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Voorwoord 

 

Toen Mozart een jaar of zeventien oud was, componeerde hij zijn vijfentwin-
tigste symfonie. De musicoloog Hans Keller heeft hierover geschreven: 
“…For the first time, darkly aware of his genius, Mozart dares. And for this 
very reason, he partly fails where on some previous occasions his undaring 
talent had all too easily, and not very significantly, succeeded. Only bad 
composers write chronically good music. An uninterrupted flow of immacu-
lacy is the prerogative of mediocrity: if you don’t say anything, there is not 
much risk of spoiling anything.” Het afronden van een proefschrift geeft de 
auteur onvermijdelijk het gevoel gefaald te hebben: de theorie rammelt aan 
alle kanten, de experimenten hadden veel beter kunnen worden uitgevoerd, 
en de getrokken conclusies lijken kant noch wal te raken. Ook bij mij is dat 
een beetje het geval; maar als ik gefaald heb, dan hoop ik dat het is op Mo-
zart’s manier: dan valt het achteraf allemaal wel mee. Het is mijn stijl om de 
dingen vanuit een dergelijk negatief perspectief te bekijken, iets wat hier en 
daar in mijn teksten nog wel eens naar voren komt. Als de lezer het maar 
met een korreltje zout neemt dan komt het wel goed. 

De totstandkoming van een proefschrift is geen eenmanstaak: er zit een heel 
team van knappe koppen achter. Een aantal van hen wil ik hier bedanken. 

Allereerst wil ik mijn dagelijks begeleider en promotor Ton de Jong van har-
te danken voor zijn steun gedurende de afgelopen jaren. Ik weet dat hij het 
niet altijd even gemakkelijk heeft gehad met mij, en ik bewonder het grote 
mentale uithoudingsvermogen dat hij aan de dag heeft gelegd. Niet iedereen 
kan zoals hij ambitie en systematiek combineren met humor en een gezonde 
dosis relativeringsvermogen, iets wat ik als een voorbeeld voor mijzelf zal 
blijven zien. Ook mijn van eerste tot tweede ‘gedegradeerde’ promotor Jules 
Pieters wil ik bedanken, voor de steun tijdens de laatste fase in de afronding 
van dit proefschrift, en voor de gastvrijheid tijdens de bijna-traditionele sin-
terklaasviering. 

Veel dank ben ik verschuldigd aan mijn collega’s in het Inductief Leren-
project. Allereerst de OiO’s: Frans Prins, Hedderik van Rijn, en Pascal Wil-
helm. Het contact tijdens de ‘OiO-meetings’ en de informele omgang daar-
omheen was zeer vruchtbaar, en ik ben blij dat we veel voor elkaar hebben 
kunnen betekenen. Ook van de overige projectleden, Jos Beishuizen, Bert 
Bredeweg, Wouter van Joolingen, Maarten van Someren, Marcel Veenman, 
Jan Wielemaker, en Bob Wielinga heb ik tijdens mijn onderzoek veel steun 
ontvangen, zowel tijdens projectvergaderingen als tussendoor.  



 

 

De collega’s die gedurende de afgelopen jaren altijd nabij zijn geweest ver-
dienen veel dank. Om te beginnen met mijn kamergenoten: Ilias heeft mij als 
‘cognitivistic pig’ getolereerd, en mij op het spoor gezet van zeer interessan-
te ontwikkelingen die zich in de marge van de psychologie voltrekken. Re-
nate was daarna een heel wat rustiger kamergenoot, maar we hebben ons 
uitstekend vermaakt. Bregje heeft tenslotte de afronding van het werk kra-
nig ondergaan, en onze gemeenschappelijke voorkeur voor snoepgoed, 
chips en muziek zorgde voor een aangename sfeer. 

Wat betreft de andere collega’s wil ik allen danken die aan de ProIST-
bijeenkomsten hebben deelgenomen: het informele karakter ervan zorgde 
samen met de diepe discussies voor een altijd leerzame kijk op andermans 
(en zo nu en dan eigen) werk. In het bijzonder wil ik ook Koen bedanken 
voor de mentale stimulatie in de vorm van psychologie-artikelen en Colom-
biaanse koffie. 

De experimenten die in dit proefschrift worden beschreven zouden niet 
kunnen zijn uitgevoerd zonder de medewerking van verschillende scholen. 
Ik dank daarom de leraren en leerlingen van scholengemeenschap De Grun-
del te Hengelo, het Marianum College te Groenlo, ROC Zadkine te Rotter-
dam, en het ROC afdeling techniek te Hengelo en Enschede. In het bijzonder 
wil ik noemen de heren Altena, Jetses, en Vroling voor hun steun vooraf-
gaand en tijdens het eerste experiment, de heer van Woerkom voor hulp bij 
de organisatie van het tweede experiment, en de heren Buitink en Nijmijer 
voor ondersteuning bij het derde experiment. 

De citaten die her en der het werk enigszins opleuken zijn voor een belang-
rijk deel afkomstig uit de onvolprezen ‘quotefile’ van Hans van Dok. Hier-
voor mijn dank. 

Meer dan vier jaar heb ik op de campus gewoond in huize .soixante-neuf 
(IP-bereik 130.89.226.209 tot en met 130.89.226.226), en ik dank alle bewoners 
en ex-bewoners die mij gedurende die periode hebben aangespoord om een 
echte baan te zoeken, hebben uitgelachen om mijn salaris, en toch indirect 
enorm gesteund hebben. Grolsch, koken en campusnet hebben voor leerza-
me ervaringen gezorgd. 

Tenslotte dank ik mijn ouders voor hun steun en het vertrouwen, en Petra 
voor haar aanwezigheid en morele steun tijdens de laatste jaren. 

 

Casper Hulshof Enschede, Mei 2001 

 



 

1  
Preliminaries: putting scientific discovery 

learning in context 

“I am very odd. That is to say, I am methodical, orderly, and logical—
and I do not like distorting facts to support a theory—that, I find—is 
unusual!” 

Agatha Christie, One, Two, Buckle my Shoe (1940) 

 

1.1 Introduction 

In colloquial language, the term discovery denotes an event that contains an 
element of surprise: something that you did not expect to happen, actually 
does. In this sense, discovery possesses on the surface the characteristics of a 
ballistic movement: it entails a qualitative change of knowledge after which 
it can be difficult to return to the previous state. Discoveries are not unique 
events: they are made at all times at many levels. The highest level at which 
discoveries are made is in science. Scientific discoveries mark those points in 
research that involve a breakthrough in knowledge about a particular sub-
ject. Most of these breakthroughs are relatively minor, but every once in a 
while a major discovery is made. What is important to note, is that the dif-
ferent levels at which discoveries are made – from everyday life to the scien-
tific endeavor – share similar characteristics: a novel, usually unexpected 
result, and a qualitative change in knowledge (which, in science, can result 
in a so-called ‘paradigm shift’). However, scientific discovery also has an air 
of mysticism surrounding it. The scientific literature is awash with anecdotes 
about the mysterious circumstances that have accompanied many important 
scientific breakthroughs throughout history (e.g., Archimedes’ bath, New-
ton’s apple, Kekule’s dream; also see Gigerenzer, 1991).1 Modern science has 
tried to undo scientific discovery of its mystical wrapping, and to get an un-
derstanding the circumstances under which discoveries take place. This no-
nonsense approach has been very fruitful. Knowledge has been gained 
about the logical steps that are necessary to perform ‘good’ science (e.g., De 

                                                           

1 For an interesting comparison to the argument that is put forward here, consider 
the statement from James Joyce’s Ulysses (1922): ‘A man of genius makes no mistakes. 
His errors are volitional and are the portals of discovery.’ 
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Groot’s (1969) empirical cycle). Also, processes that foster the development of 
new knowledge (so-called inductive processes) have been studied and de-
scribed in detail (e.g., Holland, Holyoak, Nisbett, & Thagard, 1986). Viewing 
discovery from a scientific perspective not only has had a profound impact 
on understanding of the scientific enterprise itself, but also on ideas about 
educational effectiveness. The assumption is that the characteristic of quali-
tative knowledge change – that is the hallmark of discovery – can be used as 
an educational tool in itself. The educational field has recently experienced 
many changes, which have fostered interest in the use of new instructional 
methods, such as learning by discovery. Of course, when discovery is em-
ployed in the classroom, a different approach to teaching and learning has to 
be taken than when, for example, a lecture is delivered. Fortunately, the 
technology of today allows for the realization of completely new styles of 
pedagogy. In education, there is now large and broad support for the crea-
tion and use in education of computer based learning environments (e.g., 
Hawkridge, 1990). The type of computer based learning environment that is 
typically associated with learning for discovery is computer simulation (De 
Jong & Van Joolingen, 1998). There is a large body of research on the effec-
tiveness of using simulations and the particular learning processes that they 
elicit. The present thesis is concerned with the study of processes that occur 
during discovery learning with a computer simulation.2 More specifically, 
the influence of different types of prior knowledge on these processes is ex-
amined. The research was carried out in the larger context of the ‘Inductive 
Learning’ project. 

Context of this research project. The empirical studies that were carried out for 
this thesis were performed in the context of the project ‘Inductive Learning’, 
which was funded by the Dutch Organization for Scientific Research 
(NWO). The inductive learning project aimed at ‘clarifying the major con-
straints of inductive knowledge development’ (as stated in the research pro-
posal). The constraints of inductive knowledge that were specifically studied 
in the project were prior knowledge, discovery skills, and meta-cognitive 
skills. These were separately explored in three research projects. The goal of 
the fourth project is to build a computational model of inductive learning, in 
which findings from the other three projects are incorporated. The studies 

                                                           

2 In this thesis, the term ‘discovery learning’ is used consistently to refer to the educa-
tional activity of investigating, hypothesizing, and evaluating. Some researchers (e.g., 
Kuhn, Black, Keselman, & Kaplan, 2000) prefer to use the term inquiry learning in-
stead, but there appears to exist no defining characteristic that separates between 
discovery and inquiry. 
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that are reported here are concerned with the prior knowledge constraint, 
although a measure for discovery skills was later included in the study (see 
Chapters 6 and 7).3 

Structure of this chapter. In the following sections, discovery as it is used in 
education is described from both a practical and a theoretical point of view. 
The practical perspective (Section 1.2.1) concerns the influence of technology 
on classroom practice. The theoretical perspective (Section 1.2.2) concerns 
the evolution of the shift in perspective that has taken place in history from a 
learner-as-recipient to a learner-as-active-participant point of view. The dis-
cussion focuses (in Section 1.3) on the use of computer simulations to elicit 
scientific discovery learning processes. Learning processes that are involved 
in scientific discovery learning, and types of studies that have been carried 
out to study these processes are discussed. This leads us (in Section 1.4) to a 
general research question with respect to the influence of prior knowledge 
on these processes. Finally, in Section 1.5, a chapter-by-chapter overview of 
this dissertation is given. 

 

1.2 Historical changes in education 

Two external forces, practical and theoretical, have had a large influence on 
educational practice: in a practical sense the increasing use of technological 
tools, and in a theoretical sense the development of a variety of ideas that 
can be grouped under the heading of constructivism. In this section, these 
factors are separately discussed. 

 

1.2.1 Technology in the classroom 

“For the foreseeable future, computing will play an increasingly important 
role in human learning”. With this prediction, an overview of the role of the 

                                                           

3 The research project on discovery skills was carried out by Pascal Wilhelm and Jos 
Beishuizen, the project on meta-cognitive skills by Frans Prins and Marcel Veenman 
(both these projects at the university of Leiden), and the modeling project by Hed-
derik van Rijn, Maarten van Someren, and Bob Wielinga (university of Amsterdam). 
Other members of the research programme were Wouter van Joolingen, Bert Bre-
deweg, and Jan Wielemaker. 
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computer in education by Taylor (1980) begins. Twenty years later, the 
large-scale use of computers in everyday school life is finally being realized. 
This is the result of the ever-developing state of electronics, which, para-
doxically, offers improving technology at a decreasing cost, and of the 
growth in popularity of hitherto unexplored areas in educational territory, 
such as (possibly) the internet. Computers have gained a strong foothold in 
the educational field, and their use has grown exponentially in recent years.4 
Amarel stated in 1983 that there are at least two ways in which computers 
can contribute to education: as learning aids in classroom instruction, and as 
tools in research on human cognition (Amarel, 1983). Most subsequent re-
search has centered on the effectiveness of using computers in education 
versus using other educational methods. Early texts such as Taylor (1980) 
had shown unreserved optimism about the advantageous effects of using 
computers in education. However, whether the computer is used as a tutor, 
tool, or tutee (Taylor, 1980), the lack of beneficiary effects of computer use, 
as measured by controlled studies, has led to some controversy in the educa-
tional field (see, for example, the debate between Kozma, 1994, and Clark, 
1994, about the influence of media on learning). The justification for com-
puter use in education is not always given, which may lead to what Salomon 
and Perkins (1996) refer to as ‘The Mount Everest rationale”.5 It has been 
difficult to show unequivocal positive educational effects of using com-
puters in education. An early meta-analysis of 42 controlled studies 
(Bangert-Drowns, Kulik, & Kulik, 1985), showed only small positive effects 
of computer-based secondary school teaching. Some types of computer-
based teaching were more effective than others, with computer-assisted in-
struction being more effective than computer-enriched instruction. The lack 
of substantial positive findings of the use of computers in education may be 
due to a difference of opinion about the role the computer should play in 
educational settings. 

Jonassen and Reeves (1996) argue that the use of educational software can 
turn the computer into a cognitive tool. Cognitive tools refer to technologies 
that enhance the cognitive powers of human beings during thinking, prob-
lem solving, and learning. The use of cognitive tools has a large impact on 

                                                           

4 The statement that computers are nowadays ubiquitous has become trivial to such 
an extent, that we would estimate that about one in five relevant articles begins with 
a version of it. 

5 This refers to the reply given by the famous mountain climber George Mallory 
(1866-1924) to the question why he would want to climb the largest mountain in the 
world: “Because it is there”. (New York Times, March 18, 1923) 
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learning. As Säljo (1996) puts it, “[They] extend, or rather transform, the ca-
pacities for physical and intellectual action that were bestowed upon human 
beings by nature, as it were”. It is argued by Jonassen and Reeves that skep-
ticism about the effectiveness of different types of media as cognitive tools is 
mainly elicited by critics who use a narrow definition of the term media: a 
conveyor of information from teacher to student. They claim that media 
should not be used to convey information, but instead to facilitate ‘knowl-
edge construction’ (also see Jonassen, Campbell, & Davidson, 1994). The ar-
gument they give for this claim is that during learning, more than anything 
else, students actively construct knowledge. The active construction of 
knowledge is defined by Duffy and Cunningham (1997) as one of the cor-
nerstones of constructivism. Other critics of the ‘narrow’ view on the com-
puter as a cognitive tool stress the way computer tools enable augmentation 
of learning, which is not expressed as a set of mental representational struc-
tures, but as a disposition to engage in appropriate scientific conversation 
(Pea, 1992; Tikhomirov, 1974). Papert (1987) has even questioned the whole 
scientific methodology that surrounds studies on the effectiveness of com-
puters in education, going as far as to state: 

“It is a self-defeating parody of scientism to suppose that one could 
keep everything else, including the culture, constant while adding a 
serious computer presence to a learning environment . . . The treat-
ment methodology leads to a danger that all experiments with com-
puters and learning will be seen as failures: either they are trivial be-
cause very little happened, or they are 'unscientific' because some-
thing real did happen and too many factors changed at once. (p. 26)” 

Salomon (1992a) partly corroborates Papert’s suggestion. He compares the 
advent of the computer in the classroom with a Trojan horse. Introducing a 
computer affects the whole classroom environment. “It is the whole culture 
of a learning environment, with or without computers, that can affect learn-
ing in important ways. (Salomon, 1996, p. 113)”. The conclusions that Salo-
mon draws implicate that experimental effectiveness studies are more likely 
than not to show negative results. Salomon (1992b) states that, only when 
computers are used in such a way that an ‘intellectual partnership’ is cre-
ated, there can be a positive learning effect. 

It should become clear from this discussion, that computers have a number 
of potential benefits to offer in the sense that they can amplify the learning 
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experience.6 However, to get a better appreciation of the possibilities that are 
offered by computers and the pedagogical vistas they open up, a change in 
theoretical perspective is needed. Technological innovations in education 
should be based on a theory, and not be driven by technological advances 
only (Koschmann, Kelson, Feltovich, & Barrows, 1996). The constructivistic 
approach, which was already briefly mentioned, is based on a new perspec-
tive on teaching and learning. Before moving on to a discussion of the type 
of computer tools that are used in education, we will describe this approach. 

 

1.2.2 Constructivism 

It was argued in the previous section that computers can change the learning 
experience by aiding cognition and by amplifying the learning process. In-
terest in tools that allow learners to be active and participate in their own 
learning has grown in recent years. This is the result of the development of 
the constructivistic perspective. In this section, the impact of constructivism 
on discovery learning is discussed. 

Traditionally, teaching tools were mainly used to facilitate the direct trans-
mission of all the relevant information to learners. The learners were invited 
(or even forced) to absorb and assimilate this information; no active partici-
pation, such as interaction with the learning material, was needed on their 
part. The teaching tools that are used in education determine at least par-
tially how learners are being taught: passively absorbing information or ac-
tively engaged in the learning process. Bruner (1961) was one of the first to 
distinguish between a passive and active ‘mode’ of teaching, and referred to 
them as an expository versus a hypothetical teaching mode. The expository 
mode of teaching follows the traditional approach as described. Interest-
ingly, Bruner argued that the hypothetical teaching mode stresses the point 
of discovery in learning: learners are led to seek for themselves for regularity 
and relatedness in the information that is offered to them, thus becoming 
‘constructionists’. 

Ausubel (1963) endorsed Bruner’s distinction between two modes of teach-
ing. Furthermore, he argued that the main difference between these modes 
can be traced to differences in the learners’ elicited behavior. Therefore, in-
stead of speaking of teaching modes, Ausubel called this distinction a differ-
ence in learning modes. These learning modes were respectively referred to 

                                                           

6 See Karasavvidis (1999) for a more detailed discussion on the concept of amplifica-
tion. 
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as reception learning and discovery learning. Finally, Ausubel argued that there 
is another dimension to learning: the distinction between rote learning and 
meaningful learning. In rote learning knowledge is arbitrarily incorporated 
into the cognitive structure; this in contrast to meaningful learning, where 
new knowledge is embedded into specifically relevant structures (cf. Tik-
homirov, 1974; Ausubel, Novak, & Hanesian, 1978; Novak, 1980). These 
structures reflect the background knowledge a person has about a subject, 
prior to a learning task. By making this difference between rote and mean-
ingful learning, Ausubel recognized the influence of prior (background) 
knowledge on the way learning takes place in various learning tasks. Be-
cause of the influence of background knowledge, the meaningfulness of ma-
terial to-be-learned differs from person to person. Although Ausubel admit-
ted that learning by discovery is a good way to make material meaningful to 
students, he was skeptical about its usefulness as a general method for learn-
ing and instruction. He considered the benefits of discovery learning not to 
weigh up to the disadvantages: the procedure simply was too troublesome 
and time-consuming. 

The constructivistic perspective changes the view on the nature of knowl-
edge. Knowledge is not seen anymore as being something completely objec-
tive. Rather, what is learned can be different from person to person. As we 
have explained before, learning is not seen anymore as a process in which 
knowledge is transferred as a whole from teacher to learner; instead, knowl-
edge is constructed in an active learning process, and thus becomes subjec-
tive by its nature (De Jong, 1999). This view on learning has been adopted by 
the scientific community, and it is one of the cornerstones of the constructiv-
istic perspective (Duffy & Cunningham, 1996; Grabinger, 1996; Jonassen, 1991; 
De Jong & Van Joolingen, 1998).7 There is now considerable consensus that 
learners cannot be compared with sponges: they are not just passively ab-
sorbing knowledge. On the contrary: learners play an active role in knowl-
edge assimilation (De Jong, 1991). According to the constructivist view, 
learning is a cumulative process, in which learners construct a new mental 
representation by linking knowledge to the knowledge they already have 
(Ausubel, 1963; Biemans, 1997). 

                                                           

7 This change in perspective can be seen as representing a paradigm shift, in this case 
from an ‘objectivist’ theory of learning to a ‘constructivist’ theory (Jonassen, 1991). 
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The importance that constructivism adheres to viewing learning as an active, 
instead of passive process, can be seen as analogous to Ausubel’s idea of 
meaningful learning. Meaningful learning is seen as more closely resembling 
the way learning takes place in the real world than rote learning. When cou-
pled with the large advances in technology that have been made in recent 
years, the theoretical perspective of active learning can finally become fruit-
ful. Adopting a constructivistic point of view has an important implication 
for education. Because the process of knowledge acquisition is seen as an 
active, constructive process rather than a passive one, instruction has to aim 
at supporting and facilitating this constructive process, instead of relying on 
passive absorption of information. For instruction to assume this new role, it 
is necessary to create an atmosphere that evokes the processes that were dis-
cussed in this section. In a constructivistic discovery learning environment, 
students are invited to learn at their own pace, to actively seek relevant in-
formation and to attempt to make sense of it. They have to be challenged to 
become actively engaged in a subject. A computer simulation can offer such 
a constructivistic learning environment. In Chapter 2, the process of scien-
tific discovery learning as it occurs while a learner works with a computer 
simulation is described in detail. The present discussion continues with a 
look on reasons for using computer simulations as tools for discovery learn-
ing, and on types of simulations that have been studied. 

 

1.3 Discovery learning with computer simulations 

As was argued by Jonassen and Reeves (1996), new types of media use ap-
pear to be eminently suited to perform the task of providing a constructivis-
tic learning environment. The use of interactive multimedia allows learners 
to work at their own pace, and to assert (to some extent) control over the 
information that is delivered. Furthermore, recently positive relations be-
tween the use of computers in instruction and learning outcome have been 
found. Liao (1998), in a recent meta-analysis of 36 studies that compared ef-
fects of traditional instruction with (what Liao calls) ‘hypermedia’ instruc-
tion, found an overall positive effect for school classes that used computer-
based interactive videodiscs, computer simulations, or interactive multime-
dia as instructional tools. Liao also made note of the fact that studies in 
which computer simulations (which are referred to as ‘simulators’ in that 
article) were employed showed better learning gains than studies that em-
ployed other multimedia systems for instructional delivery. 

Interest in the use of computer simulation for education marks a logical step 
in an ongoing process of educational change. In the previous section both 
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the practical and theoretical advances that have led to this step were dis-
cussed. Simulations are tools that can fully exploit the various strengths that 
computers have, such as interactivity and the possibility to display objects in 
a multitude of ways (Riever & Parmley, 1995). Indeed, the characteristics of 
computers are such that they allow learning to proceed at a high level of in-
teractivity (depending on the characteristics of the software that is used). 
The high level of interactivity that a simulation allows for can also motivate 
students to perform better than a different type of instruction might do 
(Shute & Gawlick-Grendell, 1994). Computer based learning environments 
enable students to move through the subject matter at their own pace, and 
meet their own interests and needs. When it is used as a learning environ-
ment, a computer simulation basically allows learners to change the values 
or properties of one or more input variables, and observe the effect of this on 
one or more output variables. The effect on the output variables is deter-
mined by the underlying rules of the simulation, which is also called the 
simulation’s model. A learning environment uses some kind of interface that 
allows for the actual learner-simulation interaction. An interface can be 
strictly numerical, but can also contain pictures, charts, and other graphical 
arrangements that create a more real-world appearance to the simulation. In 
addition, the simulation’s model can be either a simplified representation of 
reality or a faithful one. All this is decided during the design of the com-
puter simulation. These two characteristics, the presentation to the learner 
and the faithfulness of the represented model, determine the fidelity of the 
simulation. Whether a low or high fidelity simulation is more effective in 
learning, is dependent on the simulated domain. Some domains are not 
faithfully represented on purpose, such as training simulations for danger-
ous situations and simulations in which time plays an important role. What 
is clear, however, is that the direct interaction that a computer simulation 
allows makes learners’ behavior different from working with a more tradi-
tional type of interface (De Jong, De Hoog, & De Vries, 1993). 

A large number of studies have focused on discovery learning in the context 
of computer simulations. In Chapter 3, the Optics computer simulation is 
described which is used as a tool for studying discovery learning in the em-
pirical studies that have been carried out for this research project. In the pre-
sent section, firstly the type of simulations that have been used to study sci-
entific discovery learning is discussed. Secondly, learning processes that a 
computer simulation can elicit from learners are described. Thirdly, two 
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possible types of studies with computer simulations, process studies and 
effectiveness studies, are discussed. 

 

1.3.1 Types of computer simulations 

Many computer programs that have been used in the scientific literature can 
be listed under the header of computer simulation, although they have not 
always been referred to in that way. In this section, an overview of studies in 
which a computer tool was used to examine (discovery) learning processes 
is given. 

The most general use of tools that allow for interactive learning is made by 
Grabinger (1996), who refers to these as REALs (Rich Environment for Active 
Learning). According to Grabinger, a REAL is very different from a computer 
simulation, because REALs are “much more comprehensive and holistic than 
individual computer applications (p. 668)”. Grabinger uses the concept of 
microworld to refer to systems that play a role in a REAL through the delivery 
of information, practice, finding and presenting information, stimulation of 
high-level thought processes, promotion of collaboration, or exploration. 
Use of the term microworld can be traced back to Papert (1980), who used 
the word to refer to the self-contained world that the instructional tool LOGO 
represented. Papert (1987) later made a distinction between microworlds 
and simulations. According to Papert, simulations refer to environments that 
represent elements from the natural world, in contrast to a microworld in 
which the rules are purely mathematical constructs. The latter type of dis-
covery learning environment is also called an ‘intrinsic model’ (Edwards, 
1993; Dugdale & Kibbey, 1990). Van Joolingen and De Jong (1997) also make 
a distinction between computer-based simulation and microworlds. Accord-
ing to their definition, however, computer simulations are exploratory envi-
ronments, and microworlds (such as LOGO) are modelling environments. 
Such a sharp distinction is not made in all studies. For example, a study by 
Miller, Lehman, and Koedinger (1999) uses a computer simulation (called 
‘Electric field hockey’) to instruct students on the principles of electrical 
forces, but is referred to as an ‘interactive microworld of electrical interac-
tion’ (p. 307). 

In addition to microworlds, computer simulations can be compared to 
games. In a number of studies, the game-like nature of discovery learning 
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with computer simulations has been emphasized (e.g., Leutner, 1993).8 Basi-
cally, the act of uncovering new facts can be likened to solving a puzzle. 
Also, a game-like environment can be said to allow learners to show creative 
behavior. Differences between simulations and games are the absence of a 
domain-related goal (only general goals are used), and the absence of the 
element of competition in simulations (Leemkuil, De Jong, & Ootes, 2000). 
The non-use of specific goals (e.g., ‘winning the next round’) also implies 
that behavior in a simulation is less bound to constraints. 

A number of studies refer to a computer simulation as a laboratory (e.g., 
Friedler, Nachmias, & Linn, 1990; Schauble, Glaser, Raghavan, & Reiner, 
1991; Veenman, Elshout, & Meijer, 1997). A laboratory can be seen as pre-
senting the type of place where important scientific discoveries are made. 

A characteristic that all computer simulations share is their high level of in-
teractivity. Shute (1991) made use of an interactive environment in a compari-
son of two types of tutoring system (one that required rule application and 
another that required rule induction). Also, many computer simulation are 
designed to elicit discovery learning processes. This means that a computer 
simulation is sometimes referred to as a discovery environment (Shute & 
Glaser, 1990; Reimann, 1991; Swaak & De Jong, 1996). 

Researchers appear to have their own preference in referring to simulations 
in a particular way. For this dissertation, the terms computer simulation and 
(scientific) discovery learning environment where chosen to refer to the 
simulation-based learning environments that were used in the empirical 
studies. 

 

1.3.2 Discovery learning processes 

In the present section, an overview of processes that take place during scien-
tific discovery learning are described. A more detailed description of these 
processes is given in Chapter 2. 

                                                           

8 Some studies even study the educational effect of computer games themselves; e.g., 
Betz (1995), in which the educational benefits of playing the game Sim City 2000 are 
examined. 
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In an analysis of studies of scientific discovery, Klahr and Simon (1999) have 
given five reasons for taking an interest in studying scientific discovery at all 
(also see Klahr, 2000, for a similar overview). The reasons that were given by 
Klahr et al., can be summarized as follows:  

1) Human value. The enormous advances that have been made in all fields of 
science in the last centuries, invoke a curiosity in the process behind sci-
entific discoveries. 

2) Mythology. Many important discoveries in the history of science are sur-
rounded by vague, sometimes mystic stories of how they came about. 
Thorough study of such ‘magical’ discoveries can uncover interesting in-
formation about the scientific process. 

3) The boundaries of cognition. The products of scientific thinking lie close to 
the border of human cognitive ability. It is interesting to see whether the 
same cognitive operations are performed in normal thinking, as well as 
in thinking at the edge of performance. 

4) Developmental processes. There is a curious parallel in children’s thinking 
and scientific reasoning. However, many studies report developmental 
differences in scientific reasoning ability. The discussion that surrounds 
the question whether or not young children can be related to scientists 
has important ramifications for science education. 

5) Modeling. More insight in scientific discovery processes can lead to better 
computer models of scientific reasoning. 

The variety in reasons for stuying scientific discovery learning explains why 
there has been interest in formulating a theory for discovery learning proc-
esses. A framework for describing discovery learning is outlined in Chap-
ter 2. Here, an overview is given of the tasks that are set by a discovery 
learning environment. 

To get more insight into the theoretical background to discovery learning, it 
is important to understand the type of activities that are related to it, and 
that are part of it. One of the main goals of the scientific enterprise, is the 
uncovering of new truths (Simon, Langley, & Bradshaw, 1981).9 Scientific 
actions sometimes take place in the face of uncertainty: the scientist does not 
(yet) know what will be found, if anything at all. What lies behind the dis-
covery of facts, is a process of induction. Induction refers to all inferential 
processes that expand knowledge in the face of uncertainty (Holland, 

                                                           

9 The question, ‘what is truth?’ is not discussed in this thesis. However, an effect that 
discovery learning can have, is to show how knowledge that is gathered by induction 
is of a probabilistic nature, and that scientific truths are often relative. 
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Holyoak, Nisbett, & Thagard, 1986). Learning the structure and rules of a 
particular domain in the absence of direct instruction can be referred to as 
inductive learning (Anderson, 1995). In successful discovery learning, learn-
ers are encouraged to induce the underlying relations in a domain. This 
process has certain advantages over other types of learning (such as class-
room lectures). 

As was discussed in the previous section, a computer simulation models a 
system (De Jong & Van Joolingen, 1998). The system that is represented in 
the simulation can be either fictitious or real. Making sense of the simulation 
(by means of discovery of the underlying rules) means making sense of the 
represented system. This type of learning, in which discovery plays a pivotal 
role, is more generally known as learning by discovery. An essential feature of 
computer simulated discovery learning is that the represented model is not 
disclosed directly to learners. Instead, its properties have to be inferred by 
experimentation with the simulation. To learners, the underlying model is, 
at least initially, not transparent, because of the interface that is built on top 
of it (Edwards, 1993; Swaak & De Jong, 1996). These characteristics make for 
a very individual learning experience, because not only can learners work at 
their own pace, they can also choose their own experimentation strategy and 
make their own inferences about the underlying model. 

The complete learning process of performing experiments, evaluating evi-
dence, inducing rules, and performing more experiments, is referred to as 
scientific discovery learning (e.g., Klahr & Dunbar, 1988; Reimann, 1991; De 
Jong & Van Joolingen, 1998). This term arises out of the idea that a computer 
simulated discovery learning environment imposes special conditions on the 
learning behavior of students. Students are encouraged to imagine that they 
have been put in the position of a scientist, who is interested in studying 
some new phenomenon worthy of experimentation. To discover patterns in 
their data, they have to design experiments, interpret experimental results, 
and apply these results to new experiments. De Jong and Njoo (1992) stud-
ied the behavior of students working with a computer simulation, using pro-
tocol-analysis. Analysis of the scientific discovery learning behavior of these 
students resulted in two important processes: transformative processes, and 
regulative processes. Transformative processes (like analysis of the domain 
information and hypothesis generation) yield information that learners can 
use in subsequent steps. Regulative processes do not yield knowledge, in-
stead they are used to keep the discovery task itself under control; these 
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processes are, for example, planning and verifying. As De Jong and Njoo 
point out, what sets discovery learning apart from other types of learning 
are the regulative processes. Thus, this type of learning has a broader range 
of processes than other types of learning. 

In an unguided environment, students are not tied to any criteria: they can 
design experiments at random, and do not have to work with specific ideas 
in mind with respect to the outcome of their experiments. When this proce-
dure is used, learning certainly is not an easy task to accomplish, because an 
unguided discovery learning environment does neither give learners feed-
back concerning the logical soundness of their experiments, nor of the valid-
ity of their conclusions, nor of the quality of the conclusions they draw. In 
discovery learning, students have to decide for themselves whether they 
already have sufficient information to draw valid conclusions about the 
model underlying the simulation, or whether more information is needed. 
As such, learning without any external aid can be compared to juggling. The 
‘balls’ (performed experiments, already found facts) have to be kept up in 
the ‘air’ (the learner’s mind), which is a complex task because it carries a 
high cognitive load (Sweller, 1994). One redeeming factor may be though, 
that a clear-cut goal is absent in free discovery learning. It has been found, 
that the use of such goal-free problems can enhance learning (Sweller & 
Chandler, 1991; Sweller, 1994). The reason for this finding is explained by 
cognitive load theory, as forcing students not to use a means-ends analysis 
for problem-solving (a task that carries a high cognitive load). However, 
there is always the risk that discovery learning may lead to the construction 
of ‘wrong’ conceptions. These resemble the kind of intuitive conceptions 
students have about elementary physical phenomena, which are based upon 
children’s experiences with the real world and their representation of these 
(Driver & Easley, 1978; Gilbert & Watts, 1983). In any case, without guidance 
discovery learning is not without risks. Because of this, usually only guided 
forms of discovery learning are used in school settings (Novak, 1980).10 

 

 

                                                           

10 It has been argued that the teacher in a guided discovery situation restricts and 
frames the learning process, and that this means that learner’s individual intuitions 
and ideas, where they don’t fit in the lesson plan, are discouraged or neglected by the 
teacher. This goes against the principles of learning by experience, since learners’ 
interpretations are governed by the teacher’s interpretations in terms of learning 
goals (Edwards & Mercer, 1987). 
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1.4 General research question 

As may have become clear from the discussion in the previous sections in 
this chapter, a vast amount of research has been carried out on the effective-
ness of computer simulations and the learning processes that their use fos-
ters. Before we come to the research questions that are the focus of this the-
sis, first a global distinction between two experimental methods will be dis-
cussed. The distinction this is made here is between studies that focus on the 
effectiveness of computer simulations, and studies that focus on the learning 
process itself.  

Effectiveness studies focus on the product of discovery learning. The question 
these studies ask is: what is the educational gain of using a computer simu-
lation for learning? In the beginning of this chapter, we have already dis-
cussed this point in some detail. One issue that deserves attention is the 
measurement problem. The discovery learning process is a special type of 
learning. Knowledge results from the interplay between experimenting, hy-
pothesizing, and making inferences. Swaak and De Jong (1996, p. 346) sug-
gest, that the knowledge that is constructed by learners during work with a 
discovery environment has special qualities. Swaak and De Jong developed 
a test, called the ‘what-if’ test, that attempts to provide a more valid measure 
of ‘discovery knowledge’ than standard tests. In this thesis, the what-if test 
is used in various incarnations. A more detailed description of this test is 
given in Chapter 4. 

Process studies focus on what happens during discovery learning. In the pre-
vious section, the study by De Jong and Njoo (1992) used protocol-analysis 
to analyze scientific discovery learning processes. This led to the formulation 
of two types of processes: transformative and regulative. Other process stud-
ies compared the strategies successful and unsuccessful learners used while 
working with a computer simulation. For example, Shute and Glaser (1990) 
used the Smithtown learning environment (which deals with the subject of 
economics) to distinguish between good and poor discovery learning behav-
ior. Shute and Glaser found that better learners generalize more elaborately, 
perform more complex and systematic experiments, generate better hy-
potheses, plan their experiments better, formulate more predictions, and 
take more focused notes. A study by Lavoie and Good (1988), showed that 
successful learners work more systematically and state better predictions of 
outcomes, reported similar results. Finally, Glaser, Schauble, Raghavan, and 
Zeits (1992) showed that discovery learning skills are not necessarily re-
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stricted to one domain, but are part of general evidence-generating and in-
terpreting skills. 

The studies that were carried out as part of this thesis are all process studies. 
The main purpose was to study if and how discovery learning processes are 
regulated by the presence or absence of knowledge. In Chapter 2, a distinc-
tion is made between generic knowledge and domain-specific prior knowledge. 
Basically, domain-specific knowledge involves knowledge about variables 
and the relations between them. Generic knowledge involves knowledge 
about the type of mathematical relations that can exist between two or more 
variables. In all experiments, both types of knowledge are measured work-
ing with the computer simulation commences. 

Our main research question was: how does prior knowledge influence learn-
ing in a scientific discovery learning domain. The main subject is learning 
with computer simulations; more specifically, the role of prior knowledge on 
learning processes that are elicited in the context of these simulations. All 
the empirical studies that we have carried out were attempts to shed some 
light on this relation. 

 

1.5 Conclusion and overview of this dissertation 

In this chapter, we have introduced various issues that pertain to the topic of 
this dissertation. We started with a discussion on the influence of technology 
on learning in the classroom. Running parallel with the wide-scale introduc-
tion of computers in classroom settings is the increased interest in theories 
(collected under the generic header of constructivism) that view the learner as 
an active participant in the learning process. The combination of theoretical 
insight in possibilities for active learning with technological advances that 
change the learning experience, have prompted the need for appropriate 
software tools to instruct students in a creative and innovative way. This 
thesis focuses on the use of computer simulations that foster scientific dis-
covery learning. In Figure 1-1, a graphical overview of the structure is given. 
In the figure, a division into two core parts, A and B, is made. These parts 
together form the theoretical and empirical discussion of this dissertation. In 
part A (chapters 2, 3, and 4), the theoretical background and the description 
of the method for the empirical studies, is described. In part B (chapters 5, 6, 
and 7), the experimental studies are described. 

Chapter 2 covers the theoretical background to the studies in this thesis. A 
theoretical framework, the Scientific Discovery as Dual-space Search theory 
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(Klahr & Dunbar, 1988) is described in detail. SDDS can be viewed as an ap-
propriate theory to explain empirical data. 

Chapter 3 gives a detailed description of the Optics computer simulation. 
This simulation was used in all the empirical studies that were carried out in 
this research project. The description focuses on the design choices that were 
made to create a suitable environment to study scientific discovery learning 
processes. 

Chapter 4 is dedicated to describing the measurements that were used in the 
empirical studies. The chapter focuses on two types of measurement: firstly, 
the type of tests that were administered to measure prior knowledge, and 
secondly, the methods that were used to measure (and subsequently ana-
lyze) behavior in the Optics computer simulation. 

Chapter 5 reports on the Optics 97 study. In this study, the Optics computer 
simulation was first put to use. Prior domain-specific knowledge about the 
subject of the simulation (geometrical optics), and general mathematical 
knowledge were measured prior to working with the computer simulation. 
Next to the Optics simulation, the Optics 97 study made use of another com-
puter simulation, called Bubbles. The Bubbles simulation dealt with a 
fictitious subject about which no prior knowledge could exist among sub-
jects. This enabled us to study discovery learning in complete absence of 
prior domain knowledge. Students at the level of pre-scientific education 
participated in the study. 

Chapter 6 reports on the Optics 99 study. This study was a follow-up study to 
the Optics 97 study, and provided a more controlled environment. Students 
worked for four short, controlled, episodes in the Optics computer simula-
tion. For this study, the knowledge measures were improved, and an addi-
tional prior knowledge test was introduced: the Peter task for discovery 
knowledge. This time, both students at the level of pre-scientific education 
and vocational education participated in the study. 

Chapter 7 reports on the Optics 2000 study, which carried on from the results 
of the Optics 97 and Optics 99 studies. In this study an attempt was made at 
actively influencing the knowledge of students about geometrical optics. The 
study focused on the question whether students would be able to employ 
the knowledge they were given into their learning process. The participants 
in this study were students at the level of vocational education. 
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Figure 1-1. Overview of the contents of this dissertation 

 

Chapter 8, finally, combines and discusses the results of the empirical studies. 
The ramifications are discussed: what are the consequences for educational 
practice and research? An attempt will be made to fit the results into a theo-
retical framework. The framework that will be used for this is the topic of 
the next chapter. 



 

2  
A theoretical background to scientific 

discovery learning 

Once I went professionally to an archeological expedition—and 

I learnt something there. In the course of an excavation, when 
something comes up out of the ground, everything is cleared 
away very carefully all around it. You take away the loose 
earth, and you scrape here and there with a knife until finally 
your object is there, all alone, ready to be drawn and photo-
graphed with no extraneous matter confusing it. That is what I 
have been seeking to do—clear away the extraneous matter so 
that we can see the truth—the naked shining truth. 

Agatha Christie, Death on the Nile (1937) 

 

2.1 Introduction 

We are told by none other than Sherlock Holmes himself, that it is a capital 
mistake to theorize before one has data.1 Indeed, in many cases the origins of 
a theory can be traced back to an empirical observation, one that may have 
caused feelings of surprise. However, though Sherlock Holmes was a pro-
fessional detective, he was only an amateur scientist. We will follow his ad-
vice only partly. In the current chapter, a theoretical background to the stud-
ies that form the empirical body of this dissertation is presented, and de-
scribed in detail. In short, the theory of discovery learning that is presented 
here, can be traced historically to the pioneering work of Newell and Simon 
(1972) on human problem solving, and on Simon and Lea’s (1974) descrip-
tion of the Generalized Rule Inducer. Problem solving is a basic cognitive 
activity (Anderson, 1990), and it has been shown that a general theory of 
problem solving can be powerful enough to unify seemingly unrelated cog-
nitive phenomena (Simon, 1996). One of the most significant insights about 
discovery that cognitive science has brought to light, is the notion that the 
act of discovery may not be a ‘magical’ phenomenon (as has been suggested 
in some anthologies of scientific progress), but a phenomenon that, because 
of its relation to problem-solving processes, can be explained in a similar 

                                                           

1 Sir Arthur Conan Doyle, A scandal in Bohemia (1892) 
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way as other cognitive phenomena. However, when it is stated that discov-
ery is partly related to problem-solving behavior, this implies that another 
part of discovery is not related to problem-solving. It may be this part of dis-
covery (the relative size of which is a matter of debate) which makes it a 
more or less complex phenomenon to explain. On the one hand, from an 
analysis of the behavior of the AM and BACON computer programs (both 
computer models that aimed at simulating discovery processes), Simon 
(1996) optimistically concluded that, “Discovery processes do not introduce 
new kinds of complexity into human cognition (p. 108)”. On the other hand, 
a critical analysis of inductive processes by Holland, Holyoak, Nisbett, and 
Thagard (1986) led them to the conclusion that ‘‘Such performances [such as 
BACON’s], while very impressive, capture only part of the problem-solving 
activity crucial to scientific discovery. (p. 324)”. In this chapter, the question: 
what exactly is scientific discovery? is addressed, in order to better construct 
a platform for a theory of scientific discovery learning. 

As was stated in the introduction of Chapter 1, the processes that accom-
pany (scientific) discovery have characteristics that are of potential use to 
education. The qualitative knowledge change that is the result of successful 
discovery, and the processes that lead up to discoveries, can be used as a 
means to an end in education. The type of discovery that can be used in an 
educational setting is usually referred to as scientific discovery learning. 
Learning situations that make use of scientific discovery learning can be 
modified to suit many different domains and learner personalities. As was 
stated in the previous chapter, the type of discovery learning that is central 
to this thesis, is learning in the context of a computer simulation. As was 
explained in the previous chapter, computer simulations are suitable for in-
corporating many principles that arise in the context of a constructivistic 
approach to learning. In general, what makes the use of computer simula-
tions in the context of discovery learning particularly interesting, is the com-
bination of a ‘practical’ side (the planning and the execution of experiments) 
and a ‘theoretical’ side (discovering rules from gathered data). The interac-
tive experience that this type of learning affords has been found to result in a 
‘special’ type of knowledge, which deviates from ‘normal’ conceptual 
knowledge in a number of ways (Swaak & De Jong, 1996; Swaak, 1998). The 
idea that knowledge that results from discovery learning has special quali-
ties, has far-stretching consequences for the methods by which it should be 
measured. The knowledge test that is presented in Chapter 4, and versions 
of which were used in subsequent experiments, was intended to measure 
this type of knowledge. 
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Structure of this chapter. The current chapter sets out to map out the theoreti-
cal aspects that are behind scientific discovery and discovery learning. First, 
principles of discovery learning are discussed. Central to the idea that ge-
neric principles exist is the idea that discovery is, in a sense, a logical proc-
ess. Simon’s (1973) assertion that discovery has a logic can be seen as the 
inception of a cognitive theory of the complete discovery cycle. In Sec-
tion 2.2.3, a theoretical framework that describes discovery learning as a 
special type of problem solving is presented. Central to the framework is the 
idea that discovery learning involves a search through two distinct spaces. 
The notion of these search spaces is explored in detail. In the final section of 
the present chapter, the relation of knowledge to discovery learning is exam-
ined. The role of prior knowledge on discovery learning processes as it has 
been found in other studies is discussed. In addition, the benefits of discov-
ery learning compared to other types of learning are compared at the 
knowledge level. The chapter ends with a summary of the theoretical frame-
work that is described. 

