D Ciidian

Kcrl -\nd C-Nter !' Or Children

Technoioqv Bann

This paper cnticallv examines current thinking about whether i e a n m q computer programming promotes the development o i general higher mental functlons \.\'e ,now hhuu ?ne lvailablc evidence. and the underiymg assumptions about the process of learning to program. fail to ~a d r e s s :his issue adequate!^ O u r analvsis is based an a deveioprnentai cynirlvr science perspecttve on learning ro proqram. incorporatine developmenrai and coqnitive science consider~rions ot' the mental activities involved in programmirig It nighlights the imponance tor future research oilnvestiqatinq students' interactions with instructional and programming contexzs. deveioprnentai transformations of their ?roeramming skills. and their background knowledge and rrasoninc ~b ~i l c t r s .

There are revolutionar). changes afoot in education, in its contents as well as its methods. Ct'idespread computer access by schools is at the heari-of these changes. Throughout the world. but particularly in the U.S..A., educators are using computers for learning activities across the c u r r i c ~l u m . rven designing their own sofr:vnre. But virtually all educators are as anxious and uncerwr, about these changes and the directions to take as thev are optimistic about their ultimate effects. "Now that this admittedly powerful symbolic device is in our schools," they ask. "what should we do with I [? " CVe be1iel.e that educators and social scientists are at an important watershed in .American education. Important new opponunities abound for research and development work that can influence directly the quality of education. Hard questions are emerging about the desiga of educational activities that integrate the computer with other media. T h e volatile atmosphere of choices for schoois (and parenrs), as new hardware and software appear daily. calls for principles and knowledge that educators can use, derived from svstematic empirical studies, in laboratories and classrooms. of how children learn with these new information technologies. We also need theoretical debates on the aims and priorities for education in an informarlon age. Gt'e believe that a developmenti

We wouid like to acknowiedqe with thanks the Spencer Foundation and :he Nattonal Institute of Education (Contract +00-83-OO!6) ior supponing the research reporred here, and ior p r o v ~d i ~q the opporrunitv to write this essav. The opinions expressed do nor necessanlv reflect the posltion or poiicv of these institutions and no oificial endorsement should be ~nicrred. Jan Hawkins.

approach to the understanding of information technologies will berequired. one that incorporates the new insights o f coenitlve science. and that ?ill guide both research on. and d e s i p of. computer-based learning environments. Such a dmipline of de\.elopmen:al coenirive science would merge t h e o ~ and practice to dovetail the symbolic powers of human thinking with those of the computer in the service of human de\. elopment. In this essav our goals are considerably more modest, but nonetheless a timel\-subrask of the larqer enterprise. O u r aim is to examine two widespread beliefs about the mental activities engaged by programming a computer and their expected cognitive and educational benefits. T h e two beliefs are poiar opposites and neither is acceptable. Together, they express the two predorninant tendencies in thinking about learning to program today.

T h e first bel'ief is linked to an atomistic, behaviorist tradition that views learning narrowly. This is the traditional and deeply-engrained idea that learning is simply an accumulation of relatively autonomous "facts". O n this vie\\ .. what one learns when learning to program is the vocabulary of commands (primitives) and syntactic rules for constructing acceptable arrangements of commands. This belief underlies most programming instruG:tion. Its other facet is that what one learns when learning programming is just a programming lanquage.

T h e contrasting belief. in part a reaction to the first belief. is that through learning to program. children are learning much more than programming, far more than programming "facts"-It is said that children will acquire powerfully general higher cognitive skills such as planning abilities. problem-solving heuristics. and reflectiveness on the revisionary character of the problem solving process itself. This belief. although new in its application to this domain, is an old idea in a new costume which has been worn often before. In its common extreme form, it is based on an assumption about learningthat spontaneous experience with a powerful symbolic system will have beneficial cognitive consequences, especially ior higher order cognitive skills. Similar arguments have been offered in centuries past for mathematics, logic. writing systems: and Latin1e.g. see [START_REF] Bruner | S ~u d ~c s In C o g n l t ~~ Growth[END_REF]Cole & Griffin, 1980; Goody, 1 9 7 i ; [START_REF] Olson | technolop and ~ntcllect In Thr .laturc of Infrlilgmcr[END_REF][START_REF] O N G | t n a q ~. T l u Ttchnologizing of thr U b r d . Xlethucn[END_REF]h'ygotsky, 1978).

T h e intuitively plausible claims for the cognitive benefits of programming have broadened in scope and in public attention. Although evidence does not support these claims as yet, their presumed validity is nonetheless affecting important decisions in public education, and leading to high expectations for outcomes of programming in the school and home. In the current climate of uncritical optimism about the potential cognitive benefits of learning to program, we run the risk of having naive "technoromantic" ideas become entrenched in the school curriculum by affirmation, rather than by empirical verification through a cyclical process of research and development. Already ar the pre-high school level, programming is taught primarily because of its assumed impacts on higher cognitive skills, not because proficiency in programming is itself an educational goal. This assumption takes on added significance since several million pre-college age children in the U.S. A. are already Learning computer programming 130 receiving instruction in computer programming each year, and France has recently made programming compulsory in their precollege curriculum, on a par with mathematics and native language studies. L\..ith the rapid rise in the teaching of programmine: i t has become critical for decision-makers in education to understand how programming is learned, what may be the cognitive outcomes of learning to program. what levels of programmine skill may be required to obtain different types of outcomes, and what the relationships are between the cognitive constraints on learning to program and its c o p i t i v e consequences. Research directly addressing these questions is only beginning.

Throughout m r paper we will highlight major issues and fundamental complexit~es for researchers in designing studies responsive to these critical questions. W e discuss these issues in terms of a hybrid developmental frame-~%.ork. incorporating cognitive science and developmental psychology, and review relevant research in cognitive science and its cognate disciplines. This synthesis recognizes the inadequacies of either an extreme knowledge-building account oilearning to program, o r the naive technoromanticism that postulates spontaneous higher order cognirive skills as outcomes from programming experiences. Although claims about the spontaneous cognitive impacts of programming have an intuitive appeal, we show them to be mitigated by considerations of factors involved in learning and development. W e also demonstrate how. embodied in practice. the fact-learning approach to programming often leads to incomplete programming skills. Cognitive studies of what expert programmers know, the level of the student's programming skills, the goals and purposes of those learning to program, the general difficulty of transferring * 'powerful ideas" across,domains of knowledge, all contribute to our rejection of these two views. Programming in the classroom ma-r fundamentally alter the ways in which learning and cognitive development proceed. But we must examine whether such bold claims find, or are likely to find, empirical support.

Ll'e have felt throughout our analysis of these issues that a developmenral persp.ective that incorporates the seminal work in the last decade of the interdisciplinary field of cognitive science kill illuminate our understanding-of the potentialities of information technologies for advancing human cognition. Fundamental contributions to thinking about and concretely establishing the educational roles of information technologies could be gained from the synthesis of these two important theoretical traditions.

Developmental theorists such as [START_REF] Piaget | Thc Ps~vchoiog). of the Ehild[END_REF]. Ct'erner (195;) and C'ygotsky (1978) have provided accounts of developmental processes with profound implications for the roles of technologies in education. O n all these views, cognirive de\,elopment consists not of an accumulation of facts. but o i a series of progressive reorganizations of knowledge driven by the child's active engagements with physical and social environments In these views, learning (i.e. the accumulation of new knowledge) is important for driving the developmental process. but at the same time is mediated by the current developmental capabilities of the learner.

In the field of cognitive science during the last decade, researchers in the constituent disciplines of cognitive psycholop. computer science, lingu~stics. anthropolop, and have begun intensive collaborative research projects (e.g. Gentner 8: Stevens, 1983;Greeno, Glaser & Newell, 1983; S o r m a n . Cognitive science shares with the older tradition of developmental psvchology a concern with how new learning must be integrated with prior knowledge, but i t transcends earlier work in analyzing problem solving and learning processes for specific knowledge domains, and finds little role for general structural principles invoking "stages".

For a student interacting with a programming environment. for example, a developmental perspective would indicate the importance of studying how these students' current knowledge of the computer system is organized, how they regulate and monitor their interactions with it, and how their knowledge and executive routines affect the ease or pace of acquisition of abilities to use new programming constructs. .Also, i t would investigate the students' exploration of the system. and the ways that they are able to assimilate it to their current letre1 of understanding and to appropriate i t in terms of their own purposes. including play and competition. Learning to use the programming language may require successive developmental reorganizations not only of the students' naive understanding of the language being learned, but also of the computer system as a whole. Complex cognitive changes are unlikely to occur through either spontaneous exploration or explicit instruction alone, since students must be engaged in the task in order to interpret the new concepts. This perspective suggests that rather than arguing, as many currently are, over global questions such as which computer language is "best" for children, we would do better in asking: how can we organize learning experiences so that in the course of learning to program students are confronted with new ideas and have opportunities to build them into their own understanding of the computer system and computational concepts?

I n complementary terms, cognitive science raises such important questions as: How can common systematic misconceptions in particular domains of knowledge be diagnosed and remediated through either informal or formal learning activities? For example, what does a student specifically need to know in order to comprehend and use expert strategies in designing a computer program? M'hat component mental processes are engaged in programming activities?

