N
N

N

HAL

open science

Personalisation Services for Self e-Learning Networks

Kevin Keenoy, Alexandra Poulovassilis, Vassilis Christophides, Philippe

Rigaux, George Papamarkos, Aimilia Magkanaraki, Miltos Stratakis, Nicolas

Spyratos, Peter Wood

» To cite this version:

Kevin Keenoy, Alexandra Poulovassilis, Vassilis Christophides, Philippe Rigaux, George Papamarkos,
et al.. Personalisation Services for Self e-Learning Networks. 2nd IST Workshop on Metadata Man-
agement in Grid and P2P Systems: Models, Services and Architectures (MMGPS’04), 2004, London,
United Kingdom. 14 p. hal-00190421

HAL Id: hal-00190421
https://telearn.hal.science/hal-00190421
Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://telearn.hal.science/hal-00190421
https://hal.archives-ouvertes.fr

Personalisation Services for Self e-Learning
Networks*

Kevin Keenoy!, Alexandra Poulovassilis', Vassilis Christophides?, Philippe
Rigaux®, George Papamarkos!, Aimilia Magkanaraki?, Miltos Stratakis?,
Nicolas Spyratos®, and Peter Wood*

1 School of Computer Science and Information Systems, Birkbeck, University of
London {kevin,ap,gpapa05,ptw}@dcs.bbk.ac.uk
2 Institute of Computer Science, Foundation for Research and Technology — Hellas
(FORTH-ICS) {christop,aimilia,mstratak}@ics.forth.gr
3 Laboratoire de Recherche en Informatique, Universite Paris-Sud
{rigaux,spyratos}@lri.fr

Abstract. This paper describes the personalisation services designed for
self e-learning networks in the SeLeNe project. A self e-learning network
consists of web-based learning objects that have been made available
to the network by its users, along with metadata descriptions of these
learning objects and of the network’s users. The proposed personalisation
facilities include: querying learning object descriptions to return results
tailored towards users’ individual goals and preferences; the ability to de-
fine views over the learning object metadata; facilities for defining new
composite learning objects; and facilities for subscribing to personalised
event and change notification services. We show the feasibility of au-
tomatically deriving descriptions for composite learning objects and of
realising the personalisation facilities using a service-based architecture,
employing a combination of existing and new Semantic Web technologies
including RDF/S, RQL, RVL, and ECA rules.

1 Introduction

Life-long learning and the knowledge economy have brought about the need
to support diverse communities of learners throughout their lifetimes. These
learners are geographically distributed and have heterogeneous educational back-
grounds and learning needs.

The SeLeNe (self e-learning networks) project is investigating the feasibil-
ity and design of a tool to support learning communities, matching learners’
needs with the educational resources potentially available on the Web. Sel.eNe
relies on semantic metadata describing educational material, and is developing
services for the discovery, sharing, and collaborative creation of learning objects
(LOs), facilitating a syndicated and personalised access to such resources. The

* Work supported by the SeLeNe project (Self e-Learning Networks), funded by EU
FP5 under action line V.1.9 CPA9 of the IST 2002 Work Programme (IST-2001-
39045). See http://www.dcs.bbk.ac.uk/selene.

relatedTo

Name hasPrerequisite partOf Cearning
| v : ; | Topics
. | Learning —— 7| Taxonomy
Role Contributor 4— Object withSubject
contributedB,

Learnin
Organization \ g

withGoal ™| Objectives

: Taxonomy
Title Language @(
N

Program Course Module Lesson Component

Fig. 1. Overview of the LO Descriptive Schemas in SeLeNe

LO metadata descriptions and the schemas that these conform to form SeLeNe’s
LO information space. Users need to be able to query the LO information space
in order to locate resources appropriate for their specific learning or teaching
needs, and also need to be able to define personalised views over this potentially
large number of heterogeneous resources.

A SeLeNe will exist to support a specific community of authors and learners.
Learning communities can occur in an educational institution, in the work-place,
in a geographical region, or on the Web. In the most general case, learners
organise themselves into communities according to their own criteria, such as
needs, interests, etc. We assume that the LOs described by a SeLeNe are those
electronic, web-based, sharable chunks of reusable learning content that have
been explicitly made available to the network by its users. LOs are made available
to other users of the SeLeNe via metadata describing these LOs that includes
the LO’s URI. We call the process of metadata submission registering a LO with
a SeLeNe.

