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1.   Introduction 
In the last decades, a quick evolution of technologies has been bringing big changes in our daily 

life. Our means of interaction with the external world and our means of social interaction keep 
evolving bringing us new possibilities and new questions. Such trend has obviously influenced also 
school practice and research in mathematics education, raising questions that once simply one 
wouldn’t have thought of. For instance, the main aim of Italian primary schools, some decades ago, 
was expressed by the phrase “saper leggere e far di conto”, that can be translated as “to be able to 
read and to do calculations”, and which reflected an unquestionable social need of alphabetization. 
Nowadays, hand calculators, changed so much our daily life that one may be tempted to consider 
mental and hand calculations as obsolete, thus one may be tempted to question related educational 
aims, questioning the “far di conto”. In fact one may ask, is it still worth that pupils learn to do 
calculations, knowing that they will hardly ever use such an ability? The most natural answer would 
simply be “not, it is not worth it”. Yet, if this is the answer, how comes that no educator, no 
mathematician, would ever think of eliminating calculations from school curricula? My personal 
opinion is that we have to separate the plane of usefulness in daily life, from the plane of usefulness 
from a broader educational point of view. In fact, even if mental and hand calculations are no more 
needed in daily life, they are still a founding element of mathematical thinking, and one simply 
can’t ignore them as far as mathematical educational aims are concerned. A possible answer to the 
question “is it worth that pupils learn calculations?”, is yes, for educational purposes, because they 
are characterising elements of mathematics. However, because practical needs do not require them 
anymore, one may argue that pupils should not be required to reach high computational skills: 
pupils should not become human calculators, but humans that are able to use calculators for 
mathematical tasks.  

Within this perspective, the study presented here approached the educational problem of 
introducing pupils to algebra, starting from the consideration that available computer programs can 
easily execute algebraic calculations, thus, there is not a strong social need for pupils to acquire 
high algebraic computational skills. However, I believe that algebraic calculations are at the core of 
a great part of mathematical activities, and, I believe, if one has to efficiently use the computer for 
such activities, then he/she needs to be familiar with algebraic calculations. Again, pupils should 
not become human computers, but humans that are able to use the computer as a means for 
accomplishing algebraically, mathematical tasks. For this reason I believe that, even if computers 
execute algebraic calculations faster then humans, such calculations shouldn’t be eliminated from 
educational practices, as they are instrumental to a correct and fruitful use of the computer as a 
mathematical instrument. However, because the evolution of technology suggests that computers 
will execute algebraic calculations faster and faster, better and better, I tried to individuate what are 
the aspects of algebra that, for what one can foresee nowadays, will not be changed drastically by 
technological evolution. The answer I gave to this question is that the theoretical aspects of algebra, 
won’t be changed soon by the evolution of technology, in the sense that the idea of theory, and of 
proving within a theory, will keep being a founding element of mathematics. Thus I decided to 
explore the possibilities of introducing pupils to algebra as a theoretical system.  

The process that led me to the individuation of the mathematical contents of my educational 
research, was deeply interwoven with my early research experience as educator. All started from the 
exploration of idea of using the computers for educational purposes, an idea which was, and is, 
quite popular in research in mathematical education. In my doctoral, and undergraduate, study, I 
had a chance to explore and appreciate many educational approaches based on the computer, or 
other technological devices. However, I felt immediately attracted by the idea of using computers as 
instruments of semiotic mediation as described within the vygotskian theoretical framework 
elaborated by Mariotti ([51], Mariotti, 2002). Beside the fact that this was the approach I probably 
had a better chance to explore, what I really found interesting it was the idea that the computer 
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doesn’t teach, but that it is used by the teacher as a means for causing pupils’ learning and guiding 
them toward meanings that are consistent with mathematics. It sounded to be like a sort of revenge 
of teachers: computers were not interpreted as substituted for the teachers, but as tools used by 
them. Moreover, the vygotskian framework focuses on the importance of language and semiotic 
systems in teaching learning processes highlighting how peculiar uses of signs can be used to 
influence such processes. Personally I have always been fascinated by the way humans 
communicate using languages and semiotic systems in general; thus I found myself naturally 
attracted by a framework in which semiotic activities are at the very core of the teaching/learning 
processes and are used, together with technological devices, as means for reaching educational 
goals. As a consequence, when I decided to begin the research I am presenting here, I was already 
strongly oriented toward a study of how to exploit computers, as instruments of semiotic mediation, 
to introduce pupils to algebra as a theory, within the vygotskian theoretical framework. In other 
words, my educational goals, and my research goals, stem out in parallel as tied one to the other: 

• to introduce pupils to algebra as a theory. 

• to study how it is possible to use the computer as an instrument of semiotic mediation in 
order to introduce pupils to algebra as a theory. 

• To study how it is possible to use the  computer as an instrument for semiotic mediation for 
mathematical educational purposes. 

The research started by analysing a previous study, conducted by Mariotti ([52], Mariotti, 2001), 
in which a geometry software, Cabri, is used as an instrument of semiotic mediation, to introduce 
pupils to geometry theory. From this analysis, the possibilities to set up a similar approach in the 
case of algebra theory, were explored. As a consequence there was a need to study what kinds of 
activities would have been meaningful for the educational goal, and what kind of computer software 
could be suitable for adapting to the case of algebra the educational approach presented by Mariotti. 
The preliminary study I conducted, resulted in the design and realization of an algebra software, 
L’Algebrista, and in the design of a sequence of educational activities to exploit it as an instrument 
of semiotic mediation to introduce pupils to algebra as a theory. The software, and the sequence of 
educational activities, where conceived in parallel, in this sense, L’Algebrista, is a software which 
was conceived explicitly for being used as an instrument of semiotic mediation to introduce pupils 
to algebra as a theory. Such a study resulted in the definition of an educational approach to algebra 
that up to now have been experimented for five years. Thanks to the feedback we got from the 
experiment, we have been able to re-elaborate the educational approach in itinere, and what we are 
going to present here is to be intended as a result of five years of research. In fact this research can 
be classified as research for innovation: theoretical and experimental studies maintain a dialectic 
relationship. A first set of research hypotheses frames the design of the teaching experiments, 
results, coming from those experiments, contribute to the evolution of previous hypotheses and 
consequently to the design of new experiments. Within such a process, a key role was played by the 
collaboration between researchers and teachers involved in the experimentation, which allowed a 
parallel evolution of the theoretical framework and of the class experiments. 

This study is part of a larger project aiming at developing the theoretical construct of semiotic 
mediation and in this respect the outcomes of this study aim to contribute to this more general aim.  

1.1.  Summary 

The first chapter is dedicated to the definition of the meanings attributed to some key words that 
will used in the rest of the dissertation. After such a preliminary part, literature will be reviewed, 
concerning research on computer and mathematics education. Drawing from this review some key 
ideas and problems characterizing this research will be stressed. In the fourth chapter we will 
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restrict to the case of algebra, presenting a literature review on computers in algebra education, and 
describing some key aspects of algebra education in general. Drawing from such a discussion it will 
be presented our interpretation of algebra as a theory with a description of the key ideas of the 
assumed vygotskian framework.  

In chapter 5 and 6 the software L’Algebrista will be presented, and it will be discussed in what 
sense it embeds the knowledge domain of algebra as a theory. In the following chapters it will be 
presented the design of the teaching experiment, describing both the sequence of proposed 
activities, and the educational strategies adopted together with the principles underlying them, in 
respect to the general hypotheses concerning semiotic mediation.  

Finally, it will be showed evidence of the obtained results analysing data collected from the 
experimentation. The data will be analysed trying to exemplify and better formulate how 
L’Algebrista has been used as an instrument of semiotic mediation. The data analysed will show 
that certain educational goals have been reached, like that of introducing pupils to a theoretical 
perspective, and to symbolic manipulation as an activity of transforming expressions by means of 
the axioms of an algebra theory. Such objectives have been reached using L’Algebrista as an 
instrument of semiotic mediation, and the analysed data bring evidence of the potentialities of 
L’Algebrista for being used as such. We will show how the software has been effectively used by 
the teacher as an instrument for mediating meanings consistent to the educational goals. The 
semiotic mediation due to some particular elements of the software originated some particular 
meanings that evolved, under the guidance of the teacher, toward the aimed mathematical 
meanings. On the basis of the discussion of the experimental data, we will highlight the educational 
strategy of the experiment,  and we will highlight some teacher’s specific interventions to be 
considered as examples of use of L’Algebrista as an instrument of semiotic mediation. 
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2.  Instruments and knowledge 
This thesis concerning technology and education, implies a crucial use of words such as object, 

artefact, tool, instrument, sign, and knowledge. Some of them, in literature, are used with very 
specific, sometimes quite different, meanings, varying according to the framework considered; thus 
it seems necessary to start stating clearly the meanings we attribute to them throughout this thesis. 
The meanings of the words that we are considering here, may evolve throughout the development 
of this thesis, if that is the case, the new meanings will be defined. At this point we try to start with 
the most general meaning for each word, but paying attention to the constraints related to the aims 
of our work.  

2.1.  Object 

The word object is a very generic one, which is described, in dictionaries, as having several 
different meanings, and we will consider the following ones in particular (see Appendix 9.4.5 for 
more details on the definitions found on some dictionaries): 

Def 1: Object as a physical or material thing: in order to avoid confusion whenever we refer 
to this meaning we will use expressions such as "physical object" or "material object". 
In some cases, when the meaning is clear from the context, we may simply use the 
word "object". 

Def 2: Object as whatever can be the subject of intellectual or sensitive knowledge ([36], 
Garcia-Pelayo y Gross, pp. 393, 1994). 

Def 3: Object as fact, or idea considered as a separate entity;   

Def 4: Object as focus of thoughts or action. 

Def 5: Object as purpose. 

Observe that with these definitions we can consider the word thing as synonym of object in the 
senses Def 1:, Def 2:, Def 3:, Def 4:. 

2.2.  Artefact (or artefact) 

Def 6: An object made by human workmanship: this could be either a material or non material, 
we consider object in the senses Def 1:, Def 2:, Def 3:.  

An artefact, for us, will be an object which has been in some way produced by humans. As a 
consequence every artefact for us is an object, but not all the objects are artefacts; for instance, a 
stone, in general, is an object but not an artefact.  

An artefact can be a physical thing such as a hammer, or a painting, but also any other product of 
human work. In particular, we will consider as artefacts objects such as computer programs, 
theorems, scientific theories, etc. 

Finally we observe that we will assume that, in general, an artefact, being made by humans, is 
produced on purpose and the process that brings it to existence involves some human knowledge. 

2.3.  Instruments and tools  
We will consider the words tool and instrument as synonyms (unless specified), both referring to 

the following definition. 

Def 7: a means whereby something is (or can be) achieved, performed, furthered, or done.  



 

 8 

Such definition is, on purpose, a very generic one, derived from an analysis of the definitions 
found in several English, Italian, and Spanish dictionaries (see appendix 9.4.5).  

An instrument, for us, is a means used, on purpose, by an agent in order to achieve an objective,  
the agent (will usually be considered to be human). It can be anything, or any object1, depending on 
what it is used for and how. Thus, we have either instruments that are artefacts, or instruments that 
are not artefacts; for instance, a hammer, or a stone, can be used as instruments to drive in nails, but 
the first one is an artefact, whilst the second is not, it is simply an object.  

The nature of instruments, and the way they are part of human activities have been studied by 
researcher in the field of ergonomics, leading to several specific theories such as that of Rabardel 
([66], Rabardel, 1995) and those related to Activity Theory (see [60], Nardi, 1995). Here we 
avoided explicit reference to such theories because, at this point of this thesis, we want a more 
generic definition to help us distinguish the main characteristics of the idea of instrument, those 
characteristics that differentiate it from other objects. In particular we refer to the following 
characteristics of instruments: 

1. They are (or can be) used by an agent;  

2. An instrument is (or can be) used in order to achieve, further, perform something, reach a target 
objective, etc.; 

3. An instrument is a thing which can be identified as different from the agent2 using it. 

It is then possible to study either the nature of the object itself, the way it is used to achieve 
something, and the relationship between agent, instrument and how the latter is used.  

2.3.1. The potential nature of instruments 

When we specify that an instrument can be used, or that it is a means by which something can be 
achieved, we mean that an object doesn't need to be actually used in order to be considered an 
instrument. We consider as instruments those objects which we can figure out to use as instruments 
for any purpose. In other words, an instrument is an object we can think of as a means of reaching 
an objective, irrespective of whether we actually use it or not.  

2.3.2. The relativity of instruments 

The previous considerations lead us to specify that, from our viewpoint, the concept of 
instrument can be a relative one. In fact, it maybe the case that the same object is seen as an 
instrument by someone but not by other people.  

We believe that the concept of instrument cannot be detached from a human, or a community of 
humans, who interpret it as an instrument to be used for to reach a goal. This, in particular, implies 
that different subjects, may see the same object as an instrument for reaching different goals, or the 
same agent can use a given object to achieve different things. For instance, one may use a ruler 
either to measure distances, or to trace lines, thus for different objectives. In this case (according to 
our definition) we may speak of different instruments, even if we refer to the same object. 

Such relative characterisation can be of particular relevance when teaching and learning are 
concerned, because, in general, it may often happen that pupils and teachers using the same object, 
are using it to achieve totally different goals. The simplest example of this is when we are teaching 
someone how to use an object: for instance, when a guitar teacher plays the guitar to show one how 

                                                
1 An object in the senses of Def 1:, Def 2:, Def 3:. 
2 Here we mean whatever can be distinguished from the agent as entity, thus even a part of the agent, that is, a person 
can use his/her hand as an instrument for doing something. On the other hand, a person cannot use himself/herself, as a 
whole, as an instrument, while can be used as such by someone else. 
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to do it, he/she is not playing it with the objective of playing music, but with the objective of 
showing how to play; on the other hand, the pupil, may do exercises with his/her guitar in order to 
learn, not to play. Of course the objectives can somehow overlap, and both the pupil and the teacher 
may use the guitar as an instrument for producing music. 

The last example introduces the idea of using instruments in teaching/learning processes, which 
will be central in this thesis. Thus we need to sketch a framework which takes into account either 
instruments, knowledge, and the relationship between them, highlighting how an instruments can 
"represent" and "evoke" mathematical knowledge. We already gave some characterizations of the 
idea of instrument, we will thus proceed in clarifying our view of knowledge, in order to be then 
able to study how instruments and knowledge can be related. 

2.4.  Knowledge 

What do we mean by the word "knowledge"? This is too complex a question to be addressed in 
depth in this thesis, nevertheless, for our educational and research goals, we need to explore some 
characteristics of the concept of "knowledge". Therefore, due to the vastness of the subject, here we 
will address only the questions that we find relevant for our study. 

The scenario that we are considering is that of school practice, thus its main actors are the pupils, 
and the teacher; moreover such a scenario is enriched by special artefacts (and/or instruments), 
introduced in the practice by the teacher for her/his educational aims, which we consider to be 
mathematical ones. In the following we are going to give our view of some aspects of knowledge in 
relation to all these elements.  

2.4.1. Subjects and objects of knowledge 

The first issue we address concerning knowledge come from the expressions "who knows what?" 
and “someone knows something”, that we take as primitives for our work, in the sense that we will 
not question the meaning of the verb “to know”, which we will consider as given. 

 Where school practice is concerned, there is a basic assumption which can be roughly 
synthesised by the following statement: "the teacher knows something that pupils do (or may) not 
know, and one objective of the practice is that when it is over, pupils will also know this 
something"3. Besides its triviality, this statement suggests the need of considering first of all the 
subjects, and the objects4 of such knowledge (i.e. the something of the statement). We want to be 
able to say that what a pupil knows may be different from what the teacher knows, and we want to 
be able to individuate what it is that we want the pupil to know after education. Thus we start from 
considering the who and the what of our original question "who knows what?" (or equivalently of 
the someone and something of the expression "someone knows something"), and we take them as 
the basic elements allowing us to talk about knowledge; thus we ‘define’ them in the following 
way: 

• object of knowledge: by this we mean the what or the something in the expressions 
mentioned above. Sometimes, we may refer to it as contents of knowledge, piece of 
knowledge, or simply knowledge; 

• subject of knowledge: by this we mean the who  or the someone mentioned above. In 
particular we are interested in human subjects of knowledge5. 

                                                
3 How such transition, or change of state of the system class, happens is of course an open question, which we won't 
directly address, we will only study some possibilities to favour it using instruments. 
4 In the senses of Def 2:, Def 3:, Def 4: 
5 Even if it is not rare to hear statements with the verb to know where the subject is an animal, or a machine, we won't 
be interested in such cases. 
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For example, in the statement "the teacher knows mathematics", the teacher is the subject, and 
mathematics is the object of knowledge.  

In short, we can speak of a knowledge relationship correlating a given subject A and a given 
object B, and expressed by the statement “A knows B”. A subject in general knows many different 
things, thus is in relation with many objects of knowledge, we will refer to the whole set of such 
objects as the knowledge of the subject. For instance, when we talk about the knowledge of a 
person we refer to everything he/she knows6. Of course in this study we will be interested only in 
some subsets of a person’s knowledge, for instance mathematics or knowledge about specific 
computer programs, or other subsets that we will define further on. 

A subject of knowledge can be either a single individual, or a community of individuals, in the 
first case we will talk of individual knowledge, while in the latter case, we will talk about social 
knowledge (of the community), or knowledge of the community (similarly an object of 
knowledge can be individual or of a community). In a similar sense, Sutherland and Balacheff, talk 
about two types of knowledge, a socially shared and a personal one, which are tied in the sense that 
personal knowledge is interpreted as the individual's counterpart of the socially shared knowledge7 
([77], Sutherland et al., pp 2-3, 1999). Sutherland and Balacheff use the word knowledge for social 
knowledge, and the word knowing for personal knowledge. They define the first as an "intellectual 
construct, socially shared and institutionalised as efficient problem-solving tools" and define the 
latter as "personal intellectual construct related to knowledge" (ibid. 3), thus suggesting both a 
binding and a distinction between individual and social knowledge.  

Similarly, we will interpret individual and social knowledge as distinct and separated, but 
related. The nature of the relationship between the social and the individual level has been studied 
according to a variety of views of knowledge, for instance in terms of distributed cognition, in 
terms of activity theory, in terms of intellectual interdependency. A deep analysis of this issue is 
beyond the scope of this thesis, here we limit ourselves to highlights what we assume to be the 
minimal conditions for the knowledge of a community to be named as such, as explained below. 

A community is formed by persons, each with his/her individual knowledge; we assume that, for 
a given object of individual knowledge A (of a person), to be also an object of the knowledge of the 
community, the following conditions must hold: 
4. all the members of the community know A; 
1. each member or the community knows that the other members know A (equivalently, each 

member of the community knows that A is an object of the community knowledge).  

If both the conditions hold, we will say that the object of knowledge A is shared among the 
members of the community, and we will say that it is part of the knowledge of the community.  

This characterization is not to be interpreted too rigidly, where practice is concerned, in the sense 
that it may be the case that not all the members of a community know an object of knowledge, but it 
is nevertheless considered as an element of the social knowledge; for instance, not all humans know 
mathematics, but it is considered as an element of mankind's knowledge despite this.  

Furthermore, because it may happen that the members of the community don’t even know each 
other, a community may develop strategies, to make possible the sharing of knowledge, that do not 
depend on direct interaction. A simple example of this strategy is that of publishing news: when 
news is published in newspapers, it becomes known to a community, starting from the readers of 

                                                
6 Please observe that we are not making any assumption on how the knowledge of a subject is structured, organized, 
represented, acquired etc.. 
7 Sutherland and Balacheff use the word knowledge for social knowledge, and the word knowing for personal 
knowledge. They define the first as an "intellectual construct, socially shared and institutionalised as efficient problem-
solving tools" and define the latter as "personal intellectual construct related to knowledge" (ibid. 3), thus suggesting 
both a binding and a distinction between individual and social knowledge.  
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the newspaper, and ending up with other persons that may be informed directly by newspaper 
readers. Because the news is published on newspapers, the members of the community know that 
the other members of the community either know it, or can read it from a public source, the 
newspaper.  

Later on we will see some of the strategies for knowledge sharing developed by the community 
of mathematicians, but before we need to say a few words on what we mean by learning, teaching 
and producing knowledge.  

2.4.2. Learning, teaching and producing knowledge 

Consider a situation where a subject firstly does not know a given object of knowledge, and if 
later the subject reaches8 a status where he/she knows it, then we may talk about learning. We use 
the verb to learn in the generic sense of gaining knowledge (see 11.6. ), with no reference to any 
particular way to do this.  

Similarly we will use the verb to teach in the generic sense of "cause to learn" knowledge (see 
11.6. ) with no reference to any particular way to do this. Thus we may say, for instance, that a 
teacher teaches a pupil an object of knowledge when the first causes the latter to learn the given 
object.  

A particular case of learning is when the subject is a community. According to our perspective 
(see 2.4.1), given a community X, and an object of knowledge A, where A to begin with is not an 
object of the knowledge of X. Suppose that in a second moment X gains A as an object of its 
community knowledge, then the two following conditions, at least, must hold: 
5. all the members of the community learnt A; 
2. each member or the community learnt that "the other members know A" (or equivalently each 

member of the community learnt that “A is an object of knowledge of the community”). 

If we consider in particular the second condition, it implies that the members of the community 
have been somehow interacting with each other, for instance by communicating, or by living a 
common experience, or by participating together in an activity etc. We assume that such interaction9 
is a prerequisite of A to become an object of the knowledge of the community X, in this sense we 
will say that the A (as object of the community knowledge) is a product of X. In other words, in the 
following, whenever we will talk of knowledge production, we will be referring to the learning of a 
community. 

2.4.3. Mathematical knowledge 

Where school is concerned, a key role of the teacher is to teach pupils a given set of objects of 
knowledge. Sutherland and Balacheff talk about intentional knowledge which they define as "the 
knowledge which the teacher desires to teach" ([77], Sutherland et al., pp 4, 1999). The objects of 
such intentional knowledge are not just elements of the teacher's personal knowledge: they come 
from the knowledge of a community of persons who conventionally decided what pupils should 
learn in school. As highlighted by Sutherland and Balacheff, "schools have a commitment to ensure 
that pupils have access to knowledge which is needed by society", and "we have to accept the quasi-
platonic nature of school mathematics" (ibid. pp. 3).  

The community we consider for our study is that of Mathematicians, and we will refer to its 
community knowledge as mathematical knowledge or  Mathematics; any object of intentional 
knowledge that we will consider, we assume to be also an object of such mathematical knowledge. 
The community of Mathematicians developed strategies for knowledge sharing based on the idea of 

                                                
8 No matter how it happens.  
9 Whatever is its nature. 
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publishing (thanks to papers, books, computers etc.), but also criteria of acceptability of the 
published material. For instance, a published paper, to be accepted by the community for 
knowledge sharing, has to be written following certain rules, and using a specific mathematical 
language; furthermore, its contents have to pass a check of validity, based mainly on the ideas of 
mathematical theory10 and proof.  The criteria of acceptability of published material are themselves 
part of the mathematical knowledge, and function also as instruments to help single members to 
produce acceptable publishing material. They are specifically a characteristic of the mathematical 
community, and we cannot assume pupils to know them a priori.  

Usually mathematicians cannot interact directly with each other, but they use means such as 
books, papers, computer programs, or other instruments. For instance, a mathematician can write a 
paper using a mathematical object of knowledge, the paper is then published, so that another 
mathematician can learn such an object of knowledge, which becomes shared by the two 
mathematicians; at this point, the paper can be used as a sign to represent the object of knowledge 
which, thanks to the paper, is shared by the mathematicians. Somehow we can say that the paper 
embeds mathematical knowledge, as we are going to explain in the following sections.  

Suppose that an object of knowledge fulfils the above mentioned requirements for being 
accepted as a mathematical object of knowledge, and suppose that it is expressed in forms that are 
acceptable by the community of mathematicians, we will then consider such object of knowledge as 
mathematical, even if it is not published, even if it is not known to all the mathematicians.  

If we consider an object of knowledge of a pupil, or of a class, then such an object, will never be 
published, but in case it is coherent with mathematical laws, and is expressed according to some 
mathematical language, then we will consider it to be a mathematical object of knowledge anyway, 
because, potentially, it could be shared with mathematicians. On the contrary, if this object of 
knowledge is at odds with mathematical rules, or is not expressed in a form which could be 
acceptable by mathematicians, then we will not call it mathematical.   

Here we are being quite rigid on what we will accept as mathematical knowledge (in the sense of 
knowledge shared by mathematicians) in school practice, in the sense that we will not consider 
anything that doesn't obey the above mentioned conditions. Nevertheless we want to be able to talk 
of the mathematics of single pupils and of the mathematics of the class. By class mathematical 
knowledge, we mean the knowledge which is shared by the class and which the members of the 
class agree on considering as mathematical. Similarly, by mathematical knowledge of a pupil, we 
mean the knowledge that he/she considers to be mathematical. More in general, a subject's object of 
knowledge will be called a mathematical object of the knowledge of the subject, if it is considered 
as such by the subject. Of course, in the case of the community of mathematicians, then the 
mathematical knowledge of the subject corresponds to what we call Mathematics or mathematical 
knowledge, as defined above. Whenever we will speak of mathematical knowledge, without 
specifying the subject, then we will refer to the mathematical knowledge of the mathematicians.  

For our educational perspective we assume as an aim of mathematical education, that of teaching 
the mathematics of mathematicians. In the following we will explore the possible relationships 
between artefacts and mathematical knowledge, in order to exploit them in school practice. 

2.5.  Embedded knowledge  

Artefacts (Def 6:) are human products, and their creators employ some knowledge in making 
them. A painting, a guitar, a car, a cupboard, are all made according to some knowledge, as 
witnessed also by their historical evolutions which brought changes and advances thanks to human 
cultural and scientific development. In some sense, artefacts embed knowledge, be it painting 
techniques, or mechanics and engineering notions, or even simple notions such as that hitting a 
                                                
10 In the logical sense of the term 



 

 13 

stone with another stone may cause its breaking into two or more parts. We may thus define 
embedded knowledge as follows: 

Def 8: Given an artefact, by embedded knowledge we mean any knowledge that has been 
somehow employed by the creator of the object in the process that led to its existence.  

This notion does not apply only to concrete artefacts or technical instruments, on the contrary, it 
applies to any artefact in general, could it be a hammer, or a more complex entity such a sign or a 
book. A special case of artefact is that of instruments, which are special artefacts conceived to be 
used for accomplishing given tasks. In this case, among the objects of its embedded knowledge, we 
will highlight those objects of knowledge which are strictly related to the correct functioning of the 
instrument to accomplish the task it was designed for. For instance if we consider a wooden abacus, 
we are not interested in the knowledge concerning how to carve wood, we will only be interested in 
the mathematical knowledge concerning the functioning of the abacus as instrument for computing. 
We may refer to this subset of the embedded knowledge of an instrument, as its instrumental 
embedded knowledge. Thus, if we are given a wooden abacus, and a plastic abacus, they have the 
same instrumental embedded knowledge.  

An instrument, not only embeds knowledge, but it also can be a means, for its users, to access 
such knowledge. This makes instruments particularly interesting in education, in fact, if we 
consider an instrument incorporating a teacher's intentional knowledge, then we can suppose that 
pupil's, by using the instrument, may learn such knowledge. 

We take as an assumption for our work the fact that that "a subject using an instrument may 
always learn something", which is witnessed by several theories describing how humans learn by 
using instruments. We introduce the concept of evoked knowledge defined as follows:  

Def 9: Given an instrument11, and a subject, by evoked knowledge (or evoked object of 
knowledge), we mean the knowledge (or object of knowledge) which is learnt by the 
subject by using the instrument 12 for accomplishing a given task.  

Thus, an instrument, can be used to teach mathematical knowledge following the idea that a 
teacher can introduce the instrument into class practices requiring pupils to use it for accomplishing 
a task, and pupils will then learn some knowledge evoked by the instrument13.  

If our aim is that pupils learn, as evoked knowledge, the embedded knowledge of an instrument, 
we have to consider the fact that, given an artefact, pupils may interpret and use it as instrument in 
ways that do not coincide with the plans of the teacher and/or the creators of the artefact. For 
instance, the instrumental embedded knowledge of an artefact, concerns how to use the artefact as 
an instrument for accomplishing certain tasks; if a pupil uses it in different ways, or for 
accomplishing different tasks, we cannot aspect such instrumental embedded knowledge to be 
evoked. 

Instruments have a relative nature (see 2.3.2), thus it is not even guaranteed that pupils see a 
given artefact as an instrument (at all) for accomplishing some tasks, and in case they do, it is not 
guaranteed that the tasks they use it for coincide with those foreseen  and desired by the teacher.  

When using an instrument for educational purposes, our main objective is that pupils learn some 
mathematical object of knowledge, so whatever the evoked knowledge is, we want it to be related to 
our mathematical intentional knowledge. This is not obvious: when we use a material instrument for 
solving mathematical problems, we often treat the instrument, and the object it acts on, as referring 

                                                
11 A similar definition can be given even for artefacts, and objects in general, but for our purposes we are interested 
mainly in instruments. 
12 Notice that according to this definition, when we talk of evoked knowledge, there is always a subject to which such 
knowledge is evoked by the considered object. 
13 Rabardell talks of internalization of schemes of use. 
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to mathematical instruments and objects. When a mathematician uses the commands of a symbolic 
manipulator to transform a screen expression into another one, he/she is interpreting the commands 
as mathematical transformation rules, and the expressions on the screen as mathematical 
expression; it is not a priori guaranteed that pupils do the same, they may interpret the expression 
on the screen merely as a writing on the screen, without any reference to any mathematical object. 

It is like having two worlds, the material world of the instrument, and the mathematical world, 
and a semiotic link between them, in the same sense that mathematicians may interpret objects and 
actions in the material world as standing for objects14 and actions in the mathematical one; an 
instrument can be thus interpreted as a sign standing for some object of mathematics. When a 
teacher asks a pupil to use a computer to study a function, he/she (the teacher) usually interprets the 
function on the screen, as a representation of a mathematical function; on the other hand, the pupil 
may interpret it merely as a an object of the screen. He/she may also interpret it as a “school 
function”, which does not coincide with the mathematical object. But this is even another issue. A 
possible consequence of such different interpretations of the same object is that when the teacher 
thinks that learning outcomes are mathematical, in practice the pupil may gain only knowledge 
related to the computer program he/she is using. It is not guaranteed that pupils build, on their own, 
a semiotic relationship between the instrument and mathematics, as mathematicians do, almost 
spontaneously; to interpret an instrument as a sign referring to some aspects of mathematics 
requires some conditions to hold, as we will explore in the next section.  

2.6.  Characterisations of the concept of sign 

On the subject of the characterisations of the concept of sign, usually addressed as semiotics, 
many studies have been carried out in the past, as described by Eco in his work ([33], Eco, 1973; 
[34], Eco, 1975) where he provides a global vision of semiotics. A complete account of the studies 
on the subject would be beyond the scope of this thesis, here we limit ourselves to acquiring some 
basic ideas from the theory described by Eco. The author, in his attempt to define a unifying and 
general theory of semiotics, describes various facets of the concept of sign; thus, for the aims of our 
thesis we highlight the following properties of signs.  

2.6.1. Law of unlimited semiosis 

Suppose for instance that we answer the question "what is a pencil?" by showing a pencil, then 
the object pencil becomes the signifying form for the same meaning expressed by the word "pencil" 
(ibid. 140). In other words, an object, such a pencil, which is not naturally conceived as a signifying 
form, can be used to represent something, and thus can be included in a semiotic activity in order to 
attain communication. This leads to the following principle expressed by Eco: 

Any object to which a sign is referred, can become a signifying form for the meaning of the 
original signifying form. Thus objects that are merely signs do not exist, as any object can be 
taken as signifying form for another object15 (ibid. pp 140).  

This law holds that whatever one wants to communicate , one can chose to represent it using any 
object; in particular, we may represent some aspects of mathematics, using some specific objects, 
for instance we can represent the idea of computing by means of a calculator, maybe just by 
showing it. This law suggests us the possibility of using an instrument, itself, as a sign of its 
embedded knowledge, or as a sign of a teacher’s intentional knowledge. 

But how can we create and use signs? What are the requirements for a sign to be effective in a 
communication process?     
                                                
14 Here, of course, the word object is used a the wide sense, according to Def 1:, Def 2:, Def 3: 
15 Here we mean object general, thus in the senses Def 1:, Def 2:, Def 3:. 
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2.6.2. The relational, and conventional, nature of signs 

Signs, according to Eco, are not physical entities, in fact they are correlations between a 
signifying forms and their meanings, as stated by the following principle:    

Any sign correlates the field of expression (signifying field) and the field of content (field of 
meaning), both opposing, at their levels, substance and form. What differentiates signs is the 
articulation of their signifying form. Thus a sign doesn't exist as a physical, observable and 
stable entity, because it is the product of a set of relations. What we usually observe as a sign 
is just its signifying form (ibid. 142). 

This principle tells us that any sign, in order to be constituted, needs at least three elements: a 
signifying form, a meaning, and a relationship between them. For instance, in our previous 
example, we had a calculator (in the field of expression), the idea of computing (field of content), 
and a correlation telling us that the calculator represents computing. Here we may argue that it is 
not obvious that by showing a calculator to a person, will cause he/she to interpret it as (understand 
that we are talking of) computing in general, maybe he/she won't even understand that we want to 
communicate something. When we interpret an object as a signifying form, for a given meaning, it 
is not obvious that our interlocutors share our interpretation, and in case they don't, then we may fail 
in communicating with them. So how can we be sure that we share the meanings of the expression 
that we are using when we are trying to communicate with other subjects? A possible answer can be 
found in the principle of conventionality of signs described by Eco (ibid. 142): 

In a sign, the signifying form is associated with its meaning by a conventional decision, thus 
following a code. 

Here conventional does not mean arbitrary. There could be good reasons if a specific signifying 
form is considered suitable to represent a specific meaning, but there must be some kind of  
agreement between the subjects involved in the communication. Take for instance the example of 
children making drawings, they may use signs that we do not share, and we have a chance of 
understanding the drawings only after having been explained what they intend to represent. So, 
going back to our example of the calculator, we now may suppose that if I show a calculator to the 
reader of this thesis, then he/she may understand that I am referring to the idea of computing, 
because I previously explained what I mean when I show such an object. In other words, according 
to our common experience, the reader and I somehow share a code where calculators are associated 
to the idea of computing.  

In conclusion, codes give shared rules for matching the elements of the field of expression with 
the elements of the field of contents. Such rules for matching are indispensable for the existence of 
a code, and must be conventional and socialised16. According to Eco, codes are necessary and 
sufficient for the existence and consistency of a sign: 

A sign is defined by its possibility to institute the relation signifying-meaning on the basis of a 
code; a sign is not defined by the fact that its signifying form has been outputted intentionally (ibid. 
143). 

As a consequence, for pupils to use a semiotic relationship between two entities (for instance an 
instrument and mathematics, see 2.5. ), they must know the code it belongs to; if it is only the 
teacher who knows this code, then we cannot expect pupils to spontaneously build the desired 
semiotic connection.  

                                                
16 Here it doesn't matter if the rules are the result of an imposition or not, what it is important is their presence and that 
they are known (maybe implicitly) to the subjects involved in the communication, when the communication occurs.  
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2.7.  Educational and research implications 

The immediate consequence of the perspective we described is that when we plan to use 
instruments in education we have to take careful account of: 

• Our intentional mathematical knowledge. 

• The embedded knowledge of the instruments. 

• What knowledge can be evoked by the instruments. 

• The relationship between the knowledge embedded in the instruments and our intentional 
mathematical knowledge: is there any coherence? Any Contrast? Any Relationship at all? 

• The relationship between the knowledge that can be evoked by the instruments and our 
intentional mathematical knowledge: is there any coherence? Any Contrast? Any  
Relationship at all? 

• How pupils interpret the given artefact: do they use it as an instrument in the ways, and for 
the tasks, intended by the teacher? 

• What connection pupils see between the knowledge evoked by the instruments and 
mathematics. 

In summary, the key idea of this perspective is that when using instruments some knowledge can 
always be learnt, but what it is not obvious is what kind of knowledge this is. We can plan the use 
of objects for educational purposes, but we have somehow to keep control of the produced 
knowledge. In particular, in the case of mathematical education, due to its conventional nature, we 
should always question the relationship between such produced knowledge and mathematics itself. 

The perspective that we introduced in this chapter, will be refined in the following chapters on 
the basis of a literature review on how instruments have been, and are, used in mathematical 
education. 
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3.  Computers in mathematics education 
In this chapter we are going to give an overview of some aspects of the evolution of the use of 

computers in mathematics education, taking a research oriented perspective. We are going to 
analyse such evolution trough different lenses, starting from design metaphors, passing through 
language and manipulation matters, and ending up with a pedagogical perspective.  

The aim of the chapter is not only to describe and refer to past research, but it is also to define 
the research space where this work is going to be situated. We are going to individuate both 
problems to be addressed and key ideas to be pursued. Thus, after reviewing the literature, we will 
comment on it through the lenses of our educational goals.  

3.1.  The lenses of metaphors 

Along the history of the use of technology in education we find a line of evolution on the bases 
of the different metaphors used to describe/design the relationships, and interactions, between the 
human, the computer, and knowledge. Such perspective is relevant because highlights the positions 
of the different theoretical frameworks respect to knowledge, pupils, teachers, community culture 
and the relationships among them. Comprehensive descriptions of such evolution of educational 
approaches are given by Bottino ([11], Bottino, 2001, pp. 13), and Bottino and Chiappini ([12] 
Bottino and Chiappini, 2002, pp. 758), drawing from their work we will point out those aspects that 
we consider to be relevant to for our study. Three main orientations, can be considered, according to 
three different metaphors: the transmission metaphor, the learner-centred metaphor, the 
participation metaphor.  

3.1.1. The transmission metaphor 

The transmission metaphor is based on the idea that knowledge can be transferred from one 
person to another, and when technology is concerned, from a person to an object, and from an 
object to a person. The cultural context is that of behaviourism which, in fact, influenced the first 
ways in which the computer had been used for educational purposes. Learning was seen as the 
"induction of a required behaviour according to the well-known model 'stimulus response'" ([11] 
Bottino, 2001, pp. 13). The reference to such model led to the design of systems such as those 
usually referred as to drill and practice programs and tutoring systems.  

Drill and practice programs consist mainly of automated ways to submit exercises to pupils, 
users are faced with questions to answer, and usually get feedback on the correctness of the 
answers. As Bottino observes, "they usually employ some form of questioning strategy and often 
use some gaming techniques for encouraging participation and motivation", and "ordinarily […] are 
not used during the normal class activity but for individual training ‘ad hoc’ hours at home" (ibid., 
pp. 13).  

Tutoring systems, differently from drill and practice programs, are often base on an information 
processing approach to learning. Their design ascribes importance to reinforcing memorisation, 
presenting objectives, specifying prerequisites, eliciting and assessing performance. Given a topic, 
they include related content instruction, and present questions that, to be answered, require the user 
to employ concepts or rules covered in the instructional sequences. The given feedback is mainly 
diagnostic, aiming at identifying processing errors and prompting remediation or recasting of the 
instructions. Such systems are conceived as "‘stand alone’ systems, designed as a single learner's 
private tutor" and "their use in classroom practice is limited since they are often perceived more as 
replacements of teachers than as tools to help them in their work (ibid., pp. 13).  
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According to Bottino both kinds of computer programs revealed to produce quite limited 
advantages; in fact they do not substantially change the way their users interact with a given object 
of knowledge, and do not contribute to furnish a learner with new ways to give meanings to the 
related concepts. The system is conceived as an "environment where knowledge is transmitted in 
order to be acquired by the user" (ibid., pp. 13-14). 

Paradoxically, despite, and because of, its limited educational advantages, the transmission 
metaphor played a key role in the evolution of educational computing research, as Bottino and 
Chiappini observe: 

"One of the major forces driving change has been the assumption that meanings are lost if 
learning is simply the transmission of information".  

([12] Bottino and Chiappini, 2002, pp. 758). 

3.1.2. User centred metaphor 

Within the transmission metaphor paradigm the user of a given educational technological system 
is mainly a receptor, while the object itself is in charge to transmit knowledge. Thus, within this 
paradigm, the study of the system itself has great relevance because it has, to some extent, to 
contain some knowledge and be able to transmit it. Such an unbalance of focus was reversed when 
the interest on constructivist theories increased, leading to a shift of attention from the system to the 
user, to the internal aspects of the learner ([11], Bottino, 2001, pp. 14). 

Many authors use expressions such as "learner-centred systems" and "problem-based learning", 
and, in general, view  learning as based on active exploration. The learner has to be in some way 
immersed in the topic and be involved in problem solving activities relevant to the topic. Such 
involvement is supposed to motivate the learner in seeking new knowledge and acquire new 
abilities (ibid., pp. 14; [12] Bottino and Chiappini, 2002, pp. 758).  

Given a topic, one may think of creating an environment whose objects have some relationship 
with the topic and where learning may occur by exploring the environment. Such an idea is at the 
core of the concept of microworld, introduced by Papert, an environment that is built around a 
given domain which has to be explored by interacting with the program. A detailed history of the 
concept of microworlds can be found in Noss & Hoyles ([25] R. Noss and C. Hoyles, 1996, pp. 63-
67).  

Where a microworld is concerned, a crucial role is assumed by the objects that are made 
available to use through the interface of the microworld: 

"Papert defined them as a transitional computational objects, that is objects which are 
inbetween the concrete and directly manipulated, and the symbolic and the abstract"  

([11], Bottino, 2001, pp. 15). 