The synthes~s of developmental cognitive sciezce focuses on diagnosicg [he mental models and mental processes [hat children as well as aduit novices brlnq to understanding computer programming. since these models and processes jer..e ;is [he basls t'or understanding transt'ormations of their svstems of knowledge as they learn. Beyond the tl;picaily agenetic cogn~tive science, a developmental cognitive science would ask: How are the various component m e n d processes invoived in expert programming constructed and recontipred throu5hout ontogenesis. ar.d accessed and organized d u n n g problem sol\.~ns episodes? Through whar processes of reorganization does an existing system oi thouqht become more highly developed' Through what learning activities !n what kinds of environments does the novice ?rogrammer develop into an expert? Developmental cognitive science asks how the mind and its ways of knowing are shaped. not only bv biological constraints o r physical objects, but by the available cultural interpretive svstems of social and educationai ir-teraction. .As we shall see, the currently available research is impoverishej in response to these quest1oi:s. but current progress in understanding rhe development oirnathematical and sciendic thinking (reviewed. for exampie, in Sieqler. 1983) leads us to be opt~mistic about the prospects for comparable work or, !he psychoioep of programming.

T h e critique of the literature on iearning to program that we present below has been strongly iniluenced by this developmental cognitive science perspective. Ct'e do not adopt the usual computer programming perspective assuming that all programming students are adults or have the same goals as mature learners. Instead, the perspective is geared to the learning experiences and developmental transformations of the child or novice adult in interactive environments. T h e kinds of preliminam questions that we ask from this perspective in addressing the question: "\\'ha! are the cognicive effects of learnirig !o program?" lead us to draw on studies from diverse fields that we see as relevanc to a developmental cognitive science of programming, and we have cate~orized them according to the topics of "\.\'hat are the developmental roies of contexts in learning to program?", "N'hat is skilled programming'". "\\'hat are the levels of programming skill development?". and "L%'hat are the cognitive constraints on learning to program?". First, however. we will begin by examinins the bold claims abouc the effects of learning :o program.

CL.\I.LlS FOR C O G N I T I t ' E EFFECTS OF LEARSING TO PROGR.\lI

Current claims for the effects of learning programming upon thinkine are best exemplified in the writings of Papert and Feurzeig (e.g. Feurzeig. Papert. Bloom, Grant Sr Solomon. 1969; Feurzeig. Horwitz & Nickerson. 1981: Goldstein Sr Papert. 1977, Papert. 1973a. 1972b. 1980: Papert. Lt'art. DiSessa Sr Lt.eir. 1979) concerning the Logo programming language. although such claims are not unique to Logo jcf. hlinsky, 1970).

Ear!) claims

Two key catalysts underlie beliefs that programming will discipline thinking.

The :irs: 1s from arr:~icia! intelligence. hherr cor.strucur,g programs [ha: mode! !he compiexit~es 01' h u m ~n coenltlon 1s v i e ~, e d as a wav o i understandin5 rhat beha\.ior In espilciriy teach~ng the compuLer to do &mething. 11 is contended thar you learn more about ,:our own thinking. By analoqv -. (Papert. 19i'7at. programming students wouid learn about problem solving processes by the nrcessariiv explicit nature or' programming, as they aniculate assumptions and precisei~. spec~fv steps to their problem solving approach. T h e second miluence 1s the widespread assimdation ot'constructivist epistemoioeies of learn~ng, mosr f'arn~iiar rhrough P ~a g e r ' s work. Papert (19;Z.a. 1980') has been 3n outspoken advocate ot' the Plagetian account of knowledee acquisition through self-ptded probiem joiv~ng experiences. and has e.utenslve!y mfluenced conceptions of che bene!its o i learnins programming. through "a process that takes place without deliberate or okganized teachme" I Papert. 1980. p. 8).

Ross and Howe (!981. p. 1431 have summarized Feurzeig ct al.'s (1969) four claims for the expected cognitive benefits of learning programming. Initiallv. most ourcomes were postuiated for the development of mafhemftcal thought: "(1 i that prograrnrnlng pro\.ides some justification for, and illustration of. tbrmai ma:hemat~cal rigour; (3) that programming eFcourages children to study mathematics through expioratory acrivitv; (3) that piogramrning gives key insight into certain mathematical concepts: and (1) that programming provides a context for problem solving, and a language with which the pupil may describe his own problem solving."

Paperr (1973b) a r p e d for claims (2) to (4) in noting that writing programs o i Logo turtle geometry is a "new piece of mathematics with the property that i t allows iiear ~~S C U S S Z O R and simpif modeis of heuristics [such as debugginel that are fogg! and confusing for beginners when presented in the context of more traditionai eiementary mathematics" (our emphasis). H e provides anecdotes of children "spontaneously discovering" phenomena such as the effects that varyine numerical inputs to a procedure for drawing a spiral haye on the spiral's shape. He concludes that learning to make these "small discoveries" puts the child "closer to mathematics" than faultlessly learning new math concepts.

Il'e find expanded claims for the cognitive benefits of programming in a new generation of theoretical writings. In . t surrounding Logo, and arques tha: cognitive benefits will emeree from takinq "powerful ideas" inherent in programming such as recursion and variables) in "m~nd-size bites" (e.g. procedures:). O n e of ;he more dramatic claims is that if children had the extensively different experiences in thinking about mathematics that Logo allows: "I see no reason to doubt that this difference could account for a gap of five years o r more between the ages at which consenation of number and combinatorial abilities are acquired" (p. 175). Paper: is referring to extensively replicated findings of a large age gap between the early consemation of number (near age 7) and later combinatorial abilities (e.g. constructing all possible pairings of a set of different colored beads, near age 1 2) .

Feurze:g ct ai (iOS!! prov:de the most cxtensl\e se: of cognltibe outcomes eupected from lertrnlng :o program Thev a r p e [ha: "the teaching of the se: of ionce2ts re!ated to programming can be used to p r o v ~d e 3 natural foundation :or the t e ~c h l n g of mathematics. and Indeed for the notlons and ar: of log~cal . .

m d rigorous thlnking in qenerai

Learning to program 1s expected to brmg bout se..en iLndamen;d changes in thoclght l i riqorous :hinking. precise e s p r ~s s i o n . recogn~zed need to make assurnpr!,,ns explic:~ (since computers run speci~ic algorithms~:

i 2) understandinq of general concepts such as formal procedure. variable. hnc:ion. and rransforma:ion !since these are used in programming):

(3) greater facility with the art of "heuristics", explicit approaches to problems usefui for solving problems in an-v domain, such as p l a n n i n ~, finding related probiem, soiving the probiem by decomposing it into parts. e x . isince "programming provides highiy moti\.ated models for the principle heuristic concepts"');

1 -1 1 the qeneral idea tha! "debugqmg" of errors is a "constructive ar,d 2iannable actlv~ty" apphcable :o a n \ kind o i problem soiv!r,g lslnce i t is so !r.?egrai to the interac:ive natur? of [he task of e : t l n g programs to run as intended).

(5) the senera1 idea that one can invent smail procedures as building blocks for gradually constructing solutions to iarge probiems (since programs composed o i procedures are encouraged in programming); I 6 I generallv enhanced "seif-con~c~ousness and literacv about the process of s o i ~~n g problems'' (d u e to the practice of dtsczur:ng the process of p r o b l e n soivlng In programming bv means of the !aqguage of programmmq concepts*,: 17) enhanced recognition for domains beyond programfiing that there is rarely a single "best" way to do something. but different ways that have comparative costs a n d benefits with respect to specific goals (learning the distinction between "process" and "product", as in Lt'erner. 1937).

.Asking .*.hether programming promotes the development of higher cognitive skills raises two crntrai issues in developmental cognitive science. First? is it reasonable to expect transfer across knowledge domains? Even adult thinkers are notorious for their difficultv in spontaneously recognizing connections between "problem isomorphs." problems o i identicai logical structure but ' Hopes chat l e a r n ~n g rhr conceprs a n d lanquaee char underlie proqrammlnq will change the wav a learner t h ~n k s o i non-proqrarnrnlng problems rccdls the stronq f~rmularior. of :he Sapirh'hor:'hvpothesis: rhar available l i n q u ~s t ~c labels constram avcc~labie thoughts. T h e strong iorm ot this nvpothes~s has been exrens~veiv reiuted (e.y. C r o m e r . 19T-!): only a weak version I S consistcnr ,rrlth evldence on lanquaqethouynt rel~rioqshlps. .\valiabie labels in one's ! a n p a g e mav hcditate. bur are nelrhcr n e c e s s a n nor sufficient for panicuiar forms of rhinkmg, or concrptuai distinctions. Cateqories of rhoughr mav provide the foundarion for lmquisric isregories. nor oniv rhr reverse T h e s a m r polnr a p p i ~e s 10 [hc lankpaye of proyramming. etched in hich reiief' rhrouyh :nt:.nsive effor~s to develop ar::t~ciai inre!lisence ,-.,-,.>terns that "zndersrand" na:srd i a n p a g c text je.g Schank 3i Abc!son, I?:;; Schank. 198'2). Skilled reading $so r e q u i r ~s wide experience with differen: g m r e s ie.?. narratlqk.e. zisays. pGetiy, debarc) and with different 5oa.i~ of reading(e.p. rcadir-q ior gisi. cor?rent, jrl;lct,. .As reading is often equated wirh skill is decoding. "!earnin3 to program" i i ~ schoois is often equated wirh iearnine the -.ocaSular:; and jv?it'LX ot' a programming 1 m p a q e . But jkiiled pmgrainrnin<. Iike read:ng, is c9mpie.u and coctest-dependent, so we must

.

beein to unpack the contexts it: :vt;~ch ?rcq3rr.=ing is carried ou: a n a i e a r n ~d .