 

2.2 A framework for scientific discovery learning 

In this section, a theoretical framework for discovery learning processes is 
discussed. This framework describes the different steps that are involved in 
(successful) discovery. The remainder of this chapter is divided into two 
parts. The first part describes the logical steps that make up the process of 
discovery. An important part of this description is devoted to a discussion of 
the search spaces that are involved in the discovery process. The second part 
describes the role of prior domain-specific knowledge and generic knowl-
edge in the discovery process. The purpose of the empirical studies that are 
described in this thesis is to test expectations with respect to the influence of 
prior domain-specific and generic knowledge on discovery learning proc-
esses. This section ends with a discussion on the fruits of discovery learning: 
what are the benefits of discovery learning, when compared to other types of 
learning? The answer to this question will influence the type of measure-
ment that is needed to get a valid indication of students’ knowledge level. 
The operationalization of domain-specific and generic knowledge is dis-
cussed in Chapter 4. 
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2.2.1 Logical steps in discovery 

Is there a logic behind scientific discovery? In the aptly-titled book ‘The logic 
of scientific discovery’ (1958), Karl Popper answered this question with an 
emphatic “no”. According to Popper, scientific procedures can only be stud-
ied in the context of justification; that is, there is a logic behind the way in 
which new ideas are (or should be) evaluated. What these new ideas them-
selves originate from, that is, studying the context of discovery, is not open to 
logical analysis. According to Popper, every discovery contains an irrational 
element, largely based on intuition. For this reason, the creation and process-
ing of scientific data has been largely ignored in the past. Gigerenzer (1991) 
argues, that there is not so much a logic of scientific discovery, as a set of 
heuristics that guide both the discovery and justification stages. Gigerenzer 
also argues that Popper’s gloomy view has led to a certain one-sidedness in 
the discussion about discovery: 

“Inductivist accounts of discovery, from Bacon to Reichenbach and 
the Vienna School, focus on the role of data but do not consider how 
the data are generated or processed. Nor do the numerous anecdotes 
about discoveries – Newton watching an apple fall in his mother’s 
orchard while pondering the mystery of gravitation; Galton taking 
shelter from a rainstorm during a country outing when discovering 
correlation and regression toward mediocrity; and the stories about 
Fechner, Kekulé, Poincaré, and others, which link discovery to beds, 
bicycles, and bathrooms. What unites these anecdotes is the focus on 
the vivid but prosaic circumstances; they report the setting in which 
a discovery occurs, rather than analyzing the process of discovery. 
(p. 254-255)”. 

Popper’s view on discovery was contradicted by Simon (1973), in an analysis 
of the problem of induction. According to Simon, the creation of a normative 
theory of scientific discovery is a possible venture, if it is stated as a set of 
criteria for evaluating law-discovery processes. Law-discovery processes are 
defined by Simon as those processes that recode sets of empirical data. 
Simon concludes, “The greater efficacy of one process compared with an-
other in discovering laws need not be attributed to chance, irrationality, or 
creative intuition. Rather, it is a matter of which process is the more capable 
of detecting the pattern information contained in the data, and using this 
information to recode the data in more parsimonious form. (1973, p. 479)”. 
By redefining the creation of hypotheses as the recoding of data, Simon 
managed to remove at least part of the suggestion of ‘magic’ from the dis-
covery process. However, Simon (also in later studies, see for example Qin & 
Simon, 1990) chooses to neglect the question of where relevant data stems 
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from: its presence is taken for granted2. The important thing to note is that 
throughout recent history, discovery has been recognized as a complex 
process. Only recently has there been progress in dispelling some of the 
myths surrounding the creation of new ideas. This is due in part to theoreti-
cal insights, which have culminated in a broad framework for discovery. 
Also, attempts to create computational models of scientific discovery proc-
esses have needed a rigorous and complete description of (optimal) discov-
ery processes, which has boosted research on these processes (Shrager & 
Langley, 1990; Langley, 2000).  

The discussion about the logic of discovery has been permeated by the sepa-
ration between discovery and justification. For a theory of discovery to be 
acceptable, it will need to be able to explain both sides of the coin. As will be 
shown, the scientific discovery as dual-space search framework of Klahr and 
Dunbar (1988) still carries the weight of the past in its distinction between 
experiment space and hypothesis space. However, because the dual-space 
search framework considers both the discovery and justification parts of sci-
entific discovery, it succeeds in sketching a more or less complete picture of 
scientific discovery. In the following section, principles of discovery learning 
are discussed. This formal look at the activities that make up discovery can 
be used as an introduction to the dual-space framework that is described in 
detail next. 

 

2.2.2 Principles of discovery learning 

The process of discovery learning can be described as involving a number of 
different activities, the most important of which are on the one hand data 
collection (by an active search for information, using experiments), and on 
the other hand an inference of hypotheses from this data. Creating hypothe-
ses can be seen as an ‘internal trial and error’ activity in which a learner 
searches for, and selects one or more relevant hypotheses (Gagné, 1966). This 
means that both experimenting and hypothesizing can be considered to be 
active search processes. As has been argued before in this chapter, these 
search processes (one of doing experiments, another of searching for the 

                                                           

2 However, in other studies (e.g., Simon & Kulkarni, 1988), Simon and colleagues go 
beyond this data-centered view of discovery, and examine the type of heuristics used 
by scientists to guide experimental research. 
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right hypothesis) can be related to the theory of problem solving that was 
first advanced by Newell and Simon (1972). This theory describes problem 
solving as moving from one problem state to another through a problem 
space. In the theory, the direction in which movement through the problem 
states takes place is the result of an active search process. A distinction is 
made between three types of problem state: an initial state, one or more in-
termediate states, and a goal state. The theory of Newell and Simon deals 
with problems for which a specific goal can be stated, and which can be 
solved by employing a certain procedure (e.g., by application of an algo-
rithm, or by using a certain heuristic). For more complex and more loosely 
structured problems (that is, problems that do not have a clearly specified 
goal), this view on problem solving quickly becomes too limited to warrant a 
description in terms of a search through a problem space. Therefore, in their 
research on discovery learning, Simon and his colleagues have tried to ex-
tend the theory, by describing the way people move from one problem state 
to another (e.g., Langley, Simon, Bradshaw, & Zytkow, 1987; Qin & Simon, 
1990). They consider the first phase of making sense of a problem to be a 
process of induction (also see Holland, Holyoak, Nisbett, & Thagard, 1986). 
Research has centered on the heuristics people use when they induce rules 
from the information at their disposal and when they perform experiments. 
The usefulness of this kind of research lies in the domain-independent char-
acter these heuristics have (Kulkarni & Simon, 1988). In the previous section, 
we have criticized this approach to discovery, because it ventures only on 
one end of the spectrum: that of rule induction. Discovery learning encom-
passes both discovery and justification, and accounts such as De Groot’s 
(1969) empirical cycle grant other discovery learning processes (e.g., rule 
evaluation) a lot of importance3. 

The following (formal) description of the complete process of discovery 
learning can be given. A student who is engaged in discovery learning, is 
basically exploring a domain. The boundaries of the domain are determined 
by the discovery learning environment, in the sense that the learning envi-
ronment usually contains a model of the domain. The model describes rela-
tions between different variables. Although the discovery learning environ-
ment discloses a few or even all variables to the student, the relations are 
kept hidden. It is the learner’s task to discover them, and he can do so by 
examining individual combinations of variables and ‘guessing’ their relation 

                                                           

3 Other characteristics that pertain to discovery processes are, for example, a) defin-
ing a scientific problem, and b) making predictions on the basis of results (Friedler, 
Nachmias, & Linn, 1990).  
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from the outcomes that are given. Further experiments can be carried out to 
confirm or disconfirm a guess (or: hypothesis). In the former case, the now-
proven hypothesis becomes a ‘discovered’ rule. In the latter case, the hy-
pothesis turned out wrong, and hence should have been discarded4. In an 
ideal case, two sets of hypotheses are gradually formed: a set of hypotheses 
known to be true (that is, hypotheses for which evidence has been found 
that proves them likely to be true, and that have not yet been discarded), 
and a set of hypotheses known to be false. A third set of hypotheses can be 
distinguished: the set of hypotheses not (yet) known to be true or false. The 
notion of different ‘sets’ of hypotheses is captured in the ‘discovery learning 
as dual-space search’-framework that has been put forward by Klahr and 
Dunbar (1988). An explanation of this framework, and a discussion on the 
role of different types of prior knowledge in the context of the dual-space 
search theory will form the main body of the next sections.  

 

2.2.3 Scientific discovery learning as a dual-space search process 

 

Traditional scientific method has always been at the very best, 
20-20 hindsight. It’s good for seeing where you’ve been. It’s 
good for testing the truth of what you think you know, but it 
can’t tell you where you ought to go, unless where you ought to 
go is a continuation of where you where going in the past. 

Robert Pirsig, Zen and the Art of Motorcycle Maintenance (1974) 

 

During computer discovery learning, students carry out experiments in a 
virtual environment, in order to get new information, and to modify their 
existing beliefs (Kulkarni & Simon, 1990). When both the process of experi-
mentation and the process of deriving a hypothesis are described as search 
processes, it is possible to extend the general theory of problem solving to 

                                                           

4 cf. Chinn & Brewer (1993), who found that learners are unwilling to perform an 
experiment, when they expect it will lead to a negative result, that is, a refutation of a 
hypothesis. This phenomenon is also called ‘fear of rejection’ (Van Joolingen, 1993; 
also see Brehmer & Dörner, 1993). 
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incorporate both. Simon and Lea (1974) proposed such an extension, by di-
viding the (standard) problem space into a ‘rule space’ and an ‘instance 
space’. Simon and Lea’s Generalized Rule Inducer (GRI) provided a mecha-
nism, in which experimentation and discovery played a role, although only 
in relatively simple tasks. Klahr and Dunbar (1988) have provided an exten-
sion to the GRI (which was meant to serve as a description of a concept learn-
ing task) to accommodate more complex situations that resemble the kind of 
situation scientists find themselves in. In the framework by Klahr and Dun-
bar, rule space is replaced by ‘hypothesis space’ and instance space is re-
placed by ‘experiment space’. Based on earlier research with the program-
mable BigTrak vehicle (e.g., Shrager & Klahr, 1986), in which free interaction 
with a complex object was studied, Klahr and Dunbar proceeded to analyze 
the behavior of learners whose task was to find out one rule. The particular 
rule to discover in the task had turned out to be a difficult one in the earlier 
experiments. The model that Klahr and Dunbar have proposed to accom-
modate their findings, describes the process by which subjects search for 
(and eventually discover) this rule. They have called this model SDDS (Scien-
tific Discovery as Dual-space Search). This model describes discovery learn-
ing as a problem solving-like search through the two problem spaces: hy-
pothesis space and experiment space. Basically, the model states that discovery 
learning consists of three components: search hypothesis space, search (or: 
test) experiment space, and evaluate evidence. Each of these processes has 
its own goal. In hypothesis space search, the goal is to form a fully specified 
hypothesis (Van Joolingen & De Jong, 1997). This hypothesis can be tested 
by performing an experiment. The resulting evidence is evaluated, the goal 
of which is accepting or rejecting a stated hypothesis. 

This concise description of the SDDS model provides a brief outline of the 
way Klahr and Dunbar (1988) describe the process of rule discovery. One of 
the strengths of this framework is that it contains an elegant and useful de-
scription of the discovery learning process as it occurs in a number of do-
mains. Also, this parsimonious framework can serve as a general framework 
for studies on discovery learning processes. Klahr and Dunbar have used 
and tested the model in a number of studies, most of which dealt with the 
BigTrak5 domain (Dunbar & Klahr, 1989; Klahr & Dunbar, 1988; Klahr, Dun-

                                                           

5 BigTrak is a programmable robot toy. The four-wheeled toy is operated by pro-
gramming its movements, which are then carried out in sequence. The research stud-
ies by Klahr and Dunbar focus on the discovery of the effect of one special program-
ming button: the RPT key. This key has the effect of repeating the last n operations, 
where n is the number that is keyed in after the RPT key. 
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bar, & Fay, 1990; Klahr, Fay, & Dunbar, 1993). The theory has also been ap-
plied to the domain of genetics (Dunbar, 1993). In these studies, develop-
mental differences in the depth and complexity of the search processes have 
been examined, and also the effect of supplying students with relevant in-
formation, prior to discovery learning. It turns out that for the domains that 
have been used in these studies, the model can be used effectively. Although 
these domains are considered to be complex by Klahr and Dunbar, the num-
ber of variables and relations of which the properties have to be discovered 
is actually very small. For example, in the Klahr and Dunbar (1988) study 
that made use of the BigTrak vehicle, there was only one rule to be discov-
ered. Discovery learning environments that have been used in other con-
texts, such as Shute and Glaser’s (1990; also see Shute, Glaser, & Raghavan, 
1989) Smithtown, and Schauble, Glaser, Raghavan, and Reiner’s (1991) Vol-
taville employ more intricate domains, in which a large number of variables 
interact in a variety of ways. The simulation environments that were used in 
the present studies are of this type, too: a set of underlying formulas de-
scribes relations between a number of variables. The formulas themselves 
are quite complex, involving division and multiplication. It is assumed, that 
in these intricate domains search processes follow a somewhat more com-
plex path than described by the SDDS theory. For example, hypotheses will 
be more varied, and also differ in their level of precision (Plötzner & Spada, 
1992). In addition, the SDDS model provides only a global account of the way 
search processes take place: neither the structure of hypothesis space nor the 
structure of experiment space are described. Finally, there is no thorough 
description of the way discovery learning processes are influenced by prior 
knowledge. There is only the understanding that prior knowledge in general 
influences the prior configuration of hypothesis space. In the next section, 
the role of prior knowledge on scientific discovery learning is discussed in 
more detail. First, however, two useful extensions to the standard SDDS 
framework are discussed. These are Schunn and Klahr’s (1995; 1996) 4-space 
framework of discovery learning, and Van Joolingen and De Jong’s (1997) 
extended SDDS model. A discussion of these extensions to the framework, 
will prove useful when the role of prior knowledge on discovery learning is 
discussed in Section 2.3. 
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2.2.4 A four-space model of discovery learning 

 

Four legs good, two legs bad. 

George Orwell, Animal Farm (1946) 

 

In a number of recent publications, Schunn and Klahr (1995, 1996) have dis-
cussed what they call the ‘magic number’ of search spaces that a framework 
for scientific discovery learning needs to incorporate. They argue, that the 2-
space framework can sometimes be too limited in explaining various proc-
esses that occur in complex discovery tasks. In the extension to the 2-space 
framework that they propose, the experiment space and hypothesis space 
are complemented by two new search spaces: a data representation space is 
added to hypothesis space, and a paradigm space is added to experiment 
space6. In the data representation space, experimental data is abstracted and 
processed through various possible representations. The paradigm space 
represents (global) classes of experiments. A search through paradigm space 
involves selecting a class of experiments, thus identifying a set of independ-
ent and dependent factors. Schunn and Klahr argue that, as in the case of 
two search spaces, processing within each space is dependent on the state of 
the search in the other space(s). The information flow between the search 
spaces is depicted in Figure 2-1. As can be seen from the figure, the spaces 
do not all influence each other. 

 

Experiment

Space

Representation

Space

Paradigm

Space

Hypothesis

Space
 

Figure 2-1. Proposed information flow between search spaces in the four-space 
search model. From Schunn and Klahr, 1995. Reprinted with permission. 

                                                           

6 In an analysis on the discovery of the origin of ulcers, Thagard (1998) proposes 
three search spaces: experiment space, hypothesis space, and a space of instrumenta-
tion. 
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For example, the search through representation space is influenced by the 
hypotheses that a learner has arrived at. In turn, a change in the representa-
tion of experimental data may influence the hypotheses that are induced, 
and also the class of experiments that are carried out (by influencing the 
paradigm space). The model that Schunn and Klahr present, is based on re-
search in the MilkTruck domain (for an extended review of the research with 
Milktruck, see Klahr, 2000, chapter 7), in which the task was to discover a 
(complex) rule by experimentation.7 Evidence for activity in the data repre-
sentation space was found in a change in the description given by subjects 
for the experimental outcomes. At first, programmed data was represented 
to subjects as a collection of single steps. After experimenting with different 
programs, this representation would change. Instead of single steps, pro-
grams were now seen as collection of segments of data. Evidence for the oc-
currence of activity in the paradigm space was found in a change of the type 
of experiments subjects planned to perform. The type of experiments that 
were carried out gradually grew more complex. According to Schunn and 
Klahr, this indicates that the database of experiment types, that learners 
made use of in the MilkTruck experiments, changed over time as a result of 
activity in the paradigm space. 

Schunn and Klahr (1996) argue, that certain criteria need to be met to allow a 
search space to be added to a model of scientific discovery. Of these criteria, 
two are relevant to the present discussion, namely logical and empirical cri-
teria. Logical criteria imply that search spaces should be distinct from each 
other. This means that search spaces should involve distinct entities and dis-
tinct goals. Empirical criteria imply that the use of different search spaces 
should be observable. This means that it should be possible to make a reliable 
classification of discovery learning behavior into search behavior in two or 
more spaces. As a sidenote, Schunn and Klahr state that the knowledge that 
a learner possesses can partly determine whether a particular problem space 
exists or not in a particular case. 

 

                                                           

7 Milktruck can be seen as a more complex variation of the BigTrak domain. It dealt 
with a milktruck with a programmable route. The subjects’ task was to discovery the 
function of a mystery command that could be given to the truck. This command was 
a function with three arguments, one continuous, and two dichotomous. 
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2.2.5 The extended SDDS model 

Van Joolingen and De Jong (1997) have tried to extent the dual-space search 
model by examining the structure of the experiment space and hypothesis 
space. Here, the detailed look at hypothesis space that they provide is fo-
cused on, because the structure of hypothesis space as it exists prior to a 
(discovery) learning task is equal to (the amount of) domain-specific knowl-
edge. 

A domain can be defined as a collected body of knowledge. If this knowl-
edge is described in the form of a collection (or set) of statements, two types 
of sets can be distinguished: the set of all true statements about the domain 
and the set of all untrue statements. The number of possible statements is 
virtually unlimited. Together, the set of true and the set of untrue statements 
form a general knowledge space that Van Joolingen and De Jong call the 
universal hypothesis space. A domain is always bound by a set of rules and a 
set of variables. This implies that it is possible to describe a domain with 
only a limited set of generic statements about relations between variables. 
Van Joolingen and De Jong (1997) call the (limited) set of true statements 
about a domain the target conceptual model. 

Exploring a domain means that a learner tries to find out the boundaries of 
the target conceptual model. Like the knowledge that is encapsulated in a 
domain, the knowledge a learner has about the variables and relations in the 
domain can be considered as a knowledge space. All statements that a 
learner can assert about relations between two or more variables in a do-
main (independent of their truth value) are called the learner hypothesis space. 
The effective learner space is a subset of the learner hypothesis space. The ef-
fective learner space encompasses only those statements in the learner hy-
pothesis space that a learner finds worthwhile to test. Testing for a certain 
relation between variables will only be considered by a learner when he or 
she has knowledge of the existence of that type of relation. For this, suffi-
cient generic knowledge of mathematical relations is needed. In the next sec-
tion, this idea is worked out in detail. A main goal in discovery learning 
about a domain is to bring the learner hypothesis space and the target con-
ceptual model closer together. An ideal end state would be when the learner 
hypothesis space and the target conceptual model would overlap. Prior to a 
learning task, when a domain is relatively new to a student, this will of 
course not be the case. 

Both the learner hypothesis space and the effective learner space may 
change in the light of new findings about a domain. The difference between 
these two spaces can be determined by the plausibility of hypotheses (Klahr, 
Fay, & Dunbar, 1993). It is always the case that some hypotheses are more 
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plausible to a learner than others. For example, gravity does not sometimes 
go in another direction, so the plausibility of such a statement is low for a 
system that simulates falling objects. Effective learner space can also be con-
strained by the frame in which a learner works. For example, Klahr and 
Dunbar (1988) found that subjects always worked with the idea in mind that 
the RPT key worked in a certain way (controller or selector). Changing to a 
different representation proved to be very difficult. Further research showed 
that it is easier to switch from an implausible frame to a plausible one than 
vice versa (Klahr et al., 1993), and that it is a useful heuristic in experiment 
generation to first consider different frames (this is the ‘breadth first’ type of 
search, in contrast to the ‘depth first’ type). 

 

2.3 Prior knowledge and scientific discovery learning 

The previous section can be read as a chronological account of the develop-
ment of a theory of discovery learning: from the controversy surrounding 
the distinction between discovery and justification, to the description of the 
extended search space model. In this section, we will discuss the role played 
by prior knowledge in the scientific discovery learning process. 

A number of factors determine individual behavior in a discovery learning 
environment and subsequent performance on a knowledge task. Learners do 
not enter a learning situation with an empty mind; they come to a learning 
situation with their ideas about a specific subject, and differ in learning abil-
ity. Of these determinants, prior knowledge is generally considered one of 
the most important ones. Schauble (1996) argues that “Most studies from the 
experimentation strategies approach underemphasize the role of domain-
specific knowledge”. This statement succinctly sums up a prevailing notion 
in recent research on experimentation and scientific reasoning: the lack of 
understanding about the knowledge that learners bring to the learning task. 
Further on, Schauble adds to this conclusion, “To decide which of several 
potential causes are plausible, people bring to bear both specific knowledge 
about the target domain and general knowledge based on experience about 
the mechanisms that usually link causes with effects…prior knowledge 
guides observations, as surely as new observations lead to changes in 
knowledge (p. 103)”. In a number of studies, the relationship between prior 
(domain-specific) knowledge and learning effectivity in computer simula-
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tions was studied. All the studies that are cited here looked at learning re-
sults, but also at processes that occurred during discovery learning. 

Njoo and De Jong (1993) found that subjects who scored high on a domain-
specific knowledge test administered prior to working with a simulation 
learning environment also scored high on a posttest. It was harder to find a 
relationship between the knowledge learners had prior to working with a 
learning environment and their subsequent interaction behavior. Njoo and 
De Jong did not find such a relation, but Lavoie and Good (1988) reported 
that students with high prior knowledge showed better discovery behavior. 
Glaser, Schauble, Raghavan, and Zeits (1992) found that higher prior knowl-
edge led learners to consider more alternative hypotheses. Because the type 
of hypotheses that learners had in mind varied (e.g., both correct and incor-
rect hypotheses were used by subjects), Glaser et al. argue that prior knowl-
edge can be of help to learners as well as mislead them. Not only the amount 
of prior knowledge, but also its specific quality that has to be taken into ac-
count. It is hypothesized by Chinn and Brewer (1993) that the deeper rooted 
prior knowledge is, the easier students will refuse to change their concep-
tions in the light of anomalous data. Instead, ad-hoc arguments (‘I probably 
did something wrong’) will help them do away with the anomalous data. 
Based on results from the BigTrak study, Klahr and Dunbar (1988) argue 
that prior knowledge can make the discovery of a correct hypothesis more 
difficult, because subjects’ prior knowledge can suggest ‘misleading and 
conflicting analogies’ (p. 11). Students may get confused by a mismatch be-
tween their knowledge and the data they find (Chinn & Brewer, 1993). 
Klahr, Fay, and Dunbar (1993) showed that prior domain-specific knowl-
edge rendered some hypotheses more plausible than others, which some-
times hampered successful discovery. Background knowledge can lead stu-
dents to find some hypotheses more plausible than others, which influences 
the type of experiments they carry out to gather data. 

On the whole, the studies that are mentioned here have shown that in cer-
tain cases prior knowledge can hinder student’s performance in a learning 
environment. However, the presence of prior domain-specific knowledge 
can also have a positive influence on the learning strategy that students use 
while interacting with a learning environment. Schauble, Glaser, Raghavan, 
and Reiner (1991) made a division of prior knowledge into four categories, 
from a low, superficial understanding of a domain (electrical circuits) to 
deeper and more integrated knowledge. Schauble et al. found that a higher 
level of prior knowledge coincided with higher learning gains after working 
with a learning environment. Prior knowledge also affected learning behav-
ior, with higher level knowledge subjects stating more predictions and gen-
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erating more explanations, searching more broadly through all possible ex-
periments, and working more systematically through all assignments. 

What the research we have mentioned in this section indicates is that prior 
knowledge plays an important, but to a large extent unspecified role in dis-
covery learning. Two reasons can be given to explain why it is not clear ex-
actly how prior knowledge influences interaction behavior. First, in most 
studies prior knowledge has been used as a term to denote something like 
domain-related knowledge. Exactly what type of prior knowledge was 
measured, and how this knowledge stood in relation to the learning task 
was not specified. Second, it has not been made clear in previous studies 
what theoretical relation was expected between the prior knowledge that 
was measured and interaction behavior. 

The extended version of the SDDS model can be used to look in more detail at 
the influence of prior knowledge on discovery learning processes. In the 
framework, hypothesis space is divided in four sections: the universal hy-
pothesis space, the target conceptual model, the learner hypothesis space, 
and the effective learner space. The contents of the universal hypothesis 
space and the target conceptual model are dependent on the domain, and 
have a static content. The configuration of the learner hypothesis space and 
the effective learner space is influenced by prior domain-specific and generic 
knowledge. These two spaces are dynamic, that is, their contents can change 
over time. As was discussed in the previous section, a ‘goal’ of discovery 
learning is to change the leaner hypothesis space so that it comes to resemble 
the target conceptual model. This means that a successful search through 
experiment space and hypothesis space should lead to the conversion of the 
learner hypothesis space to a space of true and false statements. Figure 2-2 
illustrates the process that is described. During discovery learning, the 
learner hypothesis space should become more like the target conceptual 
model. The initial makeup of the learner hypothesis space is determined by 
the level of domain-specific knowledge and generic knowledge (which is 
discussed next). Acquiring the target conceptual model implies that knowl-
edge of true and false statements about a domain is gained. 
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Figure 2-2. Description of the search process in which the learner hypothesis space 
comes to resemble the target conceptual model 

 

Prior to entering the learning task, a learner can already have some knowl-
edge about what is true and what is not true within a domain. This means 
that the learner hypothesis space will already be partly filled with state-
ments about variables and relations. Thus, it can be said that the prior 
knowledge, or more specifically the prior domain-specific knowledge that a 
student has available will determine what is already available in the stu-
dent’s learner hypothesis space. Prior domain-specific knowledge provides 
learners with information about the relevant variables and relations in a 
domain, some of which might otherwise pass unnoticed. In addition, prior 
knowledge can help learners decide upon the plausibility of certain hy-
potheses, and can inform them about the right framework. Another type of 
prior knowledge determines learner’s knowledge of the type relations that 
are possible. For example, a learner may not know what an asymptotic rela-
tion entails, and may therefore experience trouble in interpreting findings 
that seem to point at just such a relation. In our research, we have found it 
useful to make a distinction between domain-specific knowledge (knowledge of 
specific variables and relations in a domain) and generic knowledge (general 
knowledge about the type of mathematical relations that exist).8 We define 
domain specific prior knowledge as knowledge about the existence and 
characteristics of variables in the domain. In the domain of optics this 

                                                           

8 The term ‘generic’ knowledge was chosen to distinguish it from (domain-)specific. 
In Chapter 8 (Discussion) the concept of generic knowledge as a middle road be-
tween domain-specific and general knowledge about mathematics is discussed. 
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would, for example, be knowledge about the existence of focal points, and 
knowledge about the variables that a focal point relates to. Generic knowl-
edge can be explained as the knowledge that is needed to recognize and 
work with various types of mathematical relations (that is, relations between 
two or more variables that can be numerically or graphically depicted). This 
knowledge is has a generic nature because it can be applied in all domains 
that consist of relations between a number of variables. Examples of mathe-
matical relations between two variables are asymptotic and periodic rela-
tions. The idea of generic knowledge of mathematical relations is related to 
an argument by Plötzner and Spada (1992): learners have to utilize in a 
learning environment, amongst others, “mathematical knowledge about 
functional relationships and various arithmetical procedures (p. 107)”. Ge-
neric knowledge is distinct from domain-specific knowledge in the sense 
that the latter type does not refer to the ability to recognize a relation as a 
certain type of mathematical expression, but to knowledge of a specific rela-
tion or set of relations. De Jong and Ferguson-Hessler (1996), in an overview 
of knowledge qualities, also made a distinction between domain-specific and 
generic knowledge. They showed that this qualitative distinction applies for 
different types of knowledge (situational, conceptual, procedural, and stra-
tegic). The distinction that is made here between generic and domain-
specific knowledge is not the same as the distinction that is made by Alex-
ander and Judy (1988) between domain-specific and strategic knowledge. 
Our concept of domain-specific knowledge contains the notion of knowing 
how as well as the notion of knowing that. This means that domain-specific 
knowledge contains all knowledge someone has about a domain, including 
declarative, procedural, and conditional knowledge (Alexander, 1992, refers 
to this as ‘domain knowledge’ or ‘topic knowledge’). Knowledge about rela-
tions can exist at different levels, from a purely qualitative level (‘a is related 

to b’) to a quantitative level (‘a = 1
b ’). In the extended SDDS framework, Van 

Joolingen and De Jong (1997) divide hypothesis space into a space of vari-
ables and a space of relations. Generic knowledge is needed to understand 
particular types of relations, which means that the level of generic knowl-
edge will influence the precision of relations that a student can work with. 

In Chapter 4, both domain-specific knowledge and generic knowledge are 
operationalized. Tests are created to measure both types of knowledge be-
fore students start working with the Optics discovery learning environment, 
which is described in Chapter 3. 
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2.4 Summary 

In this chapter, an overview was given of the theoretical considerations that 
were taken into account in designing the studies that are described in the 
next chapters. The SDDS model of scientific discovery learning forms a basic 
framework, which lately has seen a number of extensions in the number of 
search spaces that are proposed (e.g., Klahr, 2000) and in a detailed descrip-
tion of the configuration of these search spaces (Van Joolingen & De Jong, 
1997). An overview was given of ideas about the role that prior knowledge 
can play in scientific discovery search processes. In the empirical part of this 
dissertation, these ideas are put to the test. First, a detailed outline of the 
method that was used in the experimental studies will be given. In Chap-
ter 3, the Optics computer simulation that was used as a discovery learning 
environment is described. In Chapter 4, the two types of knowledge that 
were distinguished in this chapter, domain-specific and generic, are opera-
tionalized. The resulting knowledge tests were used as measures of prior 
knowledge in the empirical studies that are described in Chapters 5, 6, and 7. 



 

3  
The Optics computer simulation: design and 

implementation 

It may well be doubted whether human ingenuity can construct an 
enigma of the kind which human ingenuity may not, by proper appli-
cation, resolve. 

Edgar Allan Poe, The Gold Bug (1843) 

 

3.1 Introduction 

In the Middle Ages, a torturer would always make a point of showing to the 
victim the torture instruments first, before starting out on the other tasks. In 
a similar fashion, in the present chapter and in Chapter 4 the instruments 
that were used in the studies are presented, before the studies that form the 
main aspect of this dissertation are described. In the present chapter we de-
scribe the computer simulation that was used in the studies in chapters 5, 6, 
and 7. Specifically, the choice of topic, the type of interface, and the underly-
ing model of the computer simulation are discussed. Chapter 4 describes the 
experimental setting of which the simulation is a part. It is important to no-
tice that there are some fundamental differences between computer simula-
tions that are used to promote, enhance, and amplify the learning experience 
(e.g., discovery learning processes), and computer simulations that are used 
purely for the purposes of scientific interest. In both contexts, the use of a 
simulation is viewed upon as a beneficiary to the learning experience, be-
cause of its unique properties and the learning processes it elicits (as has 
been explained in Chapter 2). On the one hand, in the context of the research 
that is carried out in this project, features that support discovery learning, 
and that would otherwise be added to the instructional context, are left out, 
because they may interfere with measurements. On the other hand, a num-
ber of features that would normally not be present can be added to the simu-
lation to help online measurement of computer operations while students 
work with the learning environment. In short, the context of the experimen-
tal research that is presented in the next chapters deviates from other studies 
that utilize a computer simulation as a learning environment. The focus lies 
not on studying the effectiveness of using a computer simulation (versus, for 
example, classroom lectures). Instead, we focus on the learning process it-
self, in a ‘bare bones’ discovery setting. This implies that, in this case, the 
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learning situation is not designed to enhance learning, but rather to optimize 
measurement of discovery learning processes. The simulation that was de-
veloped for this research project possesses a number of characteristics that 
make it suitable for studying discovery learning processes by examining the 
how learners operate the simulation. The method that was used to measure 
learner-computer interaction is described in Chapter 4 (Section 4.3). 

In Chapter 1 (Section 1.3), an overview of simulation based discovery envi-
ronments was given. It was stated that a computer simulation incorporates a 
model of some real or fictitious system. The type of system that is modeled 
by the simulation can be chosen to fit in a certain curriculum, or to fit the 
demands of a research study. Van Joolingen and De Jong (1991) make a 
global distinction between three types of systems that can be simulated: 
physical (systems present in the real, physical world), artificial (systems that 
present an artificially created artifact or situation), and hypothetical (systems 
without a counterpart in the real world). The foundation for using a simula-
tion is the idea that a student will try to understand the underlying, hidden 
rules and thus gain better understanding of the simulated system. As was 
explained, getting to understand the rules of a simulation involves a process 
of hypothesizing and experimenting, and is referred to as learning by dis-
covery. The set of underlying rules is called the simulation’s model. The 
characteristics of the model of a simulation determine the nature of the vari-
ables and relations underlying the simulation. Relations between variables 
can be expressed quantitatively or qualitatively in the model. Variables can 
be independent (that is, when they can be manipulated by the learner), de-
pendent (when their value is dependent on the simulated model and/or on 
the settings of one or more independent variables), or intermediate (when 
they are used in the underlying model, but not visible to a learner). In addi-
tion, based on the type of simulation that is used, variables in the simulation 
can be presented as containing discrete or continuous values. Van Berkum 
and De Jong (1991) argue that the model of a simulation can be either opera-
tional or conceptual. A conceptual model contains facts about the variables 
and relations between them that are related to the system that is simulated. 
An operational model contains a series of (cognitive) operations that have to 
be applied to make the model work. The knowledge needed to work with an 
operational model is usually of a conceptual nature. 

The model of a simulation is not disclosed to students while they operate the 
simulation. Instead, students operate on the visible part of the simulation, 
which is called the simulation’s interface. The interface provides the means to 
interaction between students and the computer by, for example, the use of 
icons to refer to certain operations and tools. Knowledge of a simulation’s 
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interface is a prerequisite for learning about the underlying rules. Therefore, 
it is important to use an interface that is easy and intuitively to understand. 
The fidelity of a simulation roughly determines how it appears to a learner. 
Hays and Singer (1989) make a distinction between physical fidelity (how 
realistic does a simulation look) and artificial fidelity (how realistic are the 
manipulations that a simulation allows). In designing a computer simula-
tion, choices have to be made about both types of fidelity. 

 

3.2 The Optics simulation 

A computer simulation learning environment (which we will henceforth 
refer to by the name ‘Optics’) was designed and created with the experi-
ments that are described in this thesis in mind.1 Different versions of the Op-
tics simulation were also used in other studies that were carried out in the 
context of the Inductive Learning project (described in Section 1.1.1). In this 
section, the topic of the simulation, the interface, the underlying model, and 
the built-in support functions (‘learning aids’) are described. The purpose 
was to develop a computer simulation that could be processed by a normal 
desktop computer, and preferably on computers that are in use in class-
rooms. Indeed, the finished computer program can be run on a standard 
desktop computer that uses the Windows operating system. 

 

3.2.1 Topic 

The specific ‘feel’ of a simulation is determined by the model and type of 
interface that are chosen. When a simulation is being designed, choices have 
to be made with respect to the fidelity and complexity of the underlying 
model and the interface. The type of variables and relations, and the com-
plexity of a domain are both influenced by the topic that is chosen for the 
simulation. For example, a simulation of running a chemical plant is far 
more complex and intricate than a simulation of the chemical reaction be-
tween two fluids. In choosing the topic of a simulation, the first important 
thing to consider is the type of system to simulate. For our studies, we 

                                                           

1 The Optics simulation and other computer programs that were used in the experi-
ments were developed by Jan Wielemaker (University of Amsterdam). The simula-
tion has also been used in a study by Veenman, Prins, and Elshout (submitted). 
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wanted to use a simulation of a real system, preferably a topic that is taught 
in secondary education. Many simulations revolve around the natural sci-
ences (physics, chemistry), because these lent themselves best to formal de-
scription. Also, because our focus lies on the influence of (conceptual) 
knowledge on the learning process, it was decided to build a simulation 
around a conceptual model. Choosing a topic that originates from secondary 
education has the added advantage that it may facilitate students’ under-
standing of the computer simulation itself, because to some extent they are 
familiar with the things they see on the screen. For many students, learning 
with a computer simulation is a novel experience, but the use of a real-world 
topic is expected to facilitate understanding of the computer simulation it-
self. This is important since our focus lies not on the simulation itself, but on 
the discovery learning processes that it evokes. A final consideration in the 
choice of topic for the computer simulation is the requirement that students 
differ in their knowledge on the subject, prior to working with the program. 

As its name already suggests, the Optics computer simulation represents the 
domain of optics, more specifically, geometrical optics. Optics is a physical 
simulation that deals with the principles that govern image formation prop-
erties of lenses. It simulates an optical workbench with which the behavior 
of optical systems can be studied. In a number of studies by Reimann (1990, 
1991), the subject of refraction (which is an important concept in optics) was 
also taught to students, using a computer simulation interface called RE-

FRACT. Geometrical optics is appropriate for use in a computer simulation, 
because the domain can be described by only a small number of rules and 
concepts. However, a number of studies in the field of science education 
(e.g., Galili & Hazan, 2000; Langley, Ronen, & Eylon, 1997; Reimann, 1991; 
Säljo & Bergqvist, 1993) have shown that geometrical optics is a challenging 
subject for students, and one that is prone to misconceptions. A probable 
reason that students find it difficult to grasp the different concepts, is the fact 
that light rays and the different illumination patterns they cause are, in real 
life, not visible to the eye. As was discussed in Chapter 1, one of the special 
characteristics of a computer simulation is the possibility to make objects or 
relations between objects visible that would otherwise remain invisible. The 
consequence for optics is that making light rays visible in a computer simu-
lation should enhance understanding of the properties of light and light 
rays. 

Geometrical optics deals with phenomena concerning light propagation 
through an optical system, and the creation of illumination patterns (Lang-
ley, Ronen, & Eylon, 1997; Hecht, 1998). In our case, the focus lies on optical 
systems that demonstrate light propagation through one or more (thin) 
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lenses. Light that is emitted from a light source (such as a lamp) is refracted 
by a lens. The angle by which a beam of light is refracted when it passes 
through a lens, is dependent on the incoming angle of the beam, the distance 
of the beam to the optical axis of the lens, and on properties of the lens. A 
parallel bundle of light that propagates parallel to the optical axis of a thin 
convex (or: positive) lens converges on one point of the principal axis; this 
point is called the focal point of the lens. Light shining through a concave 
(or: negative) lens diverges. In this case, the light beams seem to originate 
from one point, called the virtual focal point. The way and the extent to 
which this refraction occurs can be described by a number of formulas. 
These formulas constitute the underlying model, which is described in Sec-
tion 3.2.3.  

An important difference between a focal point and a virtual focal point is 
that the first can be readily measured using tools that are available in the 
environment, whereas the existence of the second can only be inferred from 
the refraction of light through a lens. The Optics computer simulation does 
contain a number of tools that aid in making visible things that are not visi-
ble in real life. In geometrical optics, this is especially the case with the so-
called virtual image. A virtual image is one that can be looked at (by observ-
ing the image through the lens), but cannot be projected on a screen. Real 
images are formed by converging rays, virtual images by diverging rays 
(Park, 1997). 

When restricted to the case of light through lenses, geometrical optics poses 
an appropriate real-world system that can be modeled in a computer simula-
tion. It was decided early on in the design process to use abstract representa-
tions of light beams and lenses. Such a way of representing the information 
should be familiar to students, because it is similar to the way the topic is 
taught in schools. Both light sources and lenses were given recognizable 
shapes. Examples of the representation of light sources, light beams, and 
lenses are shown in Figure 3-1 and Figure 3-3. 

 

3.2.2 Interface 

It was decided to make use of an attractive graphical user interface (GUI) 
that could be operated primarily by the computer mouse. This was done to 
simplify operating the computer simulation, and to promote students’ inter-
est in working with it. An important part of the visual appearance of a GUI 
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is the use of icons to represent possible operations in the learning environ-
ment (Macaulay, 1995). Three examples of icons that are used in the Optics 
simulation are shown in Table 3-1. In Appendix C, a complete overview of 
the available icons in the Optics simulation (divided into objects and tools) is 
given. The style of the Optics simulation interface is designed to be intuitive, 
so that mistakes are kept at a minimum. The icons that are used in the simu-
lation resemble the actual objects as they would appear in the real world. 
Also, the interface is designed to be as simple and uncluttered as possible, so 
that students are not overwhelmed by the multitude of options available 
(Jones & Okey, 1995).  

Table 3-1. Examples of icons and their function in Optics 

Icon Explanation 

 

 

Lens. This icon represents an object. When it is clicked, a lens can be 
placed in the working area of the simulation. The number of lenses 
that can be used simultaneously is limited. 

 

 

 

Lamp. This icon represents an object. When it is clicked, a lamp can 
be placed in the working area. The number of lamps that can be 
used simultaneously is limited. There are different types of lamps, 
with either one (laser)-light beam, three parallel light beams, or 
three divergent light beams. 

 

 

Measure distance. This icon represents an operation. When it is 
clicked, a distance between two objects in the working area can be 
measured. The distance measure stays in the working area, which 
means that when one of the objects is moved around, the measured 
distance changes as well. 

 

The whole learning process takes place within the Optics computer simula-
tion itself, no external aid (paper, pencil) is needed to work with the com-
puter program. The main features of the Optics simulation interface are 
summed up in Table 3-2, together with a short description of each feature. 
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Table 3-2. List of characteristics of the Optics interface 

Optics feature Description 

Colorful Interface makes use of colors to distinguish between objects 

Dynamic Updates are carried out in real-time, no ‘experiment’ button 

Point-and-click Operations are carried out by easy selection of objects 

Icon use Select object or operation by clicking on a recognizable symbol 

Windows-like Simulation features resemble the Microsoft Windows™ inter-
face 

Attractive Emphasis on visual appearance 

Multifunctional More than one way to perform some operations 

Animations Some events are embellished by animated features 

 

Figure 3-1 shows an example of the interface of the Optics computer simula-
tion interface. 

 

 

Figure 3-1. Example interface of the Optics learning environment. Divergent light 
rays are refracted in different ways by a lens. Distances are shown, as well as the 
focal distance of the lens (5.0 cm) 
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The interface consists of two parts. In the upper part icons that represent 
objects (that can be added to the simulation) and icons that represent opera-
tions (that can be carried out on objects in the simulation) are shown. The 
lower part of the interface consists of the working area. At first, this area 
only shows a flat (green) horizontal line on the screen. This is the principal 
axis (the ‘base line’) on which objects are placed; properties of these objects 
can subsequently be altered. All objects can also be removed from the work-
ing area (to allow new objects to be placed, for example). The example 
shown in Figure 3-1 is derived from a situation in the first study (presented 
in Chapter 5). The figure shows how light beams are refracted by a lens. This 
particular lamp has three laser-like light beams, each of which strikes the 
lens at a different angle. The focal point of the lens is shown underneath it 
(showing the focal distance of a lens is optional in the design of a learning 
situation). It is possible to manipulate the distance and properties of differ-
ent objects that are shown on the screen. In addition to manipulating objects 
themselves, the distances between objects can be measured; while moving 
an object, the measured distance is dynamically updated in the display. In 
the figure, the distance of the lamp to the lens and the distance between the 
lens and the point where the light beams converge are shown (the last point 
is marked by inserting a special construction line). By moving the lamp or 
the lens, or by changing the outgoing angle of the light beams, the occur-
rence of interesting regularities and irregularities in these measures can be 
explored. Findings can be noted down in an online notebook. This notebook 
displays the current situation in the working area, along with text that the 
learner types. The notebook is further discussed in Section 3.2.4. In Table 3-3, 
an overview is given of the operations that can be performed in the Optics 
simulation. As can be seen from the table, what can be done in the simula-
tion is limited to nine operations. However, since most of the operations op-
erate on one or more objects, the actual number of possible operations is 
very large. 

