
HAL Id: hal-00190531
https://telearn.hal.science/hal-00190531

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Cognitive Prerequisites of Learning Computer
Programming

Roy D. Pea, D. Midian Kurland

To cite this version:
Roy D. Pea, D. Midian Kurland. On the Cognitive Prerequisites of Learning Computer Programming.
1983. �hal-00190531�

https://telearn.hal.science/hal-00190531
https://hal.archives-ouvertes.fr

On the Cognitive Prerequisites of
Learning Computer Programming

Roy D. Pea
D. Midian Kurland

Technical Report No . 18

ON THE COGNITIVE PREREQUISITES OF LEARNING
COMPUTER PROGRAMMING*

Roy D. Pea and D . Midian Kurland

Introduction

Training in computer literacy of some form, much of which will consist
of training in computer programming, is likely to involve $3 billion of
the $14 billion to be spent on personal computers by 1986 (Harmon,
1983). Who will do the training? "hardware and software manu-
facturers, management consultants, -retailers, independent computer
instruction centers, corporations' in-house training programs, public
and private schools and universities, and a variety of consultants1'
(ibid., - p. 2 7) . To date, very little is known about what one needs
to know in order to learn to program, and the ways in which edu-
cators might provide optimal learning conditions. The ultimate suc-
cess of these vast training programs in programming--especially
toward the goal of providing a basic computer programming compe-
tency for all individuals--will depend to a great degree on an ade-
quate understanding of the developmental psychology of programming
skills, a field currently in its infancy. In the absence of such a
theory, training will continue, guided--or to express i t more aptly,
misguided--by the tacit Volk theories1' of programming development
that until now have served as the underpinnings of programming
instruction. Our paper begins to explore the complex agenda of
issues, promise, and problems that building a developmental science
of programming entails.

Microcomputer Use in Schools

The National Center for Education Statistics has recently released
figures revealing that the use of micros in schools tripled from Fall
1980 to Spring 1983. The outcome of that leap. is that there are now
120,000 microcomputers for students in 35% of the country's public

*The work upon which this publication is based was performed
pursuant to Contract No. 400-83-0016 of the National Institute of
Education. It does not, however, necessarily reflect the views of
that agency.

schools: 22% of these are in elementary schools, and 64% are located
in secondary schools (Reed, 1983). A staggering 4.7 million precol-
lege students worked at computer terminals during the 1981-1982
school year. Yet the National Education Association reported in
March 1983 that just 11.2% of the country's public school teachers use
computers in teaching.

Problems with Questions of the "Cognitive Demands" of Programming

A common set of questions voiced by those wishing to learn computer
programming (but perhaps as commonly voiced by those offering
programming training or courses) is: "What do I need to know in
order to learn to prsgram?"Do I need to be good at mathematics?
If I'm not, can I still learn to program?" "Do I need to be a highly
developed logical thinker?" h the academic community, these ques-
tions get expressed in the jargon of the social sciences: "What are
the cognitive demands of programming?" o r What mental abilities
are cognitive prerequisites for learning to program?" or "Are there
individual differences in programming skill development?" The com-
mon dear for the individual who would Like to learn programming, and
the concern of educators and employers (frequently motivated by
cost effectiveness), is that there are some persons who are either not
capable of being trained to program, or who are not "developmentally
ready" that they need to learn or know more fundamentally rele-
vant things before embarking on the task of learning to program.
While these questions a re subject to empirical analyses, we have found
in reviewing the literature that the uses of such empirical analyses
are often quite pernicious. If persons do not get a high enough
score. on a "programming aptitude measure," they may be denied
educational o r employment opportunities. One s tudy is quite explicit
on the uses to which they believe such findings should be put--£or
student advising and placement:

The rapid increase in the need for personnel in these areas
is attracting many individuals needing education, and - the
number who will not succeed with this education will in-
crease.. . .The increase in the number of such students is
already being observed by many schools, resulting in the
use of relatively scarce faculty resources to educate indi-
viduals who will not successfully complete a technical
course, while keeping out students who might succeed if
permitted to enroll. (Wileman. Konvalina & Stephens, 1981,
p . 226; our emphases)

Fowler & Glorfeld (1981, p . 96) note that "the need t~ identify a
potentially successful student is very important for reasons such as

early counseling into an appropriate career path and formation of
honors section^.^ In another s tudy, Newstead (1975, p. 89) goes so
far as to say that 'lone can conclude that programming ability (as
measured in this s tudy) may be much more innate than 'business
training course spiels' would have one believe. Anyone cannot be a
programmer [sic] .
The logic of these approaches is not hard to follow. Let the rich get
richer, while the poor recede into the nontechnical background of
society. Never mind that i t may be possible to instruct "those who
will not succeed" in another way (and the pedagogical alternatives for
learning to program are many and diverse [Lemos, 1975, 1980;
Papert, 19801). Instead, assume that "this education" that they will
not succeed with is immutable and adequate for anyone wishing to
learn to program only they had the right s tuff .n While some may
have felt that this attitude had some justification when programming
was an optional activity (something one could, but need not do) , i t is
a problem of great seriousness today, since a t least a basic under-
standing of (modicum of competence in) how to write and understand
computer programs is at the core of the needs for any member of a
computer literate society (e. g . , Sheil, 1981a, 198 1b) . We cannot
continue to dismiss those who have difficulties in learning to program
as flies in the ointment of a well-oiled training machine. Instead, we
are obliged to try out o r , if necessary, develop new means for in-
struction that allow all an equal opportunity to learn about and par-
ticipate in the computational powers of a technological society, one
which has an impact on and will continue to have an even greater
impact on the educational, work, and family lives of members of our
society.

Overview

In preparing
the available

this report , we found that when we critically considered
literature that aims to address the relationships between

nprogramming aptitude" and interests of individuals and their pro-
gramming performance, the static nature of these studies was appar-
ent in that the research questions asked have not varied substantially
in nearly 30 years. ~ v k r since the 1950s. when the Programmer
Aptitude Battery was developed by IBM to help select programmer
trainees, consistently modest correlations (a t their best from 0 . 5 to
0 .7 , hence accounting for only a quarter to a half of the variance) ,
and in many cases much lower, have existed between an individual's
score on such a measure and hs or her assessed programming skill.
In addition, ever since the 1950s. global measures of programming
skill, such as grade in a programming training course or supervisor
r a n h n g , have served as skdl assessments. Studies in 1983 still take

for granted the utility of this multivariate approach, and offer no
greater insights--certainly none that are instructionally relevant--into
what makes a successful programmer than they did three decades ago.
The same is t rue of interest measures and programming skill assess-
ments. These studies always ask whether particular ap titude vari-
ables have an effect on programming success, rather than the more
fundamental psychological question of how they might have such
effects, in terms of component skills or knowledge representations
mediating specific programming activities.

Given these insufficiencies, we must often step back during the
course of our review and survey the presuppositions that have guided
this Line of research, asking whether they are warranted, culling
from the research Literature the few studies that suggest new and
promising directions, and asking many more questions than we are
able to answer on the basis of available evidence. While the dearth
of answers to these questions is at times disconcerting, we feel that a
groundclearing is in order. The available foundations are unstable,
so we must uproot them in a search for new metaphors, new ways of
seeing what programming is that people may learn to do i t , and what
i t is about people that they are able to do programming. Since the
available programming aptitude literature is built upon such ques-
tionable foundations, a point-by-point review of thls literature in
terms of subject populations, specific measures, and correlations
obtained is not useful, although we will provide brief surveys and
extensive citations of the hundred or so studies of this kmd. On the
other hand, we are heartened by some recent studies on the cognitive
psychology of programming that begin to unravel the complex of
mental activities essential to programming. In our intellectual travels
through the development of programming skills, we become more and
more compelled by the importance of one dominant motif: the role of
purpose and goals in programming. What one needs to know in order
to program will depend in fundamental ways on one's programming
goals. This point has repercussions all the way from how one does
programming instruction, to what kinds of programming instruction
are selected on the basis of the educational values and goals that
define one's programming pedagogy. To take a simple example:
documenting a program and the mental skills that a re required may be
unnecessary for a single-use program for oness home computer sys-
tem. But it is a central concern if one requires a program for the
public domain that is understandable and rnaintainabae by others. So
w e will ask not, "What are the cognitive demands of computer pro-
gramming?" as if programming were a unified homogeneous activity
(which we challenge below) , but ra ther , I' What are the cognitive
demands of doing computer programming activity X with goal Y?"

With these provisos in mind, we will now begin to develop the ground
raising which we have promised.

Background Issues

What Is Computer Programming?

We will define the core sense of ncomputer programming" as that set
of activities involved in developing a reusable product consisting of a
series of written instructions that make a computer accomplish some
task. It is interesting to note that, although the sense of "computer
programming" has not varied in nearly four decades, the set of
activities involved in doing programming has undergone major quali-
tative transformations. In the early days of programming, for ex-
ample, the programmer had to know the details of the computer
hardware in order to write a program that worked; today this is no
longer true. An important consequence of this evolution of the set of
activities that constitutes programming is that the "cognitive demands"
made by computer programming needs specification at the level of
programming subtasks, or component activities. Therefore, we must
ask about the variety of cognitive activities involved in computer pro-
gramming as it is carried out today, and especially as i t is carried
out by children as they attempt to master this complex skill.

From our own work as well as our reading in the literature on pro-
gramming, we find that a t least four distinct levels of computer pro-
gramming ability can be identified. While these levels represent pure
types and are not characteristic of a single individual, they do cap-
ture some of the compleldty of what it means to learn to program.
While we will take up the issue of levels of programming skill devel-
opment in more detail below, i t is important in attempting to build an
adequate characterization of the programming process to bear in mind
the range of abilities included under the heading of "being able to
program.

Level I: Program user. Before learning how to program, one
typically learns to execute already written programs such as games,
demonstrations, or CAI lessons. What is learned at this level is not'
trivial (i. e . , what the re turn key or the reset key does, how to boot
a disk, how to use a screen menu), but gives no information to the
novice on how a computer program works o r even that there is a
program controlling what happens on the screen. Many adult com-
puter users never advance past this level. One does not need to
know about programming to be a word processor operator, make
airline reservations, process payroll checks, design a budget, or do
any of a growing number of computer-based activities. However,

Level I users remain at the mercy of the program they are using and
are powerless to effect changes in it . While i t can be argued that as
programs get bet ter , there will be less need for the average person
to make programming changes, we would argue that without some
familiarity with programming, the user is less likely to appreciate
fully the power and potential of this technology. In addition, without
some appreciation of programming, the user is not likely to take full
advantage of optional parameters built into sophisticated application
programs which themselves constitute a high-level form of program-
ming.

Level LI: Code generator. At this level the s tudent knows the
syntax and semantics of the more common commands in a language.
The user can read someone else's program and know what each line
accomplishes. The student can locate bugs that prevent commands
from being executed (e. g. , syntax e r r o r s) , can load and save pro-
gram files to and from an external storage device, and can write
simple programs that he o r she has seen previously. When program-
ming, the student does very little preplanning and does not both& to
document his o r her program. There is no effort to optimize the
coding, use e r ro r t raps , or make the program user-friendly and
crash resistant. A program at this level might simply consist of
printing the s tudent 's name over and over on the screen or drawing
the same shape repeatedly in different colors. The student operates
at the level of the individual command and does not use subroutines
or procedures created as par t of other programs.

Level III: Program generator. At this level, the student has
mastered the basic commands and is thinking in terms of higher level
units. Sequences of commands that accomplish program goals a re
known (e.g., locate and verify a keyboard input, sort a list of names
or numbers, read data into a program from a separate file). The
student can now read a program and say what the goal of the pro-
gram is, what functions different par ts of the program serve, and
how the different par t s a re linked together. The student can locate
bugs that prevent the program from functioning properly (e. g. , a
sort routine that fails to correctly place the last item in a list) or
bugs which cause the program to crash as a result of unanticipated
conditions or inputs (e. g. , a division by zero er ror when the pro-
gram is instructed to find the mean of a null l is t) . The student can
load, save, and merge files, and can do simple calls to and from files
inside the main program. The student may be writing fairly lengthy
programs for personal use, but the programs tend not to be user-
friendly. While the student sees the need for documentation, he or
she does not plan programs around the need for careful documentation
so that the program may be maintained by others. Within this gener-

a1 level, one can identify many sublevels of computer programming
slull .

Level IV: Software developer. At t h s level, the student is
ready to write programs that are both complex and are intended to be
used by others. The student now knows several languages and has a
full understanding of all their features and how the languages inter-
act with the host computer (e. g. , how memory is allocated, how
graphic buffers can be protected from being overwritten, how periph-
eral devices can be controlled by the program). When given pro-
grams to read, the student can scan the code and simulate mentally
what the program is doing, see how the goals are achieved and , most
likely, how the programs could be better written or adapted for other
purposes. The s tudent now writes programs with sophisticated error
traps and built-in tests to aid in the debugging process and to
ensure that the program will be reliable, provable, and maintainable.
In addition to writing code that accomplishes the program's objective,
the student can optimize coding to increase speed and minimize the
amount of memory required for running. To decrease the time needed
to write programs, the student will draw heavily on software libraries
and programming utilities. Finally, the student will often design the
program before generating the code,' will document the program fully,
and will write the program in a structured fashion thus malung i t
easy for others to read and/or modify. Major issues in software
engineering at this level of expertise a re discussed by Thayer,
Pyster and Wood (1981).

There are many methodological problems with assessing computer
programming abilities across these four major levels and their many
sublevels. While psychological studies of expert and novice pro-
grammers have revealed some efficient measures that exploit the
differences in programming-specific problem-solving strategies--spe-
cifically , debugging (Jeffries, 1982) and program memory organization
(diPersio et al., 1980)--determining whether or not a person can
program at some specified level of expertise remains a difficult task.

Demands of Learning to Program: The Problem of Differentiation

The question of the cognitive demands of computer programming is an
enormously complex one, because nprogrammingn is not a unitary
sh l l . Like reading, i t is comprised of a large number of abilities
that interrelate with the organization of the learner 's knowledge base.
memory and processing capacities, repertoire of comprehension strate-
gies, and general problem-solving abilities. In addition, a program-
mer may be highly developed in some aspects of programming but not
in others. For example, it is not uncommon to find programmers who

can write highly efficient and elegant code, but not code that can be
understood or maintained by other programmers. Typically, in re-
search on the psychology of computer programming, "learning to
program" has been equated with learning the syntax and the defini-
tion of commands in a programming language, just as reading is often
equated with skill in decoding. However, once past the initial level
of skill acquisition, what we mean by "readingn is actually reading
comprehension, which entails an elaborate body of world knowledge,
comprehension monitoring, inferencing , hypothesis generation, and
other cognitive and metacognitive strategies that take years to devel-
op fully. This lesson has been etched in high relief through the
intensive efforts necessary to develop artificial intelligence systems
that "understandn text (e. g . , Anderson & Bower, 1973; Schank,
1982; Schank & Abelson, 1977). Skilled reading also requires wide
experience with different types of texts (e. g . , narrative, essays,
plays, poetry, debate, biography) and with different goals of the
reading activity (such as reading for meaning, content, style, pleas-
u re) . Skilled computer programming is similarly complex and context-
dependent, which makes the problem of assessing the cognitive de-
mands of nlearning to program'' all the more acute.

This issue of "cognitive demandsn and the corresponding problem of
selecting components of the question that a re researchable has been a
general one. The idea that some development may serve as a neces-
sary prerequisite for some other development i s familiar from the
Literature of moral reasoning (e. g . , Tomlinson-Keasey & Keasey ,
1974), language development (e .g i , Sinclair, 1969; Slobin, 1973,
1982) and, more generally, from the "invariantn developmental stage
sequence arguments offered by Piaget as central to his structuralist
developmental theory. This approach to the cognitive demands of
programming has recently begun to be applied to programming as well
(Favaro, 1983). In each case, the empirical testing of the prereq-
uisite character of some specific cognitive achievement for some other
cognitive achievement has depended on a refinement of the general
question into specific questions that a re empirically researchable.
Rather than asking, as in the early days of the cognitive prerequisite
controversy in developmental psy cholinguistics--I1 Daes language learn-
ing require prior concept development for the ideas expressed in
language?"--current language development research recognizes that
such a question must be asked for specific language constructions or
subparts of language, and that the answer will depend on the lin-
guistic forms chosen (e. g . , Johnston, 1982) . W e will urge a similar
differentiation for questions about the "cognitive demands" o r "pre-
r e q u i s i t e s b f learning to program--cognitive prerequisites in order to
do what specifically in programming?

What Programming Is as a Cognitive Activity

In this section, we first outline recent findings about the cognitive
psychology of expert programming, then provide a brief account of
available theories of the cognitive subtasks involved in programming,
describe existing accounts of what "learning to program" involves,
and then critique the popular accounts of what learning to program
requires.

One can begin to analyze what programming skill is as a cognitive
activity by engaging in detailed analyses of what expert programmers
do, and what kinds and organizations of knowledge they appear to -
have stored in memory in order to do i t . This research strategy has
revealed significant general features of expert problem-solving com-
petence and performance for a wide variety of other subject domains
such as algebra (Lewis, 1981), chess (Chase & Simon, 1973), geome-
try (Anderson, Greeno, Kline & Neves, 1981), physics (Chi, Felto-
vich & Glaser, 1981; Larkin, McDermott, Simon & Simon, 1980),
physical reasoning (deKleer & Brown, 1981), and writing (Bereiter &

Scardamalia, 1982), and i t has begun to provide some insights into
the components of programming skill.

Recent studies of programmers suggest that high-level computer
programming skill is characterized by a giant assembly of highly
specific, low-level knowledge fragments (Brooks, 1977; Atwood &

Ramsey , 1978). For example, the design of functional "programmer's
apprenticesn such as Barstow's (1979) Knowledge Based Program
Construction, and Rich and Shrobe's "Lisp programmer's apprentice"
(Rich & Schrobe, 1978; Shrobe, Waters & Sussman, 1979; Waters,
1982), and the MEN0 Programming Tutor (Soloway, Rubin, Woolf,
Bonar & Johnson, 1982) has involved compiling a "plan library" of the
basic computer programming schemas , I' o r recurrent functional
chunks of programming code that programmers a re alleged to use.

There is some behavioral evidence from studies of programmers that
supports these rational and introspective analyses of "chunks" of
computer programming knowledge. Eisenstadt, Laubsch and Kahney
(1981) have developed a Logo-like software programming language
called SOLO and used i t to introduce computer-naive college psychol-
ogy students to computer programming. In an analysis of novice
student programs, they found that most programs were constructed
from a small set of basic program schemas comparable to the "plan
library" of Schrobe et al. (1979). Jeffries (1982) , in a comparison of
the debugging strategies of novice PASCAL programmers and graduate
computer science s tudents , found that "experts saw whole blocks of
code as 'instantiations' of well-known problems" such as " calculating
change. I'

Soloway and his colleagues (Bonar, 1982; Ehrlich & Soloway, 1983;
Johnson, Draper & Soloway, 1983; Soloway & Ehrlich, 1982; Soloway,
Ehrlich, Bonar & Greenspan, 1982; also see Kahney & Eisenstadt,
1982) have begun to construct a "plan-based theory of computer
programming"which also postdates the use of recurrent plans as
n c h u n k ~ " in program composition. Such plans were identified in
preliminary analyses of programs written by PASCAL novices (e .g . ,
the "counter variable plan"). What is missing here, for our pur-
poses, is a ~ e n e t i c account of the construction of such plan schemas
from programming instruction, experience, and prior knowledge that
is brought to the task of learning to program. (For the interested
reader, a general account of schema theory in cognitive science is
provided by Rumelhart, 1980.)

A second, related characteristic of computer programming skill is the
large number of component rules that underlie an expert ' s generation
of programming problem solutions. In an analysis of one program-
mer's work on 23 different problems, Brooks (1977) demonstrated in a
detailed model that about 104 rules were necessary to generate the
protocol behavior. Further , Green and Barstow (1978) note that over
a hundred rules for mechanically generating simple sorting and
searching algorithms- (e. g . , Quicksort) are familiar to most pro-
grammers.

A third characteristic of computer programming skill is the ability to
construct detailed mental models of how the computer is functioning
when a computer program is running (Sheil, 1980, 1981a). The
expert programmer can build dynamic mental representations, o r
"runnable mental modelsn (Collins & Gentner , 1981) in which they can
simulate computer operations in response to specific problem inputs.
Brooks (1977) has characterized these mental operations as "symbolic
executions."The complexities of such dynamic mental models a re
revealed when skilled programmers gather evidence for program bugs
and simulate the program's actions by hand (Jeffries, 1982). We
should note that not a l l aspects of program understanding are medi-
ated by hand simulation; often experts engage in a prior global
search for program organizational s t ruc ture , a s t rategy akin to that
of expert text readers (Brown, 1983b; Brown & Smiley, 1978: Spiro,
Bruce & Brewer, 1980) and guided by adequate program documenta-
tion.

Expert programmers not only have more information about the com-
puter programming domain, but remember larger, meaningful chunks
of information that enable them to perceive programs and remember
them mote effectively than novice programmers. The classic Chase
and Simon (1973) finding of short-term memory advantages for chess

experts over novices for meaningful chessboard configurations but not
for random configurations has been repeatedly replicated for the
domain of computer programming (Curtis, Sheppard, Milliman, Borst &

Love 1979; McKeithen, Reitman, Rueter & Hirtle, 1981; Norcio &

 erst, in press; Sheppard, Curtis, Milliman & Love, 1979; Shneider-
man, 1977). For example, McKeithen et al. (1981) used the Reitman-
Rueter (1980) technique for inferring individual subjects' chunking of
key ALGOL programming concepts in memory from recall orders to
discover the specifics of memory organization that may facilitate this
performance difference. They found extensive differences in the
mnemonic strategies used by beginning, intermediate, and expert
ALGOL programmers to memorize ALGOL keyword stimuli. Notably,
experts clustered the keyword commands according to meaning in
ALGOL (e.g. , those functioning in loop statements), whereas novices
clustered according to a variety of surface ordinary language associ-
ations (such as orthographic similarity and word length) , with inter-
mediates somewhere in between. In a related finding, Adelson (198 1)
presented computer programming novices and experts with a recall
task in which stimuli were lines of programming code which could be
organized either procedurally (into programs) or syntactically (in
terms of order relationships between different control phrases of the
computer language). She found that experts recalled program lines
"in the order in which they would have been evaluated in a running
program, " whereas novices clustered by syntactic category. Recall
clusters for experts were thus functionally or "deeply" based, where-
as those of novices were based on "surface" features of programming
code. This distinction is reminiscent of the striking developmental
shift from surface structure-based, or "syntagmatic , " word associa-
tions to functional category-based, or "paradigmatic," word associa-
tions during childhood (e. g . , Nelson, 1977).