Thus, for educational purposes, it is important to consider the epistemology of the transitional 
objects in order to evaluate microworlds and "distinguish between potentially powerful 
environments and environments less appropriate for exploration" (ibid., pp. 15). 

However, if on one hand, epistemology played a crucial role in the design and choice of 
microworlds; on the other hand, when learning situations and educational research were concerned, 
great attention was given to learners behaviours. The objective was to design and analyse learning 
situations which could favour the emerging of knowledge from the interaction between the student 
and the computer environment. 

To sum up, the focus was both on the technological systems and on the learners, their roles were 
different, but both crucial for design and implementation of educational activities. Within such a 
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framework significant results have been produced by experimentation, but its impact on school 
practices was weaker then expected, mainly because classroom practices had not been adapted in 
order to exploit the new technological tools: 

"high expectations regarding ICT-based tools potential to drive change and innovation at 
school remain largely unfulfilled. One of the main reasons for this […] is that technology has 
often been introduced as an addition on to an existing, unchanged classroom setting" 

([1] Bottino, 2001, pp. 15). 

3.1.3. Participation metaphor 

The previously described paradigms focused mainly on the couple technology-user couple, and 
the relationship, and interactions, between them. This turned out to be limiting, for the purposes of 
education, in fact, technology itself turned out to not to have the power of giving greater meaning to 
educational activities. Research showed a need to extend the focus, when a tool is concerned, its 
pedagogical significance cannot be defined by taking into consideration only its characteristics, but 
rather by considering aspects that are external to the tool itself ([12] Bottino and Chiappini, 2002, 
pp. 758-759). 

There is then a need to develop, together with new technology, specific educational paradigms 
aiming at exploiting at best the new resources, in order to improve teaching and learning activities. 
Technological tools were often used on the assumption that their use would lead to educational 
improvements simply because the tools themselves were considered to be "good". Such a simplistic 
approach led to initial high expectations, followed by disillusionment. It is a shared opinion that 
That happened because there was a lack of understanding of the conditions under which educational 
tools, and their use, might be meaningful. 

This issue, in recent years, has represented a major topic in the debate conducted by researchers 
in the domain of educational computing. The ongoing discussion shifted the focus from cognitive 
theories to other perspectives, less  focussed on the individual, and more oriented to highlight the 
social nature of cognition and meaning production (ex. Activity theory, Situated Action Models and 
Distributed Cognition; see [35] Nardi 1996). Within this theoretical frameworks, practice is viewed 
as interlaced with learning, and meaning is interpreted as interlaced with the practices and the 
contexts in which it is negotiated ([1] Bottino, 2001, pp. 16). 

The new trend influenced also the design and use of technology which was no longer conceived 
merely as a means for the development of specific abilities and/or the accomplishment of particular 
tasks. The whole teaching and learning activity was being taken into account, included the long 
term processes that are needed to develop complex articulated knowledge and that can hardly be 
analysed considering only the student-software unit. The idea is that of interpreting learning not 
only as an individual construction developed during the interaction with the computer, but also as a 
social construction developed within the whole learning environment . 

To sum up, we assisted to an evolution of the idea of learning environment, which led to the 
inclusion of the whole learning situation, starting from a situation where the tools itself was 
considered as the whole learning environment. This focus on the whole teaching/learning context 
leads to reconsider the role of the teacher, and the attention is put not only on software design, but 
also on how it can be used for specific educational purposes: 

"Consequently there is an increasing interest in aspects related not only to software design but 
also in the definition of ways of use suitable for exploiting software features in order to 
accomplish meaningful teaching and learning activities" 

([1] Bottino, 2001, pp. 17). 
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3.1.4. Résumé of significant ideas and problems 

We outlined the evolution of the use of technology for educational purposes; such description 
highlighted both key ideas and problems concerning the considered approaches. If on one hand, 
some of the key ideas, turned out to be powerful and have not been discarded by the evolution of 
the subject. On the other hand, some of the problems related to some approaches pushed researchers 
toward new directions.  

We observed an evolution of the literature from the point of view of the unit of analysis 
considered, and of the roles played by the technological systems and by its users. Researchers 
started from considering only the couple user-system, and ended in enlarging the unit to the whole 
learning context within the participation metaphor approaches. At first the main actor was the 
system, then, under the influence of constructivism, this role was played by the user, and the design 
and use of learning environments was conceived to adapt to the user and serve the user development 
in some way. Finally, in recent years, as the whole learning situation has began to be considered, we 
witnesses the inclusion of other elements which may play roles as important as those played by 
systems and users; for instance we witnessed an increasing importance to the role played by the 
teacher. Thus, because our focus is on mathematics education, and on the use of specially designed 
computer software, taking into account of the discussion in chapter 2. , and its educational 
implications (see 2.7. ), we will: 

• Take the whole learning context (including the teacher) as the principal unit of analysis, thus 
referring to the participation metaphor paradigm. This is not only because of the pedagogical 
and cognitive aspects previously highlighted, but also because of the social nature of 
mathematics (see 2.4.3), thus of our educational goals. In particular, with the term learning 
environment, we will refer to the whole learning situation. 

An issue that will be central for our study is that of pupils' learning of teachers' intentional 
knowledge (2.4.2). Within the transmission metaphor knowledge was assumed to be acquired (thus 
learnt) by pupils simply thanks to transmission of contents, while within the learner-centred 
approach, knowledge is assumed to be recreated/reconstructed (thus learnt) by pupils by working 
within microworlds or in general within specially designed learning environments. The latter is a 
constructivist principle that proved its validity, but that showed also some weakness. A crucial 
point, here, is the coherence of the knowledge built by pupils with the knowledge the teacher is 
trying to teach (intentional knowledge). If only the system user-microworld is considered, then such 
coherence can be ascribed only to the user and to the nature of the microworld and the interactions 
with it. Accurate epistemological studies of the system (even during the design phase), may point 
out some kind of potential knowledge which in some way is embedded (see 2.5. ) in the 
microworld. Nevertheless such knowledge may not necessarily be learnt by the user: it may happen 
that users do not relate at all, the activity within the microworld with what they are supposed to 
learn, as showed, for instance, by Guin and Trouche ([35], Guin and Trouche, 1999).  

Finally, the participation metaphor approach considers knowledge learning as a result of social 
practices, which, actually, can also include working within microworlds. 

From the above discussion, coherently with the concluding remarks of chapter 2.  (see 2.7. ), we 
take, as candidates for our theoretical framework: 

• The principle that working with microworld leads to a learning outcome that can be 
significant in school practice. 

• The principle that learning may happen through social practices. 

Given such principles one key question that we will try to address is: 
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How is it possible, when working with microworlds, to produce learning outcomes that are 
coherent to a given educational goal (including a mathematical one)? 

This question will be partly addressed in the following literature review, and an attempt of 
answer will be given later on, in terms of the description of our framework of reference. 

3.2.  Programming environments and microworlds 

Microworlds, either in the form of computer programming and in the form of direct manipulation 
environment, played an important role in the history of mathematics education. Noss and Hoyles, in 
their book "Windows on mathematical meaning" ([61] Noss and Hoyles, 1996) trace a history of the 
evolution of the idea of computer programming within mathematics education, focusing in 
particular on the idea of microworld. Within this section we will draw, from their work. 

Noss and Hoyles distinguish between two main kinds of software: on one side, software 
designed to deliver existing mathematical curricular presenting knowledge in a wrapped form 
acceptable for educational consumption; on the other side there are computer applications pointing 
toward a redefinition of school mathematics in more learnable forms ([61] Noss and Hoyles, 1996, 
pp. 54).  

The first kind of software, in general, resides within the transmission metaphor (see 3.1.1) and 
according to Noss and Hoyles is focused on the word "teach" resulting to be of little pedagogical 
interest, as it doesn't offer more then a human tutor. Moreover, this kind of software fails in 
providing learners with new means of expressing their mathematical ideas, thus, using the author's 
words, it "also fails to open any windows onto the process of mathematical learning" (ibid., 54).  

The second kind of software, on the contrary, seems to have more interesting pedagogical 
potentialities. The attention is put on the idea of articulation as a process that allows pupils to 
"create" (thus learn) mathematics and that reveals this "act of creation" to observers (ibid. pp. 54). 
In other words, technological systems can be interpreted as potential means for articulation 
enhancing pupils' expressive power. Within this class of software, a historically important example 
is that of the LOGO programming environments. 

3.2.1. Programming vs. direct manipulation: toward new expressive tools 

According to Noss and Hoyles there is a long pedigree to the idea that computer programs 
provide learners with a vast canvas where to sketch half-understood ideas, and where to assemble 
semi-concrete images of the mathematical structures he/she is learning. Early research showed how 
a promising line of enquiry, that of the expression of mathematical ideas in the form of computer 
programs, could be. Nevertheless we assisted to a relative isolation of the programming community 
within mathematics education, mainly due to the notion of programming held within the wider 
educational culture: a programming language is in general viewed simply as a mean for writing 
programs, lines of text are entered and output is obtained. This makes it appear arcane and complex 
if compared to multimedia systems or direct manipulation interfaces (ibid., pp. 55).  

However, developments of the nature of programming have changed the situation, and the notion 
of programming shifted to include visual and iconic rather then purely textual means of combining 
elements; in other words, there has been a tendency to furnish programming environment with the 
attractive features of other popular computer systems. The authors cite the example of system called 
Boxer, that "aims to provide the user with much greater expressive power", as explained by DiSessa 
([25], diSessa 1998): 

"We are trying to produce a prototype of a system that extends with computational 
capabilities the role now played in our culture by written text. It should be a system that is 
used by very many people in all sorts of different ways, from the equivalent of notes in the 
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margin, doodles and grocery lists – all the way to novels and productions that show the 
special genius of the author, or the concerted effort of a large and well-endowed group. In a 
nutshell, we wish to change the common infrastructure of knowledge presentation, 
manipulation and development (diSessa 1998b, p.3)." 

([61] Noss and Hoyles, 1996, pp. 55-56). 

On the scale of the debate concerning the advantages and disadvantages of direct manipulation 
versus text-based interfaces, we find on one side the friendliness of interface, while on the other 
side we find expressiveness of programming languages. Direct manipulation may foster a greater 
sense of engagement of the learner with the screen objects, whilst programming may better enhance 
pupils' descriptive language and communication (ibid., pp. 56). 

The antithesis between programmability and direct manipulation has been broken down by the 
development of systems which tend to exploit the strengths of both. The new situation has been 
described by Eisemberg ([35], Eisemberg, 1995) who talks about programmable applications as 
integrating the key features of both, programming and direct manipulation: 

"Programmable applications … are software systems that integrate the best features of two 
important paradigms of software design – namely, direct manipulation interfaces and 
interactive programming environments. The former paradigm – popularly associated with 
menus, palettes, icon-based interaction techniques and so forth – stresses values of 
learnability, explorability, and aesthetic appeal; the latter, by providing a rich linguistic 
medium in which users can develop their own domain-oriented 'vocabularies', stresses values 
of extensibility and expressive range. (Eisemberg, 1995, pp. 181)" 

(as cited in [61] Noss and Hoyles, 1996, pp. 56). 

The central idea, is that of opening up to the learner the expressive power of programming as a 
means to navigate and reconstruct a knowledge domain, as a "tool for expression and articulation". 
However, even in the case of a system with a friendly interface, we can't avoid questioning how 
programming environments can favour learning and mathematical expression:  

"how crucial is this for learning mathematics? Most importantly of all, how far can focus on 
programming in particular serve as a window on mathematical expression in general?". 

(ibid, pp. 57). 

3.2.2. Computers and conviviality 

Noss and Hoyles focus on the vision of programming as a tool for expressing and articulating 
ideas, and, drawing from Illich's work, introduce the idea of conviviality and convivial tools:  

"Illich has called such tools convivial: conviviality is a question of meaning. 

To the degree that he masters his tools, he can invest the world with his meaning; to 
the degree that he is mastered by his tools, the shape of the tool determines his own 
self-image. Convivial tools are those which give each person who uses them the 
greatest opportunity to enrich the environment with the fruits of his or her vision. 

(Illich, 1973, p.21) 

The extent to which a tool may be seen as convivial is the extent to which the use of the tool 
creates meanings for its user, catalyses intellectual experience and growth. […] it is our view 
that the computer is a tool which can be used to enrich the social psychological space of the 
individual with the fruits of his of her (mathematical) vision"  

([61] Noss and Hoyles, 1996, pp. 57). 
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The authors see a natural way to link conviviality with programming, they cite again Illich: 

"Illich says:  

Tools foster conviviality to the extent to which they can be used, by anybody, as 
often or as seldom as desired, for the accomplishment of a purpose chosen by the 
user. …They allow the user to express his meaning in action. 

(Illich, 1973, pp. 22-23, emphasis added) 

Meaning expressed in action. Here is the heart of the matter […]" 
([61] Noss and Hoyles, 1996, pp. 57). 

If we interpret computers as tools, then we may interpret them in terms of conviviality, and use 
them to express meaning in action; furthermore, according to Noss and Hoyles, the computer is a 
special tool because of its relationships with mathematical formalism: 

"the computer is a special tool in which action involves the formal use of language, and where 
the usual polarities – meaning and precision, intuition and formalism, conviviality and rigour 
– do not hold. For mathematical learning this is a crucial facet of the computer's role. As 
Papert points out: 

Most children never see the point of the formal use of language. They certainly 
never have the experience of making their own formalism adapted to a particular 
task. Yet anyone who works with computers does this all the time. 

(Papert, 1975, pp. 220)" 
([61] Noss and Hoyles, 1996, pp. 58-59). 

Thus computers can be interpreted as tools, and acting with them they can be thought as 
enriching users' expressive power, in a way that is mathematically relevant because of its 
relationships with formal languages.  

The authors conclude the section observing firstly that tools are cultural objects, which are not 
passive and play an active role in the culture they are inserted in. Secondly they observe that the 
level of conviviality of a tool doesn't depend strictly on its characteristics, but depends on the 
relationships with its user: 

"First, tools are cultural objects. Tools are not passive, they are active elements of the culture 
into which they are inserted. Second, the extent to which a tool is convivial is determined by 
the relationship of the user to the tool, not by any ontological characteristic of the tool itself." 

([61] Noss and Hoyles, 1996, pp. 58-59). 

The availability of a tool is not enough to enrich the user's expressive power, in order to do that, 
a tool has to enter the users' thought's, actions and language: 

"For a tool to enter into a relationship with its user, it must afford the user expressive power: 
the user must be capable of expressing thoughts and feelings with it. It is not enough for the 
tool to merely 'be there' […], it must enter into user's thoughts, actions and language. 
Expressive power opens windows for the learner, it affords a way to construct meanings" 

([61] Noss and Hoyles, 1996, pp. 58-59).  
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3.2.3. Why programming? 

Noss and Hoyles sum up their educational and research reasons for focusing on programming, 
pointing to the fact that formalism, and rigour of the computer, together with the fact that it offers 
the user a language to talk about mathematics.  

Programming computers constrain users to a certain level of formalism which is somehow 
comparable to that of mathematics, thus educationally significant. In fact, the compactness and 
rigour of expression involved in programming is not isomorphic, but is compatible, to that 
demanded by official mathematics. It is precisely such difference, between mathematics and 
programming, that may open up mathematics to a variety of learning styles and expression: 

"There is a degree of compact and rigorous expression involved in programming which if not 
isomorphic to, is at least comparable with that demanded by official mathematics. Of course, 
it would not do correlate mathematics and programming merely on the basis of similarities 
between notation systems. On the contrary, it is partly the difference between the two which 
give programming the opportunity to open up mathematics to diversity of learning styles and 
expression." 

(ibid., pp. 62). 

Finally, Noss and Hoyles observe that, due to its peculiar ways of expressing mathematical 
relationships, programming, as opposed to inert representations, may open strategic apertures for 
children:   

"If we pay careful attention to the design of Logo-based worlds, we might unlock strategies 
for children which are simply closed in conventional media. That is, by throwing into relief 
particular ways of expressing mathematical relationships, the programming environment may 
open strategic apertures for children – ways of expressing which are available with the 
computer and closed in inert representations." 

([61] Noss and Hoyles, 1996, pp. 62). 

3.2.4. Microworlds 

According to Bottino ([11] Bottino, 2001, pp. 15) , the meaning of the word microworld is not a 
standard among researchers, but there is a certain level of agreement on what characterises such 
kind of systems. Here we chose a characterisation, given by Balacheff and Kaputt (Balacheff & 
Kaput, 1996, p. 471), which is generic enough to fit also Noss and Hoyles' discussion:  

"A microworld consists of the following interrelated essential features: 

i) a set of primitive objects, elementary operations on these objects, and rules expressing the 
ways the operations can be performed and associated - which is the usual structure of a formal 
system in the mathematical sense. 

ii) a domain of phenomenology that relates objects and actions on the underlying objects to 
phenomena at the 'surface of the screen'. This domain of phenomenology determines the type 
of feedback the microworld produces as a consequence of user actions and decisions 
(Balacheff & Sutherland, 1994)"  

([1], Balacheff & Kaput, 1996, p. 471). 

Noss and Hoyles present a genesis of the idea  reporting how the meaning of the word 
microworld evolved during a couple of decades (for more details see [61] Noss and Hoyles, 1996, 
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pp. 63-67). The key idea of the concept of microworld is that of an environment, characterised by a 
knowledge domain which thus becomes explorable . 

At the core of the relationship between the user and the knowledge domain there are the objects 
of the interface that are available to the user. Papert termed them transitional objects "standing 
between the concrete/manipulable and the formal/abstract" (as cited by Noss and Hoyles, ibid., pp. 
64). Such objects are the means of the interaction between the user and the environment, thus, 
between the learner and the knowledge domain .  

A microworld is thus an environment where exploration is possible thanks to transitional 
objects, but where such exploration is constrained in ways designed to promote learning; 
knowledge is assumed to be reflected in the system, in its elements, relationships and structures, 
and it is assumed to be evolving by means of actions within the system. In particular, a microworld 
has to be able to reflect evolvable knowledge along the course of activities, thus it has to be 
evolvable itself: 

"Exploration is necessarily constrained but in ways designed to promote learning; knowledge 
is not simplified, it is recognised as complex, interrelated and evolving in action. These facets 
are reflected in the structures of the system, particularly in its extensibility – the extent to 
which the elements of the microworld can be combined, recombined and extended to form 
new elements" 

([61] Noss and Hoyles, 1996, pp. 65). 

To sum up three main characteristics of microworlds are: that they embed a knowledge domain 
model; that they offer transitional objects to the user to act with; that they can be extended17.  

In the effort to study the possible impact of microworlds on the supposed gap between learner 
and a given knowledge domain Noss and Hoyles (ibid., pp. 67). consider the two following 
requirements: 

• Concreteness: "we must try to construct situations which are sufficiently concrete" where by 
concrete they mean "well connected to what the learner already knows"  

• The idea of reconstructability: "if we design structures that allow the students to (re)construct 
new objects and relationships out of old ones, we can increase the likelihood that will 
achieve some visible and tangible representation of the state of the student's thinking and be 
more able to observe mathematical thinking-in-change"  

They focus on the nature of computational objects as the central elements in a microworld, the 
choice of which is critical:  

"The choice of such objects and the ways in which relationships between them are represented 
within the medium, are critical. Each object is a conceptual building block instantiated on the 
screen, which students may construct and reconstruct.” 

 ([61] Noss and Hoyles, 1996, pp. 68). 

                                                
17 Other characterisations of the term microworld are available, but they may be too restrictive for our purposes, like for 
instance that given by Bottino, who includes also the concept of direct manipulation: "For example, microworlds should 
provide the user with a number of primitives […] that can be combined in order to produce a desired effect. They 
should embody an abstract domain described in a model, and offer a variety of ways to achieve a goal. Moreover they 
should allow the direct manipulation of objects, etc" ([1] Bottino, 2001, pp. 15). Such characterisation may be at odd 
with Noss and Hoyles' discussion which is focused on programming. For the moment we keep a more general 
characterisation of the concept, leaving out “direct manipulation” aspects. 
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The effectiveness of computational objects depends on their capability to stimulate learners and 
on their capability to intuitions, understandings and personal images, together with preferences and 
pleasure. By means of computational objects, microworlds can be used to fill the gap from users' 
existing experiences and static formal systems, a gap which is often too great for learners to engage 
directly with such systems. On the other hand, the direct interaction with the computational objects 
offers a chance of connecting learners' knowledge with the knowledge domain represented by the 
microworld . In particular, mathematical microworlds should forge links with mathematical objects 
and relationships, this aspect distinguishes them from a simply playful exploratory world which is 
mathematically uninteresting . 

How such links are built is an opened question, but language seems to be a good candidate to 
link microworlds and mathematics: 

"[…] a computational world can be autoexpressive – it can contain the elements of a language 
to talk about itself. The definition of what such a language might be like is broad and 
broadening all the time: but we are not prepared – at least for the time being – to let go of it 
altogether: at root, it is the language, the program, which allows the most obvious link 
between computational and mathematical discourses" 

([61] Noss and Hoyles, 1996, pp. 68). 

3.2.5. Some peculiar pedagogical contributions of microworlds 

 current literature provides a wide account on the possible pedagogical contribution of 
microworld. A rich and comprehensive review  can be found in ([62] Pratt, 1998, pp. 57-61), where 
Pratt describes some key pedagogical contributions of research concerning microworlds  in this 
section we will report on some of such contributions that we find relevant for our work. 

3.2.5.1.Quasi-Concrete Objects 

Within microworlds, the objects that are visible on the screen, are in a sense twofold. On one 
hand, like mathematical constructs, they may be defined according to formal rules; on the other 
hand they are visible, and to some extent manipulative, like tangible objects. According to Turkle 
and Papert, the computer has the power to make the abstract concrete, bridging formal systems and 
physical things, because of its double faced nature. Its objects obey and are defined according to 
formal rules, but can be perceived as physical, allowing a sense of physical manipulation, that in the 
case of mathematical objects is usually felt only by expert mathematicians: 

"The computer stands betwixt and between the world of formal systems and physical things; 
it has the ability to make the abstract concrete. In the simplest case, an object moving on a 
computer screen might be defined by the most formal of rules and so be like a construct in 
pure mathematics; but at the same time it is visible, almost tangible, and allows a sense of 
direct manipulation that only the encultured mathematician can feel in traditional formal 
systems" 

([81] Turkle & Papert, 1991, pp. 162). 

Mathematical objects are represented on the screen, they keep some of their formal aspects and 
mathematical behaviours, but at the same time it is possible, even for an uncultured learner, to treat 
them as if they were concrete objects: 

"The image of the quasi-concrete object opens up the possibility of children manipulating and 
using mathematical objects, which conventionally would be seen as abstract but which are 
represented as if concrete on the screen. " 

([62] Pratt, 1998, pp. 58) 
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Once mathematical objects are represented as if concrete, it is then possible to interact with 
them, thus to develop a direct relationship with them, a step which is considered fundamental for 
meaning construction. 

"[…] as children interact with quasi-concrete objects, they develop a relationship with the 
object. The familiarisation of the object is a fundamental part of the construction of meaning." 

(ibid., pp. 58) 

3.2.5.2.Using Before Knowing 

Mathematical objects can be interpreted as tools for solving problems or to be used for 
accomplishing some task. According to Pratt, the natural way to learn about tools, in general, is to 
use them for particular purposes, a practice leading to learn "the effectiveness of the tool, its 
limitations, how well it serves that purpose and sometimes we may gain some understanding of how 
it works". According to the author this is not the case for mathematics in school where the situation 
is reversed: the learner is firstly faced with the problem of generating a mathematical object, and 
only after that phase he/she is faced with activities where the object is used as a tool for 
accomplishing some tasks:  

"Mathematics uniquely has always been represented as different. In schools, mathematics is a 
subject where you learn how to generate the object before you use it. In practice, more often 
than not, the former task proves too difficult, especially when disconnected from purpose, and 
so we never reach the second stage of using the piece of mathematics."  

([62] Pratt, 1998, pp. 59) 

The computer offers a way to reverse the situation, so that, using may precede generation, as 
Pratt observe citing Papert: 

"The computer offers the possibility of turning the learning of mathematics round so that 
using precedes generation, thus bringing mathematics more into line with natural ways of 
learning. Papert has recently referred to these ideas as the Power Principle (Papert, 1996). 

The principle is called the power principle or "what comes first, using it or 'getting 
it'?" The natural mode of acquiring most knowledge is through use leading to 
progressively deepening understanding. Only in school .... is this order 
systematically inverted. The power principle re-inverts the inversion. (p. 98)" 

([64] Pratt, 1998, pp. 59) 

from these arguments we can abstract The following principle: if we interpret mathematical 
objects as tools, then it is possible to learn about them by their usage, and the computer systems / 
environments offer a chance to set up activities where mathematical objects become usable. 

3.2.5.3.Integrating the Informal and the Formal 

According to diSessa, Pratt stress the need of building connections between formalisations and 
use of objects, aiming at fusing them: 

"[…] diSessa has suggested that we incorporate versions of the formal representations of the 
mathematical objects in such a way that the child may be able to make connections between 
the various formalisations and their informal use (diSessa, 1988).  

Building analytic or other formal tools right into experiential environments should 
become more and more a standard part of microworld design.....The idea is not to 
juxtapose experiential and formal points of view as above but to fuse them.(p. 64)" 
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([64] Pratt, 1998, pp. 59-60) 

Computer environments may offer enhanced possibilities to build such connection by exploiting 
the double faced nature of computational objects, which may be both formal an informal: 

In particular, microworlds, are based on constructive (as opposed to instructive) representations 
of pieces of mathematics ([64] Pratt, 1998, pp. 60); and, according to Pratt, the building of such 
representations may sustain the notion of connecting the informal and the formal: 

 ([64] Pratt, 1998, pp. 60) 

"The microworld approach would place more emphasis on constructive representations than 
conventional pedagogies. Indeed the notion of connecting the informal and the formal may lie 
in the process of building with constructive representations." 

([64] Pratt, 1998, pp. 60) 

3.2.5.4.Dynamic Expression 

The computer environment, differently from paper and pencil environment, is a medium where 
dynamic representations of the world are possible, together with interactive aspects. As a 
consequence using the computer is more "engaging to learn then static and abstract formalisms" 
([64] Pratt, 1998, pp. 60). 

Within microworlds a user can interact and control such dynamism, thanks to direct 
manipulation  and programming. The former has the advantage of immediacy, while through the 
second it is possible to express "fuzzy ideas in a formal, conventional and rigorous languages" and 
make "ideas become more explicit" ([64] Pratt, 1998, pp. 60). Ideas can then be expressed in an 
observable and rigorous form, which is fundamental in mathematics:  

"It is a fundamental part of mathematics that ideas are expressed in this sort of way and so 
programming becomes akin to doing mathematics. Teaching the machine becomes a central 
microworld activity. diSessa has gone as far as proposing that microworlds offer a new form 
of literacy (diSessa, 1995). 

...by extending linear language into multiply connected, dynamic, richly textured 
graphical and interactive forms allowed by computers we may fundamentally extend 
the material bases for thinking and learning, and with them the whole practice of 
education.(p. 2)" 

([64] Pratt, 1998, pp. 61). 

3.2.5.5.Purpose and Utility 

According to Pratt, "in conventional approaches to instruction, purpose and utility are often 
confused" ([64] Pratt, 1998, pp. 61). By contrast, in microworld environments, a concept can be 
used in the form of quasi-concrete object, and as such it has its utility. In his example he talks of the 
concept of average, and concludes:  

"Because the microworld can provide a quasi-concrete object called average, these utilities 
may be discriminated without even knowing how to generate average. The advantage may be 
that such an approach separates purpose and utility, as is usually the case in our everyday 
learning but in contrast to standard mathematics classroom practice." 

([64] Pratt, 1998, pp. 61). 
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3.2.6. Résumé of significant ideas and problems 

In the previous discussion on programming and microworlds, we highlighted that technological 
systems can be interpreted as potential means for articulation enhancing pupils' expressive power. 
However, programming and working within a microworld, can be different kinds of activities that 
are both interesting from an educational point of view. Among their characteristics, and interesting 
educational aspects, we individuate some which are particularly relevant for our work. 

First of all, we highlighted (3.2.3) that the activity of programming computers has the valuable 
property of offering to the user a new language, which is constrained by the formalism of 
computers, to talk about mathematics. Such languages, because of their natures, and because of the 
formal constrains they put, are comparable to formal mathematical language, and as such can be 
used as an entrance point to the formalism of mathematics. In other words, programming a 
computer may provide the user with a new language, enhancing his/her expressive power; yet, at 
the same time, this new language is a mathematical alike one, thus, thoughts that are expressed with 
it, can be interpreted in mathematical terms, and for this reason offer a possible window to 
mathematics.  

However, in order to produce mathematical discourses, it is not enough to use a mathematical 
alike language, in fact, also mathematical contents should be involved. This is the case of 
mathematical microworlds, which embed some mathematical domain, which can be explored by 
means of the computational objects provided by the environment. Microworlds provide users with 
tools that correspond to mathematical objects, which can be used on purpose to accomplish tasks 
within the microworld. A mathematical object is used according to some necessity within the 
microworld, according to the principle of “purpose and utility” we discussed in section 3.2.5.5. 
Microworlds provide ready made computational objects, which can be used without knowing how 
they have been create, or the mathematical principles behind them. Microworlds, according to the 
principle of “using before knowing” (see 3.2.5.2), give learners the chance to use a mathematical 
objects (represented by computational objects) before they know them as such. The main idea is 
that by using computational objects, a pupil may learn about the corresponding mathematical 
objects. 

However, the correspondence between mathematical objects and computational counterparts is a 
semiotic one, in the sense that computational objects are meant to stay for mathematical objects. As 
we discussed in section (2.6. ), signs have a conventional nature, and the correspondence between 
their signifying forms and their meanings are built conventionally by communities by means of 
shared codes of correspondence. Such codes of correspondence, could they be explicit or implicit, 
have to be shared by a community, if we want the whole community to attribute the same meanings 
to a given symbol. In other words, the meaning of a sign is not an intrinsic property of its signifying 
form: a given computational objects, cannot represent any mathematical object, unless this is not 
established, by convention by a community. As a consequence, if in class practices we want pupils 
and teachers to attribute the same mathematical meanings to the computational objects of a 
microworld, then the class must share a code of correspondence defining the semiotic relationship 
between the microworld and mathematics. To put it in simple words, it may be the case that a 
teacher interprets a computational object as standing for a mathematical object, while a pupil 
interprets it merely as a computational object. Furthermore, it may be the case that, even if the pupil 
interprets the computational object as standing for a mathematical one, the relationship between 
these objects, as viewed by the pupil, may not coincide to that wished by the teacher. 

If the semiotic correspondence between computational objects and mathematical objects is not 
carefully studied, designed, and implemented in class practices, it may happen that the knowledge 
learnt by pupils is not consistent with the teacher’s intentional mathematical knowledge.  
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In the case of programming computers, as we discussed, the analogies between computer 
languages and the mathematical language can be a starting point for building such relationship, at 
least at a semiotic level. The language of the interaction between the user and the computer shares 
with the mathematical language at least the property of being a textual language (ex. LOGO 
microworlds). Such property is lost when we consider visual microworlds based on direct 
manipulation, where the language of the communication between learner and computer is not even 
a textual one. In this sense there are less chances that the microworld, without a specific teacher’s 
intervention, evokes to pupils a language based relationship between its objects and mathematical 
objects. As a consequence, if such a relationship has to be exploited for mathematical educational 
goals, it has to be the object of a specific teaching/learning process which cannot be demanded only 
to the microworlds themselves, but need the intervention of the teacher. A possible way to do that, 
is to exploit the semiotic systems offered by the written and the oral language: such semiotic 
systems are those used to express mathematical concepts, thus can be used similarly to express 
concepts related to the considered microworld. In this sense, verbal expression both oral and 
written, may represent a suitable means to foster the construction of a relationship between the 
microworld (its objects, its activities, etc.) and mathematics (its concepts, its way of thinking, etc.), 
and to exploit it for mathematical educational purposes.  

3.3.  The computer as instrument of semiotic mediation 

3.3.1. A channel for communication 

According to Mariotti, "mediation" is a quite common term in the literature concerning 
technology and mathematics education. However, it is often used in an undefined way "just 
referring to a very vague potentiality of fostering the relation between pupils and mathematical 
knowledge" ([51], Mariotti, pp 705, 2002).  

A possible interpretation of the idea of mediation is that proposed by Noss & Hoyles who take 
the perspective of communication: the mediation function of the computer is related to the 
possibility of creating a communication channel between the teacher and the pupil based on a 
shared language. The language of the interaction, not only opens communication between the user 
and the machines, but in school practice it may open a channel of communication between the user 
and the teacher. Consequently, the relationship between  the pupils and the teachers can be transformed 
by the introduction of the computer making communication between them possible . as Noss and Hoyles 
clearly discussed, such a change of class interaction shapes a shared environment, where 
communications is possible, and meanings can be expressed, explored and changed:  

"Not the transmission of A's understanding to B, but an arena in which A and B's 
understandings can be externalised; not a means of displaying A's knowledge for B to see, but 
a setting in which the emerging knowledge of both can be expressed, changed and explored." 

([62], Noss & Hoyles, pp. 6, 1996) 

3.3.2. Instruments of semiotic mediation 

As an historic analysis shows, The development of mathematical knowledge is based on a 
productive dialectics between theory and practice ([51], Mariotti, pp, 705-706). Key elements of 
this dialectic relationship are instruments. For instance, in Euclid's Elements a special role has been 
played by instruments such as the ruler and the compass. On the one hand, they are theoretical 
products of an effort to rationalise the perception and production of shapes, while on the other hand, 
they are physical objects, instruments to be used to accomplish tasks, oriented toward the external 
world. Theories and practices have always nurtured  each other, even if sometimes they may have 
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developed independently for a while: their dialectic relationship, was constantly reconstructed with 
continuous shifts of meaning from one field to the other. 

One way to view instruments as nodes of the dialectic between theory and practice, is that of 
considering them as having a twofold functioning: they can be interpreted on one hand as externally 
oriented and aimed at accomplishing an action, on the other hand, they can be interpreted as 
internally oriented, and "aimed at controlling the action" ([51], Mariotti, pp, 2002). Mariotti 
elaborated such distinction starting from the seminal work of Vygotskij, who introduces the 
theoretical construct of semiotic mediation. In what follows we draw from the elaboration provided 
by Mariotti. 

Vygotskij distinguishes between the function of mediation of technical tools and that of 
psychological tools (or signs or tools of semiotic mediation). They are both part of the cultural 
heritage of mankind, produced and used by human beings, they evolved in the centuries, 
maintaining their functions. Although clearly distinguished, 'signs and tools' are assumed by 
Vygotskij ([83], Vygotskij , pp. 53, 1978) to belong to the same category of mediators.   

"The basic analogy between sign and tools rests on the mediating function that characterises each 
of them. They may, therefore, from the psychological perspective, be subsumed under the same 
category. ... of indirect (mediated) activity. "  

(ibid. p. 54) 

The difference between signs and tools rests on "the different way that they orient the human 
behaviour". (ibid. p. 54). The function of a technical tool is externally oriented, it is to serve as the 
conductor of human activity aimed at mastering nature, whilst a sign's function is internally 
oriented, it is a means of internal activity aimed to master oneself In other words, as it is possible to 
master the nature, we can also speak of the mastering of oneself; these two kinds of mastering, 
according to Vygotskij are strictly linked,  

"just as man's alteration of nature alters man's own nature"  

(ibid., p. 55). 

Externally oriented tools can be converted into internally oriented tools through the process of 
internalization, as described by Vygotskij, thus becoming "psychological tools" and shaping new 
meanings, "in this sense a tool may function as a semiotic mediator". 

Both kinds of tools are an integral part of social activity. Vygotskij himself quotes, besides 
language, examples of psychological tools from mathematics, as for instance, various systems for 
counting. What makes a system of counting a tool for semiotic mediation is the fact that it has been 
produced and employed to evaluate quantity, but at the same time, functions in the solution of 
problems, so as to organise and control behaviour. 

The key idea of this perspective is that of distinguishing between externally and internally 
oriented tools, and assuming that technical tools, can be converted into psychological ones through 
the process of internalisation. When this happens, an artefact conceived as a  technical tool becomes 
also a means for mastering oneself. This suggests that instruments can be introduced in teaching 
practices, in order to exploit the mentioned internalisation process for educational purposes. The 
question is how this can be done, and what knowledge can be learnt by pupils. When focusing on 
artefacts, it is important to consider the relationship between how they are conceived and how they 
are used, and the relationship between their embedded knowledge and their evoked knowledge. On 
the other hand, Mariotti stresses, for educational purposes, the importance of the relationship 
between the knowledge evoked by the instrument, when used, and mathematical knowledge: 
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"an educational perspective requires also to consider the relationship between meanings 
emerging from the use of the instrument and meanings culturally recognisable as 
mathematics." 

(ibid., pp. 707)  

Past and present literature highlights both, the educational potentialities of technological 
artefacts, but it also shows "the instability of the processes of meanings constructions, related to the 
use of artefacts" (ibid., pp. 707). According to Mariotti, a Vygotskian perspective can give the 
possibility to overcome the 'impasse'. When an instrument is introduced into school practice, we can 
consider two main kind of users, and ways to use them. Suppose a teacher set up activities where the 
pupils have to use a given instrument to accomplish some tasks; in this case, the teacher herself, is not 
using the instrument to accomplish the same tasks, but she is somehow using the instrument to teach 
pupils some intentional knowledge, which is the reason why she introduced the instrument in class 
practices. Mariotti distinguishes between instrument and instrument of semiotic mediation: 

"[…] as far as the computer is concerned, it intervenes in the activity, but it participates to it 
in different ways, according to the actors involved in that activity: 

- as an instrument (the artefact is used according to utilisation schemes); and in that case 
meanings, if any, may emerge, but the mathematical meaning, embedded in it, may remain 
inaccessible to the user.  

- as an instrument of semiotic mediation; as the teacher utilises it in order to accomplish 
communication strategies aimed to develop a specific meaning, related to the mathematics 
content which constitute the motive of the teaching/learning activity." 

(ibid., pp.)  

This perspective suggest that the teacher can guide an evolution of the knowledge evoked to 
pupils by an instrument, but how can such evolution be guided and controlled? A first answer can 
be found in the following hypothesis stated by the author: 

"Meanings are rooted in the phenomenological experience (actions of the user and feedback 
of the environment, of which the artefact is a component) but their evolution is achieved by 
means of social construction in the classroom, under the guidance of the teacher." 

(ibid., pp.) 

The evolution of what pupils learn toward coherency with mathematics, can be achieved through 
social construction.  

To sum up, the key ideas that emerge from the discussion of the approach presented by Mariotti are: 

• when a subject participates in an activity involving the use of an instrument, he/she may have 
access to some knowledge evoked by the artefact, in particular he/she may learn an 
instrumentally evoked knowledge. Thus a teacher can introduce an instrument in class 
practices, in order to provoke pupils' learning of a related evoked knowledge; 

• this evoked knowledge is not necessarily of the same nature of the teacher's intentional 
knowledge, but the teacher can guide an ad hoc evolution of the nature of such knowledge, in 
order to reach consistency with his/her intentional mathematical knowledge; 

• a controlled evolution of knowledge can be achieved by means of social construction of a 
class community knowledge; 
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• It is the teacher who is in charge of starting and guiding the evolution of such class 
community knowledge pointing to a coherency with his/her intentional mathematical 
knowledge.  
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4.  Computers, algebra, and theoretical thinking: refining our research 
questions  

In the previous chapter we gave a general overview of international research concerning 
technology and mathematics education. In order to situate our research within this panorama, we 
need to move from the general level to a more specific one, that of computers in algebra education. 

4.1.  Computers in algebra education, an overview 

Research within this field is vast, and it is impossible to account of every study18, which may be 
characterised by different: typology of involved technological devices; typology of educational 
activities; educational aims; pedagogical assumptions; epistemological assumptions.  

Nevertheless, by combining such criterions we individuated some main threads that we are going 
to comment below.  

4.1.1. Programming 

Computer programming is an activity which has, during some decades, been considered a 
powerful tool for algebra education, for several reasons, as witnessed by Kieran and Yerushalmy 
([46] Kieran and Yerushalmy, in press). Within the first studies there was a shared opinion that such 
activity would aid students in their mathematical problem solving, and it was believed that writing, 
processing and studying computer algorithms would have promoted the development of 
mathematical concepts. Though there was no direct link between programming and algebra this link 
was made within the Logo movement19 which viewed programming as an algebraic activity because 
it involved expression of mathematical ideas and processes in general ways and with particular 
languages and syntaxes. According to Kieran and Yerushalmy, despite its positive results (for 
instance concerning students understanding of the concepts of algebraic variables and algebraic 
formalization), the Logo movement "did not go as far as making the connection with conventional 
algebraic concepts and notation" ([46] Kieran and Yerushalmy, pp. 3, in press). 

4.1.2. Multiple representations approaches 

A widely shared opinion see the effectiveness of computers in the plurality of representation 
means provided.  Mathematical objects can be represented in different ways, included 
computational representation, and the didactical approaches inspired by this characteristic can be 
classified as multi representation approaches. Many of the approaches to algebra, within this tread, 
define themselves as functional approaches ([46] Kieran and Yerushalmy, in press, pp. 4), and 
present function oriented approaches to algebra. 

For instance, the VisualMath curriculum ([87], Yerushalmy & Shtemberg, 2001), is based on a 
variety of experiences with non symbolic representations of functions, and the dominant conception 
of letters is of varying quantities. Here we find the idea of studying functions by comparing them, 
and a particular kind of comparison leads to the study of equations. Within this curriculum there is 
an attempt to introduce algebraic manipulations by studying graphical and tabular (e.g.. 
spreadsheet-like) representations of expressions, as well as an attempt to give a sense of the 
usefulness and purpose of such manipulations ([46] Kieran and Yerushalmy, in press, pp. 4). 