Table 3-3. Overview of operations in the Optics simulation 

Operation Objective 

Add Add an object to the working area 

Delete Delete an object from the working area 

Move Move an object around the working area 

Measure Measure the distance between two objects 

Rotate Rotate a light beam or a set of light beams 

Object tool Attach label to an object, for use in formula 

Formula Compute and display a relation between one or more objects 

Notebook Access the notebook feature 

View View instructions about the assignment or the interface 
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In Chapter 4, the method that was used to measure learning behavior in the 
empirical studies that made use of the Optics simulation is described. Two 
features of the Optics simulation, the first of which is visible in the interface, 
make it possible to register certain operations. Firstly, when an object is 
moved around any numerical values that are present in the working area of 
the Optics simulation are replaced by question marks, and are only made 
visible again when a ‘show values’ button is pressed. This makes it possible 
to register the moments when a student is interested in one or more values. 
Second, a difficulty with the Optics simulation is that it is possible for a stu-
dent to perform measurements by moving an object, performing the meas-
urement, and then to move the object to another position, continually keep-
ing the mouse button pressed. To register this type of behavior, instances of 
holding an object in one position for some time were also registered. 

 

3.2.3 Underlying model 

The underlying model follows the actual physical laws of light refraction 
through one or more lenses. The angle of refraction is computed such that 
the ideal properties of the lens are met, i.e. that for a positive lens a parallel 
bundle of light rays converges in a single focal point. By working with the 
environment it is possible to discover these laws. In physics texts, the charac-
ters, v, b, and f, are usually used to denote object distance, projection dis-
tance, and focal distance. Figure 3-2 shows a schematic description of the 
conceptual nature of v, b, and f in geometrical optics. Moving an object 
around changes the properties of v and b. By measuring distances between 
light sources and projections, the relation between these variables can be 
revealed. Important facts can be discovered about the differences between 
positive and negative lenses, and about the existence and position of the fo-
cal points of a negative lens. There is a quantitative relation between the fo-
cal point distance and the refraction of light beams through a lens.2 In addi-
tion, the relation between the order of magnification and object distances can 
be sought out. This relation is shown by the formula 

1) N=| 

b
v | 

                                                           

2 For the description of formulas in this section we made use of Hecht (1998). 
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N expresses the order of magnification. When N has a value between 0 and 
1, a projection is smaller than the projected object. When N is greater than 1, 
the projection is larger than the projected object. N is exactly 1 (no magnifi-
cation) when b and v are equivalent. In addition to the magnification for-
mula, it is possible (in principle) to discover the so-called Gaussian lens for-
mula. This formula specifies the relation between the distance of objects 
from a lens and focal distance of the lens. The Gaussian lens formula is ex-
pressed by the relation 

2) 
1
v  + 

1
b  = 

1
f   
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Figure 3-2. Schematic drawing of the properties of v, b, and f 

 

When measurement tools are used, the variable that is measured (such as 
the distance between two objects) is displayed as a quantitative value. With-
out measurement tools, qualitative relations between variables can be in-
ferred by varying the distance of objects from a lens, and by comparing dif-
ferent lenses. The magnification and general lens formulas represent the 
complete formal description of the optics domain as it is used in the Optics 
simulation. It might seem that the underlying model for the Optics simula-
tion is, at best, limited in its scope. However, we feel that this is not the case. 
Understanding the properties of the lens formula means understanding the 
properties of light through a lens. Under special circumstances, for example 
when v is smaller than f (which means an object is closer to a lens than its 
focal distance), a real image changes into a virtual one. From the formula, it 
can be seen that in such a case b holds a negative value. To discover these 
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properties from working with the computer simulation presents quite a chal-
lenge. In reality, we do not expect learners to find out all relations between 
objects in Optics at a quantitative level. As was explained in Chapter 2, 
learners are expected to get a global, qualitative understanding of the prop-
erties of the simulated model. In Chapter 4, a test for domain-specific 
knowledge about optics is introduced. This test operationalizes the ideas 
that have been put forward in Chapter 2 by focusing on qualitative aspects 
of knowledge. 

 

3.2.4 Learning support 

Scientific discovery learning with a computer simulation can be supported 
in various ways. This can be done, for example, through the use of specific 
assignments, by using some form of model progression, by guiding learners 
in their decisions, and by monitoring the behavior of learners and providing 
feedback (Swaak, Van Joolingen, & De Jong, 1998). 

In the experimental setting that the Optics simulation offers, learner support 
is kept at a minimum level. This so-called ‘bare bones’ approach was chosen 
for the following reason. As was explained in Section 1.1, the goal of this 
research project is to study the influence of determinants of scientific discov-
ery learning processes. To get an understanding of the influence of prior 
knowledge on discovery learning processes themselves, it is considered to 
be of importance to keep the processes that take place during discovery 
learning ‘clean’, that is, free from interfering influences, such as available 
support. In the first two studies that are described in this thesis, the support 
for learning in the Optics simulation that is given to learners is (apart from 
instructions about the Optics interface) limited to the availability of assign-
ments, and the ability to make notes while working with the learning envi-
ronment. In the study that is described in Chapter 7, the effect of (limited) 
online support is tested. In that study, a group of subjects can make use of 
information which they have available while they are working with the 
computer simulation. 

Here, we shortly discuss two types of support that are used in the Optics 
simulation: model progression and the online notebook. 
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Model progression. Different situations in Optics consist of different configu-
rations. This means that in each configuration, a different set of tools can be 
made available to learners. Also, for each configuration a different goal can 
be set, or an overall goal can be used. When model progression is used, there 
is an option that forces learners to work through the different situations in 
sequence. When a ‘forced sequence’ is used, a new situation in the simula-
tion is only made available to a learner after a certain amount of time has 
passed. In the experiments that made use of model progression (the Optics 
97 and Optics 99 studies), this option was used. The Optics 2000 study made 
use of only one situation. Possible configurations in Optics range from very 
simple to complex. At its most simple, the only available objects are a lamp 
with one light beam, and a lens. This is the type of situation that was de-
picted in Figure 3-1. A more complex type of situation is shown in Figure 
3-3. The special feature of this situation is that a big lamp (at the left) shines 
light through a plate that has holes in it (the holes in the plate form the letter 
L). The light through the plate is projected (by means of a lens) on a screen 
(at the right of the figure). This way, the properties of focused and unfo-
cused images can be examined. By using model progression, the learning 
situation can gradually be extended in its complexity. 

 

 

Figure 3-3. Situation in Optics, where a figure is projected through a lens on a 
screen 
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Online notebook. For the Optics simulation, an online notebook was devel-
oped which allows learners to make notes about their findings. The online 
notebook can be accessed while the simulation is running. In the notebook, 
the situation that is visible to the student in the working area at the time of 
making the note is visible. An example note is shown in Figure 3-4. In the 
figure, the top part shows the current situation in the Optics simulation. 
Current note number is shown at the bottom left, and text can be typed in 
the area at the bottom right Allowing learners to make notes while they 
work with the Optics simulation makes it possible for them to keep track of 
results that they have found. They can browse the notes they have made, 
and get a snap-shot of the relevant situation in Optics. In practice, the note-
book serves as a memory aid, which could possibly reduce cognitive load 
(Sweller, 1994). 

 

 

Figure 3-4. Notebook example in Optics. The note states ‘The object is positioned 
closer to the lens than the screen is, but still the image is sharp’. 
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3.3 Summary and conclusions 

In this chapter, an overview of the Optics computer simulation was given. 
The Optics simulation was developed for the studies that are described in 
the following chapters. Optics deals with the topic of geometrical optics. The 
underlying model and the interface of the computer simulation and the 
learner support that was used, were determined with the research goals in 
mind. This has implications for the instructional efficacy of the simulation. 
Because the goal of using the simulation was to enable us to study the influ-
ence of prior knowledge on discovery learning processes, a suitable topic 
with a simple underlying model was chosen. The interface was designed to 
be intuitive and easy to use. In the experiments, learner support was kept at 
a low level. The Optics simulation allows situations to be designed in which 
online support through model progression and an online notebook are used. 
Both of these types of support were used in the first two experiments. How-
ever, the configurations of Optics that were used in the experiments were 
not meant to provide an optimal and effective learning situation. Rather, the 
design was optimized for experimental study. This does not imply that the 
Optics simulation is not, in principle, suitable for learning about geometrical 
optics. When the simulation is suitably configured, it can be included as part 
of the standard physics curriculum. A curriculum into which the Optics 
simulation would be embedded, would involve using more guided assign-
ments, more levels for model progression, and feedback about the quality of 
experiments that are performed. 



 

4  
Experimental measures 

You know my methods. Apply them. 

Sir Arthur Conan Doyle, The Sign of Four (1890) 

 

4.1 Introduction and research questions 

In Chapter 2, the hypothesis was stated that the amount and quality of prior 
knowledge that learners have at their disposal can influence scientific dis-
covery learning processes. This idea is explored in the empirical studies that 
were carried out in this project. The Optics computer simulation that stu-
dents worked with in the experiments was described in Chapter 3. In these 
experiments, domain-specific and generic knowledge were measured before 
students started to work with the simulation. In some cases, knowledge was 
manipulated during the discovery learning task. In the present chapter the 
measurement of both types of knowledge is described. Also, the method that 
was used to measure learner-computer interaction in the empirical studies is 
discussed in the present chapter. 

Structure of this chapter. First, in this section an overview of the research 
questions will be given. By using the discussion on prior knowledge and 
discovery learning processes in Chapter 2, more detailed research questions 
can be stated than was the case in Chapter 1. In each of the experimental 
chapters further detail will be given. In Section 4.2, the ideas about prior 
knowledge and discovery learning that were discussed in Chapter 2 are put 
into practice, and the operationalization of domain-specific and generic 
knowledge is discussed. The knowledge tests that resulted from this opera-
tionalization were used in the empirical studies. In Section 4.3, the opera-
tionalization of learner behavior and the design of the analysis of Optics in-
teraction data are discussed. While students worked with the Optics simula-
tion, their interaction with the computer was measured. Data about the in-
teraction behavior of students was analyzed in order to find differences in 
discovery learning processes between groups of students. Considerations 
that led to using the method of online registration of interaction behavior (as 
opposed to other experimental methods, such as protocol analysis) are also 
discussed. 
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Research questions. The arguments that have been put forward in Chapter 2 
pose a number of questions. It was argued that from the perspective of the 
SDDS framework of discovery learning (and also the extended version of the 
framework), domain-specific knowledge and generic knowledge determine 
the configuration of the hypothesis search space which is traversed during 
learning. In our view, the search spaces that make up the hypothesis space 
are not static instances in a student’s mind, but have a dynamic nature in 
that they can change over time as a result of learning. One question is if and 
how discovery learning processes are regulated by the presence or absence 
of prior domain-specific and generic knowledge. To be more precise, the 
chapters that cover the empirical studies deal with the following research 
questions: 

1) Do the domain-specific and generic knowledge influence discov-
ery learning processes? Are there differences between the influ-
ence of domain-specific knowledge on the one hand, and generic 
knowledge on the other hand? 

2) Do domain-specific and generic knowledge influence the effectiveness of 
discovery learning? Does more prior knowledge lead to more successful 
discovery learning? 

3) Does the discovery learning behavior change over time? How is the 
strategy that is followed dependent on domain-specific and generic 
knowledge? 

These broad questions have served as a guideline for the design and per-
formance of the empirical studies that are described in the following chap-
ters. To measure students’ domain-specific and generic knowledge, tests 
were developed. In the following section, considerations that went behind 
the design of the tests are discussed. 

 

4.2 Measuring generic and domain-specific knowledge 

The empirical studies that are described in this thesis all made use of a test 
for generic and domain-specific knowledge. Over experiments different ver-
sions of the tests were used. The main thoughts that went behind the origi-
nal design of the tests are discussed in this section. 

 

4.2.1 Generic knowledge 

In Chapter 2, the concept of generic knowledge was explained. Generic 
knowledge encompasses knowledge that is needed to recognize and work 
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with numerical and graphically depicted relations between two or more 
variables. Knowledge of mathematical relations means for instance knowl-
edge about the behavior of relations, like asymptotes and periodic relations, 
and knowledge that a linear relation is also a monotonic relation. Thus, ge-
neric knowledge encompasses all knowledge that is needed to understand 
qualitative or quantitative relations in a very general sense. Mathematical 
relations can be represented in various ways, for example, as points in a 
graph, in a formula, or in generic terms such as ‘monotonic decreasing’ or 
‘exponential’. Knowledge about different types of relations can exist at vari-
ous levels. Van Joolingen and De Jong (1997) state that a main distinction 
can be made between qualitative and quantitative relations, with knowledge 
on a qualitative level (e.g., ‘A and B are related in some way’) being less pre-
cise than knowledge on a quantitative level (e.g., A = 2 B). A higher level of 
generic knowledge implies that more understanding of quantitative rela-
tions exists, and thus a better ability to understand these relations. Knowl-
edge about the type of relation that exists between two or more variables is 
needed to be able to state a hypothesis (either qualitative or quantitative) 
about it. Also, to understand relations that are implied by experimental find-
ings, knowledge about the type of relation they represent is necessary. When 
findings from a series of experiments are plotted in a graph, generic knowl-
edge is needed to understand the mathematical relation that is depicted. For 
example, if experimental findings point to an exponential relation between 
two variables, generic knowledge is needed to recognize the presence of 
such a relation to understand the implications. Goldenberg (1988) has noted 
that students often experience difficulty in interpreting what they see in a 
graph, and that this can cause them to induce wrong relations.  

The considerations that are discussed here led to the creation of a test for 
generic knowledge. The test items were inspired by two tests for ‘scientific 
processing’: TIPS II (Test of Integrated Science Process Skills II; Burns, Okey, 
& Wise, 1985) and TOGS (Test of Graphing in Science; McKenzie & Padilla, 
1986). Although all test items used a multiple-choice format, the items 
tapped various abilities. In Figure 4-1, three example items from the test for 
generic knowledge that was used in the Optics 99 experiment are shown.1 In 
the figure, item 1 refers to a quantitative relationship between two variables 

                                                           

1 The items that are shown were translated from Dutch. The complete test for generic 
knowledge is shown in Appendix A. 
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X and Y. The relationship is represented in numbers. Item 2 also uses num-
bers to represent a relationship between two variables A and B, but the ques-
tion refers to the qualitative relationship between the variables. Item 3 uses a 
diagrammatic presentation to depict a relationship between X and Y, and 
the question refers to a qualitative relationship between the variables. Each 
variation of a question (qualitative/quantitative/diagrammatic relationship 
represented, qualitative/quantitative question asked) was used a number of 
times in the test.  

 

1. Which function is schematically described by X and Y in the table? 

X Y  Answer 

1 1 

2 1,4142 

 

� Y = 
1
2 X + 1 

3 0,7321… 

4 2 

 
� Y = 

1
X2  

   
   � Y = 

1
X  

   ■ Y = X  

 
2. The table shows for some values the relation between variables A and B. Which 
description on the right best summarizes this relation? 

A B  Answer 

10 4  � The more A increases, the slower B increases 
20 8  � When A is zero, B is also zero 
30 16  � The more A decreases, the faster B decreases 
60 64  ■ The more A increases, the faster B increases 
100 1024   

 

3. 
What type of function describes a  
line that goes through all the 
points in the graph on the left? 
� A quadratic function 
� A function with an asymptote 
■ A monotonic decreasing func-
tion 
� A logarithmic function 
 

Figure 4-1. Example items from the generic knowledge test. Correct answers are 
made black in the figure. 

-6

-4

-2

0

2

4

6

8

10

-3 -2 -1 0 1 2 3

X

Y



Experimental measures 61 

 

 

 

 

4.2.2 Domain-specific knowledge 

Domain specific knowledge is defined as knowledge about the existence and 
characteristics of variables and relations in a domain. For example, in the 
domain of geometrical optics this would entail knowledge about the exis-
tence of focal points, and knowledge about the variables that a focal point 
relates to (such as focal distance). A student’s level of domain-specific 
knowledge can be tested for in a number of ways. Usually, a distinction is 
made between open-ended questions and multiple-choice questions. How-
ever, in the context of scientific discovery learning with the Optics simula-
tion, the test that was developed to measure domain-specific knowledge dif-
fered on a number of characteristics from a standard test. The reason for us-
ing a different type of domain-specific knowledge test is based on findings 
of research on effects on knowledge of discovery learning. In a large number 
of studies it has been argued that discovery learning has important advan-
tages over the classical expository kind of teaching (Banger-Drowns, Kulik, 
& Kulik, 1985). The idea is that the knowledge structure acquired in active 
learning is qualitatively different from the knowledge that is acquired in 
other kinds of learning contexts. For example, Ausubel (1963) argues the fol-
lowing about meaningful discovery learning: 

‘When the learning task is more difficult and unfamiliar, autono-
mous discovery probably enhances intuitive meaningfulness by in-
tensifying and personalizing both the concreteness of experience and 
the actual operations of abstracting and generalizing from empirical 
data.’ (1963, p. 143) 

A few decades before Ausubel made this statement, Vygotsky (1987) had 
already argued that ‘Pedagogical experience demonstrates that direct in-
struction in concepts is impossible. It is pedagogically fruitless’. The special 
properties of the knowledge acquired in discovery learning situations are 
referred to in a number of ways in the literature. The knowledge that results 
from discovery learning is either considered to be intuitive (Fischbein, 1987; 
Lindström, Marton, Ottosson & Laurillard, 1993; Swaak & De Jong, 1996), 
implicit (Berry & Broadbent, 1988), contextual (Tennyson, 1990; Elmore & 
Tennyson, 1996), functional (Leutner, 1993), or tacit (Wagner & Sternberg 
1985; 1986). It is generally agreed that the knowledge that results from dis-
covery learning is different from learning in an expository context in the 
sense that the knowledge is deeper rooted and more flexible (Bruner, 1974; 
Wittrock, 1966), more readily viable (Bruner, 1961), more qualitative (Peter-
son, Junck, Sharp, & Finzer, 1987), more contextual (Tennyson & Rasch, 
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1988), leads to enhanced transfer (Bruner, 1974), and encourages reflective 
thinking (Norman, 1993). 

Thomas and Hooper (1991) have argued that most knowledge tests that are 
used to measure the effect of simulations ask for the wrong things. Instead 
of asking for definitions that require recalling information, tests should try 
to measure ‘transfer and application’. Developing new ways of assessing 
abilities is also a point of argument for Grabinger (1996), who speaks in this 
respect of the ‘more realistic and holistic form’ that assessment must take in 
general (p. 667). To this end, Swaak and De Jong (1996; also see Swaak, 1998) 
have developed a test, called the ‘what-if’-test that aims at measuring intui-
tive knowledge. The test finds its origin in a dissatisfaction with the link be-
tween the context of learning in a discovery situation and the methods that 
have been used to assess resulting qualities of domain-specific knowledge. 
Swaak and De Jong argue that the quality of knowledge that results from 
discovery learning is not the same as knowledge that results from learning 
in a more expository context, and that a standard test cannot provide a valid 
measure of domain-specific knowledge. 

The main idea behind the ‘what-if’-test is the notion that the knowledge that 
is constructed by learners when they work with a discovery learning envi-
ronment has a special, intuitive, quality, which can be characterized as com-
prising ‘quick perception of meaningful situations’ (Swaak and De Jong, 
p. 346). The test items that were developed by Swaak and De Jong try to tap 
this knowledge by offering a meaningful2 situation and asking for a quick 
evaluation of a change in this situation. Also, the items use only simple 
words and short phrases, and technical terms are generally avoided. Before 
a what-if test is administered, students are asked to balance their speed of 
answering with the correctness of the (multiple choice) items, that is, they 
are asked to answer the items as fast as possible, but still correctly. Adminis-
tering a what-if test yields data on the answers to the test items, and data on 
the time taken to answer an item. 

The test for domain-specific knowledge that was developed for this research 
project, and that was used in the Optics 97 experiment, closely followed the 
format that was introduced by Swaak and De Jong. 

 

                                                           

2 ‘Meaningful’ here refers to the context of the computer simulation that students 
work with. 



Experimental measures 63 

 

 

 

 

 

Figure 4-2. Example what-if test item from the Optics pretest (explanation in text) 

 

The items used a three-answer multiple choice format, and for all items a 
similar design was used. Figure 4-2 shows an example of a what-if test item 
as it was used in the Optics 97 experiment (for the present thesis, the figure 
was edited a little in order to fit). As can be seen from this example, the 
items picture a situation that can occur in the actual learning environment. 
In this case, the question states, ‘If we replace the lens [that is used in this 
situation] by a weaker one, how should we then move the screen [on which 
the object is projected] to get a sharp picture?’. The answer possibilities are: 
1) further from the lens, 2) closer to the lens, and 3) position should remain 
the same. Other items used the same kind of configurations, and some items 
used configurations with two lenses. Items were presented in random order: 
at the moment learners picked the answer of their choice, the item would 
disappear and the next (random) item appear. It was not possible to go back 
to a previous question after it had been answered. In the empirical studies, 
what-if tests were used both as tests for prior domain-specific knowledge 
and as posttests. In the Optics 99 and Optics 2000 studies, the test was modi-
fied in a number of ways to increase variation and reliability. The complete 
domain-specific knowledge test that was used in the Optics 2000 experiment 
is shown in Appendix B. 
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4.3 Measuring learner behavior 

 

A man, who is a heavy drinker, doesn’t feel too well and goes to 
visit his doctor. The doctor says, “You drink too much. To begin with, 
you should reduce your daily alcohol intake by ten glasses of beer. In 
two months we’ll see if your condition gets any better.” To which the 
man replies: “Can’t I instead drink ten glasses more every day, and see 
if it gets any worse?” 

Dutch Joke Calendar, June 16th 2000 

 

The joke that is printed above, though admittedly a bit corny, neatly illus-
trates an important methodological problem: what is the best way to search 
for experimental effects? The use of the Optics computer simulation allows 
us to study discovery learning processes in a variety of ways. It was chosen 
at an early stage to focus on the operations that learners perform while they 
work with the learning environment. The studies that are reported in this 
thesis measure discovery learning behavior by an online registration of op-
erations. This provides an unobtrusive behavioral measure. Although the 
data that is obtained by using registration of operations is less ‘rich’ than 
verbal data, cognitive processes can be inferred by combining different 
methods. The topic of the current section is firstly, the method by which 
learner operations were registered in the empirical studies, and secondly, 
how this data was subsequently analyzed.3 Our reason for discussing the 
analysis of learner behavior in such detail, can be succinctly summarized by 
citing Schoenfeld (1992), who states that 

‘Researchers putting forth new methods, or results based on new 
methods, have a responsibility to explain the methods—to describe 
where they come from and how they can be used, and to characterize 
their strengths and limitations (p. 181).’ 

The most commonly used measures to study learner-computer interaction 
are think-aloud protocols and online recorded behavior (Newell & Simon, 
1972). The use of thinking-aloud protocols has a long history in research on 

                                                           

3 The discussion that is related in this section can be applied to the Optics simulation, 
but also to the other computer programs that were used throughout the empirical 
studies that are described in this dissertation, because they registered learner behav-
ior in a similar way. This implies that parts of the discussion also apply to the Bub-
bles simulation (described in Chapter 5), and the Peter task (described in Chapter 6). 
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higher mental processes (e.g., problem solving). Think-aloud data has 
proven to be extremely useful, since it carries a wealth of information on the 
way people reason about a problem, and about the specific cognitive steps 
that are performed during the interpretation and solving of a task. However, 
in the case of computer simulations, studying learning processes through the 
method of thinking-aloud measures can be a less appropriate research 
method (De Mul and Van Oostendorp, 1996). For example, it is not possible 
to study a classroom learning situation this way. Also, learning processes in 
the artificial setting of the laboratory may differ from learning in a normal 
classroom setting.  

In the studies that are presented in this thesis, protocol analysis was not 
used. Instead, all actions students performed while they worked with the 
Optics computer simulation were registered by the computer. This means 
that all button presses (that is, clicking on one of the mouse buttons) were 
recorded, together with the offset time in seconds (a timer started as soon as 
the student started working with the simulation). 

 

4.3.1 Overview of learner-computer interaction analysis 

The analysis of learner-computer interaction poses a number of problems, 
some of which may until now not have been given fair credit in the litera-
ture. One reason for this lack of attention is that the analysis of learner-
computer interaction in complex learning environments, through the online 
recording of actions, is a relatively new phenomenon. The complexity of the 
task makes interpretation of interaction data a complex affair. We will illus-
trate this by focusing on two studies, which, though very different in nature, 
have both drawn conclusions about discovery learning. Firstly, we look at 
the BigTrak study by Klahr and Dunbar (1988), which was also discussed in 
Chapter 2, and which is interesting for our purpose because of its task con-
straints which facilitate the interpretation of student behavior. Secondly, we 
look at the Smithtown study by Shute and Glaser (1990), in which a complex 
computer simulation was used to study differences between successful and 
unsuccessful learners, and which used learner-computer interaction meas-
ures to do so. 

In the BigTrak study by Klahr and Dunbar (1988), described in Chapter 2, 
the distinction between two strategies in discovery learning (experiment or 
hypothesis based) was grounded in the way subjects came up with the right 
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hypothesis (which involved making a ‘frame-shift’): either by use of an ex-
periment that pointed in the right direction, or just by coming up with the 
idea to make a change of frame. Thus, Klahr and Dunbar based their distinc-
tion on the experimental actions that led a learner to a specific conclusion 
about the underlying rule. In their case, it was possible to do this because the 
complete experiment space of the BigTrak ‘environment’ could be described, 
with each possible experiment falling into a subset of experiment space. The 
actual frame shift involved either doing an experiment in a new subspace 
and reaching the right conclusion (the experimenter approach) or reaching 
the right conclusion without having done any experiments in the ‘right’ sub-
space (the theorist approach). 

What the BigTrak experiments by Klahr and Dunbar make clear is that in 
order to be able to make distinctions between different styles of learning, it 
is useful to have a thorough overview of the experimental domain, that is, 
the dimensions of experiment space and the actions that are possible within 
the domain. However, the domains that are normally used to teach a subject 
are very much unlike the (relatively) simple4 BigTrak domain. First, there is 
usually not one rule to discover, but a (complex) set of interrelated rules. 
Second, the domains themselves offer a lot more possibilities for interaction, 
and the number of variables that can be manipulated is larger. 

Shute and Glaser (1990), in their study with the (also relatively complex) 
Smithtown domain, were able to derive global learner differences on the 
basis of learner interaction measures, and without a thorough analysis of the 
domain itself. The analysis pursued by Shute and Glaser focused on the 
large-scale extraction of clusters of interaction patterns. Their method was to 
take operations together (called ‘learning indicators’) to distinguish between 
global processes that take place during learning. The learning indicators 
were derived from both log files and protocols, and they all had to do with 
the number of times a certain operation was carried out (that is, its raw fre-
quency). They were loosely categorized into three types of ‘rational catego-
ries’: general activity level (e.g., total number of experiments), data man-
agement skills (e.g., total number of notebook entries), and thinking and 
planning behaviors (e.g., number of variables changed per experiment). The 
categorization of learning indicators is subject to doubt, the main problem 
being that the categories were too broadly defined. The approach by Shute 

                                                           

4 ‘Simple’ here refers to the relatively small experiment space of the BigTrak domain, 
and the fact that only one underlying rule had to be discoverer. Overall, there ap-
pears to be no clear dividing mark between simple and complex simulation envi-
ronments. 
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and Glaser can be summarized as involving 1) counting frequencies of ac-
tions, 2) categorizing them into ‘meaningful’ units, and 3) making compari-
sons across groups (which, in the case of Shute and Glaser’s experiments, 
was done without the use of statistical methods of analysis). The approach 
by Shute and Glaser can be helpful to compare groups of subjects at a global 
level. However, it can also be a misleading approach, because differences 
between learners can even each other out. When good and poor learners are 
compared, other factors such as domain-specific and generic prior knowl-
edge may have influenced learner interaction. In addition, differences be-
tween groups as they occur over time are ignored by this approach. 

So far, the discussion of learner-computer interaction has centered on prop-
erties of the task domain (BigTrak versus more complex discovery learning 
environments), and properties of interaction analysis (Shute and Glaser’s 
‘learning indicators’). In the remainder of this section we discuss a more ge-
neric approach to the analysis of interaction in discovery learning. 

There are roughly two types of analysis of log files. These are frequency-based 
analysis, and sequence-based analysis. In a frequency-based analysis, the total 
number of all operations is counted, that is, the frequency of occurrence of 
each possible operation in the learning environment is determined. The fre-
quencies of operations can be compared within subjects as well as among 
subjects. Frequency data provides information on the overall activity of 
learners, as well as on the global focus of learning. Sequence-based analysis 
goes deeper than frequency-based analysis into the actual processes that 
take place during learning. It focuses on finding sequential patterns that oc-
cur in log files, and thus focuses on behavior as it unfolds through time (see 
Bakeman & Gottman, 1997; Bakeman & Quera, 1995). A basic assumption in 
sequence-based analysis is that certain operations are more likely to follow 
one another than other operations. This can be checked by determining con-
ditional probabilities for sequences of operations (see Karasavvidis, 1999, for 
an explanation of this procedure). Sequential data provides information 
about the learning process at a higher level than that of individual opera-
tions. Thus, the unit of analysis in sequence-based analysis lies at a higher 
level than in frequency-based analysis. However, the distinction between 
frequency-based and sequence-based analysis does not necessarily have to 
be as sharply defined as the descriptions given here. One way in which both 
types of analysis can be combined is when frequencies of sequences of op-
erations are studied. We argue that this is a method that adds up the advan-
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tages that each of the two methods has on its own. In addition, an analysis 
that looks at frequencies of behavioral patterns can provide an account of 
what happens during learning, which helps in coping with a number of 
problems that occur in the extraction of relevant data from raw log files. In 
the analysis of interaction patterns in the Optics computer simulation, most 
of the time a frequency-based approach was used. However, in a few cases a 
frequency-based approach was combined with a sequence-based approach. 
The way this was implemented in the analysis of the empirical studies is 
discussed in the following section. 

 

4.3.2 Learner-computer interaction analysis in the Optics studies 

The operations that were performed in the Optics simulation and the time at 
which they occurred, were stored by the computer simulation in a log file. 
The raw (that is, unformatted) log file that resulted from a learning episode 
in which a learner worked with the Optics simulation can be seen as a con-
tinuous stream of individual operations performed in the learning environ-
ment. In the Optics simulation, raw log files included information about the 
values of variables, the general state of the learning environment, and the 
time (in seconds) when an operation was initiated. An overview of possible 
operations in the Optics simulation is listed in appendix C and in Chapter 3 
(Section 3.2.2). In the present section the analysis of Optics interaction data is 
illustrated by examining a short excerpt of an actual log file (the excerpt was 
chosen as a typical example of data from the Optics 97 study). In Figure 4-3 a 
short excerpt of a log file for one subject is shown. In the excerpt, a number 
of operations are performed: after everything is deleted from the working 
area, a lamp is added, its light beam is rotated, a help text is viewed, and 
finally a lens and a screen are added to the working area at different posi-
tions. All these operations together take place in less than 50 seconds (the 
excerpt begins at 478 seconds, and ends at 524 seconds). 
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@(478.0, action(delete_all)). 
@(490.0, mode(one_lightbeam)). 
@(492.0, 
  add(l2 = lamp3(switch(true), 
   angle(80), 
   divergence(5), 
   pos_x(3), 
   pos_y(0.1), 
   instrument_name(one_lightbeam)))). 
@(493.0, mode(rotlamp)). 
@(495.0 - 498.0, 
  rotate(l2, 
  [ @(0.0, drag(-2.00955)), 
    @(1.0, drag(-0.498212)), 
    @(2.0, drag(0.498212)), 
    @(3.0, drag(0)) 
  ])). 

. 

. 

. 
@(521.0, mode(screen)). 
@(524.0, 
  add(s5 = shield(pos_x(7.65), 
    unit(1), 
    instrument_name(screen)))). 

Figure 4-3. Excerpt from an Optics log (a ‘raw’ log file, translated from Dutch). 
Explanation given in text 

 

As can be seen from the figure, a lot of information (time, type of operation, 
operation parameters) is stored in a condensed format in a log file. The 
number of possible operations in the simulation was limited, but each opera-
tion used its own set of parameters. In Table 4-1, the operations that occur in 
the log file excerpt are listed together with the type of parameters that go 
with each operation.  

 

 

 



70  Prior knowledge and discovery learning processes 

 

 

Table 4-1. Sample of operations and their parameters in the Optics simulation 

Operation Parameter(s) 

Add, Delete, Move Object type, Object label, end x,y-position 

Drag Object label, distance 

Rotate Object type, Object label, number of degrees 

Check values -- 

Action General action type (e.g., delete all objects) 

View Instruction type 

 

As can be seen from the table, the VIEW operation included a parameter for 
the type of instruction that was (re)viewed by the student. Other operations, 
notably ADD, DELETE and MOVE, could only be performed on one of the ob-
jects in the working area, which means that the specific object on which the 
operation was performed was a parameter for that operation. 

To be able to analyze log files, they first had to be converted to a format that 
was easier to handle within different computer tools. The important thing in 
converting the log data to a numeric format was that as few information as 
possible should be lost in the conversion process. In converted data, some 
specific information that was not in the original log data was added, such as 
a number given to students, and the duration of operations. Figure 4-4 
shows an example of a converted Optics log file. The data that is shown in 
the figure is a conversion of the excerpt that is shown in Figure 4-3. 

 

17  2  1     77    478     -1      0    4  4 -1 -1  -1.00  2   -1   -1.000   -1   -1.000 -1 -1   -1   -1   -1 -1 -1   -1   -1 -1 -1   -1   -1   -1   -1  -1.00  -1.00   -1   -1

 17  2  1     78    490     -1      0   12  2 -1 16  -1.00 -1   -1   -1.000   -1   -1.000 -1 -1   -1   -1   -1 -1 -1   -1   -1 -1 -1   -1   -1   -1   -1  -1.00  -1.00   -1   -1

 17  2  1     79    492     -1      0    2 13 -1 -1  -1.00 -1   -1   -1.000   -1   -1.000 -1 -1   -1   -1   -1 -1 -1   -1   -1 -1 -1   -1   -1   -1 1002   3.00   0.10   -9   -9

 17  2  1     80    493     -1      0    1  2 -1 17  -1.00 -1   -1   -1.000   -1   -1.000 -1 -1   -1   -1   -1 -1 -1   -1   -1 -1 -1   -1   -1   -1   -1  -1.00  -1.00   -1   -1

 17  2  1     81    495    498      3    2 12 -1 -1  -1.00 -1   -1   -1.000   -1   -1.000 -1 -1   -1   -1   -1 -1 -1   -1   -1 -1 -1   -1   -1 1002   -1  -1.00  -1.00   -1   -1

 17  2  1     82    500    514     14    2  1  3 -1  -1.00 -1   -1   -1.000   -1   -1.000 -1 -1   -1   -1   -1 -1 -1   -1   -1 -1 -1   -1   -1   -1   -1  -1.00  -1.00   -1   -1

 17  2  1     83    517     -1      0    3  2 -1 10  -1.00 -1   -1   -1.000   -1   -1.000 -1 -1   -1   -1   -1 -1 -1   -1   -1 -1 -1   -1   -1   -1   -1  -1.00  -1.00   -1   -1

 17  2  1     84    520     -1      0    3 13 -1 -1  -1.00 -1   -1   -1.000   -1   -1.000 -1 -1   -1   -1   -1 -1 -1   -1   -1 -1 -1   -1   -1   -1 2006  13.70  -9.00   -9   -9

 17  2  1     85    521     -1      0    1  2 -1 19  -1.00 -1   -1   -1.000   -1   -1.000 -1 -1   -1   -1   -1 -1 -1   -1   -1 -1 -1   -1   -1   -1   -1  -1.00  -1.00   -1   -1

 17  2  1     86    524     -1      0    3 13 -1 -1  -1.00 -1   -1   -1.000   -1   -1.000 -1 -1   -1   -1   -1 -1 -1   -1   -1 -1 -1   -1   -1   -1 5005   7.65  -9.00   -9   -9

Subject
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Figure 4-4. Optics log file, converted to a format ready to be processed 
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Log files of the type presented in Figure 4-4 were processed (using a special 
text processing language) in order to convert them to a more usable format.5 
In the converted version of a log file each operation is treated separately on 
one line. As can be seen from the figure, extra information that is given with 
each operation is the subject number, the experimental session number, the 
starting and ending time of the operation, and details about the operation 
itself (type of operation, and parameters). Two things were not used in the 
conversion process: the DRAG operations (that are themselves part of MOVE 
operations, and that refer to an object being dragged on the screen in differ-
ent directions without a release of the mouse button), and the content of 
notebook entries. Notebook entries were extracted from the raw log files. By 
using the format as specified in Figure 4-4, a frequency-based analysis be-
came a relatively simple procedure. Since each column maps to a specific 
operation, the main task in this case was to check the frequency of numbers 
in the columns in the matrix of numbers. The values of different groups of 
learners could be combined to enable group comparisons of frequencies. In 
the following chapters, this procedure is used. 

Next to frequency-only based analysis, learner-computer interaction was 
analyzed by checking the frequency of particular sequences of operations. 
This means that a combination of frequency-based and sequence-based 
analysis was used. The goal was to look for patterns in the learner-computer 
interaction data that could be linked to the theory of scientific discovery 
learning. A pure sequence-based analysis (which looks for any pattern that 
occurs with a higher-than-chance regularity) was not performed. With re-
spect to the behavioral patterns that were devised, we made a distinction 
between qualitative and quantitative sequences of operations. The experi-
mental behavior displayed by learners in the Optics simulation usually in-
volves adding objects to the working area, moving them around, and delet-
ing them after some time. This behavior can be classified as qualitative, be-
cause the data that is obtained by working in this way does not carry nu-
meric information. Qualitative sequences of operations that can be distin-
guished are: 

                                                           

5 The Perl script language was used to convert the Optics log files. Initial program-
ming of the conversion scripts was carried out by Hedderik van Rijn. Correctness of 
the mapping between the raw log files and the converted files was checked by a stu-
dent-assistant for the occurrence of any mistakes: none were found. 
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1) Move object A, move object B, then move object A again 

2) Add object A, and delete object A (immediately) 

In this list, objects A and B can be either a certain lamp or a type of lens. Ex-
perimental, qualitative behavior, can be opposed to behavior which aims at 
obtaining quantitative information about the relations between objects in the 
working area. This can be done by adding distance measures that can be 
checked. When an object in the working area is moved, displayed values are 
changed by the simulation into question marks. By performing a CHECK VAL-

UES operation the numbers reappear. This configuration of the learning 
environment allows for quantitative operations to become visible in the Op-
tics simulation log file. Quantitative sequences of operations that can be 
distinguished are: 

1) Add a distance measure between two objects, then delete it 

2) Add a (vertical) construction line, then add a distance measure be-
tween it and an object 

3) Move an object (values change to question marks), then check values 

In summary, analysis of the interaction with the Optics simulation can be 
performed by looking at the operations that students perform while they 
work with the simulation. To do this, raw log files can be converted to data 
that can be further processed. This allows for a frequency-based analysis to 
be carried out. The interaction analysis will also focus on frequencies of 
(short) sequences of operations, which can be classified as having a quantita-
tive or qualitative nature. In the empirical studies that are the topic of the 
following three chapters, the methods that have been described in this chap-
ter will be applied in the context of the Optics computer simulation. 



 

5  
Optics 97: The influence of domain-specific and 

generic knowledge on the learning process in 

two discovery learning environments 

 

5.1 Introduction 

This chapter reports on the first study that was carried out in the context of 
this research project.1 In this study, the discovery learning process is studied 
in the context of two computer simulations. The goals of the present study 
were stated in Chapter 4. Overall, the goal is to get insight into the role of 
prior domain-specific and generic knowledge on discovery learning. To this 
end, students worked for some time with two computer simulation learning 
environments, one of which was the Optics learning environment (as de-
scribed in the Chapter 3), and the other a simulation on a fictitious subject. 

The previous chapters have respectively dealt with the use of computers in 
education, the dual-space theory of discovery learning, a description of the 
Optics computer simulation, and an overview of measurements that are 
used in the context of this research project. The current study presents an 
attempt to gather information on the discovery learning process in the con-
text of the Optics computer simulation. In this section the purpose of the 
study and expectations about the outcomes are discussed. Following that, in 
the method section the experimental context of this study is described in 
detail. A complete description of the Bubbles computer simulation that was 
used in conjunction with the Optics simulation in this study is also given. 
Student interaction processes are reported on globally as well as in more 
detail, and discovery learning processes of groups of poor and high perofr-
mance on the prior knowledge test measures are compared. Finally, the find-
ings of the study are discussed. In Chapter 8, findings from this study are 
combined with those of the other empirical studies. 

 

 

                                                           

1 The experiment that is described in this chapter was earlier reported in Hulshof, De 
Jong, and Van Joolingen (1998).  
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5.1.1 Purpose of the current study 

One goal of the discussion in Chapter 2 was to make clear the influence of 
both domain-specific and generic knowledge on scientific discovery learning 
processes. As we have shown, it can be fruitful to describe this influence in 
terms of the SDDS (scientific discovery as dual-space search) framework that 
was developed by Klahr and Dunbar (1988). The purpose of the study we 
present here was to relate prior knowledge to interaction behavior in work-
ing with a discovery learning environment. For this purpose we used two 
different learning environments. The largest difference between these learn-
ing environments lies in their relation to the real world. As was discussed in 
Chapter 3, the Optics computer simulation utilizes the real-world topic of 
geometrical optics. The main consideration for designing the Optics discov-
ery learning environment was that students were expected to vary in how 
much they would know (or remember) about the subject of geometrical op-
tics. To test this expectation, prior domain-specific knowledge about optics 
was measured in the experiment. The other learning environment that was 
used, Bubbles, is different in this respect, because its domain is fictitious 
(that is, the variables and relations between them have no bearing in the real 
world). In this sense, this learning environment resembles the Detonlab en-
vironment that was used in a number of studies by Veenman (1993, also see 
Veenman, Elshout, & Hoeks, 1993, and Veenman, Elshout, & Meijer, 1997). 
Because the underlying rules of the simulation did not represent a real-
world domain, students could not have prior domain-specific knowledge 
about this environment. This implied that, by way of instruction, the amount 
of domain-specific prior knowledge subjects would have when they started 
working with the learning environment could be controlled to some extent. 
To manipulate domain-specific prior knowledge, two different instructions 
sets were created, a normal instruction and an ‘enriched’ instruction. The 
latter contained some extra domain-specific information about the underly-
ing rules. 

All interaction behavior with the simulation, including the content of notes 
made during a learning session, was recorded, and written to a disk drive. 
The complete procedure has been explained in detail in Chapter 4. It was 
expected that analysis of the the learner-computer interaction behavior in 
the two learning environments would lead to insight in the influence of 
prior domain-specific and generic knowledge on discovery learning behav-
ior. In the study, prior knowledge test measures are used to divide students 
into groups of poor and high knowledge. In addition, comparisons can be 
made based on performance in the learning environments, as measured by 
posttests. Similar to Shute and Glaser’s (1990) experiment with Smithtown, it 
was expected that the latter type of analysis would provide information on 
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the learning processes that lie behind good versus poor performance on 
these tests. 

 

5.1.2 Research questions and expectations 

We can distinguish between two types of expectations that we hold with 
respect to the present experiment. First, it is important to note that we do not 
expect students to improve very much in their domain-specific knowledge 
from pretest to posttest in the Optics environment, because the process of 
discovery learning in the simulation proceeds mostly unguided. In this 
study, discovery learning is only supported by the use of (general) assign-
ments, the structuring of the learning environment (as explained in the next 
section), and the ability to use an online notebook. We do expect any im-
provement that takes place to be partly dependent on generic knowledge, as 
well as prior domain-specific knowledge. Furthermore, we expect perform-
ance in the Bubbles environment to be correlated with improvement in Op-
tics, independently of prior knowledge about optics, and to performance on 
the generic knowledge test. We also expect a difference in performance in 
the Bubbles environment between the normal instruction group and the 
group that received an enriched instruction, with the latter performing bet-
ter on a knowledge posttest. 

Second, we expect learners to differ from each other in their learning behav-
ior. These differences should be related to the amount of domain-specific 
and generic knowledge they possess. With respect to the dual-space search 
theory we expect different experiment-search and hypothesis-search se-
quences. A distinction can be made between four different groups: 1) high 
domain-specific knowledge and high generic knowledge, 2) poor domain-
specific knowledge and high generic knowledge, 3) high domain-specific 
knowledge and poor generic knowledge, and 4) poor domain-specific 
knowledge and poor generic knowledge. We expect subjects in the first 
group to display hypothesis oriented discovery behavior. They will start 
with searching Hypothesis space and search Experiment space only to test 
their hypotheses. Subjects in the second group will start with searching Ex-
periment space, but after this initial period will show Hypothesis space 
search and systematic behavior. Subjects in the third group will show a con-
stant switching between Hypothesis space and Experiment space, since they 
have no knowledge which can help them to find the right relation between 
variables. Subjects in the fourth group necessarily start with searching Ex-
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periment space, since they do not know the important variables involved. 
Since they lack generic knowledge, they will have difficulty switching to 
Hypothesis space, resulting in unsystematic experimentation behavior. 