DiPersio, Isbister and Shneiderman (1980) have carried this line of
research further b y demonstrating that performance on a program
memorizationlreconstruction task provides a useful measure and pre-
dictor of computer programming ability. Scores on program logic
reconstruction tasks and performance on college class exams in pro-
gramming were significantly correlated. The authors attributed this
result to the extent of subjects' "semantic" knowledge base for the
programming language, that i s , the functional nature of the ?ode
(which we have more appropriately designated as the "pragmatics" of
programming slull). Such results are encouraging insofar as they
suggest the utility of such a memory task as one measure for assess-
ing computer programming skill development. More research will be
required, however, for the performance levels of individuals rather
than groups to be inferred from their performance on program memory
tasks.

It is also a widely replicated finding that expert programmers debug
their programs in different ways than do novices (Atwood & Ramsey,
1978; Gould, 1975; Gould & Drongowski, 1974; Youngs, 1974).
Perhaps most important is the recent finding (Jeffries, 1982) that
program debugging involves comprehension processes analogous to
those for reading ordinary language prose. Experts read programs
for flow of control (execution), rather than Line by line (as text) .

In terms of identifying the specific cognitive activities involved in
programming (the necessity of which we argued for earlier in our
discussion of the cognitive demands of computer programming) , we
need a more comprehensive account of the task of programming.
Recent research in cognitive science provides such accounts, and to
these theories we now turn.

Theories of Cognitive Subtasks Involved in Programming

It is the consensus of cognitive psychologists who have developed
global theories of expert programming skill that computer programming
is highly complex since "it involves subtasks that draw on different
knowledge domains and a variety of cognitive processes"(Pennington,
1982, p. 11). Jus t as in the case of theories of problem solving in
general, cognitive theories that have been developed of expert p ro - .
gramming articulate a set of distinctive cognitive activities that take
place in the development of a computer program. These activities are
required for programming whether the programmer is novice or ex-
pert , since they constit& phases of the problem-solving process in
any general theory of problem solving (e .g , , Heller & Greeno, 1979;
Newell & Simon, 1972; Polya, 1957). They may be summarized as:
(1) understanding the programming problem; (2) designing or plan-
ning a programming solution; (3) writing a programming code that
implements the plan; and (4) comprehension of the written program
and program debugging. We will discuss each of these cognitive
subtasks in tu rn , with an eye toward thinking about what kinds of
cognitive demands each of them may make on the programmer.

1. Understanding the Problem

It is generally agreed that in attempting to solve a problem, the
problem solver first sets up some form of "problem representation" in
working memory which is used to model a problem in terms of what
the problem solver knows about the problem domain, and how that
knowledge is organized for h im or her. En recent studies (e. g . , Chi,
et al., 1981). substantive qualitative as well as quantitative differ-
ences in the problem-solving processes of experts and novices for a
given content domain, such as physics, have indicated that experts

set up radically different kinds of problem representations in their
early attempts to understand the problem presented. In the case of
applying physics to mechanical problems, experts engage in extensive
qualitative problem analysis, o r processes of problem understanding,
before attempting to solve the problem, for example, through setting
up a physical representation of the problem situation that was initially
depicted in words (Larkin, 1977; McDermott & Larlun, 1978; Simon &

Simon, 1978). Physics experts focus on deep structural features of
the problems in problem categorization studies, sorting together
problems which would be solved according to specific laws of physics,
unlike novices, who focus more on the surface structural features of
the problem structure, such as the objects involved, physics terms
used, and the physical configurations described in the problem (Chi
et a l . , 1981). What the expert appears to know is what kinds of
features of the problem should constitute part of their problem repre-
sentation; this knowledge is apparently faali tated by large-scale
memory units in terms of problem types that are identified in terms of
deep s t ructure, and b y the experts' facility in rapidly building
qualitative physical symbolic representations of the verbal problem
statements.

h a discussion of a computer-implemented model of physics problem
solving, Larkin (1980) notes that the importance of a deep problem
representation during the problem understanding process is that

using these qualitative features, the [computer simulated]
solver tentatively selects a method for solving the problem.
It then applies key physics principles from that method to
generate qualitative information about the problem--for
example, information about the direction an object moves
[our Design and Planning cognitive sub task] . When suffi-
cient information has been generated to solve t h e abstracted
qualitative problem, the model solver elaborates this quali-
tative solution by generating corresponding quantitative
equations [our Program Coding phase] to actually solve the
original problem. (p . 116)

What is illuminating for thinking about computer programming from
problem-solving studies such as these, and in other domains such as
geometry (Greeno, 1976) or writing (Flower & Hayes, 1979), is that
the problem solver must have substantial domain-specific knowledge in
order to set up a functional problem representation. With respect to
understanding the problem, Larkin's physics solver "had to know
what h n d of features to abstract in constructing a useful simplified
problem. I' For developing a problem-solving plan, it "had to know
what h n d of operations he could apply to solve abstracted problems,"

and for working out the details of the problem solution had to know
"ow these [operations] were to be elaborated when he returned to
construct a full solution." Although solution debugging is not men-
tioned in this work, presumably he would also have to know how to
check whether or not the solution was a correct one.

So domain-specific knowledge is very important for understanding the
programming problem. Lf a child was asked to write a graphics
program to draw a Colonial home, she would have to know about what
Colonial houses looked like, their key identificational features, and so
on. Similarly, to develop a game system, a c h l d would need to know
the many domain-specific facts about computer games, such as vari-
able skill level, score feedback, and so on. Since domain-specific
knowledge is such a fundamental aspect of understanding programming
problems, serious thought needs to be given to what we know about
conceptual development for any given content domain for whlch we are
interested in posing programming problems for children. Certain
domains, such as statistics, o r simulations for complex domains such
as ecosystems and economics, may well be out of reach for school-
aged children, and constitute inappropriate programming project
content. But the great variety of domains that children are learning
about in school should provide ample opportunity for rich pro-
gramming projects.

A s for the specifics of the categories or types of prablems that the
expert programmer is able to identify in attempting to understand t h e ,
programming problem, many different alternatives have been suggested,
and little empirical evidence, even for adult experts , exists to dis-
tinguish them. We summarize those described by Pennington (1982)
below :

a) Function-oriented. Problems would be seen as indicating
different program goals o r functions, in terms of what is to be ac-
complished, such as "update inventory accounts and produce reports"
(e. g . , Balzer , Goldman & Wile, 1977; Shneiderman & Mayer , 1979).

b) Data1 process-oriented. Problems would be seen as specifying
external object classes (e. g . , updates, inventory accounts, s ta tus
report) , and operations (e. g. , transform initial objects to final ones)
applied to specific classes of objects (e. g . , Brooks, 1982 ; Miller gr

Goldstein, 1977) .
el Sequence-oriented. Problems would be decomposed into their

basic components or procedures, and problem representations would
contain sequencing information (e. g . , Atwood, Jeffries & Polson,
1980) .

A s noted above, the problem representation that serves as the out-
come of the problem-understanding process is one of the most funda-
mental components of the problem-solving process, for programming as
well as other content domains. For this reason, we expect the cogni-
tive subtask of understanding the programming problem to be devel-
opmentally central. The cognitive demands of understanding pro-
gramming problems, as we have seen, will depend at least upon the
extent and organization of a child's domain-specific knowledge that is
required for the problem a t hand. But since the adult expert pro-
grammer literature is currently equivocal on what forms such problem
representations may take, we cannot make precise the cognitive
demands of program understanding. For at least some of the pro-
posed alternatives, datalprocess-oriented and sequence-oriented , the
child would need to be able to learn about the different classes of
data objects and operations, in the first case, and about the concepts
of "procedures"and "sequentiality, in the second case. Such basic
requirements have direct implications for defining a "core" of minimal
programming knowledge, to be discussed below.

2. Designing I Planning the Program

After achieving an initial problem representation, the programmer
needs to map out a plan or design for the program to be written later
in programming code. Atwood et al. (1980) provide an informative
description of the requirements of this process :

Software design is the process of translating a set of task
requirements (functional specifications) into a structured
description [design or plan] of a computer system that wil l
perform the task. There are three major aspects to this
description. The original speafications a re decomposed into
a collection of modules, or substructures , each of which
satisfies part of the original problem description. This is
often referred to as modular decomposition of the problem.
In addition, these modules must communicate in some way.
The designer must specify the interrelationships and inter-
actions among. the modules [also called procedures in smaller
systems 1 . This includes the control s t ruc ture , which
indicates which modules are used by a given superordinate
module to do i ts work and the conditions under which they
are used. Lastly, a design may include a definition of the
data structures required. (p . 3)

According to Brooks (1 9 8 2) , one-third of the entire time a program
team spends on a software project (including coding and testing)
should be spent planning the task. Atwood et al. (1980). in a de-

tailed analysis of the think-aloud protocols of two expert software
designers as they solved a software design problem, found that they -

had available many general design strategies, such as problem decom-
position, subgoal generation, retrieval of known solutions, generation
and principled or npolicy driven"se1ection of alternative solutions,
and evaluative analysis and debugging of solution components. It is
of some importance in this respect that a major move in programming
instruction is to treat programming as an instance of a general prob-
lem of structured design (Floyd, 1979) , rather than as machine and
programming language-specific (Sheil, 1980 1.

At this point, someone is bound to object that, in the programming
process, i t is possible to bypass this step of program development
altogether, that one may first make an initial reading of the problem,
then sit down at the keyboard and begin composing code to achieve
the task. And i t has been said (Galanter, 1983) that one frequently
finds much preplanning in PASCAL (a compiler language) program-
ming, but often little o r no planning prior to code writing for pro-
gramming languages such as BASIC (an interpreted language). What
are we to make of this observation in terms of defining design and
planning as a distinct cognitive subtask in programming? Is i t op-
tional? The answer to this question certainly has consequences for
the cognitive demands of pr~gramming, if one subtask ingredient to it.
involves whatever cognitive prerequisites there are for planning and
design.

In response to this objection, we allow for the distinction commonly
made, and applicable to the cognitive activity of programming, be-
tween planning-in-action versus preplanning (Rogoff & Gardner ,
1983). In terms of this distinction, what the BASIC programmer is
engaged in as he o r she sits down and begins to generate program-
ming code without a prior plan is planning-in-action, making decisions
as he or she goes about the s t ructure sf the program, which evolves
as the materials of the program are created. Schon and Bamberger
(1982) have described the outcomes of such a planning-in-action
creative process in art, music, and other related domains as a conse-
quence of an iterative series of '~conversations" the creator has with
his or her partial creations. Bereiter (1979) has characterized a
similar process in composing language text as "epistemic," in whch
one comes to see and understand new things as one channels one's
ideas into a written product. But to return to programming, d-
though planning-in-action is certainly possible, even sufficient, to
produce a program, we expect such a planned-in-action program often
to have great costs for the beginning programmer. The reason has
to do with the anticipated difficulties of comprehension and debugging
when one goes back to t ry to understand what one has done in

writing a program not built with foresight. Of course, for expert
programmers the sheer automaticity of many programming projects,
since they are able to recall successful plans for similar programs o r
software systems, will mean that little preplanning will be required
for the program code generation. In other words, the adult program-
m e r often can integrate the subtasks of planning and code writing.
But the child as novice programmer is not at that level of under-
standing, and does not have a store of programming schemas available
for ready reference during planning-in-action while creating a pro-
gram. So we WLU continue in our discussion of the cognitive demands
of programming to include the cognitive demands of the planning1
design cognitive subtask of programming.

In terms of cognitive demands, details of the various proposals for
how planning takes place in programming, whether the top-down
orientations with successive plan refinement or more opportunistic
approaches analogous to the work of Hayes-Roth and Hayes-Roth
(1979) , imply that preadolescents may have difficulties generating
program designs, particularly ones that a re complex and require
hypothetical and counterfactual reasoning more characteristic of the
older child. We shall provide a brief review of this literature in
the section on conceptual development and programming. One of the
principal cognitive problems comes down to what Stefik (l98la , 1981b)
in his artificial intelligence work on planning called the recognition of
"commitments" of plan components, involving seeing ahead or symboli-
cally executing plans o r plan parts in order to mentally simulate the
consequences of particular design proposals, and finding problems
with those commitments that indicate the need for a new design.

Pennington (1982) has indicated problems with the very general
nature of proposals that program plans a re hierarchical in nature,
such hierarchy representing successive refinements of the program
description until a solution that can be mapped out in programming
code is reached. How do each of these successive versions of the
plan represent and fur ther elaborate the four basic types of program
information, that is: (a) the purposelfunction of a particular plan
unit; (b) the s t ruc ture of the data objects; (c) the sequencing of
operations (control flow); and (d) the transformations of data objects
(data flow)? A s she notes:

Little empirical evidence exists on how programmers coordi-
nate and transform the four types of information embodied
in a final programming product, yet it seems that these
coordinations underlie the complexity of programming and
other planning tasks. (p . 19)

We would agree here, but note further that studies of the develop-
ment of planning for any content domain are in their infancy
(Friedman, Scholnick & Cocking, 1983; Pea, 1982). What evidence
exists indicates that, at least for planning problems utilizing familiar
classroom chores in a chore-scheduling task where the goal is to find
the shortest possible plan for doing all the chores, children from 8 to
1 2 years of age are capable of substantial "debugging" of long plans
through revisions.

We may now ask: What programming knowledge is necessary to
design the program plan? A s discussed earlier, expert programmers
chunk familiar patterns of programs, as indicated by the quality of
their program comprehension as indexed by program recall. It is
currently unclear how this knowledge is organized or acquired (an
account of cognitive skill acquisition comparable to J. R . Anderson
[I9821 could be offered as a model of the lat ter) , although these are
fundamental developmental questions.

Some proposals have been made on the character of the expert pro-
grammer's memory store, but little evidence is available. Some alter-
natives as reviewed by Pennington (1982) -are set out below, and aim
to answer the question of what programming knowledge schemas or
chunks are available to the expert. The implication for our questions
about children are that whatever kinds of programming knowledge are
required by children of the age of interest would have to be learnable
in order for program plans drawing on such knowledge to be achev-
able. So what are the schemas?

a) Anything from transactions (less than a programming state-
ment) to chunks (unit that accomplishes a goal) to higher level
chunks (familiar algorithms) (Mayer, 1981) ;

b) Hierarchy of patterns from operations (compare two numbers)
to small algorithms (sum an array) to large algorithms (bubble sort)
to program patterns (Shneiderman 1980; Shneiderman & Mayer 1979);

c) Known solutions /plans /plan elements (Atwood, Jeffries &

Polson, 1980; Balzer et al., 1977; Miller & Goldstein, 1979) ;

c l) High-level programming units such as loop and recursion
strusture (Rich, 1981; Rich & Shrobe, 1979; Soioway & Woolf, 1980;
Soloway et id., 1 9 8 2) ;

e) BuiJding block units such as basic loop, augmentation, and
tilter (Waters, 1979) ;

f) Categories with internal s t ructure, such as rules for data
structures, enumerations (looping constructs) , mappings, etc.
(Barstow, 1977, 1979).

3. Coding a Program

This phase of program development consists of a translation from the
most refined version of the program design into the programming
code. Brookst (1975) estimate of less than 200 coding templates
necessary to define the syntactical arrangements of code in statements
makes clear why it is said in the programming industry that coding is
a much simpler process than program design, which appears to in-
volve a much more vast and initially ill-defined problem space.
According to Brooks (1982), only one-sixth of the time allocated to a
software project should invlove the actual writing of the program
code. It is unlikely that this phase can be completely independent of
the program planning phase , since different programming languages
provide different options for plan implementation, such as "the availa-
bility (or lack) of linked list data structures"(Pennington, 1982, p .
2 4) .

Brookst (1975, 1977) s tudy of a programmer's coding performance
found symbolic execution, or what we might describe as mental simu-
lation, to be the major feature of the coding process. Brooks'
account postulates that

a plan element triggers a series of s teps through whch a
piece of code is generated and then the programmer "sym-
bolically executesn that piece of code in order to assign an
effect to it. This effect is compared with the intended
effect of the plan element; any discrepancy causes more
code to be generated until the intended effect is achieved.
Then the next plan element is retrieved and the process
continues. Throughout this process a representation of the
program is built up , storing information about the objects
(variables, data s t ruc tures , etc.) , their meanings, and
their properties. (See Pennington, 1982, p . 24)

Once again, as in the case of plan construction where symbolic exe-
cution plays a major role, we find that program coding requires sub-
stantial hypothetical thought. A s for the cognitive demands of gen-
erating program code, we may note three general classes of apparent
prerequisites: (1) ability to engage in hypothetical symbolic exe-
cution of code; (2) ability to learn the coding templates that define
the syntactical knowledge necessary for code generation : and
(3) ability to keep to the goal at hand, or program plan, unless
deviations from it are required to generate the code; in such an

event the plan would need to be revised, with consequences for the
code then to be generated to achieve it.

4. Comprehending and Debugging a Program

How do programmers comprehend programs? In order to debug or
modify their programs, they need to learn from their own or others '
programs. If they are to realize how much progress they have made
in developing a program, comprehension must play a key role. One
extremely useful paper in thinking about this problem is by Green,
Sime and Fitter (1980), who emphasize at some length the importance
but current neglect sf developing means for "getting information - out
of programs as well as into themL-the program comprehension prob-
lem. They note that "some of the major problems [a programmer
faces] come when the program is being debugged, or extended, o r
modified, or just when the past half-hour's work is being reviewed"
(p. 894) . Pennington (1982, p. 29) notes that "program comprehen-
sion also involves reversing the forward mappings from problem
representation in the external domain to successive levels of plans to
programming language code." Program comprehension would thus
require a n inferential retrieval of the program creation process.

Four very different views of the program comprehension process have
been proposed, and they have not been compared in terms of their
empirical validity: one is bottom-up, one is middle-out, one is top-
down, and one is transformational (Pennington, 1982, pp. 26-27,
whom we follow closely in this section). Shneiderman (1976) finds
expert programmers to recall more gist , o r high level ldgic, of the
program than do novices. He later (198Q) argued for a bottom-up
construction of meaningful units of programming code, from operations
to aigsrithrns on up to the £unction of the program as a whole.
Atwood and Ramsey (1978) have a multiple pass model analogous to-
Hayes-Roth and Hayes-Roth's (1979) opportunistic model of planning,
in the sense that programmers utilize high-level and low-level infor-
mation about the program structure advantageously in order to under-
stand the program.

On the first pass , some level of the [program] macrostruc-
ture is integrated, possibly as high as program function,
possibly at some level of chunking. Successive passes lead
to integration of lower level propositions (working down)
and successive integrations of the macrostructure (working
up). (Pennington, 1982, p. 27)

Brooks (1 9 8 2) views program comprehension as hypothesis driven and
as immediately seeking out the high-level schema for the program.

The program reader then is said to seek out evidence for predicted
program components consistent with their high-level expectations.
This process works iteratively until the program reader has assimi-
lated all the code to understand its precise workings. The complex
transformational account offered by Rich, Shrobe and Waters (Rich,
1981; Rich & Shrobe, 1978, 1979; Rich, Shrobe, Waters, Sussman &

Hewitt, 1978; Rich & Waters, 1981; Shrobe, 1979; Waters, 1978, 1979)
implies that program understanding is mediated by a hierarchical
representation of three levels: (1) deep plans (purpose) ; (2) surface
plans (in program s t ruc tu re) ; and (3) definitions of data objects,
properties, and 110 specifications for program code segments.

What does all of this mean for the child who needs to be able to
comprehend programs as one cognitive subtask of programming?
Again, this is a complex question, since even a t this level of subtask
analysis this question is analogous to that of "What are the cognitive
demands of (natural language) text comprehension?" which is far too
general a question to be meaningful psychologically. The question
asked should instead depend upon what kinds of text (in terms of
text genre) , logical complexity of the text, in terms of the inferences
required to understand i t (e. g . , Clark, 1977), constituent state-
ments, words and, in the case of the beginning reader , even letters,
of which the text is composed (e. g., Gibson & Levin, 1975). At the
most basic level, children would have to be able to read the lines of
code and identify the meanings of the constituent elements of the
program, or primitive commands. This much is basic. But a much
more complex task is to understand the interrelationshps between
these lines of code, to recognize the units, modules, or procedures
which make up the meaning of the program as a whole. Studies
(e. g . , Kurland & Pea, 1983) demonstrate that comprehending pro-
grams at multiple levels is a difficult task even for relatively expe-
rienced child programmers from 8 to 12 years of age. However, what
is as yet unclear is whether children do not tend to comprehend
programs at "deepn levels because they have difficulty decoding even
the surface syntax, o r whether for the type of programming activities
children typically engage in there is little incentive to probe below
the surface.

We have provided a brief account above of the four major constituent
cognitive subtasks of programming insofar as they are currently
understood in the literatures of cognitive science and software psy-
chology. What we have observed is that even a t this level of speci-
ficity, although we can articulate at a general level some kmds of
knowledge and abilities that children should have in order to mentally

engage in these subtasks (which we will not review here) , we found
in each case that the four subtasks could be fruitfully decomposed
still further. But surely such decomposition must at some point come
to an end, or the resolution of our analysis will be so minute as to
map one per one on each decision the programmer makes whle pro-
gramming. There are no doubt an infinite diversity of those, much -
Like utterances in natural language, and a cognitive demand analysis
that is an infinite list is not of much use. So how fine shall the
grains of the cognitive demand analysis be?

Before falling into some existential abyss, let us not lose sight of the
original goals of thinking about the cognitive demands of program-
ming; that i s , basically, to understand well enough what cognitive
prerequisites different programming activities have so that children
are able to pain entry to the world of programming, and so that
overly complex programming subtasks are not required of them.
Inevitably, there are those who will look for the curricular implica-
tions of these analyses, and a certain amount of fuzziness or irnpre-
cision will at first be likely. Insufficient data are available on the
development of skills such as planning, symbolic execution, and
problem understanding, and such data as do exist are derived from
children's performances in task environments so unlike programming
as not to be straightforwardly applicable to it. The consequence of
this point is that s p e c i m g ages or prerequisite knowledge states at
which certain programming activities can or cannot be undertaken is a
risky business if done a priori, and cannot be warranted on the basis
of available evidence. Instead, we need to design programming tasks
in which children of different ages can attempt the programming
cognitive subtasks we have outlined above, so that we can see on an
empirical basis what children appear to be capable of.

We will now review the few observations that have been made to date
on the development of programming skills. To anticipate, our con-
cerns above will not be reflected in the available literature.