Following the open tradition of the Web, LOs may be physically stored in
the web site of an organisation (educational or corporate) or in the web pages
of individual users. A SeLeNe will not manage the LOs themselves, but will
instead facilitate access to them by managing their metadata descriptions. In
order to enable effective search for LOs in a SeL.eNe, LO descriptions conform to
e-learning standards such as IEEE/LOM (Learning Object Metadata), and also
employ topic-specific taxonomies of scientific domains such as ACM/CCS (Com-
puting Classification System) or taxonomies of detailed learning objectives. LO
schemas and descriptions are represented in the Resource Description Frame-
work/Schema Language (RDF/S), which offers advanced modelling primitives
for the SeLeNe information space.

Figure 1 illustrates the main concepts and properties of the RDFS schemas
employed by SeLeNe to capture the semantics of existing e-learning standards.
The information content of a LO can be described using attributes such as title,

language, format, etc., or one or more terms from a topic-specific taxonomy like
ACM/CCS (for example, a LO about C++ could have a withSubject property
referencing the ACM/CCS classification D.3.2.11, which is the taxonomic path
representing Software. Programming_Languages. Language_Classifications. Object-
Oriented_Languages). The schema also allows description of the granularity of a
LO (e.g., Course, Lesson), its relationships with other LOs (e.g., hasPrerequisite,
partOf), and its relationships with other classes of resource (e.g., contributedBy).
A taxonomy such as Bloom’s Taxonomy of Educational Objectives, combined
with a topics taxonomy, can be used to describe the desired learning outcomes
of a LO. For example, a LO withGoal Application. Use (from Bloom’s taxonomy)
and withSubject D.3.2.11 (from ACM/CCS) is thereby described as having the
educational objective “to be able to use an Object-Oriented language”.

Presentation Services

&

Application services

.)) . Trails and q
User Registration LO Registration Adaptation Collaboration
Management Services
Event and Change Notification Service —— View and Query

Services

|

Update Service F—— Syndication Service

>

<&

Access Services

Communication

Locate Service Information Service|| Sign-On Service .
Service

Taxonomies LO User Profile
RDF/S { of LO Topics and Schemas and Schemas and
Objectives Descriptions Descriptions

Fig. 2. SeLeNe Service Architecture

The diversity and heterogeneity of the communities we envisage using Se-
LeNes means that no single architectural design will be suitable to support all of
them. We have thus defined a service-based architecture that can be deployed in
a centralised, mediation-based or peer-to-peer fashion, so the deployment option
best addressing the needs of any particular learning community can be cho-

sen. Each SeLeNe network will consist of a number of peers, each of which will
support some subset of the full set of SeL.eNe services. Figure 2 illustrates the
architecture of a SeLLeNe. The facilities that are the focus of this paper are pro-
vided by the User Registration, LO Registration, Trails and Adaptation, Event
and Change Notification, and View services. We refer the reader to [1] for further
discussion of the architecture and other services.

The users of a SeL.eNe will include instructors, learners and providers of LOs
— a single person could play each of these roles at different times. New users will
be able to join a SeLeNe by contacting any peer of the SelLeNe that provides
the User Registration service. When registering, users will supply information
about themselves and their educational objectives in using this SeLeNe. This
information is stored in their personal profile.

Authors of LOs will maintain control of the content they create and will be
free to use any tools they wish to create their LO content before registering it.
We call such LOs, created externally to SeLeNe, atomic LOs. Users will also be
able to register new composite LOs — LOs that have been created as assemblies
of LOs already registered with the SeL.eNe, for example a course LO which has
been created by assembling several module LOs. The SeLeNe will be able to
automatically derive the taxonomical description of a composite LO from the
taxonomical descriptions of its constituent LOs. The LO registration process and
automatic derivation of taxonomical descriptions are discussed in Sect. 2.

The SeLeNe will provide facilities for defining personalised wviews over the
LO information space, which we discuss in Sect. 3. The SeL.eNe will also provide
browsing and searching facilities over the LO information space, which return
results tailored towards users’ individual goals and preferences. This is discussed
in Sect. 4. A user may wish to be notified of changes made to a LLO’s description.
SeLeNe will provide automatic change detection and notification facilities by
comparing the new and old description of the LO. More generally, SeLeNe will
support personalised notification services depending on users’ profiles. Provision
of these facilities is discussed in Sect. 5.