For the Bubbles environment we expect the group that receives a normal 
instruction to differ from the group that receives an enriched instruction. 
The latter will have more domain-specific knowledge, and we expect learn-
ers in this group to do better experiments and to perform better on the post-
test. 

 

5.2 Method 

 

5.2.1 Experimental setup 

In the present experiment, secondary school students worked with two 
computer discovery learning environments. The learning environments that 
were used are the Optics simulation, which was explained in detail in the 
previous chapter, and another learning environment, called ‘Bubbles’. The 
latter environment, which was only used in this study, will be explained in 
detail in this section. 

The types of knowledge that were measured or manipulated in this study 
are depicted in Table 5-1. This design allowed a direct assessment of the 
influence of domain-specific and generic knowledge. As can be seen from 
the table, generic knowledge was only measured, but domain-specific 
knowledge was measured (for the Optics environment) as well as 
manipulated (for the Bubbles environment).  

Table 5-1. Setup of the Optics 97 experiment 

 Optics Bubbles 

domain-specific knowledge manipulated - √ 
domain-specific knowledge measured √ - 

generic knowledge manipulated - - 

generic knowledge measured √ √ 

 

Generic knowledge was measured prior to working with the learning envi-
ronments, by a test that assessed generic knowledge. Domain-specific 
knowledge about geometrical optics was also measured prior to working 
with the environments. The generic knowledge test was a paper-and-pencil 
test that followed a multiple-choice format. The optics domain-specific 
knowledge test followed a what-if format, which was explained in detail in 
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Chapter 2. Answers on the test, as well as time to answer (in seconds) were 
recorded for this test. 

Domain-specific prior knowledge on the Bubbles environment was manipu-
lated by providing about half the subjects with an enriched instruction. Per-
formance in both learning environments was measured afterwards with 
knowledge posttests. 

 

5.2.2 Simulation domains 

This section is devoted to a description of the computer simulations that 
were used in this study. An attempt was made to make the look and feel of 
both as similar as possible. Of course, because of their very different subject 
matters, there were differences between the environments in some of the 
available controls; where possible, however, the same icons were used to 
indicate similar actions in both simulations (for example, for deleting an ob-
ject). The Optics computer simulation has been described in detail in Chap-
ter 3. Therefore, in this section only the structure of the simulation as it ap-
plies to the current experiment (that is, the options that were available to 
students) is described. The Bubbles simulation is given a full description in 
the present section. 

 

5.2.2.1 Optics simulation 

Because of the complexity of the underlying formulas, it was decided to 
structure the learning process by dividing the computer simulation into 
three parts. It was expected that this would reduce the complexity of the 
simulation, especially in the beginning. The three ‘phases’ into which the 
simulation was divided closely resembled each other; the main differences 
could be found in the objects that were available to students. For each of the 
three phases in the environment a general goal was stated. There was a 
minimum time limit set for each phase, but once a student entered a new 
phase, it was possible at any time to return one of the previous phases. Of 
course, the model underlying the environment, that is, the rules that specify 
the lens refraction rules, stayed the same over phases. Only the assignment 
and the number of objects that could be used changed in each phase. The 
design of the three phases was as follows. 

first phase. The goal of the first phase was to investigate what happens when 
the image of a plate with holes in it is projected on a screen. A big lamp was 
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always present in the environment in this phase, its light turned on. When a 
plate with holes in it, a lens, and a screen would be placed in the environ-
ment from left to right, an image of the plate would be projected on the 
screen. Initially, this picture would probably look out of focus, but this could 
be changed by repostioning the different objects. The size and sharpness of 
the depicted image is dependent on the distance of the plate to the lens, as 
well as the distance of the screen to the lens. In this phase the properties of 
three different lenses, two positive (with differing focal distances) and one 
negative, could be examined. It was not possible to place more than one lens 
in the working area. To aid the investigation, it was possible to add a lamp 
with three divergent light beams to the working area. 

second phase. The second phase can be seen as an introduction to the third 
phase. In this phase, the big lamp, plate, and screen were not available. In-
stead, adding more than one lens was allowed. The same three lenses as in 
the first phase were featured in this phase, plus an additional negative lens 
(with a different focal distance). Only the lamp with three divergent light 
beams was available for use. 

third phase. In the third phase, the functionality of the first and second phase 
were combined. Not only was addition of multiple lenses allowed, the big 
lamp, plate and screen were also available for use. In this phase it was possi-
ble to project the image on the screen through multiple lenses. The lenses in 
this phase were the same as the ones from the second phase. The lamp with 
divergent light beams could be utilized to track the light going through 
more than one lens.  

 

5.2.2.2 Bubbles simulation 

The topic of the Bubbles computer simulation is a special fictitious chemical 
reaction that takes place under certain conditions, when two or more liquid 
materials are put together and the resulting mix is heated. The names of liq-
uids, as well as the rules underlying the chemical reaction, are artificial. A 
description of the underlying model of the Bubbles simulation is given in 
Appendix E of this thesis. To motivate students to work with this artificial 
environment a science-fiction-like background story was presented as part 
of the general instruction. The story involved the exploration of a newly-
discovered planet. The planet seems to resemble earth in every way, except 
for the presence of four unknown liquids. The names that were given to 
these liquids were inspired by the names given by Veenman (1993) to mate-
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rials in a similar domain: Magnum, Kryton, Sybar, and Guernic.2 When cer-
tain amounts of them are mixed together and the resulting mix is heated a 
chemical reaction starts in which ‘bubbles’ originate. The number of bubbles 
changes over time. Students are put in the position of the exploring team’s 
scientist who wants to find out the properties of this reaction. This involves 
doing experiments in a laboratory in which the reaction between different 
mixtures of the liquids can be observed. It’s not only important to study 
whether or not bubbles appear, the amount of bubbles appearing per second 
also changes every second, dependent on the amount of liquids added to the 
mix. The trajectory the reaction follows (that is, the number of bubbles that 
originates from the reaction each second) is plotted in a graph (as number of 
bubbles appearing every second; time in seconds is shown on the X-axis, the 
number of bubbles that appear on the Y-axis). However, students have to 
specify themselves the points in time where they want to make measurents 
in the graph. The maximum number of measurement points is four, which 
means that the amount of bubbles appearing over time is plotted four times 
in the graph as a maximum. An example of the Bubbles interface is given in  

Figure 5-1. In the figure, the first two measure points (which have been 
placed at times 2 and 6) show the number of bubbles that appears each sec-
ond decreases in this situation. Also, the amount of bubbles that will appear 
at times 11 and 15 cannot yet be known from the graph. 

                                                           

2 These names were used in the Detonlab environment. The Bubbles simulation can 
be seen as an extended version of Detonlab, with the Bubbles simulation being more 
complex because of a larger number of variables and underlying rules. 
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Figure 5-1. Example interface of the Bubbles learning environment. Explanation 
given in text 

 

Because the Bubbles environment explores a fictitious domain, all subjects 
were given some instructions about the environment prior to working with 
it. The instructions could also be accessed at any time during working with 
the environment. Two different instruction sets were developed to manipu-
late the amount of domain-specific information subjects received: a normal 
(minimal) instruction and an enriched instruction. The normal instruction 
consisted of the following parts: 

1) Background story 

2) Manual (overview of the simulation) 

3) Interface instructions (specific operation of buttons) 

4) Assignment (statement of overall goal) 

The background story was used to help students make sense of the artificial 
nature of the environment, and of the operations and objects that played a 
role in it. The manual gave an overview of the learning environment itself, 
and explained the objects in the simulation. Interface instructions gave an 
overview of all the possible actions in the environment; a complete list of all 
possible operations is shown in appendix D. Finally, subjects were given an 
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assignment. The assignment stated that the goal was to find out how the 
amount of all four materials determined the amount of bubbles appearing 
over time. 

The enriched instruction set consisted of the same interface instructions and 
assignment. The background story and manual were different from the 
normal instruction version in a number of aspects. The background story 
contained extra information about the necessity of the presence of Magnum 
and how it is used in the environment (its amount is held constant and can-
not be changed). The manual contained extra information about the (ficti-
tious) units used, the minimum and maximum amounts of material that 
could be used, the way an experiment worked, and a variable ‘effect’ was 
introduced to denote the number of bubbles appearing every second. In ad-
dition to these changes to part of the instruction, the enriched instruction 
included an extra section in which a number of hints were given, and stu-
dents were encouraged to study it carefully. It contained more detailed in-
formation about how the materials interacted together to form a reaction, 
without giving away precise relations. For example, a hint was given about 
the fact that when the amount of one material was set at a higher level than 
another, the reaction could altogether stop. Furthermore, it was explained 
that a material could quicken or delay the onset of the actual reaction. Also 
included was information on what sort of chemical reaction trajectories 
could possibly occur. 

All in all, precise reading of the extra information in the enriched instruction 
was expected to give students a head start in the amount of domain-specific 
knowledge about the learning environment. 

 

5.2.3 Subjects 

Subjects in the present study were 51 students who were in secondary school 
(mean age about 17 years), at the level of pre-scientific education. They came 
from two school classes of 26 and 25 persons respectively. All subjects were 
taking physics lessons at school. In the year before the experiment, they had 
voluntarily chosen physics to become part of their compulsory curriculum. 
The subject of geometrical optics had been dealt with in these lessons a few 
years ago, so it could be expected that there would be differences in the 
amount of domain-specific prior knowledge. All subjects were reasonably 
familiar with the type of computer interface that was used (e.g., using the 
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mouse to move the pointer around, select icons, and perform operations in 
the environment). No special instruction on working with the computer was 
necessary.  

 

5.2.4 Tests 

Subjects were pretested before starting to work with the learning environ-
ments. Tests for generic knowledge and domain-specific knowledge were 
administered. The tests each took about 20 minutes to complete. Both tests 
were administered in the first experimental session, which means that they 
were administered about a week and a half in advance of working with the 
first learning environment. 

 

5.2.4.1 Pretests 

The generic knowledge test, which tested for knowledge about mathematical 
relations, was a paper-and-pencil test. In Chapter 4 (Section 4.2.1), the theo-
retical background to the design of the test items was discussed. The test 
that was designed for the present experiment consisted of sixteen multiple-
choice items (in the test, some items had three answer possibilities, and some 
had four). Answers were scored dichotomously. Items for the test were de-
veloped by the researchers. 

The domain-specific knowledge test consisted of eighteen items. The test 
was a multiple-choice test that was adminstered by the computer. To test for 
intuitive knowledge, the test followed a ‘what-if’ format, which has been 
discussed in Chapter 4 (Section 4.2.2). 

 

5.2.4.2 Domain-specific posttests 

The Bubbles posttest was administered immediately at the end of the second 
experimental session. The test consisted of twenty items in a what-if format. 
The items consisted of questions on various levels (from questions about 
simple effects to questions about interactions). Like the domain-specific 
knowledge test for the Optics simulation, test items were administered in a 
fixed order. The Bubbles pretest did not use a domain-specific knowledge 
pretest, because the underlying rules of the Bubbles environment could not 
be known to subjects; testing subjects about their knowledge of a set of arti-
ficial relations would also have lowered their motivation to work with the 
learning environment, and would have interfered with the domain-specific 
knowledge that part of the group received. 
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The Optics domain-specific posttest was administered immediately after 
subjects had completed their second session with the Optics simulation. No 
domain-specific knowledge test was administered after the first session with 
the Optics simulation. The test that was used was the same test as the Optics 
pretest, but this fact was not apparent to subjects because both tests were 
administered in random order. 

 

5.2.5 Registration of behavior 

As was discussed in Chapter 4, all operations that were performed by sub-
jects while they worked with the two computer simulations were registered 
electronically. This means that all button presses were recorded together 
with the offset time in seconds (a timer started as soon as the learning envi-
ronment was entered). When an object was moved around, the Optics simu-
lation was updated in real-time. In the Bubbles simulation, the environment 
was updated as soon as a subject pressed the ‘start experiment’ button. The 
difference between the Optics and Bubbles simulation in the way the envi-
ronment was updated is further discussed in the final section of this chapter. 

 

5.2.6 Procedure 

Table 5-2 outlines the sequence of events that was followed throughout the 
experiment. The subjects who participated in the experiment came from two 
different school classes. 

Table 5-2. Experimental procedure 

Session  Content Time taken 

1 Generic knowledge test, Optics pretest 50 minutes 

2 Bubbles environment and Bubbles post-test 90 minutes 

3 Optics environment part 1 50 minutes 

4 Optics environment part 2 and Optics post-test 90 minutes 

 

For each class the experiment was spread over four sessions. In Table 5-2, 
the time schedule and sequence of these sessions is shown for both school 
classes. The classes performed the experiment in the same sequence, but not 
at the same time (the reason for this is that the number of available com-
puters was restricted). The first experimental session was devoted to admin-
istering the generic knowledge test and the domain-specific knowledge pre-
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test, the second session to the Bubbles environment and administering the 
Bubbles posttest, and the third and fourth sessions were spent on working 
with the Optics simulation. Also, after the fourth session an Optics domain-
specific knowledge posttest was administered. Because the Optics simula-
tion had a richer content than the Bubbles environment (e.g., the three 
phases used different configurations of the same simulation), it was decided 
to allow subjects to work for a longer time with this environment, and to 
arrange the sequence of working with the learning environments so that the 
Bubbles environment would be worked with first, and the Optics environ-
ment second. Because the experiment took place during normal school hours 
(as a replacement for physics lessons), session times were restricted to the 
standard length of these lessons, about 50 minutes for one school hour and 
approximately 90 minutes for two consecutive lessons.  

As was mentioned before, both school classes performed the experimental 
sessions in the same order. Subjects first completed the generic knowledge 
test and the Optics pretest (the first one on paper, the second one on the 
computer). Next (a few days later) a session with the Bubbles environment 
followed, after which a knowledge test was administered. Some time after 
this (approximately one week), a short session was spent on getting used to 
the Optics environment. The last session involved working with the Optics 
environment; at the end of which a post test was administered. There was no 
difference between the Optics environment of the third and the fourth ex-
perimental session; at the beginning of the fourth session the state in which 
the program had been left at the end of the third session was resumed. This 
also meant that each subject’s notes were saved over sessions. 

Before they began working with the computer simulations, subjects were 
provided with a short explanation of the interface, and were instructed on 
some of the operations that were possible in the simulations. During the ex-
periment, a fact sheet with a short explanation about the different icons was 
available to subjects. Also, when needed the experimenter would give fur-
ther instruction about the operations; however, no guidelines were given 
about ‘good’ discover learning behavior or about the underlying rules of the 
simulations. 

 

5.3 Results 

In this section, results of the current experiment are described. Two types of 
results are given. First, results of the different knowledge tests that were 
administered are described. Next, these test results are compared to each 
other. Second, we describe an analysis of students’ interaction behavior at 
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different levels. Test data and data on the interaction with the Bubbles and 
Optics simulations are then combined, to gain insight in the similarities and 
differences of the behavior, as based on differences in test results. 

In total, 33 male and 18 female subjects participated in the experiment. No 
gender differences in proficiency at operating the mouse and keyboard of 
the computer were observed. 

 

5.3.1 Test results 

Three different tests were used: a generic knowledge test, a domain-specific 
knowledge test about geometrical optics (both a pre- and a posttest), and a 
domain-specific knowledge test about Bubbles (only a posttest). The generic 
knowledge test used a standard multiple-choice format, the other tests were 
intuitive knowledge (‘what-if’) tests that used the format described in Chap-
ter 4. At present, there is no formal method of analysis of intuitive test re-
sults, that allows for the combination of test scores and answer times into 
one generalized score. Therefore, for these tests we analyzed scores and 
times separately, and computed correlations between them. 

 

5.3.1.1 Generic knowledge 

Because of ambiguity, one item was discarded from the test before analysis. 
The overall average score on the generic knowledge test was 11.8 out of 15 
multiple choice items, with a standard deviation of 1.7. The results show a 
ceiling effect, with only a few of the subjects scoring less than 10 out of 15 
questions. Analysis shows that in order to study where this ceiling effect 
derives from, it is helpful to divide the items used in the test in two sets: one 
set of 10 items was answered correctly by more than 75 percent of the sub-
jects. The mean number of correctly answered items for this set is 9.35 (SD is 
1.92). These items refer to a specific numerical relation (the question being: 
what number should logically follow these?), and most of the subjects did 
not experience problems in answering these questions correctly. The five 
items in the other set are answered correctly by less than 75 percent of the 
subjects. The mean number of correctly answered items for this set of five is 
2.27 (SD is 1.03). In these items a more complex relation is used (the Fibo-
nacci sequence), graphs were used, and the items related to experimental 
behavior on the basis of results that were shown. What this implies is that 
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subjects had almost no trouble at all in dealing with simple numerical prob-
lems (that could be solved by using superficial strategies) and only experi-
enced difficulty in understanding more complex relations. Further analysis 
will take the results from the complete test (15 items) into account. Because 
of the variation in contents of the test, internal consistency is quite low. Re-
moval of one item results in a Cronbach’s alpha of 0.40. 

 

5.3.1.2 Domain-specific knowledge 

Not all subjects took part in both the pretest and the posttest, because of 
some students dropping out of the experiment after one of the experimental 
sessions. All subjects completed the domain-specific knowledge pretest. The 
results of two subjects were discarded because their answering times were 
too short to be reliable knowledge measures. This resulted in 49 subjects 
completing the domain-specific knowledge pretest (26 in class 1, 23 in class 
2) and 44 completing the posttest (24 in class 1, 20 in class 2). Both pre- and 
posttest used eighteen multiple-choice questions (following the what-if for-
mat). 

Cronbach’s alpha for the pretest turned out to be very low (removal of three 
items of the pretest gives an alpha of 0.29). Cronbach’s alpha for the posttest 
is, like the pretest, low. Removal of 4 items gives an alpha of 0.40. In the dis-
cussion section we will go further into the issue of the relevance of alpha 
values in the case of an intuitive knowledge test. Overall test scores and an-
swer times were recorded, and averages are shown in Table 5-3. 

Table 5-3. Overall mean results of domain-specific knowledge tests (18 items) 

 Average Standard Deviation Range 

Pretest score 6.82 2.1 1-11 

Posttest score 7.84 2.2 4-13 

Pretest time (seconds) 672.49 175.2 47-1018 

Posttest time (seconds) 427.61 175.1 105-920 

 

As can be seen from the table, mean pretest scores did not differ from chance 
level, which indicates that prior knowledge was very poor (even the highest 
score on the pretest was still low). The average number of correctly an-
swered items increased significantly from pretest to posttest (p<.05), al-
though by a small margin. In addition, average total time to answer all ques-
tions decreased significantly (p<.05). There was a large variation in the an-
swer times, with some subjects answering extremely quickly on the whole. 
We cannot exclude these subjects from our analysis, because it may be that 
these subjects ‘saw’ the answer almost immediately as soon as the situation 
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was displayed on the screen, as a result of intuitive knowledge. Mean an-
swer time per question was 37 seconds (SD=5.4) on the pretest, and 24 sec-
onds (SD=6.1) on the posttest. 

Table 5-4. Comparison of mean optics results of the two participating school classes 

 Class 1 Class 2 p-value 

Pretest score 7.03 (1.75) 6.58 (2.41) 0.45 

Posttest score 8.17 (2.33) 7.43 (2.16) 0.28 

Pretest time (seconds) 672.12 (108.02) 646.83 (260.20) 0.65 

Posttest time (seconds) 459.96 (193.27) 388.80 (145.83) 0.18 

 

Table 5-4 shows a comparison between the two different school classes that 
participated in the experiment. As can be seen from the table, there was nei-
ther a significant difference on the testscores, nor on the answer times be-
tween the two school classes, both on the pre- and the posttests. 

There are two ways of computing the correlation between the number of 
correct items on the pretest and posttest. When computed within-subject and 
across items no significant correlation between the scores on the pretest and 
the posttest was found. Regression analysis showed an R square of 0.06, 
which indicates that almost no variance between scores on the posttest is 
accounted for by the pretest. This means that performance on the posttest 
can not be explained by performance on the pretest. We can therefore ascribe 
changes in performance from pre- to posttest to working with the learning 
environment. When computed across subjects and within items this correla-
tion was 0.75 (p<0.01). This high correlation means that subjects tended to 
answer the same questions correctly in the pretest and the posttest, and con-
firms that overall progress from pre- to posttest was not very high. There 
also was a positive correlation of 0.32 between the answer times on the pre-
test and those on the posttest (p<.05) when computed within subjects, which 
indicates that there is some consistency in an individual’s speed of answer-
ing. 

To elaborate on this analysis, we computed the number of items that were 
answered correctly in the pretest but incorrectly in the posttest, and the 
number of items that were answered incorrectly in the pretest but correctly 
in the posttest. The first measure is, in a sense, an indication of detoration 
from pre- to posttest, the second a measure of improvement. The mean on 
the first measure was 2.7 (SD=1.38), and on the second it was 4.1 (SD=2.11). 
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The results with respect to the decrease in answer times can be criticized on 
the grounds that we considered the answer times regardless of whether an 
item had been correctly answered or not. The idea is that knowledge can 
only be used when it is present. 

When we assume that a wrong answer on a question indicates that the 
knowledge needed to answer correctly was not available, it means that the 
characteristics of intuitive knowledge are not relevant in that case. This 
means that, under this assumption, only the answer times for correct an-
swers are relevant. 

Table 5-5. Domain-specific knowledge tests mean answer times 

 Average Standard Deviation p-value 

Pretest time, correct answers 258.44 118.0  
Posttest time, correct answers 184.71 114.4 p<0.01 
Pretest time, wrong answers 419.10 136.1  
Posttest time, wrong answers 241.57 121.6 p<0.01 

 

In contrast, it can also be claimed that a wrong answer is not an indication of 
the absence of knowledge, but of the presence of wrong knowledge. In that 
case the answer pattern for wrong answers may well be the same as for cor-
rect answers. To study this, we divided the test results into correctly and 
wrongly answered items: the mean answer times are displayed in Table 5-5. 

After correction for correct and incorrect answers, there is still a significant 
overall decline in answer time from pretest to posttest, for both correct and 
incorrect answers. In addition, there are significant differences between the 
correct answer times and the incorrect answer times, for the pretest as well 
as the posttest (p<.01). In Table 5-6 the trade-off between the scores on pre- 
and posttest and the answer times for both incorrect and correct answers is 
shown. Values that are significant below the 0.05 level are shown in bold 
type. 

Table 5-6. Within-subject correlations between subject test scores and answer times 
on the domain-specific knowledge test 

 Posttest 
score 

Pretest 
time 
correct 
items 

Pretest 
time in-
correct 
items 

Posttest 
time 
correct 
items 

Posttest 
time in-
correct 
items 

Pretest score 0.25 .30 -.05 .48 -.09 
Posttest score  .04 -.20 .14 -.04 
Pretest time correct items   -.02 .39 .29 

Pretest time incorrect items    .14 .04 
Posttest time correct items     .09 
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Table 5-6 shows that there are a number of significant correlations between 
the correct answer times and test scores, but no correlations for the incorrect 
answer times. As can be seen there are moderate correlations between the 
pretest scores and the answer times for correct items, both on the pretest and 
the posttest. The posttest scores do not correlate with the answer times. A 
positive correlation means that the longer a subject takes to answer a ques-
tion, the higher the chance is that the given answer is correct. Because the 
intuitive knowledge test taps ‘fast’ knowledge, no positive correlation is ex-
pected. The result that this relation is found for the pretest but not for the 
posttest gives some indication that the knowledge that was used to answer 
the pretest items did not have an intuitive quality, and that for the post test 
it had. 

 

5.3.1.3 Bubbles knowledge 

The Bubbles test was administered to 49 subjects. The format of this test was 
the same as that for the Optics tests, with the exception that the Bubbles test 
had 20 items instead of 18. The overall average score on the Bubbles test was 
11.97 with a standard deviation of 3.14. To test whether subjects learned 
something from working with the Bubbles environment, we compared their 
scores on the knowledge test with a set of random data (that simulated the 
responses of persons who had chosen a random answer for every question). 
This analysis showed a significant effect of working with the learning envi-
ronment (p<.01). The mean overall answer time for the test was 402.64 sec-
onds with a standard deviation of 138.11. Cronbach’s alpha for the Bubbles 
test was 0.62, which is moderate. 

We compared the scores of the enriched instruction group with those of the 
group that did not receive extra instructions. The results are shown in Ta-
ble 5-7. 

Table 5-7. Bubbles test scores and answer times (20 items) 

 Normal instruction 
(n=21) 

Enriched instruction 
(n=28) 

p-value 

Test score 12.4 (3.3) 11.9 (2.8) 0.61 

Answer time 385.6 (142.8) 417.4 (149.8) 0.47 
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As can be seen from the right column, no significant difference between the 
two groups was found on the knowledge posttest, neither in the scores nor 
in the answer times. It appears that both groups learned equally well from 
working with the learning environment. 

Like the Optics pre- and posttest, we made a division for the Bubbles test in 
items that had been correctly answered, and items that had been incorrectly 
answered. The results show a contrast with the results for the Optics tests. 
For the correctly answered items the mean answer time was 232 seconds 
(SD=114.7) and for the incorrectly answered items 157 seconds (SD=88); this 
difference is statistically significant (p<.01). What this means is that subjects 
in general take longer to answer questions correctly than incorrectly in the 
Bubbles test. An explanation for this finding might be that in the Bubbles 
test it is more difficult than in the Optics tests for subjects to see which an-
swer to a question is correct. 

 

5.3.2 Prior knowledge test effects 

We expected improvement from pretest to posttest in the Optics environ-
ment to be related to generic and domain-specific prior knowledge. In the 
previous section it has been shown that there is no significant correlation 
between scores on the Optics pretest and scores on the posttest. Also, no sig-
nificant correlation was found between the generic knowledge scores and 
improvement from pretest to posttest in the Optics environment. An expla-
nation might be that the Optics environment encourages subjects to experi-
ment in a qualitative way: no stress is laid on applying general mathematical 
skills. In the section on interaction behavior we will discuss this fact further. 

We expected performance on the Bubbles test to be correlated with im-
provement from pretest to posttest in the Optics environment, independ-
ently of domain-specific knowledge about optics. A correlation analysis, 
with prior optics knowledge partialled out, shows no significant correlation 
however (r=-.15; p=.34). The normal instruction condition and enriched in-
struction condition do not differ in this respect. 

We also expected performance on the Bubbles test to be related to perform-
ance on the generic knowledge test. Indeed, in the Bubbles normal instruc-
tion condition, there is a significant correlation of 0.39 between the generic 
knowledge test and the Bubbles test (p<.05). The correlation is not significant 
for the enriched instruction condition. We can interpret this result, in combi-
nation with the equivalent results for both conditions on the Bubbles test, as 
follows. The scores on the Bubbles test for the normal instruction condition 
can be partially explained by general mathematics skills: the more skilled a 
subject is, the better the performance in the learning environment. In the en-
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riched instruction condition subjects have some of the more difficult work in 
coming up with good ideas about the environment already done for them. 
Because of this it might be the case that these subjects do not rely as much on 
their generic knowledge about relations as subjects in the normal instruc-
tion. A regression analysis gives limited support to this claim. Removal of 
two outliers (persons who scored extremely low on the generic knowledge 
test compared to the other subjects) resulted in a correlation between the 
mathematics test and the Bubbles test of 0.63 for the normal instruction con-
dition. Regression analysis showed that R square was 0.40, which is statisti-
cally significant (p<.05). 

 

In summary, we only found limited support for our expectations with re-
spect to the influence of domain-specific and generic knowledge on learning 
performance in the Bubbles and Optics learning environments. By working 
with the Optics and the Bubbles computer simulations, students picked up 
at least some of the properties of these learning environments. This is shown 
both in the scores on a posttest and answer times. However, in the Optics 
environment, we found that improvement in performance as shown on the 
posttest appears to be unrelated to pretest performance. The results from the 
Bubbles environment suggest that generic knowledge can influence per-
formance in a learning environment that calls for these skills. 

 

5.3.3 Interaction behavior results 

In this and the following section, we analyze the characteristics of the inter-
actions subjects performed in both learning environments. We look at both 
general measures of interaction behavior (e.g., frequencies of operations) 
and more specific measures (e.g., changes over time in the number of per-
formed operations). An attempt is made at shedding light to some of the 
questions that were raised earlier. We do this by comparing different groups 
of learners, for example learners with poor domain-specific prior knowledge 
versus learners with high domain-specific prior knowledge. For both learn-
ing environments, we follow a descriptive approach. The analysis is per-
formed at different levels of description. At a global level, we look at the 
overall characteristics by which we may define learning behavior as it oc-
curred in the learning environment. For example, how many actions were 
performed, and what actions were performed more than others? At a more 
detailed level, we look at the specific path that subjects followed through the 
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learning environment. For example, what combinations of actions can we 
distinguish, and did the focus of attention change over time? In between 
these two levels, we look at the way variables in the environment are ma-
nipulated, and the systematicity of working. Also, we look at the kind of 
situations subjects created in the environment: was every possibility ex-
plored, and how much sense do situations make (or: how much information 
can be obtained by a subject from a situation)? In the Optics environment we 
focus on the role that different objects such as lenses and light sources play, 
and the operations that are performed on them. In the Bubbles environment 
we focus on the type of experiments that are performed. 

First, we describe the contrasting groups that we created on the basis of the 
various test results. Group categorization is based on the results on the dif-
ferent knowledge tests. 

 

5.3.3.1 Classification of subjects 

Because of various technical reasons, we could not obtain interaction data 
for all subjects. For Optics we obtained 48 logfiles and for Bubbles 49. Only 
these subjects are considered in the analysis. 

Subjects were categorized on three different measures: score on the optics 
pretest, score on the generic knowledge test, and score on the Bubbles test. 
Because test score differences were quite small, we divided subjects only 
over two extreme categories. In the case of the interaction with the Bubbles 
environment we also made use of the manipulation in domain-specific prior 
knowledge. 

To create two groups on the basis of the Optics pretest, we computed a score 
one standard deviation below, and a score one standard deviation above the 
mean. The resulting numbers, 4.776 and 8.9, were rounded to the nearest 
integer, resulting in a minimum score of 5 and a maximum of 9. Selecting 
only from the subjects for whom we had obtained Optics logfiles, we formed 
a low scoring group (n=14, score 5 points or less on the pretest), and a high 
scoring group (n=10, score 9 points or higher). Because of the low variation 
in test scores, poor and high scorers do not lie far apart. For the generic 
knowledge test, because the results were subject to a ceiling effect, we de-
cided to distinguish between groups on the basis of the median (the median 
is 12 out of 15 items correct). We selected subjects from the group for which 
Optics logfiles were available, and left out subjects who scored exactly 12 
(n=13). By doing this we created a ‘low-scoring’ group (n=18) and a ‘high-
scoring’ group (n=17). Like for the Optics pretest, we created groups one 
standard deviation below and above the mean on the Bubbles test. The selec-
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tion was made from those subjects for whom a Bubbles logfile was available. 
Doing this resulted in a low-performing group (n=7) and a high-performing 
group (n=13). An interesting finding when we compare test patterns for the 
poor and high scoring group is the correlation between the overall test 
scores and the answer times. The overall correlation is 0.22, which is not sig-
nificant. However, when we separate the low scoring group and the high 
scoring group results in correlations of respectively 0.43 (p<0.05) and –0.13 
(ns.; p=.55). What this shows is that the longer low scoring subjects take to 
answer a question, the higher the chance that their answer is correct. As has 
been argued in the case of the Optics pretest, this may imply that these sub-
jects did not use intuitive knowledge to answer items, instead relying on the 
explicit concepts they had mastered. 

Because the environments differ in the type of interactions that can be per-
formed, we will analyze them separately. We will first discuss behavior in 
the Optics environment, then behavior in the Bubbles environment. 

 

5.3.3.2 Interaction with the Optics simulation 

A large number of individual operations are possible in the Optics environ-
ment (all the actions and objects that were available for use in the environ-
ment are explained in detail in Appendix C). Most of these operations are 
performed on one or more objects available. Objects include concrete objects 
like lamps and lenses, and tools used for measurement like construction 
lines and distance lines. Our analysis focuses on the way objects are used in 
the learning environment. We distinguish in our analysis between global 
measurements and more specific measurements of the use of objects. Global 
measurements concern differences in frequencies with which operations 
have been carried out. Specific measurements concern the actual use to 
which objects are put: in what way can operations be meaningfully carried 
out. A general problem in the analysis of behavior in the Optics environment 
is that the environment has a continuous nature, in which experiments are 
not separated from each other in a discrete way. Rather, if we want to say 
something about the type of experiments performed by subjects we have to 
define categories in which to put operations or series of operations that can 
be called experimental. 

From the perspective of object use, we can divide the operations that can be 
carried out in general in the Optics environment into three types: 1) core ac-
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tions (type I), 2) peripheral actions (type II), and 3) irrelevant actions 
(type III). Core actions are those actions that are necessary and sufficient for 
working with the learning environment. They are necessary in the sense that 
without them, the other operations make no sense, they are sufficient in the 
sense that in principle, no more operations are needed to work meaningfully 
with the learning environment. These actions are made up of adding and 
deleting objects, moving them around, and rotating a lightbeam. Moving 
objects around and rotating a lightbeam are here considered separately, be-
cause the kind of information they yield to the learner is different, and be-
cause light beam rotation can only be carried out on one object: a lamp. Type 
II actions are actions that make the learning environment yield more infor-
mation than can be gathered at first sight and that enable learners to keep 
track of results. These actions are therefore helpful but not necessary to work 
with the learning environment. They include making notes, adding meas-
ures, viewing instructions, and naming objects. Type III actions have no spe-
cial meaning, for instance just pressing a button3, or opening and closing an 
experimental session. Type III actions are omitted from further analyses, the 
other two types are discussed separately. 

In total, subjects carried out a mean number of 436 (SD=150) type I and type 
II actions. Type I actions can be carried out on nine different objects, most 
common among which are lamps and lenses. In Table 5-8, the occurrence of 
type I actions is compared for threeferent groups we created. In the table 
mean frequencies of occurrence per subject are shown, with standard devia-
tions between parentheses. The right column shows the sum over operations 
of the means. Type I actions constitute a very large part of all possible ac-
tions in general, about 85%. Typical learner behavior consists of a long series 
of type I actions, interrupted at intervals by type II actions. 

For each of the four categories we separately performed a Manova to check 
for overall differences between the groups. There is an overall statistically 
significant difference between the poor generic and high generic prior 
knowledge group (p=.014). A t-test shows that this difference can be attrib-
uted to the number of times objects are moved (p<.05). Subjects with high 
generic prior knowledge moved objects less around than subjects in the 
other group. 

 

                                                           

3 This means, selecting an operation (by clicking its corresponding selection button), 
but instead of actually performing it subsequently selecting a different operation. 
This ‘random clicking behavior’ has been left out of the analysis. 
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Table 5-8. Mean frequency of type I actions, for different groups in the Optics envi-
ronment (standard deviations between parentheses) 

 Action 

Group Add    
object 

Delete  
object 

Move   
object 

Rotate 
light-
beam 

Mean   
total 

Poor optics (n=14) 158 (66) 48 (25) 137  (83) 31  (19) 119 (59) 

High optics (n=10) 193 (146) 55  (31) 121  (93) 23  (13) 98 (75) 

Poor generic (n=18) 139 (65) 55  (23) 162  (103) 29  (20) 96 (64) 

High generic (n=17) 201 (125) 41  (34) 96  (73) 24  (10) 91 (80) 

Poor Bubbles (n=7) 136 (73) 46  (30) 89  (47) 40  (20) 78 (45) 

High Bubbles (n=12) 161 (124) 60  (33) 147  (73) 21  (11) 97 (68) 

 

In addition, we can state tentatively that the high generic prior knowledge 
group tended to add more objects (p=.07) than the poor generic prior knowl-
edge group. These findings indicate that learners with high generic prior 
knowledge were in general more active in doing different experiments, add-
ing an object, performing a few operations on it, and then deleting it again. 
There is also a statistically significant difference between the groups based 
on the Bubbles scores (p=.02). A t-test shows the difference can be attributed 
to the rotation of light beams (p<.05). Subjects who score low on Bubbles 
perform this operation less than learners who score high on Bubbles. In 
addition, subjects who score high on Bubbles tend to move objects more 
than subjects who score low on Bubbles (p=.08), which confirms the idea 
that moving objects and rotating a lightbeam are qualitatively different 
operations. 

In Table 5-9, the occurrence of type II actions is compared for the three 
groups, in the same way as in Table 5-8. Again, mean frequencies of occur-
rence over subjects are shown, with standard deviations between parenthe-
ses. Comparing Table 5-9 with Table 5-8 shows not only that type 2 opera-
tions are performed a lot less than type 1 operations, but also that there is a 
large variation in the frequency with which type 2 operations are performed. 
Because of this large variation none of the groups differ significantly, al-
though it appears that subjects in the high groups perform more type 2 
operations than subjects in the low groups. ‘Make measurement’ in Table 5-9 
is the sum of two different operations: both the use of the ‘make 
measurement’ button in the learning environment, and the addition of a dis-
tance measure. The first operation is needed as soon as an object is moved 
around (numbers present in the working area are replaced by question 
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present in the working area are replaced by question marks); the second op-
eration is carried out more in general. In the section on the specific use of 
objects we will show that subjects did work in a quantitative way, but found 
a way to circumvent using measurement operations. 

Table 5-9. Mean frequency of type II actions for different groups in the Optics en-
vironment (standard deviations between parentheses) 

 Action 

Group Note-
book 
entry 

View 
instruc-
tions 

Make 
meas-
urement 

Use  
naming 
tool 

Total 

Poor optics (n=14) 10  (9) 11  (4) 14  (9) 40  (31) 21 (19) 

High optics (n=10) 14   (15) 11   (2) 29  (18) 31  (30) 21 (10) 

Poor generic (n=18) 13   (12) 11   (3) 18  (12) 30  (30) 18 (9) 

High generic (n=17) 11  (9) 12   (5) 18  (12) 29  (28) 18 (8) 

Poor Bubbles (n=7) 9   (6) 13   (3) 17  (11) 24  (16) 16 (6) 

High Bubbles (n=12) 14   (14) 11   (4) 28  (17) 34  (31) 22 (11) 

 

Movement of objects 

To further look into the activities performed by learners during working 
with the learning environment, we computed the mean number of move-
ments, that is, the number of movements made with objects during their ex-
istence in the working area. Moving objects around is informative because 
the working area is updated in real-time. Therefore, the effect of moving an 
object is immediate. If the number of movements was zero (that is, the object 
was introduced and deleted without any operation having been performed 
on it) it was excluded from this computation. Because often objects are only 
added and not moved around, we also counted the frequency with which 
objects were added to the environment but not moved at all (we call these 
‘zeromoves’). Both measures are displayed in Table 5-10 for all the different 
groups, with standard deviations between parentheses. 

Table 5-10. Mean number of movements per object in the Optics environment 
(standard deviations between parentheses) 

 Group 

 
 

Poor optics High optics Poor generic High ge-
neric 

Poor Bub-
bles 

High Bub-
bles 

movements 4.4 (1.40) 4.3 (1.7) 4.9 (1.7) 4.1 (1.9) 3.7 (1.2) 6.1 (4.0) 

 ‘zeromoves’ 22.4 (40.6) 10.7 (28.6) 23.7 (39.7) 26.7 (49.1) 9.8 (28.0) 13.6 (33.1) 
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When we compare the higher scoring groups with the lower scoring groups 
(using t-tests), we find that the Bubbles groups differ significantly in the 
number of movements (p<.05), where higher performance is associated with 
more movements per object. In addition, it appears that both groups are 
more extreme than the other groups, that is, the poor Bubbles group has a 
lower mean number of moves (3.73) per object than the other groups, and 
the high Bubbles group a higher mean number of moves (6.14). This shows 
that performance in the Bubbles environment is indeed related to the num-
ber of movements performed (as we concluded tentatively from Table 5-7). 
There are no significant differences in the number of ‘zero-moves’, because 
of large individual differences. 
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Figure 5-2. Type I operations over time, for the prior Optics knowledge groups 

 

Effects over time 

In addition to the frequencies of different operations (as given in the previ-
ous section), we analyzed changes over time for type I and type II opera-
tions. Figure 5-2 and Figure 5-3 depict changes over time in type I operations 
for the Optics prior knowledge groups and the generic knowledge groups, 
respectively. 
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The computations for these figures are done as follows. For each subject op-
erations were categorized as being of type I or not, and the time (in seconds) 
was registered as well. The results for all subjects were added at each time 
point. To make the results more concise, frequency of actions was cumulated 
in 60 second steps. 

Because subjects differed somewhat in the amount of time they had worked 
with the learning environment (a few subjects dropped out after the first 
session with Optics), we used a dynamic algorithm to compute the mean 
number of operations. At the moment subjects stop, they are left out of the 
computation of the mean. When only one subject is left, we stop the analysis. 
Therefore the graphs differ in total time in minutes, because they take differ-
ent groups of subjects into account. 

As can be seen from the figures, there do not appear to be group differences 
in the number of type I operations performed over time. In both figures, af-
ter an initial rise, the number of type I operations performed roughly stays 
the same to the end. 
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Figure 5-3. Type I operations over time, for the prior generic knowledge groups 

 

Figure 5-2 and Figure 5-3 show that the overall lack of difference between 
the groups with respect to type I operations is reflected in the time course of 
these events. However, we did find a difference for the generic knowledge 
groups in the number of movements performed on objects. Because both 
additions and movements count as type I operations, these two operations 
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may have cancelled each other out, explaining for the lack of any finding. To 
check this idea, we computed the mean number of operations over time for 
movements only. The resulting picture is displayed in Figure 5-4. 
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Figure 5-4. Movements over time, for the generic knowledge groups 

 

From Figure 5-4 it can be seen that initially both groups act similarly, but at 
a later stage the groups start to diverge. This might imply that after an initial 
period, in which both groups perform similarly, the group with high generic 
knowledge starts working in a different way, in which less movements are 
needed. 
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Figure 5-5. Type II operations over time, for the prior Optics knowledge groups 

 

Figure 5-5 and Figure 5-6 display changes over time in the number of type II 
operations. To compute these graphs, the same procedure was followed as 
in the case of Figure 1 and 2.  
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Figure 5-6. Type II operations over time, for the prior generic knowledge groups 
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Two things are apparent from these figures. The number of type II opera-
tions is at any time much lower than the number of type I operations, and 
there is a lot of variation over time, especially in the high optics group. Also, 
as can be seen from both Figure 5-5 and Figure 5-6, the number of type II 
actions does not, like the type I actions, settle after some time at a more or 
less steady point. 

 

Object introduction times 

In addition to checking different operation types over time, it is interesting 
to analyze at what moment, at an earlier or a later stage in working with the 
simulation, objects are introduced to the working area. Table 5-11 shows for 
each object after how many time steps it was introduced (time steps were 
computed in the same way as for the movement analysis). Variation in in-
troduction times is considerable, therefore none of the group differences 
reach statistical significance. A problem with the this analysis is that we take 
into account all introductions, mixing real introductions with early, random 
ones. However, this effect is probably the same for all objects. 

Table 5-11. Mean number of seconds before introducing objects in the Optics envi-
ronment 

 Object 

Group lens lamp screens eye construc-
tion line 

angle distance helpline for-
mula 

Poor optics 80.8 138.1 251.6 256.8 714.7 815.3 900.7 986.8 1832.3 
High optics 79.7 122.8 114.9 411.1 769.0 605.7 1389.0 1562.6 1550.7 
Poor generic 101.1 195.1 245.7 486.2 924.5 580.3 879.9 1311.3 2385.0 
High generic 94.9 154.4 120.8 357.4 1200.0 1035.1 1216.1 1482.8 1415.2 
Poor Bubbles 91.3 110.1 163.3 206.3 441.9 428.0 776.6 907.6 1778.0 
High Bubbles  64.3 287.8 127.8 310.8 818.1 950.4 1012.3 1648.4 2172.5 

 

As can be seen from the table, the objects that are operated on in type I op-
erations (lenses, lamps, and screens), are more rapidly recognized as being 
basic to experimenting by subjects than other objects, and are introduced 
earlier on. Also, these objects are the only objects that are used by all sub-
jects. Construction lines, helplines, distances, and formulas are only used by 
a limited number of subjects; some learners spend the whole learning proc-
ess only moving objects around. The eye object is introduced relatively early, 
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which indicates that many subjects start going beyond their basic range of 
experimentation with this object. 