                                                
18 See for instance appendix (9.4.5) of this thesis. 
19 This is another name to indicate the movement originated by Paprrt's ideas on microworlds, and which is based on the 
use of the Logo language for programming. See  chapter Errore. L'origine riferimento non è stata trovata., in 
particular sections 3.1.2 and 3.2.  for more comments on the concept of microworld. 
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Other, function based, curricula approach algebra through the investigation of modelling 
problems, like the Core-Plus Mathematics Project (CPMP) which uses a variety of linked 
representations and has as a major theme the study of the connections between function 
representations ([40], Huntley, Rasmussen, Villarubi, Sangtong, & Fey, 2000). The project is 
embedded in the Dutch curriculum, and is coherent with the choice of focusing on the interpretation 
and construction of formulas modelling a phenomenon, describing relationships between quantities 
([46] Kieran and Yerushalmy, in press, pp. 4-5).  

4.1.2.1.Using spreadsheets to create meaning for the objects and processes of algebra 

Many representations approaches try to create meaning for the objects and processes of algebra, 
they seek for tools which enable students to represent experiences as functions. Here we find, on 
one hand, learning environments such as spreadsheets that allow to manage numerical data and 
express relationships; on the other hand we find environments based on graphical representations. 
Both graphs and spreadsheets are interpreted as means for bridging phenomena and algebraic 
models and methods (ibid., pp. 5-10).  

Filloy et al. ([38] Filloy, Rojano, and Rubio, 2000) describe their "spreadsheet method" as 
bridging arithmetic and algebra by involving the construction of solutions to families of problems 
rather than solutions to single specific problems. They observed students moving from specific 
examples to the descriptions of general relationships, and assuming the algebraic idea of working 
with unknowns, as represented by spreadsheet's cells ([46] Kieran and Yerushalmy, in press, pp. 4-
5).  

However, some difficulties, concerning the type of symbolisation underlying spreadsheets are 
described by Yerushalmy and Chazan: the symbols representing locations in spreadsheet tables are 
not variables, neither unknowns. Such symbols represent values of the cells, which can change, but 
as they represent particular locations, they are too particular to be called variables. On the other 
hand they may be called unknowns because the cells they represent may have no value, but that 
would sound odd if a value was assigned to a cell ([86] Yerushalmy and Chazan, pp. 375, 2002). 

Other difficulties are pointed out by Dettori et al. ([26] Dettori, Garuti and Lemut, pp. 199, 2000) 
who point out that the sign of equality, in a spreadsheet, being the assignment of computed values 
to cells, doesn't allow one to express relationships, making it impossible to handle completely 
algebraic models. According to Dettori et al. (ibid. 206)., an approach to algebra via functions is 
limited to the introduction to algebra. In fact if on one hand spreadsheets (which are usually 
associated to functional approaches) allow the investigation of variation of functions, on the other 
hand they can cause difficulties concerning algebraic manipulation. 

In conclusion, considering both difficulties and potentialities, spreadsheets can be used as a 
introduction to algebra and its symbols, if imbedded in suitable activity sequences: the following 
summary ([46] Kieran and Yerushalmy, in press, pp. 7) can be presented:  

Multiple representations: Spreadsheet environments allow for an integrated use of numerical, 
graphical, and algebraic representations;  

Requiring predictions: Predictions in a spreadsheet activity can be made at the initial stage of 
getting acquainted with the problem situation and at the stage of transition from the numerical 
table to its graphical representation; 

Generalization by recursion and generalization by position number: Both methods have their 
advantages and disadvantages;  
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Spreadsheet formulas versus algebraic expressions: The difference between the two objects, 
one belonging to the computer environment and the other to mathematics, is sometimes more 
than syntactic and can cause some conceptual difficulties;  

Lack of transparency: In a spreadsheet table, formulas are “hidden” behind the resulting 
numbers. As a result, students can encounter both cognitive and technical difficulties in 
monitoring their work." 

 

4.1.2.2.Graphs as bridging language 

Graphs can be used to represent relationships related to either mathematical or non-mathematical 
situations, thus can be used to bypass algebraic symbols as the sole channel into mathematical 
representation. They can be used to motivate students to experiment, analyze and reflect on a 
situation, even when it is too complicated to approach it symbolically. Research on this field has 
been conducted following Dugdale's  mid-1980s initial studies ([31], Dugdale 1993), based on real 
time generation with probes and Microcomputer-Based Laboratories ([59], Mokros and Tinker, 
1987). Working with the tools, offered  by such laboratories, implies visual analyses of situations 
that are different from the ones arising when working with algebraic symbols or numerical tables, 
here the attention is given to the shapes of the graphs and their qualitative relationships to the 
situations ([46] Kieran and Yerushalmy, in press, pp. 7-8). 

Other research threads use the potential of graphs not just to represent relationships between 
phenomena, but as a source for creating an iconic language to be used to express mathematical 
ideas. The idea is that of deriving from graphic representation, an hybrid language to be used to 
bridge the natural language with the mathematical one. Schwartz and Yerushalmy ([71], 1995) 
propose an intermediate iconic language based on functions and graphs, and related vocabulary, and 
which includes graphical icons describing how a function and its rate of change may change. A 
software, The Function Sketcher, was created in order to allow mathematical activities to take place 
in parallel in the iconic and linguistic channels ([87], Yerushalmy & Shtemberg, 1994). As 
Yerushalmy and Kieran observe, the proposed sign system supported the abstraction of everyday 
phenomena into a subset of mathematical signs which could be manipulated "with software as semi-
concrete objects" ([46] Kieran and Yerushalmy, in press, pp. 10). 

4.1.3. Dynamic control of algebraic objects 

As discussed above particular features of computer environment concern the level of 
interactivity: Many software environments offer the possibility to directly manipulate their 
computational objects, by means of peculiar devices such as sliders, slidegraphs, dragging etc. " 
([46] Kieran and Yerushalmy, in press, pp. 18). In particular, the computational objects, can be 
representations of mathematical objects, and can be consistently manipulated to grasp (ibid. pp. 18-
29): 

• connections between different systems of representations: for instance by manipulating one 
kind of representation of the mathematical object and studying the effects of such 
manipulation on other kind of representations of the same object; 

• properties of the object: microworld with some dynamic element can be used as an 
environment where to explore properties of mathematical objects, giving an immediate 
feedback on changes caused by actions in the microworld. For instance, Zbiek and Heid 
([88], 2001) presented an environment, based on a dynamic geometry software, where it was 
possible to dynamically (by dragging points) change the parameters of an algebraic 
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expression, having an immediate visual feedback; within the system, for instance, special 
cases of families of functions could be easily highlighted. 

• The relationship  between a phenomenon and its mathematical models: for instance using 
calculator-based rangers (CBR) to record a phenomenon (e.g. a child walking, or a rolling 
cylinder) and study the related graphs produced by the calculator ([1], Arzarello and Robutti 
2001; [67] Radford et Al 2003).  

4.1.4. Environments for structured symbolic calculation 

Approaches based on multiple-representational environments, interpret symbolic manipulation in 
terms of relationships between different kinds of representations of a given algebraic expression. 
Two expressions can be considered equivalent if, for instance, they have the same graphs, or table 
of values, any transformation of algebraic expression can be studied according to its effects on 
graphs and tables of values. The technological environments used within such context are 
characterised by commands directed to the manipulation of different representations of functions 
(for instance zoom commands), and allow easy switching from one representation to another.  

In opposition to multiple representational approaches we find "structured symbolic calculation" 
approaches, as they are called by Kieran and Yerushalmy (ibid., pp. 30). Structured symbolic 
calculation is not at odds with the previously described views, but it distinguishes itself for its focus 
on a particular sign system, the algebraic one. The class of environments used within this approach 
is characterised by commands that support transformations of algebraic expressions or equations: 

• operating on their algebraic structures; 

• preserving “equivalencies”. 

The support offered can be of different kinds, favouring either simple or complex 
transformations as in the examples described below. 

Thompson and Thompson ([80], 1987) present a study based on the use of EXPRESSIONS, a 
“special computer program […] that enabled students to manipulate expressions, but which 
constrained them to acting on expressions only through their structure”. The software represents 
expressions as trees and the user can operate on expressions by clicking on the action to do (for 
instance distribute, commute, etc.) and then clicking on the head of the branch of the represented 
expression that has to be transformed. The proposed activities consisted in transforming a given 
expression into another given expression. This was done both with numeric expressions and literal 
expressions. In particular we may observe that the software allowed step by step transformations 
and included transformation principles based on field properties, such as the properties of neutral 
elements.  

Computer Algebra Systems (CAS), are more complicated environments that allow structured 
symbolic manipulation, but, as opposed to EXPRESSIONS, they do not always allow step by step 
transformations. They usually offer commands that transform expressions handling complex 
transformations condensed in only one step,  which become black-box algorithms that, at times, can 
be "harder to understand then the original problem" ([46] Kieran and Yerushalmy, in press, pp. 30). 
An example of black-box command can be taken from DERIVE, quite a popular CAS: for instance, 
the command FACTOR returns the factorised form of a given expression, but no hint is given 
concerning the intermediate steps that leaded to the final expression.  

In the described examples it is the software which executes transformations, as commanded by 
the user, and transformations are in principle algebraically correct. Other environments offer 
different paradigms of interactions, for instance APPLUSIX ([13], Bouhineau et al, 2002) has a 
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peculiar feature, offering the user to freely transform algebraic expressions, without applying any 
command. While the user writes the new expression, the software may give immediate, and 
continuous, feedback on the equivalence relationship between the old and the new expression. This 
control may be activated or not by the teacher, according to teaching purposes. 

4.1.5. Concluding remark 

In this section we presented a brief overview on research studies concerning the use of 
technology in algebra education. We classified the presented approaches mainly in terms of the 
used technological environments, but also in terms of the different aspects of “algebra” they were 
focusing on. In order to be able to state our position within this panorama, we may consider a 
threefold model of algebraic activity (ibid., pp. 34), consisting of "(a) generational activity, (b) 
transformational activity, and (c) global/meta-level activity". The first involves the creation of 
meanings for expressions and equations. Transformational activity focuses on the notions of 
equivalence of expressions and of solution of equations, and involves symbolic calculation. Finally, 
the global/meta-level activity, concerns all those activities where algebra is used as a tool; in 
particular it may comprise "problem solving, modelling, noticing structure, justifying, proving and 
predicting". The examples that we presented are quite well identified by this model: for instance 
multiple representation technology may concentrate on approaches focusing on generational activity 
and global/meta-level activity; whilst structured symbolic calculation technology is usually 
associated with transformational activity. As a consequence, for our research, there is a need to 
clarify our position, in terms of the algebraic activities we focus on, and in terms of the typology of 
technology we use.  

In the next section we will review some of the main threads of research in algebra education, so 
that we will be able to state our position concerning the kind of algebraic activity we focus on. 

4.2.  What algebra? 
In the previous section we presented a brief overview of research studies concerning the use of 

technology in algebra education. We discussed some of the key ideas that can be found in literature, 
focusing on the underlying on the views of algebra and the typologies of the used technical devices 
and. It turns out that, coherently with the multifaceted nature of algebra, different researches 
highlight different aspects of algebra. For instance, we described research studies that concentrate 
mainly on functional aspects related to algebra, or others that concentrate on symbolic 
manipulation. In fact, as far as algebra is concerned, there are many aspects which characterise 
algebra as a subject. Kaput and Blanton argued that "algebraic mature reasoning is a complex  
composite organized around five interrelated forms, or strands, of reasoning" ([43], Kaput & 
Blanton, pp. 346-347, 2001): 

1. Algebra as Generalizing and Formalizing Patterns & Constrains, in particular, Algebra as 
Generalized Arithmetic and Quantitative Reasoning;  

6. Algebra as Syntactically-Guided Manipulation of Formalism; 
7. Algebra as the Study of Structures and Systems Abstracted from Computations and Relations; 
8. Algebra as the Study of Functions, Relations, and Joint Variation. 
9. Algebra as a Cluster of Modelling and Phenomena-Controlling Languages. 

Our study concerns symbolic manipulation, which is related to all the aspects highlighted by 
Kaput and Blanton. However, being aware of the importance of all the these aspects20, we focused 
our research study on the second and the third one, which best fit our view of algebra. In fact, in our 
perspective, symbolic manipulation is viewed as an activity of transforming expressions by means 

                                                
20 In Kaput's and Blanton's words "We need a broader and deeper view of algebra that can provide school mathematics 
and that can support the integration of algebraic reasoning across all grades and all topics" (ibid., pp. 345-346). 
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of the axioms algebra theory. In the following we are going to present our perspective as opposed to 
the view of algebra mainly as generalized arithmetic, which is very popular in Italian schools.  

4.2.1. Algebra as Generalized Arithmetic 

Algebra can be interpreted as generalised arithmetic, in various forms: letter arithmetic; algebra 
of number patterns generalisation; study of the structure of arithmetic, and the study of letter 
symbolic expressions with no regard to the meanings of the symbols ([48], Lee, pp. 396, 2001).  

The central idea of this approach is that there is a continuity between arithmetic and algebra, 
which can be exploited for the teaching of algebra once arithmetic is known. However, analysing 
the connection between Algebra and Arithmetic shows that the relationship between calculation 
with numbers and calculations with letters is not so direct and transparent. As Lee & Wheeler ([49], 
Lee & Wheeler, 1989) argued t, in spite of the use of common operation signs, the activities of 
writing and manipulating expressions in algebra and in arithmetic are quite different. Such 
difference has been witnessed by several authors who also describe how they can be problematic for 
pupils' learning of algebra. 

According to Bednarz there is evidence of students resistance during the transition to algebra 
from arithmetic ([9], Bednarz N., pp. 70, 2001). The author suggests that this due to the different 
nature of algebraic activities and arithmetic activities, leading to problems in algebra learning, when 
it is introduced simply as a generalised arithmetic. Such problems, stem from the nature of algebra, 
and not from pupils insufficient mastery of arithmetic. For instance, as described by Henry, 
obstacles may be individuated as "related to sign systems, means-end habituation, and the related 
need to gain procedural confidence prior to transitioning to structural understanding" ([39], Henry, 
pp. 302, 2001). 

The different nature can be expressed in terms of a cognitive break, which, according to certain 
authors consists of the fact that the passage from arithmetic to algebra starts from a modelling 
process that changes both the nature of "problem resolution", and the nature of the "handled 
mathematical objects"; whereas in arithmetic numerical computations are central, the main aim of 
algebra is to "provide an operative language to represent, analyse and manipulate relations 
containing both numbers and letters"([26], Dettori et al., pp. 192, 2000). If the style of arithmetic is 
essentially procedural, that of algebra is essentially declarative, as it is based on defining and 
manipulating relations. 

According to Thomas, it may be the case that students deal with algebraic expression according 
to the operations of arithmetic, and this leads to conflicts when trying to give a meaning to “the 
result” of expressions such as ab or a2 ([79], Thomas and Tall, pp. 583, 2001). Furthermore, such a 
process oriented approach may lead pupils to interpret expressions, such as (2x+1)(3x-2) and 6x2-x-
2, as not equivalent because they appear to represent different processes.  

From this discussion it emerges that, despite the similarities between algebra and arithmetic, they 
are different subjects, with different objects and processes, and such differences may cause 
problems to an approach to algebra as generalised arithmetic.  

Such differences can be interpreted in terms of Sfard’s operational-structural theory ([73], 
Sfard, 1991). Within such theory, mathematical object is interpreted operationally when it is 
interpreted as a process to be executed, whilst it is interpreted structurally when it is viewed as an 
object. For instance, a numerical expressions, can be interpreted either as a computation procedure 
to be executed leading to a result, or as an object with its structure and that can be, for instance, 
compared with other expressions. In the first case we speak of an operational interpretation of the 
given expression, which is viewed as a process, whilst in the latter case we speak of structural view 
([74], Sfard et al., pp. 193, 1994). Such duality of Algebraic objects (like the Mathematical objects 
in general) is described by Sfard as being necessary and difficult to be achieved: 
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"The formula, with  its operational aspect (it contains 'prompts' for actions in form of 
operators) must be also interpreted as the product of the process it represents."  

"[…] our intuition rebels against the operation – structural duality of algebraic symbols, at 
least initially."  

([73], Sfard, pp. 199, 1991) 

The operational character of pupils' conceptions related to algebraic  formula  and expressions 
tends to persist, thus it is not lost when algebra is introduced, however, it appears to be difficult for 
pupils to achieve also a structural perspective. In fact, although symbolic manipulations of algebraic 
expressions are largely present in school practice, the absence of "structural conceptions" appears 
evident ([44], Kieran, pp. 397, 1992).  

Two levels of computation can be considered: computation with numbers and computation with 
letters. there is a "striking difference" between writing and manipulating expressions in algebra or 
in arithmetic, as Lee and Wheeler clearly point out:  

"In spite of the use of common (operational) signs, what one actually does in the two cases is 
very different, so different that one cannot be surprised if students do not immediately support 
the connection. An algebraic expression may perhaps be transformable into equivalent forms, 
but its value cannot be computed. The same expression with numerical values substituted for 
the letters is immediately computable and 'collapses', losing all its individual character, into a 
single numeral". 

 

[…] According to the authors, there is a need for a pedagogy helping students to grasp the 
connection between algebra and arithmetic, highlighting the "differences between two modes of 
symbolic behaviour" ([49], Lee & Wheeler, pp. 51-52, 1989) 

In a previous study ([20] and [56], Cerulli & Mariotti, 2001 and 2002) we analysed the 
relationships between these two levels of computation, drawing on the case of a pupil , Francesca, a 
15 year old girl from a group of pupils that we interviewed, and that was following an approach to 
algebra as generalised arithmetic. The study revealed that, contrary to what books and teachers 
usually state, the transition from computing with numbers and computing with letters is not so 
smooth: in fact, it may present a cognitive break, as suggested by Francesca: “Our teacher says that 
with letters it [computing] is the same as with numbers, but to me it doesn’t look the same, it looks 
quite different [It: non mi sembra la stessa cosa]”. Francesca, besides her difficulties in 
manipulating algebraic expressions, somehow individuated a key difference between arithmetic and 
algebra, as witnessed by her statement: "[…] Because if I am given 10+3… whilst…[ if you give 
me] a•b+c+d I get stuck… (laughs) I can’t work it out.".  

Given a numerical expression, it is always possible to compute a result, and that is consistent 
with the objective of the main activity in Italian school practice, before approaching algebra: given 
a numerical expression, students are asked to compute its result, which is a number. On the other 
hand, given a literal expression such as that cited by the Francesca, although it is asked to compute,  
it would be impossible to obtain any numerical result. Passing from arithmetic to algebra, the term 
to compute/calculate (ita.: "calcolo") changes its meaning. 

As a matter of fact, grasping the link between computing with numbers and computing with 
letters, requires a radical change of perspective, at which the properties of the operation itself are 
the core. 

According to Sfard's hypothesis, when computing with algebraic expressions a new operational 
level must be achieved, but this must be achieved without breaking the link with the previous one. 
The analysis of Francesca’s case shows that not only must the reification of an expression be 
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accomplished  (expressions can be acted upon as new objects), and not only must the structural 
level be consolidated (equivalence between expressions must be stated in terms of their values), but 
also a relation between the two 'computing procedures' (ita.: "calcoli") must be constructed 
explicitly. 

The key-point is in the change of role that the properties of the operations must achieve: in the 
case of numerical computation they are basically used to state the equivalence of different 
computing procedure: two numeric expression are equivalent if after computing give the same 
numerical result; whilst in the case of literal expression, they have to become rules of 
transformation, i.e. "instruments" to transform one literal expression into another, maintaining their 
equivalence, this process of transformation can be see as a  computation; non result in the numerical 
sense can be obtained, but a result can be conceived according to the fact that at a certain point no 
other transformation is possible except invert the relations already used. Consider the example of 
the distributive property, if we are given the numerical expression 2•(3+4), we can transform it 
computing the sum within brackets, and then we can compute the multiplication, obtaining chain of 
steps "2•(3+4)-> 2• 7)->14"; alternatively we can use the distributive property, and obtain this other 
chain of steps "2•(3+4)->2•3+2•4->6+8->14". The two procedures, of course lead to the same 
numerical result, and for the aim of computing this result, they are equally efficient. Thus, a pupil 
can chose to use one or the other procedure, and would be able to accomplish the computing task 
either way, even if he/she knows only one of the two procedures; in other words, for these kind of 
computations, it is not necessary to know the distributive property. In the case of literal expressions, 
the direct computation, as clearly expressed by Francesca, cannot be performed, simply because, if 
we are given a•(b+c), we cannot just compute b+c; never the less, something can be done: the 
expression a•(b+c) can be transformed into an equivalent expression using the properties of 
operations, transformation rules that do not rely directly on numerical computation. In this case the 
distributive property is necessary if we want to perform a transformation structurally similar to that 
performed with numbers leading for instance to the chain of steps "a•(b+c)->a•b+a•c". In the 
numerical case, the distributive property it is not a necessary tool for transforming expressions 
within a computing activity, as it is in the case of literal expressions, and it may be not perceived at 
all as being an instrument.   

In order to be interpreted as instruments for computation, the properties of the operations, must 
assume a dual meaning (structural and operational): on one hand they state the basic equivalence 
relations and  on the other hand they function as instruments for symbolic manipulation, i.e. 
instruments by means of  which any symbolic transformation is  derived (ibid. 231). Within the 
numerical context, operation properties do not play an operative role; they simply express the 
equivalence of computing procedures, but they are not necessary, and thus not usually employed for 
computation. Within the algebraic context, operation properties must assume an operative role and 
must become the instruments for transforming expressions. Such a  change of role is not always 
made explicit in school practice, and focusing of attention on memorisation of particular shortcut 
procedures such as algebraic formulas ("prodotti notevoli") may definitely hide crucial point. In 
conclusion, it seems reasonable to take  the hypothesis that this change of role for operations 
properties should become a first goal in introducing pupils to symbolic manipulation.  

4.2.2. Toward a theoretical view of algebra 

The above discussion highlighted some educational problems related to interpretation of algebra 
only as generalized arithmetic, above all, the fact that passing from arithmetic to algebra differences 
have not to be hidden. Below we are going to suggest a possible approach to algebra which 
highlights both similarities and differences between arithmetic and algebra. The aim is that of 
introducing algebra as distinct from arithmetic, although strictly tied to it.  



 

 42 

4.2.2.1.Moving from arithmetic: algebraic handling of numerical expressions 

The standard arithmetic way to handle numerical expressions is that of computing them, in fact, 
in arithmetic, expressions are, in general, interpreted computation procedures that are built and 
executed in order to find a numerical result, corresponding to the solution of the considered 
problem. As we have seen in section 4.2.1, expressions in algebra (beside the fact that they include 
literal symbols) are handled in a structural way, as opposed to the operative nature of arithmetical 
handling of expressions.  

A possible way to overcome this cognitive break, is to start by treating algebraically both 
numbers and operations with them, and thus numerical expressions. If we assume, as a prerequisite 
to the introduction to algebra,  the mastery of arithmetical handling of numbers, operations, and 
numerical expression. In other words we can think of are suggesting to introducing a new way to 
handle the same objects, e.g. an algebraic way; but how can this be done? 

According to Kaput and Blanton, numbers can be handled algebraically by treating them as 
placeholders, standing for any number, while operations, can be deliberately left in ”’indicated 
form’, unexecuted” (ibid., pp. 347-348). Of course, to handle algebraically a numerical expression 
is not only a matter of numbers interpreted as placeholders, and operations left unexecuted. By not 
executing operations we may avoid treating expressions arithmetically, but this is not yet symbolic 
manipulation: we need to individuate relevant problems and activities, asking algebraic treatments 
of numerical expressions, problems and activities that can be meaningful either within a literal 
context or within a numerical context.  

4.2.2.2.Equivalences 

In a paper concerning the transition from arithmetic to algebra, Kieran describes algebraic 
transformational activities, as being rule-based and including "collecting like terms, factoring, 
expanding, substituting, solving equations, simplifying expressions, and so on"; At the core of these 
activities there is the idea of changing the form of an expression, or equation, maintaining 
equivalencies (Kieran, pp. 123, 2003). In other words, algebraic symbolic manipulation, is based on 
equivalence relationships, which allow the substitution of a given expression with another one.  

In this kind of activity, expressions are to be interpreted according to a structural perspective as 
opposed to an arithmetic handling of expressions, which happens within a procedural perspective 
(see also 4.2.1). In such a transition from arithmetic procedural perspective, to the structural 
algebraic one, a key role is played "by a shift from a procedural view to a relational view of 
equality" ([15], Carpenter, pp. 156, 2001). In other words, in algebraic symbolic manipulation, the 
equality sign "=", as to be interpreted as representing an equivalence relationship, while, in 
arithmetical practice, it is usually interpreted as an input for computing the expression preceding it, 
such difference is reported to be one of the major blocks when moving from arithmetic to algebra 
(ibid., pp. 156).  

However, the procedural aspects of arithmetic, can be exploited to approach symbolic 
manipulation within a structural perspective. According to Thomas and Tall, "equivalence is an 
essential ingredient to understanding the manipulation of symbols", and they propose an approach, 
called evaluation algebra, based on the interpretation of algebraic expressions as processes of 
evaluation ([79], Thomas and Tall, pp. 592-593). Their idea is that of a computer program which, 
after substituting to the letters the user’s inputs numbers, simply computes the results of given 
literal expressions,. According to the authors an interpretation of expressions as input-output 
processes, e.g. according to functional perspective, can favour the building of the idea of 
equivalence between expressions: 
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"not only meaning can be given to a range of expressions, but printing the values of 
expressions such as 2*(A+1) and 2*A+2 will always give the same numerical outputs, 
allowing the student to sense the equivalencies of these expressions. […] Using the computer 
in this way may assist students to give meaning to the various ways of writing expressions, 
including equivalent expressions, which involve different procedures of evaluation yet give 
the same input-output process." 

(ibid., pp. 592-593) 

As the authors suggest, this approach has the potential to give meaning to algebraic expressions 
as process of evaluation, and can lay the foundations to equivalent expressions with different 
procedures representing the same process.  

4.2.2.3.Axiomatic algebra 

In summary, a structural perspective is fundamental for symbolic manipulation activities, and it 
is based on the idea of equivalence, thus also on a relational view of the equals sign. One way to 
build the idea of equivalence of expressions, as suggested by Thomas and Tall, is that of 
interpreting them as processes of evaluation, and compare them as input-output processes, thus 
considering them as equivalent if they give the same results when the same numbers are substituted 
for letters. However, according to Thomas and Tall, symbolic manipulation can be given flexible 
meanings only "if the algebraic expressions are seen both as evaluation processes and as 
manipulable concepts" (ibid., pp. 594). If we pursue these ideas, then, we need ways to manipulate 
expressions which leave them unchanged in terms of their classes of equivalent evaluation 
processes. A possible way to approach the algebraic manipulation of expressions, keeping 
equivalencies, is that of basing the transformations on a set of basic relations of  equivalence 
between calculation processes. In other words, assumed a set of axioms, consisting in the properties 
of the operations "symbolic manipulation", makes sense within a theoretic system  and can be 
interpreted as transforming expressions preserving their equivalence.   

Thomas and Tall speak of Axiomatic algebra, as a form of algebra having an axiomatic structure 
based on definitions and deductions (ibid., pp. 594). Such an approach requires a new start with the 
operations: instead of being interpreted in terms of their arithmetical meanings they must be seen as 
given concepts the behaviour of which is determined by a list of axiomatic properties. Any property 
of the operations is interpreted as a "genuine 'law'" acting as a foundation of a theory. Each of such 
properties is either an explicit axiom has to be deduced from other axioms, "leading to a new 
deductive form of algebraic structure" (ibid., pp. 595). An approach based on the same idea of 
interpreting the properties of the operations as axioms of a theory, to be used as means for 
transforming expressions, was presented in Italy, in the seventies, by Prodi and is described in a 
textbook for secondary schools ([65], Prodi, 1975). 

4.2.2.4.Conclusions 

An axiomatic approach, according to the idea of treating numerical expressions algebraically 
(see 4.2.2.1), can be used also to handle numerical expressions, thus furnishing a bridge between 
arithmetic and algebra. This bridge functions not only in terms of ways of handling expressions, but 
also in terms of tasks to be accomplished and problems to be solved. In fact, within an axiomatic 
theory, the main activity is that of proving theorems, in the case of expression, either numerical or 
literal, the main activity can be that of proving equivalencies between expressions. Such kinds of 
tasks and problems are intra-mathematical, and are accomplished and solved by means of symbolic 
manipulation.  

Drawing on the previous discussion, we will define an axiomatic approach to algebra, where 
axioms are interpreted as means for transforming expressions, thus as means to prove theorems 
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which themselves can become new means for symbolic manipulation activities. In particular, 
transformations of expressions, by means of axioms and theorems, will be interpreted as an activity 
of proving statements of equivalence.  

4.3.  Our approach 

4.3.1. Algebra as a theory 

Algebra itself is not just an independent branch of mathematics, on the contrary it is often used 
in order to solve problems originated in other areas. Such activity is basically characterised by the 
following steps: 
10. Translation of the problem into algebraic symbols. 
11. Goal oriented manipulation of the obtained expressions. 
12. Interpretation of the obtained expressions in terms of the given problem. 

The expression "goal oriented manipulation" only makes sense within a problematic context. If 
that is the case, then the goal  is to transform expressions into forms that make more evident the 
solution of the problem, that is a form which gives more information, or a form to which one could 
apply known theorems or any other piece of knowledge.  

For instance, suppose that one obtains from step 1 the expression "x2-2x+6-3x" and suppose that 
the problem requires one to find the zeros of the expression, then one possible goal of the 
manipulation could be to factorise the expression in order to be able to apply the rule "a*b=0 if a=0 
or b=0" to reduce the given problem to that of solving the two equations ("a=0 and b=0"); in this  
case it could be convenient  to transform "x2-2x+6-3x into "(x-2)(x-3)", and it is possible to obtain 
that using twice the distributive law. 

Another possible strategy for the solution of the problem could be to apply the well known 
formula for quadratic equations, in this case one could transform "x2-2x+6-3x” into "x2-5x+6" in 
order  to easily individuate the coefficients needed to use the formula; here the manipulation 
required concerns the use of the distributive and commutative law.  

If the problem just requires us to find out what happens for "x=0", then one could just substitute 
the value in the expression and compute the result, or observe that the only term which wouldn't be 
zero or multiplied by zero is "6".  

The example shows how different forms of an expression can lead to different solutions of a 
problem or can be more suitable for solving certain problems than others. As a consequence it 
becomes crucial to have tools for transforming expressions, in order to find forms which better help 
finding the solution of a given problem. The main important tool provided by symbolic 
manipulation, with this regard, is the notion of "equivalence relationship between expressions", 
which can be used to transform a given expression into a new one, ensuring the compatibility of the 
new one with the given problem. In the following we are going to explore such notion.  

When we produce an algebraic expression, in order to solve a problem, this expression 
represents a computational procedure to be used to calculate a result, which is related to the solution 
of the problem. In such a context, an expression  is transformed into a new  one representing a new 
computation procedure, giving the same result starting from the same data. The are allowed 
transformations should not change the final result. Allowed In other words, from the point of view 
of the solution of the problem, two expressions  can be said to be “equivalent” if, substituting the 
same data for the letters, the corresponding computation procedures always lead to the same results.  

Unfortunately, such a definition of “equivalent expressions” does not provide an effective 
procedure to establish whether two expressions are equivalent or not. In fact, the substitution 
process may be non finite. Moreover,  such a definition of equivalence can only be used to "verify" 
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that two expressions are equivalent, and it does not help producing a new expression that is 
equivalent to a given one. Thus a definition of equivalence becomes necessary, that does not 
necessarily require numerical computations and which can be used also as an instrument to 
transform expressions. An equivalence of this kind can be defined taking as axioms the basic 
properties of numerical operations, and that has been our choice. 

In conclusion, we consider "symbolic manipulation" as characterised by the activities of goal 
oriented transformations of expressions using the rules given by the assumed axioms. Thus, 
symbolic manipulation makes sense within a theoretical system.  

Within such a perspective, it is possible to consider the task of comparing expressions, and 
investigate if they are equivalent or not. The axioms not only tell us when two expressions are 
equivalent, but, as they can be used to transform expressions, they can become means for proving 
equivalence relationships: for instance, given two expressions, if one is transformed into the other 
through a chain of axiom based transformation steps, then this chain can be interpreted as a proof of 
the equivalence of the two expressions. Furthermore, if an equivalence relationship is proved, it can 
be assumed to be a theorem, a statement of equivalence that can be used to prove other 
equivalencies. In other words, from this point of view symbolic manipulation can be interpreted in a 
theoretical perspective, that is, interpreted in terms of proving statements within a theory, by means 
of its axioms and by means of previously proved theorems. Of course, the theorems that can be 
proved, depend either on the admitted types of expressions and on the assumed axioms.  

In our research project, we refer to expressions in the sense of polynomials we limit the range of 
literal expression to the set of polynomials with Integer or Rational coefficients, and the axioms that 
we assume are the standard axioms of sum and multiplication on such rings. In a dedicated section 
we will give more details.  

Once described/ illustrated/ clarified our perspective on algebra as a theory, we pass to 
individuate a suitable educational approach compatible with this perspective and based on the use of 
technology. 

4.3.2. A computer based approach to introduce pupils to a theoretical perspective in 
geometry 

Although some authors, as discussed above (see 4.2.2), suggest the possibility of introducing 
pupils to algebra within an axiomatic perspective, in literature we couldn't find any suitable 
computer based approaches coherent with this perspective (see 4.1. ). Some authors present 
software based experimentation which focuses on structural symbolic manipulation (see 4.1.4), 
which in some cases is viewed as based on the properties of the operations as means for 
transforming expressions, se for instance Thompson and Thompson ([80], Thomposn & Thompson, 
1987). Nevertheless, we couldn't find in literature, any approach to symbolic manipulation which 
takes a theoretical perspective and is at the same time based on some computer environment, or 
other kinds of technological environments.  

However, there are researches that exploit computer environments to introduce pupils to 
Euclidean geometry from a theoretical perspective. It is the case for instance of the experimentation 
set up by Mariotti ([51], Mariotti, 2002), where pupils are introduced to the ideas of geometrical 
constructions and proofs within a theory, and which is based on dynamic geometry software, Cabri 
Geométre. The approach is based on  the theory of semiotic mediation (see 3.3. ), and draws on a 
parallel between the computer environment, (its objects, commands, actions within it) and 
axiomatic Euclidean geometry. We designed the key idea of our technological approach to 
axiomatic algebra, drawing from this approach that we are now going to describe. 
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4.3.2.1.Semiotic mediation in the Cabri environment . 

Mariotti set up and carried out a long term teaching experiment concerning geometrical 
construction in the "ruler & compass" and the Cabri environments, aiming at introducing pupils to 
axiomatic Euclidean geometry, and more generally to theoretical thinking.  

Given such a didactic problem, the principal motive  of classroom activities is centred on the 
evolution of the idea of proof, and is realised "by means of the evolution of the idea of geometrical 
construction, within the field of experience of geometrical constructions in the Cabri environment 
([53], Mariotti et al, 1997; [52], Mariotti, 2001)". The author introduces the term "field of experience" 
referring to:  

"the system of three evolutive components (external context; student internal context; teacher 
internal context), referred to a sector of human culture which the teacher and students can 
recognise and consider as unitary and homogeneous" 

([10], Boero et al., pp., 1995)  

Within the approach presented by Mariotti, there are two main interlaced fields of experience, 
that of geometrical constructions in the Cabri environment, and that of geometrical constructions in 
the paper and pencil environment; according to the author, the field of experience can evolve over 
time thanks to social practices of the classroom. Among such practices, she focuses on the verbal 
interaction realised by means of "mathematical discussion" as defined by Bartolini Bussi: 

"a polyphony of articulated voices on a mathematical object, that is one of the objects - 
motives of the teaching - learning activity" 

(Bartolini Bussi, 1996).  

In the experiment presented by Mariotti, the polyphony of voices concerns a dialectic between 
the voice of practice, and the voice of theory, that is, a practical conception of graphical 
construction versus a theoretical conception of geometrical construction ([51], Mariotti, pp. 709, 
2002) 

In the case of the production of a drawing on a sheet of paper, its validation is demanded by the 
empirical verification of a practical objective, whilst geometrical constructions have a theoretical 
meaning overcoming such a practical objective. Geometrical constructions are based on theorems 
that guarantee theoretical control on the correctness of the procedures followed to realize the 
constructions themselves. Such theoretical control is not spontaneously achieved, but can be 
fostered by the activities performed by pupils in the Cabri field of experience:   

“As experimental evidence shows, theoretical control is not spontaneously achieved, but can 
result from the activities that pupils perform within the chosen field of experience.” 

(ibid., pp. 709) 

According to Mariotti, the nature of the Cabri environment, may foster a shift from the practical 
to the theoretical meaning of geometrical constructions, nevertheless the environment itself is not 
enough, and the intervention of the teacher becomes determinant. However, some elements of the 
Cabri environment are presented as key elements for the development of a dialectic between the 
practical and the theoretical level, in fact they can be interpreted as external signs, standing for 
elements of a geometrical theory:  

“- the primitive commands and macros, realising the geometrical relationship characterising 
geometrical figures, are the external signs of the basic elements which constitute the theory;  
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- the dragging function which starts as a perceptual control tool to check the correctness of the 
construction, then becomes the external sign of the theoretical control.” 

(ibid., pp. 709) 

When geometrical activities are concerned, these elements of the software, are viewed as the 
external signs on which “the evolution of pupils' internal context is based”; such evolution concerns 
the development of both, the aimed geometrical theory and at the meaning of theory itself.  

In the teaching experiment, presented by Mariotti, the meaning of geometrical construction 
emerges from activities of construction, within Cabri, and from related mathematical discussions; 
through the practice of mathematical discussion, the way pupils make sense of the construction 
activities within Cabri, is elaborated and developed under the guidance of the teacher.  

4.3.2.2. Construction and use of a theory 

According to Mariotti, two, strictly interwoven, areas of difficulty can be individuated when the 
idea of proof is concerned. The first is that the idea of validation must be introduced, the second is 
that the rules for validation must be stated, and their acceptance influence the acceptance of the idea 
of validation. Within the approach to geometry described by the author, the basic aim was that of 
introducing pupils to theoretical thinking and in particular to Geometry theory, as a consequence it 
was decided to build and exploit a dialectic relationship between geometrical theorems and Cabri 
constructions: 

"Starting in the Cabri environment pupils should have been guided to enter into the 
geometrical system, the key of access was the link between the logic of Cabri, expressed by 
its commands, and the Geometry Theory expressed by its axioms and theorems." 

(ibid., pp. 715) 

However, the software offers many commands, a richness which might foster the ambiguity 
about intuitive facts and theorems, and constitute an obstacle for pupils to grasp the meaning of 
proof. As a consequence, in the approach presented by Mariotti, pupils are presented at first with a 
limited set of commands21, corresponding to a limited set of Euclidean axioms. Along with the 
development of the activities, pupils could build their own menus adding commands, corresponding 
either to axioms of the Euclidean theory, or to new constructions which corresponded to new 
theorems: 

"Taking advantage of the flexibility of  the software environment the microworld was adapted 
to follow the evolution of the theory:  at the beginning, an empty menu was presented and the 
choice of commands discussed, according to specific statements selected as axioms. Then, in 
the sequence of the activities, the other elements of the microworld were added, according to 
new constructions and in parallel with corresponding theorems." 

(ibid., pp. 715) 

As a consequence,  pupils may be guided to slowly build up a geometrical system, in so doing they 
cope with a complexity they can manage, but at the same time, they participate in the construction of 
menu and it corresponding axiomatisation. The author reports evidence of the fact that in such kind of 
experimentation, the construction problem can achieve, for pupils, a theoretical meaning, while the 
commands of Cabri can be transformed into signs of the theoretical control corresponding to 
axioms and theorems. 

                                                
21 The menus of the software are customisable, thus the teacher can set up the configuration she prefers to persent to 
pupils. 
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4.3.3. A computer based approach to introduce pupils to a theoretical perspective in algebra 

The project brought forward by Mariotti, which is still in progress, showed how, within the 
framework of semiotic mediation, a computer environment may offer a support to overcome the 
well known difficulties related to theoretical perspectives theory ([53], Mariotti et al., 1997; [55], 
Mariotti & Bartolini, 1998; [52], Mariotti, 2001; [51], Mariotti, 2002).   

In the same stream of such project, concerning geometry, we set up a similar experiment 
concerning introduction to algebra as a theory. We pursued the main ideas of the described 
approach (see 3.3.2 and 4.3.2), starting from that of using a computer environment as external 
context for the field of experience related to the activity of proving algebraic equivalencies within a 
theoretic system. According to our basic hypothesis, symbolic manipulation can be interpreted as  
constructing a chain of equivalence, corresponding to a deductive chain according to the basic 
axioms of a theory. Thus we need a microworld which could be a physical counterpart of 
expressions and axioms and which allowed the user to visualise and make explicit the mathematical 
entities end relationships which are involved in symbolic manipulation. As for the case of Cabri for 
geometry theory, we needed a software whose elements could become instruments of semiotic 
mediation (Vygotskij , 1978), and could be used by the teacher, in the concrete realisation of 
classroom activity, according to the motive of introducing pupils to symbolic manipulation as a 
theoretical activity. 