2 Registration of LOs

Registration of a LO with a SeLeNe consists of providing a metadata description
including the URI of the LO. Here we focus on the tazonomical part of a LO’s
description.

A taxonomy (7', <) consists of a set of terms T together with a subsumption
relation < between terms. It can be represented as a graph, where the nodes are
the terms and there is an arrow from term s to term ¢ iff s subsumes ¢. Figure 3
shows a taxonomy, which is used by all examples in this section.

A tazonomical description is a set of terms from a taxonomy. For example, if
a LO contains the Quicksort algorithm written in Java then the terms QuickSort
and Java can be chosen by the LO’s provider to describe its content. We call the
set of terms {QuickSort,Java} the publisher tazonomical description (PTD) of
the LO.

Programming

ProgrammingStyle Languages Algorithms
ooL Sort

£ s T

G+ Java MergeSort QuickSort BubbleSort

Y

JSP JavaBeans

Fig. 3. A Taxonomy

An important feature of SeL.eNe’s registration process will be the ability to
automatically infer a taxonomical description for a composite LO o, from the
taxonomical descriptions of the LOs o1, ..., 0, it has been assembled from. This
description, which ‘summarises’ the taxonomical descriptions of the parts of o,
is called the implied tazonomical description (ITD) of o.

SeLeNe will automatically derive the taxonomical description D of a com-
posite LO from its PTD augmented by its ITD, removing any redundant terms
(i.e., terms that are subsumed by other terms). Consider LOs o1, ..., 04 with the
following taxonomical descriptions:

D(o01) = {QuickSort,Java}; D(02) = {BubbleSort};
D(o3) = {BubbleSort, C++}; D(og4) = {C++}.

Intuitively, the ITD of a composite LO o expresses what its parts have in
common — a composite LO o composed from o0y and o2 will have the ITD {Sort}.
Intuitively, both 01 and o2 concern sorting algorithms, and the fact that one of
them is written in Java is considered to be irrelevant as far as the composite LO is
concerned. Thus, the term Java is not reflected in 0’s ITD as it is not something
that both parts share. However, this does not mean a loss of information: if a
user searches the SeL.eNe for objects related to Java, o; will be in the answer set
and o will not.

The ITD of a composite LO retains what its parts have in common, while
subsuming the taxonomical descriptions of each part. Consider the composite LO
o' with parts 07 and o3 — in this case the common part would be {Sort,00L}.
This result can be interpreted as meaning each part of o’ concerns both sorting
and object-oriented languages.

Note that a LO may generate different I'TDs depending on what its ‘compan-
ion’ parts are. Consider the composite LO o with parts o; and o4. The ITD of
0" is {00L} — o0 is part of each of the composite LOs o, o' and 0", but each time
with a different ‘companion’ part. It is interesting to note that, depending on
the companion part, either the ‘sort-aspect’ of 07 or its ‘OOL-aspect’, or both,
appear in the I'TD.

One may wonder why the PTD of a composite LO is not sufficient and why we
need to augment it by its ITD. The answer is that the provider of a composite LO
o may not describe the parts of o0 in the same way as the providers of these parts

have done. For example, suppose that the two LOs, 01 and o3, have been created
by two different providers, with the PTDs as above. Assume now that a third
provider considers these LOs as examples of good programming style, and decides
to use them as parts of the new composite LO o'. The provider of o’ provides
the PTD {ProgrammingStyle}. Although this PTD might be accurate for the
provider’s own purposes, the LO o still can serve to teach, or learn, Java and
sorting algorithms. This information will certainly be of interest to SeL.eNe users
searching for LOs containing material on Java and sorting algorithms. Therefore,
the PTD {ProgrammingStyle} is augmented by the ITD {00L, Sort} to obtain
{ProgrammingStyle,00L,Sort} as the overall taxonomical description for o’.