The Development of Programming Skills

What n B e c o w g a Programmern Means: Children

The few available studies of children's programming have not been
developmental in nature, articulating intermediate stages of compe-
tence en route to mastery and setting out constraints on the devel-
opment of specific computer programming activities (such as those
articulated above) in terms of prerequisite knowledge. Rather, these
studies are observational and anecdotal studies of individuals' learning
to program to show that "children can program," as well as to docu-

ment some of the motivational benefits of such computer programming
experience (e .g. , Papert et al., 1979). We find that little thought or
research has been directed to the important problem of articulating
intermediate levels of computer pro&amming mastery. This is a
serious knowledge gap since "understanding" is not an all-or-none
mental state (e. g . , Nickerson, 1982) and the processes undergirding
developmental transformations of a person's understanding are of
central concern for a developmental cognitive science. Because
Dewey's concept of 'Ireadiness to learn" has proven to be of such
wide instructional applicability, we believe that delineating these
intermediate forms of understanding must be a goal of developmental
research on programming. This dearth of knowledge is compounded
with the problem that , from the popular literature on children and
programming, it appears as if everything we have learned about
cognitive development during the last quarter century has suddenly
been rendered irrelevant by the advent of the microprocessor. For
example, 5-year-olds who can get a graphics cursor to work in the
Logo programming language are called "programmers, 'I conveying the
popular assumption that they have come to understand the logical
operations ingredient to a program's flow of control, and are capable
of all the cognitive subtasks of programming.

Child Novice Pro~rammers

Only limited evidence, somewhat bleak in character, is currently
available on levels of programming abilities achieved by individuals of
different age groups in the precollege-age population. These statis-
tics should not, of course, be taken to indicate what each c h l d may
be capable of if allowed his or own computer in school and the sup-
port of optimal instruction. In the National Assessment of Educational
Progress survey of 2500 13 -year-olds and 2500 17-year-olds during
the 1977-78 school year (NAEP, 1980), even among the small percent-
age of students who claimed to be able to program a computer, "per-
formance on flowchart reading exercises and simple BASIC programs
revealed very poor understanding of algorithmic processes involving
conditional branching1' (cited by R. E. Anderson, 1982, p. 14).

It is worth noting in this context that in current instructional envi-
ronments, children appear to have basic conceptual and representa-
tional difficulties in constructing dynamic mental models of what is
happening when the computer is executing lines of their programs,
which sets critical limits on the computer programming skill level that
they attain. Furthermore, systematic but "naive1' mental models o r
"naive epistemologies" (diSessa , 1982) of computer procedural func-
tioning may initially guide and mislead chddren's understanding of
programming, which, as we shall see, is the case for adult novice

programmers. Empirical studies of the program comprehension proc-
esses of children at various levels of computer programming expe-
rience will be essential for an understanding of this issue.

To take one example: In work at our laboratory with child Logo
programmers (Kurland 81 Pea, 1983b), we have found that child
novices frequently adopt a systema ic but misguided conception of the 5
manner in which control is passed between Logo procedures. Many
children believe that placing the name of the executing procedure
within that procedure causes execution to "1oop"back through the
procedure when, in fact, what happens is that control is passed to a
copy of the executing procedure. This procedure is then executed,
and when that process is complete, control is passed back to the
procedure which last called it. Children adopted models of flow of
control which worked for simple cases, such as programs consisting of
only one procedure or tail recursive procedures, but which proved
inadequate when the programming goal required more complex pro-
gramming constructions.

In other studies of Logo programming development (Pea, Hawkins &

Sheingold, 1983), even among the 25% of the children (8- and 9-year-
olds, 11- and 12-year-olds) who were extremely interested in learning
programming, the programs they wrote reached but a moderate level
of sophistication after a year's work and approximately 30 hours of
on-line programming experience. We found that children's grasp of
fundamental programming concepts such as variables, tests, and
recursion, and of specific Logo primitive commands such as REPEAT,
was highly context-specific and rote in character. To take one
example: A c u d who had written a procedure using REPEAT which
repeatedly printed her namk on the screen was unable to recognize
the efficiency of using the REPEAT command to draw a square.
Instead, the child redundantly wrote the same line-drawing procedure
four times in succession.

Programming Environment as Context for Development of Programming
Skills

Much has been made recently in educational journals as well as in the
popular press about which programming language is best for ch ldren
to learn (Harvey, 1982; Tinker, 1982). Arguments for the relative
benefits of one language over another have raged for years among
computer scientists, though recent reviews indicate that very little
empirical research of any quality has been conducted on this issue
(Brooks, 1980; Moher & Schneider, 1982; Sheil, 1980) . Operating
systems, which are programs usually supplied with the computer by
the manufacturer that define how a user interacts with the language

and how the language interacts with the hardware, are often ignored
in arguments over the merits of different programming languages.
Since the ease or difficulty of learning a language, especially for the
novice, depends on the programming environment supported by the
operating system as much as on the s t ructure of the language itself,
i t i s important to be clear on what exactly is meant by an operating
system and a programming environment.

The operating system mediates all the activities of the computer. It
permits the user to call up a language, and provides the link between
programming commands and the hardware (disk drives, printers, tape
units, e tc .) . The operating system may also support an editor
through which the program can be entered into the computer, the
debugging tools, the e r ror trapping routines, the user subroutine
libraries, the file management subsystems, and on-line help files.
Depending on the sophistication of the operating system, a wide range
of other programming aids and application packages, which constitute
the programming environment, can also be made available. For ex-
ample, UCSD-PASCAL, as i t is implemented on most microcomputers,
consists of a language--that i s , a set of command statements which
can be s t rung together according to specific syntactic and procedural
rules--and an operating system (the UCSD P-system) which supports
the editing, debugging, compiling, and filing of programs written in
P-ASCAL (or FORTRAN, or assembler), as well as the linking of
programs to extensive libraries of user routines. In a PASCAL
programming environment one can also call upon numerous application
packages and programming aids to help find program errors or to
speed up the writing o r editing of programs.

This distinction between a language per se and the programming
environment in which one works with the language is critical. Many
of the alleged advantages of Logo over BASIC as a language for
children (Harvey, 1982) actually lie in the sophistication of Logo's
programming environment. For example, compared to the standard
BASIC that runs on an Apple computer, Apple Logo has a much more
sophisticated editor, more detailed error messages, better debugging
procedures, and provides more straightforward support for creating
and manipulating files. However, a BASIC programming environment
can be created on the Apple which provides the BASIC programmer
with many of the advantages of the Logo environment. One can add
to standard Apple BASIC a powerful program editor, debugging aids,
libraries of useful routines which can be incorporated into any pro-
gram, and even turtle graphic and recursive command structures of
the type normally associated with Logo.

There is another important sense in whlch one language h f fe r s from
another. Different languages are more or less well-suited for diifer-

ent purposes. For example, SOLO, a language designed for students
of cognitive psychology to s tudy artificial intelligence, is much better
adapted to this purpose than is BASIC (Eisenstadt, Laubsch &

Kahney , 1981) . However, writing a number-crunching program, a
simple task in BASIC, would be quite difficult in SOLO. To say that
SOLO is a better language than BASIC (or vice versa) without refer-
ence to the computer programming domain would be misleading and
meaningless. Similarly, one characteristic sf expert programmers
(Kurland & Pea, in preparation) is they h o w many different lan-
guages. FOP any particular programming job, they tend to select the
language best suited for that application taking into account the
specific machine and operating environment in w h c h they will be
working.

A review of existing psychological studies of computer programming
by Sheil (1981b) has highlighted some marginal effects for a variety
of different measures (such as ease of debugging and comprehension
measures) when comparing different programming languages that vary
in features such as s t ructures for expressing flow of control (e .g . ,
the infamous GOTOs; Dikstra, 1968, 1976). The lesson to be learned
is that the speaf ic language chosen probably does not make a big
difference, at least for adults. Far more important in carrying the
variance for computer programming expertise are issues such as the
resources that a re available in the programming environment, how
programming instruction occurs, and the amount of program writing,
reading, and debugging students engage in.

Instructional Environment

Just as the programming environment is a critical factor in determin-
ing the facility with which programmers can work with a language
(and thus what demands that 'language will place on the learner) , the
instmctional environment plays a key role in determining how suc-
cesa%d%y students will be able to take advantage of the programming
environment. Clearly, programming is not a black box into which
students can simply be plunked. Many learners, children included,
will need carefully sequenced instruction in how to use the operating
system, how to combine programming lines into higher level units that
accomplish some goal, how to select computer programming projects
that are within their current capability, and how to t h k systemati-
cally about debugging and modifying programs.

The literature on teaching computer programming and designing corn-.
puter programming tutors (e . g . , Miller, 1974) supports the theory
that deciding how best to introduce computer programming to students

and to assist them in writing programs is seriously hampered by a
paucity of relevant pedagogical theory.

The question of how much, if any, instruction is best when introduc-
ing children to computer programming is hotly debated (e. g . , Howe,
1981; Papert, 1980). At one extreme, i t is possible to find schools in
which computer programming (particularly in COBOL or BASIC) is
taught like any other academic subject. Students have textbooks and
workbooks, take tests on the definitions of various commands, and
are expected to master a given set of computer programming con-
structs and to be able to write a given set of sample programs. At
the other extreme, some teachers provide almost no direct instruction,
encouraging children to explore possibilities, experiment, and create
their own problems to solve. This "enlightenment" idea, popularized
for programming by Papert (1980) in his book Mindstorms, holds that
minimal overt instruction is necessary if the programming language is
sufficiently engaging and simple to use, while at the same time being
powerful enough for children to do exciting things. Though this
view is not universally shared, even by devotees of Logo (Howe,
1981), i t has had profound influence in the educational community.

A s a result of a year of observation and research with children in
two Logo classrooms (8- and 9-year-olds, 11- and-12 year-olds) in
the Bank Street School for Children of the Bank Street College of
Education, the importance of instructional context in promoting the
development of computer programming skills has become apparent.
Classroom teachers decided to adopt the instructional strategy advo-
cated by Papert (1980), who suggests that children be allowed to
explore the programming domain freely, with minimal intrusion or
organized instruction. Thus, at the outset, the children were taught
basic Logo commands and then encouraged to develop their own goals
and projects. Each child was assigned two 45-minute work periods
each week on the computers, but could add time when the computers
were free or if other required classroom work had been completed.
Teachers provided assistance with these individual or collaborative
efforts, but offered tninimal organized group instruction in new pro-
gramming concepts and tools. Children learned about. new concepts
and programming possibilities as the need arose, and occasionally
teachers organized small groups to introduce an interesting concept or
possibility. There were no required computer programming assign-
ments and no assessments of computer programming skill. During the
year, the children who were interested learned enough computer
programming to write simple procedures and perform routine house-
keeping and editing functions. Only a few children, however, devel-
oped considerable facility with the programming language and rou-
tinely incorporated the difficult concepts of recursion, conditionals,
and variables into their computer programming projects.

By year's end, both teachers were dissatisfied with the levels of
computer programming skill in these classrooms and decided to use a
more structured instructional context for teaching computer pro-
gramming the next year. They later included computer programming
as an integral par t of their school curriculum, introduced a struc-
tured sequence of concepts and programming tools, and provided
children with assignments, guided projects, and programming tasks.
It is interesting to note in this context that Piaget himself criticized
supposed "implementations1' of his activity-based approach to cognitive
development in educational settings because they lacked sufficient
structure (Kamii, 1974).

There was considerable variability in the degree of interest individual
children expressed b computer programming (Pea et al., 1983).
Classroom observations, amount of time spent on the computer, and
teachers' reports converged to indicate that about 25% of the 25
children in each class were highly interested in learning to program
and spent correspondingly more time than other children on the
computers. Approximately another 25% of each class expressed very
little interest in computer programming and spent almost no time
working at the computers after the initial introductory period. The
remaining 50% were modestly interested, but often adjusted the time
spent with computers to other interests that they had throughout the
year. So, for example, if a child was interested in a research topic
OP writing assignment during a particular week, she might choose to
focus on that work and sacrifice her time available for computer
programming.

These findings of the need for instructional guidance for computer
programming development receive support from extensive Logo in-
struction work by duBoulay and OIShea (1974, 1978) in which typical9
conceptual problems that arise in teaching Logo programming are
approached through a highly detailed teaching strategy consisting of
33 ordered worksheets for introducing computational ideas, problem-
solving tactics, and debugging skill. Such carefully planned se-
quences of instruction may be important to ensure that computer
programming schema knowledge is not "weldedtt (Shif, 1969) or "rigid"
(Werner, 1957) with respect to i ts contexts of occurrence.

On a related point, Mayer (1979, 1981) has shawn that a concrete
conceptual model of a programming system aids college students in
learning BASIC by acting as an "advance organizer" of the many
technical details of that programming language. With the aid of the
conceptual model, he argues, learners are able to assimilate the
details of the programming language to the model rather than needing
to induce the model from the details. Moran (1981) makes the impor-

tant point that Mayerls models may work because they are "synthetic
constructions" composed of recognizable par t s , such as "memory cells
and procedural agents, in contrast to more global analogies ('Ithe
text editor is like a typewritern) which often don't work.

Accounts of LevelsIStaples of Programming Skill Development

Observations of levels of computer programming skill development
have been extremely general and more rationally than empirically
derived as , for example, was our four-level model presented earlier in
this report. Neither of the accounts to be described below delineates
qualitatively distinct intermediate levels of performance in terms of
the four kinds of cognitive subtasks involved in programming dis-
cussed above. For example, h a study of 12-year-old children
learning to program in Logo, Howe (1980) describes three distinct
overlapping 'stages": (1) "product-oriented" aiming to produce
effects without concern for how they are achieved; (2) "style-con-
scious" aiming to work in what is perceived as "correct Logo pro-
gramming style, m derived from worksheets that recommend specific
programming, debugging, and editing methods; and (3) "creative
problem solving" : use of computer programming resources for ana-
lytic problem-solving activities; search for useful procedures from
others to solve one's own problems; and possible production of plans,
diagrams, or written problem specification.

No data are reported for the number of children successfully reaching
the various stages, nor is i t clear that one could at any point in time
reliably identify children performing at any of these stages as de-
fined. Further, the second stage appears to be an artifact of the
way that Logo programming was taught.

Hoc (1977) has provided a related account of three general steps in
the construction of a mental representation of a computational device
language (COBOL) found for adult novice programmers. Such steps
consisted of progressive 'internalizations" of the constructs of the
programming language.

What Does "Becoming a Programmer" Mean? Conceptual Difficulties of
Adult Programmers : Some Initial Barriers

Ln contrast to highly skilled programmers, as many adults learn to
program they reveal deep misunderstandings of computer programming
concepts and how different lines of programming code relate to one
another in program organization (Bonar & Soloway, 1982 ; Jeffries ,
1982; Sheil, 1980, 1981a; Soloway, Bonar & Ehrlich, 1983; Soloway,
Ehrlich, Bonar & Greenspan, 1982). Misunderstandings such a s

assuming all variables to be global (when some may be specific to one
program), and expecting that observing one pass through a loop
allows one to predict what will happen on all subsequent passes (when
in fact the outputs af programming statements which test for certain -
conditions may change what will happen during any specific loop),
were common for college adults after finishing a PASCAL programming
course (Jeffnes , 1982). Furthermore, Soloway, Bonar and Ehrlich
(1983) have shown that error-ridden programs resulfing from "buggy"
concepts of looping constructs in PASCAL may be mitigated if the
programmer's spontaneous cognitive strategy for solving looping
programming problems is supported by a n appropriate programming
language construct. Subjects were better able to write correct loo ?C
ing programs when they use$ a READIPROCESS strategy (on the i
pass through a loop the i element is both read and processe

th
rather than a PROCESS/READ str tegy (on the i pass the i A

element is processed and the next-i element is r ead) . Research by
Mayer (1976), Miller (1974), and Sime et al. (1977) also reveals that
adult novice programmers have a difficult time with the flow of control
concepts expressed by conditionals (for a review of these findings,
see duBoulay, O'Shea & Monk, 1981). We expect that the roots of
these misunderstandings may be based on inappropriate transfer from
non-CP domains.

Since members of the educational community would probably assume
that adult programmers are not beleaguered by conceptual problems in -
their programming efforts, we must drive this point home. Once we
recognize that programming by "intellectually maturen adults is not
characterized by error-free , routine performances (Anderson. 1983 ;
Anderson, Farrell & Sauers, P983), one might ask what should be
expected of the child learning to program who devotes but a small
percentage of his or her time in school to learning to program. In
fact, the conceptual difficulties of adult programmers have been
lamented by such computer programming polyglots and visionaries as
Minsky (1970) and Floyd (1979) as due to what is all too frequently
taught as computer programming. Too much focus, they urge, is
placed on low-level form such as grammar, semantic rules, and some
preestablis ed algorithms for solving classes of problems, while the P
pragmatics of program design are left for students to discover for
themselve5.

Summary

Becoming a successful programmer is very hard. After m a n y thou-
sands of hours, programming does not become a routine task. One
apparent reason for this is that program development, as constituted
by its four major cognitive subtasks, involves the transformation s f

ill-defined problems into well-defined ones (Greeno, 1976 ; Simon,
1973?), and then solving them. In conclusion, we note that the
literature we have just reviewed in this section is not helpful in
addressing the "becorning a programmer" question in ways that inform
our demands analysis. Before turning to a consideration of what
would constitute the "core" of programming knowledge, it is useful at
this juncture to reflect briefly on some of the popular conceptions of
the knowledge required for computer programming.

On the Cognitive Demands of Programming

Popular Conceptions of What Knowledge Computer Programming
Requires

Is there any more to be be gained in our quest for the cognitive
demands of programming subtasks from the popular literature on
computer programming? We think not. Current knowledge about the
prerequisite mental abilities, background knowledge, reasoning skills,
and cognitive style that allow for the development of high-level com-
puter programming skills in precollege-age students is entirely anec-
dotal, and highly vulnerable to the ideological biases that observers
have brought to their observations. Often, the children who learn
computer programming are preselected. The popular media, com-
puters-in-schools magazines, and computer programming teachers have
cited levels of mathematical problem solving ability, mechanical apti-
tude, and reasoning skills as key determinants of progress in learn-
ing computer programming. In earlier years, and to some extent
even today, the prevalent attitude was that programming required
highly developed mathematical abilities. But early programming
aptitude test developers recognized that "mathematical knowledge was
associated with the [specific type of] application and not with pro-
gramming ability" McNamara, 1967). This view is quite pervasive in
newspapers and magazines today, and is a frequent source of fear for
computer novices or those considering careers in computing, partic-
ularly women (Swaine, 1983). In biographical accounts of computer
technicians and software developers at the frontier of their discipline
(e. g. , Kidder, 1981) , the profiles which emerge do seem to support
the popular impression of computer programming as linked to high
mechanical and mathematical ability. h d in .the software engineering
literature, there is a widespread belief that "we can be fairly sure
that intelligence and educational differences will be reflected in per-
formance levels in software experimentation" (Moher & Schneider ,
1982, p. 7 4) . There are also considerable anecdotal reports to the
effect that ch ld ren and adults who become serious programmers
share, from an early age, a strong interest in figuring out how
things work, solving puzzles, and searching through challenging
problem spaces (Kidder, 198 1) .

Such observations as the above, however, are seriously compromised
by the well-known propensity for humans to focus on the positive
confirming cases in their search for correlations of real-world attri-
butes, in this case 'a high level of some ability and a high level of
computer programming mastery (Inhelder & Piaget, 1958; Nisbett &

Ross, 1980; Shweder, 1977; Ward & Jenkins, 1965). Such systematic
distortions and selective attention to aspects of the data from which
correlations a re derived calls for the scientific study of demand
characteristics for level of computer programming development in
nonpreselected school populations. Furthermore, the oversimplifi-
cations involved in these popular claims are notorious. They are
largely uninformative, because, as we shall demonstrate in the next
section, there a re many different types of programming. And one
may ask "what a re the demands of that kind of programming" for each
type, as well as for the cognitive subtasks w i t h i n each type. Even
more specifically, one may ask: What are the demands of doing
programming subtask x in programming type y ? " A s we shall see,
asking what programming is raises many complex issues, much as
asking what writing i s , in Fhich questions about demands are invari-
ably linked to asking about writing genres, or different types of
writing (Bereiter, 1979; Olson, Mack 81 Dufy , 198 1) . This skeptical
stance must nonetheless be accompanied by a pgsitive account of the
potential cognitive demands af specific activities involved in computer
programming. What is ultimately at issue is the empirical viability of
such a priori considerations about "demands,"at a level of analysis in
terms of the cognitive subtasks of programming. We will re turn to
this issue in the section on measuring program aptitude in adults.

Defining a " C o r e h f Programming Knowledge

What is the minimum or flcsre"of programming abilities that people
shodd kave, and what prerequisite knowledge and ability are re-
quired to attain that core? What a re the g o d s of programming in-
struction that a re appropriate? Many have recently been asking these
questions, especially since much of society is mystified by computers,
yet feel the need for developing some degree of computer Literacy,
however defined.

In a recent paper , Norman (1983) has distinguished four levels of
computer literacy not unlike the four levels we kave recently offered
as fundamental (Pea & Kurland, 1983a). The first level, involves
knowing about general principles of computation: the second, how to
use computers; the third, how to program computers; and the fourth,
haw to understand the science of computers. H e characterized the
first level as a necessary curriculum for everyone in society, and the
list of concepts to be covered as:

- software versus hardware

- computer architecture: central processing unit, forms of
memory

- terminal, peripherals, microprocessor

- algorithms: how they are developed and applied

- procedures and programming: what they are, how done

- machine intelligence

- communication networks

- data bases: how organized and used

- limitations of computers

- distributed offices

- multiprocessing

- computer security, as in time sharing

His second level was described as useful but not necessary for every-
one and, like ,this report, he characterized level three, or program-
ming, as very difficult and requiring many years of intensive study.
Computer science is limited to the small minority who have sufficient
interest and skill.

From our perspective, .the best way to learn about algorithms, pro-
cedures, and programming, even for level one, is to have hands-on
experience. We take the position that some core of programming -
ability is essential for this first level, not only "knowledge about"
programming, although Norman's point about the great difficulties
embedded in serious programming is well taken, as the discussion of
cognitive subtasks involved in expert programming makes clear. Sheil
(1981a), for example, argues quite convincingly that the increasingly
widespread use of complex programmable devices, such as office
information systems and calculators, "has made a basic appreciation of
the nature of programming a modern survival skill1I (Sheil, 1980,
p. 1). What remains is to define what constitutes that basic appre-
ciation. To answer these seminal questions about minimal program-
ming literacy and its cognitive foundations, we will require a great
deal of empirical research, since it is essentially a question of asking
what is the core of natural language that an individual should learn
in school in order to be judged as a competent member of the lan-
guage community. Part of the answer will be provided by seeing how
individuals with varying skill levels in programming are able to cope
with the technological complexities of today's society. On the ideo-
logical side, Luehrmann (1981a, 1981b) has been an outspoken advo-

cate of the need for hands-on programming ability, as has Sheil; our
sympathies lie with these manifestations of the well-established
Deweyan pedagogy of "learning through doing" that has been ,redis-
covered by modem cognitive science (e. g . , J. R. Anderson, 198 1 ;
Anzai & Simon, 1979).