 

Specific object use 

So far, we have looked at the general use of objects. In this section we look at 
some more specific aspects of interaction behavior. Two different methods to 
do this are: 1) check meaningful behavior patterns, and 2) check individual 
interaction behavior. 

In addition to viewing interaction behavior as a sequence of individual 
operations, we can study it as a series of meaningful actions that are made 
up of more than one operation. These actions can be considered to be 
informative, which means that they contribute to understanding the 
workings of the learning environment. We distinguish between two levels of 
information-yielding actions: qualitative and quantitative. Quantitative 
actions are those actions that yield quantitative (numerical) information 
from the learning environment, qualitative actions do not yield quantitative 
information but are used to experiment in the environment, for example by 
moving different objects one after another. The list is shown in Table 5-12. 
As can be seen, all the meaningful actions we mention in Table 5-12 are com-
posed of one or more operations. We analyzed both qualitative and 
quantitative actions by computing the mean number of occurrences of these 
actions over time for different groups of subjects. 

Table 5-12. Types of qualitative and quantitative actions 

Action type Actions 

Qualitative • move object A, then move object B, then move object 
A again 

• add object A, delete object A 

Quantitative • add a distance between two objects and remove it 
immediately 

• add construction line and add distance measure 

• move object and check values 

• rotate light beam and check values 

 

For technical reasons, the time measure we used here is a little different than 
that used for the type I and type II operations. This means that the unit of 
time here is not counted in seconds, but rather in ‘time steps’, where each 
operation is counted as occurring during one time step. For reasons of clar-
ity, we took the mean number of occurrences of relevant actions over 25 time 
steps. Figure 5-7 shows qualitative actions for the poor and high domain-
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specific knowledge groups. Occurrences of the two qualitative actions were 
summed, and a mean computed. 
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Figure 5-7. Qualitative actions over time, for poor and high domain-specific prior 
knowledge groups 

 

As can be seen from the figure, there is a large variation over time in the 
number of qualitative actions that are performed. As can also be seen, the 
two groups start out in a similar way, but after about half the time has 
passed (at Time step 19) the paths diverge. 
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Figure 5-8. Qualitative actions over time, for poor and high generic knowledge 
groups 

 

In Figure 5-7, after about half the time of experimenting has passed, the 
group with poor domain-specific prior knowledge group performs more 
qualitative actions than the group with high domain-specific prior knowl-
edge. 

Figure 5-8 shows a comparison of qualitative actions over time for the ge-
neric knowledge groups. This figure follows a similar pattern as Figure 5-7. 
After an initial period in which both groups perform roughly the same 
number of actions, the paths diverge again, with the poor generic knowl-
edge group performing more qualitative actions than the high generic 
knowledge group. 

In Figure 5-9, a comparison of the Optics pretest groups for quantitative ac-
tions is shown. Occurrences of all four quantitative actions were summed, 
and a mean computed. 
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 Figure 5-9. Quantitative actions over time, for Optics pretest groups 

 

As can be seen, Figure 5-9 is very different from Figure 5-8. Quantitative ac-
tions only rarely occur after a long period of experimenting has taken place. 
This occurs both for the poor and high optics prior knowledge groups. These 
findings correspond with the results shown in Table 5-11 (introduction times 
of objects). Objects that are used to perform quantitative actions are intro-
duced at a relatively late stage. 

A comparison of quantitative actions for the generic knowledge groups is 
shown in Figure 5-10. Although the time scale for the high generic knowl-
edge group is shorter than for the poor generic knowledge group, it can be 
seen that the poor generic knowledge group performs more quantitative 
actions than the high generic knowledge group. The number of quantitative 
actions stays at a very low level over the whole time trajectory for the poor 
generic knowledge group. As can be seen from the figure, the poor generic 
knowledge group performs more quantitative actions than both optics 
knowledge groups (as shown in Figure 5-9). 
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Figure 5-10. Quantitative actions over time, for generic knowledge knowledge 
groups 

 

5.3.3.3 Interaction with the Bubbles simulation 

We could not obtain interaction data for all 51 subjects. In total, 49 logfiles 
were obtained for the Bubbles environment. 

The Bubbles environment follows a more straightforward experimental pro-
cedure than the Optics environment. The procedure can be described as: set 
one or more measure bars, fill one or more kettles, start the experiment and 
view the results. Thus, the environment is not continuous like Optics. By 
default, the Bubbles environment also stresses quantitative aspects more 
than the Optics environment. The amount of bubbles appearing is shown in 
the graph as a bar with a corresponding number. In both the normal and the 
enriched instruction condition, learners are urged not to focus on the num-
bers too much, but on overall relation between the amount of liquids and the 
resulting reaction. 

 

Operations on objects 

We compared frequencies of the different actions in the Bubbles environ-
ment for a number of groups. Table 5-13 shows the different comparisons for 
relevant groups. Although on the whole subjects who score high on the 
Bubbles test do not perform significantly more experiments (87.7 for the low 
scorers vs. 92.8 for the high scorers), there is a significant overall correlation 
(r = .32, p<0.05) between the number of experiments performed and per-
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formance on the Bubbles test. This correlation stays significant when instruc-
tion group and generic knowledge scores are partialled out. It can be noted 
with respect to prior generic knowledge that subjects with high generic 
knowledge perform more experimental actions than subjects with poor ge-
neric knowledge, but make less notes. It may be that the subjects with high 
generic prior knowledge were more focused on finding overall relations 
compared to subjects with poor generic prior knowledge, who focused on 
the numerical outcomes of individual experiments. 

Table 5-13. Mean frequency of actions for different groups in the Bubbles environ-
ment 

 Action 

Group Fill 
Kettle 

Move 
line 

Start 
experi
ment 

Pause 
experi
ment 

View 
in-
struc-
tions 

Note-
book 
action 

Normal instruction (n=21) 67.6
(30.9) 

21.8
(20.3) 

25.6
(21.6) 

3.9
(5.4) 

6.5
(3.4) 

67.2
(40.3) 

Enriched instruction (n=28) 91.0
(64.2) 

12.0
(10.7) 

24.5
(15.0) 

5.4
(8.6) 

6.9
(3.1) 

61.5
(39.1) 

Poor generic (n=18) 68.5
(37.0) 

16.8
(17.1) 

26.2
(14.6) 

2.9
(4.1) 

6.2
(2.3) 

76.1
(52.3) 

High generic (n=17) 76.7
(38.9) 

20.1
(17.6) 

27.4
(24.1) 

3.6
(5.7) 

7.0
(4.2) 

58.9
(27.7) 

Poor Bubbles score (n=7) 87.7
(48.3) 

17.4
(12.8) 

31.6
(20.7) 

9.9
(12.9) 

5.7
(2.3) 

78.9
(65.0) 

High Bubbles score (n=12) 92.8
(63.8) 

9.7
(9.1) 

26.3
(19.0) 

4.9
(7.1) 

7.5
(4.0) 

68.3
(29.3) 

 

As can be seen from Table 5-13, like in the Optics environment there is a 
large variation in the number of different operations. Only about one in 5 
experiments is paused while it is running, which shows that most experi-
ments are carried out to the end of the trajectory. An interesting finding is 
the frequency of use of the notebook. Comparison with the results for the 
Optics environment shows that the notebook was used about six times as 
much in the Bubbles environment. This includes both making notes and 
looking back at old ones. An explanation may be that subjects, although 
urged not to do so, did lay emphasis on the numerical outcomes of different 
experiments. By systematically noting the numerical outcomes of experi-
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ments in the notebook, they could keep track of these outcomes in relation to 
the different values used. Making notes helped exploring more possibilities. 
In fact, some learners even went as far as to make tables with outcomes in 
the notebook module. 

 

Effects over time 

In Bubbles, the interesting units of analysis are the experiments that are car-
ried out. Experiments are carried out one at a time, and before an experi-
ment is started the amount of liquid in zero to three kettles can be changed. 
To determine the effect of one liquid a good strategy is to change only one 
value at a time. To check how many values are changed per experiment, we 
computed the mean number of varied values for different groups of subjects. 
We expect subjects with high prior generic knowledge to show more sys-
tematic experimental behavior than the poor generic knowledge group, re-
sulting in a mean number of changed values per experiment close to 1. Also, 
subjects who perform more systematic experiments should be able to extract 
better knowledge about relations in the simulation, and therefore perform 
better on the posttest; this means that we expect subjects in the high Bubbles 
score group to have smaller mean number of changed values per experiment 
than subjects in the poor Bubbles score group. The results, including p-
values of the differences between groups (computed using t-tests) are shown 
in Table 5-14.  

Table 5-14. Mean number of value changes over experiments for different groups 
(standard deviations between parentheses) 

 Mean p-value 

Normal instruction (n=21) 1.31 (0.58)  

Enriched instruction (n=28) 1.33 (0.32) 0.92 

Poor generic knowledge (n=18) 1.30 (0.50)  

High generic knowledge (n=17) 1.40 (0.45) 0.59 

Poor Bubbles score (n=7) 1.58 (0.61)  

High Bubbles score (n=12) 1.32 (0.47) 0.36 

 

As can be seen from Table 5-14, the expectations about differences between 
the different groups are not met by the results. There are no significant dif-
ferences between groups, and the mean number of changed values per ex-
periment lies between one and two for all groups. The values in Table 5-14 
are informative about the overall systematicity of experimentation, but they 
say nothing about how the number of values that are varied changes over 
time. We expected that poor domain-specific knowledge would lead learners 
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to experiment erratically at first (to explore the domain and get to know the 
boundaries), and more systematic later. For generic prior knowledge, we 
expected that learners with high generic knowledge would show more sys-
tematic experimenting behavior than learners with poor generic knowledge. 
Figure 5-11 and Figure 5-12 show a comparison in the mean number of var-
ied values for the different prior knowledge groups. On the X-axis individ-
ual experiments are shown, on the Y-axis the mean number of values that 
are varied before the experiment is started. The computed means are cor-
rected for the number of experiments a learner has done. In Figure 5-11, the 
normal instruction group and the enriched instruction group are compared.  
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Figure 5-11. Mean number of varied values in the Bubbles environment, for normal 
and enriched instruction groups 

 

It appears from the graph that there is more variation in the number of val-
ues that is altered before an experiment in the normal instruction group than 
in the enriched instruction group, especially from (approximately) experi-
ment 10 to 40. In Figure 5-12, the generic knowledge groups are compared. 
After the 10th experiment the groups diverge, with the high generic knowl-
edge group showing more variation than the poor generic knowledge 
group. 
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Figure 5-12. Mean number of varied values in the Bubbles environment, for generic 
knowledge groups 

 

The result for the generic knowledge groups is a bit contrary to expectations. 
The poor generic knowledge groups stays close to changing only one vari-
able at a time, whereas the high generic knowledge group behaves more er-
ratically. However, an explanation can be that the high generic knowledge 
groups are quicker in recognizing relations between variables, and therefore 
more quickly attempt to discover more complex interactions. 

To complete the analysis of interaction with the Bubbles environment, we 
computed the percentage of experiments carried out when no value had 
been changed from the situation before. There are two plausible reasons to 
perform the same experiment twice or more. Subjects may want to replicate 
an experiment, to make sure the same findings are obtained. Most of the 
time however, the measure bars are moved and the same experiment repli-
cated to obtain new values (at different time spots). This can be considered 
as a strategically useful experimental manipulation. The percentages are 
given in Table 5-15, with standard deviations between parentheses.  
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Table 5-15. Percentages of ‘same-type’-experiments in the Bubbles environment 

 Group 

 
 
 

Normal 
instruction 

Enriched 
instruction 

Poor ge-
neric 

High ge-
neric 

Poor Bub-
bles 

High 
Bubbles 

Percentage 27.1 (18.2) 18.2 (12.8) 25.5 (13.9) 17.2 (23.3) 21.2 (20.4) 24.3 (14.5) 

Statistics p=0.004 p=0.08 p=0.53 

 

As can be seen from the table, a reasonable part of all experiments, about 
one fourth, was carried out without changing any value prior to starting it. 
There is a statistically significant difference between the normal and en-
riched instruction groups, with the enriched instruction group performing 
less of the ‘same type’-experiments. It appears that learners in the poor ge-
neric prior knowledge group also performed more of these experiments, 
than learners in the high prior generic knowledge group. These results are a 
bit paradoxical. One the one hand, subjects who received extra instruction 
may perform less ‘same type’-experiments because they have received in-
formation on the type of relations in the environment in advance. These sub-
jects did not have to rely as much on their generic knowledge of relations as 
subjects who received a normal instruction. 

Earlier, we saw a significant correlation between prior generic knowledge 
and performance on the Bubbles test for the normal instruction group, but 
not for the enriched instruction group. On the other hand, subjects with high 
generic prior knowledge also tended to perform less ‘same type’-
experiments than subjects in the poor generic prior knowledge group. This 
indicates that subjects with high generic prior knowledge were quicker at 
recognizing a certain type of relation than subjects with poor generic prior 
knowledge. Because they had a better overview of the relations in the envi-
ronment, they did not need to make as many notes as the poor generic 
knowledge group (as shown in Table 5-13). 

 

5.4 Discussion 

In the present chapter we have given an overview of a first experiment, in 
which the influence of domain-specific and generic prior knowledge on the 
process of discovery learning was studied. In this section the results are dis-
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cussed. In the final chapter of this dissertation, the results of this study are 
combined with results of the other studies. 

In this study, the scientific discovery learning behavior of students was in-
vestigated in two different learning environments, one on the (real-world) 
subject of geometrical optics (‘Optics’), and one on a fictitious subject (‘Bub-
bles’). The simulations allowed various properties of a simulated model to 
be manipulated by learners, in a quantitative as well as in a qualitative way. 
Before working with the computer simulations, knowledge about the subject 
of geometrical optics was measured and knowledge about Bubbles was 
manipulated. We separated between high and poor performance groups on 
the tests used in order to compare groups of different ability. In this section, 
we will discuss the different outcomes of the experiment with respect to 
discovery learning behavior and learning outcomes. An attempt is made to 
put the results in the perspective of the dual-space search model of Klahr 
and Dunbar (1988), and the extended dual space search model of van 
Joolingen and De Jong (1997). A number of limitations and shortcomings to 
the current experiment will be put forward, and possible improvements that 
are brought into practice in the Optics 99 experiment (described in 
Chapter 6) are discussed. 

 

5.4.1 Prior knowledge and learning outcomes in Bubbles and Optics 

In both the Optics and the Bubbles learning environments, no influence of 
domain-specific knowledge on learning outcome was found. For the Optics 
simulation this was shown by the absence of a relation between domain-
specific knowledge about optics and learning performance, and for the Bub-
bles simulation by the absence of a difference in learning performance be-
tween the normal and enriched instruction groups. The result for prior ge-
neric knowledge turned out to be dependent, to some degree, on the level of 
domain-specific knowledge. Part of the subject group was minimally in-
formed about the domain of the Bubbles simulation; the other part was 
given an enriched set of instructions, to increase domain-specific knowledge 
about the domain. It was found, that in the poor domain-specific knowledge 
group, prior generic knowledge played a more important role in determin-
ing learning outcome than in the enriched domain-specific knowledge 
group. Because students in this group only had generic knowledge to rely 
upon, they may have relied more on this type of knowledge than students in 
the enriched instruction group did. This, in turn, may have caused these 
students to perform ‘better’ experiments (as shown, for example, by the 
number of varied values per experiment, in Figure 5-12). In addition, the 
extra domain-specific knowledge of students in the enriched instruction 
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group, may have been compensated by students in the normal instruction 
group who relied on their generic knowledge. This may have been a cause of 
the equal learning outcomes that were found for the Bubbles simulation. 
However, the lack of difference in learning outcome between the normal and 
enriched instruction groups may also have been caused by the type of en-
riched instruction that was used in the experiment. The extra knowledge 
that was provided was, to a certain extent, both domain-specific and general 
in nature (for example, information about the type of relations to be ex-
pected in the simulation is not primarily domain-specific information). 
Learners may have focused on the ‘general’ aspects of the extra instruction, 
which caused them to shift their attention during learning from the generic 
knowledge they already had to the information provided in the instruction. 
Although the enriched instruction was effective in providing learners with 
knowledge about the background behind the Bubbles simulation and the 
type of relations to expect, when they made use of it learners may have ne-
glected their available knowledge on how to interpret the results of experi-
ments. Unfortunately, we cannot be certain of this since domain-specific 
knowledge of Bubbles was not tested after the instruction, prior to working 
with the computer simulation. 

A number of explanations are possible to account for the lack of positive re-
lations between prior knowledge measures and learning outcomes that were 
found for the Optics computer simulation. Because students worked only for 
a relatively short time with the simulation, and discovery learning was not 
guided by support measures (e.g., feedback) improvement in domain-
specific knowledge was expected to be low. Also, the distinction between 
high and poor domain-specific prior optics knowledge suffered from the fact 
that domain-specific knowledge, as measured on the pretest, was around 
chance level. This lowered the reliability of the test considerably, and it indi-
cates that before the experiment students showed at best a very poor under-
standing of the rules of geometrical optics. This is surprising, because stu-
dents had received formal education about the topic of geometrical optics 
two years before. The instruction had included a presentation of slides that 
depicted similar situations as were presented in the domain-specific knowl-
edge test. Yet, the subjects turned out to have forgotten most of the relations 
underlying the topic. Interestingly, in a study by Johnson and Lawson 
(1998), a comparable result was obtained. In the study, Johnson and Lawson 
compared two instruction methods for a biology course, inquiry teaching 
and expository teaching. They found scientific reasoning to be a much better 



114  Prior knowledge and discovery learning processes 

 

 

predictor of learning performance than domain-specific knowledge. This did 
not meet their expectation that scientific reasoning ability would be the more 
important factor in inquiry teaching, and domain-specific knowledge more 
important in expository teaching. Domain-specific prior knowledge was a 
poor predictor of learning performance in both conditions. The knowledge 
test used by Johnson and Lawson suffered from a low reliability, which was 
caused, as in this experiment, in part by poor performance on the domain-
specific knowledge test. 

We did not find a relation between generic prior knowledge and learning 
outcome of the Optics learning environment. A reason may be that the Op-
tics domain-specific posttest did not ask for specific knowledge about quan-
titative relations. Available quantitative knowledge may therefore have re-
mained unused in the knowledge tests. As stated before, the Bubbles envi-
ronment is more quantitative in nature than the Optics environment. Lavoie 
and Good (1988) hypothesized that ‘Computer simulations that quickly link 
the quantitative effects of changes in an independent variable to a depend-
ent variable may be particularly helpful to persons who have difficulty in 
making accurate cause-effect linkages. (p. 355)’. When this idea is compared 
to the results that were found in the present study, and it is assumed that the 
ability to make an accurate link between cause and effect is related to generic 
prior knowledge, this may be an explanation why a relation between learn-
ing outcome and generic knowledge was found for the Bubbles simulation, 
but not for the Optics simulation. 

The differentiation between the results that were found for prior generic 
knowledge and domain-specific knowledge provides evidence that studies 
that only take domain-specific knowledge into account to study discovery 
learning processes look at only one side of the coin: different types of 
knowledge may have contrasting effects on scientific discovery learning be-
havior. 

 

5.4.2 Prior knowledge and scientific discovery learning behavior 

Both domain-specific prior knowledge and generic knowledge turn out to be 
related to scientific discovery learning behavior. The influence of both types 
of knowledge was revealed by both the frequency with which operations in 
the computer simulations were performed, and analysis of the time course of 
different types of actions. 

In the Optics learning environment we found evidence that after a certain 
amount of time time, students with poor domain-specific prior knowledge 
started performing more qualitative actions, whereas students with more 
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prior domain-specific knowledge performed less qualitative actions. Both 
the poor and high domain-specific knowledge groups also showed an in-
crease over time in the number of quantitative actions that were performed. 
Combining the results from both qualitative and quantitative actions, we see 
that having domain-specific knowledge about geometrical optics meant that 
less qualitative operations had to be performed to start working on a quanti-
tative level, or, that less experimental actions were needed to confirm hy-
potheses. This is shown in the decline over time of qualitative actions for the 
high knowledge groups. We can conclude from this, that learner interaction 
did not proceed in the same way over the whole learning trajectory. Rather, 
learner-computer interaction changed over time, in a qualitative as well as a 
quantitative way; in what way this change occurred was influenced by both 
domain-specific and generic prior knowledge. In terms of the dual space 
model of discovery learning, we can explain these results in terms of, for 
domain-specific knowledge, the initial configuration of hypothesis space, 
and, for generic knowledge, characteristics of the search process itself. The 
results can also be related to Klahr and Dunbar’s distinction between an ex-
perimenter and a theorist ‘strategy’ of discovery learning. In their experiments 
with BigTrak, the rule to discover usually could only be derived after a 
frame-shift had taken place (from the role of the Repeat button as a ‘counter’ 
to a ‘selector’). Subjects who induced the right frame as a result of an ex-
perimental outcome (thus, by searching experiment space), were classified 
as experimenters. The remaining subjects searched hypothesis space to make 
a frame-shift. The main difference that Klahr and Dunbar found between the 
experimenter and theorist strategy is that theorists performed fewer experi-
ments than experimenters did before reaching a conclusion. Klahr and Dun-
bar did not relate both strategies to prior knowledge (this was not measured 
in their experiments). Our findings suggest that domain-specific knowledge 
influenced the configuration of the learner hypothesis space (as was hypothe-
sized in Chapter 2). Having knowledge about the domain leads learners to 
change their experimentation style after a while; this change is reflected in a 
change from a qualitative to a more quantitative experimentation style. Al-
though we found learners with poor domain-specific knowledge also to pro-
gress to a more quantitative level of experimenting, these subjects kept 
working in a qualitative way, more than the high knowledge groups. 

In the Bubbles learning environment, we did not find clear results with respect 
to the influence of domain-specific and generic prior knowledge. There was 
an overall relation between the number of experiments subjects carried out, 
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and performance on the posttest: the more experimental results that were 
collected, the higher performance on the posttest. 

A comparison of the normal instruction group with the enriched instruction 
group revealed no differences in the number of different operations that 
were carried out. Also, the groups did not differ in the mean number of val-
ues that were varied before an experiment was carried out. We did find, 
however, that subjects in the normal instruction group (poor domain-
specific knowledge) showed a higher variation in the number of variables 
that were changed from experiment to experiment, than subjects in the en-
riched instruction group (high domain-specific knowledge). This may indi-
cate, that subjects who did not receive extra information in advance behaved 
more erratically in this learning environment, because they knew less about 
the type of relations to expect in it. With respect to generic knowledge, it 
was expected that subjects with poor generic knowledge would need more 
data in order to see a relation between two variables than subjects with high 
generic knowledge. It was found that subjects with high generic knowledge 
showed a larger variation over time than subjects with poor generic knowl-
edge in the number of variables that are changed. The finding that generic 
knowledge influenced learning behavior in the same way as domain-specific 
prior knowledge, that is, high generic knowledge caused learners to behave 
in a more varied way, can be explained by the idea that subjects with poor 
generic knowledge know less about mathematical relations in general than 
subjects with high generic knowledge. As explained before, learners with 
high generic knowledge are quicker at recognizing relations, which means 
that they sooner change their behavior into analyzing more complex rela-
tions, that involve more variables. 

Discussion of the results has up till this point focused on two things: the re-
lation between prior knowledge and learning performance, and between 
prior knowledge and learning interaction. 

The overall difficulty we face is relating the negative results with respect to 
the relation between prior knowledge and learning performance with the 
(mildly positive) relations we found with learning behavior. The poor test 
results, and the difficulty in analyzing the interaction behavior (caused, in 
part, by differences between the learning environments), are two issues that 
are directly related to these results. Therefore, both these issues will be dis-
cussed in the remainder of this chapter. First, the knowledge tests that were 
used are discussed, after which a number of differences between the two 
computer simulations are considered. The conclusions have implications on 
the the studies that are described in Chapter 6 and 7. 
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5.4.3 Comments on the domain-specific and generic knowledge tests 

In the experiment two types of knowledge tests were used. To measure ge-
neric knowledge we used a normal multiple-choice test that featured three- 
and four-answer items, and which was a paper-and-pencil test. To measure 
optics prior and post knowledge and Bubbles knowledge, we used intuitive 
knowledge tests that were administered on the computer. On the generic 
knowledge test, subjects experienced only on a limited number of items dif-
ficulty in answering. This reduced the variation in the test scores. A number 
of items were easily answered by most subjects. These items asked for the 
next number in a row of given numbers (for example, the sequence 
3…5…10…12…24…26…??). These items could in principle all be solved by 
using the same strategy: that of looking at the quantitative difference be-
tween successive numbers. If we assume that the other items rightly tapped 
generic knowledge about relations, then a reason that we find an influence 
of this knowledge on learning behavior but not on learning result may be 
that another factor is involved in determining learning outcome. In the in-
troduction we have argued that generic knowledge can be separated into 
two components, one of which is the knowledge of functional relations that 
we have tried to measure, and another which we can call ‘discovery skill’, 
and which involves the ability to induce relations. In the next section we will 
go deeper into this issue. 

The other tests used the What-if test format that was developed by Swaak 
and De Jong (1996). As was explained in Chapter 4, in this test format both 
correctness and answer time are taken into (equal) consideration. More spe-
cifically, subjects are asked to trade off correctness and speed of answering, 
because both are of equal importance. 

Both the Optics and the Bubbles domain-specific knowledge posttests 
showed a small but statistically significant increase in test scores. The aver-
age answer times showed that there was a drastic decrease in the total time 
taken for the test from pretest to posttest. Whether this finding indicates that 
learners were more familiar with the special format of the test after they had 
done the optics pretest, or that they had acquired intuitive knowledge, is 
difficult to say. It may be that subjects responded faster in the posttests be-
cause their responses followed more of an ‘all-or-none’ strategy. An intuitive 
knowledge test is designed to tap deep-rooted knowledge that is quickly 
available. The results on the optics pretest indicate that, prior to the experi-
ment, subjects knowledge of geometrical optics was not only low but also 
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not of an intuitive quality. Students had learned the underlying rules, but 
had not developed any understanding of the relation between these formu-
lae and actual behavior of light through lenses. After working with the com-
puter simulation this situation was changed. Performance was still at a rela-
tively poor level, but the knowledge that subjects used may have had a more 
intuitive quality as indicated by the decrease in answer time. 

 

5.4.4 Similarities and differences between the Optics and Bubbles simulations 

In summary, the results that were found in the present study can be de-
scribed as follows: a number of relations between prior knowledge and in-
teraction behavior in both the Optics and the Bubbles learning environments 
were found. The only effect of prior knowledge on test results that was 
found, is in the relation between generic knowledge and performance in 
Bubbles for the normal instruction group. Another interesting finding is that 
a few results point at a relation between performance in the Bubbles envi-
ronment, and behavior in the Optics environment. This may be caused by a 
common factor underlying learning behavior, but it is not clear whether this 
factor is domain-specific knowledge, generic knowledge, or another. There 
are a number of similarities and differences between the Optics and the 
Bubbles learning environments that shed light on the results. 

Both computer simulations were designed to use interfaces that looked simi-
lar, given the number of different options that were available to learners. 
Moreover, the learning environments were introduced in a similar way, as 
being exploratory environments. For both simulations, it was stated in ad-
vance that no knowledge about the actual formulas underlying the simula-
tion was expected afterwards. Finally, similar assignments were used (i.e., to 
find out the rules underlying the simulation). It turns out, however, that 
there are a number of important differences between the two learning envi-
ronments, which may have affected learning behavior and learning per-
formance. These differences have to do with the type of experiments that are 
possible in the learning environments; these differences are summarized 
in Table 5-16. 
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Table 5-16. Differences between the Bubbles and Optics learning environments 

Bubbles  Optics 

   
Mostly quantitative Interaction type Qualitative and quantita-

tive 
   
Present Experiment boundary Absent 
   
Only few changes per ex-
periment possible 

Variable change Many changes possible 

 

Interaction type, experiment boundary, and variable change influence the 
type of experiments subjects perform, the type of conclusions that are drawn 
from these experiments, and subjects’ motivation to experiment at all. In the 
Bubbles environment, although qualitative changes were made possible 
through the gauges, and the number of Bubbles appearing was presented in 
a graphical and numerical way, learners focused on the quantitative aspects 
of the environment. This is reflected in the type of notes that are made, with 
the notes about Bubbles being more quantitative than the notes about Op-
tics. Furthermore, working with the Bubbles environment proceeds in a nec-
essarily more systematic way than working with the Optics environment, for 
two reasons. One is that there is a fixed boundary to experiments in the 
Bubbles environment: they start as soon as the ‘start experiment’ button is 
pressed. This forced ‘experiment boundary’ may have had a supporting ef-
fect on learning, because it structures the learning task. This is further influ-
enced by the number of variable changes over time. In Bubbles, only a lim-
ited number of variables can change from experiment to experiment. In Op-
tics, the number of variables that change as a result of an operation is de-
pendent on the particular setup of the working area, and therefore can range 
from zero to many. 

As a side issue, it is interesting to note that we observed that subjects 
showed much more interest in working with the Bubbles environment than 
with the Optics environment. A reason for this may be that the subject of 
optics is an actual school subject and therefore ‘boring’ to the students. Al-
though both learning environments were more or less presented as being 
games, it is not unimaginable that only the Bubbles environment was per-
ceived as having enough game-like characteristics (completely unknown 
topic, unrelated to school work) to be interesting to play around with. Nor-
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man (1993) states that ‘...games require just the behavior we wish those same 
children would apply to schoolwork. What is the difference between these 
informal experiences and the formal, structured behavior of the classroom? 
There is something captivating about informal learning. Why can’t we get 
the same devotion to school lessons as people naturally apply to the things 
that interest them?’. It follows from this argument, that motivation and in-
terest in the learning environment may also contribute to learning perform-
ance. 

 

5.4.5 Discovery skill: another influencing factor? 

In Chapter 2, we have described a model of scientific discovery learning that 
relates the learning processes involved in discovery learning to a special 
type of problem-solving: one that includes two problem-spaces, hypothesis 
space and experiment space. From the analysis of prior knowledge and both 
interaction behavior and learner performance, it has become apparent that 
prior knowledge may not be the only influencing factor on discovery learn-
ing behavior. This is shown, for example, by the fact that students who 
scored high on generic knowledge performed less quantitative operations in 
the Optics simulation, showed less variable manipulation behavior in the 
Bubbles simulation, but showed similar performance on the posttests. This 
means that subjects with high generic knowledge, although they performed 
different types of experiments, may not have derived relations from experi-
ments more than subjects with poor generic knowledge. These results can be 
explained by introducing a factor that influences discovery learning behav-
ior and learning performance, next to prior knowledge. We put forward the 
hypothesis that this mediating factor is discovery skill. As stated before, this 
skill constitutes the ability to induce a relation from experimental data. For 
both learning environments, prior domain-specific knowledge, both for the 
poor and the high knowledge groups, was relatively low, which means that 
the difference between these groups were relatively small. Therefore, differ-
ences in knowledge may be obscured by differences in discovery skills. Al-
though we did not use a measure of discovery skills in the present study, we 
did find some evidence for these claims if we consider performance in the 
Bubbles environment to be related to the ability to induce relations. As 
stated before, interaction in the Bubbles simulation was mostly quantitative 
and proceeded in discrete experiments. In addition, the relevant variables in 
the environment were more directly available to students than in the Optics 
simulation. To collect data in the Bubbles simulation may have been easier 
for students than collecting data in the Optics simulation, and the emphasis 
in the Bubbles simulation may lie more on the ability to induce relations. 
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Although we did not find performance in Bubbles to be related to improve-
ment in the Optics simulation, we did find a relationship with a number of 
global interaction measures in Optics. This result indicates that, in addition 
to prior domain-specific and generic knowledge, there may be an influence 
of discovery skills on scientific discovery learning processes. This considera-
tion has led us to carry out a second study for this research project, which is 
described in Chapter 6. 





 

6  
Optics 99: The role of domain-specific 

knowledge, generic knowledge, and discovery 

skills on discovery learning processes 

 

6.1 Introduction 

In Chapter 2, the process of scientific discovery learning has been described 
as a special type of problem-solving. The model of problem-solving that was 
developed by Newell and Simon (1972) views the process of solving prob-
lems as a search process. The model was extended by Klahr and Dunbar 
(1988) so that both the process of experimentation and the process of gener-
ating hypotheses would be incorporated. Thus, the process of discovery 
learning can be seen as an active search through both a space of possible hy-
potheses and a space of possible experiments. Van Joolingen and De Jong 
(1997) have extended the dual-space search model of discovery learning by 
distinguishing between different subspaces of the hypothesis and experi-
ment space. For instance, the learner hypothesis space refers to all statements 
that a learner can assert about relations between two or more variables in a 
domain, and the effective learner space refers to statements in the learner hy-
pothesis space that a learner finds useful to test. In other words, the knowl-
edge that a learner has about a domain, and the knowledge about the type of 
relations that are worth testing, determine the contents of the learner hy-
pothesis space and the effective learner space. This implies that prior knowl-
edge should have an effect on the discovery learning process, because the 
level of knowledge influences the distance between the learner hypothesis 
space and the final (correct) model (called the target conceptual model). From 
previous research it had become clear that in some cases prior knowledge 
could greatly affect learning outcomes: persons with a higher amount of 
prior domain-specific knowledge tended to be more effective learners. How-
ever, many studies that investigate differential effects in discovery learning 
use a post-hoc approach, focusing on individual differences in performance 
on a knowledge posttest. Thus, prior knowledge is only rarely singled out as 
a possible influencing factor. In the Optics 97 study (described in Chapter 5) 
the goal was to explore the influence of differences in prior generic and do-
main-specific knowledge on the process of scientific discovery learning. Sci-
entific discovery learning was operationalized by using a configuration of 



124  Prior knowledge and discovery learning processes 

 

 

the Optics computer simulation (described in Chapter 3) and by using the 
Bubbles simulation. Domain-specific knowledge was both measured (for 
Optics) and manipulated (for Bubbles). The results of the Optics 97 experi-
ment showed that prior domain-specific knowledge did not influence learn-
ing outcome for the Optics computer simulation. A relation was found be-
tween generic knowledge and performance in the Bubbles environment, but 
the results were not unequivocal. With respect to interaction behavior with 
the computer simulations, limited influence was found for both domain-
specific knowledge and generic knowledge. A division between qualitative 
and quantitative actions was made, and differences between groups of poor 
and high ability on the prior knowledge tests were measured. The analysis 
showed that initially, students of poor and high ability performed similarly, 
but after some time the patterns diverged. However, again it turned out to 
be difficult to obtain unequivocal results. 

The experiment that is described in this chapter aims at further investigating 
differences in scientific discovery learning behavior between students with 
poor and high prior knowledge. An attempt was made at overcoming some 
of the difficulties of the Optics 97 experiment. This was done by improving 
on a number of aspects of the first study. These improvements, as well as the 
specific objectives for the current study, are covered in the following section. 

 

6.1.1 Study design and objective 

In designing a follow-up study to the Optics 97 experiment, a number of 
considerations were taken into account. Most of these considerations were 
based on improving on the first experiment, so that better (that is, more 
clear) results would be found. Improvements were made to two aspects of 
the study: the knowledge tests and the experimental setup. Also, a more var-
ied group of students participated in the experiment. 

To begin with, the tests for prior knowledge from the Optics 97 experiment 
showed a number of limitations. The optics domain-specific knowledge test 
consisted of items that were relatively complex. This lowered the reliability 
of the test1 as well as the variance in performance. The test for generic 

                                                           

1 It is unknown, however, whether a ‘classical’ measure for reliability (in these ex-
periments, Cronbach’s alpha) is appropriate to use in the case of a what-if test. In the 
past, attempts have been made at approaching the relation between speed and accu-
racy from a psychometric point of view (e.g., Furneaux, 1973). Recent research on this 
topic suggests that creating an item-response model of speed/accuracy trade-offs 
may be a possibility (Van Breukelen 1989; 1997). 
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knowledge contained only a limited number of items that showed variation 
in subjects’ answers. On the other items, a ceiling effect was found, which 
lowered overall reliability and reduced variance. Both the domain-specific 
and generic knowledge test were completely redesigned for the present 
study, and the number of items was extended. 

From the discussion of the results of the Optics 97 study, it was concluded 
that students’ knowledge about discovery itself (or: their level of ‘discovery 
skills’) might be an additional factor in explaining differences in learning 
behavior. Therefore, a new test was added to measure discovery skills. The 
test was developed for the present experiment, and involved the use of a 
combined computer and paper task. The knowledge tests, and the experi-
mental context of this study, are described in detail in the method section. 

Secondly, students in the previous experiment worked in three distinctive 
‘phases’ in the Optics simulation. There was no tight control over the mo-
ment of switching from one phase to the next. Because not all students 
worked for the same amount of time in each phase of the simulation, a reli-
able analysis of the data for groups of subjects was difficult. Also, although 
the phases were increasing in complexity, they were not related to each 
other, which reduced the coherence of the learning experience. The current 
study used a different design which made use of ‘situations’ in the Optics 
simulation. The situations were similar to the original phases of the first ex-
periment, but an attempt was made to have students work for a fixed 
amount of time with a particular configuration of the Optics simulation. This 
was done to make the experimental situation more controlled. It was de-
cided to let all students meet certain situations in the Optics simulation. 
Therefore, the present study used four different situations in the simulation. 
The contents of these situations ranged from (relatively) simple to (rela-
tively) complex. 

Finally, the subject group that was used in the first experiment consisted of 
students who were following pre-scientific education. The students tend to 
score high on intellectual ability, which reduces variance in the type of ex-
perimentation skills that are employed. For this study, it was decided to ex-
tent the group of students in pre-scientific education with a similar group of 
students who were in technical vocational education. By using students from 
two different types of schools it was expected that the heterogeneity of the 
subject population would be increased. 
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The changes to the knowledge tests, the subject group, and the experimental 
setup that have been described here constitute the main parts of the design 
of the current study. It was carried out as a follow-up study to the experi-
ment that was described in the previous chapter. The results of the first ex-
periment served as the basis for the design of the second experiment. This 
experiment constitutes, in many respects, an improved version of the first 
experiment. The specific configuration of the Optics simulation and the ex-
perimental procedure that was followed are both explained in the Method 
section. 

In summary, the current study also aimed at studying the relation between 
discovery learning processes and domain-specific knowledge, generic 
mathematical knowledge, and discovery skills. The goal was to find differ-
ences in the experimentation behavior of learners with varying amounts of 
prior knowledge and skills. These could then be related to the SDDS frame-
work. The experiment made use of the Optics computer simulation, which is 
able to provide a varied, complex, and information-rich discovery learning 
environment. To study discovery learning processes in a variety of situa-
tions, in this experiment students worked with four situations of different 
complexity in the Optics simulation. Learning behavior was compared over 
the different situations. All student-computer interaction behavior was regis-
tered. The method for analysing interaction behavior that was described in 
Chapter 4 was modified for the present study. The analysis focused on the 
operations that had shown in the Optics 97 study the largest differences be-
tween groups. Also, the contribution of operations in relation to other opera-
tions was examined. In-between each of the four situations, students were 
asked what they had done in the previous situation, and why. This allowed 
for quantitative data (learner-computer interaction data) to be compared 
with qualitative data (reasoning about actions). Finally, the experiment 
made use of two groups of subjects: students who were in technical voca-
tional education, and students who were in pre-scientific education. These 
groups differed in intellectual background. It was expected that this would 
result in a more varied subject population.  

The redesigned test for generic knowledge was first piloted in January 1999 
with a group of students at a school for vocational education in Hengelo. 
This led to some alterations to the test. Both the domain-specific knowledge 
test, the (revised) generic knowledge test, and the situations in the Optics 
simulation were then piloted in March 1999 at a school for vocational educa-
tion in Rotterdam (ROC Zadkine). Again, alterations to the design were 
made and it was decided to include the test for discovery skills in the design. 
A version of the test for discovery skills was piloted with three students at a 
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school for vocational education in Enschede. The final experiment was per-
formed in two parts: in June (secondary school students) and Novem-
ber of 1999 (vocational education students). 

 

6.1.2 Research questions and expectations 

The primary research question of the current experiment is: how do prior 
domain-specific knowledge, generic mathematical knowledge, and discov-
ery skills influence discovery learning processes? A second research ques-
tion focuses on what differences in scientific discovery learning behavior can 
be found when (relatively) simple configurations of the Optics learning en-
vironment are compared with complex configurations. 

In Chapter 2, theoretical considerations with respect to the influence of prior 
knowledge on search processes in hypothesis space and experiment space 
were discussed. For the Optics 97 study, this led to a number of expectations 
with respect to discovery learning in the Optics and Bubbles computer simu-
lations. For the Optics simulation, it was expected that students with high 
domain-specific knowledge would show more hypothesis oriented behavior, 
and students with poor domain-specific knowledge (combined with high 
generic knowledge) to show a higher level of experimentation, and that this 
pattern would change over time. For students with both poor generic and 
poor domain-specific knowledge, unsystematic discovery learning behavior 
was expected. The analysis focused on differences in activity (over time) be-
tween students with high and poor knowledge (domain-specific and ge-
neric). For the present study, it was found useful to be more specific in the 
expectations. A division was made between expectations about the level of 
discovery learning activity that students show and expectations about the 
experimentation style that students follow. These are discussed separately 
here. 

 

6.1.2.1 Expectations about the level of activity 

The level of activity is represented by the number of operations that students 
perform while they are operating the Optics learning environment. Activity 
levels can be compared across students and across different situations in 
Optics. The operations that the Optics learning environment allows for can 
be grouped in various ways. In the Optics 97 study, a distinction was made 
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type I and type II operations. Type I and type II operations are respectively 
related to operations that are performed to directly manipulate the environ-
ment, and operations that guide working with the environment. When one or 
more objects are added, deleted, or moved around, active manipulation of 
the learning environment leads to the working area of the Optics simulation 
being visibly altered. Guiding operations are meant to make working with 
the simulation easier. For example, notes can be made, or the assignment 
and interface instructions can be reviewed. Another way to guide experi-
mentation is by adding quantitative measures to the working area. Students 
can, for example, measure distances between various objects or add vertical 
lines at any point. In Chapter 4, a distinction was made between qualitative 
and quantitative operations. Manipulation and guidance operations can 
both be qualitative or quantitative. Global expectations with respect to the 
influence of domain-specific knowledge, generic knowledge, and discovery 
skills on students’ level of discovery learning activity (both guidance and 
manipulation operations) are listed in Table 6-1. 

Domain-specific knowledge is expected to influence the configuration of the 
learner hypothesis space and effective learner search space. Students with 
high domain-specific knowledge have more variables and relations in their 
hypothesis space, which means that they should find it more easy to gener-
ate new hypotheses. Also, students with poor domain-specific knowledge 
are expected to be able to understand simple situations in the Optics simula-
tion, but not complex situations. Therefore, students with poor domain-
specific knowledge are expected to be more active in simple situations than 
in complex situations. Furthermore, students with poor domain-specific 
knowledge are expected to need more guidance in their activities, because 
they cannot relate the data they find to prior knowledge about the relations 
in the learning environment. With respect to quantitative guiding opera-
tions, we expect students high domain-specific knowledge to perform rela-
tively complex (quantitative) measurements more easily than students who 
have poor domain-specific knowledge. Students with high generic knowl-
edge are also expected to use more complex quantitative measures. 

Generic knowledge influences the size of the learner hypothesis space. Stu-
dents with poor knowledge of mathematical relations should find it difficult 
to extend their effective learner search space, because of the restrictions im-
posed by their limited knowledge of mathematical relations. This is expected 
to result in less consistent measurements, for example students with poor 
generic knowledge will perform one type of measurement instead of two 
that can be related to each other. 
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Table 6-1. Expected behavior in the Optics simulation environment, depending on 
different types of prior knowledge 

Prior knowledge type Poor knowledge High knowledge 

Domain-specific 
knowledge 

- More active in simple 
situations 

- Less active in complex 
situations 

Generic knowledge - More active overall - Less active overall 

Discovery skills - Less active overall - More active overall 

 

The level of discovery skills are expected to influence search processes in 
both experiment space and hypothesis space. Students with poor discovery 
skills are expected to have more difficulty in performing certain types of ex-
periments (for example, experiments that test a specific hypothesis), and in 
carrying out specific experimentation strategies (for example, search for the 
effect of a variable in a series of experiments). Students with poor discovery 
skills are more limited in the types of experiments they can perform. They 
are expected to be less active in experimenting than students with high dis-
covery skills. 

 

6.1.2.2 Expectations about the experimentation style 

In addition to the overall level of activity, we can look at differences in ex-
perimentation style. Experimentation style is here represented by three indi-
cators: the use of operations, object use, and measurements. These indicators 
can be compared both within one situation in the Optics learning environ-
ment, and across situations. 