The ITD of a composite LO o composed of parts o1, ... 0, with descriptions
D1,..., D, is computed by a simple algorithm, which takes the cartesian product
of Dy,...,D,, computes the least upper bound of each n-tuple and then ‘reduces’

the resulting set of terms by removing all but the minimal terms according to
the subsumption relation <. The overall taxonomical description of a LO o
is computed by another simple algorithm: if o is atomic then its taxonomical
description is just its PTD. Otherwise its taxonomical description is recursively
computed from its PTD and the taxonomical descriptions of its constituent
parts. Readers are referred to [2] for more details of both algorithms.

3 Declarative Queries and Views

Finding LOs in a SeLeNe will rely on RQL, a declarative query language offering
browsing and querying facilities over RDF /S descriptions. For instance, consider
the following RQL query, which retrieves all Course resources about OOL that
have been contributed By someone having a name attribute:

SELECT Y, X, W

FROM {Y;ns1:Course}nsl:contributedBy{X}.ns1:name{W}, ns2:00L{Y}

USING NAMESPACE nsl=&www.ieee.org/lom.rdfs#
ns2=&www.acm.org/class/1998ccs.rdfs#

An RQL FROM clause consists of path expressions, which provide a navigation
through schemas and description bases and bind the introduced variables. The
first RQL path expression
{Y;ns1:Course}nsl:contributedBy{X}.nsl:name{W}
will match instances of class Course and their associated contributed By proper-
ties, which link them to some instance of Contributor and its name value. For
each such match, we get a binding that maps Y to the Course resource, X to
the Contributor and W to the name value. The second path expression
ns2:00L{Y}
is evaluated for each binding of Y, and filters Course instances by checking
whether they are classified under the topic OOL. Note that in this query several
schemas are used, identified by the corresponding namespaces n1 and n2 defined
in the USING NAMESPACE clause.

As well as advanced querying facilities provided by an expressive RDF/S
query language such as RQL, personalisation of LO descriptions and schemas
is also needed. For instance, a learner might want LOs presented according to
his/her educational level and current course of study. The RVL language [3]
provides this ability by offering techniques for the reconciliation and integration
of heterogeneous metadata describing LOs, and for the definition of personalised
views over a SeL.eNe information space.

To illustrate the functionality of RVL we will consider a simple virtual schema
(view) for instructors, which represents only OOL course material and its au-
thors. This schema can be specified by a set of RVL statements whose output is
an RDF/S virtual schema and resource descriptions. In RDF/S the uniqueness
of (meta) schema labels and the ability to describe resources using labels from
several schemas is ensured by the XML namespace facility. In our example this
RVL statement defines a unique namespace:

CREATE NAMESPACE myview=&http://www.selene.org/LO.rdf#

The following RVL statement ‘creates’ the virtual classes Author and 00LCourse
and the virtual properties creates and name:

VIEW rdfs:Class("00LCourse"),rdfs:Class("Author"),
rdf :Property("creates", Author, 00LCourse),
rdf :Property("name", Author, xsd:string);

where rdfs:Class and rdf:Property are two core metaclasses provided in the de-
fault RDF /S namespaces. As in RQL, the USING NAMESPACE clause declares the
namespaces used in view statements. The following statement ‘populates’ the
virtual classes and properties defined in the view with appropriate instances
copied from the source description base:

VIEW 00LCourse(Y) ,Author(X),creates(X,Y) ,name(X,W)
FROM {Y;ns1:Coursel}nsl:contributedBy{X;ns1:Author}.
nsl:name{W}, ns2:00L{Y}
USING NAMESPACE nsl=&www.ieee.org/lom.rdfs#
ns2=&www.acm.org/class/1998ccs.rdfs#

This statement works much like a query. However, although the input of both
is an RDF/S graph, RVL produces virtual schemas and resource descriptions
instead of simple variable bindings represented in some (nested) tabular form.
This functionality is ensured by the VIEW clause, where appropriate popula-
tion functions are used, taking as parameters the variable bindings produced by
the FROM clause (and optionally a WHERE clause). For instance, the virtual class
00LCourse is populated with instances (bound to variable Y) of the base class
Course, also classified under the topic OOL. The virtual class Author is popu-
lated with instances (bound to variable X) of the base class Contributor, which
are the range values of the property contributed By applied to Course resources.
In other words, Author is populated with all the contributors who have created
an OOL course. Virtual properties are populated with pairs of resources (e.g.,

creates is populated with authors having created OOL courses) or resource-
value pairs (e.g., name is populated with the names of OOL course authors).