Le3:ninq cornpurer proyrsmmin< ; 4.5 Environmeztc in \\.hich children learn to read are usuaily o v e r l o ~~e d because ~d e q u a t e env:ronments (e 3 plenty of books. good lighting, picture dictionar-~e s .

good readers to help with hard words, vocabulay cards, phonics charts) are :aken for gracred. By contrast. good p r o q a m m i n q environments are not senerally avaiiable to schoois. Derermining how children develop prograrnrni~g skills , &.ill not be possible without due consideration of the proqamming en-;~ironment in ~vhich learning and development takes place. and of how learniny x:ivitles are orgmized.

P -q w n r n i n g txlronment

The distincrion between a programming language and a prognrnming environment is crucial. .\ programming language is a set of c o m m a ~d s and rules tbr command combinations that are used to instruct the computer to perform jcecified operations. T h e programming environment, on the other hand. is the :ar?er coliecticn of software (operating systems and programmins tools) and hxdware (memory. disk storage. hard copy capability) avallab!e to the programmer. It can include an editor program to facilitate program writing, code revising. and copyinq useful lines of code from one proqram to another: debugging aids: elaborate trace routines for following the program's tlow ot' control; automatic documenters; cross-reference utilities for keeping track of variabies: and subroutine libraries.

Good prosramming environments (for example. those most extensively developed for .*,orking on large computers in Lisp and PL/I) make the coding aspect of programming far more efficient. allowing he programmer to concentrate on higher level issues of program design, efficiency, and elegance. In contrast, the programming environments provided for today's school microcomputers are so impoverished (typicallv consisting of only a crude editor and limited trace functions) that entering the code for a program and just getting it to execute correctly is the central problem.

Finally, despite vigorous a r p m e n t s about the educational superiority of different programming languages, there are no data on w h e ~h r r different lang-uages lead to significant differences in what children need to know prior to programming. or what cognitive benefits they derive from i t . .Although such differences between languages may exist, they do not affect our point. since these differences can be manipulated radically by restructuring the pro-<ramming environment. Attention is best directed to general issues about programming, rather than those that are programming language specific.

Instructional enx'ronment

L%'hile featilres of the programming enrironmenf are important ior learning to program, how successfully a child will master programming also depends on the ~nstructzonal tnxronment and the way in which resources such as computer access rime and file storage are allocated. Each of these points concerns the context of cognltlve acti\.ities. which we know from cognitive science and developmental psycholop to be critical to the level of performance achieved in cognitive tasks r e.g ior revieb s. see Brown et a ' . 1983. Laboratory of C o m p a r a t ~v e Human Cognition. 1983 I Decidine horn to introduce programming and asslst students in learning to program is hampered todav bv the paucity o i pedaqoeical theom. That current ..the! !rrtrnlng" approaches to proyramming instruction are inadequate has become apparent from studies of the kinds of conceptual errors made bv novice proqrammers instructed in that w a y . For example. novice adult programmers re\,eal drcp misunderstandines or' programming concepts, and of hob different iines oi pro5ramming code relate to one ancther in program organizatior.

I Bonar 9 SoIowa)-. i % 2 . Je!'iriec. ' 482. Sheil. 1C80. 1981a Greenspan. 1982'1 As expected from hhat thev are taught. the:-knob the vocabulan and syntas of their programming l a n p a g e . Their rnisundersrandi~gs are much deeper Ueffries. 1982j, such as assuming that all variables 3re global (when some may be specific to one procedure), and expecting that o b s e r i n g one pass through a loop allows them to predict what will happen on all subsequent passes (although the outputs o i prograrnmlng statements which !erl for certain conditions ma\; change what wiil happen during any specific loop I Research by hlayer (1976). lLliiler (197.1). andSime, .Arblaster andGreen (1977) has revealed that adult novice programmers have a difficult time generally with the flow of control concepts espressed by conditionals ifor a review of these findings, see duBoulav. O'Shea & hlonk. 198 1). These conceprsd difficulties, even among professional programmers. have been lamented by such programming polymaths and visionaries as . Ifinsky (1970) and Floyd (1979) as due to problems with how proqarnming is :aught. T o o much focus is placed on low level form such as grammar. semantic rules. and some pre-established algorithms for solving classes o i probiems, while the pragmatics* of program design are left for students to discover for themselves. Interestingly. these compiaints about writing

O n e manv distinquish ior ~artific:al; proqramminq l a n p a g e s , just as in the case of natural l a n p a e e s . berween three major divisions ofsmtorrcs, or the scientific study of properties oisuch signalling svstems ICrvstal. 1980'1 These three divisions, rooted in the philosophical studies of Pe~rce. Carnap. and h l o r r ~s . are "Snnanrrrs. the study of the relations between linguistic expressions and the objects in the world ~h i c h :he\. refer to or describe. synrartrrs. the study of the relation of these expressrons to each other, and p r a p t t c s , the study of the dependence of the meming oi these expressions on t h e ~r users including the social situation in which they are u s c d ~" tibid . p. 3161. Studies of natural ! a n p a q e pragmatics have focused on the "study of the iazquagr from the polnt of view of the user, espec~allv of the choices he makes. the consrrarnrs he encounters in using language rn soclal interaction. and the effects his use of language has on the other part~cipants in an act oicommunication" (ibid.. p. 278).

.A!though there are important d~sanaloqies to natural l a n p a g e , a praqmatics of prograrnmlng lanquaqes concerns at least the studv of programming languagels) from the viewpoint of the use:. especidlv oi tne I d e s i p I choices that he or she maites in the organ~zation of lines of programmine code within proqrams !or soithare svstems]. the constraints tnat he or she encounters (such as the requirements o i a debuggable program that is well-documented for future comprehension and mod~fication~ in using programming l a n p a g c in social contexts, and the effects that his or her uses of programmrng language have on the other participants (such a< -he computer, as ided interpreter. or other humans! In an ac: ofcornmunrcation involving the : of the programming l a n p a g e programs are slm~iar to those vo~ced about how writing in gmeral is taught ! e.g. Scardamaiia 3 Bereiter. 1383).

What do we know about conceptual problems of children learning to program' Problems similar to those of adult novices are apparent. T o take one example. in our research with 8-to 12-vear-old Logo programmers iKurland 9r [START_REF] Pea | Programming a n d p r o b i m solc~~ng Chridrcn 'scxpnlmcc a ~t f h Logo[END_REF], we tind through rhelr t h i ~k -a l o u d protocols and manual simulation of programs that children frequently adopt a systematic but m i s p i d e d conception o i how controi 1s passed' between Logo procedures. hlany children beiieve that placing the name of the executing procedure within that procedure causes execution.to "loop'' back through the procedure, when in fact what happens is that control is passed to a copy of the executing procedure. This procedure is then executed, and when that process is complete. passes control back to the procedure that last called i t . Children adopted mental models of flow of control which worked for simpie cases. such as programs consisting of onlv one procedure, or tad recursive procedures. but which proved inadequa:e when the programming goal required more compiex programming constructions.

In other developmental studies of Logo programming skills [START_REF] Pea | Programming a n d p r o b i m solc~~ng Chridrcn 'scxpnlmcc a ~t f h Logo[END_REF]. even among rhe 25 5 of the children (8and 9-year-olds: 11-and 13-year-olds) who were extremely interested in learning programming, the programs that they wrote reached but a moderate level of sophistication after approximately 30 hours o i on-line programming experience during the year. Children's grasp of fundamental p r o g r a m m i r , ~ concepts such as variables, tests, and recursion. and of specific Logo primitive commands such as "REPE.AT," was highlv contexrspecific. For exampie, a child who had written a procedure using REPE.?IT which repeatedlv printed her name on the screen did not recognize the applicability of REPE-AT in a program to draw a square. Instead, the child rfdundandy wrote the same line-drawing procedure four different times. Ct'e expect that carefully planned sequences of instruction will be important to ensure [hat programming knowledge is not "rigid" (Werner, 1957). c r "welded" ([START_REF] Shif | Development ofchildren in schools for mentallv retarded[END_REF] to its contexts of first learning or predominant use. Such rigidity is a common finding for early developmenral levels in diverse domains (Brown e! al.. 1983). >lore broadly, in the National Assessment of Educ~rional Progress s u n e y of 2500 13-year-olds and '7500 17-year-olds during the 197; -1978 school year (National Assessment of Educational Progress, 1980), even among the smail percentage who claimed to be able to program. "performance on flowchart reading exercises and simple BASIC programs revealed very poor under-* The concept o i "flow ~f control" reiers ro [he sequence of operations that a computer proqram specifies. The need for the term emerges because not dl control is Ilnear. In llnesr control. !ines oiprogrammlng tnsrrucrlons would be execured in srricr linear order. first. second. third. and so on. But in vinuallv all programming l a n p a g e s , various "control structures" are used to dlow nonlinear control. For example. one mav "GOTO" other lines in the program than the next one in BASIC. In whlch case !low of control passes to the linc of programming code reterred to in the GOT0 sratemenr. Because a ?rogram's "flow of conrroi" mav be complex. ELucators oi'ten assume that adult programmers are not belertqlered by c2;.ceptual problems In their proeramming. but we have seen thatjthev are.

O ~c e we recognize that programming bv "intellectually mature" aduits is not e n c o u r a ~i ~g children to explore possibilities, experiment, and creati-their own probiems to solve. This second approach. popularized by Papen (19kfi. argues tha: little overt instruc~ion is necessary if the programming languag; is suificiently engaging and simple to use. while at the same time powerful enough for chiidren to do projects that they find meaningful. Though this' discovery learning perspective is not universally shared. even by Logo devotees (H o u e .

