In a widely cited study by Howe. O'Shea and
Plane (1979). researchers who were highly trained programmers spent two
vears teaching Logo programming to eleven ll-vear-old bovs of average or
below average math ability. The first year thev studied Logo. the second math
with Logo. each bov working for one hour per week in a programming class-
room. After two vears, when Logo students were compared to non-
programmers (who on pretest had significantly better scores on the Basic
Mathemarics Test. but equivalent scores on the Math Artainment Test), they
had improved in Basic Math enough to eliminate the original performance gap
with the control group. but fell significantly behind on the Math Attainment
Test. Such global math score differences do not support the *'rigor’’ claim. The
oftcited finding is that the Logo group learned to argue sensibly about
mathemnatical issues and explain mathematical difficulties clearlv, but the
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tinding is based onlv on differences in ratings of Logo and control students in
teacher quesuonnatres (Howe #r al.. 1979). The reliabilitv of such ratungs is
questionable. since the math teachers should have been blind 10 which strudents
tearned Logo.

Secondly, there are no reports demonstrating that programming aids
children’s mathematical exploration. Reports by Dwver (1975} for chiidren
learning BASIC, and Howeer 2/, (1979). Lawler (19803, and Paperteral. (1979
for those using Logo. do document children’s goal-directed exploration of
mathematical concepts such as “*variable’’ on computers. Though encourag-
ing, since math expioration and ‘‘mathland’’ play are likelv to support math
learning, studies have not shown any effects of *‘math exploratton™ during
programming outside the programming environment.

Third, although Feurzeig et al. (1969) suggest that the twelve 7- to 9-year-old
children to whom they taught Logo came to ‘‘acquire a meaningful under-
star “ing of concepts like variable, funcuon and general procedure’ . they
prc e no evidence for the claim that programming helped the children gain
insight into these mathematical concepts.

Finally, we ask whether programming has been shown to provide a context
and language that promotes problem solving bevond programming. Papert 2
al. (1979) conducted a Logo project with sixth graders for six weeks, and
reported anecdotes that children engage in extensive problem solving and
planning activities in learning programming. Whether such activities had
cognitive effects bevond programming was not studied. However, Statz (1973}
carried out a study to assess this claim. Logo programming was taught to sixteen
9- t0 11-year-old children for a vear. Statz chose four problem solving tasks with
intuitive, il-specified connections to programming activities as transfer
outcome measures. The experimental group did better on two of these tasks
(word puzzle and a permutation task), but no better on the Tower of Hanol task
or a horserace problem that Statz had designed. She interprets these findings as
mixed support for the claim that learning Logo programming promotes the
development of more general problem solving skills.

Soloway, Lochhead and Clement (1982), in reaction to the finding (Clement.
Lochhead & Monk, 1979) that manv college science students have difficulty
translating simple algebra word problems into equations. found that more
students solve such problems correctly when they are expressed as computer
programs rather than as algebraic equations. Thev artribute this advantage to
the procedural semantics of equations in programs that manyv students lack in
the algebraic task. This effect is much more restricted than the increments in
general problem solving skill predicted by the cognitive transter claims.

A very important idea is that not only computer programs, but one’s own
mental acuvities can lead to “*buggy’’ performances and misunderstandings.
Tools for diagnosing different tvpes of *"bugs’’ in such procedural skills as place-
value anithmetic (Brown & Burton, 1978; Brown & VanLehn, 1980; VanLehn.
1981) have resulted from extensive programming efforts to build ‘*bug diag-
nostic systems’’ (Burton, 1981). One may argue that the widespread recog-
nition that svstematic “*bugs’’ may beset performances in other procedural
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skills. such as high school algebra (Carrv, Lewis & Bernard. 1979: Mazrz, 1981)
reflects a kind of transfer bevond programming. No evidence indicates that
programming students demonstrate such transfer.

Planning in advance of problem solving, and evaluating and checking
progress in terms of goals. are important aspects of a reflective attitude to one's
own mental activities (Pea, 1982). We have seen that the development of
planning abilities is one major predicted cognitive benefit of learning to
program. We therefore developed a transfer task for assessing children’s
planning (Pea & Hawkins, 1984). We reasoned that a microgenetic method
(Flavell & Draguns. 1957) allowing children to develop multiple plans was
comparable to the rounds of revisions carried out during programming, and
would allow for a detailed studv of planning processes. Children planned aloud
while tormulating. over several attempts, their shortest-distance plan for doing
a set of familiar classroom chores, using a pointer to indicate their routes. We
gave the task twice. early and late in the school vear, to eight children in each
of two Logo classrooms (8- and 9-vear-olds; 11- and 12-year-olds), and w0 a
control group of the same number of same-age children in the same school.
There were six microcomputers in each classroom, allowing substanual invoive-
ment with programming.

As in related work on adults’ planning processes by Goldin and Hayes-Roth
(1980: also Haves-Roth & Haves-Roth, 1979; Hayes-Roth, 1980), our product
analvses centered on *'plan goodness’’ in terms of metrics of route efficiency,
and our process analvses centered on the types and sequencing of planning
decisions made (e.g. higher level executive and metaplanning decisions such as
what strategic approach to take to the problem, versus lower level decisions of
what route 10 take between two chore acts). Results indicated that the Logo
programming experiences had no significant effects on planning performances,
on anv of the plan éfficiency or planning process measures (Pea & Kurland,
1983a). Replications of this work are currently under way with children in other
schools.