One of the most significant features of RVL is its ability to create virtual
schemas by simply populating the two core RDF /S metaclasses Class (e.g., with
schema classes Author and 00LCourse) and Property (e.g., with schema prop-
erties creates and name). A SeLeNe user can then easily formulate queries on
the view, such as the following RQL query retrieving the OOL courses created
by the author named “Christophides”:

SELECT Y

FROM {X}myview:creates{Y}, {X}myview:name{Z}

WHERE Z = "Christophides"

USING NAMESPACE myview=&http://www.selene.org/LO.rdf#

4 Trails and Query Adaptation

Personalisation of query results will rely on the personal profile, which is an RDF
description of the user conforming to a number of RDFS schemas, created when
a user registers with a SeLeNe. Figure 4 shows a simplified version of SeLeNe’s
personal profile schema.

To avoid proposing yet another schema for demographic and other informa-
tion that is already adequately catered for by existing profile schemes, we include
elements from the IEEE LTSC’s Personal and Private Information (PAPI) Stan-
dard and the IMS Learner Information Package (LIP), extending the data model
with our own elements where existing specifications fail to be expressive enough.

The shortcomings of existing learner profile specifications are generally in the
recording of competencies, learning goals and preferred learning styles, and we
have developed RDF schemas that allow the expression of all three of these. For
competencies and learning goals, we adopt the same topic and learning objectives
taxonomies as those used for learning object descriptions, (i.e. the taxonomies
shown in Fig. 1). Other customised sections of the SeLeNe profile are related to
the active functionality of SeLeNe — a history of user activity (accesses to LOs)
is included, which will allow the profile to adapt to take account of the user’s
behaviour over time, automatically updating the information therein by means
of a generic set of Event-Condition-Action rules (see Sect. 5) associated with all
SeLeNe profiles. The learner also has a messages property with a Notifications
class as its target. This will store personal notifications (of new users and new
or updated LOs) for the user.

Although the underlying query mechanism in SeLeNe is RQL, users will gen-
erally search for LOs using simple keyword-based queries (possibly augmented
with attribute information). Search results will be personalised by filtering and
ranking the LOs returned according to the information contained in the user’s
personal profile.

Filtering will take place before a query is evaluated: all keyword-based queries
submitted to the SeL.eNe will be routed through the Trails and Adaptation ser-
vice, which will construct corresponding personalised queries. The user’s original

PAPI: IMS-LIP:QCL IMS-LIP: SeleNe:
Personal Info Qualifications Interests History

. IMS-RCD:
SelLeNe: messages LEARNER colmpsél{és'cy Competency
Notifications Definition

Catalog

goals

IMS-LIP:
Goals

goal
description
style preference LO
Providers
SelLeNe:
Learning Style -
Descriptive
Verb

Fig. 4. SeLeNe’s Personal Profile Schema

preferences

Description

Updated
LOs
PAPI & SeLeNe :
Preferences

learning

SeleNe:
Learning
Objective

Accessibility

goal topic

Learning Topic
(Taxonomy
element)

query will then be re-formulated and/or annotated to reflect elements of their
personal profile. For example, if the profile records that the user only speaks
English, all searches they enter can be augmented with the annotation lang:en,
ensuring that all returned LOs will be in English. The augmented keyword query
will then be translated into an appropriate RQL query and executed by the
Query service. The reader is referred to [4] for the full SeLeNe profile schema
and for discussion of the translation of keyword-based queries into structured
queries in SeLeNe.

The next step is to rank the set of LO descriptions in order of relevance
to the user. Relevance will be judged against the combination of the personal
profile and the original query. The information contained in the SeL.eNe personal
profile allows the following factors to be taken into consideration when judging
relevance: relevance of the LO to the query; how well the LO caters for the user’s
accessibility requirements; whether the user has the prerequisite knowledge and
experience to be able to tackle the LO; how well the learning objectives of the
LO match the user’s learning goals; if the user’s learning styles are those catered
for by the LO; if the user is likely to prefer it for other reasons (e.g., it is by
a preferred author); and the user’s most recent activity (as contained in the
history section of their profile).