1 x 8 1), it has had a penasive icfluence over uses of Logo by schools.

[\'hat t y p e of instruction should be offered. and x h e n in the course of programming skill de~-eloprnenr specific concepts, methods, and advice should be inrroduced are also critical questions. T w o central factors are implicated by cognitive science studies. O n e is the current mental model or system of knowledee that the student has available at the time of instruction. A second is the goal-relevance of the probiem solving activity required of the student. O n the first point, there are no careful studies of the success of different instructional ac:s as a function of a student's level of understanding for programming akin to those carried out by Siegler (1983) for such concepts as time, speed. and vel-O C I : ~. .-it a more general level, Xlaver (1979Xlaver (, 1981)) has shown that a concrete co~ceptual model of a programming system aids college students!in learning B.\SIC by acting as an advance organizer of the details of the languaqe. With the conceptual model, learners were able to assimilate the details of the programming language to the model rather than needing to induce the.model from the derails.

O n the second point, we would ask how compatible are the teacher's instructional goals with children's goals and purposes in learning programming? Recent developmental cognitive science and cross-cultural studies of cognition (e. s. Brown, 1982;Laboratory of Comparative Human Cognition,' 1983), have shown thrt; assessing task performance within a goal structure familiar to the person is necessary for determining the highest developmental level of an individual's performances. For learning to program, goals of the programming ac:ivity need to be conrexted for the child in terms of other meaningful and goal-direcrecl acriviries. conneccing either to everyday world affairs, to other aspec:s o i the curr:cuiurn. or to both. Papert (1980) O u r pomr t h r ~u g h o u t rhis section has been that programmine is not taught by computers or by programming i a n p a g e s but by teachers. with the aid of the supports of a programming environment. How effectively children of different ages and with different background knowledge learn programming will be contingent upon the capabiiiries of their teachers, the appropriateness of their learning activities to their current level of understanding in programming, and the features available :n their programming environment. Studies to date have not incorporated these considerations thar a developmental cognitive science perspective recognizes as centrai. How to define and assess the constellation of skills which comprise programming has long been a major probiem for industry (Pea & Kuriand. 1983b). and is becoming so ;or schoois. Li.e define the corp sense o i "programming" as the set of activities involved In developing a reusable product consisting of a series ofwritten instructions that make a computer accomplish some cask. But in order to move from definition to insrr~ction. one must begin to unpack "programming skill", in contrast to the black box approach to programming prevalent in schoois. Promising moves in this direction have alreadv been provided by careful analvses of what expert programmers do, and what types and organiza:ions o i knowledge they appear to have in memory that they access during programming. This research strategy, characteristic of cognitive science, has reveaied significant generai features of expert problem solving skills for diverse domalns. such as algebra (Lewis, 1981), -chess (Chase Sr Simon. 1973 Scardamalia. 1982). and i t is providing new insights into components of programming skill. In terms o i what a programmer does. a set of activities is involved in programming for either novices or experts, which constitutes phases of the problem solving process (e.g. Sewell rSr Simon. 1372: Polya. 1957). These activities. which may be invoked at any rime and recursiveiy during the development of a program. are: (1) understandin: :he procrammlng probiem. 1 2) deslenlnq or planning a proqramming soiution: (? wriclnr :he progr;lmm:nq code that ~mpiements the p:ar?.. and (-1.1 comprehension of :he wr::ren program and program debugging.

.\r. extensive re\.iew of these coqi:ive subtasks of proqramrnlng mav be found In Pea and Kurland i l983b).

In terms o i what an exper: proqrarnmer kno;l,s. findings on the knowledge schemas. memory oryan~zations and debuggin5 strategies which expert programmers possess are of parricular interpst R-cent studies o i proeramrners ih;lracterlze high-le\.el programmine skiil as 1 yianr assembiage of highli specific. low-le\,el knowiedgr fragments (.. Ll'oolf. Bonar Sr [START_REF] Soloway | An AI-based programming turor Yale U n ~v e r s ~r[END_REF]'1 has involved compiling a "plan libran" of the basic programming "schemas." or recurrent functional chunks of programming code :hat programmers are alleged :o Ese Observations of programmers support these introspective analyses of "chunk ;" oi' programming knowledge Eisenstadt. Laubsch and Kahney (1981) found that most novice student prosrams were constructed from a small set of program schemas. and Jeffries I 1982). in comparing the debugging strategies of novice programmers and graduate computer science students, found that expens saw whoie blocks of code as instantiations of well-known problems such as calculating change. Soloway and colleagues [START_REF] Bonar | Natural problem solving strateges and programming language constructs[END_REF]; Ehrlich & Soloway, 1983: Johnson. Draper B SoIowa) .. 1983;Solowav Sr Ehrlich. 1982: Soloway, Ehriich, Bonar 8: Greenspan. 1981; also see Kahney Sr [START_REF] Kahney | Programmers' mental models of their programminq tasks: The interaction of real-world knowledge and programmmg knowledge Proceedings of the Fourch[END_REF]) postulate a mode! in ~\.hich proqrammers use recurrent plans as "chunks" in program composition. and identi'fied such plans in programs writren by Pascal novices (e.g. the "counter variabie plan"). But for developmental cognitive science we will need studies of how students mentally construct such plan schemas from programming instruction, experience, and prior knowledge.

.A related aspect o i programming skill is the set of rules that experts use to solve programming problems. but aqain we lack genetic studies. In an analysis of a programmer's think-aloud work on 1 3 different problems, Brooks (197;) demonstrated that approximately 104 rules were necessar). to generate the protocol behavior. Similarly, Green and Barstow (197'8) note that over a hundred rules for mechanical!y generating simple sorting and searching algorithms (e.g. Quickson) are familiar to most programmers.

.A third aspect of programming skill is the ability to build detailed "mental models" of what the computer will do when a program runs. .An expert programmer can build dynamic mental representations,. or "runnable mental models" (Collins & Gentner, 1982) and simulate computer operations in response to specific problem inputs. T h e complexities of such dynamic mental models are revealed when skilled programmers gather evidence for program bugs and simulate the program's actions by hand Ueffries. 1982 1'183b. Brown & Smiiev. 14;8: Spiro. Bruce ze..x:up juch rich procedural undcrstand~ngj :S currently unknown. E.uperr progrrtmmers not only have available more knowiedqe schemas. str;l:egies. m d r d e s applicabie to solving programming problems. but they pcrriel\.r and remeAmber large: "ihunks" of i n f o r m ~t i o n than novices. T h e iiaisic Cha-.e m d Simon ! 13;3 J !inding oishor7-term m e m o w span ad,-.anra<es L r chess ssperts over novices for meaninqfui chessboard configurations but not I j r ran,dom coniiprations has been repiicared for programming (C u r r ~s . Sheppard, hlilliman. Borst & Love, 19T9; hicKeirhen, Reitman. Ruerer & Hirtle, 1981; Sheppard. Curtis. hlilliman & Love, 1979: Schne~derman. i 97-For example, hlcKeirhcn er c11 (198 1 j found that experts clusrere-d k e y -~o r d commands according to meacing (r . [START_REF] Glaser | Qulnn C N Real and non-red time interaction[END_REF] . those tinct ion in^ in locjp jtatements). whereas n o \ x e s clustered accordin? ro a varier:,. of surface ordinar?. l a n p a q e associations (such as orthographic similaricy and word lexqrh), intermediates iallinq between the two. Similarly, Xdelson (1981) found that recall clustcrs for experrs were iunctionaily or "deepiv" based; chose oi novices were based on "surface" features oiprogramming code. This is a major developmental transformation. bur we do noc understand how i t occurs. DiPersio. Isbisrer and Shneiderman (1980) extended this research bv dernons:rating that performance . by college students on a program memor:zarion~reconstruction task provides a usefui predictor of programming test pertbrmances.

It is also a widely replicated tinding that exper: programmers debug programs in different wavs than novices \.\:wood & Ramsey. 1978; Gould. 1375: Gould & D r o n g o ~, s k i . 1974;\rVoungs. 19y-k). Jel'fries (!98 '7) found :ha: prozram debugging involves comprehension processes a n a l o ~o u s to chose for r e a d ~n g ordinary l a n p a g e prose. Experts read programs for [low of control I sxecutionj. rarher than line-by-line (as text). But how d o proyrammers shift from surface to deep readings o i programs as they develop debu9:ing skiils?

In conciusion, u e make one imporrant obsewac:on. Expert programmers k -.

nu\\ much more than the facrs of programming languase semantics and syntax. Ho\%.ever, the rich knowledge schemas, strategies. ruies. and memory organizarions that rxper: programmers reveal are directlv taught only r a r ~l v hlany students appear to run aground in programming for lack of such understandings. This does nor mean that they could not be tauyht. but for this to take piace effect~veiy will require considerable rerhinkinq ofrhe rradit~onal computer science curricuium. These cognitive qualities appear instead to be a consequence o i an active construcrive process of capturing the lessons of program writing experience for later use. :o assess 3 student's p r o e r a r n m i n ~ ~x p e r r l s e m d make pr&lit;ons tbr tvpt. oi rr~nsi'er beyond proqramming as a funct~or! o i a sruder.;'r level or'esprrr~se.

i \ ' c bei~e.:r that a: ;east iour dlsrlnc: levels of proerammlnq ab~iirv can be ~dr.r,:~:red that ha\.e d ~s t ~n c r :rnpilcations for whar rype of skills m ~e h r rranster as thr r e i i r ot their a c h ~r -. ? m e n : These leveis represent pure :).pes and mav no! be i h x a c r e r ~s r i c or an ind~:.ldaal. but the\ capture some comp1ex:ries :n what i t means ro de\eiop prograrnnlng skllls. Lt'e view these le\-els onlv as exides !g\vard more adequate charac:eriz;lt~ons of the development of programrzlng ~b ~i ~t ~e s .