The list of core concepts that repeatedly turns up in discussions with
computer programming professionals and computer programming in-
structors includes understanding the temporal logic of sequential
instructions, control s t ructures , data s t ruc tures , variables, and
prscedurality . For example, Ralston and Shaw (1980) mention some
important implications of the rapidly evolving nature of computer
science for thinking about what students should learn, even though
their prescriptions are meant to be applicable to the computer science
major in college:

Specific skills learned today will really become obsolete.
The principles that underlie these skills, however, will
continue to be relevant. Only by giving the student a firm
grounding in these principles can he or she be protected
from galloping obsolescence. Even a student who aspires
only to be a programmer needs more than just programming
skills. He or she needs to understand issues of design, of
the capability and potential of software, hardware, and
theory, and of algorithms and information organization in
general. (p . 67)

Although many of these concerns a re particular to individuals who are
pursuing careers as computer scientists, the point of their argument
is clear: general principles, not specifically tied to any single "best"
programming language or programming machine (see Floyd, 1979),
should be our educational goal for establishing a basic programming
literacy.

More fundamental programming concepts, as we have seen in our
earlier discussions of the cognitive subtasks of programming, are
those necessary for: (1) problem understanding, such as data
classes, ty-pes of data processing operations, procedurality . the
temporal logic of sequential instz%ctions (Galanter , 198 3) , and pro-
gram functions; (2) designing and planning the program, such as
"program s c h e m a s h f various types, "symbolic execution" of plans,
and "debugging"; (3) program codin%, such as syntactic rules for
program code, and programming language "primitivests; and (4) E-
pram comprehension and debugging, such as program functions,
procedures, and the concepts necessary for problem understanding.

Since the adult Literature is of Little assistance in determining what
type and level of a learner's cognitive characteristics may influence
the developmental course of computer programming learning, how
might one identify the factors that influence whether or not a c h l d
will benefit from programming experience or develop proficiency in
computer programming? Sheil (1980) suggests that many of the rules
one needs to learn for computer programming are minor variants on
already mastered skills from other domains, such as the quasi-pro-

3
cedural knowledge of how to give/follow task instructions, directions
and recipes, and the semantics of conditionals, temporal ordering,
and causality. Sheil argues that one would expect such background
knowledge to provide fundamental enabling skills which programming
students apply by analogy in learning computer programming.
Whether knowledge of this h n d is necessary to learn to program is
unlikely; i t may however help facilitate learning the concepts o f
procedurality and sequentiality as children learn to program.

Defining the Cognitive Prerequisites for Learning Computer Program-
ming: Where to Begin

What are some of the most plausible a priori candidates for cognitive
demands of programming? In asking this question, we find ourselves
again confronted with the question of what learning computer pro-
gramming means. Thus far, we have been able to describe some of
the component mental abilities of advanced programming skdl in
adults. This issue of expertise in computer programming is central to
any discussion of demands, since we must always ask: ma em and^ in
order to do what?n

While no research has been directly aimed at defining the cognitive
prerequisites for learning computer programming (i t has asked who
will do i t bet ter , predictively, rather than who can do i t at all), at
least five factors have been mentioned frequently: (1) mathematical
ability, (2) memory capacity, (3) analogical reasoning skills, (4) con-
ditional reasoning skills, and (5) procedural thinking skills. These
cognitive abilities a re presumed to have an impact on or to mediate
computer programming learning in a number of ways.

1) Mathematical ability. In addition to general intelligence, it
has frequently been suggested that computer programming s k d is
linked to general mathematical ability. Historically, computers were
developed to aid in the solution of difficult mathematical problems.
Despite the fact that today m a n y computer uses have very little t o do
with mathematics (e . g . , database management, word processing,
games, graphic design) , the notion has persisted that to work w i t h
computers one should be mathematically sophsticated. Media accounts

of children using computers in schools have perpetuated the common
belief that computer programming is the province of math whzzes.

To our knowledge, there is no evidence that any relationship -
exists between general math ability and computer programming slull,
once general ability has been factored out. For example, in some of
our own work we found that better Logo programmers were also high
math achievers. However, these children also had generally high
scores in English, social studies, and their other academic subjects as
well. Thus, attributing their high performance in computer program-
ming to their math ability ignores the relationship between math
ability and general intelligence. Nonetheless, general math ability per
se cannot yet be ruled out as a possible prerequisite to the success-
ful mastery of computer programming skills.

2) Memory capacity. I t is frequently observed that computer
programming is a memory-intensive enterpfise that requires great
concentration and the ability to juggle values of a number of param-
eters at one time. Thus, individual differences in processing capac-
ity are likely to influence who becomes a good programmer, on the
hypothesis that s m a l l spans make programming too effortful. Tradi-
tional forward and backward span tasks, as well as the more recently
developed transformational span measures (see Case & Kurland 1980;
Case, Kurland & Goldberg, 1982), are frequently cited as indexing
processes basic to learning. These demand measures assess how
much information a s tudent can coordinate a t a given moment. For
example, the Counting-Span Task (Case, Kurland & Goldberg, 1982)
requires students to perform a sequence of cognitive operations
(s ~ m t i n g , in this case) while retaining the products of each indi-
vidual operation for k t e r recall. Tasks such as this have been
shown to correlate reliably with general intelligence, Piagetian de-
velopmental level, and ability to learn and use problem-solving strate-
gies (e.g., Hunt, 1978). They Rave not thus f a r been utilized in re-
search on computer programming skiU development.

3) halogica l reasoning sklPs. I t is conceivable that an . indi-
vidual may have relevant background knowledge and capacities, yet
neither connect them to the computer programming domain, nor make
the transfer connections from computer programming to other domains
during or after the learning of computer programming. This issue of
the retrievabilit-y ar nacsess" of knowledge is absalutely fundamental
t~ learning and problem salving throughout the course of life (e - g . ,
Brown, l 9 8 2) . and the general role of andagy in problem solving and
interpretative processes is widely recognized (MilPer, 1979) . These
critical transfers by analogy of knowledge and strategies, both "into"
and "out ofn the learning of computer programming depend to some

extent on the availability of general analogical thinking sh l l s . Tasks
designed to measure ability for engaging in analogical thinking (e. g . ,
Sternberg & Riflcin, 1979) or used in cognitive studies of analogical
thinking (e.g. , Gick & Holyoak, 1980, 1983; Holyoak, 1983) may
serve as one key predictor of level of computer programming develop-
ment and the quality and extent of transfer outcomes to be expected.

In one specific application of the uses of analogical thinhng for
learning computer programming, Mayer (1975, 1981) has argued that
students c mmonly learn computer programming by comparing the flow 2
of control intrinsic to computational devices to that of physico-
mechanical models they already possess. And duBoulay and O'Shea
(1976, 1978) have successfully used extensive analogical modeling as a
means of explaining computer functioning to beginning 12-year-old
Logo programming students.

4) Conditional reasoning skills. A major component in computer
programming, once past the elementary stages, is being able to
handle conditional statements. Conditional commands underlie the
operation of loops, tes ts , input checking, and a host of other pro-
gramming functions. It is reasonable, therefore, to assume that a
student who has sufficient understanding of conditional logic--the
various "if...thenI1 control s t ructures and the predicate logical con-
nectives of negation, ' conjunction, and disjunction--will be a more
successful programmer than a student who has trouble monitoring the
control flow and data flow through conditional statements.

5) Procedural thinking skills. There are several kinds of quasi-
procedural, everyday thought which may have a direct bearing on the
facility with which a learner masters the "flow of control" procedur "t
metaphor that is central to understanding computer programming.
Those which have been suggested include giving and following com-
plex instructions (as in building a model), writing or following reci-
pes, and concocting or carrying out directions for travel. Presum-
ably, individuals who have a greater familiarity with these linear
procedures that are analogous to the flow of control for commands in
a computer program will more readily come to grips with the "proce-
dural thinking " t o u t e d as a central component of computer program-
ming expertise (Papert . 1980; Sheil, 1980).

Types of Programming

It is widely recognized within the computer science community that
there are different types of programming. By the 1960s . McNarnara,
one of the developers of the widely used IBM Programmer Aptitude
Test, had recognized the need to develop new tests which would

guide the selection of different types of programming jobs: "for
instance, systems programming, applications programming, diagnostic
programming, or program maintenance" (McNamara, 196'9, p. 56).
People are recruited for careers in industry, the military, for soft-
ware houses, for educational companies, for videogame companies, not
as programmers per se , but to do programming 0% a specific kind.
We have indicated the importance of cognitive theories of what expert
programmers do h conceptualizing the problems of the cognitive
demands of programming. This point regarding the differentiation of
types of programming activity in the adult programming community
adds yet another layer of complexity to the problem, one whch is not
explicitly recognized even in the cognitive science literature on pro-
gramming. Although it is acknowledged in that literature that " the
programmer knowledge base" is an integral aspect of programming
performance, studies so far have been concerned with problems that
minimize the effect of domain-specific knowledge on programming
(e.g., Jeffries, Turner , Polson & Atwood, 1981). Yet for the child
learning to program, speafic content problems will be worked on as
she learns to program; thus , we h o w correspondingly little about the
new developmental concerns raised.

Shneiderman (1980, p. 40) indicates some of these complexities in his
discussion of types of programmers. He first distinguishes between
three general types of programmers based on extent of effort ex-
pended in programming activity: (1) professional programmers ;
(2) occasional programmers; and (3) programmer hobbyists. Under
the ' category of professianal programmers, he then distinguishes - . " 1.11 systems programmers [who] work on operating systems, com-
pilers or utilities that are used by [1.2] application programmers,
who solve user problems. As examples sf application programs, he

- -

lists banking, reservations, payroll, personnel management, accounts
receivable, data collection, statistical analysis, inventory, and man-
agement reporting systems. Other types of applications for the
professional programmer are videogame programs, educational pro-
grams and simulations, and military application programs such as
battle simulations. For occasional programmers, specialties also
emerge; those Shneiderman lists are : (2 . 1) scientific research,
(2 . 2) engineering development, (2 . 3) marketing research, and (2 . 4)
business applications (such as the types of applications programs
listed above). For the hobbyist, types 0% programs may be of great
diversity, such as small business application programs, hame financial
management programs, home inventory programs, and even music
composition.

We may continue this differentiation process of asking about dfferenf
types of programming by turning to hiring ads for programmers, in

which we expect tacit theories of programming specialization to be
made manifest. In the "Help Wanted" section of The New York Times
for March 28, 1983, for example, ads for programmers emphasized
either: (1) type of programming by content area (systems software;
applications development: actuarial, banking and investment, telecom-
munications, database, financial, g raphcs , military, payrolllaccount-
ing , robotics, scientificlengineering 1 R & D) ; (2) type of programming
by programming language (e. g . , Assembly, APL, Bal, BASIC Plus,
Unix-C, CICS, COBOL, Dibol, DOSI VS, FORTRAN, IMS, Macro,
PASCAL, PL-1, WG); (3) type of programming in terms of specific
h e (s) of computer programming environment (s) (e. g . , Burroughs,
DEC PDP-11, HP3000, IBM Systems 38 , IBM 3601370, IBM 3033, micro-
computers, Prime, VAX 780, Wang) ; (4) a combination of (2) and (3) ,
e. g . , PASCAL on microcomputers; or (5) a combination of (1) , (2) ,
and (3) e. g . , FORTRANJCOBOL actuarial background with IBM
experience desired. In one case, the "demands" question was even
directly addressed: "For] securities industry, we need strong math
foundation including heavy calculus, probability theory and differen-
tial equations to provide financial research information to fixed income
and other types of securities traders. "

Different Evaluative Criteria for Different Kinds of Pronramminn

There is no one evaluative scheme for assessing programming
competency. Evaluation of such competency is necessarily differ en t
for public (i e. , business, scientific, o r game programming) ,
personal, and educational programming (in which clarity of exposition
rather than utility or pragmatic value is important). In industry1
business, the emphasis is on rapid programming; in games, compact
code; in some educational software, developmental s t ructure of materi-
als and problems. Personal programming may be workable, buggy,
undocumented, and unreliable for some inputs which might be entered
if other people were to use the program. For scientific programming,
the main criteria are speed of code execution, provability, and accur-
acy. For videogame programming, the criteria are: "packing more
power into smaller spaces. Increasing resolution. Controlling cost.
Maximizing quality" Parker Brothers advertisement for videogame
designers). For public programming, the need is for brevity, and
comprehensibility to a general audience (Shneiderman, 1980). With
new types of programming and new markets for programs continually
being created, the demands will evolve accordingly, as will the soft-
ware quality metrics necessary to evaluate them.

Rich Versus Impoverished Programming Environments for Children

Educational programming environments for precollege-age individuals,
are often impoverished, in the sense that the kinds of tool and utility

programs used by mature programmers to develop their programs are
"not a1lowed"for the classroom. Often, teachers do not want c h l -
dren looking at programming language manuals where example pro-
grams are listed. Why is this? Although we have not seen this point
of view made explicit in programming curricular materials or teacher
training for programming instruction, we have heard teachers say
that this emphasis is due to the teacher's belief that children must
think through the chunks of programming operations that are
"givens" the tools and utilities. It is as if children will never be
able to analyze these tools and fully understand them unless they
themselves participate in their development. There is a correspond-
ing fear of rote program use. This attitude might be viewed by some
as analogous to a current controversy about the use of hand calcu-
lators by children: will using them for addition, multiplication, and
so on make the children incapable of doing these arithmetical opera-
tions without a calculator? But the connection between this example
and programming tools is weak. Without taking a position on the
calculator example, we may note that how programming tools and
utility programs are used may be determined by the teacher; the
teacher may have children explain how the programs work, and learn
whatever programming concepts are necessary for unpacking the
function and s t ruc ture of the constituent par ts of the program. We
believe that, just as children can learn important lessons by reading
great literature, and even rewriting i t with different literary pur-
poses in mind, so may they gain programming knowledge and pro-
gramming skill through having at their disposal the powerful pro-
gramming tool kits and utility programs that aid the program devel-
opment process.

We would apply the same point to the use of algorithms in program-
ming by children. Adults are not expected to discover all the pro-
gramming tricks and algorithms, but m u s t learn them. The same
should apply to programming instruction for children.

Individual Versus Team Procrram Develo~ment

It is naive to think that the way to assess expertise is to put people
alone in a room and require them to generate in a given length of
time a program that conforms to certain specifications. Not only is
the relationship between rate of programming and program c~uality not -
well understood (Brooks, 19821, but requiring a person to program
with no access to manuads or other people's help does not reflect the
w a y good programmers do their work. Kn many work settings, pra-
grams are being written by design teams made up of program design-
e r s , managers, and coders working with formative researchers in a
collaborative environment. It has been recognized that one person

may not be decentered enough to design, implement, and verify a
program. The collaborative nature of today's programming bespeaks a
similar orientation in programming instruction. Perhaps the best way
to teach children to program is as apprentices, rather than as soli-
tary students learning facts. One consequence of this view is that
the usual question: "hat are the demands for learning program-
ming?n changes to: "What must one know to be a good member of a
design team?n This may be the question to ask rather than: "What
does one need to know to be able to design, implement, document,
and verify a program all by oneself?" Learning to be explicit about
how to design a program, and the details one needs to give to the
isnplementers may be a much more important goal of teaching computer
programming than arranging instruction so that each child can write
an entire program by himself. In fact, with the recent advent of
menu-driven automatic program-generating programs (such as - The
Last One for BASIC or Quickcode for generating dBase programs),
the day may be approaching when "programmingn will mean specifying
the design of the program. This characterization of the program
creation process, however, still leaves open the questions of the point
at which a division of labor is necessary or desirable, and the point
at which the emphasis can be switched from implementation to design.

How Do Data on Programmer A ~ t i t u d e s and Abilities H e l ~ U s ?

The standard multivariate approach to the cognitive demands of
programming i s to s tudy aptitude1 treatment interactions. The studies
we will review almost always ask what cognitive profile i t "takes" to
become a programmer, o r what previous specific or general mental
abilities are required for subsequent success in learning to program.

It is of some importance to remark briefly on the historical founda-
tions of research on ncomputer programming aptitudes," of which
several hundred studies exist (see reviews in Ricardo, 1983; Schmidt
et d., 1979). During the early 1950s, tests were developed in order
that companies who required programmers would have better selection

- -

criteria for computer trainees than they would through interviews and
work history alone. Not until years later were these tests and others
further developed in order to select individuals for programming
education at the college level (McNamara, 1967). The extension of
the predictive validity of programming aptitude tests to actual pro-
gramming job performance, rather than success in an industrial
training course or a college programming course, has always been
problematical (e. g . , Bell, 1976).

One expecting answers from closely inspecting this multivariate liter-
ature about the "demands of learning to program," or from our goal-

indexed version of this question discussed earlier, will be disap-
pointed. The tests were commonly developed by interviewing pro-
gramming managers about the skills that good programmers seemed to
have (McNamara, 1967; McNamara & Hughes, 1961) , and then looking
for test items that appeared to test for that ability (e.g., "logical
r ea son inghr "mathematical reasoning") in existing intelligence tests.
Although most studies in whish programming aptitude test scores
correlated significantly with programming "ssucess"(general1y indi-
cated by grades in industrial programming training courses or college
programming courses) observed that "general intelligence'! (when test
scores were available) also correlated very highly with programming -
success, this does not seem to have moved the researchers to go
further and ask whether the "programming aptitude" supposedly
linked to programming skill constituted a specific aptitude factor
above and beyond "general intelligence."We suspect that it may not.
In fact, one survey (Mayer & Stalnaker, 1968) revealed that many
companies use intelligence tests as their predictors of programmer
success. In a general review of the computer personnel research
presented to ACM Special Interest Group in Computer Personnel
Research, Stalnaker says: "I think that if we have to have a very
concise summary of our current knowledge, it is that the more intel-
ligent person you can find, the better programmer you can probably
get." If these observations are valid, the lesson from the many
studies of predictive validity of programming aptitude tests is not so
profound--those who do well on school-based intelligence tests are
also likely to do well on programming aptitude tests. In any case,
and more importantly, the findings of this multivariate literature are
tangential to the questions we have posited as the central ones, that
is, those pertaining to whether and how specific thinking skills
identifiable in the practice of expert programmers are manifested in
individuals d m g the process of learning to program.

It is interesting to note that close observations of the actual practice
s f programming, and the sequence of mental tasks required during
program development was rarely undertaken. Even the most differen-
tiated analysis of "what programmers do" (Berger, 1969) results in
categories that have not really been unpacked in terms of their
cognitive subtasks. The outcome of Berger's analysis was the follow-
ing list of the seventeen major interpretable factors of programming
and s y s t e m s analysis:

PROGRAM PRODUCTION

P. General programming operations
2 . Debugging
3. Programming real time systems

4. Lead programming responsibilities
5. Program production for special purpose computers
6 . Program production planning and scheduling
7. Program production supervision
8. Utility program development (executives and compilers)
9. Utility program development (general purpose and library)

10. Program diagramming and testing

PROGRAM ANALYSIS AND DESIGN

11. Program system analysis (business and logistics)
12. Program system analysis and design

PROGRAMMING'S PERIPHERAL TASKS

13. Program system integration
14. Program system testing
15. Program installation or modification consulting
16. Program documentation
17. Training

On Measuring Programmer Aptitude in Adults

Two important recent studies that explode the myth of the nonbusi-
ness student "who can't program" have been carried out by Ledbetter
(1975) and Lemos (1981). In each case, when careful comparisons
were made between large groups of business and nonbusiness college
majors, no significant differences were found in programming language
learning capability between the groups. This is a significant finding
because in many universities, nonbusiness majors are assumed not to
have the "necessary background skil1s"for learning computer pro-
gramming and are taught about it rather than being given hands-on
experience.

Probably the best known test instrument used to measure aptitude for
programming is the PAT (Programmer's Aptitude Test) , developed by
IBM during the 1950s to select programmer trainees. We will briefly
review this aad other measures, and the dominant findings of modest
correlations between scores on these aptitude batteries and various
progr.amming skill outcome measures, such as success in a first col-
lege programming course or a company's programming training pro-
gram. But a central problem with such measures was noted by
Weinberg (1971) some time ago in hs pioneering book on the psychol-
ogy of programming, in reference to the PAT: "Admittedly, it does
predict scores in programming courses fairly well, but that is not
what we are buying when w e hire a programmer" (p. 173).

Many measures of programming aptitude have been developed for
which independent validation reports are unavailable. Among the
measures studies most intensively and used during the last three
decades, the most prominent are:

Programmer Aptitude Test (PAT). IBM developed three different
versions of the Programmer Aptitude Test (PAT) between 1955 and
1965, all of which have been out of print since 1973. The final ver-
sion consisted of letter series, figure analogies, and arithmetical
reasoning subparts.

Computer Programmer Aptitude Battery (CPAB) . The CPAB ,
developed by Science Research Associates, consists of verbal mean-
ing, reasoning, letter series, number ability, and diagramming sub-
parts.

The Wolfe Programming Aptitude Tests (WPAT). (1) Aptitude
Assessment Battery: Programming; (2) Programming Aptitude Test:
School Edition. "The test measures. . . accuracy, deductive ability,
reading comprehension of a complicated and extended explanation of a
kind found in programming reference manuals, ability to grasp new
and difficult concepts from a written explanation, and ability to
reason w i t h symbols"Wolfe, 1969, p. 67).

FOP a thorough review of validation studies carried out on these
different programming aptitude measures, see Ricardo (1983). A few
examples will suffice for our purposes.

The most comprehensive and critical study examining computer pro-
gramming aptitude tests and their predictive validity of which we are
aware was carried out by Schmidt, Hunter, McKenzie and Muldrow
(1979). Of the 161 studies they uncovered, 150 used the PAT and
most of the others used the CPAB. Schmidt et ale outline two inno-
vative Bayesian procedures for establishing validity generalization,
and found that "the (multivariate) total PAT score validity is high for
predicting performance of computer programmers and that this validity
is essentially constant across situations. " T h e i r second method
extends this conclusion for success in training programs as well.