The relative use of different operations indicates what students focus on while 
operating Optics. For example, a student may focus on adding a lamp and a 
lens to the learning environment, and then perform all kinds of operations 
on these two objects. In contrast, another student may focus on adding dif-
ferent objects to the learning environment and deleting them almost imme-
diately, without performing many manipulations. The relative use of different 
objects indicates which objects students prefer to use in a situation in Optics. 
In the learning environment, students have different objects of the same 
kind at their disposal, e.g., different types of lenses. One student may focus 
on one type of lens only, while another can focus on comparing different 
lenses. This is reflected in the number of times objects are used. Therefore, 
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the relative amount of object use can indicate differences in discovery learn-
ing strategy. The type of measurements made indicates students’ ability to in-
duce quantitative relationships between different variables. For example, a 
student may only focus on measuring the focal point distance of a lens (a 
quantity that is set to a value that cannot be changed), while another may 
combine different measures that relate object distance to magnification. 

Students with poor domain-specific knowledge will experience trouble in 
making good use of the available objects. Their use of different objects in the 
Optics simulation is expected to be more limited than that of students with 
high domain-specific knowledge. Students with poor generic knowledge are 
expected to use more simple quantitative measurements than students with 
high generic knowledge. Students with poor discovery skills will have more 
difficulty in creating different situations in the Optics simulation than stu-
dents with high discovery skills. 

 

6.2 Method 

As was explained in the introduction, the present experiment is a follow-up 
study to the experiment that was described in Chapter 5. These differences 
are found in the subject groups that were used, the structure of the computer 
simulation, and the knowledge tests. In this section, the structure of the test 
for discovery skills (the so-called ‘Peter task’) is also explained in detail.  

 

6.2.1 Optics configuration 

In this experiment we used an implementation of the Optics simulation en-
vironment. For the present experiment it is important to note that the subject 
of geometrical optics is taught both in pre-scientific education and in techni-
cal vocational education. All subjects worked with four different situations 
in the Optics environment. The situations differed in the type and number of 
operations that were available. In general, they ranged from relatively sim-
ple (situation 1) to complex (situation 4). Table 6-2 gives a detailed overview 
of the objects and operations that were available to subjects in each of the 
four situations.  
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Table 6-2. Availability of objects and operations in the four Optics situations used 
in the experiment 

 1 2 3 4 

Objects     

Lamp – one light beam X X X X 

Lamp – parallel light beams  X  X 

Lamp – divergent light beams  X X X 

Lens A and B X X X X 

Lens C and D  X X X 
Operations     

Move object X X X X 

Delete object X X X X 

Measure angle  X X X 

Construction line X X X X 

Distance measure X X X X 

Rotate light beam X X X X 

Show measured values X X X X 

Make note X X X X 

Delete all objects   X X 

Big lamp on screen   X  

Add one of the screens   X  

Two lenses simultaneously    X 

 

All subjects worked with the four situations in the same order (that is, they 
all started with the most simple situation and ended with the most complex 
one). Available objects and operations are marked with an X. In addition, 
help on the Optics interface, and the assignment for current situation, were 
available in all situations.  

To summarize Table 6-2, each situation can be characterized by the follow-
ing point: 

1) Situation 1: Only one lamp and two lenses available  

2) Situation 2: Extend the operations of situation 1 and add two more 
lenses 

3) Situation 3: Use of big lamp and screens 

4) Situation 4: Two lenses at the same time possible. 
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Figure 6-1 shows for each of the situations an example of the Optics inter-
face. Notes were not made on paper, but inside the learning environment 
itself; subjects were not supplied with writing paper. Instructions on the 
meaning of buttons and operations were available on paper as well as in the 
learning environment itself. 

 

Situation 1 

 

Situation 2 

Situation 3 

 

Situation 4 

Figure 6-1. Examples of the Optics interface for the four situations used; options 
available for each situation as presented in Table 6-2 are reflected in the toolbars for 
the situations 

 

6.2.2 Subjects 

Two different groups of subjects participated in the experiment, a group of 
students that was following pre-scientific education (PSE group), and a 
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group that was following technical vocational education (TVE group). These 
two groups were different in background education, which implies that they 
would differ in abilities. In the data analysis, both groups are studied as one 
combined group, as well as separately. In the PSE group, 29 students, in 
their fifth year of study (age 16-17), participated in the experiment. In the 
TVE group, 33 students who were in their second year of study (age 17-18), 
participated in the experiment. In both groups, most students had previous 
computer experience: all were proficient at operating the mouse and key-
board. Also, in both groups all subjects were attending physics classes at the 
time of the experiment. 

 

6.2.3 Prior knowledge tests 

Prior to working with the Optics learning environment, three tests were ad-
ministered: a test for domain-specific knowledge about geometrical optics, a 
test for generic knowledge about mathematical relations, and a test for ex-
perimentation skills in the context of a discovery task. While working with 
the learning environment, all actions subjects performed were registered. In 
addition, in between situations subjects answered a question about their be-
havior in the situation they had just worked with. Finally, after the last situa-
tion, a posttest on optics domain-specific knowledge was administered.  

 

6.2.3.1 Generic knowledge test 

The test for generic knowledge about mathematical relations was a revised 
and extended version of the test used in the first experiment. The test was 
modified to achieve a higher overall reliability, and to allow for a better dis-
tinction between poor and high knowledge groups. The test items were 
evaluated by different teachers. The items covered several topics about 
mathematical relations, and a number of ways of depicting these. None of 
the relations that were used in the test were more complex than relations 
that would explain mathematical relations in the Optics learning environ-
ment. The paper-and-pencil test that was administered consisted of 32 items. 
Of these, 29 were four-answer multiple-choice questions. The other items 
required a short answer, such as a formula. 
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6.2.3.2 Domain-specific knowledge tests 

Like the test for generic knowledge, the test for domain-specific knowledge 
about geometrical optics was revised and extended for the current experi-
ment. A number of items from the test that was used in the Optics 97 ex-
periment were discarded because the results showed that they were too dif-
ficult for students. The test that was administered consisted of 30 multiple 
choice questions. The contents of the items closely followed the material that 
was offered in the four situations in the Optics environment. For each item, a 
situation was shown as it might occur in the Optics learning environment. 
About this situation a hypothetical question was asked, and subjects chose 
one out of three possible answers. The test was administered by computer. 
In the Optics 97 study, subjects ware asked to trade off speed and accuracy 
in answering the items. It is hypothesized that students may have had trou-
ble in understanding this demand, which may have negatively influenced 
their performance on the test. Therefore, in the present experiment the ‘time 
limit’ was not used. This means that subjects were not asked to trade off 
speed and accuracy of answering. In Chapter 8, this issue is further dis-
cussed. 

 

6.2.3.3 Discovery skills test 

To measure discovery skills, we used a combined computer and paper-and-
pencil test, called the ‘Peter test’. In this section, the Peter test will be de-
scribed in detail. The test was not only used in the current experiment, but 
also in the experiment that is described in Chapter 7. The actual task that 
was used is based on the ‘Peter task’, which was developed by Wilhelm et al. 
(2001). Subjects first worked with the computer task, in which their task was 
to find out the effect of 5 variables on an outcome variable. Afterwards, a 
test was administered to measure students’ knowledge of these variables. 

The task that was used in this experiment provided subjects with a concrete 
(as opposed to abstract and meaningless) context. They were given a back-
ground story about a boy (Peter) who always is too late for school. Peter 
wants to try to find out how different factors affect the number of minutes 
he arrives too late (for simplicity, it is assumed that he never arrives too 
early at school). Five possible causes that could influence the number of 
minutes that Peter is too late were selected. For each of these variables, two 
or three different levels could be chosen. 
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Figure 6-2 shows the computer task interface. Subjects could pick the vari-
ables from the small rows on the left-hand side of the screen. They would 
then appear in the row on the right-hand side.  

 

 

Figure 6-2. The Peter task computer-interface. On the left, possible options are 
shown. The row on the right represents an experiment in the task, in which Peter 
arrives 15 minutes late for school. 

 

When all 5 variables had been selected, subjects first had to predict the out-
come. There were 5 possible outcomes: 0, 5, 10, 15, or 20 (in our specific case 
this represents the number of minutes that Peter arrives too late at school).2 
In addition, when subjects did not know what to predict, they could fill in a 

                                                           

2 The fact that the outcome represents the time Peter arrives too late at school, implies 
that under no condition he can arrive too early. This fact did evoke some comments 
from subjects, but did not interfere with the task itself. 
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question mark as prediction. Both the prediction and the real outcome were 
then shown next to the row with the 5 variables. One row, that is, the 5 cho-
sen variables and the outcome, represented an experiment. By performing 
different experiments results could be combined and rules inferred. The idea 
behind the task was that by examining the outcome for different levels for 
each of the 5 variables in the Peter task, their effect could be discovered. Af-
ter working with the Peter task, subjects were given a paper-and-pencil test. 
The paper-and-pencil test was handed out to subjects when they indicated to 
the experimenter to know all the effects of the five variables in the environ-
ment. After 30 minutes, the remaining subjects were given the test. As soon 
as subjects started with the test, the experimenter made it impossible (by 
typing a password) to perform any new experiments in the environment. 
The experiments that were already done remained visible. In addition, sub-
jects were allowed to use any notes they had made on paper. The question-
naire consisted of six open questions. Five questions dealt with the effect on 
the total score of the five different variables in the task. The sixth question 
was meant to ask about any further effects subjects had noticed in the Peter 
task. Three variables in the environment had a main effect on the final score, 
two had no effect, and two of the main variables interacted with each other. 
On the basis of their answers, subjects were classified into one of four cate-
gories: 

1) Subject not able to find one or more main effects; no interaction effect 
found 

2) Main effects found, but no interaction effect found 

3) Both main effects and interaction effect found, also additional (nonexis-
tent) effects found 

4) Both main effects and interaction effect found, no additional (nonexis-
tent) effects found 

Students who were classified in the first group represented the poorest level, 
and students who were classified in the fourth group represented the high-
est level of discovery skills. 

Because all actions performed by subjects were registered, in addition to 
data from the written answers, afterwards information was available about 
the type of experiments that subjects performed in the Peter computer task. 
These experiments provided information about the number of experiments 
that were performed, and about the experimentation style that was used. 
Both results from the student-computer interaction during the task, and 
from the answers to the paper-and-pencil test, are interesting for this study. 
Results from the test, as well as some measures from experiments that are 
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carried out in the Peter task, are informative about the skills subjects have in 
finding relations of varying complexity (from main effects to a first-order 
interaction). In addition, the type of experiments that were performed in the 
Peter task are informative about the discovery process itself. Although the 
Peter environment appears to be less complex than the Optics task, it offers 
interesting possibilities to find patterns in scientific discovery behavior be-
cause the variables that are changed from one experiment to another can be 
counted. This provides information about the type of strategy used. 

 

6.2.4 Interaction registration 

The operations that subjects performed in the Optics learning environment 
were registered by the computer the subject was working on. As was ex-
plained before, this procedure consisted of storing every mouse-click on disk 
in a ‘log file’. Along with storing the type of operation, time data was saved, 
so that the exact timing of operations could be analyzed afterwards. From 
the stored data, it was possible to replay a subject’s process of experimenting 
in the Optics simulation quite accurately. To enable statistical interaction-
analysis, the log files were converted to SPSS-readable data. This procedure 
was explained in detail in Chapter 3. 

 

6.2.5 Procedure 

Both the pre-scientific education group and the technical vocational educa-
tion group followed the same procedure. Table 6-3 shows the sequence of 
events for both conditions. In the pre-scientific education (PSE) group, sub-
jects were divided over two classrooms. In both rooms the same instructions 
were given, and the procedures were equivalent. In the technical vocational 
education (TVE) group, two classes participated at different times. Like the 
PSE group, the same procedure was pursued for both classes. 

Table 6-3. Sequence of events and measurements in the Optics 99 experiment. Time 
taken (in minutes) is shown in parentheses. 

First session Second session 

Generic knowledge test (30) Four situations in the Optics simulation (60) 

Optics knowledge pretest (20) Optics knowledge posttest (20) 

Discovery skills test (40)  
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In the PSE group, the experiment was carried out over the course of one day. 
The first and second session were divided into a morning and an afternoon 
session. Between the tests and between the morning and afternoon session 
there were frequent breaks. Subjects in the PSE group came to the university 
to participate in the experiment. They were divided over two groups of re-
spectively 11 and 18 persons, and went to two computer rooms (there were 
not enough computers available in each room to have all the subjects in one 
room). Each subject was seated behind his or her own computer. In the TVE 
group, the two experiment sessions were separated by one week. The first 
session was equivalent to the morning session of the PSE group, and the sec-
ond session to the afternoon session of the PSE condition. Again, each 
subject worked individually at the computer. 

For all subjects, the Optics situations were presented in a fixed sequence. 
Subjects started with situation 1, then after 15 minutes a signal was given by 
the experimenter, and all subjects stopped working with that situation. Next, 
a paper was handed out to subjects, so that they could write down their 
behavior in the previous situation, and their reasoning behind their actions 
(this took approximately 3 minutes). After the paper was handed in, the ex-
periment continued with the next situation in Optics. The procedure of 
working with a situation, and then answering a question about it, was car-
ried out for all four situations. After the fourth situation, the posttest (for 
optics domain-specific knowledge) was administered. 

 

6.2.5.1 Assignments 

Each situation in the Optics environment was accompanied by an assign-
ment. These assignments stated in very general terms what subjects were 
supposed to do: find out what happens when a lamp shines through a lens. 
For situations 1 and 2, equivalent assignments were used, situation 3 asked 
subjects to find out what happens when light shines through a plate with 
holes on another plate. Situation 4 asked subjects to find out what happens 
when light shines through more than one lens. Assignments were given on-
screen at the beginning of the situation. While they worked with the Optics 
simulation, subjects could at any time view the assignment for a situation. 

 

6.3 Results 

In this section, results from the experiment are described. The structure of 
this section resembles that of the results section of the previous chapter. Re-
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sults on the different prior knowledge tests are first given. Subsequently, 
results from the interaction with the Optics learning environment are de-
scribed. Here, groups with varying amounts of prior generic and domain-
specific knowledge and discovery skills are compared on a number of vari-
ables. At the end of this chapter, the findings are shortly discussed in rela-
tion to the expectations that were presented in Section 6.1.2. 

 

6.3.1 Prior knowledge test results 

Three tests were administered, a test for generic knowledge, for domain-
specific knowledge, and for discovery skills. The tests for generic knowledge 
and discovery skills were administered as pretests only. 

 

6.3.1.1 Generic knowledge of mathematical relations 

The test for generic knowledge of mathematical relations contained 32 items. 
Subjects were given 30 minutes to complete the test. A reliability analysis led 
to the removal of two items from the test, resulting in a Cronbach’s alpha of 
0.81 for a test of 30 items. Results for this tests are shown in Table 6-4. Both 
separate results for the groups with different schooling and combined re-
sults are shown. Students in pre-scientific education (PSE) showed a higher 
mean test score than students in technical vocational education (TVE). The 
difference is statistically significant (p<.01). Poor results on this tests were 
caused both by wrong answers on test items, and by subjects not being able 
to complete the test in time. 

Table 6-4. Generic knowledge test results 

Generic knowledge test 
 

Pre-scientific 
education 
(n=29) 

Technical  
vocational 
education 
(n=33) 

Combined re-
sults (n=62) 

Number of items (analyzed) 30 30 30

Mean score 24.21 17.88 21.0

Standard deviation 3.36 3.77 3.57

Range of scores 15 – 28 11 – 25 11 – 28
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6.3.1.2 Optics domain-specific knowledge 

The optics knowledge pretest and posttest both consisted of 30 items. A reli-
ability analysis revealed that because some items, especially in the pretest, 
showed an inconsistent answer pattern, they lowered test reliability consid-
erately. For this reason, 6 items were discarded from the pretest and the 
posttest, resulting in two tests of 24 items. This resulted for the pretest in a 
Cronbach’s alpha of 0.34, which can be considered low, and for the post-
test 0.56, which is moderate. Table 6-5 shows results for the pretest and the 
posttest. 

Table 6-5. Optics domain-specific knowledge test results, pretest and posttest 

Optics pretest 

 
Pre-scientific 
education (n=28) 

Technical 
vocational 
education (n=33) 

Combined re-
sults (n=61) 

Number of items (analyzed) 24 24 24 

Mean score 13.79 12.09 12.94 

Standard deviation 2.99 2.44 2.72 

Range of scores 7 – 21  7 – 17 7 – 21 

    

Optics posttest    

Number of items (analyzed) 24 24 24 

Mean score 
12.18 

10.21 
11.20 

Standard deviation 3.30 
2.82 3.06 

Range of scores 7 – 19  5 – 17  5 – 19 

 

As can be seen from Table 6-5, there was a drop in performance from the 
domain-specific pretest to the posttest. Results on the posttest were signifi-
cantly lower than on the pretest (p<.01). Although the range of scores stays 
the same, an overall decline in scores was observed. 

 

6.3.1.3 Discovery skills 

The Peter paper-and-pencil test was administered to students after they had 
indicated that they knew the effect of the five variables in the Peter task.3 

                                                           

3 In some cases, a subject stated to know all the rules, even after they had performed 
less than 10 experiments. In cases where this occurred, the subject was asked to per-
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The test consisted of six items: five items dealt with the five variables in the 
Peter task, the sixth item gave subjects a chance to write down any special 
effects they had noticed in the task. While the test was administered, stu-
dents were allowed to examine the experiments they had carried out and 
any notes they had made on paper, but they were not allowed to do any new 
experiments. The test took approximately 10 minutes to administer. Test 
items required students to state the effect of each of the 5 variables in the 
Peter task on the outcome. Based on the answers, students were classified 
into one of four different levels. Students were classified as level 1 when 
they did not find correct main effects, and no interaction effect (low per-
formance); as level 2 when they did find correct main effects but no interac-
tion effect; as level 3 when they found correct main effects and the correct 
interaction effect, but also one or more incorrect interaction effect; finally, as 
level 4 when they found correct main effects and the correct interaction ef-
fect, and no other effects (high performance). The category can be seen as a 
measure of performance in the Peter task, with level 1 being the lowest, and 
level 4 the highest level of performance. In Table 6-6, results from the test are 
shown. 

Table 6-6. Discovery skills test results 

Discovery skills test 

(‘Peter test’) 
Pre-scientific 
education (n = 29) 

Technical vocational 
education (n = 33) 

Mean score 2.83 1.64

Standard deviation 0.97 0.42

Range of classifications 1-4 1-2

 

As can be seen from the table, PSE students showed a larger variety of scores 
than TVE students. This is due to the TVE students’ inability to discovery 
the correct interaction effect: about half of the PSE students were able to de-
tect it, whereas none of the TVE students reported finding it. The difference 
in mean test score between the groups was statistically significant (p<.01). It 
is possible that this result was caused by differences in generic knowledge 

                                                                                                                                        

form some more experiments. However, it did happen that subjects were so sure of 
themselves, that they refused to perform any more experiments. In that case, the test 
was administered. 
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about mathematical relations. In that case, we would expect a high correla-
tion between the Peter test score and the generic knowledge test score. Com-
bining the PSE and TVE groups gives a correlation of 0.51, which can be 
considered moderate (p<.01). To see if the correlation between generic 
knowledge and discovery skills is really related to a skill measure and not to 
a general measure of activity, the number of experiments performed in the 
Peter task was partialled out of the correlation. After partialling the number 
of experiments done in the Peter task, the correlation drops to 0.46, which is 
still statistically significant (p<.01). 

 

Quality of experiments. In this section, subjects with poor discovery skills 
(classified into group 1, n = 11) are compared with subjects with high dis-
covery skills (classified into group 4, n = 7). One way to study the quality of 
experiments that were carried out by students, is to look at the number of 
variables that were changed from experiment to experiment. Subjects could 
either change nothing, one, two, three, four, or all five variables from one 
experiment to another. For all subjects in both knowledge groups, the occur-
rence of different variable changes was counted, and this number was com-
pared with the total number by computing the percentage. In Figure 6-3, the 
resulting percentages are shown. As can be seen from the figure, subjects 
showed a preference for the ‘change one variable’ strategy. However, sub-
jects with poor discovery skills showed a lower percentage than subjects 
with high discovery skills. This difference is partly caused by the use of the 
(not very useful) ‘change nothing’, ‘change four variables’, and ‘change five 
variables’ strategy that subjects with poor discovery skills make more use of 
than subjects with high discovery skills. 

 

discov e ry knowle dge  poor

Change one

27%

Change two

26%

Change 

three

20%

Change four

15%

Change five

9%

Change 

nothing

3%

discov e ry knowle dge  high

Change one

41%

Change two

31%

Change 

three

21%

Change four

6%

Change five

1% Change 

nothing

0%

 

Figure 6-3. Percentage of different variable change strategies in the Peter task, poor 
and high discovery skills 
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There was a small difference in the range of experimental outcomes subjects 
generated between students with poor and students with high discovery 
skills. Fifty-five percent of the students with poor discovery skills created all 
five possible outcomes in the Peter task, whereas this was done by 71 per-
cent of the students with high discovery skills. This result indicates, that 
students with poor discovery skills explored less of the experiment space in 
the Peter task than students with high discovery skills. 

 

6.3.2 Interaction results 

In this section, the interaction with the Optics computer simulation is de-
scribed. Results for the influence of generic mathematical knowledge, optics 
domain-specific knowledge, and discovery skills are described separately. In 
Section 6.3.2.3, results on interaction with the Peter task is also described. 
Results for the questions that were answered in between situations are also 
given. 

 

6.3.2.1 Generic knowledge 

Based on the results on the knowledge test for generic knowledge of mathe-
matical relations, two groups were formed: a group with poor generic 
knowledge (n = 11), consisting of persons who had scored lower than one 
standard deviation below the mean score, and a group with high generic 
knowledge (n = 11), consisting of persons who had scored more than one 
standard deviation above the mean score. These knowledge groups were 
compared on a number of measures, which are given below. 

Overall activity. The main operations that were carried out by subjects in the 
computer simulation, were Add, Delete, and Move. Other important opera-
tions were Read assignment, Make note, and Check values. To get an indica-
tion of the activity level of subjects, from situation to situation, a mean activ-
ity score was computed from the number of operations performed in each 
situation. Figure 6-4 shows a graph of the mean number of operations in 
each situation, for both the poor and high generic knowledge groups. 
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Figure 6-4. Mean number of operations in Optics for poor and high generic knowl-
edge groups 

 

The operations that were used to compute the mean values in the figure, 
were Add, Delete, Move, Read assignment, Make note, and Check values. 
On the X-axis are the situations that were described in Section 6.2.1. As can 
be seen from the figure, subjects with poor generic knowledge performed 
less operations on the average, in all four situations. In all situations, most of 
the operations that were performed were Add, Delete, or Move operations. 
In Figure 6-5, the occurrence of each of these three operation is compared. 
The analysis was performed for both the poor and high generic knowledge 
groups. As can be seen from the figure, both groups show a similar pattern 
over the situations. Adding objects to the working area gets a larger share 
over situations in relation to the other operations. From Figure 6-5, differ-
ences between subjects with poor and high generic knowledge are not im-
mediately clear. 
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Figure 6-5. Relative occurrence of Add, Delete, and Move operations for poor and 
high generic knowledge 

 

If subjects with high generic knowledge perform more operations, which 
ones do they focus on? For this, situation 2 can serve as an illustration. 
Figure 6-6 shows, for situation 2, a direct comparison between the poor and 
high generic knowledge groups, for the Add, Delete, and Move operations. 
As can be seen from the figure, subjects with high generic knowledge tended 
to add and delete more objects than subjects with poor generic knowledge. 
Both groups perform a similar amount of Move operations. This result is in 
line with the results of the previous study. Subjects with high generic knowl-
edge create different settings in Optics by adding and deleting objects, 
instead of experimenting with one particular setting. However, the differ-
ences between the groups are not statistically significant, with p=.09 for the 
Add operation, and p=0.11 for the Delete operation. 

In situation 2, the mean number of operations was higher than in the other 
situations. An explanation for this may be that situation 2 was viewed by 
subjects as a continuation of situation 1, but with more available operations 
and objects. It appears that students, when confronted with a new situation 
(as is the case in situations 1, 3, and 4), take some time to get used to the 
situation, and, as a consequence, are less active in these situations. 
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Figure 6-6. Comparison on Add, Delete, and Move operations in situation 2 for 
poor and high generic knowledge 

 

In the Optics 97 study, differences between groups were examined as they 
occurred over an extended period of time. Here, we have developed a 
slightly different approach to analyzing differences over time between the 
knowledge groups. As in the first experiment, for each minute spent in the 
learning environment the mean number of Add, Delete, and Move opera-
tions was computed. However, each situation was then divided into three 
equal parts, a beginning, middle, and end part (each of these parts represent-
ing approximately five minutes of experiment time). Figure 6-7 shows these 
differences between the high and poor generic knowledge groups, for each 
period (beginning, middle, and end), and for each situation. Each bar in the 
graph represents a difference (for a period of time within a situation) be-
tween the mean test score of the high generic knowledge group and the 
mean score of the poor generic knowledge group. Negative values indicate 
that the poor knowledge group was more active at a certain moment than 
the high knowledge group. 

The results that are shown in Figure 6-7 make clear that differences between 
the groups with poor and high generic knowledge could be observed both 
over situations, and within the situations themselves. Overall, subjects with 
high generic knowledge are more active than subjects with poor generic 
knowledge. Within the situations, it can be seen that there are only two in-
stances out of twelve in which this pattern was reversed, at the beginning of 
situation 3 and at the end of situation 4. Subjects with high generic knowl-
edge are a lot more active than subjects with poor generic knowledge in 
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Figure 6-7. Difference in activity between poor and high generic knowledge groups, 
in the beginning, middle, and end of situations 

 

6.3.2.2 Optics knowledge 

Based on the results on the optics domain-knowledge pretest, two groups 
were created: a group with poor domain-specific knowledge (n = 8), which 
consisted of subjects who scored lower than one standard deviation below 
the mean score, and a group with high optics knowledge (n = 8), which con-
sisted of subjects who scored more than one standard deviation above the 
mean. As in the case of generic knowledge, the two groups could be 
compared on a number of measures, most important of which is the general 
level of activity in the Optics simulation. 

In Figure 6-8, the mean activity level as measured by the number of Add, 
Delete, and Move operations is shown in all four situations. As can be seen 
from the figure, only in situation 3 a difference between subjects with high 
and poor domain-specific knowledge is observed. In situation 3, subjects 
with high domain-specific knowledge are less active than subjects with poor 
domain-specific knowledge. The reason for this is not clear. Situation 3 
provided a break from the first two situations in that something new (the big 
lamp and the screens) was introduced in the simulation.  
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Figure 6-8. Mean number of operations in Optics for poor and high domain-specific 
knowledge groups 

 

In Figure 6-9, the relative occurrence of add, move, and delete operations is 
shown for each situation. When the knowledge groups are compared, it can 
be seen that subjects with high domain-specific knowledge perform less 
move operations in situation 2, and more move operations in situation 3 
compared to subjects with poor domain-specific knowledge. 
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Figure 6-9. Relative occurrence of Add, Delete, and Move operations, poor and high 
domain-specific knowledge 
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Combined with the finding that subjects with high domain-specific knowl-
edge performed less operations in general in situation 3, it can be concluded 
that these subjects mostly experimented by moving around objects. From the 
figure, it can also be concluded that subjects with high domain-specific 
knowledge showed a larger variation in the basic operations they per-
formed. 

 

6.3.2.3 Discovery skills 

Based on the results of the Peter test, subjects were classified into four differ-
ent groups. In Section 6.2.3.3, the classification procedure was explained. In 
this section, the interaction behavior of subjects who were classified as 
group 1 (subjects with poor discovery skills, n = 11) and group 4 (subjects 
with good discovery skills, n = 7) are compared with each other. Only results 
for subjects for which a complete data set was available (test data and inter-
action data for both experiment sessions), were considered in the analysis. 
Results with respect to interaction with the Peter computer task are given 
first. These are followed by the results with respect to interaction with the 
Optics learning environment. 

 

Peter task interaction 

All subjects stated that they were finished experimenting with the Peter task, 
before the time limit of 30 minutes was reached. A comparison of the num-
ber of experiments performed by students from pre-scientific education 
(PSE) and technical vocational education (TVE), showed that the TVE stu-
dents carried out less experiments than PSE students. The mean number of 
experiments performed by PSE students was 35.2 (SD = 15.1), whereas TVE 
students performed an average of 22.7 (SD = 10.9) experiments. This differ-
ence was statistically significant (p<.01). Subjects who scored low on the Pe-
ter test (group 1) performed a mean number of 18.1 (SD = 8.4) experiments, 
ranging from a minimum of 4 experiments to 36. Subjects who scored high 
on the Peter test (group 4) performed a mean number of 34.9 (SD = 16.1) ex-
periments, with a minimum of 13 experiments, and a maximum of 67. The 
difference is statistically significant (p<.01). Removing the subject who per-
formed only four experiments from the analysis slightly changed these val-
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ues; the difference in the number of experiments that were performed stayed 
statistically significant, however. 
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Figure 6-10. Relation between Peter test scores and mean number of experiments in 

Peter task 

 

The correlation between Peter test score and the number of experiments per-
formed in the Peter task, is 0.40. In Figure 6-10, this relation is depicted. For 
each score, the mean number of experiments were computed. As can be seen 
in the figure, there appears to be a general relation between the amount of 
activity in the Peter task, and performance on the Peter test. The figure also 
shows that interaction effects can only be found when a large number of ex-
periments is performed. 

 

Optics simulation interaction 

As has been explained at the beginning of this section, based on their per-
formance in the Peter task subjects were classified into four groups. Two 
groups were analyzed: a group with poor discovery skills (n = 11), and a 
group with high discovery skills (n = 7). In Figure 6-11, the mean activity 
level as measured by the number of Add, Delete, and Move operations is 
shown. As can be seen from the figure, subjects with high discovery skills 
perform more operations in the first two situations than subjects with poor 
discovery skills. The difference between the groups vanishes in the third and 
fourth situation. When this finding is compared with the data in Figure 6-10, 



Optics 99: Knowledge and discovery skills in Optics 151 

 

 

 

 

it can be concluded that subjects with high discovery skills are not only more 
active in the Peter task, but also (in the simple situations) in the Optics simu-
lation. 

 

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1 2 3 4

Optics situation

m
e
a
n

 n
u

m
b

e
r 

o
f 

o
p

e
ra

ti
o

n
s

poor peter

high peter

 

Figure 6-11. Mean number of operations in Optics for poor and high discovery 
skills groups 

 

Figure 6-12 shows for the high and poor discovery skills groups the relative 
occurence of the basic operations, compared over situations. It can be seen 
that differences between the groups are small for all situations. In the first 
two situations, subjects with high discovery skills are more active in adding 
objects to and deleting objects from the working area.  
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Figure 6-12. Relative occurrence of Add, Delete, and Move operations, poor and 
high discovery skills 

 

6.3.2.4 Question answered after each situation 

After working with each situation in the Optics learning environment, sub-
jects answered a question. This question was meant to get insight into sub-
jects’ reasons for their behavior in the previous situation. Answers to the 
question after each situation were checked for a number of characteristics. 
These characteristics were: 

1) Overview of operations 

2) Use of geometrical optics concepts 

3) Use of qualitative relations 

4) Use of quantitative relations 

In the answers that were given, all four characteristics were used. However, 
most subjects limited their report to comments that fall in the first category. 
Other examples of reasons that were given for behavior in the simulation 
are: ‘I tried to follow the assignment’, ‘This seemed to me to be the easiest 
way to work’, ‘I wanted to get to know the computer program’, and ‘I acted 
in this way because I thought it was fun’. It was also found that in situation 3 
(the situation that included the projection of an object on a screen), many 
subjects used an ‘engineering’ approach. Instead of focusing on the relation 
between different variables in the simulation, they reported to have only 
tried to position all objects in such a way that a sharp image would be the 
result. 
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6.4 Discussion 

In this chapter, we have described the Optics 99 experiment. This experi-
ment was a follow-up study to the Optics 97 experiment that was described 
in Chapter 5. The goal of the present study was to analyze the relation be-
tween discovery learning processes and domain-specific knowledge, generic 
knowledge, and discovery skills. To study discovery learning processes, a 
version of the Optics computer simulation (described in Chapter 3) was 
used. In the experiment two groups of subjects participated: students who 
were in technical vocational education, and students who were in pre-
scientific education. Two main research questions were addressed in the 
study: how do prior domain-specific knowledge, generic mathematical 
knowledge, and discovery skills influence discovery learning processes, and 
what differences in scientific discovery learning behavior can be found when 
different configurations of the Optics learning environment are compared 
with each other. The first question was addressed by testing knowledge and 
skills before students started working with the Optics learning environment. 
Generic knowledge and domain-specific knowledge were tested by paper-
and-pencil tasks, discovery skills were tested for by using a combination of 
the Peter task with a paper-and-pencil test. The second question was ad-
dressed by making use of different situations in the Optics computer simula-
tion. A total of four situations was used; the situations ranged from rela-
tively simple to complex. 

With respect to results on the knowledge tests, an important finding was 
that students’ domain-specific knowledge appeared to deteriorate from pre-
test to posttest. Because they only worked for a relatively short time in the 
Optics simulation, it was not expected that the amount of domain-specific 
knowledge would increase from pretest to posttest. However, the significant 
decrease in performance was not expected. It may be that the configuration 
of the Optics simulation in this experiment was confusing to students. Stu-
dents worked with each situation for only a (relatively) short amount of 
time, after which they had to adjust to the new situation that was intro-
duced. It may be, that each time students had to overcome a stage of bewil-
derment, in which they tried to get familiar with the topic of the simulation. 
Students’ initial confusion may be caused by ‘cognitive conflict’ (Hewson & 
Hewson, 1984), which means that they went through a phase in which they 
tried to connect the Optics simulation with their knowledge about geometri-
cal optics. It may be that, because of the short time spent in each situation in 
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Optics, many students did not pass the stage of cognitive conflict, which 
may have caused the deterioration in their domain-specific knowledge. 

The test for generic knowledge that was used in the experiment focused on 
knowledge about mathematical relations. The results showed that the redes-
ign of the test that was used in the Optics 97 has been fruitful in the sense 
that Cronbach’s alpha was high. Also, the more varied population that was 
used in the study increased the range of test scores, which helped in distin-
guishing between students with poor and high generic knowledge. 

The Peter test showed that it is possible to combine a computer task with a 
paper-and-pencil test in measuring discovery skills. It was shown that stu-
dents who perform more experiments in the computer task, and who use a 
different strategy in experimenting (with a higher percentage of experiments 
in which only one variable is changed) perform better on the paper-and-
pencil test. 

The analysis of interaction with the Optics simulation showed a number dif-
ferences in discovery learning behavior between students with high and 
poor knowledge and skills. The level of activity in four situations in the Op-
tics simulation was compared. 

For generic knowledge, it was shown that students with high generic knowl-
edge were on the average more active than students with poor generic 
knowledge. When we looked at the type of operations that were performed 
by these students, it could be seen that they performed more Add and Del 
operations. This result was similar to the result found in the Optics 97 ex-
periment. From this result it appears that students with high generic knowl-
edge tend to focus on creating different situations in the Optics simulation. 
As was shown, the level of generic knowledge correlated moderately with 
the results on the Peter task, which indicates that the students with high ge-
neric knowledge are more active in experimenting in general. This finding 
can be related to the extended SDDS framework. Students with high generic 
knowledge have more knowledge of the type of mathematical relations that 
exist than students with poor generic knowledge. This means that they have 
a larger effective learner space, which gives them more freedom in perform-
ing experiments in the Optics simulation. 

The results for the groups with poor and high domain-specific knowledge 
did not show many differences. In the third situation in the Optics simula-
tion, students with high domain-specific knowledge performed less opera-
tions than students with poor domain-specific knowledge. It may be that the 
students with high domain-specific knowledge were more familiar with the 
particular configuration of the Optics simulation that was used in the third 
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situation (the situation in which the plate with an L-shaped figure served as 
an object that was projected on a screen). This may have caused these stu-
dents to perform only a few experiments in this situation. 

To examine the relation between discovery skills and discovery learning 
with the Optics simulation, students who scored in the lowest class (no ef-
fects found) on the Peter test were compared with students who scored in 
the highest class (all effects found). A difference in activity level in the Op-
tics simulation was found for the first two situations. Students who scored 
high on discovery skills were more active in these situations than students 
who had poor discovery skills. The first two situations in the Optics simula-
tion were more limited in scope and in the number of available options than 
the third and fourth situation. It may be, that in the simple situations that 
were presented first, students’ discovery skills were important in guiding 
discovery learning. The third situation was different from the first two situa-
tions and more complex. Here, domain-specific knowledge ‘kicked in’ and 
influenced the learning process. No differences were found for the fourth 
situation. In this situation, the complex situation of using more than two 
lenses simultaneously was presented. It may be that without the availability 
of support, this situation was too complex for all subjects, which made dif-
ferences between groups with a different level of knowledge and skills dis-
appear. In conclusion, it can be stated that generic knowledge asserts an 
overall influence on scientific discovery learning, discovery skills make a 
difference in simple situations, and domain-specific knowledge makes a dif-
ference in situations that call for specific pieces of (domain-specific) knowl-
edge. 

Similar to the Optics 97 experiment only minimal support was provided to 
the students. Only a general assignment was given. Students in the Voca-
tional Education group frequently reported problems with the interpretation 
of the assignment, because it did not state an exact procedure that they had 
to follow. The four situations that were used in the Optics simulation in this 
experiment, especially the third and fourth situation, each focused on sepa-
rate topics in geometrical optics. The short time spent in each situation, the 
complexity of the simulation, and the lack of support that was given to stu-
dents may in combination have caused the decrease in performance. Differ-
ences between students in pre-scientific education (PSE) and students in 
technical vocational education (TVE) also showed up when the correlation 
between the domain-specific pretest and posttest was computed. The corre-
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lation for the PSE group was 0.45, and for the TVE group -.04. This result 
indicates that students in the TVE group had more trouble in making use of 
the knowledge they already had. 

It becomes clear from the results of the current study and the Optics 97 
study, that the Optics simulation can easily become too difficult for students. 
Also, the lack of support makes the simulation unsupportive to promote 
knowledge gain. Most students did not possess sufficient domain-specific 
prior knowledge to grasp the meaning of all four situations in the simula-
tion. They may have experienced parts of the simulation as confusing, which 
in turn may have had an effect on their motivation to learn. In the Op-
tics 2000 study, which is described in Chapter 7, the question if discovery 
learning in the Optics simulation can be supported is explored. It is assumed 
in this study that one problem that students may have had with the Optics 
simulation, which caused ineffective learning, was that they had trouble ac-
cessing their background knowledge. It is assumed that making knowledge 
available to students while they work with the learning environment will 
help them remember background knowledge, and support discovery learn-
ing behavior. 



 

7  
Optics 2000: Using domain-specific and generic 

knowledge to support discovery in Optics 

 

7.1 Introduction 

In the introduction to Chapter 6, it was argued that, in studies of scientific 
discovery learning processes, prior knowledge is only rarely singled out as a 
single influencing factor. The experiment that was described in that chapter 
used three separate tests to measure prior domain-specific knowledge, ge-
neric knowledge, and discovery skills. The experiment involved students 
with two different knowledge backgrounds, who worked with four situa-
tions of varying complexity in the Optics computer simulation. The design 
of the Optics 99 experiment was in many ways similar to the Optics 97 
experiment. However, a number of changes were made to the prior 
knowledge tests and to the configuration of the Optics simulation. The 
modified version of the domain-specific prior knowledge test was clearly an 
improvement over the test for the Optics 97 experiment. This may have been 
in part the result of removing the demand for trading speed and accuracy 
from the test. Still, in the experiment no improvement for domain-specific 
knowledge from pretest to posttest was found. Students’ performance even 
appeared to deteriorate after they had worked with the Optics simulation. It 
was also observed that some students were confused by the assignment that 
was given before each situation in Optics. Because only general assignments 
were used, these students may have been unsure what it was they were 
supposed to do in the computer simulation, when they were given the free-
dom to do anything at all in it, and not having to follow some prescribed 
procedure. 

Although these negative effects of using the Optics simulation were found, 
this has not been a detriment to the primary goal of the research studies. The 
goal has not been to study effective and optimal types of discovery learning, 
but rather to specifically study the role of different types of prior knowledge 
on unsupported discovery learning. Learner support was kept to a mini-
mum to decrease interference with prior domain-specific and generic 
knowledge. The only type of support that was used in the case of the Optics 
computer simulation was structuring the learning environment so that 
learning would progress from a (relatively) simple level to a (relatively) 
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complex level. It can be said that lack of prior domain-specific knowledge, 
combined with minimal support, made operating the Optics computer simu-
lation a demanding exercise. In the Optics 97 and Optics 99 studies, prior 
domain-specific knowledge was measured. In the present study, we will try 
to manipulate knowledge about optics. In the Optics 97 study, we already 
attempted to manipulate knowledge about the Bubbles simulation. We did 
not find an effect of providing students with prior knowledge about the 
Bubbles domain on the discovery learning process and learning result. It 
may have been that the prior domain-specific knowledge that was provided 
about Bubbles was not used by students. It is hypothesized, that when 
knowledge is available during discovery learning (based on a ‘just in time’-
principle), it can support students in their discovery learning process. 

 The goal of the current study is to investigate whether the Optics simulation 
can be made more effective, and performance afterwards improved, by sup-
porting students during discovery learning. This support is implemented by 
making domain-specific and generic knowledge available to students while 
they are working with the learning environment. 

Although discovery learning can be supported in a variety of ways, support 
is not always effective. Support can even have the effect of degrading, or 
hampering, performance (Pieters & Van der Meij, 1994). Problems can occur 
when either too little or too much support is given. For example, Van Jool-
ingen (1993) tried to support discovery learning by providing students with 
a structured hypothesis scratchpad. This scratchpad could be used to make 
hypotheses explicit. It was shown that students who had a structured hy-
pothesis scratchpad at their disposal conducted fewer experiments and 
stated fewer hypotheses than students who did not. The use of the struc-
tured hypothesis scratchpad did not help students in conducting experi-
ments and generating hypotheses. Van Joolingen argues that the structured 
hypothesis scratchpad provided an extra task to learners, which they may 
have found difficult to cope with given the short time for the experiment. A 
similar conclusion was drawn by Shute (1991), who argues that tools that 
aim at supporting discovery learning can interfere with the learning process 
itself. This interference disrupts compilation of knowledge and can have an 
adverse effect on learning. Njoo (1994) states that the cognitive load theory 
of Sweller (1994) also offers an explanation for the negative effects that an 
extra task has: the redundant information that the task contains distracts 
students, and causes wasteful mental processing to occur. 

Not only the presence of supporting material such as a hypothesis scratch-
pad does not always have beneficiary learning effects: the structure of the 
learning environment itself can pose problems as well. Van der Hulst (1996) 



Optics 2000: Using knowledge to support discovery 159 

 

 

 

 

argues that even when students are provided with a logical sequence, there 
is no guarantee for good performance. According to Van der Hulst, prior 
knowledge can directly influence the effectiveness of using a particular se-
quence. Enabling learners to connect new knowledge to previously acquired 
knowledge is seen by her as an important type of support. Also, it has been 
shown by Swaak, Van Joolingen, and De Jong (1996) that directive support 
within one level of exploration can be more effective than providing support 
through a number of levels (for example, by structuring a learning environ-
ment using model progression). A study by Stark, Renkl, Gruber, and Mandl 
(1998), however, replicated earlier results that showed that intermediate ex-
perts (in the domain of economics) did not perform better on a multitude of 
tests than novices after learning with a computer-based simulation. This re-
sult was not caused by a difference in motivation, but more by the inability 
of the ‘experts’ to apply their knowledge to new situations. Instead, knowl-
edge from the simulation environment appeared to interfere with already 
existing knowledge. Stark et al. warn that ‘The presence of abstract domain-
specific knowledge by no means guarantees successful knowledge applica-
tion and transfer (p. 402)’. 

These results prompt us to be careful in selecting the type of support that 
students are provided with. The progressive structure that was used in the 
Optics 99 experiment (and which was not explained to students before the 
experiment started) may have confused students. In addition, because stu-
dents had poor domain-specific knowledge, they may have had trouble in 
understanding the more complex situations in the previous experiment, be-
ing unable to connect the situations on the screen with their background 
knowledge. 

 

7.1.1 Study design and objective 

The current study was designed to test the benefits of combining a limited 
configuration of the Optics simulation with active support for discovery 
learning. More specifically, the effect of having knowledge available, both 
domain-specific and generic, on the discovery learning process and per-
formance of students in the Optics learning environment was analyzed (the 
‘help’-condition). A control group was used, which consisted of students 
who had no extra information available (the ‘no-help’-condition). As in the 
previous experiment, prior domain-specific knowledge, generic knowledge, 
and discovery skills were measured. The aim of both measuring and ma-
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nipulating knowledge is to compare the relation between prior knowledge 
and discovery learning behavior for both conditions. In addition, the discov-
ery learning process and progress from pretest to posttest can be compared 
for the two conditions. 