Further difi"erentiatl~~n will inevitably be required. in terms of the coqn~rive subtasks ~nvolved In [he levels. and refined sub1e:-els.

ir;?, 11 Coot YCnersmr

A r rhis level [he sriident kn0h.s the syntax and semantics of the more common commands in a l a n w a g e . H e or she can read someone else's program and espiain w h ~t each iine accomplishes. T h e student can locate "bugs" preventing commands from being executed (e.g. syntax errors): can load and save program ides ro and from an esrernal storage device. and can write simple programs of the !:.pe he or she has seen previously. When programming, the student does very Ilrtle preplanning and does not bother to document his or her programs. There I S no effort to optimize the coding, use error traps, or make the program usabie by others. .L\ program created at rhis level might just print the student's narnr repeatedly on [he screen or draw the same shape aeain and agair, in dlferent coiors. T h e student operates at the level of the individual command and does nor use su'zrout~nes or procedures created as parr o i other programs. This ievel of undersrandlng of the programming process is sufficient for creating short programs. But to create more widely useiul and tlexible programs. the student needs to progress to at least the next level.

.\: level 11, more specific types of computer literacy related rransier would be expected. Students should deveiop better skills for deaiing with more sophisticated software tools o i the type which are rapidly permeating the business world. Computer-naive users o i office information systems. even calculators. have many probiems I e . g . hlann. 1075g . hlann. : Nickerson. 1981) and construct naive. error-ridden menrai mode!s ot' how thev work 1 . Newman 9 Sprouil. 1";9: k'ounq. 1981) . Knowledge character~stic oi:hls Ievei may be required to attenuate these probiems . Shed (1980. Shed (, 1981a. b . b) provides compelling arguments that most systems require low level proeramming if the user wishes to take advantage o i system options, a basic competency he has designated as "procedural literacy."

CVhiir potential computer literacy transfer from low level programming exposure seems a reasonable expectation. what types of cogn.ti\.e transfer should ocur from this levei of programming expertise is disputabl;:. O u r observations of children programming at this level suggest chat some appreciation o i the distinction b e ~w e e n bugs and errors. degrees o i correctness, and the value of decomposing prograrn goals into manageable subparrs may develop and .transfer to other domains. bur that a student's attention is typicallv so rilreted to simply getting a program to work chat any appreciation for more generai cognitive strateqes is lost.

Lccci 111 Propam jmnaror .At this level the student has mastered the basic commands and is beginning ro think in terms of higher level units. H e or she knows sequences of commands accomplish program zeals i e . g . !ocate and verify a keyboard input: sort a list of names or numbers: or read data into a program from a separate :ext file). The student can read a program and explain its purpose, what functions different parts of the program serve. and how the different parts are linked together. The student can locate bugs that cause the program ro fail to function properly (e. [START_REF] Glaser | Qulnn C N Real and non-red time interaction[END_REF]. a sorr routine that fails to correctly place the last item in a list) or bugs that cause the program to crash as a result o i unanticipated conditions or inputs (e.g. 3 division by zero error when the program is instructed to find the mean o f a null list). T h e student can load, save, and merge files and can do simple calls to and from files from inside the main prograrn. T h e student may be writing fair!.,: lengrhv programs for personal use. but the programs tend not to be userfriendly. Lt'hile the student sees the need for documentation, he or she does nor plan programs around the need for careful documentation o r c!ear coding so that the program may be maintained by others. For this general level. one car, expect to identify many sublevels of programming skill.

Ct'ithin this level of expenise. students should develop some appreciation ior the process of designing a successful prograrn. Such understanding has potentially powerful implications for their work in other domains. particularly if such relationships are explicitly drawn by the teacher for students, o r exemplified in other domains. However, i t appears from our classroom observations and inter-vie\\ s bith teachers :hat for students to jpontaneousi>. transtrr computa:ior.L concepts or ianmage construc:s used I R one area oi'programmlng :o other proqr.imrnlne projec7s 1s a malor a. rnplishment. Ideas about when to use \..a;;ables. or the vaiue o i piannlng. as in designing proyram components so :ha: they can be reused in the future. and following systematic con\.entions (such 3s L beylnnmg ail yraph~cs designs at their lower left corner] to make merg1r.g components Into programs easier are ail important accomplishments at tki: levei that shvuid not be ~aker, For granted.

Finaii~.. at t h ~s ievei rhe student is ready to wnte programs that ate not or.;.. compiex and t+e fui! a d v a n t q e of the capabilities of the computer, bur are intended to Se used by others. T h e student now has a full understanding oi i! the features o f -a lanquage and how the language interacts with the hos: computer (e . g . how m e m o n is allocated or how graphics buffe5s may be protected fr3m bein2 ovemrirten). Ct'hen given programs to read. the studenr can scan thr code and slmulate mentally what the program is doing. see how the goais are ac-~ieved and how the programs could be better written or &!apted :br other purposes. Programs are now written with sophisticated erroh traps and built-in tests to aid in the debugging process and to ensure the program is crashproof. Beyond wr~ring code accomplishing the proqram's objecrive.'the studen: can optimize coding ro increase speed and minimize the memory'required :o run J. prosram. T o decrease the rime needed to write programs, he o r she dra3h.s hea~.ily-on software libraries and programming utilities. Finally, h e o r she oirer.

c d t c a design for the progrlm b e h r e generating the code. documents rhe program fully. and writes the program in a structured. modular fashion so :hat others can easily read and modify i t . hlajor issues in software engineering at high suble:.els within this level of experrise are discussed by Thayer. Pyster and ll'ood (1981) .

11 is at tnis level of programming sophistication that we would expect to see most extensive evidence for cognitive transfer. T h e student can distance himself or herself sufficient], from the low level coding aspects of genera~ion to reflect on the phases and processes of problem solving involved. The issues of prosramming which the student is concerned with at this level 7 issues of elegance. oprimaiization. efficiency. verificarion. provability. and stylebegin transcend low levei concerns with program esecution. and may lead him or her to consider wider issues. T h e need at this level to be conscious df the ranse of ~ntended users of programs forces rhe student to take the audience. fully into . . account. a skill that has wide applicability in manv other domains, such as\vr:r:ne.

Implic~r ir. these distinctions between levels of programming skill and :heir linkins to predictions about rypes of transfer is a theor?; of programming at odds with the "naive technoromanticism" prevalent in educational computing. il'hile i t is conceivable that even low levels of programming skill are sufccient to produce measurable coynitive transfer to non-programming domains, we contend that on the limited evidence available, this would be unlikely. Students who can bare!y decode or comprehend text are not expected to. be proficient ~r i r r r ~ Simlla;:~. \.e dousr :>a: students b%ith a]G\\ ie..el undersrand:r.q o i programm1r.g ana :ne si\:il; thdr progr3mrnlng entaiis ~l i l i+rlte func:ional programs or g 3 1 ~ ~r.sighrs into other domains on the Sasls of their limlted proersmmlng skill Bevond asking \> har j r n e r d cognitive charxteristlcs may be prerequisire to cjr subsranriveit intlueniz a chlid's learning to program. some ask whar "developmental le,;ei" chlldrrn must be "at" in order ro learn from proqrsmminq experiences' T h e concept o i "developmental level" at the abstracr theorerlc'ai pianes o i preoperational. concrete operational. and ibrmai operationai inceilectuai functioning has proved to be useful for instructional pcychoioqy in understanding children's ability to benefit from certain types of learning experiences i t s . < Inhelder. Sinclair & Bovet,. But the : -e ~ ~e n e r A i r y of these jtage descriptions is not suitably applied co the developmenr of speciiic domalns o i knobledge such as programming skills.

it-e have two reasons i ~r riot pursuiny the development of programming skills in terms of Piagerian "developmental le-v.els". First. there is strong evidence rhat the development and dispisy of the lo*cal abilities defined by Piaget is importantly linked to content domain (Feldman, 1980: Gardner, 1983;Piage:. 1972). to the eliciting context (Laboratory o i Comparative H u m a n Cognition. 1483'1. and to the parricular experiences of individuals (Price-M'illiams, Gordon Sr Ramirez, 1964). Since i t is not apparent why and how different materiais affect the "developmental !e-:el" of children's performances within Piasetiar, experimental tasks. it is nor feasible to predict relationships between learning to proqram 2nd pertormancrs on the Piagerian tasks. O u r second objection 1s that learninq to program has neither been subjected to developmental analysis nor characrerized in terms o t its component jkills rhat may develop, although such analyses are necessary for articulating measures that indicate the avaiiabiiitv and developmentai status of these skills for particular learners.

it'hile no research has been directly aimed at defining the cognitive prerequisites for learning programming, at least six factors are frequently mentioned: marhematical abiiity. memory capacity, analogical reasoning skiils, condirional reasoning skills. procedurai thinking skills. and t e m p o r d reasoning skills. These cognitive abiliries. each o i which have complex and well-researched developmental histories. are presumed to impact on learnins to program. and could be promising direcrions for research.