In one extensive study, Ricardo (198%) used five factors (deductive
reasoning, inductive reasoning, persistence, SAT verbal score, S A T
math score) as a model. f ~ r predicting success in a first programming
course in eolllege (in the programming language PL-1). She chose
inductive reasoning as a target ability, since the PAT and CPAB
validations generally found the figure analogies and (number or
letter) series subtests most reliable in predicting programming success

(by the limited measures of "success" used). A s McNamara (1967) ,
one of the developers of the PAT, noted: "there appeared to be one
basic requirement for a good programmer; that was analytic ability or
logical reasoning abilityn (p. 53) . The reasoning for the use of this
measure is typical of this genre of literature:

The process of looking at items and discovering a rule is
used in programming when a student must examine output
received and predict future output. This is necessary
when he has to determine where an error exists in an
algorithm. The two methods of testing inductive reasoning
which are used in this test [her Programming Readiness
Test] are figure relationships and number series. In the
figure relationships, the student is given two figures which
are related in some way, and a third figure. He then has
to select a fourth figure which preserves the relationship
with the third. Some of the possible relationships between
figures are the symmetries of translation, rotation, reflec-
tion, and glide reflection, variations in size, in number of
sides and vertices, symmetry of part of a figure, shading
of portions of a figure and decomposition of a figure. Ln
number series, the student is given several numbers which
are related by some rule, and he must select the next
number. Some of the relationships which can be presented
are arithmetic progression, geometric progression, addition
of a variable whose value is itself a progression, alternating
sets of terms of two different progressions, and power
series.

Similarly, deductive reasoning is chosen since :

The content area in programming which requires the appli-
cation of deductive reasoning is decision making. This
ability is needed in interpreting problem situations so that
they may be expressed in algorithmic forms. Specifically,
each condition of a problem must be reduced to a proposi-
tion, either simple or compound, which must be evaluated
as true or false. Testing of algorithms requires the recog-
nition of the processes of both positing and negating logical
propositions. It is also essential that the student under-
stand the applications of logical conjunction, disjunction.
implication, and negation in interpreting the conditions of
the problem. These applications are tested by the use of
syllogisms. The meaning of existential and universal quan-
tifiers, and the negation of statements using them, are also
tested. (p . 66)

She found that all five of her variables were significant predictors of
success in the semester-long programming course, in terms of either
final exam grade or final grade (multiple R of .63 for final exam score
and .56 using semester final grade) . Like Mazlack (1980), she re-
ported that year in school, sex, prior programming experience, and
type of major correlated insignificantly or poorly with criteria of
success such as tes t scores, final examination score, and final semes-
ter grade. Using all five factors a multiple regression analysis
revealed a multiple R of .59 for final semester grade.

In many studies investigating the relationship between programming
aptitude test scores and success in programming courses, college
grade point average often correlated as highly with programming
success measures (indicated by test , semester grades, or scores) as
did the aptitude test scores (e .g . , Bateman, 1973; Bauer, Mehrens &

Vinsonhaler , 1968 ; Fowler & Glorfeld, 1981 ; Ledbetter, 1975 ; Mazlack ,
1980; Newstead, 1975; Peterson & Howe, 1979; Stephens, Wileman &

Konvalina, 1981) . This raises some question about the generaliz-
ability of college measures of programming success to on-the-job pro-
gramming success, since ncollege grade point averages of programmers
have been shown to have no predictive value for programming per-
formance"(Mayer & Stalnaker, 1968, p. 659).

Legal Aspects of Programming Aptitude Testing

It is of some interest that programming aptitude testing has come
under substantial criticism developing out of the August 1966, Equal
Employment Opportunity Commission (EEOC) Guidelines on Employment
Testing Procedures, making all test users responsible for assuring
that tests do not contain racial or cultural bias, a d for ensuring
current performance-related test score validity. The 1945 Supreme
Court opinion in Albermarle Paper Cs. vs. Moody now requires as
law that preemployment tes ts be demonstrated as "predictive of o r -
s i g ~ f i c a n t l y correlated with important elements of work behavior
which comprise o r a r e relevant to the job or jobs for whish candidates
are being evaluatedn (Ledvinka & Sshoenfeldt , 19'78). Warten (1982) ,
in i n t e ~ e w s carried out for an indepth article on Aptitude Tests for
Computer World, found that the consequence of the law for consumers
of the programming aptitude tests has been that "many of those
closely involved with programmer trainee selection using aptitude tests
are cautious about speaking for publication, Some fear involving
their company in 'lawsuits and EEO actions" (p. 17).

"Interest hventor iesn a d Values of Gom~uter Science Personnel

On a related tack, people have taken interest/value inventories of
programmers and asked: "What are the interests and vdues of

programmers and students studying programming that may set them
apart from nonprogrammers?" The logic of such a question is that if
one has interests similar to those of persons successful in a specific
occupation, then one will be more likely to enter that occupation and,
under some construals, be more Likely to succeed in it. In Wein-
berg's (1971) influential critique of the use of programmer aptitude
batteries that are intelligence test-like, he offers his own view that
"intelligence has less to do with the matter [of programming perform-
ance] than personality, work habits, and training"(p. 176). Others
have asked if there is anything to the stereotype of the mechanically
or mathematically oriented computer scientist who is introverted and
has "lost value for humanity"(Zimbardo, 1980). Evidence on all
these counts is weak. Perry and Cannon found that, although there
are distinctive interests of programmers as indicated by scores for
the Strong Vocational Interest Battery, the SVIB is not a useful
predictor of performance in either programming training courses or in
program production (reviewed by Mayer & Stalnaker, 1968, p. 665) .

Adult Programmers : Problem-Solving Style

Testa (1973) used Witkin's measure of "perceptual style," the embed-
ded figures task (EFT), to study programmer aptitude. The task in-
volves a series of problems where the test taker must find a specific
shape in the context of a larger set of other shapes, and the depend-
ent measure is the time taken to locate the figure. Higher scores are
viewed as an index of "field independent"c0gnitive style, lower
scores as an index of "field dependentn cognitive style. Testa found
a significant correlation between field independence and success in a
college COBOL programming course as indicated by test grades. The
explanation for this finding w a s that "programming requires an ability
to perceive the whole and a concomitant ability to proceed from the
general to the par t icular"(p . 50), and "clearly, the EFT must have
tapped some of the characteristics of the programming t a s k v p . 5 2) .

Cheney (1980) took a similar approach in hypothesizing a significant
relationship between scores on a BASIC programming examination in a
college course and "analyticn as opposed to "heuristic"cognitive
style, as indexed by a questionnaire developed by Barkin (1974) and
assumed to relate to the EFT'S style categories of field independ-
enceldependence. He found the scores on these two measures to be
significantly correlated (r = .82). Cheney suggests that those scor-
ing highly on the style measure, and presumed to be "analytic," may
learn programming best by progressing at their own rate on program-
ming projects, but that the "heuristic" thinkers may require more
structured and formal teaching to understand how to program.

In each of these studies, the aim was to develop aptitude measures
that would predict success in a programming course distinct from
"mathematically oriented tests." Although they were successful in
thls limited goal, we do not yet know - how cognitive style may be
related to programming skill, and the studies do not bear on the more
important question of how cognitive style may contribute to perform-
ance on specific p r o g r d g subtasks. They do offer the sugges-
tion, however, that cognitive style interacts with how one is taught
programming, not w i t h whether one can learn to program.

" Developmental Level" and the Learnability of Programming

Beyond asking what general cognitive characteristics may be pre-
requisite to or mediate a child's learning of computer programming, a
more specific question has been raised by many: What "developmental
l e v e l h a y be required to benefit from computer programming experi-
ence? In the educational community, the question is more commonly
phrased as: How old do children "have to ben before learning com-
puter programming? The g.eneral concept of "developmental leveln at
the abstract theoretical levels of preoperational, concrete operational,
and formal operational intellectual functioning has proved to be a
useful one for developmental and instructional psychology in under-
standing children's ability to benefit from certain types of learning
experiences (e. g. , Inhelder, Sinclair & Bovet , 1974). However, the
very generality of these stage descriptions is not readily applicable to
the task of understanding the development of specific domains of
knowledge such as computer p r o g r d g skill.

h light of the lack of research on the development of computer
programming knowledge and strategies, two reasons lead us to reject
a formulation of the computer skill problem in terms of the concept of
Ragetian " developmental leveln as inappropriate (Favaro , 1983) .
First, there is considerable evidence that the development and display
of Piagetian-defined logical abilities is importantly tied to content
domain (Piaget, 1972), to the eliciting context (Laboratory of Compar-
ative Human Cognition, 1983), and to the particular experiences of
imdividuals (Price-Williams , Gordon & Ramirez , 1969) . Since it is not
apparent why and how different materials affect the "developmental
leveln of children's performances within. Piagetian experimental tasks,
it is not feasible to predict what rellationships might inhere between
computer ppagramming experience and performance on Piagetian tasks.

O u r s e c ~ n d concern with a Piagetian "developmental level" formulatian
applied to computer programming skill development is that the task of
learning to program has not thus far been subjected to developmental
analysis or characterized in terms of its component skills, except

insofar as we have reviewed earlier in the section on programming as
a cognitive activity. We thus reject a general developmental level
formulation as useful for articulating the cognitive demands of specific
programming skill development, and embrace in i ts stead an approach
that is more concept-based.

Conceptual Development and Programming

In the literature on child language development, one may find exten-
sive discussions of the concept of "cognitive prerequisites. " Ln that
disapline, this concept has been developed as a means of exploring
the relationships between language development and cognition; in our
context, the relationships between programming development and
cognition. Although. many issues are quite distinct for these two
disciplines, the sense of cognitive prerequisites used in language
developmental studies is illuminating. The fundamental idea is that
one may ask what mental resources are required by a particular kind
of linguistic activity, such as particular spatial concepts and the use
or understanding of such terms as "in,"on, " a n d nuunder" or, more
generally, language concerning location (e .g. , Johnston, 1982).
Slobin (1973) suggested two basic types of such mental resources:
"the conceptual and factual knowledge which gives rise to communica-
tive intentions, and the cognitive processing mechanisms which partic-
ipate in rule format ion"(Johns ton , op. cit.) . The question for
programming is whether there is a similar set of cognitive prerequi-
sites which sets limits on the conceptual and factual knowledge which
a child can master for different types of programming or programming
constructs.

Since we know of no studies that directly pertain to this question, we
can only offer a few observations a t this time. W e know that preco-
cious performance is possible in limited contexts on Piagetian formal
operational and concrete operational measures. However, it is the
flexibility of intellectual operations that is constitutive of development
(Kaplan, 1983 ; Werner, 1 9 5 7) . What is needed a re methods to identi-
fy the limits of knowledge use. Cognitive supports in programming
environments that permit a child to seemingly go beyond his or her
current level of logical development are as yet poorly understood
(e. g . , memory support in the form of catalogues, traces, listings,
automatic indenting), bu t may allow programming performance that
would be unexpected given current knowledge of childrenls cognitive
abilities as measured in other task environments. Before the question
of what level of conceptual development is necessary for a child to
learn to program can be answered more fully, we need more data on
such things as how children actually behave in programming environ-
ments, what they find difficult, what sorts of models of the computer

and of programming they utilize, and what compensatory strategies
they can discover or use to circumvent some of the formal demands of
programming.

Conclusions

Narrow Focus of =sting Research

A s our review of the issues and literature concerning the demands of
learning to program makes evident, most research addressed to the
aptitude and ability question has taken place within the multivariate
tradition of looking at aptitude or ability interactions with "treat-
ments, such as programming training courses, computer science
courses, or similar programming experiences. But since the majority
of such studies treat programming as a homogeneous skill, and apti-
tude or ability as static features of persons, in terms of the issues
we posited as central in the study of the psychology of programming,
the conclusions reached by those studies are correspondingly moot.
And even if these studies were more directly relevant, since they
were carried out with adults rather than chddren, there would be
serious questions about their applicability to those of precollege age
of interest for our purposes.

Instead, we have shown the necessity of highlighting the different
types of programming and programmers, the different cognitive sub-
tasks involved in ppogramming, and the social character of many
pragramdng efforts, which raises many new research questions to be
answered.

nDemands~ues t i ons Cannot Be Separated from Goals

It has d so been argued here that asking what cognitive demands
programming has for precollege age people is a question which must
be asked in terms of the goals of the specific programming activities
s f concern. This is to say that without specifying which program-
ming projects or programming concepts are being asked about, one
cannot answer the question of demands, because "it all depends1'--one
must ask: "demands of what"? We would expect that a child of 'almost -
any age, even p r d t e r a t e toddlers, would be capable of working w i t h -
a programmable device for some purposes. Once the focus of the
demand question has been narrowed to specific programming subtasks
or specific programming activities, such as learning recursion in
Logs or writing a bubble sort prcagrapl in BASIC, we ape led to
difficult questions about a taxonomy of programming activities and
goals. And we have noted that what is particularly difficult about
such questions is that the very nature of programming is evolution-

3, and new goals emerge in tandem with new purposes for which
programming activities a re recognized as relevant.

Central Necessity of Focus on Goals of Computer Education

With questions about a taxonomy of programming activities in mind,
we must then go on to ask what are the educational goals of teaching
children about programming. Is there a core of programming con-
cepts and techniques, and computer science knowledge, that we would
define as "basicn in some sense, to be achieved by all citizens of our
nation? Such a core requires definition, and then one may ask what
cognitive abilities are necessary in order to attain that knowledge,
and how a curriculum is best designed for the different ages in the
precollege population. The implication here is that much empirical
research in school communities will be required to determine the best
developmental ages for introducing specific programming concepts and
activities. But the value dimension of the pedagogy of programming
is one that must be addressed in terms distinct from the learnability
questions; value questions a re in a different domain of dscourse--
they are culture-concepts rather than nature-concep t s (Cassirer ,
1960; also see Kaplan & Werner, 1983).

Beyond this core, however i t is defined (and we have made some
preliminary recommendations in this repor t) , one may outline different
specializations in programming, and perhaps define a distribution of
such specializations that a precollege age programming curriculum
should contain, for we may wish children to have some level of first-
hand familiarity with a range of different types of programming before
they enter college, even if we do not expect them to be competent in
all of them.

Individual Versus Social Aspects of Programming Skill

The dominant view in programming education for children today
stresses individual achievement of programming skills. Yet we have
indicated that, in the professions of programming, a much more
common emphasis is on the development of programs by teams of
individuals (Brooks, 1982). The different subtasks of developing a
program--design, coding, evaluation--are worked out as a group,
with some specializations or domains of expertise more hgh ly repre-
sented in some individuals than others. The advantages of teamwork
on program development are many: neither the " tyranny, " "egocen-
trism, nor "lack of f o r e s i g h t b f the individual is as llkely to be
manifested in the finished program (Shneiderman. 1980; Weinberg,
1971). A s in Kripke's (1972) discussion of the locus of "knowledge of
natural language," the community is what is collectively viewed as

expert, rather thaa individuals. The members of the programming
collective hold each other in checks and balances in terms of re-
sponsibility for meeting goals, developing adequate documentation or
verification, and avoiding abuses of power (with knowledge of how a
program works private to you as "power"). This team emphasis is
also apparent in frontier efforts within artificial intelligence to
develop complex expert systems.

Limits of Instructability of Programming Concepts 1 Actions

W e have dso indicated that there is no research to date which ad-
dresses the Limits sf instructability of programming at some level of
expertise for some defined developmental level. Instead, studies have
dealt with representative instructional settings, in wbch the status
quo--for example, one teacher for 30 students--is the assumed in-
itructiond organizational context. What a child of any given age--
whether defined chronologically or mentally--is - not able to learn, even
with massive instruction and practice, is currently unhown. This is
an issue of some importance. For even if what we are now concerned
with is what children of a specific age can learn about programming
given existing educational contexts, ultimately, in the years ahead,
what we need to know, as sophisticated and less expensive software
and hardware become available, is whether there &e limits to the
instmctability of specific programming concepts and activities when
every child has at -his or her- disposal an "dealn programming envi-
ronment in which individualized and self-pased instruction is a real-
ity. These questions are unanswerable today, but we should recog-
nize the contkxt-bound nature of our current understanding of chil-
dren and the development of programming skills.

Footnotes

1
One may distinguish for (artificial) programming languages, just

as in the case of natural languages, between three major divisions of
semiotics, or the scientific study of properties of such signalling
systems (Crystal, 1980) . These three divisions, rooted in the philo-
sophical studies of Peirce, Carnap, and Morris, are

SEMANTICS, the s tudy of the relations between linguistic
expressions and the objects in the world whch they refer
to or describe; SYNTACTICS, the study of the relation of
these expressions to each other; and PRAGMATICS, the
study sf the dependence of the meaning of these expres-
sions on their users (including the social situation in which
they are used) . (p . 316)

Pragmatics in earlier times was referred to as "rhetoric." The field
of pragmatics of natural language has focused on the "study of the
LANGUAGE from the point of view of the user , especially of the
choices he makes, the CONSTRAINTS he encounters in using language
in social interaction, and the effects his use of language has on the
other participants in an act of communication."

Though there are clearly some important disanalogies to natural
languages, a pragmatics of programming languages may be said to
concern at least the s tudy of a programming language or languages
from the point of view of the user , especially of the (design) choices
he makes in the organization of lines of programming code within
programs (or software systems), the constraints he encounters (such
as the requirements of a debuggable program which is well-docu-
mented for future comprehension and modification, by himself or other
users) in using programming language in social contexts, and the
effects his uses of programming language have on the other partici-
pants (such as the computer, as i d e a interpreter, or other humans)
in an act of communication involving the use of the programming
language.

 he concept of "low of controln refers to the sequence of
operations that a computer program specifies. The need for the term
emerges because not all control is linear. In linear control, lines of
programming instructions would be executed in strict linear order:
first , second, third, and so on. But in virtually all programming
languages, various "control structurest1 (refs .) are used to allow
nonlinear control. For example, one may "goto" other lines in the
program than the next one in BASIC; in such a case the flow of

control passes to the line of programming code referred to in the
GOTO statement. Because the "flow of control" for a program may be
quite complex, programmers often utilize programming flowcharts,
either to s e n e as a high-level plan for the program they will write,
or to document the flow of control represented in the lines of their
program.

'what is "quasi-proceduraln rather than "procedural" about
giving and following task instructions, directions, and recipes is
that, unlike the case of procedural instructions in a computer pro-
gram, there is generally some ambiguity in the everyday examples,
such that the instructions, directions, and recipes do not always have
unequivocal meanings (unlike the programming commands), and uncon-
strained by strict sequentiality, so that one may in many instances
choose to bypass steps in a recipe or set of instructions, or alter the
order of steps in their execution. Neither of these options is avail-
able in the strict procedurality of programmed instructions to the
computer. Yet the similarities between the everyday examples and the
case of programming instructions are compelling enough to make their
designation as "quasi-proceduraln understandable.

Anderson, J. R. , & Bower, G. H. Human associative memory.
Washington, DC: Winston, 1973.

Anderson, J. R . , Greeno, J. G . , Kline, P. J., & Neves, D. M.
Acquisition of problem solving skill. In J. R. Anderson (Ed.) ,
Cognitive skills and their acquisition. Hillsdale, N J : Erlbaum ,
1981.

Anderson, R. E. National computer literacy, 1980. In R. J . Seidel,
R. E. Anderson, & B . Hunter (Eds.) , Computer Literacy: Issues
and directions for 1985. New York: Academic Press, 1982.

Anzai, Y . , & Simon, H. A. The theory of learning by doing. &-
chological Review, 1979, - 86, 124-140.

Atwood, M. E. , Jeffries, R., & Polson, P. G . Studies in plan con-
struction. I: Analysis of an extended protocol (Tech. Rep. No.
SAI-80-028-DEN). Englewood, CO: Science Applications, Inc. ,
1980.

Atwood, M. E. , & Ramsey , H. R. Cognitive structures in the com-
prehension and memory of computer programs: An investigation
of computer debugging (Tech. Rep. No. TR-78A21). Alexan-
dria, VA: U.S. Army Research Institute for the Behavioral and
Social Sciences, 1978.

Balzer, R., Goldman, N. , & Wile, D. On the use of programming
knowledge to understand informal process descriptions. - Pro-
ceedings of Pattern Directed Inference Workshop in SIGART
Newsletter, 1977, 6 3 . -

Bamberger , J. , 8 Schon, D . A. Learning as reflective conversation
with materials: Notes from work in progress (Working Paper
No. 17). Massachusetts Institute of Technology, Division for
Study and Research in Education, December 1982.

Barkin, S. An investigation into some factors affecting informations
systems utilization. Unpublished doctoral dissertation, Univer-
sity of Minnesota, Minneapolis, 1974.

Barnes. P. Programmer paranoia revisited. Proceedings of the 13th
Annual Computer Personnel Research Group Conference, 1975,
114-131.

Barstow, B. R. A knowledge-based system far automatic program
construction. Proceedings of the Fifth International Joint Con-
ference on Artificial Intelligence, 1977, 382-388.

Barstow, D . R. Knowledge-based program construction. Amsterdam:
North Holland, 1979.

~ a t e m d , G.R. Predicting performance in a basic computer course.
Proceedings of the 5th Annual Meeting of American Institute for
Decision Sciences. 1973, 130-133.

Bauer, R . , Mehrens, W. A., & Vinsonhaler, J. F. Predicting per-
formance in a computer programming course. Educational and
Psychological Measurement, 1968, - 28, 1159-1164.

Bell, D. Programmer selection and programmer errors. The Com-
puter Journal, 1976, - 19, 202-206.

Bereiter, C. Development in writing. In L. W. Gregg, & E. R.
Steinberg, (Eds.) , Cognitive Processes in Writing. Hillsdale,
NJ : Erlbaum, 1979.

Bereiter , C. , & Scarmadalia, M. From conversation to composition :
Instruction in a developmental process. In R. Glaser (Ed.) ,
Advances in instructional psychology (Vol. 2) . Hillsdale, N J :
Erlbaum, 1982.

Berger , R. M. Computer personnel selection and criteria develop- -
ment. ~ r o c e e d g n s of the 2nd Annual Corn~uter Personnel Re- - - - - - - - - - - . - - - - - a A

search Group Conference, 1964.

Berger, R. M., & Berger, F. R. The Berger series of computer
personnel tests. Santa Monica, CA: Psychometrics [no date] .

Biamonte, A. J. Predicting success in programmer training. - Pro-
ceedinpy of the 2nd Annual Computer Personnel Research Group
Conference. 1964. 2. 9-12.

Biamonte, A. J. A study of the effect of attitudes on the learning of
computer programming. Proceedings of the 3rd Annual Computer
Personnel Research Group Conference, 1965, - 3, 68-74.