In Section 7.2.1, the configuration of the Optics simulation that was used in 
the present study is described. In the previous chapter, it was tentatively 
stated that students may especially have trouble in working with a computer 
simulation in the first minutes, and may be confused by the simulation’s 
content. Only after overcoming this stage they can start gathering data from 
the simulation. In the Optics 99 study, students only worked for a short time 
in each of the four situations that were used. It may be that the time that was 
used for each situation was too short for students to get adequately used to 
the simulation. In that case, the use of model progression may have had a 
detrimental effect on students’ experimenting and subsequent learning re-
sult. For the current experiment, it was decided to make use of only one 
situation in the Optics simulation, in which students would work for a 
longer time. This means that the current experiment did not make use of 
model progression through a number of situations. The situation that was 
created in the Optics simulation focused on one aspect of geometrical optics, 
and was aimed at being neither too simple (for example, a situation with 
only one lens and one type of lamp), nor too complex (for example, project-
ing light through two lenses simultaneously). Progression through a number 
of situations was not used in this experiment. Instead, a number of students 
received support while they worked with the simulation through the avail-
ability of knowledge tips. These tips consisted of both domain-specific infor-
mation (for example, short explanations of concepts), and generic informa-
tion on how specific instances in the Optics simulation could be used to 
show certain effects. The content of the tips is explained in more detail in 
Section 7.2.5.2, which describes the conditions used in this experiment. The 
tips were not all available at once as soon as work with the Optics simula-
tion started. Instead, tips became available one by one as work with the 
learning environment progressed in time. Students were not distracted by 
the availability of a new tip as soon as it became available. They could acti-
vate the tip at any moment they preferred, or even not at all. This was done 
to prevent students being distracted from their work. The tips were not 
made available at once, so that students who became stuck could use an 
available tip to get fresh ideas for experimentation. 

In summary, this study aimed at improving discovery learning in the Optics 
computer simulation. Discovery learning behavior and knowledge gain 
from pretest to posttest was compared for a group of students who had ac-
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cess to domain-specific and generic knowledge while they worked with the 
learning environment, and a group who did not receive these tips. The Op-
tics simulation was configured for this experiment to focus on one topic of 
geometrical optics. No further progression through a set of situations was 
used. The study made use of two classes from two schools for vocational 
education, one situated in Enschede and one in Hengelo. The experiment 
was performed at the faculty for Educational Science and Technology in 
April and May 2000. 

 

7.1.2 Research questions and expectations 

Since the current experiment sets out to further investigate the influence of 
prior domain-specific knowledge and generic knowledge on scientific dis-
covery learning in the Optics computer simulation, the research questions 
are similar to the questions asked about the previous study (see the begin-
ning of Section 6.1.2). However, the setup of this experiment allows us to 
add another specific research question: what differences can be found be-
tween students who are not supported in their learning behavior, and stu-
dents who have support available in the shape of domain-specific and ge-
neric tips during discovery learning? We expect differences between the ‘no-
help condition’ and the ‘help condition’. These differences should show up 
as differences in scientific discovery learning processes and in differences in 
performance on the domain-specific knowledge test. We expect that stu-
dents in the help condition will benefit from having knowledge available, 
which will result in more progress from pretest to posttest on the domain-
specific knowledge test. Also, in a study by Hasselerharm and Leemkuil 
(1990) it was found that students with little prior domain-specific knowledge 
made less often use of an optional support tool than students with high abil-
ity. Therefore, in the current study we expect students in the help condition 
with poor domain-specific prior knowledge make less use the knowledge 
tips than students with high domain-specific knowledge. 

 

7.2 Method 

This section describes the experimental method that was used in this study. 
An overview is given of the particular configuration of the Optics simula-
tion, and of the tests that were used. Also, in this section a description of the 
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type of knowledge support that was provided to part of the subject group is 
given. 

 

7.2.1 Optics configuration 

The configuration of the Optics simulation that was designed for this ex-
periment was more limited in scope than the configuration that was used in 
the Optics 97 and Optics 99 experiments. The simulation focused on one par-
ticular aspect of geometrical optics: the projection of an object on a screen. 
The underlying formulas included in this configuration are the lens formula 
and the magnification formula. The simulation also allowed students to 
make the position and size of a virtual image visible. 

In Figure 7-1, an example from the Optics interface as it was used in the cur-
rent experiment is shown. The figure shows a complicated, but not untyp-
ical, situation that might be created by a student. On the left, a large lamp is 
sending light in all directions. Light passes through a plate with holes 
(shaped like the letter L). Divergent light rays that originate from the holes 
in the plate pass through the lens (marked ‘C’). Because the plate is close to 
the lens (within the focal length of the lens), no image is projected on the 
screen at the right. Instead, a virtual image is formed. This virtual image is 
made visible by the use of the ‘eye’-tool (which is placed at the right). The 
virtual image is shown with a blue circle around it (to mark its ‘virtuality’). 
It is possible to measure properties of the virtual image, just as if it were a 
normal projected image. In Figure 7-1, the top row shows on the left three 
different lenses that were available to experiment with (the lenses had dif-
ferent focal distances). Next to the large lamp (which could not be moved 
around, but only positioned on the left of the working area), a lamp with one 
lightbeam, a lamp with three divergent lightbeams, and a lamp with three 
parallel lightbeams were available. It was possible to measure horizontal 
and vertical distances, and to measure the angle with which a lightbeam en-
tered or exited the lens. Lightbeams could also be rotated any number of 
degrees. As an extra aid, lightbeams could be extended in any direction by 
adding one or more help lines. Subjects were allowed to make notes while 
they worked with the simulation. For this they were handed writing paper; 
in this experiment subjects did not have to enter notes directly in the learn-
ing environment itself. 
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Figure 7-1. Example interface of the configuration of Optics in the current experi-
ment. Explanation given in text 

 

7.2.2 Subjects 

The subjects who participated in this experiment were 32 students who were 
following technical vocational education (mean age approximately 19 years). 
The subject group was divided over two school classes (both in the same 
year of study). We chose to use students at the level of vocational education, 
because it was observed in the Optics 99 experiment that students at this 
level of education formed a more heterogeneous group than students at the 
level of pre-scientific education. All subjects were taking physics as part of 
their curriculum. No subjects showed any difficulties in operating the com-
puter, so no special instruction on how to operate the mouse and computer 
was needed. All subjects received a financial compensation of €23 for their 
participation in both experimental sessions. 
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7.2.3 Prior knowledge tests 

Prior to working with the Optics learning environment, three tests were ad-
ministered: a test for domain-specific knowledge about geometrical optics, a 
test for generic knowledge about mathematical relations, and a test for ex-
perimentation skills in the context of a discovery task. While working with 
the learning environment, all actions subjects performed were registered. 
Finally, a posttest on optics domain knowledge was administered. 

 

7.2.3.1 Generic knowledge test 

The test for generic knowledge about mathematical relations that was used 
in the current experiment, was, apart from some minor corrections, the same 
test as the one used in the Optics 99 experiment (described in the previous 
chapter). The paper-and-pencil test consisted of 32 items. Of these, 29 were 
four-answer multiple-choice questions. The other items required a short an-
swer, such as a formula. Example items for the generic knowledge test can 
be found in Chapter 5. 

 

7.2.3.2 Domain-specific knowledge test 

The test for domain-specific knowledge about geometrical optics was newly 
created for the current experiment. The test was based in part on the knowl-
edge test that was used in the Optics 99 study, but consisted mostly of new 
questions, to fit the configuration of Optics that was used in this experiment. 
The test consisted of 30 items, and was administered, unlike the tests that 
were used in the Optics 97 and Optics 99 experiments, as a paper-and-pencil 
test. A paper-and-pencil test was used in favor of a computer-based test, be-
cause this would provide a more familiar type of test to students. The test 
also made it possible for students to review their answers and to make cor-
rections. In Figure 7-2, two example items from the test for domain-specific 
knowledge are shown (for the figure, the items were translated from Dutch). 
The test contained a few items that asked for conceptual knowledge about 
geometrical optics. For example, two items specifically asked for recognition 
of the lens formula and the magnification formula. All in all, the test used 
ten pictures of possible situations in the Optics environment, with an aver-
age of three multiple-choice questions for each of the pictures. 
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figure 1 

 

 
1. See Figure 1. When the lens is moved a little bit to the left, where will the light 
beam to the right of the lens strike the base line? 

� Closer to the lens 
� At the same distance to the lens 
� Further away from the lens 

 
2. See Figure 1. When the light beam is aimed a little bit more up, where will the light 
beam to the right of the lens strike the base line? 

� Closer to the lens 
� At the same distance to the lens 
� Further away from the lens 

Figure 7-2. Example items from the optics domain knowledge test 

 

7.2.3.3 Discovery skills test 

To measure discovery skills, the Peter task was used. The setup of this com-
bined task and test was explained in detail in Chapter 6 (Section 6.3.2.3). For 
this experiment, no changes were made to the task setup. The maximum 
time subjects worked with the computer task was 30 minutes. After that 
time, a paper-and-pencil test was administered, which consisted of 6 short 
questions. While answering the test, students were allowed to examine the 
experiments they had carried out and any notes they had made on paper, 
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but they were not allowed to do any new experiments. The test took ap-
proximately 10 minutes to administer. 

 

7.2.4 Interaction registration 

Similar to the procedures followed in the previous experiments, all opera-
tions that subjects performed in the Optics learning environment were regis-
tered by the computer the subject was working on. The operations, along 
with time data, were stored on disk. The data were afterwards converted to 
SPSS-readable data for analysis. 

 

7.2.5 Procedure 

The experimental procedure that was followed was the same for students in 
both the no-help and the help conditions. Also, both classes followed exactly 
the same procedure. The experiment was split over two sessions of about 80 
minutes each. In the first session, all the prior knowledge tests were admin-
istered. The test sequence was the same as the sequence used in the Op-
tics 99 experiment: first the generic knowledge test, then the domain-specific 
knowledge test, and finally the discovery skills test were administered. At 
the start of the second session, subjects were given an instruction sheet 
which contained an explanation of buttons and tools in the Optics computer 
simulation. Instructions for subjects in the help condition were the same as 
instructions for subjects in the no-help condition, but some extra instruction 
on using the knowledge tips was added. After the experimenter gave a sig-
nal, all subjects started working with the Optics simulation. They worked 
with the simulation for approximately 50 minutes, after which the domain-
specific knowledge posttest was handed out and administered in the same 
way as the pretest. The posttest took approximately 15 minutes to adminis-
ter. 

 

7.2.5.1 Assignment 

Subjects were given one assignment in this experiment. The assignment was 
written on paper, and was accompanied by a list of available functions in the 
Optics environment. In the assignment, subjects were asked to perform ex-
periments with the objects they had at their disposal, and to create different 
situations in the Optics learning environment. Subjects were also encour-
aged to use all the clues that would be given by the computer program, and 
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to make notes. The subjects were informed prior to the experiment that a 
knowledge test would be administered afterwards. 

7.2.5.2 Conditions 

At the start of the second experimental session, subjects were randomly as-
signed to one of two conditions. The positioning of the computers in the 
classroom was arranged in such a way that no persons in the same experi-
mental condition would be seated next to each other. The following two con-
ditions were used: 

1) No-help condition. No extra information was given by the com-
puter while subjects worked with the Optics simulation. 

2) Help condition. Extra information was given by the computer, in the form 
of tips, while subjects worked with the Optics simulation 

The no-help condition put subjects in a situation that was similar to the one 
used in the previous experiments. The only difference lies in the particular 
configuration that was used for the Optics simulation in this experiment. 

Table 7-1. Example of two knowledge tips used in the help condition 

Tip Content 

1. a) A thin lens is a weak lens, a thick lens is a strong lens. 
b) Advice: Compare different lenses with each other and observe dif-

ferences. 
c) Appropriate object to use: lamp with one lightbeam. 
d) Expected outcome: Lightbeams are refracted more through a thick 

lens than through a thin lens. 

6. a) When an object is standing within the focal distance of a lens, the 
projected image becomes virtual. This means that the image will 
lie at the left of the lens 

b) Advice: The ‘eye’ was developed for this program to show you the 
position and shape of the virtual image. Put the eye somewhere to 
the right of the lens. When the object gets near to the lens, you will 
see the virtual image appear. 

c) Appropriate object to use: plate with L-shaped holes, screen, lamp 
with three divergent lightbeams, distance measures, eye. 

 

In the help condition, tips were used to make domain-specific and generic 
knowledge available to subjects. The tips became available one at a time, and 
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the interval between two tips was set at three minutes. In Table 7-1, two ex-
amples of tips that were used in the experiment are shown.1 

In total, nine tips were used, which implies that after 27 minutes of experi-
menting, all tips were available to subjects The table shows the first tip, and 
one that was made available later on. As can be seen from the example, the 
tips consisted of multiple parts. The first part of each tip consisted of do-
main-specific information on some concept of geometrical optics. The second 
part of each tip consisted of general advice on how experiments could be 
used in the Optics simulation to observe the information that was given in 
the first part. Also, the relevant objects that could be used to perform appro-
priate experiments were listed. Finally, in some tips the expected outcome of 
experiments was stated. In the help condition, the bottom row of the Optics 
simulation contained a set of nine icons, one for each tip. When it was time 
for a tip to become available, its corresponding icon would change color. The 
tip could then be accessed by subjects by clicking on the icon. Once a tip be-
came available, it could be accessed as many times as subjects preferred. 

 

7.3 Results 

In this section, results from the experiment are described. First, results on the 
three prior knowledge tests that were used are given. Subsequently, results 
from the interaction with the Peter discovery task and the Optics learning 
environment are discussed. Our main focus lies on differences between the 
group that received no extra help and the group that had extra help avail-
able. 

  

7.3.1 Prior knowledge test results 

The current experiment made use of three tests: a test for generic knowl-
edge, domain-specific knowledge, and discovery skills. The domain-specific 
test was administered both as pretest and posttest. 

 

                                                           

1 For the table, the tips were translated from the original Dutch. 



Optics 2000: Using knowledge to support discovery 169 

 

 

 

 

7.3.1.1 Generic knowledge 

The test for generic knowledge of mathematical relations contained 32 items. 
Cronbach’s alpha for this test was 0.71, which is considered to be reasonable. 
Test scores ranged from 11 to 28, with a mean score of 21.1 (SD = 4.21).  

 

7.3.1.2 Optics domain-specific knowledge 

The optics domain-specific knowledge pretest and posttest both consisted of 
30 paper-and-pencil items. A reliability test showed no large inconsistencies 
in the given answers. Therefore, no items were discarded from both the pre-
test and the posttest. This resulted for the pretest in a Cronbach’s alpha of 
0.51, and for the posttest an alpha of 0.66, which are considered to be mod-
erate. The mean test score on the test was 15.3 (SD = 3.7) on the pretest, and 
on the posttest 14.9 (SD = 4.2). No significant differences were found be-
tween the two school classes that were used in the experiment on either the 
pretest or the posttest. The range of scores on the pretest was 9-24, and on 
the posttest 4-21. This result indicates that there was a slight general drop in 
domain-specific knowledge from pretest to posttest. However, the difference 
between the pretest and posttest score is not statistically significant. Fur-
thermore, when the results were split for the no-help condition and help 
condition, a different picture emerged. These results are shown in Figure 
7-3.  
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Figure 7-3. Comparison of domain-specific knowledge test scores for the no-help 
and help conditions 

 

As can be seen from the figure, performance of students in the no-help con-
dition deteriorated from pretest to posttest, in contrast to students in the 
help condition whose performance improved. A one-tailed t-test of inde-
pendent samples shows that the difference between improvement from pre-
test to posttest in the two conditions is statistically significant; (F1,24=3.21; 
p<.05). 

Table 7-2. Domain-specific knowledge, comparison of no-help condition and help 
condition 

Domain-specific 
knowledge 

Pretest score Posttest 
score 

Difference Correla-
tion 

No help condition 

15.7 (4.5) 

13.9 (4.6) -1.86 0.52 

Help condition 14.3 (3.3) 

16.1 (3.7) 

1.83 -0.47 
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Table 7-2 shows the mean test scores for the two conditions, and also shows 
the correlation between the domain-specific pretest and posttest. The overall 
correlation between pretest and posttest was 0.13, but from the table it can 
be seen that there was a difference between the two conditions. For the no-
help condition, the correlation was positive. For the help condition, the cor-
relation was negative. The result for the no-help condition is a replication of 
earlier findings, which showed a moderate correlation between pretest and 
posttest. The result for the help condition shows that making knowledge 
available to students has had the effect of reversing this relationship. Further 
analysis revealed that this is mainly caused by a large increase from pretest 
to posttest for some students in the help condition (the largest is an increase 
of 12 points, compared to a largest increase of 6 for the no-help condition). 

 

7.3.1.3 Discovery skills 

The Peter paper-and-pencil test was administered to students after they had 
indicated that they knew the effect of the five variables in the Peter task. Test 
items required students to state the effect of each of the five variables in the 
Peter task on the outcome. Based on the answers, students were classified in 
one of four different levels. Students were classified as level 1 when they did 
not find correct main effects, and no interaction effect (low performance); as 
level 2 when they did find correct main effects but no interaction effect; as 
level 3 when they found correct main effects and the correct interaction ef-
fect, but also one or more incorrect interaction effect; finally, as level 4 when 
they found correct main effects and the correct interaction effect, and no 
other effects (high performance). The category can be seen as a measure of 
performance in the Peter task, with level being the lowest, and level 4 the 
highest level of performance. 

In this experiment, performance on the discovery skills test ranged from 
level 1 to level 4. Of the 32 subjects, 8 scored at level 1, 17 scored at level 2, 3 
scored at level 3, and 4 scored at level 4. This indicates that most students (78 
percent) in this experiment were not able to find an interaction in the data 
from the Peter task. This result replicates the finding from the Optics 99 ex-
periment, in which students in the Vocational Education group performed 
worse at the test for discovery skills than students in the Pre-Scientific Edu-
cation group. The correlation between performance on the generic knowl-
edge test and the discovery skills test was 0.25, which is low. 
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7.3.2 Interaction results 

This section gives results on the interaction with the Optics computer simu-
lation. Differences between the no-help and the help conditions are espe-
cially focused on. 

 

7.3.2.1 No-help versus Help condition 

Loss of some subject data resulted in a total of 27 Optics interaction logfiles, 
15 for the no-help condition and 12 for the help condition. 

An important question is whether students in the help condition actually 
made use of the tips that were made available to them. The instruction made 
it clear that subjects were free to use the tips, but that they did not have to 
view every tip. Analysis of the help condition showed that subjects viewed a 
mean total of 5.5 tips (SD=3.0) out of 9 tips. No relation was found between 
the number of tips that were accessed by subjects and performance in the 
Optics simulation. The correlation between the number of tips and perform-
ance on the domain-specific knowledge posttest was –0.1. It can be con-
cluded that subjects did make use of the knowledge tips that were offered to 
them. Reviewing of already available tips was used frequently by subjects. 
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Figure 7-4. Comparison of the no-help and help conditions for basic operations in 
Optics 
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A comparison was made on the number of basic operations in Optics. The 
mean number of add, delete, and move operations that was performed by 
subjects in the no-help condition was 70.3 (SD=43.4), and in the help condi-
tion 60.1 (SD=37.5). The difference is not statistically significant. When we 
look at the three basic operations separately (as shown in Figure 7-4), it can 
be seen that for all three operations, differences between the conditions are 
small. Students in the help condition appear to be less active in general than 
students in the no-help condition. 

 

7.3.2.2 Prior knowledge and Optics interaction 

A division into poor and high prior knowledge was made on the basis of test 
scores on the pretests. The dividing line was set at subjects who scored lower 
than one standard deviation below the mean, and subjects who scored 
higher than one standard deviation above the mean. For generic knowledge, 
this meant that two groups were formed of subjects who scored below 17 
(n=6) and above 25 out of 32 items (n=5). For domain-specific knowledge, 
two groups were formed of subjects who scored below 12 (n=6) and above 
19 out of 30 items (n=5). 
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Figure 7-5. Comparison on Add, Delete, and Move operations for poor and high 
generic knowledge 
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In the analysis of prior knowledge and skills and interaction in the Optics 
simulation, there is a problem in that the number of subjects that was used 
in the experiment was not high enough to allow for a comparison of high 
and poor prior knowledge divided over the no-help and help conditions. It 
also turned out that not all logfiles could be processed, which resulted in 
further loss of information about interaction behavior. Below, we will pre-
sent results for the combination of the groups in the help and in the extra 
help conditions. The availability of knowledge tips in the help condition 
may have interfered with the discovery learning process. 

In Figure 7-5, a comparison on basic operations for students with poor ge-
neric knowledge (n=4) and high generic knowledge (n=4) is shown. The re-
sults replicate findings from the Optics 97 and Optics 99 experiments. Stu-
dents with high generic knowledge are more active in working with the Op-
tics simulation than students with poor generic knowledge. 
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Figure 7-6. Comparison on Add, Delete, and Move operations for poor and high 
domain-specific knowledge 

 

Figure 7-6 shows a comparison on basic operations for students with poor 
domain-specific knowledge (n=6) and high domain-specific knowledge 
(n=3). This time, results are similar to the findings for generic knowledge, 
although the low number of subjects in the high domain-specific knowledge 
group makes a comparison difficult. 

Finally, a comparison between the groups with poor (n=6) and high (n=3) 
discovery skills is shown in Figure 7-7. Again, a comparison is made difficult 
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by the low number of subjects. Still, the comparison reveals a result that is 
similar to the result in the Optics 99 experiment in the comparison of stu-
dents with poor and high generic knowledge. Both groups perform a similar 
amount of Add and Delete operations, but subjects with high discovery 
skills perform more Move operations. 
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Figure 7-7. Comparison on Add, Delete, and Move operations for poor and high 
discovery skills 

 

7.4 Discussion 

The study that was described in this chapter was designed to examine 
whether or not discovery learning in the Optics computer simulation could 
be rendered more effective when learning was supported. The support that 
was available to a group of students in vocational education consisted of a 
small set of tips which gave domain-specific and generic background infor-
mation on the subject of geometrical optics. This information was available 
on a ‘just in time’-basis, which means that it could be accessed during dis-
covery learning. The Optics simulation was configured for this experiment 
to be more limited in scope than had been the case in our previous studies. 
The topic of image projection through a lens was focused on. By randomly 
assigning students to either a no-help condition or an help condition, we 
were able to examine the effect of the extra information that was available 
during discovery learning. 
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The finding that test performance of subjects in the no-help condition dete-
riorated from pretest to posttest is in line with findings from the previous 
experiment. On the one hand, when discovery learning proceeds in an un-
supported way, no gain in knowledge is found and performance can even 
get worse. On the other hand, when support is given by providing subjects 
with knowledge about the concepts and relations of the simulated domain, 
performance improves. 

Although the knowledge tips were actively used by subjects in the help con-
dition, and the effect on performance on the posttest was significant, it is 
difficult to find differences in the discovery learning behavior of subjects 
with or without tips. 

It was found that students in the help condition appeared to be less active in 
general than students in the no-help condition. This finding replicates a find-
ing in the Optics 99 experiment. In Figure 6-8, the mean activity level was 
shown for students with poor and high domain-specific knowledge. As can 
be seen from the figure, in the third situation students with high domain-
specific knowledge are less active than subjects with poor domain-specific 
knowledge. The third situation in the Optics 99 experiment is very similar to 
the situation that was used in the current experiment. Combining these 
findings leads us to the conclusion that students who had access to domain-
specific knowledge know more about the concepts and relations in a 
simulation. In the Optics 99 experiment, students with high domain-specific 
knowledge may have recognized the particular configuration that was used 
in the third situation, which led to their decreased activity in this situation. 
In the case of the present experiment, something similar may have happened 
to students who had knowledge available, causing them to be less active 
than students who did not.  



 

8  
Discussion: the implications of it all 

The Qanuc-folk of the snow-mantled Trollfells have a proverb. “He 
who is certain he knows the ending of things when he is only begin-
ning them is either extremely wise or extremely foolish; no matter 
which is true, he is certainly an unhappy man, for he has put a knife 
in the heart of wonder.” 

Tad Williams, Memory Sorrow and Thorn part I (1988) 

 

8.1 Introduction 

In this thesis, the main research question was: how does prior knowledge 
influence learning in a scientific discovery learning domain. The context in 
which discovery learning took place was computer simulation (Chapter 1). 
The SDDS model of scientific discovery learning (Klahr & Dunbar, 1988) was 
used as a theoretical framework for the research (Chapter 2). In three em-
pirical studies, a simulation on the topic of geometrical optics (‘Optics’) was 
used (Chapter 3). Generic and domain-specific knowledge were operational-
ized through tests, and methods were developed to measure interaction 
with the computer simulation (Chapter 4). In the first study (Optics 97), ge-
neric knowledge and domain-specific knowledge were measured to examine 
differences between more and less proficient students in scientific discovery 
learning processes (Chapter 5). This study made use of the Optics simulation 
and also of the Bubbles simulation about which students did not have prior 
domain-specific knowledge. We did not find influence of domain-specific 
prior knowledge on discovery learning processes in the Bubbles and Optics 
simulations, and only a limited effect for generic knowledge. In the second 
study (Optics 99), differences in discovery learning behavior between more 
and less proficient students on generic and domain-specific knowledge were 
examined (Chapter 6). In addition to using revised tests for generic and do-
main-specific knowledge, this study used a test for discovery skills (the ‘Pe-
ter’-test). Discovery learning behavior was studied in four situations (rang-
ing from simple to complex) in the Optics simulation. This study showed a 
consistent effect of prior generic knowledge on the discovery learning proc-
ess: students with high generic knowledge were more active in the Optics 
simulation than students with poor generic knowledge. Discovery skills 
were related to discovery learning behavior in the first two (simple) situa-
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tions in the Optics simulation. Students with high discovery skills were 
more active in these situations than students with poor discovery skills. For 
domain-specific prior knowledge it was shown that students with high do-
main-specific knowledge were less active than students with poor domain-
specific knowledge in one situation in the Optics simulation. A disadvantage 
of the Optics 99 experiment was that students spent only a short time in each 
situation of the Optics simulation. For the third and final study (Optics 2000) 
it was decided to focus on the situation in the Optics simulation for which a 
difference between groups of high and poor prior domain-specific knowl-
edge had been found in the Optics 99 study. The Optics 2000 study looked 
again at prior generic knowledge, domain-specific knowledge, and discov-
ery skills in relation to discovery learning in the Optics simulation (Chap-
ter 7). In this study, one group of students had a set of ‘knowledge tips’ at 
their disposal. By letting students have access to knowledge tips, knowledge 
about optics was manipulated in this study. It was found in this study that 
students who had the tips available to them showed a learning gain from 
pretest to posttest, as opposed to a group who worked in a similar way in 
the Optics simulation, but without knowledge tips. 

In this chapter, the overall results from the three empirical studies are dis-
cussed. First, the prior knowledge and discovery skills measures are closely 
examined. Possible limitations of the tests are discussed, and guidelines for 
improvements are provided. Second, the importance of using support to aid 
discovery learning with computer simulations is discussed. A comparison of 
the third experiment with the first and second reveals that even a relatively 
small support measure can lead to learning improvements. Implications for 
the SDDS framework of the results on the prior knowledge and skills tests on 
discovery learning behavior are discussed in the next section. Third, the 
method of studying interaction behavior as it was performed in all three 
studies is discussed. Limitations and possible extensions of the method that 
was used in the studies are taken into account. Finally, some of the general 
implications of the studies that were carried out are addressed. The studies 
have potential implications for education in general, and for further research 
in the field of scientific discovery learning. 

 

8.2 Prior knowledge and skills measures 

 

8.2.1 Generic knowledge 

In all three experiments, a pretest for generic knowledge was used. The test 
was used to measure knowledge about mathematical relations. These rela-
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tions could be of different types (e.g., qualitative or quantitative) and were 
presented in different formats (e.g., numerically or in a graph). The test that 
was administered in the Optics 99 and Optics 2000 studies differed from the 
test that was used in the Optics 97 study. In the first experiment, in which 
only students in pre-scientific education were used as subjects, the test was 
largely made up of items that used number sequences. Students had no 
problems with answering these items. A problem with measuring generic 
knowledge lies in specifying the border between generic and domain-
specific knowledge. On the one hand, when different topics from mathemat-
ics are chosen to create a test, there is a risk of the questions being too spe-
cific. On the other hand, when only general questions are asked, the test 
runs the risk of becoming an intelligence test.1 Therefore, it was decided to 
focus on the various ways in which mathematical relations can be repre-
sented. For scientific discovery learning to be successful, availability of all 
these types of generic knowledge was considered important. In Appendix A, 
the test that was used in the last experiment is shown. The Alpha level of 
0.71 suggests a reasonable internal consistency of the test. The measure for 
generic knowledge as it was developed and used in the experiments can be 
said to lie in-between a pure mathematics test (which would be a domain-
specific test) and a general test for number processing (which would be an 
intelligence test). In this sense, the test can be seen as a member of the family 
of general science tests such as TIPS (Burns, Okey, & Wise, 1985) and TOGS 
(McKenzie & Padilla, 1986), with an emphasis on knowledge of mathemati-
cal relations. 

 

8.2.2 Domain-specific knowledge 

All three experiments made use of tests for domain-specific knowledge 
about geometrical optics. Over the experiments, the design and way of ad-
ministering the test was greatly changed. Based on results of the test, stu-
dents were divided into two groups: one with poor and one with high prior 
domain-specific knowledge. All students who participated in the experi-
ments had been following courses in which the topic of geometrical optics 

                                                           

1 Indeed, many popular IQ tests make use of the type of number sequences that were 
used in the generic knowledge test that was used in the Optics 97 study; the actual 
sequences that were used were relatively easy for students with a normal level of 
intelligence. 
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was delivered. Therefore, it was expected that some students would remem-
ber more about the topic than others. It turned out that in general, students 
only knew little about the topic. In Table 8-1, an overview of prior domain-
specific knowledge scores is given (with standard deviations between paren-
theses), together with the alpha level of the test and some comments on the 
test format. 

Table 8-1. Overview of domain-specific knowledge tests 

Study Mean score / items Alpha Test format 

Optics 97 6.8 (2.1) /18 0.29 Computer test – Intuitive ‘what-if’ 
knowledge test 

Optics 99 12.9 (2.7) /24 0.34 Computer test – modified what-if 
test 

Optics 2000 15.3 (3.7) /30 0.51 Paper-an-pencil test –what-if items 
and declarative items 

 

In the first experiment, the fact that almost no students scored very high on 
the test had the consequence of reducing the variation in test scores, which 
made a division into groups of poor and high knowledge unreliable. Also, 
the what-if test that was used had a very low value of Cronbach’s alpha. The 
test that was used in the first experiment has a number of characteristics that 
differentiate it from more standard types of tests. An important characteris-
tic of the test is that learners are asked to balance their speed of answering 
and their accuracy. This is done to prevent learners from consciously solving 
the problem, and use their ‘gut feeling’ instead. The problem is that the re-
quest to balance speed and accuracy will be interpreted differently by differ-
ent people. Some people will focus on answering as quickly as possible in 
disregard of the accuracy of their answers. Other people will find being ac-
curate more important than being fast and answer more slowly. We feel that 
the instruction to balance speed and accuracy may influence test perform-
ance in a negative, or possibly in some other unpredictable way. One of the 
assumptions about intuitive knowledge is that this knowledge, though not 
verbalisable, can be quickly put to use by learners. In that case, imposing a 
restriction on the test by asking learners to balance accuracy and speed may 
introduce an undesired artifact. Since learners who have intuitive knowl-
edge available are expected to be quick in their answering, asking them to 
trade off speed and accuracy may lead some of them to favor accuracy, in 
which case the effect of intuitive knowledge may be lost. A solution to the 
problem may be, for example, to impose no restrictions on the answering 
behavior of learners, but to have them instead answer within a certain pe-
riod of time (shown next to the question as a decreasing counter). Unfortu-
nately, no studies have been carried out yet in which different types of in-
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structions are compared in the context of an intuitive knowledge test. The 
possible ambiguity that the speed/accuracy demand imposed, combined 
with the meager test results on the prior domain-specific knowledge test, led 
to the decision to discard this instruction for the second experiment. As can 
be seen from Table 8-1, the results were not completely satisfactory. The 
variation in test scores and the alpha level still were quite low. However, 
students performed better on the test (about 54 percent correct on the aver-
age, as opposed to 38 percent correct in the first experiment). To make a fur-
ther comparison between the tests, we looked at the time taken to answer 
the test. In the first experiment, the mean time taken to answer all test items 
was 672 seconds (as reported in Chapter 5), or 37 seconds for each question. 
Although, in the second experiment, students were not asked to trade off 
speed and accuracy, answer times were still registered. The mean time taken 
to answer all items was 776 seconds, or 26 seconds for each question.2 This 
means that, although no instruction was given about trading off speed and 
accuracy, students were faster in answering test items in the second experi-
ment. It may be that the revised items that were used in the domain-specific 
knowledge test in the second experiment were easier to answer than the 
items in the first experiment (an explanation which is corroborated by the 
higher percentage of correctly answered items). Still, we can conclude that 
when the instruction to trade off speed and accuracy is left out of the in-
struction of the intuitive knowledge test, this does not negatively affect an-
swering times. 

The poor test results and low reliability of the test led us to use a more ‘clas-
sical’ test in the final experiment. A paper-and-pencil format was used, and 
students were allowed to review their answers. Also, a number of test items 
that asked more directly for declarative knowledge about geometrical optics 
(such as the lens formula) were introduced in the test. The percentage cor-
rect on this test (51 percent) was similar to the test for the second experi-
ment. However, there was a larger variation in scores, and the alpha level of 
the test was moderate. The declarative knowledge items were mostly an-
swered correctly, percentages of correctness for these items were higher than 
for the other items. 

                                                           

2 The students who were in technical vocational education were a little slower in an-
swering each question (mean time 27.2 seconds) than students in pre-scientific 
education (mean time 24.8 seconds). However, the result was not significant. 
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The question may be raised why the what-if test format was used in the do-
main-specific prior knowledge tests. If intuitive knowledge is gained from 
working with a computer simulation, why use a prior measure for it? This is 
really a question about whether or not prior intuitive knowledge can exist. 
Answering an intuitive knowledge test means that knowledge of concepts 
and relations in a domain have to be combined. The poor performance that 
was found on the prior domain-specific knowledge tests may indicate, that 
although students had knowledge about the concepts and relations of geo-
metrical optics, they had trouble in combining this knowledge to answer the 
intuitive knowledge test items. 

 

8.2.3 Discovery skills 

In the second experiment, the Peter test for discovery skills was introduced. 
The test used a combination of a computer task and a paper-and-pencil test. 
To gain a high score on the discovery skills test, the results of experimenting 
with the Peter computer task environment had to be successful. What was 
tested for in the task was the skill level in performing relevant experiments 
and drawing the right conclusions from them. It was shown that perform-
ance on the Peter test was positively related to the number of experiments 
that students performed in the computer task. Also, the strategy followed in 
the computer task varied among students with different discovery skills. 
Students with high discovery skills showed more VOTAT-oriented behavior 
than students with poor discovery skills.3 

In the Optics 99 study, a relation was found between level of discovery skills 
and activity in the first two situations in the Optics simulation. It was con-
cluded that discovery skills affected discovery learning behavior in the more 
simple situations in the simulation, but not in the more complex situations. 

 

In summary, what answers can be given to the main research questions that 
were asked at the beginning of Chapter 4? The first research question asked 
about differences between the influence of domain-specific and generic 
knowledge on discovery learning processes. For generic knowledge, a gen-
eral effect was found: students with high generic knowledge are more active 
in discovery learning than students with poor generic knowledge. For do-
main-specific knowledge, only a limited influence on discovery learning was 
found. However, when knowledge about optics is available during discov-

                                                           

3 VOTAT means Vary One Thing At A Time (Tschirgi, 1980). This refers to the strat-
egy to change only one variable from one experiment to the next. 
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ery learning, it supports students in activating their prior knowledge, which 
has a positive influence on the learning result. This leads us to the second 
research question, which dealt with the effectiveness of discovery learning. 
In the Optics 97 and Optics 99 studies, a positive relation was found between 
domain-specific prior knowledge and performance on a domain-specific 
knowledge posttest. This means that pre- and posttest performance was 
similar for most students. In the Optics 2000 experiment, this result was re-
versed for students in the help condition. This was caused by students with 
poor domain-specific prior knowledge who showed a large learning gain 
after working with the Optics simulation. The conclusion is that enabling 
students to access information during discovery learning can change the re-
lation between prior knowledge and posttest performance. The third re-
search question dealt with the strategy that students followed during dis-
covery learning. What changes could be detected over time? In the Optics 97 
and Optics 99 studies, discovery learning processes were analysed over 
time. When the level of activity was analysed, differences between groups 
with poor and high knowledge were found. However, it turned out to be 
difficult to unequivocally interpret the results. In general, the discovery 
learning process does change over time. The beginning and end part of a 
discovery learning session are different from the middle part. In what way 
this is dependent on prior domain-specific and generic knowledge is still an 
unresolved question. 

 

8.3 Implications for the SDDS framework 

The empirical studies that are described in this thesis were carried out in the 
context of the SDDS framework by Klahr and Dunbar (1988). The extended 
version of this framework by Van Joolingen and De Jong (1997) was used to 
explain the (potential) role of prior knowledge on scientific discovery learn-
ing processes. An important contribution by the extended SDDS framework is 
the division of hypothesis space into a number of subspaces. In Chapter 2, it 
was argued that domain-specific knowledge is represented in hypothesis 
space in the learner hypothesis space (all statements about a domain that a 
learner has knowledge of). The process of scientific discovery learning en-
tails searching experiment space and hypothesis space, with the goal of 
moving the learner hypothesis space closer to the target conceptual model (all 
true statements about a domain). The absence or presence of domain-specific 
prior knowledge implies a different configuration of the learner hypothesis 
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space, which affects the distance between the learner hypothesis space and 
the target conceptual model. As it was used in this thesis, generic knowledge 
referred to the level of knowledge about mathematical relations. Hypothesis 
space can be broadly divided in a space of variables and a space of relations 
(Van Joolingen & De Jong, 1997). Generic knowledge was expected to influ-
ence the type of mathematical relations a student would have knowledge 
about, which should have an effect on the discovery learning process. 

In the Optics 97 and Optics 99 studies, the effect of domain-specific knowl-
edge on discovery learning in the Optics simulation was limited. This can be 
explained by the poor knowledge about geometrical optics that students had 
in general. In simple configurations of the Optics simulation, students may 
have had trouble in connecting information from the simulation with their 
background knowledge. In complex configurations, their knowledge proba-
bly was simply too limited to have an influence on the discovery learning 
process. Still, in the Optics 99 study it was found that in one specific situa-
tion in the optics simulation (a configuration in which an object was pro-
jected on a screen), students who had been classified as having high domain-
specific knowledge showed less activity than students with poor domain-
specific knowledge. The hypothesis was stated that the particular situation 
that was used was recognized by students with high domain-specific 
knowledge. Because they had knowledge already available, they were less 
active in the situation than students with poor domain-specific prior knowl-
edge. For the SDDS framework, this means that when the learner hypothesis 
space is closer to the target conceptual model, students make less ‘moves’ 
through experiment space to gain information. 

From the empirical studies, it appears that generic knowledge influences the 
general level of activity in the Optics simulation. Students with a high level 
of generic knowledge showed more activity than students with poor generic 
knowledge. This effect was similar for simple and complex configurations of 
the computer simulation, and was found in both the Optics 97 and the Op-
tics 99 experiments. This result can be explained by the extended SDDS 
framework. High generic knowledge means more knowledge of the type of 
mathematical relations that exist. This means that the effective learner space 
is larger, which gives more freedom in performing experiments. 

Discovery skills, which were measured in the Optics 99 and Optics 2000 
study, influenced learning behavior in simple configurations of the Optics 
simulation. In these situations, students with high discovery skills were 
more active than students with poor discovery skills. In the computer task 
that was related to the Peter test, successful students were also more active 
than students with poor discovery skills. The level of discovery skills was 
also moderately correlated with the level of generic knowledge. One conclu-
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sion that may be drawn is that students with high generic knowledge have 
more knowledge about types of (interesting) relations, and know better than 
students with poor generic knowledge what different types of experiments 
they can perform. In the Peter computer task, they also know better what 
type of experiments to perform, which is reflected in better performance on 
the Peter test. 

The relation between discovery skills and generic knowledge could be the 
subject of further research. It may be that both are really measures of generic 
inquiry skills: knowledge of mathematical relations is needed to perform 
effective experiments, and by performing effective experiments more (ge-
neric) knowledge is gathered. Also, both discovery skills and generic knowl-
edge may be related to a more general measure of intelligence, an issue that 
was not explored in these studies. 

We have come to the following general conclusions with respect to the influ-
ence of prior knowledge and skills on scientific discovery learning processes.  

Generic knowledge. The knowledge of types of mathematical relations that can 
exist between variables, as expressed in generic knowledge, has a general 
influence on discovery learning, regardless of the complexity of the learning 
environment. Students with high generic knowledge have more knowledge 
about the type of mathematical relations that exist, which means that they 
can perform more different types of experiments (their effective learner 
space is larger). From this, it follows that they are more active than students 
with poor generic knowledge. 

Domain-specific knowledge. Knowledge about the variables and relations that 
exist within a certain domain, as expressed in domain-specific knowledge, 
only influences discovery learning behavior when it can be accessed by stu-
dents. It may be that prior domain-specific knowledge can only be accessed 
when relevant variables in a situation are recognized by students. When this 
is realized, high domain-specific knowledge means that the learner hypothe-
sis space is larger and closer to the target conceptual model. This will lead 
students to be less active than students with poor domain-specific knowl-
edge. In a complex situation, for which no domain-specific knowledge is 
available, domain-specific knowledge does not influence discovery learning 
processes.  

Discovery skills. The skill with which relations between variables are discov-
ered in a domain influences discovery learning behavior when a situation is 
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simple enough. In a complex situation, the absence or presence of other 
types of knowledge becomes more important. 

 

8.4 The use of support 

To study the influence of prior knowledge on scientific discovery learning in 
a computer simulation, it was decided to keep support at a minimum. We 
did not want active support measures to interfere with the basic discovery 
learning task. The absence of active support had two side effects. Firstly, the 
discovery learning task was not optimized to be as effective as possible. This 
means that we did not expect a positive learning effect from working with 
the Optics simulation. In the experiments, even negative learning effects 
were found. Secondly, in combination with the low level of domain-specific 
prior knowledge that was found in general, working with the Optics simula-
tion was very complicated for students. Many students reported having 
trouble in making sense of the general assignment that was given to them. In 
the Optics 99 experiment, the Optics simulation was worked with in a fixed 
order, through four situations that built up in complexity. Because of time 
limitations, this meant that each situation was only worked with for a short 
time, which means that a large part of working with the simulation was 
spent on getting used to the new situation. It was decided to focus on one 
situation only in an experiment that was designed to test the effectivity of 
knowledge support. In the Optics 2000 study, domain-specific knowledge 
was manipulated by delivering information to students on a just-in-time ba-
sis: domain-specific information was delivered while students worked with 
the Optics simulation. The results of the Optics 2000 study showed that 
when students had access to information about geometrical optics, they did 
make use of it. Also, the information that was provided by the ‘knowledge 
tips’ helped in manipulating domain-specific knowledge, which in turn led 
to an improvement on domain-specific knowledge from pretest to posttest. 
Our conclusion is that discovery learning in the Optics simulation can be 
made effective, even by using the relatively minor support measure of 
knowledge support. 

 

8.5 Interaction analysis 

The method that was chosen for analyzing the interaction between students 
and the Optics computer simulation was outlined in Chapter 4. The opera-
tions that students performed while they worked with the computer simula-
tion were registered in a log file. The log file was subjected to an analysis, for 
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example the frequency of different types of operations was calculated. This 
method of analysis offered several advantages over other methods, such as 
thinking aloud. We were able to experiment with a group of students who 
worked simultaneously with the Optics simulation. Also, raw log data did 
not have to be transcribed before it could be analyzed (although the data 
was converted to become more easily processed). A disadvantage of the 
method was that students’ reasoning behind the operations they performed 
in the simulation could not be ascertained this way. In the Optics 99 experi-
ment, students were asked in-between situations in the Optics simulation 
about their reasons for working in the way they had done. However, use of 
this method did not yield much information, because most students merely 
stated what operations they had performed. To get insight in the discovery 
learning process, a distinction between different types of operations was 
made. In the Optics 97 experiment, a distinction between Type I (core), Type 
II (peripheral), and Type III (irrelevant) operations was made. Type I opera-
tions were necessary to experiment in the computer simulation, and referred 
to object manipulation. Type II operations helped students get more infor-
mation from the simulation than was visible from the objects alone. In the 
Optics 99 experiment, a similar distinction was made between manipulation 
operations and guiding operations. 