Beyond "generai inteiligence". prosrammlny skill is said to be linked :o general mathematical ability. Computers were first developed to heip sol\.e difficult mathematical problems. Although man): computer uses today are nonmathematical (e . g . data base management. word processing), the norion persists thar to program one must be mathematically sophisticated. hledia accounts of children using computers in schools have perpetuated the belieithat programming is :he province of math whizzes. .Although we doubt that math and programming abilities are related once general intelliqence is factored out. .4~aioo1rc. rcaJonlnq .A s r ~d e n t may have background knowledge and capacities relevant to proyra.nmin5 and ver n r ~t h e r connect them to the programming domain, nor transfer kno\\.iedge acquired in programming to other domains. This "access" of knc~%,ledee is absolutel\.-fundamental to learning and problem solving rhrouqhour life i e . 3 . Brown. 1482). Transfers of knowledge and strategies, both "into" and "out o f ' learning co program may depend on analogical thinkinq skills Tasks designed to measure abilities for engaging in analogical thinking i e . [START_REF] Glaser | Qulnn C N Real and non-red time interaction[END_REF] Gick 9 Holyoak. 1980: Srernberq & R i k i n , 1974j may predict level of programmin? dei.eiopmenr and transfer outcomes. Xiaver (1975outcomes. Xiaver (. 1981) argues that studenrs learn programminq by comparing the tlow of control intrinsic to computational devices to that of physico-mechanical models that they already posse:s .\!so. duBoulav and O ' S h e a (19;6j and du Bouiay et af. (1981) have successfull!. used estenslve analogical modelling to explain computer functioning to novice i 2-year-old programmmg students.

C-ond:::o~a. ' .ccsonlng Li'ork~ne with cond~rional statements is a major part of programming. since they v i d e the operation of loops, tests, input checking. and other programming functions. I t is thus reasonable to predict that a student who has sufficient understanding of condit~onal logic, the various " i f . . . then" control structures and the predicate logical connectives of negation. conjunction. and disjunction. ~v i l l be a more successful proerammer than a student who has trouble monitoring the flow of control through conditional statements.

Several kinds ofquasi-procedural' everyday thought may influence how easil\ \\.hat is "quasi-procedurd" rarher than "procedural" abour q\.inq and iollowln~ task InscrJcrlons. d ~r e c t ~o n s . and recipes. I S chat unlike procedural inscructions in a computer program, rhcre 1s often ~rnbrgui!~ In [he evervdav exarnpics, such that the inscructions. directions. and recipes are nor alwavs uncqu~vocal in rneanlng They arc also not constraincd by scncr rcou~[~af~!l O n e rnanv oiren choose to bypass steps In a reclpe or set of instructions, or reorder [he steps. Ne~rher optlon 1s available in !he srrlc! procedural~tv of programmed instructions y e t s ~r n ~i a r i c ~e s betheen chr evenday cascs and proqramnilng in;cructions are compelling enough :o rnakr their desiqnat~on as "quasi-procedural" understandable.

a learner masters the "iloh or' control" procedural mecaphor central ro understanding programming, including q v m 3 and foilowinq complex lnstructions (3s in budding a mode!), w r ~t i n g or following recipes. land c-ocing or carrying out directions !br travel. Presumably. learners more familiar with these i i n e x p r o c e d u r ~s , analogous :o the flow of control for computer operarions exprfssed AS Instructions in a computer p r ~g r a m . ~w i l l more readii:. come to grips w!rh rhe "procedurai :hinkmgU touted as a central face: ot' programminy experrlse i Papert. 1380;Sheil. i980). However: the de:.e!opmeni or' procedurd thinking has been litt!e stadied to date. T h e activity o f t e m p o r d reasonin? is related to procedural chinking, bur yith a distinct emphasis. Creating and comprehending programs require$ an understanding of the temporal logic of sequential instructions: "it ii the intellectual heart of learning how to program" (Calanter, i983, p. l50). In reaching programming. G d a n t e r says: "The cenrrd rheoreticai concept that guided this effort was that classical forms of spacial -geometricpicioriai thinking must be augmented. and occasionally replaced,: by te.nporal -imaqnativemernorial lo+c. T h e child must learn to substicqte an inner temporal eye for the ou:er spacial eve" (p . 163'). Going somewhere In the program nex:. running one subroutine or procedure btjire another, ensuriqg one counter does,noc exceed a cerrain value antzi another operation is perforqkdthese fundamental operations all require temporal understanding. Yet understanding temporal terms 1s a major deve!opmental achievement, a challenge for chddren younger than 7 to 8 years (e.2. Friedman. 1982;[START_REF] Piaget | Thc Ps~vchoiog). of the Ehild[END_REF].

Futurity also presents complex conceptual probiems for the planning activities in\rolved in proyramming, such as imaeining outcomes of the possible worlds generated by program design options (.Atwood, JeiTr:es 3 Polson. 1980). j r :he "symbolic executions" while writing programming code [START_REF] Brooks | Towards a theory of the cognit~ve processes in computer programming[END_REF].

In sum. the co9nitis.e constraints on developing programming skifls are currently unknown. Although a developmental cognitive science persprctive predicts that a studenr's attainable level of programming skill may be constrained by cognitive abilities required in programming. no studies re!are level ot' programming skill to the abilities that we have described. Children m a s have conceptual -and representarlonal difficulties in consrruc:ing dynamic G n t d models o i ongoing events when the computer is executing program l i n k that constrain their level of p r o q x n m i n g skill. Also, systematic but "naive" ~e n t a i models or intuitive epistemologies o i computer procedural functioning may initially mislead chiidren's understanding ot' programming. as with adult novices. Since learning to program is diificult for many students, [hire is a serious need for research f ndings that will guide decisions about tailoring programming instruction according to a student's re!evant knowledge prior to learning to program.

E\.IDENCE FOR COGXITI\-E EFFECTS O F PROGR.OIXfING

We now return to evidence for the claims for broad cognitive impacts of pro-:rxnrning cxprrience. with 3reater awarecess of the compiesities o f ; e a r n ~n g to prny-rtm dnd :sues o i transfer i n sum. there is little e;dence for :hese claims.

Dramatlc accounts have been offered of hosome scnooi-aged chlldrefi's :h~nking about their own abilit~es to solve problems is transformed through Irarning to proqram (e . 5 Paper: rr ai .. 1979: M.att. 198'7; tl'eir & Yr\.att. 1981; e 1 I important social interactional chacqes have been demonstrated In ciasjrooms \%.here c h i l d r ~n are learnins Loqo proqrammlng (Hawitins. 5he1ngold. Gearhart 8 [START_REF] Hawkins | The Impact of computer activitb on the soc~ai erpenence o i c!assrooms Journai qf[END_REF]). and for some children proqramming IS an imporcant m d deepli p e r s o ~a l tntellectual activity. Slmliariv. many tescher reports focus on soclal and motivational rather than cognitive aspects of t h ~s experience . Shelnqoid. Kane. Endreweit & Billinqs, 1981. \\.at[. 1381). I t is not yer d e a r M hai rhe cogn1tii.e bene!its of programming for such children may be ir. terms of rhe transfer claims r e v ~e u e d earlier.

O n :he coenitive side. [START_REF] Ross | Teachmg mathematics through programming: T e n years on[END_REF] have reviewed ten vears of relevan: research to evaluate Feurzeig el al.'s (1969) four general claims on the coqnitive impacts of programming. T h e relevant research has been with Logo. and i n nonrepresentative private schools. Below we summarize Ross and H o ~% e ' s review. and integrate summaries of other s t u d i e ~ relevant to these claims. In terms of o u r account of levels of programming skii: and expected transfer outcomes from them. we must caution that studies so far. including our o ~\ . n . have an important limitation. They have all looked at what we have desiqnared as high level or cognitive transfer outcomes. expecred to emerge only at the higher levels in our account of programming skill. whereas the levels of programming attained by the students in these srudies were low because they only did six \\.eelis to a year or so of programming. In other words. there has been a mismatch of "treatment" and transfer assessments because of a failure to appreciate [he different kinds of transfer to investigate and their likely linkage to different levels of programming skill. For example, there are no srudies that ha\.e assessed the low21evel transfer or application of programming concepts such as "varxible" in different types of programming within a language (e.g. graphics versus list processing in Logo). or from one programming language to another. or of computer literacy outcomes.

First. there are no substantial studies to support the claim that programming promotes mathematical rigor. In a widely cited study by Howe. O'Shea and Plane (1979). researchers who were highly trained programmers spent two \.ears (1969) suggest that the twelve 7to 9-year-old children to whom they taught Logo came to "acquire a rneaninyful under-513:. 'ing of concepts like variable, function and general procedure", the:, prc :e no evidence for the claim that programming helped the children gain insight into these mathematical concepts.

Finally, we ask whether p r o p m m i n g has been shown co provide a context and lanquage that promotes problem solving beyond programming. Papert r! al. (1979) conducted a Logo proiect with sixth graders for six weeks, and reported anecdotes that children engage in extensive problem solving and planning activities in learning programming. Whether such activities had c o p i r i v e effecrs beyond programming was not studied. However, Statz (,1973) carried out a study to assess this claim. Logo programming was taught to sixteen 9co 1 1-year-old children for a year. Statz chose four problem solving tasks with intuitive, ill-specified a n n e c t i o n s to programming activities as transfer outcome measures. T h e experimental group did better on two of these tasks (word puzzle and a permutation task). but no better on the Tower of Hanoi task or a horserace problem that Statz had designed. She interprets these !indings as mixed support for the claim that learninq Logo programming promotes the development of more general problem solving skills. Soloway. Lochhead and Clemect (1982), in reaction to the finding (C!ement. Lochhead & hlonk, 1979) t h a ~ many college science students have difficulty translating simple algebra word problems into equations. found [ha: more students solve such problems correctly when they are expressed as computer programs rather than as algebraic equations. They attribute this advantage to the procedural semantics of equations in programs that many students lack in the algebraic task. This effect is much more restricted than the increments in general problem solving skill predicted by the cognitive transfer cialms.