Biermann, A. W. Approaches to automatic programming. In M.
Rubinoff & M. C. Yovits (Eds.) , Advances in computers (Vol.
15) . New York: Academic Press, 1976.

Black, S. D., Levin, J. A., Mehan, H . , & Quinn, C. N . Real and
non-real time interaction: Unraveling multiple threads of dis-
course. Discourse Processes, 1983. Ln press.

Bloom, A. M. Advances in the use of programmer aptitude tests. In
T o A. Rullo (Ed.) , Advances in computer prop;ramminq. Phila-
delphia: Heyden & Son, 1980.

Bloom, A. M. Test the test for programming applicants. Data Man-
agement, 1978, - 16, 37-39.

Bonap, J. Natural problem solving strategies and programming lan-
guage constructs. Proceedings of the Fourth Annual Conference
of the Cognitive Science Soaety, Ann Arbor, M I , August 4-6,
1982.

Bonar, J., & Soloway, E. Uncovering principles of novice program-
. ming (Research Report No. 240) . New Haven: Yale University

Department of Computer Science, November 1982. (To appear in
the Tenth SIGPLAN-SIGACT Symposium on the Principles of
Programming Languages, Austin, Texas, January 1983).

Borst, M. A. Programmers vs. non-programmers in a Fortran eom-
~rehension test (Tech. Rep. No. TR-78-388100-4). Arlington, + -
VA: Information Systems Programs, General Electric Company,

Boysen, J. P., 8 Keller, R. F. Measuring compute= program compre- - -

- hension. Proceedings of the 11th ACM symposium on Computer
Science Education, 1980.

Brooke, J. Tools for the job: The human factor (programming).
Computep Age, 1980, - 11, 31-32.

Brooke, J. B., & Duncan, K . D. An experimental study of flow-
charts as an aid to identification of procedwal faults.
Ergonomics, 1980 (a) , - 23, 387-399.

Brooke, J. B., & Duncan, K . D. Experimental studies of flowchart
use at different stages of program debugging. Ergonomics,
P980(b), 23, 1057-1091. -

Brooks, F. P. The mythical man-month. Reading, MA: Addison-
Wesley, 1982.

Brooks, R. E. A model of cognitive behavior in writing code for
computer programs. Unpublished doctoral dissertation,
Carnegie-Mellon University, 1975.

Brooks, R. E. Studying programmer behavior experimentally : The
problems of proper methodology. Communications of the ACM ,
1980, - 23, 207-213. 0

Brooks, R. E. Towards a theory of the cognitive processes in com-
puter programming. International Journal of Man-Machine
Studies. 1977. 9 . 737-751.

Brooks, R. E. Using a behavioral theory of program comprehension
in software engineering. Proceedings of the 3rd International
Conference on Software Engineering, 1978, 196-201.

Brooks, R. E. A theoretical analysis of the role of documentation in
the comprehension of computer programs. Proceedings of the
Conference on Human Factors in Computer Systems, Gaithers-
burg, MD, 1982.

Brown, A . L. Learning and development: The problems of compat-
ibility, access, and induction. Human Development, 1982, - 25,
89-115.

Brown, A . L. Metacognition, executive control, self-regulation and
other even more mysterious mechanisms. In R. H. Kluwe &

F . E. Weinert (Eds.) , Metacognition, motivation and learning.
West Germany: Luhlhammer, 1983 (a) . In press.

Brown, A . L. Learning to learn how to read. In J. Langer & T.
Smith-Burke (Eds .) , Reader meets author, bridging the gap : A
psycholinguistic and social Linguistic perspective. Newark, NJ:
Bell, 1983(b).

Brown, A . L., Bransford, J. D . , Ferrara, R. A , , & Campione, J. C.
Learning, remembering, and understanding. To appear in J. H.
FlaveU &r E. M. Markman (Eds .) , Carmichael's manual of child
psyekslogy (Vol. 1). New Yorle: Wiley, 1983.

Brown, A . L. , & Smiley , S. S. The development of strategies for
studying texts. Child Development, 1978, - 49, 1076-1088.

Brown, J. S . , & Burton, R. B. Diagnostic models for procedural
bugs in basic mathematical skills. Cognitive Science, 1978, - 2,
155-192.

Brown, J . S. , & VanLehn, K . 'Repair Theory: A generative theory
of bugs in procedural skills. Cognitive Science, 1980, - 4, 379-
426.

Buff, R. J. The prediction of academic achievement in FORTRAN
language programming courses. Unpublished doctoral disserta-
tion, New York University, 1972.

B m s , W. J. A study of interaction between aptitude and treatment
in the learning of a computer programming language (Doctoral
dissertation, University of Maryland, 1974). Dissertation
Abstracts International, 1974, - 35, 904A. (University Microfilms
No. 74-17).

Burton, R. B. DEBUGGY: Diagnosis of errors in basic mathematics
skills. In D. H. Sleeman & J. S. Brown (Eds.) , Intelligent
tutoring systems. New York: Academic Press, 1981.

Byrne, R. Planning meals: Problem-solving on a real data-base.
Cognition, 1977, - 5 , 287-332.

Byrant, A., & Ameen, P. A. Use of personal history, activities,
ability and attitude questionnaire to predict success as a systems
anahst. ~roceedinns of the 16th ~ n n u a l Conference of the , n

Computer Personnel Research Group Conference, 1980, 133- 143.

Cannon, W. M. Toward a new vocational interest scale for computer
programmers-a procedural report. Proceedings of the 3rd
Annual Computer Personnel Research Group Conference, 1965, - 3 ,
68-74.

Cannon, W. M. , & Perry, D . K . A vocational interest scale for
computer programmers. Proceedings of the 4th h n u a l Confer-
ence of the Special Interest Group for Computer Personnel
Research, 1966, - 4 , 61-80.

Capstick, C. K. , Gordon, J. D., & Salvadori, A. Predicting per-
formance by university students in introductory computing
courses. Special Interest Group in Computer Science Education
Bulletin, 1975, - 7 , 21-29.

Card, S. K. User perceptual mechanisms in the search of computer
command menus. Proceedings of the Conference on Human
Factors in Computer Systems, Gaithersburg, MD , 1982.

Card, S. KO, Moran, T. , & Newell, A . Applied information-process-
ing psychology: The human-computer interface. Hillsdale, N J :
Erlbaum, 1982.

Card, S. K. , Moran, T. P., & Newell, A . Computer text editing: An
information processing analysis of a routine cognitive skill.
Cognitive Psychology, 1980, - 12, 32-74.

Card, S. K., & Newell, A. Are w e ready for a cognitive engineer-
ing? (AIP Paper No. 1 4) . Xerox PARC, 1981.

Carry, L. R. , Lewis, C., & Bernard, J. E. Psychology of equation
solving: An information processing study. Austin, T X : Depart-
ment of Curriculum and Instruction, University of Texas at
Austin, 1979.

Case, R. , & Kurland, D. M. A new measure for determining chil-
dren's subjective organization of speech. Journal of Experimental
Child Psychology, 1980, 30, 206-222.

Case, R. , Kurland, D. M. , & Coldberg, J , Operational efficiency
-

and the growth of short-term memory span. Journal of Experi-
mental Child Psychology, 1982, - 33, 386-404.

Cassirer, E. The logic of the humanities. Translated by C. S .
Howe. New Haven: Yale University Press, 1960.

Chase, W. G. , & Simon, H. A. Perception in chess. Cognitive
Psychology, 1973, - 4 , 55-81.

Cheney, P. Cognitive style and student programming ability: A n
investigation. Association for Educational Data Systems Journal,
1980, - 13, 285-291.

Chi, M.T.H., Feltovich, P.J., & Glaser, R. Categorization and
representation of physics problems by experts and novices.
Cognitive Science, 1981, - 5, 121-152.

Clark, H. H. Bridging. In P. N o Johnson-Laird & P. C. Wason
(Eds.) , Thinking: Readings in cognitive science. Cambridge,
MA: Cambridge University Press ,. 1977.

Chipman, S. , Siegel, J. , & Glaser, R. (Eds.), Thinking and learning
skills: Current research and open questions. Hillsdale, N J :
Erlbaum, 1983. In press.

Clement, J. , Lochhead, J . , & Monk, C . Translation difficulties in
learning mathematics (Tech. Rep.). Amherst, MA: Cognitive
Development Project, Department of Physics and Astronomy,
University of Massachusetts, 1979.

Collins, A. , & Gentner , Do Constructing m n a b l e mental models.
Proceedings of .the Fourth Annual Conference of the Cognitive
Science Societv. Ann Arbor, MI, August 1982.

Coombs, M. J . , Gibson, R., & Alty, J. L. Learning a first computer
language: strategies for making sense. International Journal of
Man-Machine Studies. 1982. 16, 449-486.

Correnti, R. J . Predictors of success in the study of computer
programming at two-year institutions of higher education (Doc-
i o r i dissertation, Ohio University, 1969) . Dissertation
Abstracts International, 1969, 30, 37 l8A. (University Microfilms
No. 70-4732)

Cromer, R. F. The development of language and cognition: The
cognition hypothesis. -In B . Foss (~ d .) , New perspectives in
child development.
a--

London, England: Penguin, 1974, pp .

Crystal, D. A first dictionary of linguistics and phonetics.
Cambridge, MA: Cambridge University Press, 1980.

Curtis, B . , Sheppard, S. B., Milliman, P . , Borst, M. A . , &

Love, T. Measuring the psychological complexity of software
maintenance tasks w i t h the Halstead and McCabe metrics. - IEEE
Transactions on Software Engineering, 1979, - SE-5, 96- 104.

BeKker, J . , & Brown, J. S. Mental models of physical mechanisms and
their acquisition. IR J. R. Anderson (Ed.) , Cognitive skills and
their acquisition. Hillsdale, N J : Erlbaum , 198 1.

Dewey, J. Human nature and conduct. New York: Henry Holt,
$922.

Dewey, J. The school and society. Chicago: University of Chicago
Press, 1900.

Dickmann, R. A. , & Lockwood, J . 1966 survey of test use in com-
puter personnel selection. Proceedings of the 4th Annual
Computer Personnel Research Group Conference. 1966, - 4 , 15-27.

Bijkstxa, E. W. GO-TO statement considered harmful. Communications
of the ACM, 1968, - 11, 147-148, 538, 541.

Dijkstra, E. W . A discipline of programming. Englewood Cliffs, N J :
Prentice-Hall, 1976.

DiPersio , T. , Isbister , D . , & Shneiderman , B . An experiment using
memorization/reconstruction as a measure of programmer ability.
International Journal of Man-Machine Studies, 1980, - 13, 339-354.

diSessa, A . A. Unlearning Aristotelian physics: A study of knowl-
edge-based learning. Cognitive Science, 1982, - 6 , 37-75.

duBoulay , J. B . H. Teaching teachers mathematics through program-
ming. International Journal of Mathematical Education, Science
and Technology, 1980, - 11, 347-360.

duBoulay, J. B . H., & OIShea, T. How to work the LOGO machme:
A primer for ELOGO (DM Occasional Paper No. 4) . Edinburgh,
Scotland: Department of Artificial Intelligence, University of
Edinburgh, 1976.

duBoulay, J. B. H. , & OtShea, T. Seeing the works: A strategy for
teachine interactive ~roarammina (DM Worluna Paper No. 28) .

Y Y - -
Edinburgh, Scotland: Department of Artificial Intelligence,
university of Edinburgh, 1978.

duBoulay, J . B. H , OIShea, T . , & Monk, J. The black box inside
the glass box: Presenting computing concepts to novices.
International Journal of Man-Machine Studies, 1981, - 14, 237-249.

Durward, M . L. The Computer Programmer Aptitude Battery: A field
trial. Vancouver, BC: Vancouver Board of School Trustees, -
1973. (ERIC Document Reproduction Service No. ED 088 913)

Dwyer, T. A. Soloworks: Computer based laboratories for h g h
school mathematics. Science and Mathematics, 1975, 93-99.

Egly , B e G. , & Wescourt, K. T. Cognitive style, categorization and
vocational effects on performance of RE% database users.
SICS86 Bulletin, 1982, - 13, 91-97.

Ehrlich, K. , & Soloway, E. An empirical investigation of the tacit
plan knowledge in programming. In J. Thomas & M . Schneider
(Eds.) , Human factors in computer systems. Norwood, N J :
AbIex. 1983.

Eisenstadt, M . , & Laubsch, J. H. Towards an automated debugging
assistant for novice programmers. Proceedings of the AISB-80
Conference on Artificial Intelligence, Amsterdam, The Nether-
lands, 1980.

Eisenstadt, M., Laubsch, J . H. , & Kahney , J. H. Creating pleasant
programming environments for cognitive science students. Paper
presented at the meeting of the Cognitive Science Society,
Berkeley, CA, August 1981.

Ericcson, K. A. , & Simon, H. Verbal reports as data. Psychological
Review, 1980, - 87, 215-251.

Falmagne, R. J . (Ed.). Reasoning: Representation and process in
children and adults. Hillsdale, N J : Erlbaum, 1975.

Favaro, P. My five year old knows BASIC. Creative Computing,
1983, - 9, 158-166.

Feurzeig, W . , Horwitz, P., & Nickerson, R. S. Microcomputers in
education (Report No. 4798). Prepared for: Department of
Health, Education, and Welfare; National Institute of Education;
and Ministry for the Development of Human Intelligence, Republic
of Venezuela. Cambridge, MA: Bolt Beranek and Newman, October
1981.

Feurzeig, W . , Papert, S., Bloom, M. , Grant, R., & Solomon, C.
Programming languages as a conceptual framework for teaching
mathematics (Report No. 1899) . Cambridge, MA: Bolt Beranek
and Newman, 1969.

Flavell, J . , & Draguns, J. A microgenetic approach to perception
and thought. Psychological Bulletin, 1957, - 54, 197-217.

Flower, L. , & Hayes, J. R. Plans that guide the composing process.
In C. Fredericksen, M. Whiteman, & J. Dominic (Eds.) , Writing:
The nature, development and teaching of writf en csmmunication.
Hillsdale, NJ : Erlbaum , 1979.

Floyd, R. W. The paradigms of programming. Communications of the
ACM, 1979, 2 2 , 455-460. - -

Fowler, G. C., & Glorfeld, L. W. Predicting aptitude in introduc-
tory computing : A classification model. Association for
Educational Data Systems Journal, 1981. - 1 4 , 96-109.

Fowler, S . C. , & Gbrfeld, L. W. Validation of a mode for predicting
aptitude for introductot-y computing. Special Interest Group for
Computer Science Education Bulletin, 1982, - 14, 140-143.

Friedman, S. L., Scholnick, E. K . , & C o c h g , R . R . (Eds.), - Blue-
prints for thinking: The development of social and cognitive
planning skills. Cambridge, MA : Cambridge University Press,
1983. In press.

Galanter, E. Kids and computers: The parents' microcomputer hand-
book. New York: Putnam, 1983.

Gannon, C. Error detection using path testing and static analysis.
Computer, 1979, 26-31.

Gannon, J. D. An experiment for the evaluation of language fea-
tures. International Journal of Man-Machine Studies, 1976 (a) , - 8 ,
61-73.

Gannon, J. D. Data types and programming reliability: Some prelimi-
nary evidence. Proceedings of the Symposium on Computer
Software Engineerinq, 1976(b).

Gannon. J. D. An experimental evaluation of data type conventions.
Communications of the ACM, 1977, - 20, 584-595.

Gannon, J. D. , & Horning, J. J. Language design for programming . -

reliability. IEEE ~ransact ions on Software Engineering, 1975,
SE-1. 179-191.

Gibson, E. J . , & Levin, H. The psychology of reading. Cambridge,
MA: MIT Press, 1975.

Gick, M. L., & Holyoak, K. J. Analogical problem solving. Cogni-
tive Psychology, 1980, - 12, 306-355.

Gick, M. L a , & Holyoak, K. J. Schema induction and analogical -
transfer. Cognitive Psychology, 1982, - 15, 1-39.

Goldberg, P. C. Structured programming for non-programmers. h
Structured programming: An infotech state of the art report.
Maidenhead: Infotech International, 1976.

Goldin, S. E. , & Hayes-Roth, B. Individual differences in planning
processes. A Rand Note (N-1488-ONR) prepared for the Office
of Naval Research, June 1980.

Goldman, N. , Balzer, R. , & Wile, D . The inference of domain struc-
ture f r o m informal process descriptions. Proceedings of Pattern
Directed Inference Workshop in S I G A R T Newsletter # 6 3 , 1977(a).

Goldman, N . , Balzer, R. , & Wile, D . The use of a domain model in
understanding informal process descriptions . Proceedings of the
Fifth Joint Conference on Artificial Intelligence, 1977 (b) .

Coldstein, I. Understanding simple picture programs (A1 Tech. Rep.
No. 294). Cambridge, MA: MIT Artificial Intelligence Labora-
tory, 1974.

Goldstein, I. P. The genetic graph: A representation for the evolu-
tion of procedural knowledge. International Journal of Man-
Machine Studies, 1979, 11, 51-77. -

Goldstein, I . , & Miller, M. A1 based personal learning environments
(A1 Memo No. 384). Cambridge, MA: Massachusetts Institute of
Technology, 1976 (a) .

Goldstein, I . , & Miller, M. Structured planning and debugging: A
linguistic theory of design (AI Memo No. 387). Cambridge, MA:
MIT Artificial Intelligence Laboratory, 1976 (b) .

Goldstein, I., & Papert, S. Artificial intelligence, language, and the
study of knowledge. Cognitive Science, 1977, - 1, 84-123.

Gotterer, M. H. , & Stalnaker, A. W . Predicting programming per-
formance among non-preselected trainee groups. Proceedings of
the 2nd Annual Cornouter Personnel Research Grouo Conference.

Gould, J. D. Some psychological evidence on how people debug
computer programs. International Journal of Man-Machine
Studies, 1975, - 7, 151-182.

Gould, J. D. , & Drongowski, P. Am exploratory investigation of
-

computer program debugging. Human Factors, 1974, - 16, 258-
2'77.

Gray, J. D . Predictibility of success and achievement level of data
processing technology students at the two-year post-secondary
level. Unpublished doctoral dissertation, Georgia State Uni-
versity, 1974.

Green, C. C. , 81 Barstow, D. On program synthesis knowledge.
Artificial Intelligence, 1978, - 10, 241-279.

Green, T. R. G . Programming as cognitive activity. In H. T. Smith
& T. R. G. Green (Eds.) , Human interaction with computers.
New York : Academic Press, 1980 (a) .

Green, T. R. G. , S h e , M. E., & Fitter, M . J. The problem the
programmer faces. Ergonomics, 1980 (b) , - 23, 893-907.

Green, T. R. G . , S h e , M . E . , & Guest, D. J. The effect of syntax
on reading and generating programming languages. Bulletin of
the British Psychological Society, 1974. -

Greeno, J. Indefinite goals in well-structured problems. Psycho-
logical Review, 1976, - 83, 479-491.

Halasz , F. , & Moran, T. P. Analogy considered harmful. Proceed-
ings of the Conference on Human Factors in Computer Systems,
Gaithersburg, MD, 1982.

R. S. The construction of a selection battery for programmers
adapted to South African conditions. Proceedings of the 8th
Annual Computer Personnel Research Group Conference, 1970,
108-143.

Halstead, M. H. Elements of software science. New York: Elsevier,
1977.

Halstead-Nussloch, R. Programmer set and degree of language struc- -

ture in programming performance. Proceedings of the 25th
Annual Human Factors Society Meetings, 198 1 , 12-16.

Harmon, M. Computer literacy: A teacher challenge. Section 12:
"Ehployment outlook in high technology."The New York
Times. March 27. 1983. DD. 27-28.

Harvey, B. Why LOGO? Byte, 1982, - 7 , 163-193.

Hawkins, J., & Fiess, K. The effects of programming experience on
ckildrenss conceptions of computer functioning (Report No. 13 1 .
New York: Center for Children arrd Technology, Bank Street
College of Education, February 1983.

Hawkins, J . , Sheingold, K . , Gearhart, M . , & Berger, C. The impact
of computer activity on the social experience of classrooms.
Journal of Applied Developmental Psychology, 1983, - 2 . In
press.

Hayes, J. R. Problem topology and the solution process. Journal of
Verbal Learming and Verbal Behavior, 1965, - 4 , 371-379.

Hayes, J. R . , & Simon, H. A . Psychological differences among
problem isomorphs. In N. J . Castellan, J r . , D. B. Pisoni, &

G. R. Potts (Eds.) , Cognitive theory (Vol. 2) . Hillsdale, NJ:
Erlbaum, 1977.

w

Mayes-Roth, B . Estimation of time requirements during planning:
The interactions between motivation and cognition. A Rand Note
(N-1581-)NR) prepared for the Office of Naval Research,
November 1980.

Hayes-Roth, B . , & Hayes-Roth, F. A cognitive model of planning.
Cognitive Science, 1979, - 3 , 275-310.

Hayes-Roth, B . , Hayes-Rotk, F. , Shapiro, N. , & Wescourt, K.
Planners1 workbench: A computer aid to re-planning. A Rand
Paper (P-6688), October 1981.

HeUer, J. I. , & Greeno, J. G. Information processing analyses of
mathematical problem solving. In R. W. Tyler & S. H. Wl-ute
(Eds.) , Testing, teaching and learning. Washington, DC: U . S .
Department of Health, Education, and Welfare, 1979.

Helms, S. Finding a round peg for a round hole
Data Processing, 1979, - 21, 1Q-11.

Hewitt , C., & Smith, B . Towards a programming
Transactions on Software Ehgineering , 1975,

Hierdorn, C. E. Automatic programming through

(staff recruitment) .

apprentice. IEEE
SE-1.

natural language
didogue: A survey. IBM Jswmal of Research and Development,
1976. 20. 302-313.

Hoare , C . A. Et . Communicating sequential processes. Communica-
tions of the ACM, 1978, - 21, 666-677.

Hot, J. M. Role of mental representation in learning a programming
language. International Journal of Man-Machine Studies, 197'9,
9 , 87-105. -

Hollenback, G. P., Ba MsNamaza, W. J. CUCPAT and programming
aptitude. Personnel Psychology, $965, - 18, 101-106.

Hdyoak, K. J. halcagical thhking and human intelligence. In R. J .
Sternberg (Ed.) . Advances in the psychology of human intelli-
s e n e (Vol. 2) . Hillsdale, NJ: Erlbaum, 1983.

Howe, J. A. M . Developmental stages in learning to program. In
F. K l i x & J. Hoffman (Eds.) , Cognition and memory: Interdisci-
plinary research of human memory activities. Amsterdam: North
Holland, 1980.