4.3.3.1.Which technology 

As discussed above, we chose a theoretical perspective where symbolic manipulation is 
interpreted as an activity of theorem proving within a theory, and where the main involved elements 
are expressions, axioms (that is the properties of the operations) and the notion of equivalence of 
expressions. Transformations of expressions are performed by means of axioms, which are, 
themselves, equivalence relationships. Thus if we want to build a correspondence between the 
chosen microworld, as well the activities within it, and algebraic expressions as well their symbolic 
manipulation, we need firstly computational objects which can be interpreted as standing for 
expressions, axioms, theorems and theories and actions within the microworld, which can be 
interpreted as standing for transforming expressions, proving theorems, adding theorems to a 
theory. Such a semiotic correspondence, because of the relative and conventional nature of signs in 
general (see 2.6. ), in order to be established, needs dedicated social classroom practices, and it 
cannot depend only on the nature of the chosen microworld. However, some microworlds may be 
better then other, according to the nature of the knowledge they embed, and we individuated some 
properties that we required from the microworld ([16], Cerulli, pp. 68-70, 1999) which we were 
going to use, among them we highlight the following: 

• Expressions are computational objects that can be transformed by means of other 
computational objects to which we will refer as commands: if symbolic manipulation is 
interpreted as transformation of expressions by means of equivalence principles, the we want 
an environment for transforming expressions by means of commands that can be interpreted 
as equivalence principles.  

• Every transformation of expression, by means of a command, should be invertible, by means 
of the same command: this is because when we use an equivalence relationship to transform 
an expression, the same equivalence relationship can be applied to the new expression to 
transform it back into the first one. In other words, we assume auto-reversibility to be a key 
feature of transformation principles based on equivalence relationships, thus also 
corresponding commands should be auto-reversible.  
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• Every transformation command should not execute any implicit transformation if not 
expressly required by the user: this is because we want each command to correspond to only 
one axiom or theorem, and not to a sequence of them. 

• It should be possible to add, and use, new auto-reversible transformation commands, created 
by the user: is an auto-reversible transformation command is interpreted as an equivalence 
relationship, then, when we prove a new equivalence relationship, we prove a theorem, 
which we want to be able to add to the microworld as a new command.  

These three basic requirements oriented our choice toward a quite precise direction, excluding 
the most popular educational algebra software environments that we cited in this chapter (see 4.1. ). 
For instance, within the stream of multi representations approaches (see 4.1.2), the considered 
software (for instance spreadsheets) is not conceived for symbolic manipulation, and in general it 
doesn't even offer commands for transforming expressions and keeping equivalencies. The stream 
of structured symbolic calculation (see 4.1.4), at first glance, seems to be more promising, because 
it is mainly based on Computer Algebra Systems (CAS). However most of the used microworlds, 
even if they present environments for transforming expressions, they do not satisfy the conditions 
we mentioned above:  for instance, the popular software DERIVE has black-box commands, which 
are not auto reversible,  and it doesn't allow users to add new auto-reversible commands22.  

Taking into account the properties of available software, as opposed to our requirements, a new 
microworld was specially designed, in order to be used to introduce pupils to algebra as a theory, 
within the framework of semiotic mediation: L'Algebrsita ([16], Cerulli, 1999; [19]Cerulli & 
Mariotti 2000).  

In the following we are going to present the educational approach to algebra that we set up, 
based on L'Algebrista; beside the presentation of the specific teaching experiment, we aim at 
describing a  general theoretical framework concerning the use of microworlds to introduce pupils 
to theoretical thinking.  

                                                
22 For instance, the distributive property is split into two different commands, FACTOR and SOLVE, which are not 
even exactly one the inverse of the other, and perform many implicit transformations. 
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5.  L'Algebrista: a software to introduce pupils to theoretical thinking 
and symbolic manipulation 

5.1.  L’Algebrista: the main ideas underlying it 

L'Algebrista is a microworld incorporating the basic theory of algebraic expressions. Activities 
in the microworld consist of transforming expressions, and a chain of such transformations 
correspond to the proof of the equivalence of expressions, within a local theory of Algebra 
expressions.  
What follows is a list of the main ideas underling L'Algebrista: 

• A symbolic manipulator which is totally under the user's control. It is going to be a 
microworld of algebraic expressions where the user can transform expressions on the basis of 
the fundamental properties of operations, which stand for the axioms of the local theory. 

• Axioms are represented by the "buttons of the properties of the operations" which must not 
have any implicit behaviour; the buttons must realise only transformations which are directly 
implied by the axiom they represent. Furthermore, a button must not apply recursively an 
axiom, but only once. 

• Buttons that represent equivalence relationships must be reversible and must include the 
inverse functionality as well. This is required to make explicit the meaning of equivalence 
between expressions, and to associate the correct meaning of equivalence to the "equal" sign 
(“=”).  

• L’Algebrista offers the chance to make explicit the conventionality of Mathematics. Some 
buttons will represent or recall conventions of the mathematical community, while other may 
represent or recall conventions, negotiated within a community of users..  

• The interaction is based on direct manipulation, using the mouse to select expressions and to 
click buttons. Thus the user does not have to learn any coding language in order to interact 
with the system. 

• L'Algebrista is not able to carry out any transformation if it is not guided explicitly by the 
user using the above mentioned buttons. In contrast with what happens with other symbolic 
manipulators, the user has the total control on the transformation activity. 

• Once proven, any new theorem  may  be represented as a new button and added to the system 
of axioms and theorems; thus it can be used to prove other statements and the evolution of 
the microworld will go on in parallel with the evolution of the theoretical system considered 
by the user. 
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5.2.  Brief description of the software 

   
Figure 1 The Base menu and the Meta menu. 

After the start up sequence L'Algebrista offers the user to chose between five different menus: 
Base, Meta, Aiuto23, Extra and Info. As one might imagine, the menus Info and Aiuto give 
information concerning L'Algebrista and how to use its commands, facilities and environments. The 
Info menu contains the usual explanations concerning the copyright and licence; the Aiuto menu  
contains information about  the main features of  the different menus and an  “on-line help”. 

Figure 2 Teoria 0, Teoria 1 and Teoria 2.  

5.2.1. The Base menu 

This menu introduces the user to the main working environment of L'Algebrista; here the user 
can chose between several Teorie (Theories), i.e. microworlds of algebraic expressions. Each theory 
is made of palettes (windows containing buttons) and notebooks (working environments). In fig. 2 
it is possible to see the palettes of the three basic theories we have been using in the classroom 
experimentation.  

To start the activity the user has to write an expression in a notebook and insert it into  the 
microworld, using the special button “Inserisci Espressione”, then the manipulation of the 
expression  can be carried out by selecting sub-expressions and clicking on the buttons available in 

                                                
23 "Aiuto" in Italian means "help". At the moment we only have an Italian version of the software.  
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the palettes. Each button (except one, as discussed below), always produces expressions which are 
equivalent (see 4.3.1) to the expressions it is transforming.  

5.2.2. The Meta menu 

The word meta in this case stands for "meta theory", in fact this menu offers two instruments to 
be used to create new theories24. 

The first instrument is called Il Teorematore (the theorems maker), it lets the user create new 
buttons to represent new transformation rules, that can be included in the palettes and used to 
manipulate expressions in L'Algebrista. 

The second instrument is called Personalizza Palette (Palette personalisation) and is essentially a 
notebook containing a collection of ready made buttons and instructions concerning the creation of 
palettes using those buttons and the buttons created with Il Teorematore.  

With these two instruments teachers and pupils can actually build their own theories, i.e. palettes 
including buttons referring to selected axioms, definitions and theorems. 

5.2.3. The Extra menu 

The Extra menu is the menu where the palettes produced (see Meta menu 5.2.2) by users are 
located, as distinguished from those furnished by the system. In Figure 1 we present an example of 
Extra menu produced by pupils25, during one of our class experimentations. 

 
Figure 3 An example of Extra menu produced by our pupils, it contains palettes for managing powers ("Potenze"), 
fractions ("Frazioni"), equations ("Equazioni"), theorems in general ("Teoremi"). 

5.3.  Description of the interaction with the basic microworld offered by 
L'Algebrista  

Let's now describe the main commands of the theories presented in the Base menu analysing 
some peculiar aspects of the computer-user interaction. 

                                                
24 Recall that with theory we mean set of axioms, definition and theorems represented by buttons. 
25 Because of technical limitations of the prototype we used, pupils themselves produced each palette, but they were 
inserted in the extra menu by the author of the software, following the guidelines given by pupils. 
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Figure 4 shows a palette of L'Algebrista; more precisely it represents the first theory we used in 
our teaching experiments and corresponds to Teoria 0 in the Base menu. This palette is divided into 
four sectors corresponding to: the button Inserisci Espressione (Insert expression); the buttons of 
the properties of sum and multiplication; the computation buttons; and the risky button ("Bottone a 
Rischio"). This partition is coherent with the distinction between the roles played by each button in 
the planned classroom activities. In particular, the buttons representing the properties of the 
operations were separated from the buttons that execute computations, in order to distinguish the 
activities of  transformation based on the axioms, from those based on numerical computations. 

 
Figure 4 "Teoria 0" (en.: "Theory 0"). 

An example of interaction is reproduced in Figure 5. The user writes on a blank document the 
expression he/she wants to work with ("2 * 3 + a 2 - 6" in our example), then he/she selects the 
expression and clicks Inserisci Espressione (“Insert Expression”), thus L'Algebrista creates a new 
working environment where the original expression is marked on its left with the label Inizio 
("start").  

The operation of inserting the expression is fundamental because it proclaims the entrance into 
the microworld where it is possible to act only using the buttons offered by L'Algebrista. 

Figure 5 In a notebook the user writes the expression to work with («2 * 3 + a 2 - 6» in the example), then after 
selecting it the button Inserisci Espressione is clicked, thus L'Algebrista creates a new working area where the 
buttons are active. 

We observe that when an expression is inserted, its new instance comes out with some changes 
in its appearence: every multiplication is represented with a dot ("•"), so either stars ("2*3") or 
spaces ("a 2") are substituted with a dot ("2•3+a •2"); every subtraction is transformed into sum and 
every division is transformed into multiplication in the obvious way. L'Algebrista does not know 
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subtraction, and division: this follows from a precise didactical choice because we wanted pupils to 
work in a “commutative environment”26. 

Interaction always happens by selecting a part of an expression and clicking on a button. The 
selection tool was designed so that it is not possible to select parts of expressions which are not sub-
expressions from an algebraic point of view. For instance, given the expression a•b+c it is not 
possible to select b+c, if one tries to select it, the software will automatically extend the selection to 
a•b+c; on the contrary one is allowed to select a•b or c or a etc. This feature corresponds to fact 
that the expressions of this microworld embed a fundamental algebraic characteristic of 
mathematical expressions: their tree structure. 

Allowed selections Not allowed selections 

a•b+c 

a•b+c 

a•b+c 

a•b+c 

a•b+c 

a•b+c The above selection is automatically extended to 
the last selection on the left 

a•(b+c) 

a•(b+c) 

a•(b+c) 

a•(b+c) 

a•(b+c) 

a•(b+c) 
a•(b+c) 

a•(b+c) The above selection is automatically extended to 
the last selection on the left 

Table 1 Examples of allowed selections of algebraic sub expressions in L'Algebrista 

Going back to the previous example, the expression can be now transformed by selecting the 
term a•2 and clicking the ‘commutative property button’; a new expression is produced (written just 
below, (see Figure 5) , the term 2•a is substituted by the term a•2, while on the left a label indicates 
the button used and the sub-expression it was applied to. Going forward we transformed one part of 
the expression using the distributive property, and in the following step, using the same button27 we 
inverted the previous transformation. Coherently with our didactical hypothesis, the buttons embed 
all the functions of the properties of operations without making any particular direction more 
advantageous. Note that most of the symbolic manipulator use another, different, command in order 
to invert a specific command. 

L'Algebrista's buttons always produce a correct expression that is equivalent to the original 
expressions to which they had been applied; the only exception is the Risky Button which is used to 
delete parenthesis: for instance it can transform a+(b+c) into a+b+c but it can also transform 
a•(b+c) into a•b+c. This button has been put aside and highlighted, so that the user can distinguish 
it from the others and use it with particular attention. Its meaning and its use is to be negotiated in 
the class in order to make clear the conventional use of parenthesis and its relation to algebraic 
axioms. 
                                                
26 A discussion on this choice, and other choices, will be presented in chapter 9. . 
27 The command activated by the button checks the structure of the expression and then decides how to transform it; in 
case no structure is recognised then the expression is left as it is.  
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We conclude this section with a couple of observations on the notations used: the commutative 
and the associative properties have been represented using the symbol "∴", instead of "+" and "•", 
this is certainly related to a matter of economy, but also it is intended to familiarise students with 
generalisation of structures.  

5.4.  “Il Teorematore”: the theorem maker  

Il Teorematore is a particular environment which allows the user to create new buttons, fig.4 
shows the environment and the available instructions. 

The use of Il Teorematore is very simple, one just has to write the new transformation rule, to 
select it, and finally to click on the button Teorema. In our opinion it is fundamental that the user 
does not have to learn any coding language to create new buttons, but he/she just has to use 
mathematical symbols. 

Figure 6 Il Teorematore. 

Thanks to Il Teorematore the theory embedded in L'Algebrista can grow together with the user's 
mathematical knowledge. In other words, the user can create as many buttons as he/she wants, and 
can then use them in his/her future interactions with L'Algebrista. 

Coherently with its basic principles, L'Algebrista, thanks to Il Teorematore, lets the user create 
new buttons corresponding to bi-directional transformations, that is buttons which embed all the 
functionality of equivalence relationships28. This feature strongly differentiates L'Algebrista from 
most of the popular symbolic manipulators. In particular, DERIVE does not allow the user to create 
any new command, while other didactical softwares (such as MILO and Theorist) let the user create 
only mono-directional commands that can be inverted only by using other commands. 

Finally we observe that Il Teorematore does not check mathematical correctness of a new 
transformation rule. This is a consequence of a specific didactical choice: we want the pupil to be 
responsible for the validation of a new theorem or transformation rule. Thus it is the student who 
will have the control on the set of theorems, i.e. on the theory built up in L'Algebrista. Such a 
choice makes sense within the peculiar framework of our experimentation, because of the specific 
didactical contract, but may not be optimal in other cases. 

5.5.  Technical notes 

L'Algebrista, is an application of the more popular software Mathematica. In order to run it 
needs Mathematica 3.0 (or more advanced versions), thus the hardware and software resources 
needed are the same needed to run Mathematica. In particular L’Algebrista is platform independent, 
within the range of the most popular Operative Systems (e.g. Linux, Macintosh, Windows).  

                                                
28 In particular these buttons behave structurally: if one creates a button corresponding to “a2-b2=(a+b)(a-b)” then this 
will apply to “ a2-b2”, and to “(a+b) (a-b)” transforming one into the other, but it will have the same behaviour on more 
complicated expressions having the same structure; for instance, “(x+2y)2 - ((c-d)2)2” will be transformed into “((x+2y) 
+ (c-d)2) ((x+2y) – (c-d)2)”. 

 



 

 56 

The code is based on Mathematica language and the application consists of a set of notebooks 
and palettes. 

Each mathematical expression is represented in two ways: “externally”, following the usual 
mathematical notation, that is infix notation; and “internally”, using prefix notation.  

Each button is coded using Mathematica graphical features and includes a function; this function 
translates the selected expression from infix to prefix notation, transforms the expression using a 
“transformation rule”, and finally translates the new expression into infix notation. Such 
transformations are all done by the original code produced for the prototype, no algebraic 
computation is done by Mathematica on algebraic expressions, only basic numerical operations 
(e.g.. sum and multiplication) and numerical factorisation are done by the system. 

The function corresponding to a transformation rule does not execute any computation on 
polynomials, actually the transformation of expressions is based simply on changes of structures. In 
other words, these functions extract the “leaf terms” from the tree structure of the expression and 
combine them in a new tree structure. 
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6.  L’Algebrista a multifaceted instrument 
L’Algebrista is a peculiar software which was conceived as an artefact to be used, by different 

kinds of subjects, to accomplish several kinds of tasks. Consequently its instrumental embedded 
knowledge has several different facets, according to the uses L’Algebrista was designed for. Here 
we will focus on the following interpretations of the software as an instrument for given subjects to 
accomplish given tasks:  

• Operational instrument: instrument for transforming expressions, proving equivalencies, 
building and using theories. In this case, subjects using the instrument could be single pupils, 
groups of pupils, the whole class, or the teacher; 

• Semiotic instrument: instrument for representing individual and community mathematical 
knowledge, thus also pupils’ mathematical knowledge, either as individuals or as a whole 
class; 

• Educational instrument: instrument for teaching-learning symbolic manipulation within a 
theoretical perspective. 

6.1.  L’Algebrista as a material instrument 

In this context, with material instrument we mean an instrument to be used to act upon material 
objects29; L’Algebrista is an instrument by which the user operates on mathematical objects (such as 
algebraic expressions) using mathematical instruments (such as axioms, definitions and theorems 
expressed as equivalence relationships). However, we may question how a material object, such as 
L’Algebrista, can help a user to act upon mathematical objects, which by their nature are not 
material30. The basic assumption is that there are semiotic relationships associating material objects 
to mathematical objects: the subject using the instrument interprets the material objects as standing 
for mathematical objects. In other words, an instrument like L’Algebrista operates directly on 
material objects that the user has to interpret as representations of mathematical objects. The 
authors of the software designed its objects and commands on purpose, trying to keep a parallel 
between L’Algebrista and the domain of algebra as a theory (see 4.2.2.3). In this section we are 
going to describe the mathematical knowledge, related to algebra as a theory, that has been 
embedded in the software. 

L’Algebrista presents an environment made of the following kinds of objects (see Errore. 
L'origine riferimento non è stata trovata.): 

2. Test editor expressions: expressions written in a text editor environment. 

3. A button to insert expressions ("Inserisci Espressione" or "Insert Expression") in the 
manipulation environment: after the selection of a text-expression it transforms it into a 
“L’Algebrista expressions” located in a manipulation environment. 

4. Algebrista expressions: which it is only possible to transform using specific commands of the 
software; 

5. Buttons for handling expression: commands, activated by acting on specific buttons that 
transform L’Algebrista expressions into other L’Algebrista expressions; 

6. An environment (Teorematore, or Theorem maker) which provides buttons for that 
transforming a L’Algebrista expression into a new button for handling expressions: in other 

                                                
29 In the specific case the material objects are elements of the software. 
30 The same observation can be done for any mathematical software. 
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words this is an enviromnet where it is possible to create new command to be interpreted as new 
theorems. 

It is possible to use buttons (of any kind) on L’Algebrista expressions, without any reference to 
mathematics, one can transform an L’Algebrista expression into another one using buttons, and can 
use the Teorematore to transform an expression into a new button. The system itself, to function, 
does not require any reference to Algebra, and in general to Mathematics, nevertheless its objects 
embed some mathematical knowledge residing in their properties and functioning. We are now 
going to analyse in details the mathematical knowledge embedded in the various objects of 
L’Algebrista. 

6.1.1. The mathematical knowledge embedded into Algebrista expressions 

L’Algebrista expressions were conceived for representing mathematical expressions:  they are  
string of  algebraic symbols, the same symbols that are commonly used for algebraic expressions: 
alphanumerical symbols, brackets, operation symbols, fractions and power symbols.  

L'Algebrista embeds mathematical knowledge concerning the algebraic symbols  and their use to 
form algebraic expression. 

When the user inserts, or selects, an expression, it has to satisfy two key requirements in order to 
be accepted by the software for handling it: 

• An Algebrista expression has to be made exclusively of the symbols mentioned above, which 
are the same that are used in algebra, in other words it has to be made of algebraic symbols; 

• An Algebrista expression has to be structured compatibly with the rules of algebraic 
language, for instance the expression "3+�2" would never be accepted even if it is made of 
acceptable symbols. 

In a text editor expression certain symbols are accepted but substituted automatically by the 
"Insert Expression" button:  

• The symbol "^": is commonly used to represent powers in computer environments; 
expressions like "a^b" are thus automatically transformed into "ab" according to the standard 
notation for representing powers. This corresponds to a convention on the mathematical 
meaning of the symbol "^" in computer environments. 

• The symbols "*" and " ": are commonly used in mathematics, and in some computer 
environments, to represent multiplication; they are transformed automatically into "�", so 
expressions like "a*b" or "a b" become "a����b" which in mathematics still represents the 
multiplication of "a" and "b".  

Furthermore, the structure of a Algebrista expression is compatible to that of a corresponding 
algebraic expression. In other words algebrista expressions, similarly to algebraic expressions, have 
a tree structure. When the user tries to select a part of an expression, such a structure must be 
respected, in fact not all the selections are allowed (see 5.3.  for details and examples): it is possible 
to select only parts of the L’Algebrista expression that can be interpreted as sub expressions of the 
given one from an algebraic point of view.  

in summary, L'Algebrista embeds the mathematical knowledge concerning the nature of 
algebraic expressions: the knowledge concerning the symbols and the sintactical ruels to be used to 
form algebraic acceptable expressions; the knowledge concerning the structure of an algebraic 
expression; finally it embeds knowledge concerning conventions on the equivalence of some 
symbols. Such objects of knowledge are embedded either in the nature of the L’Algebrista 
expressions, either in the selection system, either in the "Insert Expression" button. The latter 
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embeds some other important objects of knowledge which concerns the relationship between the 
operators "+" and "-" and between divisions (and fractions) and powers.  

The algebra of L’Algebrista is meant to be a commutative algebra, so that it is possible to use a 
button corresponding to the commutative property of sum an multiplication, as consequence the 
microworld was designed for working only with sums and multiplications. However, the user can 
insert expressions that include subtractions and divisions, but these are automatically transformed 
into sums and multiplications by the “insert expression” button. In fact, whenever an expression is 
inserted in the manipulation environment, subtractions are transformed into sums, thus expressions 
such as "a-b" and "2-3" become "a+(-1)����b" and "2+(-3)". The "Insert Expression" button thus 
embeds the knowledge that subtracting an expression from another, is the same as adding to the first 
expression the opposite of the latter; at the same time it embeds the knowledge that the opposite of 
an expression is equivalent to the expression multiplied by minus one, "(-1)".  

Finally, if an expression in the text editor contains a fraction or a division, then the "Insert 
Expression" button automatically transforms it in a  power by a negative exponent, so "a/b" would 
become "a-b". Furthermore L'Algebrista includes also a button ("Notation Button") allowing the 
user to change notation and go back and forth between the two representations of fractions. The two 
buttons, embed knowledge on the mathematical conventions stating that the two way to represent 
dividision, as fraction or as negative powers, are equivalent.  

6.1.2. The mathematical knowledge embedded into Buttons for handling expressions 

The main command buttons  (see Figure 2) were conceived as standing for algebraic axioms, 
theorems and definitions expressed in the form of equivalences between algebraic expressons. 
Basically they rely on an instrumental conception of the equivalence relationships espressing the 
basic properties of sum and multiplication, i.e. any equivalence is  interpreted as instruments for 
transforming expressions. In the following section, We are now going to explain  in what sense 
equivalencies can be interpreted as means, i.e.instruments, for transforming one exprtession into 
another, so that  their functioning  can be  considered instrumentally embedded in the functioning of 
L’Algebrista buttons. 

6.1.2.1.The principles of substitution and reversibility 

The basic principle of equivalence relationships in mathematics is that within a class of 
equivalent mathematical objects, any member of the class can be taken as representative of the 
others, and such representative can be substituted by an other one at any time. We interpret this 
possibility of changing representative as a “trasnsformation” of the first object into the second, so 
that we can speak of  an  “instrumental function” of equivalencies: working with a mathematical 
object an equivalence relationship allows one to substitute it with an equivalent one. This is usually 
done in order to use an objct that better suits our exigencies. Of course, at any time, we can go back 
to the original representative: a transformation based on an equivalence relationship is always 
reversible, by means of the same equivalence relationship (see 4.2.2.4 and 4.3.1).  

These aspects of an equivalence relationships have been embedded in the basic functioning of 
L'Algebrista buttons for handling expressions. In fact, each button transforms a given expression 
into another one, by substituting it, and conversely, the same button can be applied on the second 
expression in order to transform it back into the first one.  

Thus buttons embed the principle of substituting expression with other expressions, and the 
principle of reversibility of such substituition as in the case of mathematical equivalence 
relationships. These principles of reversible substitution are embedded in any button for handling 
expressions, as witnessed and represented also by the formulas written on buttons: each fromula 
represents two expressions separated by a double left-right arrows (Figure 7). Each of such buttons 
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functions according to an equivalence relationship defining what is the type of transformation it 
produces, so each of them embeds the relative transformation rules; for instance we have buttons 
corresponding to associativity, disctributivity and commutativity of operations. 

 
Figure 7 The two expressions represented in the formula written on buttons of equivalence relationships are 
separated by a double up-down (or left right) arrow. 

6.1.2.2.Handling the tree structure of expressions 

The equivalence relationships expressed by buttons for handling algebraic expressions are based 
on the tree structure of expressions: that means that any expression is organized into sub-
expressions, consistent with the algebraic sintactical rules. Each sub-expression can be highlited 
thruough the selection tool, which can be activated by the mouse. This selection tool is controlled 
so that only “meaningful” expression can be selected. In fact, a characteristic feature is that any 
button for handling L’Algebrista expressions, in order to function, needs to be applied on a selected 
expression; the first thing done by the button is to check the tree structure of the selected 
expression, if this structure matches the conditions embedded in the button, then the button can act  
and the expression is transformed into another one which matches the conditions for inversion; the 
button can thus be used to go back and forth from one expression to the other. If a given expression 
doesn't match the conditions embedded in a given button, then the button simply doesn't apply any 
transformation, leaving the expression unchanged.  

Because it checks the tree structure of the expressions, a button embeds the mathematical 
principle that in order to apply transformation rules (based on an equivalence relationship) on an 
object, we first need to verify if the object matches the conditions expressed by the rules, and the 
principle that the transformation rules do not apply on objects that do not match such conditions.   

6.1.2.3.Formulas, names and classification 

As already said, the correspondence between algebraic equivalence and L’Algebrista buttons is 
not limited to the functioning of each button, but it is also extended to the appearance of the button. 
In fact, the icon which has to be clicked by the mouse has an inscription with the name and the 
formula representing its associated transformation rule. The formula is always of the kind "A<=>B" 
meaning that whenever the button is applied on an expression with the same structure of A, then the 
expression is transformed into an equivalent one with the same structure of B; or vice versa an 
expression with the same structure of B is transformed in an expression of the same structure of A. 
Of course we could use only the verbal description (the name of the property) or even no inscription 
at all, and the button would function in the same way.  

In the formulas written on the buttons, numerical and alphabetical symbols have different 
interpretations :. While a numerical symbol represents the number itself, an alphabetical symbol 
represents a generic term31, i.e. any well formed algebraic expression. For instance, there is a button 
with the formula "A+(-1)•A=0", such button works on any sum of a term with its opposite, of 
course it works even on complex terms; thus expressions like "(2•a+3b)+(-1)•(2•a+3b)", or "2+(-2)" 
would be transformed into "0", because their structure is the same as "A+(-1)•A". On the other hand 
the expressions "a", or "3" would not be transformed at all, because their structure does not match 
                                                
31 There are some exceptions as will be shown. 
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that of "A+(-1)•A" whilst, they match the structure of "0", but they are not equal to "0". In other 
words, letters in the formula represent variables for expressions, whilst numbers are interpreted as 
constants.  

The formulas written in L’Algebrista are coherent to those commonly used in mathematics, and 
are accompanied, in L’Algebrista, by written text recalling their conventional mathematical names 
or recalling some of their mathematical characteristicsc. For instance, we can find a button with the 
formula "a•(b+c)=a•b+a•c" associated to the text "Proprietà distributiva" (en.: "distributive 
property").  

Buttons are organised into palettes, and distributed in different areas of the palettes according to 
the mathematical status of the equivalencies they embed, could then be axioms, theorems or 
definitions of a given theory. For instance, the button of the distributive property is situated in a 
special areas named as “properties of the operations”, while the button "a•b-1=a/b" is situated in 
the area dedicated to buttons for changing notations. In the same stream, buttons corresponding to 
theorems are organised in palettes named as “theroems’ palettes”. In other words, L’Algebrista 
interpreted as a set of buttons, is characterised by a peculiar semiotic system in which names, 
formulas, colors, and even spatial organisation of the buttons, are coherent to the mathematical 
contentents they are meant to represent. Different elements of a theory are represented, together 
with their logical relationships, as we will better describe in the paragraph dedicated to 
representation of theories. 

To sum up, buttons with their formulas and their associated text embed knowledge concerning 
mathematical notations, and conventions concerning the names, the characterisations and the 
classifications of the related equivalence relationships.  

6.1.2.4."Speaking buttons" 

The name Speaking buttons (itl.: "Bottoni parlanti") have been coined by our pupils to express 
the fact that once applied to an expression, in order to transform it, they need some more 
information. so when one of these buttons is activated, a popup opens and the user has to enter a 
new expression which will be used for the transformation. The button "A+(-1)•A=0" that we 
mentioned above has such a property, if it is applied to "0" a popup opens, and whatever expression 
is inserted in the popup is used to standing for the "A" of the formula; for instance, if "5" is inserted, 
then "5+(-5)", or if "2•a+3" is inserted then "2•a+3+(-1)•( 2•a+3)" is obtained. Simple buttons 
(those that are not speaking buttons) transform a given expression into a new one whose terms are 
built using only the leaves of the tree structure either of the given expression, or of the formula 
written on the button; in other words new terms are obtained by the old ones simply by recombining 
their elements together with the elements of the formula of the button. On the other hand, speaking 
buttons, allow the user to insert new elements, new leaves for building the tree structure of the 
transformed expression.     

This kind of buttons embed instrumentally the knowledge concerning the possibility of 
transforming any expression into an equivalent expression which contains new elements chosen by  
the user. This, in mathematics, corresponds to commonly used tricks for symbolic manipulation, 
such as, for instance: 

• adding and subtracting a term to a given expression to obtain an equivalent expression 

• dividing and multiplying a term by a given expression to obtain an equivalent expression 

• adding a term to a given equation to obtain an equivalent equation 

• multiplying a term by a given equation to obtain an equivalent equation  
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6.1.3. The mathematical knowledge embedded into the Teorematore  

Figure 8 “Il Teorematore”. 

The "Teorema" (en.: "Theorem") button of the Teorematore (en.: "Theorem Maker") transforms 
a formula, expressing an equivalence, into a button whose transformation rules are based on the 
given formula which, itself, is automatically written on the button32. Thanks to this transformation 
of a formula into a button, il Teorematore creates a new instrument that can be used to transform 
expressions in L’Algebrista. Thus the Teorematore embeds the mathematical idea that a statement 
of equivalence, a formula, can be assumed as instruments and then coherently used as means for 
transforming expressions.   

Looking now at the formulas accepted by the Teorematore, their structure is made of a left term 
and a right term, separated by a symbol, to be chosen by the "Simboli" available (see Figure 8). The 
available symbols are a double sided arrow, a left arrow and a right arrow, which implies that it is 
possible to create bidirectional buttons, but also buttons that are not reversible. This is because the 
Teorematore can create only simple buttons, whilst it cannot create speaking buttons33. Thus a 
speaking button such as "A+(-1)•A=0" cannot be created with the Teorematore, but it is possible to 
create a button of the kind "A+(-1)•A => 0" which transforms an expression matching the leftmost 
term into "0", but does not reverse the transformation.  

Simple buttons are based on formulas made of alphabetical symbols and numerical symbols, the 
first are interpreted as variables (thus standing for "any expression"), whilst the latter are interpreted 
as constants. In the Teorematore there is a clear distinction between terms and alphanumerical 
symbols, the first interpreted as variables standing for "any expression", the latter interpreted as 
constants. The distinction is stressed by the appearance of the symbols used: they are letteres but 
written with a special font. The interface presents a list of "Termini" (en.: terms) that can be used to 
write the formula we wish to state and transform into a button; if we include one such term in the 
formula, the Teorematore interprets it as a term in the algebraic sense of the word, thus in the button 
produced, any such term stands for a generic expression. On the other hand, if a simple 
alphanumerical symbol (could it be a letter or a number) is included in the formula, then the button 
produced will interpret it simply as a constant. 

This condition is especially relevant when a produced button checks if a given expression 
matches the condition for being transformed. Suppose that in the Teorematore we produce a new 
button using the letter "a" and the term " ", for instance we could produce the button "a• = •a"; if 
we apply the button on an expression, then it will check its structure, but it will check also if one of 
the elements of the expression is exactly the letter "a", whilst " " can be any acceptable expression. 
Thus, if we apply the button to the expression "x•(2+b)" nothing will happen, but if we apply the 
button to the expression "a•(2+b)", then it will be transformed into "(2+b)•a". In other words the 

                                                
32 However it can be edited by the user.  
33 Actually, this is due to technical limitations of the prototype we used for our experimentation, but in principle this 
limitation might be ignored. 
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Teorematore embeds knowledge concerning the fact that letters can be interpreted either as constant 
or as variables.  

Furthermore, thanks to the use of terms, buttons created by il Teorematore, are generalisations of 
the formulas used to produce them: in fact, from a given specific formula the Teorematore is able to 
create a buttons which will work on a whole class of expressions matching the structures of the left 
and right side of the used formula. In other words, the Teorematore can generalise a given formula 
into an equivalence relationship based on the structure of the formula, thus incorporating the 
mathematical idea of generalising algebraic statements on the basis of the structure of formulas.  

6.1.4. Summary of the buttons of L’Algebrista and their embedded knowledge 

Besides their general characteristics, and related embedded knowledge, each button for handling 
expressions embeds its specific mathematical knowledge. Many of the commands now available 
were created by the authors of the software, while others were created by pupils involved in our 
experiments, either using the Teorematore or by committing their creation to the authors of the 
software. in the following table we summarise the set of  the main buttoms, we will also indicate 
who created each button, in order to highlight whose knowledge they embed,  be it the knowledge 
of the class, or the knowledge  of mathematicians represented by the author. We will also indicate 
where each button is situated in L’Algebrista, and eventual associated text (see 6.1.2.3). 

Button Associated 
text 

Functionality34 Embedded 
knowledge 

Author Location 

 

Inserisci 
Espressione 
(en.:"Insert 
Expression") 

Insert a text 
editor 
expression in the 
manipulation 
environment 
transforming it 
into an 
Algebrista 
expression 

Conventional 
notation and 
symbology for 
algebraic 
expressions with 
rational 
coefficients; 

 

The subtraction 
of expressions 
can be 
interpreted as the 
sum of the first 
and the opposite 
of the second 
term of the 
subtraction; 

 

Given an 
expression A, 
then –A=(-1)����A; 

Software 
creator 

Base/teoria0 

Base/teoria1 

Base/teoria2 

Base/teoria3 

                                                
34 If not specified, buttons function in bi-directionally, their effect is always reversible by applying the buttons 
themselves on the obtained expression. 
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Button Associated 
text 

Functionality34 Embedded 
knowledge 

Author Location 

 

"Proprietà 
associativa" 

(en.: 
"Associative 
property") 

Applies 
associative 
property of sum 
or 
multiplication. 

Associative 
property of sum 
and 
multiplication 

Software 
creator 

Base/teoria0 

Base/teoria1 

Base/teoria2 

Base/teoria3 

 

"Proprietà 
distributiva" 

(en.: 
"Distributive 
property") 

Applies 
distributive 
property. 

Distributive 
property of 
multiplication 
with respect to 
sum 

Software 
creator 

Base/teoria0 

Base/teoria1 

Base/teoria2 

Base/teoria3 

 

"Proprietà 
commutativa" 

(en.: 
"Commutative 
property") 

Applies 
commutative 
property of sum 
or 
multiplication. 

Commutative 
property of sum 
and 
multiplication 

Software 
creator 

Base/teoria0 

Base/teoria1 

Base/teoria2 

Base/teoria3 

 
"Bottoni di 
calcolo" (en.: 
"computation 
buttons") 

Given a sum of 
numbers it 
computes the 
result; given a 
number it 
decomposes it 
into a sum of 
ones. 

Sum of integers  

 

Any number can 
be substituted by 
its decomposition 
into a sum of 
ones, and vice 
versa. 

Software 
creator 

Base/teoria0 

Base/teoria1 

Base/teoria2 

Base/teoria3 

 
"Bottoni di 
calcolo" (en.: 
"computation 
buttons") 

Given a product 
of numbers it 
computes the 
result; given a 
number it 
factorises it. 

Multiplication of 
integers;  

 

Any number can 
be substituted 
buy its 
factorisation, and 
vice versa. 

Software 
creator 

Base/teoria0 

Base/teoria1 

Base/teoria2 

Base/teoria3 

 

"Bottone a 
rischio" (en.: 
"Risky 
button") 

Removes 
brackets. It 
doesn't check 
the correctness 
of the operation 
(see 5.3. ) 

Associative 
property of sum 
and product, 
which, by 
convention, 
allows one to get 
rid of brackets. 

Software 
creator 

Base/teoria0 

Base/teoria1 

Base/teoria2 

Base/teoria3 

 
"elementi 
neutro" (en.: 
"neutral 
elements") 

Adds 0 to the 
selected 
expression; or 
removes a 0 if it 

Definition of 
neutral element 
of the sum; 

 

Software 
creator 

Base/teoria1 

Base/teoria2 

Base/teoria3 
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Button Associated 
text 

Functionality34 Embedded 
knowledge 

Author Location 

is the left most 
term of a sum of 
expressions.  

0 is the neutral 
element of the 
sum. 

 
"elementi 
neutro" (en.: 
"neutral 
elements") 

This is a 
speaking button. 

If it is the left 
most term of a 
product of 
expressions is a 
0, then 
transforms such 
product into 0.  

If only a 0 is 
selected then it 
is transformed 
into a product of 
0 and an 
expression 
inserted by the 
user.  

Definition of 
neutral element 
of the sum; 

 

Zero is the 
neutral element 
of the sum; 

 

The 
multiplication of 
any rational 
number, and any 
algebraic 
expression (with 
rational 
coefficients) by 0 
is equal to 0 

Software 
creator 

Base/teoria1 

Base/teoria2 

Base/teoria3 

 
"elementi 
neutro" (en.: 
"neutral 
elements") 

Multiplies the 
selected 
expression by 1; 
or removes a 1 if 
it is the left most 
term of a 
product of 
expressions.  

Definition of 
neutral element 
of the 
multiplication; 

 

1 is the neutral 
element of the 
multiplication. 

Software 
creator 

Base/teoria1 

Base/teoria2 

Base/teoria3 

 

“Def di 
potenza” (en.: 
“Definition of 
power”) 

Tranforms a 
power into a 
product and vice 
versa. 

Definition of 
power. 

Software 
creator 

Base/teoria2 

Base/teoria3 

 “Il 
Teorematore” 
(en.: “The 
theorem 
maker”) 

Transforms two 
expressions 
separated by a 
double arrow 
into a button to 
be used to 
transform 
expressions. 

Instrumental 
aspects of 
theorems. 

A theorem 
applies to 
expressions that 
have a structure 
compatible to 
that of the 
formula of the 
theorem. 

Software 
creator 

Il Teorematore 
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6.2.  L’Algebrista as a mathematical instrument 

As we previously observed, L’Algebrista can be interpreted either as an instrument for working 
with its own material objects, Algebrista expressions and buttons, or as a mathematical instrument 
for working with mathematical objects such as algebraic expressions, axioms, theorems, definitions 
and theories. In the latter case the user has to interpret L’Algebrista objects as standing for 
mathematical ones, thus he/she must know a code of correspondences defining how objects, and 
actions, in L’Algebrista can be referred to mathematical objects and actions. A code of this kind 
was used by the authors of the software who created it according to a web of correspondences 
which correlate: 

• Algebrista expressions and algebraic expression 

• Algebrista buttons (simple or speaking ones) and algebraic equivalence relationships 
(axioms, theorems and definitions) 

• Algebrista palettes of theories (ex.: Teoria0, Teoria1, etc.) and algebraic theories 

• A chain of transformations, Transforming an expression A into an expression B and a proof 
that expressions  A and B are equivalent. 

• Creating new buttons and adding them to a "Teoria" and giving to a statement the status of 
theorem with in a theory. 

For a user to interpret L’Algebrista as a mathematical instrument, we assume the knowledge of 
such correspondences to be a prerequisite. In mathematical school practice we aim pupils to 
interpret L’Algebrista as a mathematical instrument, thus they have to learn a code of that kind. Of 
course the fact that a software is used during mathematics classes probably suggests to pupils that it 
is meant to be a mathematical instrument, but this could not be enough if we want them to correctly 
use it as such and to appropriate of the corresponding mathematical knowledge  

In fact inspite of the correspondence between the obejcts  and the commands of the microworld 
domain and the algebraic expressions and their manipulations in the domain of algebra, the two 
domains are in principle completely independent. The expression “algebraic knowledge inbedded in 
the microwolrd” remains a metaphor to express the potential link between the two domains, but as 
all the metaphor needs the use of a consciuos code in order to be effective. Never the less, the fact 
that the two domains share the system of represetation and the rules of trasformation, leads us to the 
following didactic assumption  

it is possible to exploit such a microwolrd as an instrument of semiotic mediation.  

In this sense it is crucial the intervention of the teacher, as the expert who is able to controll the 
code relating the semiotic system of L’Algebrista and the semiotic system of algebraic expressions. 
In order to do that, a teacher has to be aware of the possible similarities and differencies between 
mathematical objects and the objects of the microworld. Thus, in the following we will analyse each 
of the above mentioned correspondences. We will try to highlight the mathematical knowledge that 
we think can be evoked by the software itself when used, and the knowledge we believe that needs 
to be learnt from other sources, thus requiring specific teaching interventions. 