CONCLUSIONS

As our society comes to grips with the information revolution, the ability to
deal effectively with computers becomes an increasingly important skill. How
well our children learn to use computers today will have great consequences for
the society of tomorrow. The competence to appropriately apply higher
cognitive skills such as planning and problem solving heuristics in mental
activities both with and without computers is a critical aim for education. As one
contribution to these issues, at the beginning we argued for and then throughout
documented the need for a new approach to the pervasive questions about the
cognitive effects of computer programming. This approach, which we charac-
terize as developmental cognitive science, is one that does not merely adopt the
common perspective that computer programmers are all like adults, but is
instead geared to the learning experiences and developmental transformations
of the child or novice, and in its research would be attentive to the playing out
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of those processes of learning and development in the instructional and pro-
gramming environments in which the novice gains expertise.

So can children become effective programmers and does ‘‘learning to
program’’ positively influence children’s abilities to plan effectively, to think
procedurally, or to view their flawed problem solutions as **fixable’" rather than
“wrong''? We have shown that answers to these questions depend on what
“‘learning to program’’ is taken to mean. We reviewed cognitive science studies
revealing that programming involves a complex set of skills, and argued that the
development of different levels of programming skill will be highly sensitive to
contexts for learning, including processes of instruction, programming environ-
ment, and the background knowledge the student brings to the task. We found
few studies that could inform this new understanding, although many prom-
ising research questions were defined from this perspective.

We dismissed two prevailing mvths about learning to program. The myth
embodied in most programming instruction that learning to program is
‘*learning facts’" of programming language semantics and syntax is untenable,
since it leads to major conceprual misunderstandings even among adult pro-
grammers, and since what is taught belies what cognitive studies show good
programmers do and know. These studies have direct implications for new
content and methods for programming instruction that are under development
in several quarters. Studies of learning to program and of transfer outcomes are
not vet available for cases where instruction has such nontraditional emphases.
e.g. on task analysis and problem solving methods that take advantage of what
we know expert programmers do. We also delivered arguments against the
second myth, of spontaneous transfer of higher cognitive skills from learning to
program. Resistance in, learning to spontaneous transfer, and the predicted
linkages of kinds of transfer bevond programming to the learner’s level of pro-
gramming skill were major points of these critical reviews.

So when thinking about children learning to program. what levels of skills can
be expected? Reports of children learning to program (Howe, 1981; Levin &
Kareev, 1980; Paperter al., 1979; Pea, 1983), including the learning disabled,
the cerebral palsied and the autistic (Watt & Weir, 1981; Weir, 1981), suggest
that most children can learn to write correct lines of code (level Il in our
account). This ts no small achievement since writing grammatically correct
lines of code is all many college students of programming achieve in their first
programming courses (Bonar & Soloway, 1982). This level of programming
skill may depend on the same abilities necessary for learning a first language.

However, for programming skills that are functional for solving problems.
‘‘grammatical’’ programming alone is inadequate; the student must know how
to organize code and *plan schemas’ to accomplish specific goals. Develop-
ment to these higher levels, where one becomes facile with the pragmatics of
programming, may require strategic and planful approaches to problem solving
that are traditionally considered ‘*metacognitive,”’ and more characteristic of
adolescents (Brown et a/., 1983) than primary school children. Further, the
experience of the child in an elementary or junior high school program who
spends up to 30 to 30 hours per year programming is minuscule when compared
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to the 3000 hours which Brooks (1980) estimates a programmer with only three
vears of experience has spent on programming. Since it appears unreasonable
1o expect children to become advanced programmers in the few vears available
to them in most school programming courses. our educational goals should be
more realistic and achievable. We do not currently know what levels of pro-
gramming expertise to expect. but in our experience children who are pro-
gramming experts are not common. There are thus large gaps between what is
meant by learning to program in the computer science literature, and what
“learning programming’’ means to educators interested in exposing this
domain to children. These discrepancies should temper expectations for the
spontaneous effects of children’s limited programming experiences in school on
their ways of thinking. at least for how programming is taught (or not taught)
todav. Whether research on learning to program with richer learning experi-
ences and instruction will lead to powerful outcomes of programming remains
to be seen. In place of a naive technoromanticism, we have predicted that the
level of programming abilities a student has mastered will be a predictor of the
kinds of concepts and skills that the student will transfer beyond programming.
Althcugh findings to date of transfer from learning to program have not been
encouraging, these studies suffer in not linking level of programming skill to
specific outcomes expected. and the critical studies of *‘low level' transfer
expected from level I and II programming skills remain to be carried out. Even
more importantly, with thinking skills as educational goals. we may be best off
providing direct guidance that teaches or models transfer as a general aspect of
highly developed thinking processes (Segal, Chipman & Glaser, 1984: Smith &
Bruce, 1981). For these purposes programming may provide one excellent
domain for examples {Nickerson, 1982; Papert, 1980).

Throughout, we have emphasized how developmental research in this area is
very much needed. Wge need empirical studies to refine our characterizations of
levels of programming proficiency, extensive evaluations of the extent of
transfer within and bevond programming in terms of different programming
and instructional environments, and studies to help untangle the complex
equation involving cognitive constraints, programming experience, and pro-
gramming outcomes. We believe all of these questions could be addressed by
careful longitudinal studies of the learning and development process by which
individual students become proficient (or not-so proficient) programmers, and
of the cognitive consequences of different levels of programming skill. Such
studies would provide far more relevant information for guiding the processes
of education than standard correlational studies. A focus on process and the
types of interactions that students with different levels of entering skills have
with programming and instructional environments is critical for understanding
how developments in programming skill are related to other knowledge. We are
optimistic that others will join in work on these questions, for progress must be
made toward meeting the educational needs of a new society increasingly
empowered by information technologies.
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