The different sections of the personal profile can be matched in a focussed way
against relevant sections of the LO descriptions. For one LO to be more relevant
to the user than another it must meet more of the user’s different preferences, or
match preferences to a greater degree. For example, if the user has OOL as one
of their goal_topic’s then a LO including OOL in its taxonomical description will

score well on relevance to the user. If the LO description additionally includes
the information that it caters for one of the user’s learning styles then it will
be considered a better match again. The best algorithm and weightings to use
for this ranking needs to be determined empirically, and may well need to be
adaptive.

Once a personalised ranking of the remaining LOs has been generated the
search results will then be returned to the user. SeLeNe will give the user the
option of having their query results presented not as a simple list of individual
LOs, but rather as a list of trails of LOs, where a trail is a suggested sequence
of interaction with the LOs. We have defined an RDF representation of trails
whereby they are defined as a sub-class of the RDF Sequence (a sequence of LOs)
with two associated properties, name and annotation, that provide additional
information about the pedagogic use of the trail.

These trails will be automatically generated. Algorithms for the automatic
generation of trails in hypertext systems already exist [5], but the links between
LOs are not explicit hyperlinks — they will be derived from information contained
in the LO descriptions about the semantic relationships between LOs. For ex-
ample, by inspecting the LOM:Relation fields in a collection of LO descriptions
(in this case a set of results), trails of LOs with early LOs in the trail being
prerequisites for later LOs can easily be derived and annotated with the term
“prerequisites”.

5 Event and Change Notification

Many applications on the Web need to be reactive i.e., to be able to detect the
occurrence of specific events or changes in information content, and to respond
by automatically executing the appropriate application logic. Event-condition-
action (ECA) rules are one way to implement this kind of functionality. Also
known as active rules or triggers, ECA rules are supported in some form by all
the major DBMS vendors. An ECA rule has the general syntax
on event if condition do actions.

The event part specifies when the rule is triggered. The condition part is a query
that determines if the database is in a particular state, in which case the rule
fires. The action part states the actions to be performed if the rule fires. These
actions may in turn cause further database updates to occur, which may in turn
cause more ECA rules to fire.

There are several advantages in using ECA rules to implement this kind
of functionality: management of an application’s reactive functionality within a
single rule base; analysis and optimisation techniques for ECA rules that cannot
be applied if the same functionality is expressed directly in application code; and
provision of a generic mechanism that can abstract a wide variety of reactive
behaviours.

Motivated by these advantages of ECA rules, we provide SeLeNe’s reac-
tive functionality by means of ECA rules over RDF/S metadata. This reactive
functionality includes features such as automatic propagation of changes in the

description of one resource to the descriptions of other, related resources (e.g.,
propagation of changes in the taxonomical description of a LO to the taxonom-
ical description of any composite LOs depending on it, or updating a user’s
personal profile based on changes in their history of accesses to LOs), automatic
notification to users of the registration of new LOs of interest to them and of
changes in the description of resources of interest to them.

SeLeNe peers that support the Event and Change Notification service will
have installed an ECA Engine consisting of three main components: an Fvent
Detector, Condition Evaluator and Action Scheduler. The Event Detector deter-
mines which rules have been triggered by the most recent update to the local
description base, by invoking the Query service to evaluate the event queries
of rules that may have been triggered. The Condition Evaluator then calls the
Query service to determine which of the triggered rules should fire. The Action
Scheduler generates from the action parts of these rules a list of updates, which
are then passed to the Update service for execution.

In our RDF ECA rule language, the event part of a rule is an expression of
one of the following three forms:

(i) [tet-exzpressions IN] (INSERT | DELETE) e

This detects insertions or deletions of resources described by the expression e,
which is a path expression evaluating to a set of nodes, optionally followed by a
clause AS INSTANCE OF class. let-expressionsis an optional set of local variable
definitions of the form let wariable := p, where p is a path expression. The rule
is triggered if the set of nodes returned by e includes any new node (in the case
of an insertion) or any deleted node (in the case of a deletion) that is an instance
of the class, if specified. A system-defined variable $delta is available for use
within the condition and actions parts of the rule, and its set of instantiations
is the set of new or deleted nodes that have triggered the rule.