In the analysis, interaction behavior was examined both as an aggregate of 
all operations in a situation in the Optics simulation, and over time. In the 
analysis over time, we defined a number of short sequences of operations a 
priori. These sequences consisted of operations that yielded either qualita-
tive information or quantitative information. As was discussed in Chapter 4, 
this approach was chosen in favor of a purely sequential analysis, in which 
occurrences of any sequential patterns are explored. The approach that was 
chosen was not entirely successful. Firstly, it turned out to be difficult to de-
fine meaningful short sequences of operations. Secondly, in many cases a 
particular sequence can deviate from the defined pattern, for example when 
another (irrelevant) operation is performed in-between the other operations. 
Which operations should be left out and which operations should not is an 
open question, which is not answered by the research this thesis. Thirdly, it 
is probably not possible to capture every instance of behavior that is mean-
ingful to a student by pre-defining sequences of operations.  

Overall, we conclude that the frequency-based analysis of a priori defined 
sequences of operations that was used here can be used in general in the 
analysis of discovery learning processes in computer-based simulations. At 
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the moment, no general method of analyzing learner-computer interaction 
in these situations exist, with each study following its own guidelines. The 
definition of a generic set of sequences of operations can help in creating a 
stronger foundation for the analysis of discovery learning behavior. 

 

8.6 General implications 

A conclusion that can be drawn from this thesis as a whole, is that discovery 
learning is an intricate and complex phenomenon. It was shown that prior 
generic knowledge has a general influence on discovery learning processes. 
The effect of prior domain-specific knowledge was shown to be limited. 
Domain-specific knowledge only has influence when it can be accessed dur-
ing discovery learning. For instructional designers, it is important to take 
these findings into account when creating situations in which discovery 
learning should yield optimal results. For students, it is a complex and (still) 
not familiar way to learn. For researchers, the discovery learning process is 
difficult to study. What are the more general implications that can be drawn 
from the studies that have been described in this thesis? In this final section, 
we will list a number of possible implications for the educational field and 
for further research in the area of scientific discovery learning. 

 

8.6.1 Implications for the educational field 

In Chapter 1, the changes that the educational field has been experiencing 
for some time were discussed. A distinction was made between influences 
that originate from technological advances which have found their way into 
the classroom, and theoretical advances in views on how a learning situation 
should be designed. The use of computer simulations that foster discovery 
learning processes will in all probability continue to increase. This makes 
research into the way different learners react to a discovery learning situa-
tion, and into the way learning can be supported, a useful enterprise. 

In the studies that were conducted as part of this thesis, it was found that 
students scored poorly on the domain-specific knowledge tests. It was ob-
served that some of the teachers who were involved in the design of the ex-
periments expressed surprise at this finding, because they had expected 
knowledge about geometrical optics to be much higher than it turned out to 
be. This indicates that there is a discrepancy between knowledge that is 
measured by a standard test for declarative knowledge (on which students 
can show normal performance) and an intuitive knowledge test (on which 
students showed poor performance). The implication for education is, that 
when a simulation is used to foster discovery learning, special care has to be 
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taken to use a domain-specific knowledge test that is appropriate for the 
learning situation. 

In the Optics 97 study, it was found that students were more motivated to 
work with the Bubbles computer simulation than with the Optics simula-
tion. The game-like task that the Bubbles simulation provided, combined 
with the fact that students had no prior knowledge about the Bubbles do-
main, probably had a positive effect on motivation. In contrast, the subject of 
geometrical optics was recognized by students as a typical school subject, 
which had a negative effect on motivation. The implication for education is 
that simulation-based discovery learning environments may be best em-
ployed with topics that have not been treated in the normal curriculum yet. 
Students appear to be sensitive to the difference between learning something 
new and learning something that has been learned before. 

 

8.6.2 Implications for further research 

In this thesis, the process of scientific discovery learning was studied in the 
context of a computer simulation. For the experiments a number of tests and 
tools were developed. For domain-specific knowledge, originally a what-if 
test format was used. In later experiments, some of the characteristics of a 
what-if test were removed from the test, which had a positive effect on test 
scores and reliability. It is uncertain why the what-if test format failed for the 
domain of geometrical optics. We did find that students had poor knowl-
edge on the subject, and it was hypothesized that students may have had 
trouble in trading off speed and accuracy in answering. Still, research is 
needed to investigate under what conditions a what-if test format can be 
used and what changes can be made to the format. The test format that was 
used in the different studies in this thesis can serve as a starting point for 
further study, in which different formats are compared with each other. 
Also, the relation between intuitive knowledge and explicit knowledge can 
be further explored. Using a combination of both types of test could be more 
useful in measuring prior knowledge than the use of either type on its own. 

The Optics 99 and Optics 2000 studies made use of a test for generic knowl-
edge and a test for discovery skills. It was found that performance on these 
tests was moderately correlated. The exact relation between generic knowl-
edge and discovery skills is not known, and it was suggested that both 
measures might be related to another construct, such as general level of in-
telligence. 
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The set of measures for interaction between students and the computer 
simulation that were developed in the context of the empirical studies in this 
thesis have proven to be useful in analyzing discovery learning processes. 
We have argued that a frequency-based analysis of a prior defined se-
quences of operations can provide a general framework for studying scien-
tific discovery learning processes. In further research, this approach should 
be refined and tested in other simulation-based environments. 
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Nederlandse samenvatting 

 

Een belangrijk onderdeel van iets ontdekken is dat er sprake is van een ver-
rassingselement: er treedt een gebeurtenis op die men niet had zien aanko-
men. Het ontdekken van nieuwe informatie leidt tot een kwalitatieve veran-
dering in kennis. Van dit kenmerk kan gebruik worden gemaakt in het on-
derwijs. Dit is wat plaatsvindt bij de manier van leren die ontdekkend leren 
wordt genoemd. Ontdekkend leren is een leervorm waarvan de populariteit 
sinds een aantal jaar sterk is toegenomen. Een reden hiervoor is dat nieuwe 
toepassingen zijn ontwikkeld waarmee ontdekkend leren gestimuleerd kan 
worden. Een van die toepassingen is een computersimulatie. Een computer-
simulatie is een programma dat een systeem simuleert door middel van een 
model. Tijdens het werken met een simulatie kan een leerling variabelen 
manipuleren en het effect hiervan waarnemen. De uitkomsten van manipu-
laties worden bepaald door het model van de simulatie, dat niet zichtbaar is 
voor de leerling. Het doel van ontdekkend leren met een computersimulatie 
is om door middel van interactie met de computer de regels waaraan het 
model voldoet te ‘ontdekken’. 

Het onderwerp van dit proefschrift is de invloed van voorkennis op ontdek-
kend leren. De manier waarop ontdekkend leren wordt onderzocht is met 
behulp van een computersimulatie. In het kader van dit onderzoek werden 
tests ontworpen om voorkennis op een adequate wijze te meten. Tevens 
werden methoden ontwikkeld om het gedrag van leerlingen tijdens het wer-
ken met een computersimulatie te registreren. In het kader van het onder-
zoeksproject ‘Inductief Leren’ werd onder andere een computersimulatie 
ontwikkeld die als onderwerp geometrische optica heeft. De simulatie (ge-
naamd ‘Optica’) werd in alle experimenten die voor dit onderzoek zijn uit-
gevoerd gebruikt. Drie experimenten werden uitgevoerd (in 1997, 1999, en 
in 2000). 

In hoofdstuk een worden de beweegredenen die ten grondslag liggen aan 
het onderzoek besproken. De veranderingen die in het onderwijs gaande 
zijn kunnen verklaard worden vanuit een praktisch en een theoretisch per-
spectief. In praktische zin speelt de enorme technologische vooruitgang van 
de laatste jaren een belangrijke rol. Computers zijn niet meer weg te denken 
uit het onderwijs, en verantwoord gebruik ervan vereist een andere opstel-
ling van zowel leraren als leerlingen ten opzichte van meer traditionele 
leermiddelen. In theoretische zin speelt de veranderde kijk op het leerproces 
een rol. Een groep theorieën die hierbij centraal staat kan worden samenge-
nomen onder de naam constructivisme. Vanuit het constructivistische per-
spectief worden leerlingen niet gezien als passieve ontvangers van informa-
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tie, maar als actieve deelnemers aan het leerproces. De rol van de leraar is 
hierbij niet slechts het overbrengen van informatie naar leerlingen toe, maar 
het faciliteren van het leerproces. Het idee van ontdekkend leren sluit zeer 
nauw aan bij deze ideeën. Met behulp van een computersimulatie kan deze 
leervorm bij leerlingen worden ‘uitgelokt’. Er is veel onderzoek verricht naar 
ontdekkend leren. Veel onderzoek beperkt zich echter tot het bekijken van 
de effectiviteit van ontdekkend leren in relatie tot andere leervormen. Het 
blijkt dat een groot aantal factoren het succes van ontdekkend leren bepalen. 
In meerdere studies is gevonden dat de kennis die leerlingen bezitten voor-
dat ze aan een leertaak beginnen een belangrijke factor is. 

In het in dit proefschrift beschreven onderzoek staat het leerproces tijdens 
ontdekkend leren centraal. De algemene onderzoeksvraag was: op welke 
wijze beïnvloedt reeds aanwezige kennis het leerproces tijdens ontdekkend 
leren met computersimulaties? Meer specifiek geformuleerd werden de vol-
gende drie onderzoeksvragen gesteld: 

Op welke manier beïnvloeden domeinspecifieke en algemene kennis de pro-
cessen die tijdens ontdekkend leren plaatsvinden? Verschilt de wijze waarop 
beide typen kennis het leren beïnvloeden? 

Beïnvloeden domeinspecifieke en algemene kennis de effectiviteit van ont-
dekkend leren? Leidt meer voorkennis tot een beter leerresultaat? 

Treden veranderingen in het ontdekkend leerproces op over de tijd? Is de 
leerstrategie die wordt gevolgd afhankelijk van domeinspecifieke en alge-
mene kennis? 

In de empirische studies die in het kader van dit proefschrift werden uitge-
voerd werd getracht tot een antwoord op deze vragen te komen. 

In hoofdstuk twee wordt de theoretische achtergrond van het onderzoek 
geschetst. Ontdekkend leren kan worden beschreven als een speciale vorm 
van probleemoplossen. In de theorie die door Newell en Simon in 1972 werd 
gepostuleerd wordt probleemoplossen gezien als een proces waarbij een 
‘probleemruimte’ wordt doorlopen. Klahr en Dunbar (1988) hebben een mo-
del opgesteld om processen die tijdens ontdekken plaatsvinden op eenzelfde 
manier te verklaren. In dit ‘sdds’-model wordt ontdekkend leren beschreven 
als het doorzoeken van twee probleemruimtes: een hypotheseruimte (die 
bestaat uit alle mogelijke relaties tussen variabelen binnen een domein) en 
een experimentruimte (die bestaat uit alle experimenten die mogelijk zijn 
binnen een domein). Van Joolingen en De Jong (1997) hebben dit model ver-
der verfijnd. In de hypotheseruimte onderscheiden zij de leerling hypothese-
ruimte, de effectieve leerruimte, en het conceptuele doelmodel. De leerling hypo-
theseruimte is opgebouwd uit de relaties en variabelen in een domein waar 
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een leerling kennis over heeft. Domeinspecifieke kennis is dus bepalend 
voor de opbouw van de leerling hypotheseruimte. Algemene kennis bepaalt 
welke wiskundige relaties iemand wel en niet kent. Het bezitten van meer 
algemene kennis betekent kennis over meer typen relaties die kunnen voor-
komen, wat impliceert dat een leerling met meer algemene kennis meer mo-
gelijkheden zal zien om relaties in een leeromgeving te onderzoeken. 

De beschrijving van voorkennis in termen van het sdds-model leidt tot de 
voorspelling dat deze kennis het ontdekkend leerproces zal beïnvloeden. In 
een aantal experimenten werd onderzocht op welke wijze dit plaatsvindt. 

De computersimulatie die in elk van deze experimenten werd gebruikt om 
ontdekkend leerprocessen te stimuleren was de Optica simulatie. Deze si-
mulatie, die voor het Inductief Leren-project werd ontworpen, wordt 
beschreven in hoofdstuk drie. Als onderwerp voor de simulatie werd 
gekozen voor het onderwerp geometrische optica. Dat wil zeggen dat het 
model van de simulatie formules bevat die in de geometrische optica een rol 
spelen (zoals bijvoorbeeld de lenzenformule). De interface van de Optica 
simulatie is zo ontworpen dat met de muis van de computer experimenten 
kunnen worden uitgevoerd. Lenzen en lampjes kunnen in een werkgebied 
worden gepositioneerd, waarbij lichtbreking van een lichtstraal door een 
lens door de simulatie wordt weergegeven. Het updaten van de simulatie 
gebeurt in real-time, wat als consequentie heeft dat er geen duidelijke 
scheiding tussen experimenten in de simulatie aan te wijzen is. Ook 
kwantitatieve metingen kunnen worden verricht in de Optica simulatie, 
door middel van het uitvoeren van afstandsmetingen. Om het gedrag van 
leerlingen tijdens het werken met de Opticasimulatie te meten werd gebruik 
gemaakt van een methode waarbij alle operaties (‘muisklikken’) die ze in de 
simulatie uitvoerden werden geregistreerd. 

In hoofdstuk vier wordt de manier waarop de frequentie en volgorde van 
operaties beschreven. Tevens wordt een methode geïntroduceerd om fre-
quentie en volgorde van operaties in een maat te combineren. In hoofdstuk 
vier worden ook de verschillende tests die in de experimenten worden ge-
bruikt onder de loep genomen. Domeinspecifieke kennis en algemene kennis 
worden in twee tests geoperationaliseerd. De items van de test voor algeme-
ne kennis vragen naar kennis over verschillende typen wiskundige relaties. 
Om domeinspecifieke voorkennis te testen werd gebruik gemaakt van de 
zogenaamde ‘what-if’-test, een test voor intuïtieve kennis. Deze test combi-
neert snelheid en accuraatheid door leerlingen te vragen om deze twee fac-
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toren als even belangrijk te beschouwen tijdens het maken van de test. In de 
experimenten worden varianten van de beschreven tests gebruikt. 

De hoofdstukken vijf, zes, en zeven zijn gewijd aan de empirische studies 
die in het kader van het proefschrift werden uitgevoerd. 

In hoofdstuk vijf wordt het Optica 97 experiment besproken. Het doel van 
dit experiment was om licht te werpen op de eerder gestelde onderzoeks-
vragen. Hierom werd in dit experiment gebruik gemaakt van twee compu-
tersimulaties: de Optica simulatie (waarover variatie in voorkennis werd 
verwacht) en de Bubbles simulatie (een simulatie van een door de onderzoe-
kers bedacht systeem, waarover geen domeinspecifieke voorkennis aanwe-
zig kon zijn bij leerlingen). Algemene kennis werd vooraf gemeten, domein-
specifieke kennis werd zowel vooraf gemeten als gemanipuleerd: kennis 
over geometrische optica werd gemeten, kennis over Bubbles werd gemani-
puleerd. De resultaten van het experiment lieten zien dat de invloed van 
domeinspecifieke voorkennis op het ontdekkend leerproces nihil was, terwijl 
slechts een geringe invloed van algemene kennis werd gevonden. Het bleek 
dat leerlingen zeer weinig voorkennis over optica bezaten, en dat de be-
trouwbaarheid van de gebruikte tests laag was. Ook de variatie in testscores 
was laag, wat indeling in groepen met veel en weinig voorkennis bemoeilijk-
te. Analyse van het aantal verrichte operaties over de tijd liet wel verschillen 
zien tussen leerlingen met weinig en leerlingen met veel voorkennis, maar 
deze verschillen waren niet eenduidig te verklaren. 

Om meer duidelijkheid over de gevonden effecten te krijgen (en over de af-
wezigheid van een effect van domeinspecifieke voorkennis) werd het Opti-
ca 99 experiment uitgevoerd. Dit experiment wordt in hoofdstuk zes be-
schreven. Net als in het Optica 97 experiment werden in dit experiment al-
gemene kennis en domeinspecifieke voorkennis (over optica) gemeten. Ook 
werd in dit experiment een test gebruikt om ontdekkingsvaardigheden te 
meten (de ‘Petertest’). Door twee groepen proefpersonen (afkomstig uit 
VWO en MBO) te combineren werd getracht meer variatie in testscores te 
verkrijgen. In dit experiment werd alleen de Opticasimulatie gebruikt. De 
simulatie werd in vier verschillende ‘situaties’ gedeeld (verschillend in op-
bouw en beschikbare functies), waarmee elke leerling korte tijd werkte. De 
resultaten lieten zien dat leerlingen met veel algemene kennis consistent ac-
tiever waren in het leerproces dan leerlingen met weinig algemene kennis. 
Wat betreft domeinspecifieke voorkennis werd alleen een verschil gevonden 
in een van de vier situaties: leerlingen met veel domeinspecifieke voorkennis 
waren minder actief in deze situatie dan leerlingen met weinig voorkennis. 
Voor ontdekkingsvaardigheden werd alleen een verschil gevonden in de 
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eerste (eenvoudige) situaties, waarbij leerlingen met goede vaardigheden 
actiever waren dan leerlingen met minder goede vaardigheden. 

Het verschil dat in het Optica 99 experiment werd gevonden voor domein-
specifieke voorkennis werd nader bekeken in het laatste experiment, Opti-
ca 2000. Dit experiment wordt beschreven in hoofdstuk zeven. Ook nu wer-
den domeinspecifieke en algemene kennis vooraf gemeten, alsmede ontdek-
kingsvaardigheden. Voor het ontdekkend leren werd gebruik gemaakt van 
een situatie in de Opticasimulatie. Het experiment verschilde van de voor-
gaande experimenten, omdat kennis over geometrische optica werd gema-
nipuleerd. De manier waarop dat gebeurde was door middel van beschik-
baar stellen van informatie (‘kennistips’). De informatie was tijdens het wer-
ken met de Opticasimulatie beschikbaar, en kon door leerlingen (in dit expe-
riment allen afkomstig uit het MBO) worden aangeroepen. Een deel van de 
leerlingen had de informatie tot haar beschikking, het andere deel kreeg al-
leen de standaardinstructie vooraf. 

De resultaten lieten zien dat het beschikbaar hebben van informatie tijdens 
de ontdekkend leertaak een positief leereffect tot gevolg had. Dit in tegen-
stelling tot de conditie zonder hulp, die een negatief leereffect liet zien. 
Overeenkomstig met het Optica 99 experiment werd gevonden dat leerlin-
gen met veel domeinspecifieke voorkennis minder actief waren in de simu-
latie dan leerlingen met weinig voorkennis. De manipulatie door middel van 
het aanbieden van kennis, gekoppeld aan het kleine aantal proefpersonen, 
belemmerde analyse van de invloed van algemene kennis en ontdekkings-
vaardigheden. 

In hoofdstuk acht worden een aantal algemene conclusies getrokken met 
betrekking tot datgene wat in het voorgaande werd besproken en wat in de 
uitgevoerde experimenten werd gevonden. De discussie spitst zich toe op de 
tests voor domeinspecifieke kennis, algemene kennis, en ontdekkingsvaar-
digheden, op de gevolgen van de onderzoeksresultaten voor het sdds-model 
van ontdekkend leren, het effect van het geven van ondersteuning tijdens 
ontdekkend leren, en conclusies naar aanleiding van de analyse van leerling-
computer interactiegedrag. Een nadeel van de analyse van interactiedata 
lijkt te zijn dat de grote variatie in individueel ontdekkend leergedrag veel 
verschillen doet wegvallen bij het aggregeren van gegevens. Om verschillen 
in gedrag te vinden tussen leerlingen met veel en weinig voorkennis moeten 
de scores ver uiteen liggen. Wat betreft domeinspecifieke kennis lijkt het er-
op dat deze alleen van invloed is op het ontdekkend leerproces als de kennis 
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tijdens het werken met een computersimulatie kan worden aangesproken. 
Ondersteuning door middel van het aanbieden van kennis tijdens het leren 
kan hierbij helpen. 

Het uitgevoerde onderzoek heeft implicaties voor het onderwijsveld en voor 
de uitvoering van verder onderzoek. Het onderzoek laat zien dat het belang-
rijk is om het verband tussen de leertaak die wordt gebruikt (in dit geval 
ontdekkend leren met een computersimulatie) en het type test dat wordt 
gebruikt in de gaten te houden. Het onderzoek laat ook zien dat leerlingen 
minder gemotiveerd zijn om over een ‘school’-onderwerp als optica te leren 
dan over een ‘spel’-onderwerp als Bubbles. In verder onderzoek zou de rela-
tie tussen het onderwerp van een simulatie en de motivatie van leerlingen 
kunnen worden onderzocht. Ook kan de analyse van leerling-computer in-
teractie verder worden verfijnd, iets wat uiteindelijk kan resulteren in een 
algemene manier om het gedrag van leerlingen in een computersimulatie te 
meten. 

 



 

Appendix A 

Number and graph test (generic knowledge test) 

 

This test is meant to determine your knowledge about mathematical relations in 
graphs and numbers. There are 32 questions in total. Read each question carefully, 
and choose what you think is the right answer. For most questions, the answer can be 
chosen from a list of alternative answers, by marking the square in front of the right 
answer. For some questions, a short mathematical relation has to be filled in. Only one 
answer is correct for each question. 

If you are not sure about the answer to a problem, skip it for the time being, and con-
tinue with the other questions. In any case, try to answer as many questions as possible 
within the time given. 

 

1. Consider the following relation: 

A2 + B2 = C2 

Under what name is this relation also known? 

� The lens law 
� The law of Snellius 
■ The rule of Pythagoras 
� None of the relations above 
 

2. In the questions below you will see two columns with numbers, one marked X and 
another marked Y (or A and B). The numbers under X and Y are related to each 
other. On the right you see some relations between the numbers, only one of which is 
correct. Your task is to mark the correct relation. 

 

What type of relation is represented in the table below? 

X Y  Answer 

1 1  � Y = 2 X – 1 
2 .5 

3 .3333… 

 
� Y = 

1
X2  

4 .25  
   ■ Y = 

1
X  

   � Y = X  
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3. What type of relation is represented in the table below? 

X Y  Answer 

2 6  � geometrical relation  
4 12  ■ linear relation 
6 18  � coincidental relation 
8 24  � exponential relation 

 

4. What type of relation is represented in the table below? 

X Y  Answer 

1 1 

2 1.4142 

 
� Y = 

1
2 X + 1 

3 1.7321… 

4 2 

 
� Y = 

1
X2  

   
   � Y = 

1
X  

   ■ Y = X  

 

5. The table below shows a relation between the variables X, Y, and Z. In the answer 
column, write in one formula how X can be computed from Y and Z. 

X Y Z answer  

.5 1 2  

.666… 2 3  

.8 4 5  

.857… 6 7  

 

X = 
Y
Z  

 

6. How can the relation that is represented in the table below be described? 

A B Answer 

10 4 
20 8 

� The more A increases, the slower B  decreases 

30 16 � When A approaches zero, B also approaches zero 
60 64 
100 1024 

■ The more A decreases, the faster B decreases 

  � The more A increases, the slower B increases 
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7. How can the relation that is represented in the table below be described? 

A B Answer 

10 10 
20 5 

■ The more A increases, the slower B  decreases 

30 3 � When A approaches zero, B approaches the infi
 nite 

60 2.5 
100 2.25 

� The more A increases, the slower B increases  

  � The more A increases, the faster B decreases 

 

8. The table below shows a relation between the variables A and B. In the answer 
column, write in one formula how B can be computed from A. 

A B Answer  

2 .5   
4 .25 

6 .1666… 

 
B = 

1
A  

8 .125   

 

9. How can the relation that is represented in the table below be described? 

A B  Answer 

4 .0625  � B = A – 2 
6 .0277… 

8 .0156… 

 
� B = 

1
A  

10 .01  
   ■ B = 

1
A2  

   
� B = 

2 A
7   

 

10. What type of relation is represented in the table below? 

A B  Answer 

4 2  ■ B = A  

6 2.4494… 

8 2.8284… 

 
� B = 

A

2
1
2 

  

10 3.1622…  
   

� B = 
1

A2  

   � B = 2 A 



212 Appendices 

 

 

11. The table below shows a relation between the variables X, Y, and Z. In the answer 
column, write in one formula how X can be computed from Y and Z. 

X Y Z Answer 

0 10 20 � X only influences Y, not Z 

5 10 20 � X only influences Z, not Y 

10 10 20 � X influences both Y and Z 

15 10 20 ■ X does not influence Y and Z 

20 10 20  

 

12. If X, Y, and Z from the previous question would represent amounts of fluid, how 
could the influence of fluid X on Y and Z then be called? 

� X is a moderator 
� X is a katalyst 
� X is an oxydizer 
■ X does not influence Y and Z  
 

13. What type of relation is represented in the graph below? 

� A quadratic function 
� A function with an aymptote 
■ A monotonic decreasing function 
� A logaritmic function 
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14. In an experiment two fluids A and B are mixed; a certain amount of gas appears 
from this reaction. When the amount of gas that appears in time is checked, the 
following graph can be drawn: 
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Now, the experiment is repeated, but also a fluid C is added to the mix. Again, gas 
appears, giving the following graph: 

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (seconds)

G
a

s
 (

c
m

3
)

 

 

What influence does adding fluid C have for the amount of gas? 

� The reaction happens with more difficulty 
■ More gas appears during the reaction 
� The reaction starts earlier 
� Nothing changes about the reaction 
 

15. See the graphs in the previous question. Instead of fluid C, a fluid D is added to 
the mixture of A and B. Checking the amount of gas that appears, the following 
graph is drawn: 
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What influence does adding fluid D have for the amount of gas? 

� The reaction happens with more difficulty 
� More gas appears during the reaction 
■ The reaction starts earlier 
� Nothing changes about the reaction 
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16. Again to the mixture of A and B fluid C is added, but twice as much as in ques-
tion 14. The amount of gas that appears gives the following graph: 
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What conclusion can be drawn about adding fluid C to the mixture? 

■ C sometimes does, and sometimes doesn’t influence the reaction 
� The more there is of C, the faster the reaction takes place 
� The more there is of C, the more gas appears in the reaction 
� C has only a limited influence on the reaction 
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17. In an experiment two fluids A and B are mixed; a certain amount of carbon oxide 
appears from this reaction. When the amount of gas that appears in time is checked, 
the following graph can be drawn: 
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Now this experiment is repeated, but at the same time the mixture is heated. Again, 
carbon oxide appears, and the following graph can be drawn: 
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What conclusion can be drawn about the influence of heating the mixture? 

� The reaction takes a shorter time 
� More carbon oxide appears during the reaction 
� The reaction takes a longer time 
■ The reaction starts later 
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18. Consider the statement: the more A increases, the faster B increases. What relation 
is described? 

■ B = 2A 
� A = 2B 
� B = 2 A2 
� A = 2 B2 
 

19. Consider the statement: the more A increases, the slower B decreases. What rela-
tion is described?  

� B = A  

■ B = 
1
A  

� B = -A2 

� B = 
A
5   

 

20. Consider the statement: the more A decreases, the faster B increases. What rela-
tion is described?  

� B = -A2 

� B = A  

� A = 
1
B  

■ B = 2-A 
 

21. What type of relation is represented in the graph below? 
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� Y = -X 
■ Y = -2X + 2 
� Y = X + 2 
� Y = -X – 2 
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22. What type of relation is represented in the graph below? 

� Y = - X2 
� Y = e-X 

■ Y = 
1
X  

� Y = 
1
X2  
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23. What type of relation is represented in the graph below? 

■ Y = e-X 
� Y = - X2 

� Y = 
1
X  

� Y = 
1
X2  
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24. What type of relation is represented in the table below? 

A B  Answer 

3 8  � linear relation 
5 24  ■ quadratic relation 
7 48  � exponential relation 
9 80  � none of the relations above 

 

25. What type of relation is represented in the graph below? 
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■ A function with two asymptotes 
� A monotonous increasing function 
� A logaritmic function 
� A quadratic function 
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26. What type of relation is represented in the graph below? 
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� A quadratic function 
� A function with asymptotes 
� A monotonous increasing function 
■ A logaritmic function 
 

27. What type of relation is represented in the table below? 

X Y  Answer 

1 1  � Y = 2 X 
2 .25 
3 .1111… 

 
■ Y = 

1
X2  

4 .0625  
   � Y = 

1
X  

   � Y = X  
 

28. The table below shows a relation between the variables X, Y, and Z. In the answer 
column, write in one formula how X can be computed from Y and Z. 

X Y Z answer  

3 1 1  
6 2 2  

 
X = Y + 2 Z 

9 3 3  
12 4 4  
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29. What type of relation is represented in the table below? 

X Y  Answer 

1 2  � quadratic relation 
2 4  ■ exponential relation  
3 8  � geometrical relation  
4 16  � linear relation 

 

30. What type of relation is represented in the table below? 

A B Answer 

-5 32 � The more A increases, the faster B increases 

-3 8 � When A approaches zero, B approaches the infinite 

-1 2 ■ The more A decreases, the faster B increases 

1 .5 � When A approaches zero,  B also approaches zero 

3 .125  

 

31. The table below shows a relation between the variables X, Y, and Z. In the answer 
column, write in one formula how X can be computed from Y and Z. 

X Y Z Answer 

5 10 10 � X only influences Y, not Z 

10 10 15 ■ X only influences Z, not Y 

15 10 20 � X influences both Y and Z 

20 10 25 � X does not influence Y and Z 

25 10 30  

 

32. What type of relation is represented in the table below? 

A B  Answer 

4 10  � linear relation 
6 10  � quadratic relation 
8 20  � exponential relation 
10 20  ■ none of the relations above 
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Optics test (domain-specific knowledge test) 

 

 

This test is meant to determine your knowledge about lenses and light. Read each 
question carefully, and choose what you think is the right answer. For most ques-
tions, the answer can be chosen from a list of alternative answers, by marking the 
square in front of the right answer. Only one answer is correct for each question. 

If you are not sure about the answer to a problem, skip it for the time being, and con-
tinue with the other questions. In any case, try to answer as many questions as possible 
within the time given. 

During the test, you are allowed to write down notes. 

Most of the questions refer to a numbered figure. Sometimes, distances in centime-
ters are presented in a figure. Also, the following objects are used in the figures: 

- lamps  

 

A lamp with one lightbeam. The lightbeam is repre-
sented as a black line. 

  

  

A set of three lamps. All three lightbeams are shining 
in the same direction. 

  

 

A set of three lamps. All three lightbeams are shining 
in the different directions. 

  
- lenses  

 

Different types of lenses have different 
properties 

  
- big lamp and screens  

    

The big lamp sends lightbeams in all di-
rections, through a plate with holes (L-
shaped). Light that goes through the 
holes is projected through a lens on a 
screen. 
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Note: The word ‘baseline’ that is used in most of the questions refers to the thick 
horizontal line that is displayed in all the figures. 

Figure 1 

 

 

1. See Figure 1. If the lens is moved a little to the left, then where will the lightbeam 
to the right of the lens strike the baseline? 

� Closer to the lens 

� The same distance to the lens 

� Further away from the lens 

2. See Figure 1. If the lightbeam is pointed up a little bit more, then where will the 
lightbeam to the right of the lens strike the baseline? 

� Closer to the lens 

� The same distance to the lens 

� Further away from the lens 

 

3. See Figure 2. If the lamps are moved a little to the right, then where will the light-
beams to the right of the lens strike the baseline? 

� Closer to the lens 

� The same distance to the lens 

� Further away from the lens 
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4. See Figure 2. If the lamps are moved a little to the left, then where will the 
lightbeams to the right of the lens strike the baseline? 

� Above the baseline 

� On the baseline 

� Below the baseline 

 

Figure 2 

 

 

5. See Figure 2. If the lightbeams are pointed up a little bit more, then where will the 
lightbeams to the right of the lens strike the baseline? 

� Above the baseline 

� On the baseline 

� Below the baseline 

 

6. See Figure 2. If the lightbeams are pointed up a little bit more, then where will the 
lightbeams to the right of the lens strike the baseline? 

� Closer to the lens 

� The same distance to the lens 

� Further away from the lens 
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Figure 3 

 

 

7. See Figure 3. If the lamps are moved a little to the left, then what happens to the 
point where the lightbeams converge? 

� The convergence point gets closer to the lens 

� The convergence point gets further away from the lens 

� The convergence point stays the same distance from the lens 

 

8. See Figure 3. If the lightbeams are pointed up a little bit more, then what happens 
to the point where the lightbeams converge? 

 

� The convergence point moves above the baseline 

� The convergence point stays on the baseline 

� The convergence point moves below the baseline 

 

9. See Figure 3. If the lens in the figure is replaced by a lens with a focal dis-
tance which is twiece as large, what happens to the convergence point? 

� The convergence point gets closer to the lens 

� The convergence point gets further away from the lens 

� The convergence point becomes a virtual point 
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Figure 4 

 

 

10. See Figure 4. What is the distance of the plate with holes (on the left) to the lens 
called? 

� Object distance (v ) 

� Focal distance (f ) 

� Image distance (b) 

 

11.  See Figure 4. What is the distance of the screen (on the right) to the lens called? 

� Object distance (v ) 

� Focal distance (f ) 

� Image distance (b) 

 

12. See Figure 5. The object distance is made equal to the image distance. Will the 
projected image be sharp?  

� Yes, but the image will be virtual 

� Yes 

� No 
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Figure 5 

 

 

13. The magnification formula describes the relation between the size of a projected 
image and the size of an object. What does the formula look like?  

� Magnification = focal disctance/size of object 

� Magnification =size of object/size of image 

� Magnification =size of image/size of object 

Figure 6 
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14. See Figure 6. An object is positioned within the focal distance of the lens. Is it pos-
sible to create an image on the screen?  

� Yes, but the image will be virtual 

� Yes 

� No, because the image will be virtual 

 

Figure 7 

 

 

15. See Figure 7. The image is virtual. What does this mean for the distance of the 
object to the lens?  

� Object distance is equal to the focal distance 

� Object distance is smaller than the focal distance 

� Object distance is larger than the focal distance  
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16. The relation between object distance, image distance, and focal distance can be 
expressed in a formula. What does this formula look like? 

� v
f   + b = 

b
f   

� v
b  = 

1
f   

� 1
v  + 

1
b  = 

1
f   

 

17. See Figure 8. The image distance is increased by moving the screen further away 
from the lens. What has to be done to the object distance to keep a sharp image?  

� The object distance has to be decreased 

� The object distance has to be increased 

� The object distance has to stay the same 

 

18. See Figure 8. The image distance is decreased by moving the screen closer to the 
lens. What has to be done to the object distance to keep a sharp image? 

� The object distance has to be decreased 

� The object distance has to be increased 

� The object distance has to stay the same 

Figure 8 
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19. See Figure 8. The object distance is increased by moving the plate with holes fur-
ther away from the lens. What has to be done to the image distance to keep a sharp 
image? 

� The image distance has to be decreased 

� The image distance has to be increased 

� The image distance has to stay the same 

 

20. See Figure 8. The object distance is decreased by moving the plate with holes 
closer to the lens. What has to be done to the image distance to keep a sharp image? 

� The image distance has to be decreased 

� The image distance has to be increased 

� The image distance has to stay the same 

 

21. See Figure 8. The lens in the figure is replaced by a stronger lens. What has to be 
done to the image distance to keep a sharp image? 

� The image distance has to be decreased 

� The image distance has to be increased 

� The image distance has to stay the same 

 

22. See Figure 8. The lens in the figure is replaced by a stronger lens. What has to be 
done to the object distance to keep a sharp image? 

� The object distance has to be decreased 

� The object distance has to be increased 

� The object distance has to stay the same 

 

23. See Figure 8. The lens in the figure is replaced by a weaker lens. What has to be 
done to the image distance to keep a sharp image? 

� The image distance has to be decreased 

� The image distance has to be increased 

� The image distance has to stay the same 
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Figure 9 

 

 

24. See Figure 8. The lens in the figure is replaced by a weaker lens. What has to be 
done to the object distance to keep a sharp image? 

� The object distance has to be decreased 

� The object distance has to be increased 

� The object distance has to stay the same 

 

25. See Figure 9. In this situation the magnification is 1. What can be done to get a 
smaller image than the object size? 

� Move the object further away from the lens, and change the image distance 
until the image is sharp again 

� Move the object closer to the lens, and change the image distance until the 
image is sharp again 

� Just move the screen further away from the lens 

 

26. See Figure 9. In this situation the magnification is 1. What can be done to get a 
larger image than the object size? 

� Move the object further away from the lens, and change the image distance 
until the image is sharp again 

� Move the object closer to the lens, and change the image distance until the 
image is sharp again 

� Just move the screen further away from the lens 
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27. See Figure 10. The image in the figure is not sharp. How does the screen on the 
right have to be moved to get a sharp image? 

� The screen has to be moved further from the lens 

� The screen has to be moved closer to the lens 

� It is not possible to get a sharp image by moving the screen 

Figure 10 

 

 

28. An object is positioned 10 cm in front of a lens with a focal distance of 2 cm. What 
happens to the image?  

� It is not possible to make an image 

� The image is as large as the object, and not turned 

� The image is as large as the object, turned and mirrored 

 

29. Which of the following statements is true? 

� A real image is magnified less when an object approaches a lens 

� A real image is always shrunken in the same amount 

� A real image is always magnified in the same amount 
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30.Which of the following statements is true? 

� A virtual image is magnified less when an object approaches a lens  

� A virtual image is always shrunken in the same amount 

� A virtual image is always magnified in the same amount 



 

 

Appendix C 

Optics simulation: objects and tools 

 

Here, an overview is given of the objects and tools that were used in the Optics 97, 
Optics 99, and Optics 2000 experiments. Students did not have all objects and tools 
available to them simulataneously. The configuration of the Optics simulation that 
was used in each study is described in the Method section of the empirical chapters. 

 

 

Objects 

Lens 

There are two types of lenses, positive and negative. In the 
environment these lenses have the same shape as their real-
world counterparts, i.e. convex and concave. In addition, 
every lens has a specified focal point. In the experiment, the 
focal point of the lens could not be changed. 

 

 

Lamp  

In addition to the big lamp that is continually present in the 
first and third phase of the learning environment, in all 
phases a lamp with three divergent laser-like light beams is 
available. This lamp can be positioned anywhere in the work-
ing area. 

 

 

Plate and screen 

These two objects act in conjunction. The plate is a rectangle 
filled with holes that form a global L-shaped figure. The im-
age of this figure can be projected on the screen, the source of 
light being the big lamp. Because the big lamp is positioned 
on the left side of the working area, the plate has to be put on 
the left side of the screen for the image to be projected. 

 

 

Construction line 

These vertical lines can be added to the working area to en-
able the student to measure any distance, not just the distance 
between objects. For example, in figure 1 a construction line is 
placed at the point where the outcoming light beams con-
verge. 
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Distance measurement 

The distance between any two objects, and between a con-
struction line and an object, can be measured. The measured 
distance is displayed in the middle of the two objects. In Fig-
ure 2, two distances are displayed, including their units of 
measurements (centimeters). The distances that are shown are 
scaled down in order to make larger actual distances possible 
(a typical computer screen is much smaller than a real optical 
workbench). 

 

 

Eye 

The eye is an advanced object that can be very useful to learn 
more about the virtual projection of images. When it’s placed 
in the working area and to the right of a lens, it indicates the 
position on the principal axis where the L-plate seems to be 
when watched through the lens. 

 

 

 

Tools 

Object movement 

The lamp can be moved in all directions, the other objects can 
only be moved horizontally. When an object is moved and 
there’s a measurement line attached to it, the distance is 
automatically updated in real time. 

 

 

Angular movement 

After a lamp has been put in the working area, its light beams 
can be rotated. The rotation happens for all three beams at 
once, they cannot be rotated separately. 

 

 

Angular measurement 

The angle a light beam makes can be measured at any point in 
the working area. The angle shown is in reference to the prin-
cipal axis.  

 

 

Help line 

A help line is a conceptual tool. When it’s added to one of the 
lamp’s light beams it extends that beam, showing the path 
that light beam would have followed if it had not been re-
fracted by a lens (of course, this tool is only useful if the light 
beam actually goes through a lens). 
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Properties tool 

This tool can be used to change various quantitative proper-
ties of every object, for example the distances of two objects 
can be changed quantitatively instead of by moving one of the 
objects. In our experiment, this tool had only a limited use, no 
advanced properties could be changed like the focal point 
distance of lenses. In addition to changing properties of an 
object, there was the possibility to give the object a name us-
ing this tool. Naming objects makes it easier to refer to an ob-
ject in the hypothesis scratchpad. In addition to that, its essen-
tial for distances to have a name to be able to use a formula on 
them. 

 

 

Formula 

A formula that contains a computation on one or more vari-
ables (or just on two numbers) can be added to the working 
area. This is only possible if the relevant objects (or distances) 
have been labeled with a name (this is done with the proper-
ties tool). The outcome of the formula is displayed in the 
working area, and it is updated in real-time. 

 

 

Notebook 

At any time, subjects were able to note their ideas about the 
learning environment in a notebook (see figure 1). In this 
notebook a small replica of the current state of the environ-
ment was displayed, and subjects could write some lines of 
text to describe their ideas. The hypothesis scratchpad also 
enabled subjects to view old notes, but it was not possible to 
change these. 
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Appendix D 

Bubbles simulation: tools 

 

Here, an overview is given of the tools that were used in the Bubbles simulation. This 
computer simulation was used in the Optics 97 experiment. 

 

Change amount in kettle 

The amount of liquid that is used in the mix can be altered by moving 
a bolt (shown on that liquid’s cask). The minimum is zero, maximum 
is 99. The unit of measurement is specified as deciliters. 

 

 

Place Measurement line 

A maximum of four measurement lines can be added to the graph. 
The position marks the time point at which the amount is measured. 

 

 

Move measurement line 

After a measurement line has been added to the chart, it can either be 
deleted or moved. Pressing this button (note the similarity between 
this button and the movement button in the Optics environment) al-
lows movement of a measurement line. 

 

 

Start experiment 

After one or more casks is filled with liquid and at least one measure 
line is placed in the graph, it’s possible to begin an experiment. The 
casks are emptied into the kettle, then the clock starts. A moving ar-
row under the graph indicates the time. 

 

 

Stop/pause experiment  

After an experiment is started, it ends when the moving arrow 
reaches the right point of the graph. Pressing this button also stops a 
running experiment. This works as a pause button. Nothing can be 
changed or reset when this button is pressed. 

 

 

New experiment 

When this button is pressed, a new experiment can be performed. The 
values with which the last experiment was run are restored. This 
means that should the start eperiment-button be pressed without 
changing anything, the last experiment will be repeated. 
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Appendix E 

Bubbles simulation: underlying model 

 

In the underlying model of the Bubbles computer simulation, a number of rules de-
termines how much and in what way a liquid contributes to the overall reaction. This 
reaction is expressed as the amount of change in the amount of Magnum. The num-
ber of bubbles that originates every second is inversely related to this change. The 
rules can be expressed as a number of conditions that are evaluated during the run-
ning of an experiment. 

The conditions are checked one at a time, and if one of them is satisfied the other 
conditions are skipped. The conditions are as follows: 

 

1) if (t < (Kryton/10) Æ d(Magnum) = 0 

The t variable denotes the time in seconds that has passed since the start of the cur-
rent experiment. This condition implies that the amount of Magnum will not change 
if the amount of Kryton is not reached by the internal timer, or, the amount of Kryton 
determines how much the reaction will be delayed, because when the amount of 
Magnum doesn’t change no bubbles originate. Only after this first condition is satis-
fied will the other conditions be considered. 

 

2) if (Guernic < Sybar) Æ d(Magnum) = 0 

This condition implies that the amount of Magnum will not change if the amount of 
Guernic is less than the amount of Sybar. Again, this means that no bubles will origi-
nate at all if this condition is satisfied. 

 

3) if (Sybar >= (Guernic/2) Æ d(Magnum) = -Magnum * (Guernic - Sybar/3)/200 

This condition indicates another relation between Sybar and Guernic. When there’s a 
certain amount more Sybar than half the amount of Guernic, the reaction follows an 
exponential trajectory. The shape of this trajectory is partly dependent on the amount 
of Sybar, as well as the amount of Guernic. 

 

4) d(Magnum) = -Magnum * Guernic/200). 

This condition is only satisfied if the first three are not. When, for example, there is a 
only a large amount of Guernic, the reaction also follows an exponential trajectory. In 
this case the shape of the trajectory is only dependent on the amount of Guernic. 
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5) formula(true, bubbles = abs(d(Magnum)) * 10). 

 

The second, third and fourth condition can be made more clear by showing the rela-
tion between Sybar and Guernic in a figure 

 

Sybar Guernic

amount of
GuernicA

B

C

0.5 x amount of
Guernic

 

Given a fixed amount of Guernic, we can specify three different reaction tra-
jectories, dependent on the amount of Sybar. When the amount of Sybar is in 
region A, no bubbles originate from the reaction between Sybar and Guer-
nic. When it is in region B, the amount of bubbles follows an exponential 
trajectory the properties of which are dependent on the amount of both 
Sybar and Guernic. Finally, when it is in region C, the reaction trajectory is 
also exponential, this time only dependent on the amount Guernic. 

 