6.2.1. L’Algebrista expressions and algebraic expressions 

As far as the L’Algebrista expressions are concerned, both their symbols and their structure 
recall those typical of algebraic expressions. In fact, in the previous sections we talked about some 
knowledge concerning algebraic expression that is embedded in L’Algebrista expressions. But how 
can such knowledge be evoked?   
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First of all, the symbols used to form Algebrista expressions are the same that are commonly 
used to represent algebraic expressions, thus there is a semiotic code (in the sense described in 
2.6.2) of correspondences which associates any expression of the microworld to an algebraic 
expression; if pupils already know such code, then we can expect them to interpret L'Algebrista 
expressions as standing for algebraic expressions. If that is the case, we can suppose that what is 
learnt concerning L’algebrista expressions may result in learning concerning algebraic expressions.  

In L'Algebrista, an expression is formed by objects which on the screen are represented as the 
usual mathematical symbols, but that are really assembled according to a tree structure which is 
coherent to its structure as algebraic expression. The structure of an expression is not immediately 
evident to perception, but it can be perceived through the use of the selection tool: when activeted, 
the selection tool will follow the internal tree structure of the expression. Such tree structure of 
expressions is functional to the use of the software as instrument for transforming expressions: to 
transform an expression the first step is always to select part of it, and the only allowed selections 
are those that correspond to algebraic sub expressions of the given expression (see 5.3. ). In other 
words, the tree structure of algebraic expression, and the conventional precedence rules for 
computing may be evoked by acting on an expression via the selection tool. 

6.2.2. Buttons of L’Algebrista and algebraic equivalencies 

In school practice we wish pupils to interpret the buttons (simple and speaking ones) of 
L’Algebrista as standing for the algebraic equivalencies they embed. To know and use a semiotic 
correspondence of this kind is not an automatic consequence of the use of the software, and it may 
need dedicated teaching interventions. However, the authors of the software deliberaly furnished 
each button, with a formula and some associated text (see 0 and 6.1.4 for details) that recall the 
names and formulas commonly associated, in mathematics, to the knowledge that is embedded into 
a given button (see 6.1.4 for details). These features may evoke the correspondence between a 
button and its embedded mathematical knowledge.  

Let's now suppose that a semiotic relationship has been established, for instance, shared and 
socialized within the class community, between expressions and buttons in L’Algebrista, and 
algebraic expressions and a set of equivalence relationships. In L’Algebrista buttons are used as 
instruments to transform expression, and in case they are interpreted, by the user, as standing for 
algebraic equivalencies we see a potentiality of evoking to the user the idea that equivalence 
relationships, in algebra, can be used as instruments for transforming expressions. Thus 
L’Algebrista embeds, and may evoke, knowledge concerning the instrumental properties function of 
algebraic equivalencies, which can then be seen not only as a means for stating that two expressions 
are equivalent, but also as a means for transforming an expression into a new, equivalent, 
expression.  

6.2.3. Working with theories, proving new theorems and using them 

The view of algebra that we are considering in this study, considers symbolic manipulation as an 
activity of proving equivalencies, thus theorems, within given theories (see Figure 2). L'Algebrista 
was conceived as an instrument to be used for such kind of activities, on the basis of the  
correspondence between its buttons and the axioms, the definitions, and the possible theorems of 
given algebraic theories. As we stated, simple and speaking buttons can be interpreted as standing 
for certain equivalence relationship, which, themselves, can be intepreted as axioms, definitions and 
theorems of algebraic theories. Given a theory, the first elements to be introduced and used are 
axioms and definition.  they are used as means for proving theorems, according to a set  given 
inference rules. In L'Algebrista the buttons representing axioms and definitions are contained in the 
palettes called "Teoria0", "Teoria1" etc. (en.:"theory0", "theory1" etc.). For instance Figure 9 shows 
a palette, called "Teoria2" which includes, among others, buttons corresponding to axioms (the 
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properties of the operations and of neutral elements), and to definitions (definition of power). Such 
buttons are meant to be used as means for proving equivalences of expressions in L’Algebrista, and 
are kept as separated from the “bottoni di calcolo” (computation buttons), which are meant to be 
used to compute numerical calculations. In fact, the software had been designed for distinguishing a 
practice of computing numerical results of expressions, from a practice of transforming expressions 
by means of axioms. The first is represented by the computation buttons “bottoni di calcolo”, whilst 
the second one is represented by the other buttons. Such distinction, in our educational approach, is 
introduced with numerical expressions, and is then overcome passing to literal expressions when 
the meanings associated to the two practices are merged together in the idea of proving algebraic 
theorems. In what follows we are going to exemplify in what sense transformations in L’Algebrista 
can be interpreted as proof of equivalencies of expressions..   

 
Figure 9 Teoria2, this contains buttons corresponding to axioms such as the basic properties of the operation; it 
contains a button incorporating the definition of power; it contains buttons for numerical computations. 
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The buttons represente in Figure 9 can be used to transform one L’Algebrista expression into 
another one, the sequence of transformation, as it appears on the screen, is shown in the picture 
below, where the expression (a+b)2 is transformed into the expression a2+2·a·b+b2.  

 
Figure 10 The expression (a+b)2 is transformed into the expression a2+2·a·b+b2 using the buttons of the palette 
Teoria2 (see Figure 9). This can be interpreted as proof that the two expressions are equivalent according to the 
axioms of the theory represented by Teoria2, which have been used at each step of the transformation process.  
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Each step of the transformation is obtained by means of a button of Teoria2, as indicated by the 
blue labels on the left (see also description of interactions with the software 5.3. ). At this point we 
can then interpret these buttons as representing the axioms, and definitions35, of an algebraic theory 
represented by the palette Teoria2, and we can interpret L’Algebrista expressions as algebraic 
expressions. Thus, the fact that at each step an axiom (stating an equivalence relationship) was used 
to transform an expression into another one, tell us that we actually built a sequence of expressions 
which are equivalent in terms of the axioms of the considered theory. As a consequence, 
manipulating the algebrista expression (a+b)2, as shown in Figure 10, can be interpreted as proving 
the fact that the algebraic expressions  (a+b)2 and a2+2·a·b+b2 are equivalent, within the theory 
represented by Teoria2. The way in which the manipulation is represented, itself, highlights, at each 
step, the axioms used, coherently with usual representations of mathematical proofs. However, for a 
pupil to consciously prove algebraic equivalencies with L’Algebrista, some prerequisites are 
required, at least he/she has to interpret:  

7. L’Algebrista objects (expressions, buttons, palettes) as representing algebraic objects 
(expressions, equivalencies, theories) 

8. the manipulation of algebrista expressions (by means of the buttons of a palette) as standing for 
the manipulation of algebraic expressions (by means of a set of algebraic transformation rules, 
or equivalencies). 

9. the manipulation of algebraic expressions (by means of transformation rules that keep 
equivalencies) as proving equivalencies of expressions within an algebraic theory (see 4.2.2.3);  

We cannot aspect these intepretations to be evoked by the software itself, rather such 
interpretaion will constitute the aim of dedicated teaching interventions, in fact the software could 
be used to transform L’Algebrista expressions without any reference to its possible algebraic 
counterparts. In order to use L'Algebrista as an instrument for algebraic proofs, there is a need to  
accomplish the interpretations described above, in other words, to activate a semiotic relationship 
between algebraic proofs and manipulating expressions in L'Algebrista. such semiotic link allows 
L'Algebrsita to be intepreted as a means to construct/produce mathematical proofs. 

Once an equivalence relationship is proved, it can be considered as a new element of the theory 
that originated it, acquiring the status of theorem which can be used to prove other statements. This 
in L’Algebrista, is reflected by the fact that, using the Teorematore it is possible to create a new 
button, which can be interpreted as the proved equivalence relationship (see Figure 11), both as a 
statement and means to be used in a new proving process . 

 
Figure 11 A button created with the Teorematore corresponding to the theorem stating that a2+2·a·b+b2=(a+b)2 

This new button, is created by the Teorematore and can be placed, by the user, within a new 
palette of buttons, but not in the “Teoria#” palettes, which are meant to represent the initial set of 
axioms and definition, and cannot be modified; in other words, the particular location of a button in 
L’Algebrista, can be interpreted in terms of  its status within the Theory:  being an axiom (or 
definition) or being a new derived theorem. In picture (Figure 12) we show a palette of theorem 
buttons, that had been created by our pupils and that include also the button of Figure 11. 

                                                
35 See for instance the button corresponding to the definition of power. 
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Figure 12 A palette of theorem buttons, created by our pupils during an experiment, that includes the theorem 
button represented in Figure 11. 

The distinction between the status of axioms, definitions and theorems is embedded in the 
organization of L'Algebrista in terms of the location of the corresponding buttons: the axiom 
buttons are placed in the Teoria# palettes, within  the Base menu (see 5.2.1), while theorem buttons 
are placed in the palettes contained in the Extra menu (see 5.2.3).; furthermore, the fact that the 
Base menu offers several Teoria that the user has to chose, embed the fact that in mathematics you 
must always know what is the theory you are working with, and you can chose among several 
different theories, which have different sets of axioms (which in L'Algebrista's corresponds to 
palettes having different sets of buttons). 

Once a new button is created and situated in a palette, it can be used in future activities to 
transform expressions and thus to prove new equivalencies. For instance the button that we crated 
above (see Figure 11) is used in the last step of the proof that (2+x)2+10•2+10•x+25 is equivalent to 
((2+x)+5)2. 

 
Figure 13 The button that we crated above (see Figure 11), incorporating the square of a binomial, is used in the 
last step of the proof that (2+x)2+10•2+10•x+25 is equivalent to ((2+x)+5)2. 
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6.3.  L’Algebrista as an instrument for teaching 

L’Algebrista, was designed, for educational purposes, as a two faceted instrument, on one hand a 
mathematical instrument (in the sense of being used to accomplish mathematical tasks, as described 
in 6.2. ), on the other hand as an instrument for teaching. But what does an "instrument for 
teaching” mean? How can it be used? We start from a situation of school practice, where the 
subjects involved are the pupils and a teacher who is in charge of teaching, thus, when we say 
"instrument for teaching" we refer to an artefact which is used by the teacher in order to teach 
his/her intentional knowledge. In other words, when we speak of an instrument for teaching the 
subject is the teacher, who uses an artefact (In our case L’Algebrista) to accomplish his/her teaching 
task, that is to obtain pupils to learn his/her intentional objects of knowledge. The artificial 
distinction between teaching and learning is motivated only by the shift on the subject in focus.  

Below we are going to describe in what senses the authors of the software conceived it as an 
instrument for teaching, and in the following chapters we are going to describe how the software is 
used in our experiment as an instrument for teaching.  

6.3.1. An instrument for evoking its embedded knowledge 

As discussed in previous chapters, an instrument, when used, can evoke some knowledge to its 
user; in particular it may evoke its embedded knowledge. A first level for using L’Algebrista as an 
instrument of teaching, is that of introducing it into school practice, and asking pupils to use it, so 
that its mathematical instrumentally embedded knowledge can be evoked, and learnt by pupils. At 
this level of analysis, even if L’Algebrista is used only for manipulating its own expression, with no 
reference to mathematics, we can aspect that some knowledge is evoked and learnt by it users. Such 
learning outcomes could be related to the teacher’s mathematical intentional knowledge, as being 
instrumentally embedded in the software (see 6.1. ), but there is no guarantee that this is the case, 
(see 6.2. ). However, we assume that the user would at least learn how to use the software to 
accomplish related tasks, such as, for instance, transforming an Algebrista expression into another 
one. It is possible that the objects of knowledge evoked by this way of using L’Algebrista are 
compatible with the teacher’s intentional knowledge, but we cannot refer to them as mathematical 
objects of knowledge, unless they are, at least, expressed in a form that would be accepted by the 
community of mathematicians: in fact, the language of the interaction with L’Algebrista, which 
consists mainly of selecting objects on the screen, and clicking on buttons, is not the standard 
mathematical language. At the same time, the practices of manipulating L’Algebrista expressions, 
are not mathematical practices unless they are not interpreted in terms of corresponding 
mathematical practices. Here we are stating that because mathematics is the knowledge of a 
community, the knowledge evoked by the software, in order to be considered as mathematical 
knowledge, needs to be acceptable as such by mathematicians, either in terms of the performed 
practices, in terms of contents, and in terms of the form in which they are expressed. The main 
problem with this usage of the software is that it is not used as an instrument for solving 
mathematical problems, thus we cannot a priori assume that its evoked knowledge is a 
mathematical one. 

6.3.2. L’Algebrista as a mathematical instrument  

In a dedicated section (see 6.2. ) we explained how L’Algebrista can (and was conceived to) be 
used as a mathematical instrument for accomplishing mathematical tasks, in particular tasks 
concerning symbolic manipulation and proofs of equivalencies of mathematical expressions. The 
key idea of this use of the artefact is that the user has to interpret its objects and activities with 
them, according to a semiotic code of correspondences that associates them to algebraic objects 
(such as expression, theorems, etc.) and algebraic activities (for instance proving theorems). If this 
is the case then the mathematical instrumentally embedded knowledge can be evoked. In particular, 
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pupils may learn that in order to prove an equivalence between two expressions, or to manipulate an 
expression for other purposes, you have to: 

• Choose/know what theory you are working with, and its axioms, definition and theorems: this 
may be evoked by the choice of theory palettes and by the palettes themselves, with their 
contained buttons. 

• Transform expressions according to the axioms, definitions and theorems of the used theory: 
this may be evoked by the fact that the only way that you have in which to transform 
expressions in L’Algebrista is to use its buttons which correspond to the element of the 
theory; in other words, in L’Algebrista it is impossible to transform an expression without 
using an axiom, a definition, or a theorem of a theory. 

• Check, at each step, if the transformation rule that you want to use can be applied on the 
expression you are working with, which is if the expression's structure is compatible to that 
expressed by the formula of the used axiom, theorem or definition: this may be evoked either 
by the selection procedure of L’Algebrista, either by the fact that if the transformation rule 
embedded in the button does not apply on the expression, the button leaves the expression 
unchanged.    

Furthermore, we have been talking of axioms, definitions, theorems, theories and proofs, which 
are characteristics of all the  branches of mathematics, and L’Algebrista may evoke some of their 
characterisations which are valid in mathematics in general. For instance, the above list can be 
generalised to: 

• Choose/know what theory you are working with, and its axioms, definition and theorems. 

• Prove theorems according to the axioms, definitions and theorems of the used theory. 

• Check, at each step of a deduction, if the principle that you want to use can be applied, that 
is, check if the hypothesis of the used axiom or theorem are verified. 

6.3.3. Building and Exploiting the semiotic correspondences 

The authors of the software hypothesised that mathematical knowledge can be evoked when 
L’Algebrista is used as a mathematical instrument within mathematical activities, as described in 
previous sections. However, as we already explained, a requirement for this to happen is that the 
user interprets L’Algebrista in mathematical terms, thus referring to its objects as if to mathematical 
objects and to activities with it, as if to mathematical activities. In order for this to happen, a 
semiotic code of correspondances between L’Algebrista and mathematics is needed. Semiotic 
codes, by their nature, are conventionally built and shared by the communities of the persons using 
them (see 2.6.2). Of course we could consider the extreme case of a community of a single person, 
but in our case, we are interested in communities of at least two persons, a pupil and a teacher. If 
the teacher has to use a software (L’Algebrista in our case) as a teaching instrument, by introducing 
it in class practices as a mathematical instrument, then, the pupils as well, have to interpret the 
considered artefact as a mathematical instruments, in a way which is compatible to the teacher's 
way. For our work, we assume that the semiotic code of correspondences has to be shared by the 
whole community of the class, included the teacher, otherwise, there is no guarantee that pupils 
interpret L’Algebrista as a mathematical instrument in the ways wished by the teacher.  

To build a semiotic correspondence between two objects, means either to use one as a sign for 
the other, either using a third signifying form as a sign for both of them. In the following, we will 
illustrate how written symbols, in paper and pencil environments, can be used at the same time as 
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signs for both mathematical objects and L’Algebrista objects, thus fostering a semiotic link between 
the two kinds of objects. Such an approach was embedded in L’Algebrista as a teaching instrument 
in the sense that the software was conceived so that any of its elements are represented with 
symbols compatible to standard written mathematical symbols (see 6.1.2.3). 

In the educational approach for which L’Algebrista was designed, mathematical meanings are 
considered as rooted in the practice with the microworld. Their evolution is guided by the teacher 
by means of communication strategies which are based on the idea of linking semiotically 
mathematical meanings to the practice of L’Algebrista. Such links are obtained by means of the 
introduction of mathematical words as referred to L’Algebrista’s objects and practices. Thus the 
teacher introduces words such as proof, axiom, theorem, definition, expression, theory. A key 
hypothesis which was behind the creation of L’Algebrista is that even if pupils may not know the 
mathematical meanings of the words proofs, axioms, theorems, definitions, expressions, theories, it 
is possible to use such words from the beginning, to refer either to L’Algebrista, or to Mathematics, 
in this way the sphere of practice furnished by L’Algebrista may contribute to the building of the 
mathematical meanings of such words. At the same time, we hypothesised that, because 
L’Algebrista is not Mathematics, there is a need to distinguish clearly between the two domains, 
and mathematical learning outcomes may be derived not only from analogies, but also from 
differences. Further on we will show how we tried to build and exploit these webs of relationships 
between Mathematics and L’Algebrista in our classroom experiment.  
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7.  The experiments: definition of teaching/learning paradigm 
The research project we are going to report on, started some years ago within the framework of a 

long term teaching experiment, which is to be considered to be a  “research for innovation”: action 
in the classroom is both a means and a result of the evolution of  research analysis ([7], Bartolini 
Bussi, pp. 1, 1998). One of the main objective  was to investigate the feasibility of a teaching 
approach centred on the use of microworlds (Cabri-Géomètre and L’Algebrista), and aimed at 
developing  theoretical thinking in both geometry and algebra (for the case of geometry see [52] and 
[51], Mariotti, 2001 and 2002). 

Our main concern here is to present a paradigm for putting into practice our educational 
approach, however, this paradigm is to be considered a result of our research analysis and its 
evolution interlaced with classroom practice. Thus, we will begin by presenting the main motives of 
the experiment, and end up by presenting the paradigm itself. In the following chapters we will 
exemplify and discuss the paradigm, on the basis of collected data. 

7.1.  A pilot study 
A pilot study was conducted, revealing that an approach in the framework of semiotic mediation, 

based on L’Algebrista, could give positive results in terms of introduction of pupils to a theoretical 
perspective and to symbolic manipulation ([16], Cerulli, 1999; [19]Cerulli & Mariotti 2000). A 
detailed description of this pilot study is beyond the scope of this thesis, and can be found in ([16], 
Cerulli, 1999), here we will briefly present it and some results that we find relevant for the 
discussion of this thesis.  

7.1.1. The experiments 

The first experiment was a medium term one, conducted in the school year 1998/1999 from 
October 1998, to February 1999, with pupils of a "classe I of a Liceo Scientifico", that is ninth 
grade pupils within a school oriented toward scientific studies.  The scholastic background of the 
pupils included computations with numerical expressions, but not management of literal 
expressions; our intervention concerning the introduction of pupils to symbolic manipulation, fitted 
the institutional curricula, both in terms of contents and in terms of timing.   

The experiment aimed at verifying the effective usability of the software in classroom practice, 
its prototype nature couldn't guarantee perfect functioning, and we supposed pupils could give use 
indications for improving the microworld. As a consequence the author personally assisted to all the 
lessons, acting mainly as "the developer of the software", but often participating actively in the 
teaching/learning process. For these reasons, the experimental environment cannot be considered as 
that of the normal interaction environment between teacher and pupils. 

The sequence of educational activities was mainly organized in three phases: a preliminary phase 
aiming at highlighting pupils personal views the symbol “=” and of the activity of calculating with 
numerical expressions; a phase of introduction of manipulation of numerical expressions by means 
of the properties of operations; a final phase of introduction of literal expression, and their 
manipulation, still in terms of the properties of the operations. The activities proposed were centred 
on the task of comparing expressions and the educational motive was that of developing the 
meanigs of equivalence of expressions and proof of such equivalence within an algebraic theory; 
proofs were done either within L'Algebrista, by means of buttons corresponding to the properties of 
the operations, either within paper and pencil environment, with the requirement of always stating 
the used property of the operations. Some of  proved equivalences, according to the decision of the 
class, were given the status of new theorems, and new corresponding buttons of L'Algebrista were 
created using the Teorematore (en.: "theorem maker", see 5.4. ). More details on the rationale of 
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educational sequence will be given in a section dedicated to the latest experimentations, where we 
will describe the milestones of the sequences of proposed activities, reporting how such sequence 
evolved from the first experimentation. 

7.1.2. Indications from the pilot study 

The first main indication that we received from our pilot study, was a positive feedback 
concerning the generic usability, and effectiveness of the software in school practice. Moreover 
beside such encouraging indications, we got positive feedback concerning our entire educational 
approach to symbolic manipulation. Data showed evidence that pupils reacted positively when 
faced to new situations, using appropriately the algebraic tools they had previously experienced 
(ibid., pp. 57-60); moreover, they reacted positively to activities of proving and using new theorems 
(ibid., pp. 60-61).     

One result in particular was that pupils moved from a procedural perspective to a structural 
perspective. This evolution concerned mainly the interpretation of the structures of the manipulated 
expressions, and the interpretation of the properties of the operations (ibid., pp. 50-56). Pupils 
began to interpret the properties of the operations as bidirectional tools to be used to manipulate 
expressions, and not just as rules for computing the results of the expressions, as the preliminary 
test showed their starting position to be. Such an evolution seemed to be related to two main 
reasons: the features of the microworld (mainly invertibility of buttons, and the selection tool, see 
5.3. , 0, 6.1.2.2), the particular appraoch to symbolic manipulation based on the notion of 
equivalence of expressions and consequently,  based on the task of comparing expressions (see 
4.3.1 and 4.3.3).  

However, beside the positive and encouraging indications, the experiment gave us important 
feedback in terms of  suggestions for the following experiments. We obtained mainly three kinds of 
indications: 

• Indications on how to improve the software, both in terms of interface and in terms of 
features to be added. 

• Indications on the types and timings of the activities. 

• Indications on the general structure of the whole teaching/learning process 

Details of the first two kinds of feedback will be given later; where the last is concerned we 
would like to observe that although the actual sequence of activities basically reflected our plans, 
we could observe some crucial variations. In particular, class discussions were not developed as 
much as we wished, failing to develop the idea of "mathematical discussion" (see 4.3.2.1). 
Furthermore in parallel to computer laboratory activities, we had planned complementary class 
activities (with no computers); unfortunately such activities were not developed, thus the 
experiment was brought forward only in the context of the computer laboratory.  

In fact the phase of setting up of the experiment, and putting theory into practice, was found to 
be partially faulty, and highlighted a need to better define our educational approach, in order to 
better share it with the teachers involved in the experiment. The difficulties with the teacher in 
charge of bringing forward the experimentation were, at least partially, solved from the second year 
of experimentation, which was conducted by an experienced  teacher, belonging to a research group 
and already involved in a similar project conducted by Mariotti (see 4.3.2). 

7.2.  A long term teaching experiment 

On the basis of the results and indications drawn from the study project, a new experiment was 
set up, involving two classes one for the school years 1999/2000 and 2000/2001 and the other for 
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the school years 2000/2001 and 2001/2002. Both groups of pupils started the experiment at the 
beginning of grade 9, and ended it during grade 10.  

As previously discussed, our experiment was conceived as a counterpart, for algebra teaching, of 
an experiment set up in previous years by Mariotti, concerning the introduction of pupils to 
geometrical constructions and theoretical perspective, using the microworld Cabri (see 4.3.2). Our 
pilot study showed the feasibility of the proposed approach, and its positive results, also in terms of 
the introduction of pupils to theoretical thinking ([16], Cerulli, 1999; [19], Cerulli & Mariotti, 
2000). However it revealed a generic difficulty in sharing with the teacher involved the basic 
pedagogical and psychological assumtions / theoretical framework inspiring our approach, in 
particular some key ideas and principles were not actually put in practice (see 7.1.2), and we 
considered our approach as being only partially tested; as a consequence for the second experiment 
we chose to work with a teacher who had previously been involved for some years in the Cabri 
project, and was familiar with the approach and the put in practice of its the key principles. 
Moreover, this choice allowed us to experiment the approach simultaneously in the cases of algebra 
and geometry, with the same pupils and the same teacher; in fact the Cabri project and the 
L’Algebrista project, were conducted in parallel, with the joint educational goal of introducing 
pupils to theoretical thinking, both within the context of geometry and the context of algebra. 

In such a way our approach could be experimented entirely, allowing us both to test and improve 
it, pointing toward a clearer definitions of its theoretical and practical principles in order to make it 
more shareable within the community of educators (either researchers or teachers).  

The experiment was conducted, in class, by the teacher, and we personally assisted in activities 
that we considered to be central, taking notes and audio recording class discussions, and collecting 
pupils written protocols; however, thanks to the teacher we also collected protocols of activities that 
we did not assist in. The conduction of the experiment was planned and reviewed through a weekly 
meeting with the teacher who reported on the activities to us and to other teachers involved in the 
Cabri project, participating in the meeting. Thanks to this cycle of meetings, and to our presence in 
class, we were able to adjust and define the approach in itinere, either in terms of educational 
strategies, or in terms of the activities proposed to pupils. This work had been particularly intense in 
the first two years of this experiment, concerning mainly the first of the two participating groups of 
pupils; consequently, the teacher was confident enough to conduct the experiment with the second 
group of pupils in complete autonomy, but she kept reporting to us on its development, and we kept 
assisting to some key activities and collecting data. This gave us positive feedback on the 
practicability of our approach in a context independent from the presence of researchers, thus we 
undertook a revision of the whole experiment, and taking into account the collected data, and the 
evolution in itinere of the experiment itself, we defined a paradigm for putting into practice an 
educational approach to theoretical thinking using a microworld.  

7.3.  Building theories: working with microworlds and writing the 
mathematical notebook 

Our educational approach, being it developed on long term experiments, can be described both at 
the macro level of the general organization of the sequence of activities, and at the micro level of 
the teacher’s management of the single types of activities. 

In this section we are going to describe the general scheme of the cyclic structure of the set of 
activities that we propose. Such a structure is described in terms of the theoretical framework of 
semiotic mediation, and the main types of proposed activities will be defined. In the following 
chapters we will exemplify this structure showing examples of the types of activities that we are 
defining below. On the basis of the presented exemplifications, we will then describe some key 
ideas of the management, by the teacher, of the main types of activities, according to the framework 
of semiotic mediation.     
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7.3.1. Microworlds and semiotic mediation  

As previously discussed (see 3.3. ), the notion of semiotic mediation is central within a 
vygotskian theoretical framework. Given an artefact, it can be used by the teacher to exploit 
communication strategies aimed at guiding the evolution of meanings within the class community; 
this can also be the case for the computer which can be used by the teacher in order to direct the 
learner in the construction of meanings that are mathematically consistent ([51], Mariotti 2002). 

Our approach (see 4.3.2 and 4.3.3) is based on the general hypothesis: "Meanings are rooted in 
the phenomenological experience (actions of the user and feedback of the environment, of which 
the artefact is a component), but their evolution is achieved by means of social construction in the 
classroom, under the guidance of the teacher" (ibid.). Thus an artefact can be a source for the 
construction of meanings by its users, but consistency with Mathematics is not a priori guaranteed 
and needs to be built under the guidance of the teacher. As a consequence, activities within a 
microworld need to be interlaced with other social activities guided by the teacher in order to reach 
the construction of the mathematical meanings she is aiming to.  

Based on these assumptions our approach is organised in the following cycle of activities: 

10. Problem solving activities within the microworlds: this is the field of phenomenological 
experience where we assumed meanings to be rooted. 

11. Problem solving activities in the paper and pencil environment: this is the standard environment 
for developing mathematical activities, thus we exploit it as a junction point between 
mathematical activities and activities in the microworld. 

12. Production of reports (written or oral) concerning problem solving activities: students' 
experience is fixed  into signs  on which collective discussion will be based. 

13. Collective discussions, i.e. Mathematical Discussions (see 0): starting from the reports produced 
by the pupils, the teacher tries to guide the class in the construction of socially shared meanings, 
consistent with didactical aims. 

14. Production of reports concerning collective discussions: the results achieved in collective 
discussions become part of the class culture, and as such are expressed and fixed into written 
text, that may serve as a basis for future activities. 

This cycle describes the general structure of the teaching sequence and focuses on the main 
aspects we want to discuss in this thesis. In particular the articulation between experiences centred 
on activities within the microworld  and semiotic activities, based on collective discussion and 
production of texts.  

7.3.2. Working in a microworld 

The two microworlds (Cabri and L’Algebrista) share interesting features which, according to the 
shared Vygotskian framework, are similarly exploited in both the Geometry and the Algebra 
teaching experiments.  

15. Objects and commands can be thought of as external signs of  the fundamental elements of a 
corresponding mathematical theory (Geometry or Algebra). 

For instance, basic tools  are signs of axioms and definitions of a Theory; new tools may be 
introduced using a specific command (Macro construction in Cabri, Il Teorematore – i.e. Theorem 
Maker in L’Algebrista); these new commands become signs of theorems;  

16. actions within the microworld correspond to  fundamental metatheoretical actions, concerning 
the construction of a theory.  
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For instance, adding new buttons to those already available corresponds to the meta-theoretical 
operation of adding new theorems to a theory. In the case of Cabri it is possible to create macros 
(and add the corresponding commands to the menu) that synthesise geometrical constructions and 
that can be used at any moment. In the case of L’Algebrista it is possible to create new buttons 
representing equivalence relationships between algebraic expressions and that can be used at any 
moment by the user in order to transform an expression into another one.  

Due to the described feature (for more details in the case of L'Algebrsita see chapter 5. , while 
for Cabri see [52], Mariotti, 2001) L'Algebrista and Cabri result to be good potential environments 
for phenomenological experiences concerning the production and the use of theorems. Furthermore, 
they offer the possibility to experience the act of adding commands to the software. In other terms, 
once a semiotic link with mathematics is built (for a preliminary discussion on this point see [18], 
Cerulli, in press), the two microworlds make it possible to directly experience the development of 
mathematical theories by proving and adding theorems, through the effective operations of creating 
and adding new commands (see 4.3.3.1, 5.4. , and 6.2.3).   

7.3.3. Working in the paper and pencil environment 

The paper and pencil environment is both the environment where pupils developed most of 
previous experiences with numerical and litteral expressions , and in any case, paper and pencil is 
the standard environment for developing mathematical experiences. In this sense, it can be used as a 
junction point between pupils’ past experience of mathematical practices, and new practices in the 
microworld. By setting up similar activities with common goals in the two environments it is 
possible to introduce pupils’ to two different kinds of practices aiming at accomplishing the same 
mathematical taks: the practice of the microworld, and the practice of the paper and pencil 
environment. These practices are distinct because they take place in different environments, but 
they share a common mathematical motive. The practice within the microworld is completely new 
for pupils, whilst they are familiar with some mathematical practices in paper and pencil. The 
meanings originated within the microworld are imported in the paper and pencil environment, and 
evolve, under the guidance of the teacher, toward new mathematical meanings expressed in the 
paper and pencil environment, the standard environment for expressing mathematical meanings. 
Such evolution is guided, by the teacher, exploiting the complex relationship between the two 
environments and related practices, in the following chapters we are going to discuss further on on 
this point by means of examples taken from our experimentation.    

7.3.4. A notebook as a representation of the culture and the history of the class 

Together with the microworld, L'algebrista36, another specific tool characterises our 
experimentation: the notebook (ital. "quaderno di classe"). Each pupil is asked to edit a personal 
notebook where any result, discussed and socially accepted in the class, will be reported and 
officially recognized as a piece of mathematics. In particular, each notebook contains the updated 
list of the axioms and theorems (either in algebra or geometry) of the theory the class is working 
with, and when a new theorem is produced it is added to the list. Thus the notebook is a personal 
enterprise, but may be considered a representative of the culture and the history of the class, where 
the elements of the theory are fixed into ordered sequences, so that both the elements and their logic 
relationships are represented.  

7.3.5. The need for verbalisation activities  

In our approach pupils are involved in problem solving activities, or exploration activities, both 
in a microworld, or in the paper and pencil environment. We will refer to this activities as to 

                                                
36 From now on we are going to talk mainly about this single microworld. 
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“practical” activities as opposed to verbalisation activities in which the main motive is that of 
“talking about” practical activities using verbal semiotic systems. Verbalisation activities can be 
focused also on talking about other verbalisation activities; collective discussions, edition of the 
notebook and writing reports, are different kinds of activities with a common element: verbalisation, 
i.e. express oneself by word.  

In the limits of this thesis, we cannot carry out a detailed analysis of the dynamics between such 
different activities, in particular, taking into account the use of different kind of semiotic systems 
(registers [32], Duval,1995). in the following we may refer to all of them using the generic term 
"verbalisation activity" in order to distinguish them from “practical” activities taking place within 
the microworld, and within the paper and pencil environment.  

The key aspect concerning verbalisation activities when using a microworld as an instrument of 
semiotic mediation, is that when practical activities are verbalised, pupils enrich their shared 
semiotic system with new words, gestures, symbols, and drawings, referring to what they 
experienced in the microworld. Thus new signs are created and shared by the class, with meanings 
originated in the microworld; starting from these new signs, the teacher can trigger a semiotic 
process leading to the evolution of meanings originated in the microworld toward mathematical 
meanings. The signifying forms (words, symbols, gestures, etc.) of these new signs can be used as 
pivot, referreing both to meanings related to the microworlds, and both to new, derived, 
mathematical meanings. it may happen that sometimes new hybrid symbols are introduced and 
function as pivot, this is consistent with a Vygotskian perspective, in fact, where the production of 
new signs is assumed to play a key role in the production and evolution of meanings, as it permits 
communication and involvement of new meanings into discourses. 

For these reasons, verbalisation activities constitue a key element of the teaching/learning 
process. In fact, on the one hand they guarantee more expressiveness, on the other hand they 
facilitate the production of signs to be used and shared in the social discourse, leading to production 
and evolution of meanings. In the following chapters we will discuss more in details on this point, 
showing how the teacher can exploit news signs derived from the microworld, as pivots for guiding 
the evolution of their meanings (referring to the microworld) to mathematical meanings. 

Once a practice is verbally expressed, it is possible to talk about it, and once the culture of the 
class is fixed in a notebook, it is possible to talk about it and eventually to compare it with what is 
written in the mathematics textbooks.   

7.3.6. General strategy to guide the evolution of meanings  

According to our hypotheses, the meanings, raising from phenomenological experiences within 
the microworlds, have to evolve, under the guidance of the teacher, towards the mathematical 
meanings the teaching/learning activity aims to. In our teaching experiments, the main structure of 
class activities can be schematised as shown in Figure 14. 

Meanings originated in the phenomenological experience are shared within a collective 
discussion, fixed in the sets of command of L'Algebrista and then reported in the personal notebook. 
Practical activities are verbalised in the forms of written reports and class discussions leading to the 
production of the class nothebook and update of the commands of the microworld. The notebook 
and the sets of command of the microworld, are then cyclically revised in order to formulate their 
logical structure in terms of the logical relationship between the axioms and the theorems of a 
theory. 

Starting from this general idea we may consider the two different cases of axioms and theorems.  
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 Figure 14 The main structure of  the class activities: practical activities are verbalised in the forms of written 
reports and class discussions leading to the production of the class nothebook and update of the commands of the 
microworld. The the notebook and sets of command of the microworld are then cyclically revised in order to 
formulate their logical structure in terms of the logical relationship between the axioms and the theorems of a 
theory. 

7.3.6.1.The case of axioms  

One possible way to introduce axioms is to begin working within a microworld: when it is firstly 
approached by the pupils, it presents a ready made set of commands. Such commands are given and 
can be used to work within the microworld. Thus the pupil is faced with a given set of commands 
(to which we may refer also as axiom/command) that are the only means of action within the 
microworld, and that are actually used to accomplish specific tasks, that is transform one expression 
into another one. Such an experience, under the guidance of the teacher, is then verbalised and 
socialised through a collective discussion, aiming at the formulation and the acceptance of a set of 
axioms, directly related to the given set of commands. Finally, each axiom is fixed into a statement 
in the notebook. Thus, at the end of this cycle, one obtains a set of commands in the microworld, a 
set of axioms belonging to the culture of the class, and a set of statements in the notebook; 
furthermore, the fact that axioms are generated from commands, and statements from axioms, 
constitutes per se a link between them and may foster the idea that commands, and statements, are 
both signs representing axioms. 

7.3.6.2.The case of a theorem 

Once introduced, theorems and axioms can be used to accomplish new tasks, but their status in 
the culture of the class is different, as the processes generating them. Axioms originate from ready 
made commands, whilst theorems originate from commands built, by the user, on the commands 
already available. The dependence relationship, stated between new commands and the commands 
used to create them provides an operational referent to a logical structure in the organisation of the 
theory, as it is collectively built by the class. This is certainly a meta theoretical activity, it may be 
interpreted as a phenomenological experience  corresponding to the construction of a mathematical 
theory, in other words from the experience of the different status of the microworld tools the 
meaning of theory and that  of metatheory may emerge. 

When axioms and theorems are reported on the notebook, and new commands inserted in the 
microworlds, they result to be ordered chronologically, however their different status, and the 

Practical activities: problem solving, 
discovery/production/proof of theorems in 
Cabri, L'algebrista and paper and pencil. 

Class discussion 

Update of class notebook, and 
Cabri/L'Algebrista commands. 

Revision of notebook and Cabri/L'Algebrista commands 

Written reports 
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dependence relationships, may not always be evident. For this reason , a specific type of collective 
discussion 

The activity of revising the notebooks gives the opportunity of reflecting and  organising the set 
of axioms and theorems following their logical relationships.  

The notebook (personal, but based on shared productions) , the sets of commands of the 
microworlds and the stated relationship between the two worlds (mathematics and microwolrd), 
represent the elements on which the history and the "culture" of the class grows and is settled. As a 
consequence, updating and revising them means to update the class culture and offers the 
opportunity to develop .  

7.4.  Summary 

In this chapter we presented a paradigm describing the structure of what we called the “cycle of 
activities” concerning the use of a microworld as an instrument of semiotic mediation. The picture 
that we sketched focuses the motive of alternating practical activities (within microworld and in the 
paper and pencil environment) and verbalisation activities (writing reports, class discussions, 
edition and revision of the notebook). The phenomenological experience derived from practical 
activities, originates meanings rooted in the used microworld. Thanks to verbalisation activities, 
such meanings are expressed by means of signs whose signifying forms are hybrid, in the sense that 
they belong to verbal semiotic systems, but are derived from the microworld. Such signs they can 
be used as pivots to bring their original meanings out of the context of the microworld, guiding their 
evolution toward mathematical meanings consistent with the teachers’ intentional mathematical 
knowledge. In this sense, the microworld can be used as an instrument of semiotic mediation. 

In the next chapters we will discuss and exemplify the  actual functioning of this paradigm. We 
will show what signs can be derived from L’Algebrista as efficient means for guiding the evolution 
of meanings, and we will give examples of how such evolution can be guided.  
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8.  The experiment: main lines of the sequence of the proposed 
activities 

In the following we are going to describe the milestones of educational paths that our classes 
followed during the two long term experiments.  

What we present here is the result of a process where class practice was continuously interlaced 
with research analysis, each of them functioning as input for the evolution of the other (see 6. ). 
Thus, together with the key ideas of the sequence of proposed activities, we will present some 
educational considerations, explaining how, along with the experiment, some steps of the sequence 
evolved consequently to the feedback of classroom practice.  

8.1.  Numerical expressions 

The prerequisite that we assume is that pupils can handle computations with integer, fractions, 
and expressions with integer or rational coefficients. Usually in Italy, in grades 6 to 8, they do a lot 
of work on the subject, and we assume pupils to have had enough experience related to computation 
of numerical expressions.  

8.1.1. Getting information (on pupils’ interpretation of expressions) 

At the beginning of the first experiment we submitted a test to the pupils, aiming at verifying if 
their approaches to numerical expressions were more likely to be procedural or structural. With 
procedural we referred to an approach interpreting expressions only as entities that "have to be 
computed", while with structural we referred to an approach based on comparison of expressions in 
terms of their structures. The results of the test suggested a prevalence of procedural perspectives 
among the pupils, thus we chose to start interpreting numerical expressions as computational 
procedures, pointing toward activities of comparison between expressions; in such a way we wished 
pupils' perspectives to evolve from procedural to structural.  

At the beginning of each of the following experiment we submitted the new pupils to similar 
tests, with slight changes, always obtaining qualitatively equivalent results, thus we kept the 
original starting approach mentioned above, that we are going to describe below.   

8.1.2. Numerical expressions as computation procedures: introducing equivalence 
relationships 

The first step of the experiment consists of introducing the idea that numerical expressions can 
be compared in terms of their equivalencies. In order to do so, two different kinds of equivalence 
relationship are introduced, one based on computing the expressions, the other based on 
transforming them according to the properties of the operation.  

8.1.2.1.Equivalence relationship based on the numerical result of expressions 

Def 10: two numerical algebraic expressions are said to be equivalent iff, when computed, 
they give the same result. 

Such a relationship, being based on the equality of numerical results, is transitive, symmetrical, 
and reflexive, thus it is an equivalence relationship.  