(ii) [let-expressions IN] (INSERT | DELETE) triple

This detects insertions or deletions of arcs specified by triple, which has the
form (source, arc_name, target). The rule is triggered if an arc labelled arc_name
from the source node to the target node is inserted/deleted. The wildcard ‘_° is
allowed in the place of any of a triple’s components. The variable $delta has as
its set of instantiations the values of source in the arc(s) which have triggered
the rule.

(iii) [let-expressions IN] UPDATE upd_triple

This detects updates of arcs, where upd_triple has the form (source, arc_name, old
— new). Here, old is the target node of arc arc_name from the source node before
the update, and new is its target node after the update. Again, the wildcard ¢_’
is allowed in the place of any of these components. The rule is triggered if an arc
labelled arc_name from source changes its target from old to new. The variable
$delta has as its set of instantiations the values of source in the triples which
have triggered the rule.

The condition part of a rule is a query consisting of conjunctions, disjunctions
and negations of path expressions. The actions part of a rule is a sequence of one
or more actions. Actions can INSERT or DELETE a resource — specified by its URI

—and INSERT, DELETE or UPDATE an arc. The actions language has the following
form for each one of these cases:

[let-exzpressions IN] (INSERT | DELETE) e
for inserting or deleting a resource;

[let-ezpressions IN] (INSERT | DELETE) triple (', triple)*
for inserting or deleting the specified arcs(s); and

[let-ezpressions IN] UPDATE upd_triple (°,” upd_triple)*
for updating arcs by changing their target node. Wildcards are allowed in place
of some of the components of triples, with the obvious semantics. We give two
examples of RDF ECA rules below, which refer to the LO schema illustrated in
Fig. 1 and the personal profile schema illustrated in Fig. 4.

Firstly, if a LO is inserted whose subject (OOL, say) is the same as one of
user 128’s goal topics, then the following rule adds a new arc linking the newly
inserted LO into the new_LOs collection in user 128’s personal messages:

ON INSERT resource() AS INSTANCE OF LearningObject
IF $delta/target (rdf:type)
= resource(http://www.dcs.bbk.ac.uk/users/128)
/target (ims-1lip:goal)
/target (ims-lip:goaldescription)
/target (selene:goaltopic)
DO LET $new_los :=
resource (http://www.dcs.bbk.ac.uk/users/128)
/target (selene:messages)/target (selene:new_L0Os)
IN INSERT ($new_los,seqt++,$delta);;

Here, the event part checks if a new resource belonging to the Learning
Object class has been inserted. The condition part checks if the inserted LO has
a subject which is the same as one of user 128’s goal topics. The LET clause in the
rule’s action defines the variable $new_los to be user 128’s new LOs collection.
Finally, the INSERT clause inserts a new arc from $new_los to the newly inserted
LO (the syntax seq++ indicates an increment in the collection’s element count).

As a second example, if any property of a LO whose subject is the same as
one of user 128’s goal topics is updated, then the following rule adds a new arc
linking user 128’s updated_LOs collection to the modified LO:

ON UPDATE (resource() AS INSTANCE OF LearningObject,_,_->_)
IF $delta/target(rdf:type)
= resource(http://www.dcs.bbk.ac.uk/users/128)
/target (ims-1lip:goal)
/target (ims-1lip:goaldescription)
/target (selene:goaltopic)
DO LET $updated_los :=
resource (http://www.dcs.bbk.ac.uk/users/128)
/target (selene:messages)
/target (selene:updated_LOs)
IN INSERT ($updated_los,seq++,$delta);;

The RDF ECA language we have described here has evolved from that pre-
sented in [6] and now matches more closely the update API provided by FORTH’s
RDFSuite [7]. We are currently implementing our language over RDFSuite’s
query/update API.

6 Comparison with Related Systems

In this section we consider four related systems: UNIVERSAL, Edutella, Elena,
and SWAP*, and highlight the areas where SeLeNe extends or complements
their functionality.