Howe, J. A. M. Learning mathematics through LOGO programming
(Research Paper No. 153). Edinburgh, Scotland: Department of
Artificial Intelligence, University of Edinburgh, 198 1.

Howe, J. A . M . , O'Shea, T. , & Plane, F. Teaching mathematics
through LOGO programming: An evaluation s tudy. In R. Lewis
& E. D. Tagg (Eds.) , Computer-assisted learning--scope, prog-
ress and limits. Amsterdam: North Holland, 1979.

Howell, M . A . , Vincent, J. W . , & Gay, R. A. Testing aptitude for
computer programming. Psychological Reports, 1967, 20, 1251-
1256.

Hunt, D . , & Randhawa, B . S. Relationship between and among
cognitive variables and achievement in computational science.
Educational and Psychological Measurement, 1973, - 33, 921-928.

Hunt, E. Mechanics of verbal ability. Psychological Review, 1978,
85. 109-130.

Inhelder, B., & Piaget, J. The growth of logical thinking from
childhood to adolescence (A. Parsons & S. Milgram. Trans.) .
New York: Basic Books, 1958.

Inhelder , B . , Sinclair, H. , & Bovet, M. Learning and the develop-
ment of cognition. Cambridge, MA: Harvard University Press,
1974.

International Business Machines. Manual for administration and
scoPfPlg the Aptitude Test for Programmer Personnel. White
Plains, NY: IBM Technical Publications Department, 1964.

Irons, D. M. Predicting programming performance in novice program-
mers by measures of cognitive abilities (Doctoral dissertation,
Texas Christian University, 1982) . Dissertation Abstracts
International, 1982, - 43, P283B.

Jacobs, S. J. Cognitive predictors of success in computer program-
mer training. Proceedings of the 11th Annual Conference of the
Special Interest Group for Computer Personnel Research, 1973,
11, 98-113. -

Jacknow, L. Learning, evaluation, and systems models in engineer- -
ing, science, and technology curricula. Journal of Educational
Technology Systems, 1979-1980, - 8, 51-66.

Jackson, M. A. Principles of program - design. New York: Academic
Press, 1975.

Jackson, M. A. The design and use of conventional programming
languages. In H. T. Smith & T. R. G. Green (Eds .) , Human
interaction w i t h computers. London: Academic Press, 1980.

Jeffries, R. A comparison of the debugging behavior of expert and
novice programmers. Paper presented at the Annual Meeting of
the American Educational Research Association, New York C i ty ,
March 1982.

Jeffries, R . , Turner , A. A., Polson, P. G., & Atwood, M. E. The
processes involved in designing software. In J . R . Anderson
(Ed.) , Cognitive skills and their acquisition. Hillsdale, NJ:
ErPbaum , 1981.

Johnson, R. T . Review of Computer Programmer Aptitude Battery.
Ln 0. K. Buros (Ed.) , The Seventh Mental Measurements Year-
book. Highland Park, N J : Gryphon Press, 1972. -

Johnson, R. T. Review of IBM Aptitude Test for Programmer Per-
sonnel. In 0. K. Buros (Ed.), The Seventh Mental Measure-
ments Yearbook. Highland Park, NJ: Gryphon Press, 1972.

Johnson, W . L . , Draper, S., & Soloway, E. A n effective bug classi-
fication scheme must take the programmer into account. - Pro-
ceedings of the Workshop on High-Level Debugging, Palo Alto,
CA. 1983.

Johnston, J. R. Cognitive prerequisites : The evidence from children
learning English. In D. I. Slobin (Ed.) , Universals of language
acauisition. Hillsdale. NJ : Erlbaum. 1982.

K a B n , G o , & MacQueen, D. B . Coroutines arid networks of parallel
processes. Proceedings of the LFIPS Congress. Amsterdam:
N o r t h Holland, 1977.

K a h e y , H. , & Eisenstadt, M. Programmers' mental models of their
programming tasks: The interaction of real-world knowledge and
programming knowledge. Proceedings of the Fourth Annual
Conference of the Cognitive Science Society, Ann Arbor, MI,
August 4-6, 1982.

Kamii, C . Pedagogical principles derived from Piaget's theory : Rele-
vance for educational practice. In M. Schwebel & J . Raph
(Eds.) , Piaget in the classroom. London: Routledge & Kegan
Paul, 1974.

Kaplan, B . Genetic-dramatism. In S. Wapner & B . Kaplan (Eds.) ,
Toward a holistic developmental psychology. Hillsdale, NJ:
Erlbaum , 1983.

Kaplan, B . , & Wapner , S. (Eds.) , Value presuppositions in theories
of human development: Proceedings of the Second Biennial Con-
ference of the Heinz Werner Institute (1983) . Hillsdale, N J :
Erlbaum, to appear in 1984.

Karten, H. Issues in hi r ing programmers: 2 . Testing: Pros and cons
of standardized aptitude tests for programmers. Computerworld,
1982, 16, 15-17. -

Kidder, T. The soul of a new machine. Boston: Little, Brown,
1981.

Klahr , D . , & Robinson, M. Formal assessment of problem-solving and
planning processes in preschool children. Cognitive Psychology,
1981, - 13, 113-147.

Kripke, S. A. Naming and necessity. In D. Davidson & G. H a r m a n
(Eds.) , Semantics of natural language. Dordrecht , Holland:
Reidel, 1972.

Kurland, D. M., & Pea, R. D. Children's mental models of recursive
Loao Droarams (Tech. Rev. No. 10) . New York: Center for -
Children and Technology, Bank Street College of Education,
February 1983 (a) .

Kurland, D . M . , & Pea, R. B . Expert programmers : Diversity in
processes of program development (Working Paper), New York:
Center for Children and Technology, B d Street College of
Education, April 1983 (b) .

Laboratory of Comparative Human Cognition. Culture and cognitive
development. In W. Kessen (Ed.) , Carmiehael's manual of child
psychology: History, theories and methods. New York: Wiley ,
1983. Kn press.

Laboratory of Comparative Human Cognition. Microcomputer cornmuni- -

cation networks for education. The Quarterly Newsletter of the
Laboratory of Comparative Human Cognition, April 1982, - 4 (2 .

Larkin, J . H. Skilled problem solving in physics (Tech. Rep.) .
Berkeley, CA: Group in Science and Mathematics Education,
University of California at Berkeley, 1977.

L a r k i n , J . H. Teaching problem solving in physics: The psycho-
logical laboratory &d the practical classroom. In D. T. Tuma &

F Reif (Eds.) , Problem solving and education: Issues in teaching
and research. Hillsdale, N J : f i lbaum, 1980.

Larkin, J . H . , McDermott, J . , Simon, B. P . , & Simon, H. A. Ex-
pert and novice performance in solving pkysi.cs problems.
Science, 1980, - 208, 1335-1342.

k s e n , S. G. Kids and computers: The future is today. Creative
Computinq, 1979, - 5, 58-60.

Eawler , R. W. Extending a powerful idea (Logo Memo No. 58) .
Cambridge, MA: MIT Artificial Intelligence Laboratory, July
1980.

Ledbetter, W. N. Programming aptitude: How significant is it?
Personnel Journal, 1975, - 54, 165-166, 175.

Ledvinka, J . , & Schoenfeldt, L. F. Legal developments in employ-
ment testing : "Albermarle" and beyond. Personnel Psychology,
19'98, - 31.

Leeper, 8. R. , & Silver, J. Lo Predicting success in a first pro-
gramming course. Special Interest Group in Computer Science
Education Bulletin, 1982, 1 4 , 147-150. -

k i t n e r , H. H., & Lewis, PI. R. Why Johnny can't program: A
progress report. Special Interest Group in Computer Science
Education Bulletin, 1978, P O , 266-276. -

Lemos, R. S. A comparison of non-business and business student
test scores in BASIC. Association for Educational Data Svstems

Lernos, R. FORTRAN programming: An analysis of pedagogical alter-
natives. Journal s f Educational Data Processing, 1975, 12, -
21-29.

Lemos , R. S. Measuring programming language proficiency. Assoeia-
tion for Educational Data Systems Journal, 1980, 13, 261-273. -

Lemos, R. Methods, s tyles , and attitudes in the programming lan-
guage classroom. Computer, 1980, - 13, 58-65.

Levin, J . A . , & Kareev, Y. Personal computers and education: The
challenge to schools (CHIP Report No. 98). La Jolla, CA:
Center for Human Information Processing, 1980.

Lewis, C. Skill in algebra. Ln J. R. Anderson (Ed.) , Cognitive
skills and their acquisition. Hillsdale, N J : Erlbaum , 198 1.

Lochhead, J . An anarchistic approach to teaching problem solving
methods. Paper presented at the Annual Meeting of the Ameri-
can Educational Research Association, San Francisco, April 1979.

Lotheridge, C. D. Discussion on papers of Mussio, Wahlstrom and -
Seiner. Proceedings of the 9th-Annual Computer Personllel
Research Group Conference, 1971, - 9, 47-53.

Love, L. T. Relating individual differences in computer programming
performance to human information processing abilities (Doctoral
dissertation, University of Washington, 1977) . Dissertation
Abstracts International, 1977, - 38, 1443B. (University Microfilms
No. 77-18379)

Luchins, A. S. , & Luchins, E. H. Rigidity of behavior: A varia-
tional approach to the effect of Einstellunq. Eugene, OR:
University of Oregon Press, 1959.

Luehrmann, A. Computer literacy: What should it, be? Mathematics
Teacher, 1981(a), - 74.

Luehrmann, A. Should the computer teach the student or- vice versa?
h R. I?. Taylor (Ed.) , The computer in the school: Tutor, tool,
tutee. New York: Teachers College Press , 1981 (b 1.

Mann, W . C. Why things a re so bad for the computer-naive user.
Information Sciences Lnstitute , March 1975.

Martin, M. A. A s tudy of the concurrent validity of the Computer
Programmer Aptitude Battery. Studies in Personnel Psychology,
1971, - 3 , 69-76.

Matz, M. Towards a process model of high school algebra errors. Ln
D. H. Sleeman &-J. S. Brown (~ d s .) , lntelligeit tutoring sys-
tems. New York: Academic Press, 1981.

Mayer, B. B . , & Stalnaker, A. W. Computer personnel research--
issues and progress in the 60's. Proceedings of the 5th Annual
Conference of the Special Interest Group for Computer Personnel
Research, 1967, - 5 , 6-41.

Mayer, D . B. , & Stalnaker, A. W . Selection and evaluation of com-
puter personnel--the research history of SIGI CPR. Proceedings
of the 23rd National Conference of the Association for Computing
Machinery, 1968, 657-670.

Mayer , R. E. Different problem solving competencies established in
learning computer programming with and without meaningful
models. Journal of Educational Psychology, 1975, - 6 7 , 725-734.

Mayer, R. E. A psychology of learning BASIC. Communications of
the ACM, 1979, - 22, 589-593.

Mayer, R . E. The psychology of learning computer programming by
novices. Computing Surveys, 1981, - 13, 121-141.

Mayer, R. E. Some conditions of meaningful learning for computer
programming: Advance organizers and subject control of frame
order. Journal of Educational Psychology, 1976, - 68, 143-150.

Mayer, R. E., & Bayman, P. Psychology of calculator languages: A
framework for describing differences in users ' knowledge.
Communications of the ACM, 1981, - 24, 511-520.

Mazhsk, E. J. Does a computer have sexuid preferences? Special
Interest Groups for C o m ~ u t e r Science Education Bulletin. 1972. 8 .

Maalack, L. J. Predicting student success in an introductory pro-
gramming course. cornput. J . , 1978, - 2 1 , 380-381.

Mazkck, L. J . Identifying potential to acquire programming skill.
Communications of the Association for Computing Machinery,

McDemott, J . , & Larkin, J . M. Representing textbook physics
problems. Proceedings of the 2nd National Conference of the
Canadian Society for Computational Studies of Intelligence,
University of Toronto, 1978,

McKeithen, K. B . , R e i t m a n , J. S. , Reuter, H. H . , & H i r t l e , S , C,
Knowledge organization and skill differences in computer pro-
grammers. Cognitive Psychology, 1981, 13, 307-325. -

McNamara, W. J. The selection of computer personnel--past , pres-
ent, future. Proceedings of the 5 t h Annual conference -of the
S ~ e c i a l Interest G r o u ~ for Com~ute r Personnel Research. 1967.

McNamara, W. J., & Hughes, J. L. Review of research on the selec-
tion of computer programmers. Personnel Psychology, 196 1, 1 4 , -
39-51.

McNamara, W. J . , & Hughes. J. L. Manual for the revised Program-
mer Aptitude Test. Whlte Plains, NY: IBM, 1969.

McNicholl, D. G., & Magell, K . The subjective nature of program-
ming complexity. Proceedings of the Conference on Human
Factors in Computer Systems, Gaithersburg, MD , 1982.

Meltzer , B . Brains and Programs. Proceedings of the International
Computing Symposium, Liege, Belgium. Amsterdam: North
Holland, 1977, pp. 81-84.

Miller, L. A. Programming by non-programmers . International
Journal of Man-Machine Studies, 1974, - 6, 237-260.

Miller, L. A . Natural language programming : Styles, strategies, con-
trasts (Tech. R ~ D . No. RC-8687). New York: IBM Research -
Center. 1980.

Miller, L. A . , & Becker, C. A. Programming in natural English
(Tech. Rep. RC-5134). Yorktown Heights, NY: IBM Watson
Research Center, 1974.

Miller, L. A. Programming by non-programmers . International
Journal of Man-Machine Studies. 19'94. 6. 237-260.

W e p , M. A structured planning and debugging environment for
elementary programming. International Journal of Man-Machine
Studies. 1978. 11. 79-95.

Miller, M . , & Goldstein, I. Parsing protocols using problem solving
srammars (A 1 Memo No. 38 5 1. Cambridge. MA: MIT Artificial
Y . - -
Intelligence Laboratory, 1976(a).

Miller, M. , & Goldstein, I. SPADE: A grammar based editor for
planning and degugging programs (A 1 Memo No. 386). Cam-
bridge, MA: MIT Artificial Intelligence Laboratory, 1976 (b) .

Miller, M. L., & Goldstein, I. PAZATN: k linguistic approach to
automatic analysis of elementary programming protocols (A1 Memo
No. 388). Cambridge, MA: MIT Artificial Intelligence Labora-

Miller, M. L. , 81 Goldstein, I. Problem solving grammars as formal
tools for intelligent CAI. Proceedings of ACM77, 1977.

Miller, M. L., & Goldstein, I. Structured planning and debugging.
Proceedings of the Fifth International Joint Conference on
Artificial Intelligence, Cambridge, MA, 1977.

Miller, M. L . , & Goldstein, I. P. Planning and debugging in elemen-
tary programming. Ln P. H. Winston & R. H. Brown (Eds.) , - AI :
An MIT Perspective (Vol. 1). Cambridge, MA: MIT Press, 1979.

Milner, S. D. The effects of teaching computer programming on
performance in mathematics (Doctoral dissertation, University of
Pittsburgh, 1973) . Dissertation Abstracts International, 1973,
3 3 , 4183A-4184A. (University Microfilms No. 72-4112) -

Miher, S. The effects of computer programming on performance in
mathematics. ERIC Report No. EDO76391, 1973.

Mbsky, M. Form and content in computer science. Communications
of the ACM. 1970. 17. 197-215.

Moher , T. , & Schneider , G. M. Methods for improving controlled
experimentation in software engineering. Proceedings of the
Fifth International Conference on Software Engineering. Silver
Spring, MD: IEEE Computer Society, 1981, pp. 224-233.

Moher, T, , & Schneider, G. M. Methodology and experimental, re-
search in software engineering. International Journal of Man-
Machine Studies, 1982, - 16, 65-87.

Monk, G. S. Constructive calculus. Seattle: University of Washing-
ton, 1978.

Moran, T. P. The command language grammar: A representation for
the user interface of interactive computer systems. International
Jserrnal of Man-Machine Studies, 198 1, - 15, 3-50.

Mussio, S. J. , ga Wahlstrom, M. W. Predicting performance of pro-
grammer trainees in a post-high school. setting. Proceedings of
the 9th Annual Conference of the Special Interest Group fo r
Computer Personnel Research, 1971, - 9 , 26-46.

National Assessment of Educational Progress. Procedural handbook :
1977-78 mathematics assessment. Denver, CO: Education Com-
mission of the States, 1980.

National Institute of Education. Demands and cognitive consequences
of computer learning. Request for Proposal NIE-R-82-0011, July
1982.

Nelson, B. W. Issues in hiring Programmers: 1. Selection: How to
pick candidates for entry-level programmer training. Computer-
world, 1982, - 16, 1-6.

Nelson, B . , & Lowrey, J. Issues in hiring programmers: 3. Hiring
versus training : Experienced programmers or trainees? A pro-
ductive timelcost model. Computerworld, 1982, - 16, 21-26.

Nelson, K . The syntagmatic-paradigmatic shift revisited: A review of
research and theory. Psychological Bulletin, 1977, - 84, 93-116.

Newell, A. One final word. In D. T. Tuma & F. Reif (Eds.),
Problem solving and education. Hillsdale, N J : Erlbaum, 1980.

Newman, W. M. , & Sproull, R . F. Principles of Interactive Computer
Graphics (2nd ed.) . New York: McGraw-Hill, 1979.

Newell, A., & Simon, H. Human Problem Solving. Jkglewood Cliffs,
NJ: Prentice-Hall, 1972.

Newstead, P. R. Grade and ability predictions in an introductory
programming course. Special Interest Group in Computer
Science Education Bulletin, 1975, - 7, 87-91.

Nickerson, R. S. Thoughts on teaching thinking. Educational
Leadership, October 198 1 (a) .

Nickerson, R. S. Why interactive computer systems are sometimes
not used by people who might benefit from them. International
Journal of Man-Machine Studies, 198 1 (b) , - 14, 469-48 1.

Nickerson, R. S . Understanding understanding (Tech. Rep.) .
Cambridge, MD: Bolt Beranek and Newman, 1982.

Nisbett, R. E., & Ross, L. Human inference: Strategies and short-
comings of social judgment. Englewood Cliffs, N J : Prentice-Hall,

Nisbett, R. E., & Wilson, T. D. Telling more than we can know:
Verbal reports on mental processes. Psychological Review, 1978,
84, 231-259. -

Norcio, A. F. , & Kerst , S. M . Human memory organization for
computer programs. Human Factors. In press.

Norman, D.A. Worsening the knowledge gap: The mystique of corn-
putation builds unnecessary barriers. Paper presented at New
York Academy of Sciences Conference on "Computer culture: The
Scientific, Intellectual, and Social Impact of the Computer, " New
York City, April 5-7, 1983.

Olson, G . , Mack, R. L. , & Dufy, S. A. Cognitive aspects of genre
(Tech. Rep. 11). Ann Arbor: University of Michigan Center
for Cognitive Science, 1981.

Owens, B. B. An interaction study of reasoning aptitudes, model
presence and methods of approach in the learning of a computer
programming language (Doctoral dissertation, New York Univer-
sity, 1978) . Dissertation Abstracts International, 1978, - 38,
7122A.. (University Microfilms No. 7808480)

Palormo, J. M . The Computer Programmer Aptitude Battery-a de-
scription and discussion. Proceedings of the 5th Annual Confer-
ence of the Special Interest Group for Computer Personnel
Research, 1967, - 5, 57-63.

Palormo, J. M. Computer Programmer Aptitude Battery, manual.
Chicago: Science Research Associates, 1967.

Palormo, J. M . , Campbell, B. A., & Schofeld, M. Computer Pro-
grammer Aptitude Battery, examiner's manual (2nd ed.) . Chi-
cago: Science Research Associates, 1974.

Papert, S. Mindstorms. New York: Basic Books, 1980.

Papert, S. Teaching children thinking. Programmed Learning and
Educational Technology, 1972(a), - 9, 245-255.

Papert, S. Teaching chldren to be mathematicians versus teaching
about mathematics. International Journal for Mathematical
Education, Science and Technology, 1972 (b) , 3 , 249-262. -

Papert, S. , Watt, D . , diSessa, A . , & Weir, S. Final report of the
Brookline LOGO Project: An assessment and documentation of a
children's computer laboratory. Cambridge, MA : MIT Division
for Study and Research in Education, 1979.

Pea, R. D. Programming and problem solving: Children's experience
with LOGO. Paper presented at symposium, nChameleon in the
classroom: Developing roles for computersn, Annual Meetings of
the American Educational Research Association, Montreal,
Canada, April 1983. (Also Technical Report No. 1 2 , Bank Street
College of Education, Center for Children and Technology)

Pea, R . D . What is planning development the development of? In
D. Forbes & M . Greenberg (Eds .) , New directions in child
development: Children's planning strategies (Vol. 18) . San
Francisco : Jossey-Bass , December 198 2 .

Pea, R . D., & Hawkins, J. A microgenetic study of planning proc-
esses in a chore-scheduling task. In S. L. Friedman, E. K .
Scholnick, & R . R . Cocking (Eds.) , Blueprints for thinking :
The development of social and cognitive planning skills. Carn-
bridge, MA: Cambridge University Press, 1983. In press.

Pea, R . D. , Hawkins, J . , & Sheingold, K . Developmental studies on
learning LOGO computer programming. Paper presented at the
Annual Meetings of the Society for Research in Child Develop-
ment, Detroit, April 1983.

Pea, R . D. , & Kurland, D . Eul. On the cognitive effects of learning
computer programming (Tech. Rep. No. 9) . New York: Center
for Children & Technology, Bank Street College of Education,
1983 (a) ,.

Pea, R . D . , & Kurland, D . M . Learning LOGO programming and the
development of planning skills (Tech. Rep. No. 16). New York:
Center for Children and Technologv, l983(b).

Penney, G . Aptitude testing for employment in computer jobs. In
0. Lecarrne & R. Lewis (Eds. 1 , Computers in education.
Amsterdam: North Holland/ American Elsevier, 1975.

Pennington, N . Cognitive components of expertise in computer pro-
gramming: A review of the literature (Tech. Rep. No. 4 6) . Ann
Arbor: University of Michigan Center for Cognitive Science, July
1982.

Perry. D . K. Vocational interests and success of computer program-
rners. Personnel Psychology, 1966, 1 9 , 517-524. -

Petersen, C. C. , & Howe, T. C. Predicting academic success in
introduction to computers. Association for Educational Data
Systems Journal, 1979, - 12, 182-191.

Pitariu, H. Data concerning psychological selection of analyst pro-
grammers. Studia Psychologica, 1974, - 16 (2) .

Pitariu, H. Occupational selection of analyst-programmers and assis-
tant-programmers. Revista de Psihologie, 1978, - 21, 187-208.