Expressions are interpreted as computational procedures which are equivalent if, once executed, 
they lead to the same number (see also 4.2.2.2).  For instance we may consider the two expressions 
3•2+3•(5+4) and 3•(2+5)+3•4 and compare them by executing the computations according to the 
precedence rules for computing expressions, as shown in Table 2. 
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 Expression 1 Expression 2 

Step 0 3•2+3•(5+4) 3•(2+5)+3•4 

Step 1 3•2+3•9 3•7+3•4 

Step 2 6+27 21+12 

Step 3 33 33 
Table 2 Comparing two expressions: because the final results are the same, Expressions 1 and 2 are equivalent, 
according to Def 10:; moreover, the expression of each step is equivalent to all the other expressions, because they 
all lead to the same number once executed as computation procedures. 

The two expressions are equivalent, because when computed they lead to the same numerical 
result, 33. If we consider the expressions obtained after each computational step, all these 
expressions lead to the same number, 33, so they are all equivalent expressions; furthermore, if we 
consider the number 33 as an expression, then all the considered expressions, beside being 
equivalent to 3•2+3•(5+4) and 3•(2+5)+3•4, also are equivalent to the expression 33.  

The idea of numerical equivalence is introduced together with a principle of equality that can be 
stated in  the following definition as: 

Def 11: two numerical algebraic expressions are said to be equal iff, they are identical, i.e. 
they do not differ at all. 

In general, we interpret two objects as being equal when they are exactly the same, from every 
point of view. In the case of the expressions, two expressions may be equivalent according to Def 
10:, but they may not be identical, thus they may be not equal in terms of Def 11:. Two equal 
expressions are also equivalent, while the converse is not true. For instance, 3+4 is equal to 3+4 but 
it is not equal to 4+3, whilst it is equivalent to 4+3 because of the commutative property of the sum.  

8.1.2.2.Equivalence relationship based on the properties of the operations 

The properties of sum and multiplication on rational numbers, tell us when certain computations 
procedure give the same results, without executing the procedures themselves (or what ever the 
number are involved the two procedure will give the same result). In fact given three numbers N, 
M, L, then: 

• The commutative property of sum and multiplication tells us that the result of N+M is the 
same as that of M+N, and that of N����M is the same as that of M����N; thus interpreting the 
computational procedures as expressions, according to Def 10:, N+M is equivalent to M+N, 
and N•M is equivalent to M•N; 

• The associative property of sum and multiplication tells us that the result of N+(M+L) is the 
same as that of (M+N)+L, and that of M����(N����L) is the same as that of (M����N)����L; thus 
interpreting the computational procedures as expressions, according to Def 10:, M+(N+L) is 
equivalent to (M+N)+L, and M����(N����L) is equivalent to (M����N)����L; 

• The distributive property of multiplication with respect to sum, tells us that the result of 
M•(N+L) is the same as that of M•N+M•L; thus interpreting the computation procedures as 
expressions, according to Def 10:, M•(N+L) is equivalent to M•N+M•L; 

Such properties can be interpreted not only as instruments for checking if two expressions are 
equivalent, but also (they can be interpreted) as instruments for transforming an expression into an 
equivalent one. In fact, given an expression, the properties of operations can be used to obtain a new 
expression, which will be equivalent to the given one. For instance, given the expression 2•(3+4), 
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and interpreting 2 as M, 3 as N, and 4 as L, the distributive property gives us a rule to transform it 
into 2•3+2•4, corresponding to M•N+M•L. Such instruments can be applied not only to entire 
expressions, but also to sub expressions, in fact given an expression, using Def 10:, it can be easily 
proved that if we modify one of its sub-expressions, substituting it with an equivalent sub-
expression, then the new obtained expression is equivalent to the given one. In other words, starting 
from an expression, it is possible to build a chain of equivalent expressions, which are all equivalent 
to each other. Each building step of the chain can be obtained either by means of numerical 
computations, or by means of the properties of the operations, as described above.  

Given the above discussion a new equivalence relationship can be defined: 

Def 12: two numerical algebraic expressions are said to be equivalent if, it is possible to 
transform one into the other, by means of the properties of the operations. 

For instance, if we consider again the two expressions 3����2+3����(5+4) and 3����(2+5)+3����4, instead of 
computing their results, we can transform either the first into the second, or vice versa, or the two of 
them into a third equivalent expression (see Table 3, Table 4, and Table 5). 

 Expression 1 Expression 2 

Step 0 3•2+3• (5+4) 3• (2+5)+3•4 

Step 1: distributive property 3• (2+(5+4))  

Step 2: associative property of sum 3• ((2+5)+4)  

Step 3: distributive property 3• (2+5)+3•4  
Table 3 Comparing two expressions: Expressions 1 and 2 are equivalent, because it is possible to tranform the first 
into the second; moreover, the expression of each step is equivalent to all the other expressions, because they all 
can be transformed one into the other. For each step, we reported the property used, and highlighted the 
subexpression where it was applied. 

 Expression 1 Expression 2 

Step 0 3•2+3• (5+4) 3• (2+5)+3•4 

Step 1: distributive property  3• ((2+5)+4) 

Step 2: associative property of sum  3• (2+(5+4)) 

Step 3: distributive property  3•2+3• (5+4) 
Table 4 Comparing two expressions: Expressions 1 and 2 are equivalent, because it is possible to tranform the 
latter into the first; moreover, the expression of each step is equivalent to all the other expressions, because they all 
can be transformed one into the other. For each step, we reported the property used, and highlighted the 
subexpression where it was applied. 

 Expression 1 Expression 2 

Step 0 3•2+3• (5+4) 3• (2+5)+3•4 

Step 1: distributive property 3• (2+(5+4)) 3• ((2+5)+4) 

Step 2: associative property of sum  3• (2+(5+4)) 
Table 5 Comparing two expressions: Expressions 1 and 2 are equivalent, because it is possible to tranform the two 
of them into a third equivalent one; moreover, the expression of each step is equivalent to all the other expressions, 
because they all can be transformed one into the other. For each step, we reported the property used, and 
highlighted the subexpression where it was applied. 

We observe that, as shown by the example, the properties of the operations, being equivalencies, 
correspond to transformations that can be inverted: each property, as a tranformation rule, is the 
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inverse of itself. As a consequence, the relationship is reflexive, symmetrical and transitive, thus it 
is an equivalence relationship. 

8.1.2.3.Didactical notes  

The idea of comparing expressions, in terms of their equivalence, is introduced through a 
mathematical discussion orchestrated by the teacher, focused on the elaboration of the meanings of 
the words "uguale" and "equivalente" (en.: "equal" and "equivalent"). The discussion starts by 
asking pupils what they mean, in general, with those two words, in reference to their past 
experience (either schoolastic or common life experience), which constitutes a base for the 
discussion. The meanings arising from this phase, are then employed to discuss the question of 
comparing numerical expressions, which is posed explicitly, on purpose, by the teacher. The aim of 
the discussion is that the class reaches an agreement on the meanings of the words equivalente and 
uguale (to which from now on we will refer as equivalent and equal) in the case of numerical 
expressions, according to Def 10:, and Def 11:. A side outcome of the discussion is the introduction 
of the idea of comparing expressions instead of simply computing their result. 

The evolution of meanings related to equivalence and equality of expressions, starts from a 
phenomenological experience constituted by the background of the pupils concerning the 
computation of numerical expressions, and ends up in the acceptance of the afore mentioned 
definitions through a mathematical discussion. The result of the discussion is crystallised in the 
form of definitions reported in the class algebra notebook, according to the principles described in 
chapter 6. .   

Starting from the idea that numerical expressions can be compared, the teacher introduces the 
well known properties of the operations (Def 12:) from a new perspective: they can be considered 
as means for establishing the equivalence of expressions avoiding computations.  The new 
equivalence relationship is introduced to pupils through a mathematical discussion continuing the 
one previously described, leading to the insertion in the notebook of the principle expressed by Def 
12:. 

The context of numerical expressions as computation procedures that can be compared in terms 
of equivalence, constitutes an environment where it is possible do develop a field of experience 
concerning proving statements of equivalence, which is the focus of the following step of the 
educational sequence. 

8.1.3. Proving equivalencies of numerical expressions 

For each of the two mentioned definitions of equivalence, we introduce a corresponding practice 
based on the idea of comparing expressions. The two practices are presented on purpose as 
identified by two different verbs "dimostrare" and "verificare", to which we will here refer as 
proving and checking, and are defined as follow: 

Def 13: We say that we check the equivalence of two expressions when we compute and 
compare their numerical results. 

Def 14: We say that we prove the equivalence of two numerical expressions when we 
transform one into the other (or both of them into a third expressions), using the 
properties of the operations. 

Given these definitions, it is possible to set up activities of checking and proving equivalencies 
(or non equivalencies) between numerical expressions (see appendix for examples, 13.2. ). In 
particular we observe that, according to Def 14:, proofs are carried out by means of the properties of 
the operations, thus by means of the axioms of a theory.  
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8.1.3.1.Didactical notes 

Of course, from a strictly mathematical point of view, the two practices can both be considered 
as activities of proving, however the second one (Def 11:) has the peculiarity that it is characterised 
by an explicit, and goal oriented, use of the properties of the operations as instruments for proving. 
Furthermore, proving, can be interpreted as an algebraic way to handle numerical expressions, thus 
constituting a possibility of moving from arithmetic to algebra (4.2.2.1), coherently with the 
approach to algebra that we previously described (see 4.3. ). 

The first definition (Def 10:) is derived directly from the sphere of practice of computation of 
expressions, a source of phenomenological experience, in the paper and pencil environment, that in 
this phase we assume as a prerequisite. We introduce a new practice, which is oriented toward a 
theoretical perspective of proofs within a theory, and which is presented as distinguished from the 
sphere of practice of numerical computations. The dinstinction between the two practices 
constitutes a source for setting up mathematical discussions, as polyphonies of articulated voices 
(see 0) on the issue of comparison of expressions: pupils’ experience in numerical computations 
constitutes a source for the voice of a consolidated practice, whilst pupils’ new experiences in 
proving equivalencies, constitutes a source for the voice of theory.  

At this point, because we aim at an evolution of the idea of proving, toward the mathematical 
idea of proving within a theory, according to our hypotesis we need a sphere of practice providing 
pupils with adeguate phenomenological experience, to be exploited by the teacher to orchestrate 
mathematical discussions. Consequently, L’Algebrista is introduced in classroom practices, as an 
environment where it is possible  both to check and to prove equivalencies between expressions. 
The two kinds of practices, are kept separated by the interface of the software, which presents 
buttons corresponding to the properties of the operations, as dinstinctly separated by buttons that 
execute numerical computations (see Figure 15).  

 
Figure 15 Teoria2, this contains buttons corresponding to axioms such as the basic properties of the operation; it 
contains a button incorporating the definition of power; it contains buttons for numerical computations. 

Ativities of various kinds are proposed to pupils, focusing on the central idea of comparing 
expressions and proving equivalencies37, to be accomplished with L’Algebrista. In this way, 
because of the nature of the microworld, pupils engage in activities where the properties of the 

                                                
37 This includes activities requiring checking and proving equivalencies, and activities presenting pupils with given 
proofs whose sequences of used commands are hidden,  and requiring them to individuate the original sequence of 
commands (see 13.2. ) 

 
 

Properties of the operations buttons Buttons executing 
numerical 

computations  
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operations, thanks to their computational counterparts 6.2. , acquire the status of instruments, by 
means of which it is possible to transform one expression into the other, thus they become a means 
to consruct a proof of the equivalence betwee two expressions. In parallel, similar activities are 
proposed within the paper and pencil environment, so that we have two spheres of practices 
concerning proving, which constitute sources for different voices to be exploited by the teacher to 
orchestrate mathematical discussions38.   

The natures of the phenomenological experiences related to the two environments are very 
different: in the case of paper and pencil the pupil is in charge of producing himself/herslef the 
effects of applying a property of the operations to a given expressions; whilst in L’Algebrista such 
effect is produced by the computer, so the pupils can experience its effects phenomenologically, in 
the sense that it is a phenomenon which is independent external to the pupil. Buttons in 
L’Algebrista are real instruments for transforming screen expressions, thus they can be the source 
of  the instrumental aspect of the meaning of the operations properties; on the other hand, in the 
paper and pencil environment, there is no instrument, external to the pupil, corresponding to the 
properties of the operations. Again, such difference can be exploited as a source for voices to be 
orchestrated by the teacher in mathematical discussions: the voice of L’Algebrista, and the voices of 
the single pupils. Moreover, in paper and pencil, a pupil may transformation an expression into 
another one without being conscious of the equivalence principle he/she is using. It may happen 
that pupils learn how to transform an expression, but they lose very soon, if they ever had it, the 
counsciousness of the equivalence principles underlying the performed transformations. On the 
contrary in L’Algebrista, in order to transform an expression, one can’t avoid referring to the 
underlying equivalence principles that are identified by the buttons of the microworld. In fact, it is 
not possible to transform an expression without clicking on a button. The button functions as an 
external control which determines pupils taking counsciouness of the equivalence relationship 
underlying the transformation they are performing. 

What pupils experience phenomenologically is expressed in written individual reports, and later 
within mathematical discussions, which can be orchestrated on the basis of different voices coming 
alternatively from the sphere of practice and that of theory. In fact, thanks to the introduction of 
L’Algebrista, and thanks to the dinstinction between proving and checking, the pupils are given 
several kinds of practices, and corresponding voices to be used in mathematical discussions: 
checking and proving in L’Algebrista, and checking and proving in paper and pencil. For what 
concerns possible voices of the theory, these can be represented either by the class algebra 
notebook, by the teacher, and by L’Algebrista, which, because of the mathematical knowledge it 
embeds, can be taken as representative of mathematicians, just as the teacher is.  

Through the parallel development of activities within L’Algebrista, and the paper and pencil 
environment, and through verbalisation activities, we begin to build a relationship between the two 
environments, either in terms of analogies, either in terms of differencies. Such relationship, as we 
already discussed, is central if we want pupils to correctly interpret L’Algebrista as a mathematical 
instrument (see 6.3. ), and is fostered also through verbalisation activities such as class discussions, 
and edition of individual reports.  

8.1.3.2.Research notes 

During the pilot study (7.1. ), we dedicated a few weeks to the phase of numerical expressions, 
because we assumed that, before being able to master literal expressions, pupils needed a certain 
level of mastery of numerical expressions in the proposed algebraic way. The data collected 
suggested to us that this level of mastery did not need to be very high, and we also observed that a 
long time spent on numerical expressions resulted in a decrease of pupils’ interest and involvement 
                                                
38 For instance asking pupils questions such as “what would L’Algebrista do here?”, “Would L’Algebrista accept this?”, 
etc.  
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in the proposed activities. Consequently, in the following experiments the time dedicated to 
numerical expressions was reduced gradually to only a few lessons.    

8.2.  Literal expressions 

Once the practice of proving equivalencies of numerical expressions is somehow consolidated, 
we can approach literal expressions, on the basis of a practice which is algebraic, and does not need 
to be radically changed in order to be extended to the case of literal expressions. In order to do so 
we need to introduce an equivalence relationship between literal expressions.  

8.2.1. Equivalence of literal expressions 

On the basis of the equivalence relationships defined for numerical expressions, two new 
definitions are proposed for the case of literal expressions. 

Def 15: Equivalence by means of computations: two algebraic expressions are said to be 
equivalent if, for any number that we substitute for letters39, we obtain two equivalent 
numerical expressions. 

Def 16: Equivalence by means of the properties of the operations: two algebraic 
expressions are said to be equivalent iff, it is possible to transform one into the other (or 
both into a third one) by means of the properties of the operations. 

Thus, as in the case of numerical expressions, we can compare literal expressions, and eventually 
prove their equivalence or non equivalence. 

If we interpret the properties of the operation as the axioms of a theory, we can reformulate the 
latter as: 

Def 17: Equivalence by means of the axioms: two algebraic expressions are said to be 
equivalent iff, it is possible to transform one into the other (or both into a third one) by 
means of the axioms of a theory40. 

8.2.1.1.Didactical notes  

At this point of their scholastic history, even if we don't assume pupils to be familiar with literal 
expressions, these mathematical objects are not completely new to them. In fact they have been 
facing literal expression at least in two forms: in the forms of formulas for computing areas of 
geometrical figures; in the form of formulas for transforming expressions, which is the case of the 
properties of the operations, and in the inscriptions on the corresponding buttons of L’Algebrista 
(see 6.1.2.3). As a consequence, to introduce symbolic manipulation of literal expressions, we chose 
a type of activity which stands between the two practices: we present pupils a set of formulas 
representing the area of a geometric figure and ask them to chose which of the given formulas are 
correct (see 13.3. ). This involves either an interpretation of the formulas as computation procedure, 
or a need for comparing the formulas, because if two expressions are both correct, then they must 
give the same numerical results once used as formulas for computing areas. Drawing on the 
outcomes of this introductory activity, the teacher orchestrates verbalisation activities leading the 
class to share the new definitions of equivalencies, which are then reported in the mathematical 
notebook.  

The key idea of this phase is to situate literal expressions in the context of two consolidated 
practices that correspond to the two principles of equivalence that we defined, thus offering a sort of 
                                                
39 Of course a chosen number has to be substituted to every occurrence of the chosen letter in both the expressions. 
40 In general here we refer to the axioms of rings of polynomials with rational cohefficients, in fact, what is usually 
called “expression” in school mathematics, can be interpreted as a polynomial. With that axioms, thanks to the 
foundamental theorem of algebra, it is possible to prove that the three definitions are equivalent.  
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"ready made" sphere of practice for comparison of literal expressions. In other words, instead of 
introducing algebraic practices and algebraic objects at the same time, we firstly introduce algebraic 
practices on more familiar arithmetical objects, the numerical expressions, and once such practices 
are consolidated, we enrich the practices with new algebraic objects, i.e. literal expressions. The 
practices concerning numerical expressions can evolve and include literal expressions, thus 
constituting a new sphere of practice, that of symbolic manipulation. 

8.2.1.2.Research notes 

Within the proposed introductory activity (see 13.3. ), pupils are not only required to conjecture 
which of the proposed formulas are correct, but they are also asked to justify their answers. They 
are left free to use both L’Algebrista and paper and pencil, and are left free to refer, if they want, to 
any of the definitions of equivalence on numerical expressions, which constitute their background 
knowledge. 

Since we approached this phase for the first time during the pilot study, we observed an 
interesting behaviour amongst the pupils. During the phase of production of their conjecture pupils 
proceeded in a variety of ways, all leading them to the individuation of at least one specific correct 
formula. On the contrary, in the justifying phase, all of them proceeded in the same way: they 
individuated a correct formula as a referent, and proved the correctness of other formulas by 
transforming them into the first one by means of the properties of the operations (some did it in 
paper and pencil, others with L’Algebrista). This behaviour suggested to us that this kind of 
activity, situated in that particular moment of the educational sequence, resulted to be an effective 
junction node between numerical and literal expressions. As a consequence it became one of they 
key milestones also in the sequence followed in the long term experiment.  

8.2.2. Proving equivalencies of algebraic expressions 

As far as literal expressions are concerned, the considered definitions of equivalence (see 8.2.1) 
play different roles at an operative level, the first one is optimal for proving that two expressions are 
not equivalent, while the latter ones are optimal for proving that two expressions are equivalent. 

For instance we shall consider the example of the expressions A•B+A•(C+D) and 
A•(B+C)+A•D, we can substitute numbers for the letters, for instance we can substitute A with  3, 
B with  2, C with  5, and D with  4, thus obtaining the two numerical expressions that we compared 
in section 8.1.2.1 and that we proved to be equivalent. However, if we want to prove, by means of 
computations (Def 15:), that the given literal expressions are equivalent, then we will need to 
perform infinite substitutions of numbers to the letters, thus in practice this definition cannot be 
used to prove equivalencies. In that case, instead, it is possible to use the equivalence by mean of 
the properties of axioms, as shown in the example of Table 6. 

 Expression 1 Expression 2 

Step 0 A•B+A•(C+D) A•(B+C)+A•D 

Step 1: distributive property A•(B+(C+D))  

Step 2: associative property of sum A•((B+C)+D)  

Step 3: distributive property A•(B+C)+A•D  
Table 6 Expressions 1 and 2 are equivalent, because it is possible to transform the first into the second by means of 
the properties of the operations. For each step, we reported the property used, and highlighted the sub expression 
where it was applied. 

On the contrary, if one needs to prove that two expressions are not equivalent, the definition by 
means of axioms is not effective; in fact, if one cannot transform an expression into another, it may 
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be the case that he/she simply doesn't see how to do it, but it does not mean that it is impossible to 
do it. In this case it is better to use the definition based on numerical computation, in fact, in order 
to prove that the equivalence does not hold, it is enough to show a counter example; it is enough to 
find a set of number to substitute to the letters which originate a couple of non equivalent numerical 
expressions. From a mathematical point of view it is correct to  move from one definition to the 
other because they result to be equivalent. 

8.2.2.1.Didactical notes 

Within this phase pupils are set activities in which they are required to compare a set of algebraic 
expressions, to conjecture and to prove which of them are equivalent or not equivalent (see 13.4. ). 
The aim is to consolidate the practice of comparing algebraic expressions alternating L’Algebrista, 
and the paper and pencil environment. The related phenomenological experiences will constitute the 
basis for the evolution of meanings related to proofs of equivalencies toward the idea of proving 
theorems within a theory.  

8.2.2.2.Research notes 

Here we observe that the distinction between checking and proving previously introduced (see 
8.1.3) acquires a clearer practical meaning because of the different roles played, in expressions 
comparing activities, by numerical computations and by axiomatic transformations; in fact to 
substitute numbers for the letters turns out to be an optimal method for producing conjecture on the 
possible equivalence of two given expressions. In other words, substituting numbers becomes the 
most immediate way to actually check if two expressions can be equivalent or not. In case the two 
numerical expressions give different results, then they can be interpreted as a counter example 
showing and proving the non equivalence of the two expressions. On the contrary, in case the 
results are identical, one can conjectures that the two literal expressions are equivalent, the 
conjecture can be proved  by means of the axioms. 

8.2.3. Proving theorems and building a theory 

Every transformation of an expression into another one by means of the axioms can be 
interpreted as a proof of their equivalence. Among all the possible equivalencies between literal 
expressions, there are some which in mathematics are considered as more important than others, 
and play a relevant role in standard symbolic manipulation. In fact, the transformation rules used in 
standard symbolic manipulation rely on the equivalences of a particular couple of expressions, that 
can be interpreted as theorems proved by means of the axioms. For instance, in our experiment we 
present as theorems the following principles for manipulating algebraic expressions:  

• Sum of monomials;  

• Rules for managing powers; 

• Rules for managing fractions; 

• "Prodotti notevoli", i.e. standard formulas such as that of the square of the binomial and 
others. 

These theorems, together with the axioms corresponding to the properties of the operations, 
constitute an algebraic theory, the theory of standard symbolic manipulation, i.e. the theory within 
which any standard manipulation constitutes an equivalence theorem. 
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8.2.3.1.Didactical notes 

Any equivalence is firstly derived  through a transformation activity (could it be related to 
L'Algebrista or to paper and pencil),  if it is officially selected as one which deserves to be saved, it 
will be inserted both in the class algebra notebook and in L’Algebrista (in the form of a button). 
Both the decision to select  an equivalence and that of inserting the corresponding theorem in the 
class algebra notebook and in the microworld are the result of a collective decision reached by 
means of mathematical discussions. 

8.2.3.2.Research notes 

In this phase the role of L'Algebrista, as counterpart of paper and pencil, is crucial because of its 
feature of not executing any implicit automatic transformation. In fact, this feature of the 
microworld results to be a motivation for pupils to engage in transformations that they would skip 
in a paper and pencil environment.  

Often symbolic manipulation is presented as a set of arbitrary rules, one independent from the 
other, that must be memorized resulting in an activity that pupils may find difficult to control. On 
the contrary L’Algebrista provides pupils with a context in which symbolic manipulation is 
introduced as the practice of transforming expressions starting from a limited and well identified set 
of shared principles, the properties of the operations represented by corresponding buttons. The 
transformations that is possible to perform in L’Algebrista are all those, and only those, that can be 
realized using the available buttons, which guarantee the correctness of the obtained equivalences. 
Thus, also if one is working in paper and pencil, if he/she is not sure of the validity a performed 
transformation, he/she can still refer to L’Algebrista to find an answer to his/her doubts. In this 
sense, the use of symbolic calculation rules acquire a theoretical meaning that otherwise it would be 
difficult to be grasped. 

L’Algebrista allows the teacher to introduce the control also on transformation rules that are 
already known to pupils and well automat zed. referring to L’Algebrista offer the opportunity of 
make explicit certain transformation steps on which otherwise it would be difficult to direct pupils 
attention. For instance if pupils have to transform the expression A+(-1)•A into 0, in paper and 
pencil they simply cancel A+(-1)•A and substitute it with 0; on the other hand L’Algebrista itself 
does not compute automatically the sums of monomials,  i.e. there is no button which executes this 
step automatically, thus the expression A+(-1)•A can be transformed into 0 only by means of the 
distributive property and other axioms/buttons. Once the transformation steps are made explicit, it is 
possible to interpret them as a proof that A+(-1)•A is equivalent to 0. Because this statement 
appears, also to pupils, to be a useful one, then it is a good candidate for becoming a theorem of the 
class mathematical theory, and thus it is inserted in the notebook and a button is made with the 
Teorematore and added to L’Algebrista. We cited here the example of this theorem because it was 
the first one our pupils proved in the study pilot, and it was on the feedback of that experience that 
we decided to add to L’Algebrista the special feature of enabling users to add buttons, constituted 
by the Teorematore. In fact, the software itself evolved together with the experiment, according to 
the feedback, and according to pupils suggestions. 

8.2.4. Factorisation 

Factorising expressions is one of the main issues of the curriculum for grade 9 in Italian school. 
given an expression, it consists  of the activity of finding another equivalent expression which is 
structured as the product of other expressions. Factorised forms are very important, for instance in 
the solution of problems involving finding the zeros of polynomials. 
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8.2.4.1.Didactical notes 

The sphere of practice of comparing expressions and proving equivalences, provides pupils with 
substantial experience involving either goal oriented manipulations of expressions, either 
substitutions of numbers to the letters. In the first part of the sequence, symbolic manipulation  is 
devoted to transform expressions, to prove equivalence, in the second part pupils are presented with 
a new kind of problem. Given two expression, one may question what numbers can be substituted 
to the letters in order to originate numerical expressions which, once computed, lead to the same 
result.  

In order to solve this kind of problem, previous experience of transformation becomes 
fundamental, providing a way of reformulating the problem in terms of transforming an expression 
into an equivalent one suitable for solving the problem. 

Such new kind of problem introduce a new practice, that of goal oriented symbolic 
manipulations, not aiming at proving equivalencies of expressions, rather to find solution of 
equations.  

8.3.  Equations 

The last step of our educational sequence is that of introducing the issue of solving equations. 
This issue is introduced as a natural evolution of the practice of comparing expressions. 

8.3.1. Introducing equations 

We interpret equations as a an open question: "given two literal expressions, what are the 
numbers that, substituted for the letters, originate equivalent numerical expressions?". This question 
can be posed for any couple of expressions, even equivalent ones, in fact in that case, the set of 
solutions corresponds to the whole set of numbers within which they can be searched, which in our 
case has infinite cardinality. However, the most interesting case is that of non equivalent 
expressions, in that case the problem is to individuate set of solutions, if there are any.  

In algebra there are techniques for solving equations that are based on two main kinds of 
transformations; given the equations A=B (where A and  B are algebraic expressions) it is possible: 

• To transform A  and/or B into expressions A' and B' which are respectively equivalent to A  
and B; 

• To transform A  and/or B into expressions C and D which are not equivalent to A  and B, but 
the new obtained equation C=B is equivalent to the equation A=B in the sense that it has the 
same set of solutions; 

The first type of transformations corresponds to the set of transformations of expressions, 
discussed in the previous sections, those which pupils are familiar with. 

The second type of transformations corresponds to the standard algebraic techniques for solving 
equations , which consists in transforming them into a new equation whose form makes it easier to 
see what are its possible solutions. For instance, given the equation x2-x=0 one can transform it into 
x(x-1)=0 and then, using the properties of the neutral element of the sum, it is possible to deduce 
that the numbers 0 and 1 are solutions of the equation. Or, given the equation x-2=3 one can 
transform it into x=5 and then deduce that the number 5 is a solution of the equation.  

8.3.1.1.Didactical notes 

As said above, the issue of equations is presented in a problematic way, starting from the 
background of the practice of comparing expressions. The main question about solutions (i.e. the 
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numbers that, substituted into the two expressions, originate two equivalent numerical expressions), 
is presented by means of mathematical discussions, leading to the formulation of two basic 
techniques for helping in solving this problem, which is named as the problem of solving equations. 
The principles individuated are the following: 

• A=B <=> A-B=0 

• A=B (with B=/=0) <=> A/B=1. 

Mathematical discussions leads to an agreement of accepting these principles as axioms to be 
used for solving equations, thus they are reported on the mathematical notebook and two 
corresponding axioms/buttons are introduced in L’Algebrista (by means of the Teorematore). 
Consequently other standard principles for solving equations are proved by our pupils by means of 
these two principles and by means of the theory of equivalent expressions they previously 
developed. In other words, rules such as that of cancelling elements of the two terms of equations, 
or that of adding or multiplying the two terms for a given expressions, are not presented as ready 
made principles. On the contrary, they are produced by the class as theorems, following the same 
educational approach used for theorems concerning manipulation of simple expressions. Each of the 
produced rules is inserted in the notebook and in L’Algebrista in the form of a theorem/button.  

This phase of introduction to equations represents the final step of our approach to algebra with 
L’Algebrista, in fact, once introduced, the principles for solving equations, the software turns out 
not always to be very effective as a practical instrument for proving equivalencies of equations. 
This leads our pupils to feel the need to get rid of an instrument which at this point results in being 
unable to do things that they are able to do. From this point, the teacher begins to refer to 
L’Algebrista less frequently in order to favour pupils getting rid of L’Algebrista; the aim is to point 
toward the direction of a mathematical knowledge freed from references to L’Algebrista, a 
knowledge whose class counterpart is represented in the mathematical notebook of the class. 

8.3.1.2.Research notes 

In the pilot study we did not reach the phase of equation, the experiment ended after the first 
activities of theorem proving within the domain of algebraic expressions. In the following long term 
experiment we went further, and the idea of approaching equations came directly from the 
experimenting teacher, who introduced, by her own initiative, pupils to the problem of equation 
solving in terms of comparison of expressions, as we described above.  

Consequently, following the teacher's initiative, and at the requests and suggestions of the pupils, 
we developed a new feature of L’Algebrista, that of the speaking buttons (see 6.1.2.4) which 
previously were not implemented. This feature was essential for buttons requiring the user to input 
the expression to be multiplied with, or summed to, the two terms of a given equations. 

Finally, the feedback we got from the equation phase, gave us clear indications as to what can be 
a good moment for quitting L’Algebrista along the development of students scholastic history.  
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9.  Exploiting the relationship between two fields of experience as a 
mean for guiding the evolution of meanings 

In the previous chapters we described our approach to algebra as a theory and our educational 
perspective based on the idea of using a software, L'Algebrista, as an instrument of semiotic 
mediation.  

The educational goal identified was that of introducing pupils to symbolic manipulation, and to 
the idea of theory. Within this chapter we will describe/ highlight some elements characterising this 
twofold objective and show how they evolved, along the experimentation, in the protocols produced 
by our pupils. The analysis we are presenting is aimed at showing the relationship between pupils 
(learning) achievements and L'Algebrista used as an instrument of semiotic mediation. We will end 
up showing an example of how the microworld can be used within our theoretical framework in 
order to guide the evolution of the meanings that are relevant to our educational goals.  

9.1.  Preliminary notes 

The experiment was carried out in (involved) five different classes (we will call them  class 
1998, class 1999, class 2000, class 2002, and class 2003, according to the year when each of the 
groups started the teaching experiment). Each experiment lasted several months, aiming at covering 
most of the Italian algebra curriculum for grade 9, and part of the curricula of grade 10, for schools 
with scientific orientation ("Liceo Scientifico"). The aim of this chapter is not to give a 
comprehensive description of all the data collected along with our research, but it is a qualitative 
one, and we aim at analysing only some key issues concerning our educational goals and our 
research objectives. Thus we are going to use protocols picked from the data collected in all the five 
experiments, specifying in each case which class the data is taken from.  

9.2.  Symbolic manipulation 

In our approach we interpret symbolic manipulation as an activity of goal oriented 
transformations of expressions, such kind of activities are viewed as means for solving problems. 
Such view of symbolic manipulation, and the ability to exploit it in problem solving activities, is 
one of our main educational goals. However, as a propedeutic sub objective, according to the 
indications found in literature review, we chose that of reaching a structural interpretation of 
algebraic expressions, as opposed although complementary to the procedural interpretation typical 
of arithmetic (see 4.2.1). Within an procedural view, algebraic expressions are viewed simply as 
processes of computation, whilst within a structural view they are viewed as objects  and as such it 
is possible to involve them in processes that can leading to the production of new objects and 
related meanings ([73], Sfard, 1991; [74], Sfard et al. 1994). For what concerns symbolic 
manipulation, the mathematical objects that we will take into account are expressions (both 
numerical and literal) and symbols of equivalence, while the processes we will focus on are that of 
numerical computation of expressions, and that of expression transforming. We will show how the 
experimentation led pupils to a structural view of expressions, and to interpret symbolic 
manipulation in terms of activities of theorems proving within a theory. In our analysis special 
attention will be put on the role played by a microworld, L'Algebrista. We will proceed by 
describing the starting situation, and then will discuss some key steps of the evolution of pupils 
approach to the subject.   

9.2.1. Pupils' procedural view of numerical expressions 

Pupils, at the beginning of our experimentation, according to their scholastic background, were 
familiar basically only with numerical expressions, and interpreted them procedurally, as our 
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preliminary tests confirmed. In fact, expressions were interpreted as something which must be 
computed following predetermined procedures, and an equal sign (“=”) put on the right of an 
expression was interpreted as an input for starting computation. Moreover, although pupils had 
some notions concerning the properties of the operations, such properties were interpreted basically 
as computational rules. Such an procedural view led pupils to produce statements as the following 
paradigmatic ones (the text of the whole test can be found in appendix 13.1. ). 

Question Pupil’s answers41 

T2. Write what you know concerning each of the 
following words and phrases, for instance you 
can write phrases containing them, or you can 
explain their meaning. You can also write 
examples. 

[…] 

13. Expression 

(see T 3 in appendix 13.1.   for the complete text 
of the exercise) 

17. "Expression = set of calculations" 

18. "Expression = set of operations with or 
without brackets that have their rules"  

19. "Expression = a series of operations 
connected on to the other"  

20. "Set of mathematical calculations"  

21. "Set of operations"  

22. "I developed (ita.: “sviluppato”) a very long 
expression: Ex. 5+3-4�(6+5)=+8-44=36"  

23. "A sequence of operations. Ex 2• (5+4)"  

24. "Set of operations, attached on to the other"  

25. "A big operation with a certain number of 
numbers, letters, sums, divisions. Within this 
mega-operation you must respect the order of 
the brackets"  

26. "A set of operations". 
T 1. Observe the following writings, for each 

of them explain why you think it is correct, or 

why you think it is wrong. 

• […] 

• 15 + 6 · 4 + 19 · 4 + 11 = 15 + (6 + 19) · 

[…] 

• 8 + 9 · (3 + 2) - 17 = 8 + 27 + 18 - 17 

• […] 

(seeT1 in appendix 13.1.   for the complete text 
of the exercise) 

1."15 + 6•4 + 19•4 + 11 = 15 + (6 + 19)•4 + 11  

it is wrong;  

8 + 9•(3+2) – 17 = 8 + 27 + 18 – 17  

it is correct because of the distributive 
property"  

2."8 + 9•(3+2) – 17 = 8 + 27 + 18 – 17  

it is wrong because firstly one must compute 
the brackets"  

3."15 + 6•4 + 19•4 + 11 = 15 + (6 + 19)•4 + 11  

it is wrong because, I think that the procedure 
is the following one: 15+24+76+11=126"; 

 

Protocol 1We report on the left the text of the preliminary test submitted to pupils; on the right we report some of 
the answers given by pupils of Class 1998, grade 9. For each question, each number, in the answers’ column, stands 
for the answers given by a single pupil. 

                                                
41 We copied and translated pupils’ answers keeping the formatting of their answers, and using the same symbols using 
by them. In other words, also the symbols “=” is used by the pupils exactly how it is reported in this table. 
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pupils’ answers give us an idea about pupils approach to numerical expressions, which turns out 
to be rather procedural. In fact expressions are seen as set or sequence of operations that have to be 
executed according to certain given rules that cannot be changed and in particular cannot be 
inverted, leading to a numerical result. At the same time, the symbol "=" seems to be interpreted as 
representing asymmetric equivalence relationship, and it has a strong directionality from left to 
right pointing from an expression toward its numerical result. Finally the rules of precedence are 
interpreted only in terms of the order to be followed to execute operations, and they doesn't seem to 
be interpreted in terms of the structure of the expression, which is seen more as a process to be 
executed, then an object with its structure.  

Along with the experimentation pupils' view of expressions showed to evolve, leading to more 
structural behaviours. We will bring some evidence of such evolution, also discussing how 
L’Algebrista and the followed educational approach influenced such evolution.  

9.2.2. Splitting the word “calcolo” (computation) into the words “verifica” (check) and 
“dimostrazione” (proof) 

In Italian language, in school mathematics, the word most commonly used for symbolic 
manipulation, is the word “calcolo” (en.: “computation activities” or “symbolic manipulation”), 
which is polysemic in the sense that it refers both to numerical computations and to transformations 
of expressions based on transformation rules derived from the properties of the operations. The first 
interpretation of the word is consistent with an procedural view of expressions, as that showed by 
pupils at the beginning of the experiment. The second interpretation is consistent to the educational 
aim of our experiment, according to which, symbolic manipulation is also an activity of 
transforming expressions by means of axioms. Our aim was thus of associating to the word 
“calcolo” both the possible interpretations. Starting from the fact that pupils were mainly oriented 
toward the first interpretation as “computation activities”, we split on purpose the word “calcolo” 
into two different words, “verifica” and “dimostrazione”, and exploited L’Algebrista as an 
instrument of semiotic mediation in order to give relevant meanings to these words. Below we are 
going to discuss further more the polysemy of the word “calcolo” in order to explain more in details 
our choice of splitting it into two words corresponding to two different practices.  

The word Calcolo, among other meanings, is used to refer to algebraic computations, including 
both, numerical computations, and rule based computations. Calcolo, in general, refers to both, 
arithmetical and algebraic ways for handling expressions. However, such a word is associated 
mainly to the activity of “calcolare espressioni” which in the case of numerical expressions means 
“to compute the numerical result” whilst in the case of literal expressions means “to expand and 
simplify the expression”. In both cases one can proceed either computing the results of operations 
between numbers (when possible), or by using computational rules derived from the properties of 
the operations. In standard Italian school approaches, pupils experience a lot of Calcolo with 
numerical expressions, then they are presented literal expressions, and asked to “calcolare” them, 
that is, the calcolo of numerical expressions is extended to literal expressions, coherently to the 
interpretation of algebra as generalized arithmetic. This can result in pupils’ difficulties when the 
differences between the numerical case and the literal case are not enough highlighted and 
elaborated, which is often the case when algebra is presented as generalized arithmetic. In section 
4.2.1 we described the difficulties of Francesca, a 10th grade pupil that we interviewed, she could 
not see the supposed continuity between numerical and literal expressions, simply because with 
numbers you can compute a result, while with letters you cant, you get stuck, to use Francesca’s 
words: "[…] Because if I am given 10+3 whilst…[ if you give me] a•b+c+d I get stuck… (laughs) I 
can’t work it out.". The pupil, during the interview explained us that her teacher kept telling her that 
computing with letters is the same of computing with numbers, but she couldn’t see why. We 
hypothesise a misunderstanding due to the polysemy of the word calcolo how it is used in Italian 
schools, we argue that for the teacher the word calcolo, for numerical expressions, referred either to 
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numerical computations, and to rules based transformations. As a consequence the supposed 
continuity was based on rules based transformations. On the other hand, for Francesca the word 
calcolo probably referred simply to numerical computations, thus she couldn’t see the supposed 
continuity. The example showed a lack of clarity concerning the meanings associated to the word 
calcolo. moreover, our preliminary tests suggested us that pupils could not always manage both the 
arithmetical and algebraic meanings condensed in the word calcolo, even if they were able to 
compute or simplify expressions.  

The key idea of our approach is situated exactly at this point, in fact, if we want to introduce 
symbolic manipulation within a theoretical perspective, the main focus of our activities has to be on 
transformations of expressions by means of the axioms of a theory. In other words we propose to 
interpret the rules based transformations of the calcolo as transformations based on the properties of 
the operations, which we take as the axioms of our algebraic theory. If in previous pupils experience 
the most relevant meanings of the word calcolo were the arithmetical ones, with the introduction of 
literal expressions, we wanted to introduce the algebraic meaning of calcolo, fostering its evolution 
toward a theoretical view of symbolic manipulation. As a consequence we wanted to distinguish 
clearly the two different meanings associated to the word calcolo in order to avoid confusion and 
foster the evolution of both meanings within a theoretical perspective.  