.A very important idea is that not only computer programs. but one's own mental activities can !ead to " b u q p ' ' performances and misunderstandings. Tools for diagnosing different types of "bugs" in such procedural skills as placevalue arithmetic (Brown & Burton. 1978; Brown & VanLehn. 1980; VanLehn. 1981) have resulted from extensive programming efforrs to build "bug diagnostic svstems" (Burton, 1981). O n e may argue that the widespread recognitlon that systematic "bugs" may beset perhrmances in other procedural skills. such as high school algebra (C a r r y , Lewis & Bernard. 1979;hla:z, 1981) reflects a kind of transfer beyond programming No evidence indicates that programming students demonstrate such transfer.

Planning in advance of problem solving, and evaluating and checking progress in cerms of goals. are important aspects of a reflective attitude to one's own mental activities (Pea. 1982). LVe have seen that the development of plannine abilities is one major predicted cognitive benefit of learning to proeram. i4.e therefore developed a trsnsfer task for assessing children's planning (Pea & Hawkins. 1981) We reasoned that a microgenetic method (Flavell & Draguns. 1957) allowing children to develop multiple plans was comparable to the rounds of revisions carried out during programming, and would allow foi a detalled study of planning processes. Children planned aloud while iormulating. over several attempts, their shortest-distance plan for doing a set of familiar classroom chores, using a pointer to indicate their routes. W e gave the task twice. early and late in the school year, to eight children in each of two Logo classrooms (8-m d 9-year-olds; 11-and 12-year-olds), and to a control group of the same number of same-age children in the same school. There were six microcomputers in each classroom, allowing substantial invoive-men1 with programming.

.As in related work on adults' planning processes by Goldin and Haves-Roth (1980: also Haves-Roth & [START_REF] Haves-Roth | A cognltlve model of planning Copntttuc[END_REF]Hayes-Roth. 19801, our product analyses centered on "plan goodness" In terms of metrics of route efficiency, and our process analyses centered on the types and sequencing of planning decisions made (e . g . higher level executive and metaplanning decisions such as what strategic approach to take to the problem, versus lower level decisions of what route to take between two chore acts). Results indicated that the Logo programming experiences had no significant effects on planning performances, on an); of the plan ifficienc? or planning process measures [START_REF] Pea | Logo prograrnmtng and ~iu druciopmmt ofpiannlng skzlls (Tech. Rep. No 16)[END_REF]. Replications of this work are currently under way with children in other schools.

CONCLUSIONS

.4s our society comes to grips with the information revolution, the ability to deal effectively with computers becomes a n increasingly important skill. How well our children learn to use computers today wlll have great consequences for the society of tomorrow. T h e competence to appropriately apply higher cognitive skills such as plannmg and problem sol\ing heuristics in mental activit~es both with and without computers is a critical aim for education. As one contribution ro these issues. at the beginning we argued for and then throughout documented the need for a new approach to the pervasive questions about the cognitive effects of computer programming. This approach, which we characterize as developmental cognitive science, is one that does not merely adopt the common perspective that computer programmers are all like adults, but is instead geared to the learning experiences and developmental transformations of the child o r novice, and in its research would be attentive to the playing out of those processes of learning and development in the instructional and programming environments in which the novice gains expertise.

So can children become effective programmers and does "learning to program" positi\rely influence children's abilities to plan effectively, to think procedurally, or to view their flawed problem solutions as "fixable" rather than "wrong"? We have shown that answers to these questions depend on what " l e ~r n i n g ro program" is taken to mean. We reviewed cognitive science studies revealing that programming involves a complex set of skills, and argued that the development of different levels of programming skill will be highly sensitive to contexts for learning, including processes of instruction, programming environment. and the background knowledge the student brings to the task. We found few studies that could inform this new understanding, although many promising research questions were defined from this perspective.

Ct'e dismissed two prevailing myths about learning to program. The myth embodied in most programming instrdction that learning to program is "learning facts" of programming language semantics and syntax is untenable, since it leads to major conceptual misunderstandings even among adult programmers, and since what is taught belies what cognitive studies show good programmers do and know. These studies have direct implications for new content and methods for programming instruction that are under development in several quarters. Studies of learning to program and of transfer outcomes are not yet available for cases where instruction has such nontraditional emphases. e.g. on task analysis and problem solving methods that take advantage of what we know expert programmers do. W e also delivered arguments against the second myth, of spontaneous transfer of higher cognitive skills from learning to program. Resistance in, learnin9 to spontaneous transfer, and the predicted linkages of kinds of transfer beyond programming to the learner's level of programming skill were major points of these critical reviews.

So when thinking about children learning to program. what levels of skills can be expected? Reports of children learning to program [START_REF] Howe | 4 Xl Lramtnp mthrmnflcs through Logo prqramming !Research Paper No 153) Deparcment of[END_REF]Levin Sr Kareev, 1980;Papert et al., 1979;[START_REF] Pea | Programming a n d p r o b i m solc~~ng Chridrcn 'scxpnlmcc a ~t f h Logo[END_REF]. including the learning disabled, the cerebral palsied and the autistic (Watt & Lt'eir, 1981;Weir, 1981), suggest that most children can learn to write correct lines of code (level I1 in our account). This is no small achievement since writing grammatically correct lines of code is all many college students of programming achieve in their first programming courses (Bonar & Soloway, 1982). This level of programming skill may depend on the same abilities necessaq for learning a first language.

However. for programming skills that are functional for solving problems. "grammatical" programming alone is inadequate; the student must know how to organize code and "plan schemas" to accomplish specific goals. Det-eloprnent to these higher levels, where one becomes facile with the pragmatics of programming, may require strategic and planful approaches to problem solving that are traditionally considered "metacognitive," and more characteristic of adolescents (Brown et a / . , 1983) than primary school children. Further, the experience of the child in an elementary or junior high school program who spends up to 30 to 50 hours per year programming is minuscule when compared to the SO00 hours which [START_REF] Brooks | Srudvmg programmer behavior experimenrallv: T h e problems o i proper methodo l o q Communrcat~on o f t h c[END_REF] estimates a programmer with only three \ears of experience has spent on programmins Since it appears unreasonable to expect children to become advanced proqrammers in the few years available to them in most school programming courses. our educational goals should be more realistic and achievable. Lt'e d o not currently know what levels of programming espertise to expect. but in o u r experience children who are programming experts are not common. T h e r e are thus large gaps between what is meant b!-learning to program in the computer science literature. and what " l e ~r n i n g programming" means to educators interested in exposing this domain to children. These discrepancies should temper expectations for the sponraneous effects of children's limited programming experiences in school on their wavs of thinking. at least for how programming is taught (or not taught) today. Whether research on learning to program with richer learning experiences and instruction will lead to powerful outcomes of programming remains to be seen. In place of a naive technoromanticism, we have predicted that the level of programming abilities a student has mastered will be a predictor of the kinds of concepts and skills that the student will transfer beyond programming Althcugh findings to date of transfer from learning to program have not been encouraging, these studies suffer in not linking level of programming skill to specific outcomes expected. and the critical studies of "low level" transfer expected from level I and I1 programming skills remain to be carried out. Even more importantly. with thinking skills as educational goals, we may be best off providing direct guidance that teaches o r models transfer as a general aspect of highly developed thinking processes (Segal, C h i p m a n & Glaser, 1984: Smith 8 Bruce. 1981). For these purposes programming may provide one excellent domain for examples (Sickerson, 1982;Papert, 1980).

Throughout, we have emphasized how developmental research in this area is very much needed. M> need empirical studies to refine o u r characterizations of levels of programming proficiency, extensive evaluations of the extent of transfer within and bevond programming in terms of different programming and instructional environments, and studies to help untangle the complex equation involving cognitive constraints. programming experience, and programming outcomes. Lt'e believe all of these questions could be addressed by careful longitudinal studies of the learning and development process by which indi\.idual students become proficient (or not-so proficient) programmers, and of the cognitive consequences of different levels of programming skill. Such studies would provide far more relevant information for guiding the processes of education than standard correlational studies. A focus on process and the types of interactions that students with different levels of entering skills have with programming and instructional environments is critical for understanding how developments in programming skill are related to other knowledge. Ll-e are optimistic that others will join in work on these questions, for progress must be made toward meeting the educational needs of a new society increasingly empowered by information technologies.