Piaget , J. Intellectual evolution from adolescence to adulthood.
Human Development, 1972, - 15, 1-12.

Polya, G . How to solve i t . New York: Doubleday-Anchor, 1957.

Price-Williams , D . , Gordon, W . , & Ramirez , hl . Skill and conserva-
tion: A study of pottery-making children. Developmental
Psychology, 1969, - 1, 769.

Ralston, A., & Shaw , M . Curriculum '78--is computer science really
that unmathematical? Communications of the ACM , 1980, - 23,
67-70.

Ramsey , H. R . , & Atwood, bl . E. Human factors in computer sys-
tems: A review of the literature (NTIS AD-A075-679). Engle-
wood, CO: Science Applications, 1979.

Ramsey, H. R., Atwood, 14. E . , & Van Doren, J. R . Flowcharts vs.
program design Ianguages : An experimental comparison. - Pro-
ceedings of the 22nd Annual Meeting of the Human Factors
Society, Santa Monica, CA. 1978.

Reed, S. Technology still a novice in classrooms. Section 12:
"Employment outlook in high technology." The New York Times,
March 27, 1983, p . 61.

Reitman, J. S. , & Reuter, H . H . Organization revealed by recall
orders and confirmed by pauses. Cognitive Psychology, 1980,
12. 554-581.

Resnick, 1;. B. Task analysis in instruction design: Some cases from
mathematics. In D . Klahr (Ed.) , Cognition and instruction.
Hillsdale, NJ: Erlbaum, 1976, pp. 51-80.

Ricardo, C . M. Identifying student entering characteristics desirable
for a first course in computer programming. Unpublished doc-
toral dissertation, Columbia University, Graduate School oi A r t s
and Sciences, 1983.

Rich, C. A. A l ibrary of plans with applications to automated anal-
ysis (Tech. Rep. No. 294). MIT Artificial Intelligence Labora-
tory , 1980.

Rich, C. A . Formal representation for plans in the programmer's
apprentice. Proceedings of International Joint Conference on
Artificial Intelligence, Vancouver, BC , 198 1.

Rich, C. A . , & Shrobe, H . E. Initial report on a LISP programmer's
apprentice. IEEE Transactions on Software Engineering, 1978,
SE-4, 456-467. -

Rich, C. , & Shrobe, H . E. Design of a programmer's apprentice.
AI: An MIT perspective. Cambridge, MA: MIT Press , 1979.

Rich, C. , Shrobe, H . , Waters, R . , Sussman, G . , & Hewitt, C.
Programming viewed as an engineering activity (A 1 Memo No.
49) . Cambridge, MA : MIT Artificial Intelligence Laboratory,
1978.

Rich, C . , & Waters, R . C . Abstraction, inspection, and debugging
in programming (A 1 Memo No. 634). Cambridge, MA: MIT
Artificial Intelligence Laboratory, 198 1.

Richards, V. G . , Green, T. R . G . , & Manton, J . What does problem
representation affect: Chunk size, memory load, or mental
process (Memo No. 319). England: MRC Social and Applied
Psychology Unit, Sheffield University, 1979.

Ritch, P. A . A s tudy of the Aptitude Test for Programmer Personnel
as a predictor of success for s tudents majoring in computer
science and data-processing at the Chattanooga State Technical
Institute (Doctoral dissertation, University of Tennesee, 1973).
Dissertation Abstracts International, 1974, - 3 5 , 4647A. (Univer-
sity E.ficrofilms KO. 74-3862)

Robb, J. A . A s tudy in the selection of predictors for success in
electronic data processing courses. Proceedings of the Associa-
tion for Educational Data Svstems International Convention, 1976.

Rogoff, B . , & Gardner . LV. P. Guidance in cognitive development: A n
examination of mother-infant instruction. In B. Rogoff & J.
Lave (Eds.) , Every day cognition: I t s development in social
context. Cambridge, M A : Harvard University Press , 1983. In
press .

Ross, P. , & Howe, J. Teaching mathematics through programming:
Ten year on. In R. Lewis & D. Tagg (Eds.) , Computers in
education. Amsterdam: North Holland, 198 1.

Rouse, W . B . Systems engineering models of human-machine interac-
tion. Amsterdam: North Holland, 1980. -

Rumelhart, D. E. Schemata: The building blocks of cognition. In
R. J . Spiro, B. C. Bruce, & W . F. Brewer (E d s .) , Theoretical
issues in reading comprehension: Perspectives from cognitive
psychology, linguistics, artificial intelligence, and education.
Hillsdale, N J : Erlbaum, 1980.

Sackman, H. Man-computer problem solving. Princeton, NJ: Auer-
bach, 1970.

Sehank, R. Dynamic memory. Cambridge: Cambridge University
Press , 1982.

Schank, R. , & Abelson, R . P. Scr ipts , plans, goals and under-
standing. Hillsdale, NJ: Erlbaum, 1977.

Schmidt, F. L . , Cast-Rosenberg, I . , & Hunter, J. R. Validity
generalization resul ts for computer programmers. Journal of
Applied Psychology, 1980, - 65, 643-661.

Schmidt, F. E . , Hunter , J. E . , McKenzie, R. C. , & Waldrow, T. W .
Impact of valid selection procedures on work-force productivity.
Journal of Applied Psychology, 1979, 64. 609-626. -

Sckon, B. A . . The reflective practitioner. Cambridge, M A : MIT
Press , 1982.

Seidel, R . J . , Anderson, R. E . , & Hunter B . Computer literacy:
Issues and directions for 1985. New York: Academic Press .

Seidmm, R. H. The effects of learning a computer programming
language on t he logical reasoning of school children. ERIC
Document.

Sheil, B . A . Coping with complexity. Cognitive and Instructional
Sciences Series. Aoril 198 1 (a) . CIS-15.

Sheil, B . A . The psychological study of programming. Computing
Surveys. March 1 9 8 1 (b) , 13 (1) .

Sheil, B. A . Teaching procedural literacy. Proceedings of ACM
Annual Conference, 1980, 125-126.

Sheingold, K . , Kane, J . , Endreweit, M., & Billings, K . Study of
issues related to the implementation of computer technology in
schools. Final Report , National Institute of Education, 1981.

Shen, V . Y . The relationship between s tudent g rades and software
science parameters. Proceedings of the 3rd International
Computer Software and Applications Conference, 1979, 783-787.

Sheppard, S. B. , Cur t i s , B., Milliman, P . , & Love, T . Modern
coding practices and programmer performance. IEEE Computer,
1979, - 5 , 41-49.

Sheppard, S. B. , & Love, L. T. A preliminary experiment to test
influences on human understanding of software. Proceedings of
the 21st Meeting of the Human Factors Society, Santa Monica,
CA, 1977.

Shif, Z . I. Development of children in schools for mentally retarded.
In M . Cole & I. Maltzman (Eds .) , A handbook of contemporary
Soviet psychology. New York: Basic Books, 1969.

Schroeder , M . H . Piagetian, mathematical, and spatial reasoning as
predictors of success in computer programming (Doctoral disser-
tation, University of Northern Colorado, 1979) . Dissertation
Abstracts International. 1979. 39, 485OA. (University Microfilms -
No. 79-02855)

Seiler, J. Survey of validation studies on computer personnel selec-
tion instruments. Proceedings of the 5th Annual Conference of
the Special In teres t Group for Computer Personnel Research,
1967, - 5, 43-51.

Seiner, P. Programmer Aptitude and Competence Test System
(PACTS). Proceedings of the 9th Annual Conference of the
Special In teres t Group for Computer Personnel Research, 1971,
9, 3-25. -

Shneiderman , B . Exploratory experiments in programmer behavior.
International Journal of C o m ~ u t e r and Information Sciences,

Shneiderman. B. Measuring computer program quality and compre-
hension. International Journal of !Jan-Machine Studies. 1977 (a) ,
9 , 405-478. -

Shneiderman, B . Perceptual and cognitive issues in the syntactic1
semantic model of programmer behavior. In W . Camm & R . E.
Granda (Eds.) , Symposium proceedings, human factors and
computer science, 1978.

Shneiderman, B. Software psychology: Human factors in computer
and information systems. Cambridge, MA : Winthrop, 1980.

Shneiderman, B . Teaching programming : A spiral approach to syntax
and semantics. Computers and Education, 1977 (b) , - 1 , 193-197.

Shneiderman , B. , & Mayer , R . E . Syntacticlsemantic interactions in
programmer behavior: A model and experimental results. Inter- -
national Journal of Computer and Information Sciences, 1979, 2 ,
219-239.

Shneiderman, B. , & Mayer, R . E. Syntacticlsemantic interactions in
programmer behavior: A model and some experimental results.
International Journal of Computer and Information Sciences,
1979, - 8, 219-238.

Shneiderman, B., hlayer, R., McKay, D., & Heller, P. Experimental
investigations of the utility of detailed flowcharts in pro-
gramming. Communications of the ACM, 1977, 20, 373-381. -

Shneiderman, B . , & h4cKay , D . Experimental investigations of com- -

puter program debugging .and modification. Proceedings of the
6th International Ergonomics Association, 1976.

Shrobe, H. E. Dependency directed reasoning for complex program
understanding (A 1 Tech. Rep. N o . 503). Cambridge, MA: MIT
Artificial Intelligence Laboratory, 1979.

Shrobe, El. E. , Waters, R . , & Sussman, C. A hypothetical monologue
illustrating the knowledge of underlying program analysis (A1
Memo No. 507) . Cambridge, hlA : MIT Artificial Intelligence
Laboratory, 1979.

Shweder, R. A . Likeness and likelihood in everyday thought: hlagi-
cal thinking and everyday judgments about personality. Current
Anthropology, 1977, - 18, 637-658.

Sirne, h l . E., Arblaster, A . T . . & Green, T. R . G . Reducing pro-
gramming errors in nested conditions by prescribing a writing
procedure. International Journal of Man-Machine Studies, 1977 ,
9 , 119-126. -

Sime, M . E., Arblaster, A . T. , & Green, T. R . G . Structuring the
programmer's task. Journal of Occupational Psychology, 1977,
50, 205-216. -

Sime, M. 'E . , Green, T. R . G . , & Guest, D. J . Psychological eval-
uation of two conditional constructions used in computer lan-
guages. International Journal of Nan-Machine Studies, 1973, - 5 ,
105-113.

Sime, M. E., Green, T . R . G., & Guest, D . J . Scope marking in
computer conditions--a psychological evaluation. International
Journal of Man-Machine Studies, 1977, - 9, 107- 118.

Sime, M . E., Arblaster, A . T . , & Green, T. R. G . Reducing pro-
gramming errors in nested conditionals by prescribing a writing - -

procedure. International Journal of Man-Machine Studies, 1977,

Simon, H. A . The s t ructure of ill structured problems. Artificial
Intelligence, 1973, - 4, 181-201.

Simon, H. A . Problem solving and education. In D . T. Tuma &

F. Reif (Eds.) , Problem solving and education: Issues in teach-
ing and research. New York: Halsted Press, 1980.

Simon, H . A , , & Hayes, J. R . The understanding process: Problem
isomorphs. Cognitive Psychology, 1976, - 8 , 165-190.

Simon, D. P. & Simon, H. A .
physics problems. In R .
What develops? Hillsdale,

Simpson, D . The aptitudes of
Bulletin, 1970, 14, 37-40. -

Individual differences in solving
Siegler (Ed.) , Children's thinking:

NJ: Erlbaum, 1978.

computer programmers. The Computer

Simpson, D . Psychological testing in computing staff selection--a
bibliography. The Computer Bulletin, 1972, - 16, 401-404.

Simpson, D. Aptitude testing of programmers. Computer Weekly.,
1972, - 13, 305.

Sinclair, H . Developmental psycholinguistics. In D . Elkind & J. H .
Flavell (Eds.) , Studies in cognitive development: Essays in
honor of Jean Piaget. New York: Oxford University Press,
1969.

Skelton, J . E. Time-sharing vs. batch processing and teaching
beginning computer programmer: An experiment. Association for
Educational Data Systems Journal, 1972, - 5 , 9 1-97,

Slobin, D . I. Cognitive prerequisites for the development of grammar.
Ln C. Ferguson & D . Slobin (E d s .) , Studies of child language
development. New York: Holt, Rinehart & Winston, 1973.

Slobin, D . I. (Ed.) . Universals of language acquisition. Hillsdale,
N J : Erlbaum, 1982.

Smith, E. E., & Bruce, B. C. An outline of a conceptual framework
for the teaching of thinking skills (Report No. 4844). Prepared
for National Insti tute of Education. Cambridge, MA: Bolt
Beranek and Newman, 1981.

Smith, M . Patsy's gift fo r spotting programming skill. Practical
Computing, 1982, - 5 , 108-114.

Smith, N . L. Review of the Computer Programmer Aptitude Battery.
In 0. K . Buros (Ed.) , The Eighth Mental Measurements Year-
book. Highland Park, NJ: Gryphon Press, 1978. -

Soloway, E. , Bonar, J. , & Ehrlich, K . Cognitive strategies and
looping constructs: An empirical s tudy. Communications of the
ACM, 1983. In press . -

Soloway, E. , & Ehrlich, K . Tacit programming knowledge. Proceed-
ings of the Fourth Annual Conference of the Cognitive Science
Society, Ann Arbor, MI, August 4-6, 1982.

Soloway, E., Ehrlich, K . , Bonar, J . , & Greenspan, J. What do
novices know about programming? In B . Shneiderman & A .
Badre (Eds.) , Directions in human-computer interactions.
Hillsdale, N J : A blex , 198 2 .

Soloway, E. , Lochhead, J . , & Clement, J . ' Does computer program-
ming enhance problem solving ability? Some positive evidence on
algebra word problems. In R . Seidel, R . Anderson, & 0 .
Hunter (Eds.) , Computer literacy: Issues and directions for
1985. New York: Academic Press, 1982. -

Soloway, E . , Rubin, E. , Woolf, B., Bonar, J . , & Johnson, W . L.
MENO-11: An AI-based programming tutor (Research Report N o .
258). hew Haven: Yale University, Department of Computer
Science, December 1982.

Soloway, E. , & Woolf, B . Problems, plans and programs. Proceed-
ings of the 11th ACM Technical Symposium on Computer Science
Education. 1980.

Spiro, R . J . , Bruce, B. C., & Brewer, W . F. (E d s .) . Theoretical
issues in reading comprehension. Hillsdale, N J : Erlbaum , 1980.

Stalnaker, A . W . The Watson-Glaser Critical Thinking Appraisal as a
predictor of programming performance. Proceedings of the 3rd
Annual C o m ~ u t e r Personnel Research G r o u ~ Conference, 1965, 3,

Statz, J. Problem solving and LOGO. Final repor t of Syracuse
University LOGO Project, Syracuse University, New York, 1973.

Stefik, M . Planning with constraints (MOLCEN : Part 1) . Artificial
Intelligence, 1981(a), - 16, 111-140.

Stefik, M. Planning and metaplanning (MOLGEN : Part 2) . Artificial
Intelligence, 1981 (b) , - 16, 141-170.

Stephens, L . J . , Wileman, S . , & Konvalina, 3. Group differences in
computer science apti tude. Association for Educational Data
Systems Journal , 1981, - 14, 84-95.

Sternberg, R . J. , & Riflcin, B. The development of analogical rea- -
soning processes. Journal of Experimental Child Psychology,
1979, 27, 195-232. -

Steyn, B. W. , & Hall, R. S. A description of the test battery for
computer programmers. South African Computer Bulletin, 1971,

Strizenee, M. The psychological requirements of a computer pro-
grammer. hlech. Aut. Adm., 1975, - 15, 492-493.

Swaine. M . Editorial: Women and computers. Infoworld, 1983, - 5 , 28.

Taylor, R . P . , & Fisher , 3 . Information sources practicing pro-
grammers use to acquire new concepts and the relation between
prior programmer education and concept impact. Computer
Personnel, 1979, - 8 . 2-4.

Testa. C . J . A new approach to programming aptitude testing.
Proceedings of the 11th Annual Conference of the Special
Interest Group for Computer Personnel Research, 1973 , - 11,
49-6 1.

Thayer, R. H . , Pyster, A. B . , & Wood, R . C. Major issues in
software engineering project management. IEEE Transactions on
Software Engineering, 1981, SE-7, 333-342.

Tillman, M . An examination of the predictive validity of several
potential predictors of the work proficiency of computer pro-
grammers. Computer Personnel, 1974, - 5, 3-10.

Tinker, B . Logo's limits: Or which language should we teach?
Hands On!, 1982, - 6, 3-6.

Tobias, S. Overcoming math anxiety. New York: Norton, 1978.

Tomlinson-Keasey , C. , & Keasey , C. The mediating role of cognitive
development in moral judgment. Child Development, 1974, - 45,
291-298.

Tuma, D. T., & Reif, F. (Eds.) . Problem Solving and Education:
Issues in Teaching and Research. Hillsdale, N J : Erlbaum, 1980.

Tversky, D. , & Kahneman, D. Science, 1980, - 211.

U.S. Department of Labor. Cross-validation of the General Aptitude
Test Battery and development of a weighted application blank for
computer technology trainees. ERIC Document Reproduction
Service, 1969, No. ED 068 546.

Van Der Burg, P. B. , & Van Der Herik, H . J . The testing of
programming skill. Informatie. 1980, - 2 2 , 790-794.

VanLehn, K . Bugs are not enough: Empirical studies of bugs,
impasses and repairs in procedural skills. Xerox Cognitive and
Instructional Sciences Series, March 198 1, CIS-11.

Veldman, D . J . Review of the Computer Programmer Aptitude
Battery. In 0. K . ~ u r o s (~ d .) , The seventh ~ ~ n t a l Measure-
ments Yearbook. IIighland Park, NJ: Gryphon Press , 1972.

Wallace. J . C. The selection and training of men and women pro-
grammers in a bank. Computers and Automation, April 1965,
2 3 - 2 5 .

Waker, E . , & hlarkharn, S. J. Computer programming aptitude tests.
Australian Psychologist. 1970. - 5 , 699-703.

Ward, W . C. , & Jenkins, H. M . The display of information and the
judgment of contingency. Canadian Journal of Psychology, 1965,
19, 231-241. -

Waterman, D . , & Newell, A . PAS-11: An interactive task-free ver-
sion of an automatic protocol analysis system. Proceedings of
the 3rd International Joint Conference on Artificial Intelligence,
1973.

Waters, R . C . A system for understanding mathematical FORTRAN
programs (A 1 Memo No. 368). Cambridge, MA: MIT Artificial
Intelligence Laboratory, 1976.

Waters, R . C. Automatic analysis of the logical s t ructure of pro-
grams (A1 Tech. Rep. No. 492). Cambridge, MA: MIT Artificial
Intelligence Laboratory, 1978.

Waters, R . C. A method for analyzing loop programs. IEEE Trans-
actions on Software Engineering, 1979, - SE-5, 237-247.

Waters, R . C. The programmer's apprentice: Knowledge based pro-
gram editing. IEEE Transactions on Software Engineering, 1982,
SE-8 (1) .

Watt, D . H . A comparison of the problem solving styles of two
students learning LOGO: A computer language for children.
Proceedings of the National Educational Computing Conference,
1979. 255-260.

Watt, D . H . Logo in the schools. Byte, 1982, 7, 116-134. -

Weinbesg, G . The psychology of computer programming. New York:
Van Nostrand, 1971.

Weir, S o LOGO as an information prosthetic for the handicapped
(Working Paper No. WP-9). Cambridge, h1A: AIIT, Division for
Studies and Research in Education, May 1981.

Weir, S . , & Watt, D . LOGO: A computer environment for learning-
disabled s tudents . The Computer Teacher, 198 1 , - 8, 11-17.

Weizenbaum, J . Computer power and human reason: From judgment
to calculation. San Francisco: Freeman, 1976.

Wells, G . W . Relationship between the processes involved in problem
solving and the process involved in computer programming.
Dissertation Abstracts International, 198 1, 4 2 . 168 pp . -

Werner, H. The concept of development from a comparative and
organismic point of view. In D . R. Harris (~ d .) , The concept
of development. Minneapolis: University of hlinnesota Press ,
1957.

Werner. H . Process and achievement. Harvard Educational Review.

Wileman, S. et al. Influencing success in beginning computer science
courses. Journal of Educational Research, 198 1 , 74, 223-226. -

Wilkmson, A . An analysis of the effect of instruction in electronic
computer programming logic on mathematical reasoning ability
(Doctoral dissertat ion, Lehigh University, 1973) . Dissertation
Abstracts ~n te rna t iona l , 1973, 33, 4204A. (University Microfilms -
No. 73-4290)

Willoughby , T. C . A r e programmers paranoid? Proceedings of the
10th Annual Computer Personnel Research Group Conference,
1972, 47-54.

Willoughby , T. C. Cur ren t perspectives in selection testing. Pro- -
ceedinas of the 9th Annual Conference of the Special Interest
Group for Computer Personnel Research, 1971, ' 9 , 54-74. -

Winkler, C. The Computer Careers Handbook. New York: ARCO.
To appear in 1983.

Wirth , N. On the composition of well-structured programs. Comput-
ing Surveys , 1974, 6 , 247-259. -

Wolfe, J. b l . An interim validation repor t on the Wolfe Programming
Aptitude Test (Experimental form S) . Computer Personnel,
1977, - 6 , 9-12.

Wolfe, J. h l . Perspectives on testing for programming aptitude.
Proceedings of the Annual Conference of the Association for
Computing Machinery, 1971, 268-277.

Wolfe. J . M . Testing for programming aptitude. Datamation, April
1969, 67-72.

Wol f , . I . Validation repor t . Computer Personnel, 1974, - 5 , 15- 16,

Wolfe, J . M . The Wolfe Programming Aptitude Test (School Edition).
Proceedings of the 9th Annual Conference of the Special Interest
Group for Computer Personnel Research, 197 1 , 7 , 180-187. -

Wright, P . , & Reid, F . Written information: Some alternatives to
prose for expressing the outcomes of complex contingencies.
Journal of Applied Psychology, 1973, - 57, 160-166.

Young, R . M. The machine inside the machine: Users' models of
pocket calculators. International Journal of Man-Machine
Studies, 1981, - 15, 51-85.

Youngs , E. A . Human er rors in programming. International Journal
of Man-Machine Studies, 1974, - 6 , 361-376.

Zabarenko, L . , Badger, G . F . , & Williams, E. B. T A B R A : A projec-
tive test for computer personnel research, preliminary report.
Proceedings of the 8th Annual Conference of the Special Interest
Group for Computer Personnel Research, 1970, - 8 , 92-107.