The first step of our intervention was thus to introduce, through a class mathematical discussion, 
the idea of comparing numerical expressions questioning their equivalence relationships. Numerical 
expressions could then be compared either by means of numerical computations either by means of 
transformations based on the properties of the operations, which the teacher, on purpose, began to 
call also “axioms”. This kind of activity of transformation becomes the core of the activities 
proposed to pupils, and substitutes the activity of “calcolare” (“compute numerical results” or 
“simplify”) with which pupils were familiar prior to begin the experimentation. The word calcolo 
and the activities of calcolare are on purpose eliminated, at the beginning of the experiment, from 
class practices. As we said, we wanted to split algebraic handling of expressions from arithmetical 
handling of expressions, as a consequence, given the mathematical problem of comparing 
expressions, we introduced two new words: verificare and dimostrare, which in this thesis we 
translated with “to check” and “to prove”. The meanings of the new words, as they had been 
introduced in class practices, are strictly tied to the idea of comparing expressions in terms of their 
equivalence relationship. In fact two expressions, in our experiment, are considered to be equivalent 
if either their numerical results are the same, or if it is possible to transform one into the other using 
the axioms of the chosen theory. Once these definitions are discussed and shared by the class, the 
teacher introduces the new words to check and to prove (ita.: “verificare” and “dimostrare”) as 
referring to the two ways to define equivalencies of expressions. To check that to expressions are 
equivalent means to compute their numerical results and to check if the obtained numbers are the 
same, whilst to prove that two expressions are equivalent, means to transform one into the other by 
means of the given set of axioms42.  

The new introduced words structure a distinction between the arithmetical and the algebraic 
meanings of the word calcolo which is now split respectively in check and prove (or proof). This 
distinction is forced, on purpose by the teacher, and it is to be considered as temporary. In fact, the 
meanings fostered through this distinction between words and the relative distinction between 
activities, are meant to be merged again in the word calcolo once the experimentation is over. Our 
hypothesis is that of creating solid algebraic meaning, as opposed to arithmetical meaning, and that 
pupils internalised them as such; after that they can merge such meanings in the polysemic word 
calcolo and be able to manage  its different meanings.  

                                                
42 Of course, the chosen axioms are discussed in class, we generally begin considering only the properties of the 
operations, and then add gradually other needed axioms to the theory, as we explained in chapter 8.  
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In the following we are going to show the role played by L’Algebrista in the creation of 
meanings for the words check and prove.  

9.2.3. The structure of an expression: the role of the selecting tool of L'Algebrista 

As observed in section (6.2.1), L'Algebrista expressions, differently from paper and pencil 
expressions, embed their mathematical tree structure evoking it by means of the modalities of 
interaction with the software. In fact in this microworld, in order to transform an expression, the 
first thing to do is to select a sub expression of the expression, and then it is possible to apply a 
command on the selected part, by simply clicking on the corresponding button. The act of selecting, 
is unavoidable, and at the same time L’Algebrista doesn't allow the user to select subparts which are 
not sub expressions from an algebraic point of view. For these reasons we hypothesised that the use 
of the selection tool could be used as an instrument of semiotic mediation in relation to the tree-
alike nature of the structures of algebraic expressions, contributing to the evolution of a structural 
perspective. The experimentation confirmed our expectations indicating how the selection tool 
could be exploited as an instrument of semiotic mediation, as we are going to clarify in what 
follows, by analysing some paradigmatic examples.  

9.2.3.1.Importing the selection tool into the pencil and paper environment 

The first example we consider is situated at the very beginning of the experimentation; just after 
pupils had been working with L'Algebrista for the first time, in their Laboratory, pupils are 
presented,  as homework, two different activities: 

• on one hand, pupils were presented two chains of transformations produced within 
L'Algebrista; for each transformation step the information on the use of buttons and the 
selected sub expressions was hidden, and pupils were required to indicate,  what button was 
used and what sub expression it was applied on (see activity CS 1 in appendix 13.2. ).  

• on the other hand, pupils were asked to check (by means of numerical computations) and 
prove (by means of axioms based transformations) equivalencies of given expressions in the 
paper and pencil environment (see activity CS 2 in appendix 13.2. ); 
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The two tasks are to be accomplished without using L'Algebrista, which actually they do not 
have at home; so at the moment they produced the protocols we are analysing, the microworld was 
not available at all to them. 

For what concerns the first of the two activities, all the pupils behaved in a similar way, by 
somehow imitating L'Algebrista, as shown by the protocol produced by Nicola in Protocol 2.  

 
Protocol 2: Nicola (class 1998, grade 9), for each step, highlights with a marker the sub expression where he thinks 
the button was applied. 
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The pupil, in order to indicate what piece of expression each button was applied to, uses a 
marker to highlight the chosen part, producing a mark which is very similar to how the effect of a 
selection looks like in L'Algebrista. For instance, in L'Algebrista, the first selection performed in 
the case of Protocol 2, would appear exactly as "3 • (2 • 5) + (2 • 3) • 5 + (-60)", this suggests that 
the selection sign introduced by Nicola, comes directly from the selection tool of L'Algebrista, 
keeping some characteristic of its appearence.  

this sign, clearly derived from the practice within L'Algebrista, is used by Nicola only in the first 
activity, which recalls directly what was done in the microworld. In fact, in the case of the second 
task, the pupil behaves differently: he did not use  any sign interpretable as a "paper and pencil" 
counterpart of the selection tool, as shown in the Protocol 3. Nicola correctly transforms the 
leftomost expression into the rightmost, however, we observe that he skips some steps, in the sense 
that when he applies the commutative property, he applies at once, that of the sum and that of the 
multiplication (see steps from line 1 to line to and from line 5 to line 6). In other words, even 
though he recalls explicitly the practice of L'Algebrista (se for instance the use of the symbol "= =" 
and writing "Bottone a rischio"), Nicola syntesises transformational steps that probably are obvious 
for him, even if they are not for L'Algebrista. 

 
Protocol 3 The protocol produced by Nicola (class 1998, grade 9) for activity CS2 doesn't present any attempt to 
highlight the sub expressions where the used transformation principles are applied. 
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as far as the first activity is concerned, similar behaviour can be found in all the students’ 
productions, a variety of signs are created representing the selection tool; for instance, Serena 
(Protocol 4), highlights "selected" expressions, imitating L'Algebrista, but differently from Nicola, 
she highlights the chosen sub expressions by inscribing them in a pencil drawn rectangle. 

 
Protocol 4 Serena (class 1998, grade 9) indicates "selected" expressions by rounding them with hand drawn 
rectangles. 

The second activity was not referred directly to the microworld, in fact in this case Nicola didn't 
do any reference to the selection tool, but he somehow referred to L'Algebrista by using the words 
"Bottone a rischio" (en: "Risky button") which is a clear reference to a button of the software 
(Protocol 3).  

Most of Nicola's class mates did the same kind of reference to the commands of the 
microworlds, however, some of them, in the second activity, behaved significantly differently. It is 
the case, for instance, of Serena. she firstly checks the equivalence of the two expressions, as 
required, by simply computing each expression, following a standard procedure and a standard 
notation, as shown in the extract of Protocol 5. The pupil doesn't write any reference to the selection 
tool, coherently to the fact that computation of numerical expressions is a practice she was already 
well familiar with, before using L'Algebrista. 

 
Protocol 5 Serena (class 1998, grade 9) computes the results of numerical expressions following a standard 
procedure and a standard notation. 
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 Once checked the equivalencies by numerical computations, Serena proves them by means of 
axioms based transformations, as shown in Protocol 6.  

 
Protocol 6 Serena (class 1998, grade 9), proves the equivalence of two expressions in the paper and pencil 
environment; for each step she writes the applied principle and highlights, underlying it, the sub expression where it 
is applied. 

The pupil is for the first time involved in a proving activity within the paper and pencil 
environment, previously she has been experiencing proving equivalencies only once, in the 
computer laboratory, using L'Algebrista. The protocol she produced denounces the tranfer of a 
practice from the microworld into the paper and pencil environment:  through the representation by 
derived signs a link is established between tools and practice in the microworl and signs and 
meanings in the paper and pencil environment, a link that will be elaborated in the following 
discussions  under the guidance of the teacher.  In fact, Serena uses several signs derived from 
L'Algebrista, such as the signs "= =", "BOTTONE A RISCHIO", and "INSERISCI 
ESPRESSIONE"43. These signs start to have a sort of double meaning, one referring to practices in 
L'Algebrista itself, and one referring to an extension of such practices to the paper and pencil 
environment, extension which has to be consistent with the algebra knowledge. We will discuss 
more in details the double nature of these signs in the next sections, here we concentrate on the 
particular sign produced by Serena and referred to the selection tool: for each line of the protocol 
we can see that a part of the reported expression is underlined; in other words, every time she 
applied a transformation rule to a sub expression of an expression, she "selected" the considered sub 
expression and highlighted it underlying it. This practice of underlying sub expressions, and its 
related signs, is clearly derived from the practice of transforming expressions in L'Algebrista, and 
from the selecting tool and has no counterpart in any sign related to previous computation practice: 
in fact, it is not present in the case of the simple numerical computation of this task (see for instance 
Protocol 5), However, even if the practice of selecting sub expressions is derived from L'Algebrista, 
it is interesting to observe that Serena in this case uses a sign which is different (one could say an 
evolution) from that used in the first activity to directly represent the selection tool. Whilest in the 
previous cases she drew whole rectangles, which looked more like the appearance of the selections 
in the microworld, here she underlines the sub-expression, carefully marking the beginning and the 
end . 

This evloution of the sing, from directly representing the selection tool by a copy to evoking it 
through a symbol which keeps its characterising elements, namely marks for representing the 
beginning and the end of the selected expression. It is interesting to observe that the sign, clearly 
derived form the selection tool of L'Algebrista, doesn't have the same functionality, i.e. that of 
being necessary for activating commands. In fact, this new sign seems to have a double 
functionality: on the one hand it gives a support for recognising a sub expression to be substituted 
with an equivalent one, and on the other hand it communicate to the reader what is the sub 

                                                
43 en.: "Insert Expression". 



 

 104 

expression to be transformed. Our interest in such genesis is due to the fact that it witnesses the 
emerging of signs, derived from the practice transformation in the micorworld, in a corresponding 
practice of transformationin paper and pencil. thanks to L'Algebrista a new practice introduced in 
the context of numerical expressions, doesn't seem to have cancelled, or transformed, the previously 
acquired computational practices. Yet, it clearly represents a starting point for a new practice in the 
paper and pencil environment, that we can recognize as consistent with  the algebraic way to handle 
expressions.  

Even if both the activities concerned proofs of equivalencies of expressions, the first one referred 
directly to the microworld, while the second did not, and this was reflected by the behaviour of 
Serena. In other words, we are assisting to the genesis of the practice of proving equivalencies in 
paper and pencil, a practice that is new for Serena and that is derived from the activity of proving 
equivalencies in L'Algebrista. The pupil inherits behaviours and signs from the practice in the 
microworld, and employs them to bring forward the new practice in paper and pencil, but the two 
practices are not totally identified, as witnessed by the use of different signs for selecting sub 
expressions. In fact, the practice of highlighting sub expressions, itself, has different meanings in 
the two environments. In L'Algebrista it is an unavoidable step, which is necessary if one wants to 
apply commands on the expression he/she is working with, and at the same time it can be 
interpreted as a mean for communicating with the computer at the interface level. In paper and 
pencil the practice of highlighting sub expressions is avoidable if the goal is only to transform 
expressions (as Nicola did in Protocol 3), but it can be both an effective means for communicating 
details on the transformation process that is going on, and an effective means for keeping the 
control on the transformation performed. From this point of view it is interesting the case of Serena, 
who avoided using this "selection sign" in the case of standard computations, but employed it in the 
context of proving, where it was required to communicate relevant information such as the sub 
expressions to which each transformation principle was applied. This suggests the presence of a 
double interpretation of expressions, on the one hand they are interpreted a computation procedure 
to be executed (in the case of equivalence checking, see Protocol 5), on the other hand it is possible 
to look at the structure of the expression and extract from it a sub expression highlighting it (in the 
cases of equivalence proving either in the computer microworld, either in paper and pencil, see 
Protocol 4 and Protocol 6). In other words, the written productions of the pupils show evidence of 
the fact that expressions begin to be interpreted not only as processes, but also as objects, made of 
other smaller objects that can be identified; we believe this to be an important step toward a 
structural interpretation of expressions. Such results, as showed by the examples, seem to be 
relatedto the selection tool, which at this point can be used by the teacher as an instrument of 
semiotic mediatation during the collective disussions.  

Behaviours similar to that of Serena, can be found in many of the protocols produced by the 
other pupils, giving birth to a new attitude that later on, after being shared by means of 
mathematical discussions, became a use of the whole class. The attitude is that of underlying (or 
"selecting" by means of other graphic tools) sub expressions, whenever given transformation rules 
have to be applied to them. To sum up, thanks to the selection tool, some pupils originated new 
signs associated to the activity of comparison, these new signs were then shared with, resulting in 
an set of signs (each pupil used his/her signifying forms) all referring to the common meaning of 
sub-expression.  

9.2.3.2.The autonomy of the selection sign 

The use of the selection sign44, however, turns out to be not only a mean for communicating, but 
a real tool available to pupils as an instrument for managing expressions, providing them an 

                                                
44 From now on this is how we will refer to the practice of highlighting sub expressions of a given expression by means 
of some graphic tool. 
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external control of what they are doing. Interesting examples can be found in situations where 
pupils are coping with objects and activities that are new for them. It is the case, for instance, of the 
first activity with letters, in which pupils are required to conjecture which of a set of given literal 
expressions can be interpreted as a correct formula for computing the area of a given geometrical 
figure (see activity CL 7 in appendix 13.3. ). the  activity was carried out in the computer 
laboratory, pupils are left free to work either using L'Algebrista or with paper and pencil, as they 
prefer. Moreover by that moment, in the microworld, they are working with "theory one", which 
includes very few buttons: computation buttons, buttons of the properties of the operations, and 
buttons of the properties of neutral elements, as shown in Figure 16. 

 
Figure 16 The palette of "Teoria 1", i.e. "Theory one". 

We consider the case of Eleonora (class 1999) who first produced her conjecture by reasoning 
geometrically, then, in order to justify her conjecture (they were not required to prove it), she begins 
by "proving"45 by means of geometrical arguments that one of the given expressions is correct (see 
Protocol 8), and then she "proves" the correctness of the other expressions by transforming them 
into the first one (see Protocol 8).  

    1

    2

    3

    4

    5

    6

 
Protocol 7 Eleonora (class 1998, grade 9) transforms the expression on the left into the expression on the right. 
Whenever she uses a formalised transformation rule, she uses the selection tool to individuate were to apply it. 

                                                
45 Eleonora actually usese the word "dimostro" which means "I prove". 
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As already said, this is the very first experience the pupils have with literal expressions, and 
Eleonora finds herself in the need of executing two kinds of transformations: on the one hand 
transformations corresponding to available buttons of L'Algebrista and formalised in terms of the 
properties of the operations (the axioms of a theory); on the other hand transformations that are not 
yet formalised in class practices (and that do not correspond to any available button of the 
microworld). In order to accomplish her task, Eleonora finds herself in the need of using also the 
second kind of transformation, with which she is somehow familiar, in spite of the fact that they 
have not yet been shared and formalised by the class in the form of accepted axioms and 
corresponding buttons of the microworld. The transformations that transform line 2 into line 3 and 
line 3 into line 4 belong to the second category, while the others to the first. The distinction between 
the two kinds of transformations is very clearly expressed in terms of the used graphic signs, in fact 
in the first case, and only in that case, Eleonora uses the selection sign and reports the property 
used. In the other case, in the transformation form line 2 to line 3 she doesn't write anything, while 
from line 3 to line 4 she uses standard signs for deleting terms of expressions by barring them.  

Eleonora is familiar with the selection sign, and with the properties of the operations, as means 
for proving equivalencies with numerical expressions. The protocol shows that she is able to extend 
the practice of equivalence proving to the case of letters, in fact she successfully selects expressions 
and correctly applies properties of the operations. The pupil works on the structure of the 
expression, by selecting sub parts, and transforming them according to the axioms, showing that the 
new objects, literal expressions, are handled in the same way as old objects, numerical expressions, 
according to the similarity of their structures.  

Finally, the fact that, in the case of transformations that do not correspond to available buttons or 
to axioms accepted by the class, Eleonora doesn't use the selection sign, may suggest that this sign 
is not completely independent and is interpreted only as one of the elements constituting the 
practice of transforming expressions by means of axioms or buttons. However, the behaviour of 
Eleonora in her geometrical "proof" (Protocol 9) suggests that in certain situations the pupil is able 
to interpret the selection sign as an istrument to be used to accomplish a task, independently from 
the practice of transforming expressions, and without references to buttons or axioms; in other 
words, it is a sign which can be used as a mean for expressing the structure of an expression. 
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      1

      2

      3

 
Protocol 8 Eleonora (class 1998, grade 9) first produced her conjecture by reasoning geometrically (1), then, in 
order to justify her conjecture, she provides geometrical arguments that one of the given expressions is correct (2), 
and finally she "proves" the correctness of the other expressions by transforming them into the first one (3). 

In fact, in the case the geometrical proof, Eleonora splits the considered expression in two parts, 
and then interprets these two sub expressions as the formulas for computing the areas of two small 
rectangles composing the given figure. What is very interesting is that in order to split the 
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expression, Eleonora simply "selects" the two considered sub expressions using the same graphic 
sign that she uses for selecting sub expressions in transformational activities (see Protocol 9). 

 
Protocol 9 Eleonora (class 1998, grade 9) uses a sign derived from the selection tool of L'Algebrista, as a mean for 
splitting an expression into two sub expressions to be interpreted as formulas for computing the areas of two sub 
rectangles of the picture on the left.  

In other words, the sign derived from the selection tool, and transferred in the paper and pencil 
environment to represent a sub-expression to be transformed, has lost its function in relation to the 
transformation, keeping the meaning of representing the sub-structure of the expression. The sign is 
used by Eleonora both as an instrument for acting upon the structure of the given expression, 
splitting it into two parts, and as an instrument for communicating how the expression can be split 
in two parts. The example shows that the selection sign reached autonomy from the context in 
which it was originated (that of transforming expressions), and is used coherently also in a different 
context, out of the sphere of practice that originated it. The new use of the sign is consistent with 
the old one, in fact the sign here highlights the structure of the given expression identifying two sub 
expressions, however its function is not that to allow the application of a button, but it is to 
represent a decomposition of the expression consistent with the decomposition of the figure. 

9.2.4. Symbols and meanings of equivalence 

The issue of equivalence of expressions is central to our approach to symbolic manipulation, 
which is based on the idea of transforming expressions by means of axioms that keep equivalencies. 
Due to this centrality, each of our experimentation begins with a collective discussion aiming at 
reaching an agreement on what it means that two expressions are equivalent. Such meaning, 
however, is expected to develop, thus often during the experimentation the class needs to re-discuss 
and re-shape it in order to take into account new practices experienced by pupils. Here we are going 
to trace some steps of the evolution of this meaning highlighting the role played by L'Algebrista in 
mediating and shaping it.  

9.2.4.1.Preliminary definitions of equivalence 

The first class discussions of the experimentation are focused on the meaning of the word 
"equivalent", aiming at sharing of a definition of the equivalence of expressions. Such discussions 
highlights several meanings related to the words "equivalente" (en.: "equivalent") and "uguale" (en.: 
“equal”), meanings that are exploited by the teacher to reach an agreement on a shared meaning 
coherent to her intentional knowledge. The teacher exploits the multiplicity of meanings to guide 
the class to reach an agreement on the definition of equivalence of expressions (in terms of equality 
of results). However, pupils could  not reach an agreement on the definition of equal expressions. 
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Along the discussion the teacher exploited the polisemy of symbols such as the written "=" and the 
spoken words "equal" and "equivalent". After the discussion, as a homework, pupils are required to 
write a report of the discussion. 

Protocol 10 is an exemplary case of text produced by a pupil, giving an idea of what kind of 
discussion had been going on in class. 

1. When is it that two expressions are equal? 

2. We discussed about it together in our classroom and it turned out that two expressions 
with the same numbers and the same operations are equal. 

3. Es. 

4. 5+3=5+3 

5. We said that two expressions that lead to the same result are equivalent 

6. 5+3=5+3 

7. But then we doubted  if 5+3=3+5 is equal or equivalent; concerning equivalent we are all 
sure; but 5+3=3+5?  

8. Someone said that it was equal, whilst others said that it was only equivalent: so a 
question raised: 

9. If we apply a property of the operations to an expression, do we obtain equal or 
equivalent expressions? 

10. The sure answer was equivalent, because 5+3 gives 8 and 3+5 is still equal to 8. 

11. On the basis of what we had said, that is, two expressions are equal only if they are 
identical, then the writing  

12. 5+3=4+4 is wrong because the symbol equal is used in the wrong way 

13. And we arrived to state that the symbol = doesn't always distinguish between equal and 
equivalent; 

14. but we didn't succeed reaching a good agreement on when two expressions are equal. 

Protocol 10 Valeria (class 1999, grade 9), writes a report on a mathematical discussion concerning the words equal 
and equivalent. The lines have been numbered by the author of this dissertation. 

Valeria's report illustrates how passionate was the discussion that went on in the class and 
highlights a confusion concerning the meanings of the words "equal" and "equivalent" which are 
interpreted as distinct, although often represented by the same symbol "=". The symbols/words “=”, 
“equal” and “equivalent”, share some meanings, as witnessed by Valeria (line 13) who highlights 
the fact that the symbol "=" can stand for both "equal" and "equivalent". We presented Valeria's 
protocol as an example of the initial fertility of the territory of the idea of equivalence, a territory in 
which the teacher planted the seed of a theroretical perspective for symbolic manipulation: the idea 
of comparing expressions and discussing the criteria for establishing an equivalence realtionship, 
among them, to have the same result and that of applying the properties of the operations (see lines 
9 and 10). 

Other pupils highlighted other salient episodes of the discussion, corresponding to other key 
elements of the ideas of equivalence of expressions and transformations by means of the properties 
of the operations. Let's consider the following excerpt of the report produced by Veronica, Protocol 
11. 

1. […] we wrote an expression and applied several properties of the operations, thus solving it 
into its new forms and we saw that each is equivalent to the others, but we didn't understand 
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if they are also equal. 

2. After having written an expression like this: 2�(3+5)+2�2 and having applied the dissociative 
property of the multiplication with respect to the sum (2�3+2�5)+2�2, there was a new 
observation: not only the first expression is equal to the second one, but also the second one 
is equal to the first one   

 

Protocol 11 An excerpt of Veronica's (class 1999, grade 9) report on the discussion concerning the meanings of the 
words equal and equivalent. The lines have been numbered by the author of this dissertation.  

Veronica (line 1) highlights the fact that the properties of the expressions can be used to obtain 
new "forms" of a given expression, which are all equivalent; moreover (line 2), she reports how 
they indirectly faced the reflexivity of equivalencies and the reversibility of transformations. 

The symbols and the word she uses show the existent confusion, for instance in line 2, she uses 
the word "equal" probably meaning "equivalent". This kind of confusion is also present in the 
protocols of most of her class mates. However, two things seems to be clear, the idea of equivalence 
in terms of computed results (Valeria, Protocol 10, line 5), and the fact that equality implies 
equivalence as witnessed by Tiziano's assertion (Protocol 12): 

"[…] Others claim that two expressions are equal if they are equivalent (have the same 
result). The only certainty that we had is that if two expressions are equal, then they are also 
equivalent". 

Protocol 12 An excerpt of Tiziano's (class 1999, grade 9) report on the discussion concerning the meanings of the 
words equal and equivalent.  

To sum up, pupil's reports show that the discussion highlighted overlapings and differences 
concerning the meanings of the symbols/words "=", "equal" and "equivalent", such symbols result 
to be polysemic, in the sense that often one is used as standing for the others. At this point the the 
reference to one or another of their meanings, is rather instable and mainly unconscious; one of the 
objectives of the teaching intervention will be that of constructing a stable and conscius polysemy 
related both to the symbols "=" an the symbols "equal". 

9.2.4.2.The role of the symbol "= =" derived from L'Algebrista 

On the basis of the outcomes of discussions like the one reported in pupil's protocols in the 
previous paragraph, the meanings related to the concept of equivalence are shaped along the 
experimentation by means of practices involving also L'Algebrista.  

When the microworld is introduced in class practices as a means for comparing expressions by 
checking and proving their equivalence relationships, a new symbol is introduced, that of the 
double equal sign "= =" (a double "=") which can be used as a separator between two expressions, 
allowing the user to insert them simultaneously in the microworld, as shown in Figure 17. The idea 
of using the symbol "= =" is suggested to pupils by the teacher, on purpose, and justyfied also by 
the fact that the symbol "=" cannot be used in L'Algebrista, because it has another meaning. 
Actually the symbol "= =" was originated by technical needs, but resulted to be good choice exactly 
because it originated a new symbol to be used by pupils. 

A key step is that of introducing, on purpose, the symbol "= =" as a means for breaking the 
polysemy of the symbol "=" (discussed in the previous paragraph), and to distinguish meanings 
related to "equality" from the meanings related to "equivalence". The new symbol "= =" is 
introduced as standing for "equivalent", so that the idea of equivalence can be built in relation and 
as opposed to the idea of equality represented by the symbol "=". However, this distinction is 
intended to be temporary. At the end, both the ideas of equivalence and equality are going to be 
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condensed in the sign "=", when its polysemy can be managed by pupils because its meanings had 
been well stated in the practice of equivalence proving.  

 
Figure 17 In L'Algebrista it is possible to insert two expressions one next to the other, separated by the symbol 
"==". Here the first line is the text written by the user, and the other lines are produced by the software after 
clicking on the button "Inserisci Espressione" (en.: "Insert Expression"). In particular, the third line, the one with 
the blue label "Inizio" (en.: "Start"), is situated in the space of the microworld where it is possible to transform 
expressions using buttons, it is upon this line that users commands are to be applied. 

Once two expressions are inserted as separated by the symbol "= =", then the user can 
indifferently transform the leftmost expression or the rightmost expressions, obtaining a new line 
still made of the two expressions, with the resulting modifications, as shown in Figure 18 and 
Figure 19. 

 
Figure 18 It is possible to transform the left most expression by selecting it and clicking on a button, the new 
obtained line is made of the modified left expression and the unmodified right expression. 

 
Figure 19 It is possible to transform the right most expression by selecting it and clicking on a button, the new 
obtained line is made of the modified right expression and the unmodified left expression46. 

In this way, if the aim is to transform one expression into the other, or both into a third 
equivalent one, it is always possible, step by step, to modify one of the expressions using the other 
expression as a target to point at. It is then possible to obtain a chain of lines ending up with a line 
where the two expressions look exactly the same, as shown in the following example. 

                                                
46 In the example, the brackets are added automatically by L'Algebrista, this is a bug of the software with which pupils 
learn to cope easily by using the "Risky Button" (ita.: "Bottone a Rischio") to get rid of unwantd brackets. 
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Figure 20 At each step it is possible to transform one of the two expressions pointing using the other expression as 
a target to aim at. In the case of equivalence proving, the chain of transformations end when a line with two 
identical expressions is obtained. 

The sign "= =" is introduced on purpose by the teacher when pupils are proposed the first 
activities of equivalence proving with L'Algebrista, shaping such practices toward a structural 
perspective. The example shown in Figure 20 is paradigmatic: in L'Algebrista, thanks to the sign "= 
=", the activity of proving equivalencies can be interpreted in a very particular way. First of all to 
write two expressions separated by the symbol "= =" becomes a way to declare the intent of proving 
the supposed equivalence of the expressions. Secondly, starting from the line "A == B" (where A 
and B are expressions), and transforming A by means of the properties of the operations, a new line 
"A1 == B" is obtained where A1 is equivalent to A because of the used axiom. The transformation 
process ends up when we obtain "An == Bm" where An is identical to Bm. The process has a clear 
start, marked by the actof inserting "A == B" in the microworld by clicking the "Insert Button" and 
has a clear end, when an identy is reached. At the beginning of the process the symbol "= =" is a 
declaration of intent of proving the supposed equivalence, and at the end of the process it can be 
interpreted as a statement of such equivalence, on the basis of the produced proof. During the 
process the equivalence relationship of the two expressions is pending, and can be declared proved 
only after the end of the process. Nevertheless, the symbol "= =" is used also in the intermediary 
phase. To sum up a writing such as "A = = B" has at least three different meanings: "declaration of 
intent of proving the equivalence of A and B"; "pending equivalence of A and B" (during the 
proving process); "statement of equivalence of A and B".  

The meanings of the symbol "= =" become strictly related to both the equivalence by means of 
axioms, and the equality as identity; in fact, at the end of the proving process the two final 
expressions are identical, thus equal, thus the initial expressions are equivalent. The symbol 
introduced on purpose in class practice, concerning equivalence proving, brings with itself 
meanings originated in the practice with L'Algebrista, and enriches the fertile territory that we 
described in the previous section concerning meanings and symbols related to the idea of 
equivalence (see 9.2.4.1)..  
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The relationship between the sign of equality ("=") and the sign of equivalence ("= ="), is 
established in relation with the practices triggered by the use of the sign "= =". In fact, such sign 
firstly stands for "pending equivalence" functioning as a stimulus for action, and at the end, when 
the two expressions become equal, we have a stop condition constituted by the obtained identity. 
The opposition between "go further on" and "stop" is determined by the opposition between "equal" 
and "equivalent", pending equivalence corresponds to "go further", whilst equality stands for "stop", 
and after the stop condition the equivalence is not pending any more. 

We are now going to illustrate these considerations drawing from pupils protocols. We start 
going back to the activity CS 2 that we considered in section 9.2.3, a homework (thus the computer 
was not available) which required pupils to compare two numerical expressions, checking and 
proving their equivalence. In particular pupils were asked, to produce two proofs, the first 
transforming the first expression into the second one, and the latter transforming the second 
expression into the first one.  

In the phase of checking the equivalence by means of numerical computations, most of the 
students simply produced a standard computation, without using any symbol derived from 
L'Algebrista, like for instance the case of Serena (see Protocol 13). Serena checks the equivalence 
of the given expressions by computing them separately, using a standard procedure and a standard 
notation. The two computational procedures are both represented as a chain of steps, most of the 
step are separated from the following ones by the symbol "=", meaning that each step is obtained 
from the precedent one. Thus the symbol "=" here is used with a strong directionality, because the a 
computation procedure follows a flow going from the given expression to its numerical result, 
passing several times trhough the symbol "=".  

 
Protocol 13 Serena (class 1998, grade 9) checks the equivalence of the given expressions by computing them 
separately, using the standard procedure and notation for computing expressions. The two computational 
procedures are both represented as a chain of steps separated by the symbol "=", which, in this case, means that 
each step is obtained from the precedent one. Thus the symbol "=" here is used with a strong directionality. 

Differently from Serena, other pupils introduced the new symbol "= =", it is for instance the case 
of Marta, Protocol 14. 

  1

  2

  3
 

Protocol 14 Marta (class 1998, grade 9), in order to check the equivalence of the expressions "7-2+6����(3+4)+5����6" 
and "(3+4+5)����6+7-2", computes them in parallel, separating the two computation procedures by means of the 
symbol "= =" (lines 1 and 2). Only at the end (line 3), when the two obtained expressions are actually identical, she 
substitutes the symbol "= =" with the symbol "=". 
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The task requires pupils to check the equivalence of the expressions "7-2+6����(3+4)+5����6" and 
"(3+4+5)����6+7-2" by computing them. Marta executes the computational steps of the two 
expressions in parallel (lines 1 and 2), writing them one next to the other, separated by the symbol 
"= =": the left side represents the computational steps of the first expressions, while the right side 
represents the computational steps of the second expression. The protocol produced by Marta 
clearly recalls the practice of comparing expressions in L'Algebrista, and in the first two lines the 
symbol "= =" is probably a symbol expressing a pending equivalence. For sure "= =" is not used as 
a mean to state equality, in fact, only in the last line (3), the one with the numerical results, Marta 
uses the symbol "=", instead of using the sign "= =". In this protocol the symbol "=", differently 
from the case of Serena's protocol, doesn't have a preferencial direction, and it is used to state an 
equality relationship between the two results, at the end of the process of computation, coinciding 
with the end of the comparison.  

The practice of comparing expressions in L'Algebrista, is extended by Marta to the paper and 
pencil environment, as witnessed by her use of the symbol "= =", and by the lay out of her protocol. 
As a consequence, the symbol "=", seems to have inherited from the symbol "= =" the property of 
being non directional (as opposed to the strong directionality found in the protocol of Serena 
Protocol 13); in this sense, the symbol "= =" enriches the polysemy of the symbol "=" with 
meanings derived from practices situated in L'Algebrista. In particular in this cases the symbol "=" 
seems to have inherited, from the symbol "= =", the property of being, at least in this situation, non 
directional. This property is typical of a structural interpretation, as opposed to its strong 
directionality in operational perspectives.  

At the beginning of the experimentation pupils were already familiar with computing numerical 
expressions, this may explain why only in isolated cases, like that of Marta, they used the symbol 
"= =" in their computations. However, the activity  CS 2 required pupils also to prove the 
equivalence of the two expressions, by means of axioms (or buttons) based transformations. Such a 
practice is very new for pupils, and actually they had experienced it only in the L'Algebrista. In fact, 
in this case all the pupils referred to the microworld, by using signs directly derived from it. In 
particular, some of them, introduced in their paper and pencil practice the symbol "= =", as can be 
seen in the protocols like that of Nicola (Protocol 3) and that of Serena (Protocol 6), or that of 
Roberto in (Protocol 15). 
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   1

   2

   3

   4

   5

   6

   7

   8

   9

  10

  11

  12

  13

  14
  15

 
Protocol 15 Roberto (class 1998, grade 9) first computes the results of the given expressions by computing them 
(lines l-4 and 5-7). He uses the equal sign to mark the passage from one computation step to the other (lines l-4 and 
5-7), thus the sign results to be oriented from left to right. On the other hand the proofs (lines 8-12 and 13-15) of 
equivalence proposed by Roberto has a layout similar to that of the proofs produced in L'Algebrista, and he uses the 
symbol "= =" as a non directional sign (lines 8-12 and 13-15), as opposed to the directionality of the symbol "=" in 
the first part of his protocol (lines l-4 and 5-7). 

As a matter of fact, the word "equivalent" results to be associated to both symbols, "= =" and 
"=", resulting into a polysemy derived from different contexts of practices. Such polysemy can be 
exploited by the teacher in order to build specific aspects of the meaning of the word "equivalent" 
that come from different spheres of practice. In particular, as showed by the example of Marta 
(Protocol 14), one apsect of the meaning, such as that of the bidirectionality of equivalencies, can 
be derived from the practical context of L'Algebrista. The microworld provides the potentialities, 
and teacher's guidance together with the purposeful introduction of the symbol "= =", aim at leading 
pupils to reach control on the meanings related to the symbol "=" and to the ideas of equality and 
equivalence. 
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9.2.5. Pupils controlling symbols and meanings of equivalence  

In the previous sections we firstly presented protocols taken from the beginning phase of 
respective teaching experiments, then we presented protocols taken from a key intermediate phase, 
that of the introduciton of literal expressions. At that stage pupils are not yet completely able to 
manage all the different meanings and symbols related to the idea of equivalence, however, the 
examples that we presented show how symbols and meanings are being shaped towards a structural 
perspective. Going on with the sequence of activities, pupils' mastery of the idea of equivalence, 
and related symbols, increases. Evidence is provided by the answers given by pupils of class 2003 
to a dedicated test (see appendix 13.8. ) that we subtmitted to them at the end of the experimenation, 
after they had just approached the problem of solving equations. In Protocol 16 and Protocol 17 we 
report some excerpts of the answers produced by Elisabetta and Daniela.  

  

Question Elisabetta's answers 

1. The symbol "=" 

a. What do you think the symbol "=" means 
in algebra? 

b. Write examples using this symbol 

2. The word "equal" 
a. What do you think the word "equal" means 

in algebra? 

b. Write examples using this word 

 

"From the beginning of this school year, 
till now, with our teach and my classmates, 
we established that the symbol '=' means 
'EQUAL'. For instance if are given the 
expressions '5+3-2�7' and '5+3-2�7' we 
can write '5+3-2�7=5+3-2�7' because they 
are equal. For us, the word 'EQUAL' 
means 'identical', thus, even if, for 
instance, two expressions give the same 
result, but initially are not 'identical', we 
cannot state that they are equal. For 
instance: '2�3+2�5' and '2(3+5)' give the 
same result (16), but are not identical." 

3. The word "equivalent" 

a. What do you think the word "equivalent" 
means in algebra? 

b. Write examples using this word 

"Still basing on what I have learnt in these 
months, the word 'equivalent' means 
'having the same result'. For instance if I 
consider the 2 expressions: '2�3+2�5' and 
'2(3+5)', even if they are not identical, I 
can notice that they have the same final 
result, or I can notice that if I apply the 
AXIOM OF THE DISTRIBUTIVE 
PROPERTY I can render them 'EQUAL'; 
thus they are 'equivalent' because they 
have the same final result or because by 
applying an axiom I can 'transform them' 
untill they are 'identical'. Sure enough, in 
the case of literal expressions which are 
not initially equal, I can prove their 
equivalence only by trying to render them 
equal, and thus equivalent."  

4. Other symbols and words 
a. What relationship do you think there is 

between the symbol "=", the word "equal" 
and the word "equivalent"? You can 
eventually show examples 

"In our class, the symbol '=' is used to 
indicate that two expressions are "equal", 
while the symbol "= =" is used to indicate 
that two expressions are equivalent. Of 
course when I succed, by means of the 
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b. Write other symbols and words that you 
know, and you think are related to the 
symbol "=" or to the words "equal" and 
"equivalent". You can eventually show 
examples 

application of theorems and axioms, to 
transform an expression into an equivalent 
one, at the end I obtain two expressions 
that apart from being equivalent, they are 
also equal, and in this case both the 
symbols "=" and "==" can be used." 

Protocol 16 Elisabetta's (class 2003, grade 9) answers to the first four questions of the final test (see appendix 13.8. 
).  

Question Daniela's answers 

1. The symbol "=" 

a. What do you think the symbol "=" means 
in algebra? 

b. Write examples using this symbol 

"a) I think in algebra the symbol '=' has 
the meaning of equality, that is, it indicates 
that two elements that it compares are 
equal, identical. […]" 

2. The word "equal" 

a. What do you think the word "equal" means 
in algebra? 

b. Write examples using this word 

"a) I think that in algebra "equal" means 
identical. I think that an element is equal to 
another if they are identical. 

b) This word is used in daily life. For 
instance 'your pen is equal to mine' and the 
two pens are identical, even if often, people 
consider equal two pens even if the colors 
of the pens are different. In algebra if 'your 
expression is equal to mine' we have 
written two identical expressions, for 
instance 2+3 and 2+3" 

Protocol 17 Danielas's (class 2003, grade 9) answers to the first four questions of the final test (see appendix 13.8. 
). 

The answers given by Elisabetta (Protocol 16) to the first four questions of the test gives a clear 
picture of process initiated by the teacher introducing the symbol "= =" to represent equivalence as 
opposed to equality. Pupils are asked to write what they think about the meanings of the symbol 
"=", and the words "equal" and "equivalent" in algebra, then they are asked to write what 
relationships they think there are among them, and if they know other related symbols (questions 1-
4 of the test reported in appendix 13.8. . For what concerns the symbol "=" and the word "equal" 
(questions 1 and 2), Elisabetta writes: 

"From the beginning of this school year, till now, with our teach and my classmates, we 
established that the symbol '=' means 'EQUAL'. For instance if are given the expressions 
'5+3-2�7' and '5+3-2�7' we can write '5+3-2�7=5+3-2�7' because they are equal. For us, the 
word 'EQUAL' means 'identical', thus, even if, for instance, two expressions give the same 
result, but initially are not 'identical', we cannot state that they are equal. For instance: 
'2�3+2�5' and '2(3+5)' give the same result (16), but are not identical." 

In this excerpt Elisabetta identifies quite clearly the meaning she attributes to the symbol "=" and 
the word "equal" in algebra: two expressions are equal if they are identical, if they look exactly the 
same, and if that is the case it is possible to write one next to the other separated by the symbol "=". 
The use she does of the symbol "=" is clearly structural, in the sense that it is not used with a 
preferential direction, and is not interpreted as a separator between two computational steps; instead 
the symbol it is used in terms of comparison of expressions which thus are interpreted as object that 
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can be compared and not necessarily have to be computed. Similarly her class mate Daniela 
(Protocol 17) writes: 

"a) I think in algebra the symbol '=' has the meaning of equality, that is, it indicates that two 
elements that it compares are equal, identical. […]" 

In her answer, Elisabetta, gives an example of two expressions that are not identical, thus not 
equal, but they have the same numerical result, with this example she prepares the territory for her 
answer to the following question (question 3), concerning the word "equivalent": 

"Still basing on what I have learnt in these months, the word 'equivalent' means 'having the 
same result'. For instance if I consider the 2 expressions: '2�3+2�5' and '2(3+5)', even if they 
are not identical, I can notice that they have the same final result, or I can notice that if I 
apply the AXIOM OF THE DISTRIBUTIVE PROPERTY I can render them 'EQUAL'; thus 
they are 'equivalent' because they have the same final result or because by applying an axiom 
I can 'transform them' untill they are 'identical'. Sure enough, in the case of literal 
expressions which are not initially equal, I can prove their equivalence only by trying to 
render them equal, and thus equivalent."  