 T h e combination of careful analysis of cognitive processes and the techniques of c o w e r simulation has led to important new insights into the --.-nature of mental representations, problem solving processes, self knowledge, and cognitive change. Cognitive science has revealed the enormous importance of eutensive. highly structured domain-specific knowledge and the difficulty of developing general purpose problem solving strategies that cut across different knowledge domains. Also, within particular domains, cognitive science research has been able to specify in great detail the naive "mental mo.&" held by novices, sucb as Aristotelian beliefs about obiects in motion. which are often very resistant to change through spontaneous world experience (Gentner & Stevens, 1983).

 s c q i ~l r e d . i ne\. iequise r t s p e c ~a : ~~ s e r ~o & considera:ior, of the develop-, . rnt-nr.11 r d e s piayrd bv the writes:: in~erpitnerra:ing :ne d a c k box: :he prozramrriins enviroEment. the insrruc~ionai envirorirnenr, arid rhe reievan: 2nderj:andings a n d of rhe Ifasner. The question of the r d e of contpxrs in learning " p r o c p m m i n g " is cornpiex. :~rcsuse " p r o 5 r a ; n ~i n g " is nor a u n i r a n skill. Like reading. it is comprised of 3 l a: : ? r u m b e r oi'abilities thar ii:;erre!atc with rhe orpmzatiori of the iearner's :i:lo\\.led;re base. mernorv and proccsslng capacities. repertoire of comprenension srracegies. a n d senera1 problem-soivins ~biiitles such as cornprrhensior. menirering. ~n f e r e n c m g , and !:yporhrsis generacion. This lrcscin has been.

 programmers oiten ut111ze proqramrn~ng ilowcharts. e ~t h e r to serve as a hlgh level plan for creatlnq t h e ~r program. or to docilmcnt [he flow ol'control in their program standing of aieor;:hmic processes i n v o i ~m g conditionai b r a n c h ~n ~" : ~, c i t e d bv .-lr.de:sor,. 1!382. p . 1 4 1

 h'H.AT IS SKILLED PROGR.\.LIXIIXG'

). Not all program understanding is mediated by hand simulation; expens engage in ! o b i s e ~r c h e s !br program oryanizationd str4c:ure. p i d e d by %dequace p r o s r a 3 documenration. a strate? a ~l n to what espcrr readers do (Brown.

9

 Brewer. 1480). How individuals , .

 LEVELS O F PROGR.\.LI.LLING S K I L L DEX'ELOPXLENT T o date. observations of leve!s of programming skill development (cf. H o ~e . 1980) have been extremely general and more rationallv than empirical!>-. .. . derived. .Accounts of noviceexpert ditferences in programming ability among . . ;ic;i,:s I . (, ~p ~r ? :\::h ~b-er\.ar~oni; of children l e a r n ~n n :o ~r:>":3-m ?rovic+: J. srJr:ir,s poln: tc;; de,. .;l:opine 3 :asonomv ofle-.eI.; of prograrnrnlnq proticienc.b. Ti115 rasonom\ c j n ~d ~d c our research by providing a deveiopmen:a! fraixr-\cork \\i:hin ~h ~c h

 Proqrarnm~nir 1s ocen a memory-intensive enterprise requiring great --. ~L i c ~r . : : a r ~o n 3rid :he a t i i i ~v ro j u g l e values o f a number of parameters at a rime Indi; t d u i d i t ' k r e ~c r s in procrssiny c>ccicit?. are thus a likely candidate :or ir.i!u,:nc~r,e lvho becomes a B O ~ programmer. Fom.ard and backward span :3>ks. and morr rrcenril d e ~r i o p e d transiormat~onal span measures icf Case & I.;:iriaric; 1S180. C ~s e . Kur!and & Goidbe:-4 19821 assess how much iniormat~on onr can coord~nare at 3 qi\ en moment. and appear to index processes baslc to i e a r n ~n ~. Performances on such tasks ha\.-e reliably correiared with general in:elliy-nce. Piayetian developmenrd ievei. and ability to learn and use problem soi\-~ng strategies (e . g . H u n t . 1978).

 1 % i).

 de~:eiopr-nentaiist. there Is 3 rx+:or ~r a b i e r r . per-;adii-.g each of these

	. . cnKp;.,!ed 3,. rr5er:li)n on rhr cl>r,:roi or :nrlr o h n r.lental activities I Brown.
	I3rans:brd. F e x a r a & C ~a ~p i o n r .
	. ;~::~irrrix:ions ni tne c:iec:> c n h!+rr t21nkinr skiiis :s?ec:ed from Irainii~y,. . . :c pr04r5.m. P r o ~r a ~r n i n g ser.es 3 s a " b i x k box. an ilcanalyzed acr:vicy.
	wloje e&c:s are ?rrjurned tij irraciate :hose exposed ro i t . Bur cjucsrions abou:
	1 ' rks de\rloprr,e:?t of' programming x d l s require 3 breakdo\vz of c5e skills into
	ic;m?oncr.! ztbiliries. and studies of how speciric aspects of progyarnming skiil

! 983;;.

T.

J.

 ; Soloway. Bonar & Ehri~ch. 1983. S o i o w a ~. . Ehrflcn. B ~~n a r &

 . bhich b e define broadly to include the direct teaching p~ovided by e d u s ~t o r s 3s \,ell as the individual a d ~k e .modelling, and use of metabhors with which they support instruction and learning. How much instructloni and what type. o i instruction, should be offered? How much direct instruction-is best for chiidren to learn programming is a contro-..ersial question (e.g.Hdwe, 1981; Papert. 1980'1. .-it one extreme schools teach programminq as any othe; subject *ith "fact sheets" and tests: at the other, they provide minimal instruction.

	.-	ci.,xx:erlzed bv error-free. routine performances. we might better understand
		dli:iculrirs o i children iearning to progrrtm. who devote only small amounts of
		thri; schvoi timc to iearnin3 to program.
		Tnese tindlngs lead us to two central questions about prograrnmir.9
		1ns;r~~ction

 has described this as "syntonic" iearning. For exampie, in our studies Logo classroom children found two contests especiailv motivating. cresting videoqames ar.d slmuiating conversations. T h e most intensive and advanced programming e i f o r s Isere in the w ~i c e ot'chiidren's gods such as rhese. Dewey's (1900) point about the import-;inctt tbr a? iearning :hat d e ~ eiopments in the new skill 5en.e as more adequate means for deslred ends :hus again receives new support .\ s i m ~l a r emphasis ilnderlies rhe ~uccessiul use o i c!ecrronic message and publishing systems in classrooms ! e . s. Slack. Lr:m. Xlehan & Q u i n n , 1983; Laborator; ot' Comparative H u m a n Co&ition, 1982). Embedding computer programming activities of increasing cognitive cornplexitv in children's goal structures may promote . !earning to prosram and support the transfer of what is learned in programming to problem soiv~ng activities in other domains.

). geometry (.Anderson. Greeno, m i n e & Seves. 198 1 j, physics (Chi. Feltovich S: Glaser, 1981: Larkin. hlcDermott. Simon & Simon. 1980). physical reasoning (,deKleer & Brown. l98! ,t, and writing (Berelrer Sr

 itwood & Ramsey, 1378: Brooks. 1977 1. T h e design of functional "programmer's apprentices" such as Barstow's 1 1979) Knozieage Based Propam Construrtzon. and Rlch and Shrobe's "Lisp programmer's apprentice" (Rich & Shrobe, 1978: Shrobe. Lt-aters & Sussman. 1979: M'aters, 19831, and the X I E N 0 Programming T u t o r (Soloway, Rubin.

 cornpurer use. but some rrans:er on computer literacy issues. For example. given suificienti)-wide exposure to different types o i programs, a student would be espec:ed to know what computers are capable of doing, what they cannot do. and fundamental aspects of how they iunction in their everyday 11ves. Xs users, ther,. children might learn when computers are appropriate tools to apply to a problem.

	.A 5:udenr rv?icaliv it.arns tc esecure d r e a d v wrltten proerams such as games.
	demonsrrarionc. or compute--assisted instruction lessons before beginning
	insrrucrlon in h o ~ to program. LVhar is learned here IS important (i -e . what
	specific keys do. h o ~ to boot a disk. how to use screen menus), but does nor

rt.xeal

OMthe proqram works or that a program controls whar happens on :he scrren. For many computer users t h ~s l e ~d is sufficient for effective computer use i r 2. for word processing. game playing, electronic mail). Bur to be more in control of rhr compurer and able to tailor its capabiliries to one's own goais, some Type of p r o y r a m m ~n y is required.

From :his levei ~. t l t.\.ould expect relatively little transfer beyond

 teachinq Logo programming to eleven 11-year-old boys of average or below average math ability. T h e first year they studiedLogo. the second math \\.ith Logo. each boy working for one hour per week in a programming classroom. .After two years. when Logo students were compared to nonprogrammers (who on pretest had significantly better scores on the Basic fath he ma tics Test, but equivalent scores on the M a t h Attainment Test), they had improved in Basic Xlath enough to eliminate the original performance gap \\.ith the control group. but fell significantly behind on the Math Attainment Test. Such global math score differences d o not support the "rigor" claim. T h e oitcited finding is that the Logo group learned to argue sensibly about mathematicd issues and explain mathematical difficulties clearly, but the Learnin9 cornpurer ?rogrlrnrninq ! 30 finding is based onlv on differences in ratings of Logo and control students in teacher questlonnalres (Howe t t a l . . 1079). T h e reliability of such ratings is questionable. since the math teachers should have been blind ro which students learned Logo Secondlv, there are no repons demonstrating that programming aids children's mathematical exploration. Reports by Dwver 1975') h r chiidren l e a r n ~n g BASIC. and Howe cr JI. (1979). Lawler (1980). and Paperr zt ai. (19;9 I for those usicg Logo, d o document children's soai-directed explorac~on o t mathematical concepts such as "variable" on computers. Though encourae-in9, smce math expioration and "mathland" plav are likelv to support math learning, studies'have not shown any effects of "math exploration" during programming outside the programming environment. Third, although Feurzeig ct nl.