UNIVERSAL is a business-to-business brokerage platform aiming to support
higher education institutions in the exchange of learning resources. It allows in-
stitutions to advertise their learning resources, and provides an RDF /S-based
catalog which can be browsed to find and access learning resources. Edutella
provides a peer-to-peer infrastructure for connecting peers supporting differ-
ent types of repositories, query languages, and metadata schemas. Each peer
implements a number of basic services such as querying, replication and map-
ping between different schemas. Elena provides a mediation infrastructure for
learning services. It includes dynamic learner profiling using ‘personal learning
assistants’. SWAP does not address e-learning specifically, but is investigating
the integration of semantic web and peer-to-peer technologies in order to support
knowledge sharing. It is developing technology both for allowing users individual
views of knowledge and for effective sharing of knowledge.

The novel aspects of SeL.eNe compared with these systems include:

— collaborative creation and semi-automatic description of composite LOs,
which do not seem to be addressed specifically by any other system:;

— declarative views over combined RDFS/RDF descriptions (i.e. over both the
LO descriptions and their schemas). SWAP provides users with the ability
to define views over RDF descriptions only, while Edutella and Elena do not
ensure the compositionality of queries with views and mappings;

— personalised event and change notification services. Event notification ser-
vices are used in Edutella to assist in rule-based clustering of peers, where
the events are caused by peers connecting to, or disconnecting from, a super-
peer; SeLeNe’s events, on the other hand, operate at the level of LO or user
descriptions;

— automatic generation of trails of LOs from their descriptions.

7 Concluding Remarks

This paper has described several novel techniques for providing the personalisa-
tion services of self e-learning networks.

4 www.ist-universal.org , edutella.jxta.org, www.elena-project.org and
swap.semanticweb.org respectively.

A number of open issues remain. Firstly, there is as yet no standard query
or update language for RDF, although we believe that the RQL, RVL and RDF
ECA languages we have described here provide sound and expressive foundations
for the development of such standards, and also for development of optimisation
techniques for query, update and view languages over RDF.

Secondly, whatever standards eventually emerge for such RDF languages, if
ECA rules are to be supported on RDF repositories then the event sub-language
for RDF ECA rules needs to be designed so that it matches up with the actions
sub-language. In this paper we have shown how this was done for our particular
RDF ECA language, but in general the ability to analyse and optimise ECA rules
needs to be balanced against their complexity and expressiveness, and this issue
also needs to be borne in mind in future developments in ECA rule languages for
RDF. Another important open area is combining ECA rules with transactions
and consistency maintenance in RDF repositories.

Thirdly, algorithms for personalised ranking of query results need to be em-
pirically evaluated. This evaluation will need to include a study of the compar-
ative usefulness, for personalisation purposes, of the different cognitive models
included in our taxonomy of learning and cognitive styles.

Finally, in implementing the system the design of user interfaces enabling
easy and intuitive access to Sel.eNe’s advanced personalisation services will be
crucial — users will need to be shielded from the complexities of RDF and the
RQL, RVL and ECA languages, and also from the complex taxonomies of topics,
competencies and goals in use by the system.

References

1. Samaras, G., Karenos, K., Christodoulou, E.: A Grid service framework for Self
e-Learning Networks. See http://www.dcs.bbk.ac.uk/selene/reports/Del3.pdf
(2003)

2. Rigaux, P., Spyratos, N.: Generation and syndication of learning object metadata.
See http://www.dcs.bbk.ac.uk/selene/reports/Deld.1-2.2.pdf (2004)

3. Magkanaraki, A., Tannen, V., Christophides, V., Plexousakis, D.: Viewing the se-
mantic web through RVL lenses. In: Proceedings of the Second International Se-
mantic Web Conference (ISWC’03), Sanibel Island, Florida, USA (2003)

4. Keenoy, K., Levene, M., Peterson, D.: Personalisation and trails in Self e-Learning
Networks. See http://www.dcs.bbk.ac.uk/selene/reports/Del4d.2-1.4.pdf
(2003)

5. Wheeldon, R., Levene, M.: The Best Trail algorithm for assisted navigation of
web sites. In: Proceedings of the 1st Latin American Web Congress (LA-WEB’03),
Santiago, Chile (2003)

6. Papamarkos, G., Poulovassilis, A., Wood, P.: Event-condition-action rule languages
for the semantic web. In: Proceedings of the Workshop on Semantic Web and
Databases, at VLDB’03, Berlin. (2003)

7. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The
ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases. In: Pro-
ceedings of the 2nd International Workshop on the Semantic Web (SemWeb 2001).
(2001)