The word "equivalent", for Elisabetta, has its autonomous meaning, based either on numerical 
computations or on axiom based transformations, both in the cases of numerical or literal 
expressions (in the latest only axiom based transformations work). The relationship between the 
word "equal" and "equivalent" is related to the fact that the proof of the equivalence of two 
expressions end when they are transfromed into two equal expressions. Equality is a means for 
proving equivalence, and it functions by constituting both the aim and the stop condition of the 
transformation process. It is curious how Elisabetta, as most of her class mates, uses the word 
'identical' to explain equality, probably this is done in order to avoid the confusion brought by the 
polysemy of the word "equal" derived also from contexts external to the mathematical one. For 
instance, Daniela writes: 

"a) I think that in algebra "equal" means identical. I think that an element is equal to another 
if they are identical. 

b) This word is used in daily life. For instance 'your pen is equal to mine' and the two pens 
are identical, even if often, people consider equal two pens even if the colors of the pens are 
different. In algebra if 'your expression is equal to mine' we have written two identical 
expressions, for instance 2+3 and 2+3" 

This example shows a great control of the different meanings associated to the word "equal", 
Daniela is able to distinguish different meanings according to different context, and offers an 
illuminating example of statements, one from real life context, and one from algebra context, that 
are obtaind one from the other just by substituting the word "pen" with the word "expression": the 
statements are almost identical, but the different context changes the meaning of the word "equal", 
as described by Daniela.  

A similar mastery of the polysemy of the considered words and symbols of equality and 
equivalence, is showed by Elisabetta’s answer to the fourth question. Elisabbetta, looking  for other 
related symbols, introduces the symbol "= ="47: 

"In our class, the symbol '=' is used to indicate that two expressions are "equal", while the 
symbol "= =" is used to indicate that two expressions are equivalent. Of course when I 
succed, by means of the application of theorems and axioms, to transform an expression into 
an equivalent one, at the end I obtain two expressions that apart from being equivalent, they 
are also equal, and in this case both the symbols "=" and "==" can be used." 

                                                
47 Notice that in the first part of the test there was no reference to L'Algebrista, which was mentioned in the second part 
that was submitted to pupils only after they had finished the first. 
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Elisabetta explains the distinction between the symbol "=" and the symbol "= =", similarly to the 
case of the words "equal" and "equivalent".  

These two protocols can be considered exemplar of the answers that can be obtained, at this 
moment, from the pupils. The distinction between "=" and "= =" and between "equal" and 
"equivalent", which was on purpose introduced by the teacher by means of L'Algebrista, is finally 
closed. Pupil seem to be able to handle the polysemy of the sign "=", a polysemy which reached a 
stability in terms of the oppositions "equal"/"equivalent" and "="/"= =", and which is based on the 
sphere of practice of proving equivalencies of expressions in the microworld.   

9.3.  The idea of theory 
According to our theoretica framewrok, one the basic characteristics of mathematics is 

considered to be its theoretical organization in terms of axioms, definitions and theorems: 

“the theoretical organisation according to axioms, definitions and theorems, represents one of 
the basic elements characterising mathematical knowledge” 

(Mariotti, as cited in [3], Balacheff, 2002) 

This theoretical organization defines the critaeria of acceptabilty of a theorem in terms of its 
validity in a theory, independently from any empirical verification:  

“A theoretical fact, a theorem […] is acceptable only because it is systematised within a 
theory, with a complete autonomy from any verification or argumentation at an empirical 
level” 

(Mariotti, as cited in [3], Balacheff, 2002) 

 Drawing from these considerations, the key principles of our educational strategy are:  

• We do not considers "generic" theories, but theories shared by a community, in particular, we 
may speak, for example, of mathematicians' theories, and of theories of the classroom. 

• The axioms and definitions constituing the considered theory have to be clearly stated and 
distinguished from other statements 

• A theorem makes sense only with respect to a theory a theory, within which a proof is 
provided 

• Given a statement, in order to derive from it a theorem of a theory, the validity of the 
statement has to be proved by means of the elements of the theory  

• For a valid statement to become a theorem of a theory, it has to be shared and accepted as 
such by the community itself, i.e. in school practice it has to be shared and accepted by the 
class.  

These principles individuate also some of our educational sub-goals in relation to the aim of 
introducing pupils to theoretical thinking. On the basis of these principles we are going to discuss 
some results obtained in our experimentation. 

9.3.1. Creating new theorems with L'Algebrista 

In the first phase of our teaching sequence pupils are involved in activities of transforming 
numerical expressions by means of the stated properties, at the same time, thruogh collecttive 
discussions this practice has been related to the algebraic activity of proving equivalencies of 
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numerical expressions by means of axioms. in this way for this reason, when letters are introduced, 
pupils are already familiar with the practice of using axioms as means for proving particular 
statements. Such a practice is then extended to the case of literal expressions, introducing activities 
of proving of statements of equivalence of literal expressions.  

9.3.1.1.The first theorem 

The first activity with literal expressions that we propose to pupils, requires pupils to conjecture 
which of a set of given literal expressions can be interpreted as correct formulas for computing the 
area of a given geometrical figure (see activity CL 7 in appendix 13.3. ). This activity involves 
comparison of literal expressions, and we observed that pupils tend to employ the comparison 
techniques they had learnth with numerical numbers. Namely, they tried to prove the equivalence of 
literal expressions by means of the axioms they had been using with numbers, as in the case of 
Eleonora (Classe 1998, Protocol 9) that we discussed in a previous section (9.2.3.2). However, at 
that point, the transformation principles pupils could use were a limited number, as showed by the 
corresponding buttons available in the "Teoria" (set of commands corresponding to the axioms of 
atheory) of L'Algebrista that they were using (Figure 21).  

 
Figure 21 At the moment of their first activity with literal expressions, the class theory includes only a few 
numbers of axioms; in fact, pupils can use only the buttons of "Teoria 1" of L'Algebrista.  

In particular, no rules for summing monomials, and for managing powers, were formalised and 
shared by the class as elements of their official theory, and in fact there were no corresponding 
buttons in L'Algebrista; nevertheless, the proposed activity was designed in order to have pupils 
facing the need of using such rules as means for proving the equivalence of the considered 
expressions. As a consequence we had behaviours like that of Tiziano (classe 1999, grade 9, 
Protocol 18) who behaved in the same way as that Eleonora (Classe 1998, grade 9, Protocol 9) that 
we previously described.  
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Protocol 18 Tiziano (class 1999, 9th grade)explains most of the steps of his proof by means of the axioms of the 
theory officially shared by his class. However, the transformations from step line 7 to line 8 and from line 8 to line 
9, do not correspond to any of such axiom but are needed in order to tranform the rightmost expression into the 
leftmost one. As a consecuence Tiziano executes such transformations, but fails (or avoid) explaining them in terms 
of the class theory. The steps of the protocol have been numbered by the author of this dissertation. 

Tiziano, explains each step (exluded two steps) of his proof by means of the axioms of the theory 
officially shared by his class; in fact for each step, he writes (right column of the protocol) the used 
axiom, or corresponding button of L'Algebrista,  and underlines the sub expression on which the 
axiom is applied. However, the transformations from line 7 to line 8 and from line 8 to line 9, are 
not obtained directly by means of the axioms shared by the class at that moment (see Figure 21), in 
fact, Tiziano executes them without explaining them in terms of the theory of the class. The first of 
these transformations corresponds to the definition of power, in fact Tiziano (lines 7, 8) transforms 
b•b into b2, while the second one (lines 8, 9) corresponds to the "regola di cancellazione" (en.: 
"cancellation rule") by means of which the pupil deletes the sub expression b2-b2. a capo.  

It is interesting to observe that from line 7 to line 8, Tiziano partially abandons the notation of 
L'Algebrista, transforming the sub expression b•b+(-1)•b•b into the sub expression b2-b2. The new 
sub expresssion contains the difference of the terms b2 and b2 which in L'Algebrista would be 
represented as b2+(-1)•b2. The notation used by Tiziano here is that of standard computations in 
paper and pencil, and in fact, also the transformations he applies are derived from that practice. 
Tiziano seems to be conscius of the difference of the two practices, as indicated by the fact that he 
changes notation, and by the fact that he doesn't apply the cancellation rule directly to the sub 
expression b•b+(-1)•b•b, transforming it into b2-b2 before applying such rule. In fact the  
cancellation rule, in standard calculation of numerical expressions, is used to delete from an 
expression a sub expression made of the difference of two equal numbers. In other words Tiziano 
transforms the sub expression b•b+(-1)•b•b into a form, b2-b2, on which he feels he can apply the 
cancellation rule.  

In the case of numerical expressions, in the case of standard computations, a product of two 
equal numbers, for instance 3����3 would simply be computed obtaining 9, but this is impossible with 
letters; however, pupils seem to follow a need of simplification, and try to simplify, an expression 
such as b•b, as much as possible by transforming it into b2 which seems not to contain operations to 
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be executed. Equivalently, the difference of two numbers, for instance 3-3, in standard numerical 
computations, would simply be transformed into 0 or cancelled. In the case of literal expressions, 
pupils try to behave similarly and simply delete b-b or transform it into 0.  

In the case of the activity that we are commenting on, Tiziano needs to eliminate the sub 
expression b•b+(-1)•b•b from the rightmost expression of line 7, (a+b)•a+(a•b+b•b+(-1)•b•b), 
because he wants to transform it into the leftmost expression, (a+b)•a+a•b. But none of the axioms 
shared by the class at that moment allow such deletion within a single step, and in L'Algebrista, of 
course, there is no button that simply deletes the sum of two opposite literal expressions such as b•b 
and (-1)•b•b. As a consequence Tiziano, can only abandons temporarily the practice of proving by 
means of axiom or corresponding buttons, and execute the transformation steps of line 7, 8, and 9, 
by using transformation rules that are external to the practice of proving. In this case L'Algebrista 
functions as an intrument of semiotic mediation in the sense that it represents the practice of 
proving by means of axioms, and Tiziano simply stops using signs derived from L'Algebrista in the 
moment that he changes kind of practice. The microworld, used by Tiziano both with its presence 
and its absence, functions as an external control individuating the practice of proving by means of 
axioms as opposed to the practice of standard calculation.  

The transformations that Tiziano (like Eleonora, Protocol 1, and most of the pupils of the 
experimentation) executes without giving explanations are that of cancelling two opposite terms 
and that of writing the product b•b as b2. Such behaviour was possible in the paper and pencil 
enviroment, but it was not in L'Algebrista because at that point, in the microworld, pupils didn't 
have any button corresponding to such transformations among the available buttons. However, the 
"proof" produced by Tiziano, and other similar ones, cannot be accepted by the class community as 
a valid proof in their shared algebra theory, because it isn't expressed in terms of the axioms of the 
available theory, at the moment represented by the palette of L’Algebrista. for this reason, the 
teacher, on purpose, suggests48 pupils to execute their proof in L'Algebrista where the available 
buttons correspond only to the shared axioms, and it is not possible to execute transformations that 
cannot be explained by means of the axiom of the theory shared by the class. The microworl is thus 
used by the teacher as an instrument of semiotic mediation in the sense that it is used as a means to 
keep separeted the practices of proving from the practices derived from standard calculations, and it 
is used to provide pupils with an external control on the transformations they perform. 

The case of the cancellation of opposite terms is particularly interesting, even if there is no 
button corresponding to it, it can be executed by applying a sequence of other tranformational steps 
based on the available buttons. How this can be done is shown in the chain of transformation 
produced by Sandra and Lucia (class 1998, grade 9), Protocol 19. 

                                                
48 This is done systematically in all the experiment we conduce. 
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Protocol 19 This is an excerpt of a longer chain of transformations (produced with L'Algebrista and printed on 
paper by the pupils); In this excerpt Sandra and Lucia individuate a proof of the statement "–b+b=0". The two girls 
write a comment: "In this steps it is proven how (–b+b)=0". Each new transformation step is obtained by selecting 
a sub expression from the last obtained expression, and clicking on a button of those available in the microworld. In 
the last lines we added some marks in order to help the reader understand the protocols; each transformation step is 
made of two lines, a smaller one on the top, and a bigger one on the bottom, the first contains the formula 
representing the used button, while the second represents the new obtained expression. In the last steps, the big 
dotted, red, rectangle indicates what sub expression was selected, the blue rectangle indicates the used button, and 
the last small red dotted rectangle represents the obtained sub expression. In this case the button used tranforms a 
product of an expression by zero, into zero. Following such a scheme it is possible to read and intterpret all the 
other steps.  

Sandra and Lucia, executes a complex chain of transformations (an excerpt is presented in 
Protocol 19), which involves also transforming b+(-1)•b into 0. The two pupils then printed on 
paper their chain of transformations and commented it highlighting (by marking them with a left 
bracket) the steps that are needed to transform b+(-1)•b into 0. Such a sequence of tranformations 
can be interpreted as a proof of the fact that b+(-1)•b is equivalent to 0; then, by interpreting the 
letter b as "any expression" (which implies "any number" as a number is considered to be also an 
expression in our experiment), it is possible to interpret this chain of transformation as a proof of 
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the principle stating that the sum of two opposite terms can be substituted by zero. As a 
consequence, a corresponding theorem, the first one produced by the class, can be introduced in the 
shared theory .  

In all the experimentations pupils behaved basically in the same ways with respect to this 
activity, which was always followed by a class discussion in which the new transfomation rule was 
socialized and accepted as the first theorem. The word "Teorema" (en.: "Theorem"), is on purpose 
introduced by the teacher, as a way to give a particular status to this statement which raised from a 
contrast between the paper and pencil environment and L'Algebrista, and which was proved by 
means of the stated axioms. However, prior to accept this statement as a theorem, the teacher 
requires the class to produce a proof that can be shared by the community and taken as their official 
proof; also this last step is guided on purpose by the teacher aiming at establishing socially shared 
rules for the acceptance of a theorem within the community. In Protocol 20 we show an example of 
proof produced by Marco (class 1999, grade 9) with L'Algebrista. 

 
Protocol 20 The proof of the class' first theorem, made by Marco (class 1999, grade 9) in L'Algebrista. Marco first 
writes "Our first theorem" (line 1), then writes b-b==0 (line 2) and inserts it in the microworld using the button 
"Insert expression". The entrance in the microworld is marked by a title line (line 3) and a starting line (line 4) 
marked by the lable "Inizio" (en.: "start") and containing the expression b+(-1) •b==0 on which Marco applied the 
distributive property obtaining the expression of line 5. Line 6 is obtained from line 5 by selecting 1+(-1) and 
applying the computation button "3<=>1+1+1" which executed the sum of the two numbers. Finally, line 7 is 
obtained from line 6 by selecting b•0 and clicking on the button "���0<=>0" which transforms the product of zero 
by any expression into zero. The last line (7) presents the identity 0==0, a stop condition for the transformation 
process which allows to state that the initially questioned equivalence b-b==0 actually holds. 
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At this point, a new kind of transformation rule is introduced in the class theory, to which pupils 
oftern refer as to "our first theorem". Being a new element of the theory, the theorem corresponding 
to the new transformation rule, is added to the the class algebra notebook which already contains 
the previously known transformation rules. This new element is different from the previous ones 
because they are axioms, while this one is a theroem, such distinction is reported in the notebook by 
calling it theorem (as opposed to axioms and definitions) and by associating the theorem with its 
proof. In parallel with the edition of the notebook, a new button is added to the commands available 
in L'Algebrista; this operation is done by the pupils themselves, using "il Teorematore" (en: "The 
Theorem maker").  

 
Figure 22 The button added to L'Algebrista by pupils after proving their first theorem. 

 The insertion of a new button, corresponding to the proven theorem, in L'Algebrista, results in 
the possibility to use the button to prove equivalencies of expressions or to prove theorems, in the 
same way as previously available buttons were used. As a consequence, the proven theorem, 
becomes a new instrument for proving statements, in the same way as axioms can be used to 
accomplish such tasks; for instance Marta (class 1998, grade 9) uses this new theorem, calling it 
"nostro teorema" (en.: "our theorem"), as shown in Protocol 21.  

 
Protocol 21 Marta, required to prove the equivalence of the expression of line 1 and the expression of line 3, uses 
the first theorem use proven and accepted by the class as a mean to transform an expression. She calls the theorem 
"nostro teorema" (en.: "our theorem"), as she reported in line 2, when she writes "according to our theorem this 
becomes 0". The pupil is also required to indicate wither she uses a theorem or an axiom, that why in line 1 she 
writes "commutativity of multiplication (axiom)" 

9.3.1.2.Buttons in L'Algebrista and theorems in the mathematical notebook 

After the introductory activity with literal expressions, pupils are proposed activities of proving 
equivalencies of literal expressions, some of which are chosen for being included in the class 
algebra notebook as new theorems, and are at the same time added to the microworld in the form of 
new buttons. As a consequence, the class algebra notebook, and the set of buttons available in 
L'Algebrista, grows up in parallel together with the algebraic knowledge shared by the class. Each 
pupil has its class algebra notebook, and the coherence among the single/individual notebooks is 
obtained by means of periodical class revisions of the notebook, and by social sharing practices 
guided by the teacher. 

A skectch of the possible evolution of the class algebraic knowledge can be found in the class 
algebra notebook of Marco, a pupil of class 2000.  
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Protocol 22 Marco's class algebra notebook. Firstly it contained only the axioms of "Teoria 0" the first theory used 
by the class with L'Algebrista; then other axioms were added, those of "Teoria 1" and "Teoria 2". 
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Protocol 23 Also theorems are added to the class algebra notebook, when they are proved and shared by the class. 
Differently from the case of the axioms, in the notebook it is reported, together with the statement, also a proof of 
its validity; such proof is made by means of the elements already present in the theory represented by the class 
algebra notebook. We added some marks in order to help the reader understanding the structure of the notebook.  
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The subsequent enlargements of the theory are clearly shown: the notebook (see Protocol 22) 
firstly contained only the part "Teoria 0" with the first axioms used in class, which were derived 
from the first set of command used in L'Algebrista. As the class went forward, using other theories 
in the microworld, thus new buttons, and the corresponding axioms were added to the class algebra 
notebook, like the axioms of "Teoria 1" and "Teoria 2" that can be seen in Protocol 22. Also 
theorems are added to the class algebra notebook (see Marco's notebook in Protocol 23), when they 
are proved and shared by the class. Differently from the case of the axioms, together with the 
statement, in the class algebra notebook it is reported also a proof of its validity, so that proof 
becomes an integral part of what is recognized as a Theorem; each proof is made by means of the 
elements already present in the theory and represented in the class algebra notebook.  

The reference to the activity carried out in the microworld although not explicit can be 
recognized in the editing of the chain of transformation .Observe that, in any of the proofs reported 
in Marco's notebook, the used axioms or theorems, are never reported next to the expression 
obtained using them: they are always reported next to expression on which they are applied. 
Axioms and theorems are not used to comment on produced transformation, but are used to produce 
transformations, exactly as it happens with L'Algebrista. In Protocol 23 we hilighted some lines in 
order to help the reader following the flow of one of the reported proof.  

Within the sequence of activities that we propose, theorems are sometimes proved in paper and 
pencil, and sometimes in L'Algebrista. However, for each new theorem of the class theory, a new 
theorem is inserted in the class algebra notebook, and a new button is created in the microworld; 
thus, pupils also produce, in L'Algebrista, their own palettes containing buttons corresponding to 
theorems. In the latest experiment, with class 2003, pupils' class algebra notebooks consist of 
documents produced directly with the computer; in L'Algebrista pupils write the statement of the 
theorem and a name for it, then click on the "insert expression" button and prove the theorem 
directly in the microworld. Once they finish their proof, they print on paper the obtained document, 
and use it as a page to be inserted in their personal class algebra notebook. According to the 
teacher, pupils decided to edit the notebook directly on the computer because they realised that 
when you have to modify your notebook is easier if you have it in electronic format. A typical page 
of these new notebook is that of Alessandro where one can find the proof of the theorem that the 
sum of two opposite terms is 0 (see Protocol 24). 
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Protocol 24 This is Alessandro's proof of the theorem discussed in section. Th pupils, transforms the expressions 
by means of the axioms, and also explains verbally what he has done: "The expression, a-a==0, whene it was 
inserted in L'Algebrista, it became a+(-1)*a==0. After that, to the first "a", I applied the button of neutral elements 
"1*x=x". Then I selected the whole leftmost expression and I applied the button of the distributive property: the 
expressions that previously was 1*a+(-1)*a was transformed into (1+(-1))*a. Now I computed with the computation 
button (1+(-1)) which became (0). With the button of neutral elements 0*x=0 I transformed "(0)*a" in 0. So they 
became two equal expressions. 

However, even if notebooks are in electronic format, they are not identified with L'Algebrista. 
Actions in the two context are easyly recognized as different. On the one hand, the  enlargment of 
the algebra theory corresponds to the update of the notebook, which is accoplished by writing the 
new statement and its proof. Interesting to remark, that, in the case of Marco, although the proof is 
copied form the microworld, it is enriched by comments, that are non required in the microworld. 
on the other hand, the enlargemnt of  the theory represented in the microworld can evolve only by 
means of insertion of new buttons. In fact, pupils, in parallel with the growth of their notebook, add 
new buttons to to L'Algebrista, creating their own palettes of the theorems. For instance, after 
proving the first three theorems, the personal palette of theorems of Alessandro, in the microworld, 
was the following one, which includes also the "Teorema 2" whose proof is presented in Protocol 
24. 
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Protocol 25 The set of buttons created by Alessandro in L'Algebrista after proving the first three theorems, the 
second one correspond to the theorem proved in Protocol 24. 

To conclude, we observe that along with the evolution of the theory, the proofs of the theorems 
inserted by pupils in the notebook, become more schematic, in the sense that they do not include 
verbal explanations anymore, as shown in Protocol 26, that is a document of Alessandro's notebook 
reporting a theorem concerning negative powers. This can be interpreted as a trace of the process of 
authomatization of the transformation process, as a step towards the construction of a theoretical 
meaning of “calcolo” the was one of our didactical aims . 

 
Protocol 26 Alessandro proves a theorem concering negative powers. 

9.4.  An example of use of L'Algebrista as an instrument of semiotic mediation 

In the previous sections of this chapter we presented some results, highlighting the potentialitis 
of L'Algebrista as an instrument of semiotic mediation. According to our hypothesis, such 
potentialities can be exploited by the teacher by means of particular communication strategies, some 
of which we are going to discuss in this section. We will draw from the analysys of the transcript of 
an episode that took place in the final phase of the  experiment in class 2000.  
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9.4.1. Presentation of the episode 

The episode is a collecitve discussion that takes place at the beginning of the second school year 
of experimentation with the grade 10 pupils of class 2000. During the previous year pupils have 
been following the experimentation for 9 months, and before summer holidays the teacher began to 
introduce equations starting from the problem of comparing literal expressions, to which pupils 
were familiar. The idea is that if we consider expressions that are not equivalent, then we may ask if 
it is possible to find any number such that if we substitute it to the letters, the obtained numerical 
expressions result to be equivalent. In the episode, some axioms and theorems to be used for 
solving equations have been already introduced  and discussed. The following excerpts drawn from 
the transcript of the discussion,  highligh the strategy used by the teacher and her key interventions 
that exploit L'Algebrista as an instrument of semiotic mediation. what make this episode 
particularly interesting is the fact that the functioning of the microworld, as an instruments of 
semiotic mediation, appears when the microwolrs and its tools are  not directly available because. in 
fact, the episode, we are going to analyse, occurred when the class was not in the computer 
laboratory. 

9.4.2. The axiom theorem 

The teacher (T) begins the lesson by asking pupils to recall what they said 3 months earlier about 
equations. She is aware that in class the word "equation" have already been introduced, and the 
statement "A=B <=> A–B=0" was has already been discussed once in by the class. The main aim of 
this discussion is to formalise the statement "A=B <=> A–B=0" as a principle for solving equations 
,, and next to introduce other principles to be used as means for solving equations.  

Excerpt 1 (class 2000) 
1. T: So, the first question is, do you remember what we have been doing at the end of 

last year? What did we focus on? 
2. Tcl: The axiom theorem (ita.: assioma teorema) 
3. Cri: axiom theorem one 

[…] 
6. T: What is it? 
7. Tcl: if A is equivalent to B then A minus B is equivalent to zero. 

The discussion is set up on the basis of the history of the class. It is interesting the intervention of 
Cri (3), it witnesses the class habit of naming theorems by numbering them, but also the fact that 
pupils are aware of the particular theoretical status of this statement, neither an axiom, nor a 
theorem. At this point in the class algebra notebook there are several numbered theorems, and 
several axioms, but there is only one "axiom theorem", which is perceived as different both from 
axioms and theorems, and for this reason is given the number one. The ambiguous status of such 
statement (axiom theorem) is rooted in the way the principle was socialised and shared by the class, 
with respect to their idea of theory.  

Because an axiom theorem is not an axiom neither a theorem, the teacher asks pupils to recall the 
nature of such a new mathematical object.  

Excerpt 2 (class 2000) 
8. T: come here and  write it (on the blackboard), then explain why we called it axiom 

theorem 
[…] 
 

Tcl writes on the blackboard:  a = = b <=> a – b  
 

[…] 
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14. T: do you remember why did we call it axiom theorem? Is it normal to call something 
axiom theorem? 
[…] 

20. Bzc: we didn't know if…it was proved, we took it as an axiom, last year, but if later 
we are able to prove it … we left it undecided. 

The axiom theorem is thus a statement whose status in the theory has been left undecided.  On 
purpose, the class postponed a definitive decision, giving it the status of an object which is neither 
an axiom, nor a theorem, but that like axioms and theorems can be used in algebraic activities.   

Excerpt 3 (class 2000) 
21. T: […] So, we have this axiom theorem, what did it bring to us? What did we do with 

this axiom theorem? Nothing? Did we just look at it? 

Once the "axiom theorem" principle is stated the teacher shifts the focus on its operative aspects  
([21]). this point is coherent with the general approach of conceiving  axioms and theorems also as 
instruments to transform expressions,  but also with the general practice of using the corresponding 
buttons.   Axioms and theorems are considered as corresponding to the buttons of L'Algebrista, and 
are used in proving practices, either in paper and pencil or in the microworld.  

The teacher's intervention ([21]), starts a discussion in order to recall the formulation of the 
problem of solving an equation, in terms of comparison of expressions. Then the teacher proposes a 
new problem, taken from their holyday homeworks, and writes on the blackboard. 

Excerpt 4 (class 2000) 
89. Mrct: so, a3+b3= =(a+b)(a2-ab+b2)    (reads the text of the equation to be solved) 
90. T: so, let's see… in the same stream of what we have been saying now, if we have 

two expressions and ask ourselves of which kind they are, whether they are 
equivalent or whether they are equal equal…if instead they give the same result only 
for some values of the letters or never. So, What  did we use to start? 

91. Stf: the check 
92. T: That is, what did we use to do? 
93. Stf: we used to substitue letters with numbers and then compute 
[…] 
Tcl executes the computation on the blackboard 
  33+23= =(3+2)(32-2•3+22)  a=3 b=2 
  27+8= =5•(9-6+4)   

35 = =5•7 
35 = = 35 

100. T: what can we conclude? 
102. Mrs & Cri: we conclude that it is not impossible [that they are equivalent] 
[…]  

The first step to solve an equation is thus that of checking if the two expressions can be 
equivalent or not, this is done by substituting numbers to the letter, as shown in the excerpt. Here 
the symbol "= =" is used to represent a pending equivalence relationship, whilst the symbol "="  is 
used to represent assignment of numbers to letters. The use of different symbols for these two 
meanings, keeps them separated, avoiding confusion between equivalence of expressions, and the 
principle of substitution. The presence of the simbol “= =”, is quite normal in the paper and pencil 
context and the computation seem to take place without any reference to L’Algebrista. 
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At this point of the episode the class conjectures that the two expressions can be equivalent, thus 
they decide to prove it. 

9.4.3. The "Insert Expression" button 

In the first part of the discussion the teacher does not explicitly refer to L'Algebrista which is not 
available, as the episode takes place in a normal classroom with no computers. However, one of the 
aims of the teacher is that of introducing the axiom theorem in a new practice which will be that of 
solving equations. In our approach the operative aspects of axioms and theorems is fostered through 
the use of L'Algebrista, thus, in order to foster the new practice and the idea that the axiom theorem 
can become a new instrument for solving problems, the teacher decide to use the microworld as 
intrument of semiotic mediation and does her first (within this discussion) explicit reference to 
L'Algebrista.  

Excerpt 4 (class 2000) 
158. T: so, before using the axiom theorem, and before using the distributive property, we 

shell use "insert expression" 
The button "Insert Expression" (ita.: "inserisci espressione") is the first command to be used in 

L'Algebrista in order to manipulate an expression: by clicking such button the expression is inserted 
into an environment where it is possible to transform expressions, and where it is possible to 
operate only using the available buttons. We recall that in this episode the microworld is not 
available, so the teacher does not aim at pupils to really introduce the expression in the microworld, 
but she just wants them to act as if they were working in L'Algebrista. This kind of intervention is 
quite usual in our experimentation, and at this point of the teaching sequence, which is almost at the 
end, pupils are familiar with this kind of requests.  

We hypothesise that with this intervention the teacher has at least two specific aims: 

27. when the teacher asks pupils to use the tool "insert expression" in paper and pencil, it is a kind 
of request of simulating the behaviour of L'Algebrista which in particular is rigorous and rigid; 
thus this intervention of the teacher may be interpreted as a request of respecting formal rigor. 

28. the role played by buttons when using L'Algebrista is that of instruments to transform 
expressions, concrete instruments, thus the act of simulating the introduction of a new theorem 
(the "axiom theorem" here) into such kind of activities may foster its operative meanings. 

Thanks to this intervention of the teacher, the symbols written on the blackboard become 
polysemic, in the sense that they refer both to mathematical meanings and to meanings derived 
from the practice in the microworld. This polysemy is exploited by the teacher recalling, when 
needed, the meanings related to L'Algebrista. For instance, consider the following example: Tcl has 
difficulties in applying the definition of power. The pupil begins his proof and gets stuck after two 
steps. 

Excerpt 5 (class 2000) 
Tcl executes the computation on the blackboard 

a3+b3==a(a2-ab+b2)+b(a2-ab+b2) Distributiva  
a3+b3==aa2+a(-1)ab+ab2+ba2+b(-1)ab+bb2   

194. T: what would you do here? 
195. Tcl: it is a a 
196. T: how do we do that...(unanderstandable part)…do you remember the symbol? 
197. Tcl: I remember…I don't remember if…(unanderstandable part) 
198. T: because…what is the button that does this thing? 
199. Tcl: (unanderstandable part) 
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200. T: what…write it with the little triangles 
201. Tcl: (unanderstandable part) 
202. T: how is it? Do you remember the figure of the button? 
203. Tcl: triangle to the second power equals triangle times triangle  
204. triangle to the second power, double arrow, triangle times triangle  
Tcl executes the computation on the blackboard 

a3+b3==aa2+a(-1)ab+ab2+ba2+b(-1)ab+bb2 �2 <=> �•�  
a3+b3==aaa+a(-1)ab+ab2+ba2+b(-1)ab+bbb  �2 <=> �•� 

The pupil is stuck, he wants to substitute "a2" with "a a" (191-195), he doesn't remember the 
definition of power and how to apply it. The teacher thus, referring explicitly to L'Algebrista, asks 
the pupil to recall the corresponding button of L'Algebrista (198). Once recalled the button, the 
teacher, on purpose, asks the pupil to recall the "figure/icon" of the button (202), thus deriving a 
formula, which is also a symbolic representation of the functionality of the button. Once recalled 
and written the formula, Tcl is able to apply it and goes on with his transformation steps. The 
formula, thus, not only represents the button and its functionality, but it is also represents a the 
definition of power, an its polysemy is exploited to bring in algebra practices the instrumental 
aspects typical of the buttons of L'Algebrista.  

We observe that, in order to establish and exploit a plysemy of oral and written symbols in 
relation to practices with L'Algebrista, it is needed that the class share a knowledge concerning the 
relationship between practices within the microworld and paper and pencil mathematical class 
practices. Such relationship is built, in our approach, by means of activities of comparison of the 
two practices. At this point of the experiment the pupils of class 2000 are already quite familiar 
with such relationship, and are able to identify either parallelism and differences between the two 
spheres of practices and the related knowledge. In the following we are going to see how such 
relationship, and the polysemy of some key words, can be exploited to innescate and develop a 
process of creation of a new theorem. 

9.4.4. The production of new theorems 

From [158] to [236] the focus is on the solution of a specific equation, and we have few 
references to L'Algebrista, all of them concerning very operative aspects, like in the case of the 
episode of Tcl that we just discussed. Anyway till now the problem to be solved is a mathematical 
one (an equation) and the environment where to solve it is typical of mathematics: paper and pencil. 
Here the role of L'Algebrista is basically to provide instruments to solve such problem, but what 
pupils are really using are paper and pencil versions of such instruments, they are neither using 
buttons, nor transforming expressions written on the screen of a computer. In the following part, 
even if the computer is still absent, there is a change of the focus of the discourse caused by 
teacher's intervention [237]:   

Excerpt 6 (class 2000) 
237. T: […] have we ever solved equations within Lalgebrista? 
238. Corus: no 
239. T: no. So, Michele (the developer of the software) is here, we want to tell him what 

buttons we need in order to solve equations. He will add buttons to L'Algebrista, so 
what buttons will we require him to add? 

240. Fmn: the axiom theorem! 

The axiom theorem has been produced in the context of algebra, with no reference to 
L'Algebrista. It is a statement whose status is not yet well defined, but that is anyway already used 
to solve the problem of finding the solutions of certain equations. Thus, there is a need of including 
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the axiom theorem in L'Algebrista, in the form of a button produced with the "Teorematore" 
("theorem maker", see ). The "Teorematore" is evoked [239] by means of a reference to the author 
of the software, Michele. Such evokation rises the problem of adapting the formulation of the 
statement to the syntax accepted by L'Algebrista.  

First of all the teacher tries to point out the fact that the syntax used by the pupils is not the same 
as the syntax used by L'Algebrista, where "a-b" would be written "a+(-1)*b", so she asks: 

Excerpt 7 (class 2000) 
272. T: ok? But…do you think L'Algebrista would like such button? 
273. Cri: no 
274. T: why? 
275. confusion 
276. T: if we think of L'Algebrista's mentality … 
277. Cri: that from a minus b equal zero I get a equal b it is ok? … 
278. Tcl: ah! Because we need to do the "insert expression" 
279. T: that is … he (L'Algebrista) doesn't like so much that "a minus b"… 
 

Tcl gets to what the teacher is aiming at, and recalls the "insert expression" [278] button that, as 
a class convention, brings with itself also the specific syntax of L'Algebrista. This witnesses another 
meaning associated to the phrase "insert expression", that of representing a particular syntax, which 
correspond to a particular functioning of the microworld. As a consequence the expression "insert 
expression", when working in the paper and pencil environment, can be used either to recall 
practices of L'Algebrista, either to recall its syntax, whilst in the microworld it stands for the 
beginning of transformational activities by inserting expressions in the working environmet of the 
microworld. Such a polysemy can be used by the teacher to direct the attention of the pupils toward 
any of these aspects, according to their needs. Here we may notice passage [276] where the teacher 
not only recalls L'Algebrista, but also its "mentality": there is a specific way of reasoning that is 
associated to the software, and the teacher tries to direct pupils toward such rationality. In fact Cri 
seems to be really reasoning as if she was L'Algebrista and feels uneasy: 

Excerpt 8 (class 2000) 
281. Cri: but, how do we know that, for instance, if a is equal to b then a minus b is equal 

to zero? If a is equal to b? I mean, in the other direction we can do it because a minus 
b equal zero then we can do a equal b…but… 

282. T: so, did you get Cri's problem? She says "if I have that a minus b is equal to zero, 
then it is ok"…then she says "if a minus b is equal to zero it is ok to say that a is 
equivalent to b" but she doesn't agree that if a is equivalent to b then a minus b is 
equivalent to zero. 

283. Cri: No: when you apply it …how can you know that a is equivalent to b? 
284. T: and in the other direction how can I know that a minus b is equivalent to zero? 
285. silence 
286. T: so, Cri's problem is very serious, but we must clarify it because it seems not be so 

clear even for her, in fact she can see it only in one direction and no in the other 
one…so she says "I want this button from L'Algebrista", right? "But if I apply this 
button here" … she says "how can I, how can L'Algebrista know that a is equivalent 
to b so that it can transform it?"  

 […] 
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288. T: how can we tell that to L'Algebrista?  
Cri's problem is subtle, when we transform "A=B" into "A-B=0" we take that A and B are 

equivalent as hypothesis. But, unfortunately L’Alg. is not able to “assume hypotheses”, as we can 
do, and it is impossible to "tell that to L'Algebrista". If L’Algebrista doesn't know such hypothesis, 
how can it apply the axiom theorem? In this case the button would work transforming mechanically 
"A=B" into "A-B=0", it would be responsibility of the user to discuss what may happen if A is not 
equivalent to B, in fact this cannot be automat zed in the microworld. It is interesting to observe that 
this discussion takes place without computers, and that the button corresponding to the axiom 
theorem doesn't exist yet, thus pupils are talking about an imaginary, hypotetical, button that they 
know it  could be available soon.  

To sum up what happened, the axiom theorem was produced by means of a class discussion, as 
related to algebra, and was experienced in such environment. After that, coherently to their practice 
of adding buttons to L'Algebrista in parallel with new axioms or theorems in their mathematical 
notebooks, the teacher suggested pupils the creation of a new corresponding button. In fact, 
coherently to what happened with other axioms and theorems encountered by pupils during the 
experimentation, the axiom theorem is aspected to be interpretable both as element of the class 
algebra theory and as element of L'Algebrista, and as such it should be usable in both contexts. In 
other words, pupils are faced the problem of defining a new instrument to be added in L'Algebrista 
as derived from the axiom theorem. However, the practice of L'Algebrista is peculiar, and differs in 
some crucial aspects form paper and pencil practices, this caused Cri's uneasiness.  

As a consequence the teacher, who had previously planned to make this issue emerge, exploits 
Cri's intervention as a input to move the focus of the discussion out of the microworld, back to 
Algebra world, where the solution of  equations will be treated. In fact, from now on the teacher 
goes back to talk of only axioms and theorems and does not speak of "buttons" any more, she does 
not explicitly refer to L'Algebrista any more.   

Excerpt 9 (class 2000) 
340. T: so, that's right, Cri found a problem and she said "but how can L'Algebrista apply 

such a button? Because" she says "I have the expressions, I write two expression 
with an uqual sign between them, maybe I invent them and I absolutely don't know if 
they are equivalent or not, then I ask him (L'Algebrista) to apply such button and he 
brings the second expression at the first member, he puts a plus minus one before it, 
and tells me that it is equivalent to zero. But this is not true in case the two given 
expressions are not equivalent; it is not true that this (a+(-1)b) is equivalent to zero". 
But what is the problem we are tackling, Cri? Now are we asking L'Algebrista to 
transform expressions into equivalent expressions, or are we asking L'Algebrista to 
solve equations? 

341. Cri: solve equations 
342. T: to solve equations. Thus, maybe I can ask, I mean my problem is to question for 

what values of the letter those two numerical expressions are equivalent, thus I will 
have some values of the letter for which the numerical expressions are equivalent, 
thus it is ok to do such a passage; and I will have some values for which I do not 
know. Now, the important thing becomes another one, if they are not (equivalent), 
how will their difference be? 

343. Cri: different from zero 
344. T: right, it will be different from zero 
345. T: but also in that case, we shell take this as an axiom otherwise what do we have? A 
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monster? 
346. T: so, delete everything (from the blackboard), keep….and prove, with double 

arrow,…let's see if we are able to prove this theorem that if a is not equivalent to b 
then, double arrow, a minus b is not equivalent to zero. 

347. Tcl writes 
348. If a =/= b <=> a-b =/= 0 

From the discussion of the case of "A not equivalent to B", which was originated by the 
introduction of the axiom theorem in l'Algebrista, a new theorem (out of the world of L'Algebrista) 
is originated and it is proved (we omit the proof), using also the axiom theorem. After this new 
theorem is proved,  a new button is created, and it takes the status of "theorem button": 

Excerpt 10 (class 2000) 
481. T: now, as we have the theorem, then we have a new button that will not be an 

axiom button, but will be a theorem button […] 

In the rest of the episode the teacher asks pupils to produce new theorems/buttons, in order to use 
them as instruments to solve equations. 

Excerpt 11 (class 2000) 
492. T: […] there must be some other theorem for equations, not only those of these two 

buttons, maybe you can find out others, I mean, it may be the case that if a is 
equivalent to b, then there is something more apart from the fact that the difference is 
zero, right? And these new buttons (the ones pupils are being asked to invent) maybe 
be useful to solve equations, so I am asking you, as a homework is […] to think of 
using some new buttons to solve equations. 

Finally we observe that here the class has not yet reached a final decision concerning the status 
of the axiom theorem, However, it was decided to keep it undecided and to use it both as an 
instrument for solving equations, and as a means for deriving other principles to be used as 
intruments for solving equations. 
  

9.4.5. Instrumental aspect of the meaning of Theorem 

As already said, Teacher's intervention [237], aims at giving the axiom theorem the status of a 
button, this has an immediate implication: because it has become a button, it is now officially an 
instrument that pupils can use in their future activities; this is explicitly stressed by the teacher: 

Excerpt 12 (classe 2000) 
409. T: so we have our axiom theorem, no one can private us of it, and we even made a 

button for it, there it is (points to a writing on the blackboard representing the button 
of the axiom theorem), thus we can use it […] 

in mathematics, A given theorem is not just a "valid statement", that is a statement of which a 
proof has been provided, but it is also an instrument that can be used to prove other theorems or 
solve problems. All that has a counterpart in the microworld, where, in the fact, a button can 
actually be physically used as an instrument to accomplish a certain goal. The teacher's intervention 
aims at exploiting such a parallelism between button and theorem in order to foster the operative 
meanings of the latter.  the  correspondence between buttons of the microworld and algebraic 
theorems (or axioms) constitutes the base for the semiotic game, thus it can be exploited as in the 
specific case of this episode.  
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Similarly to theorems, also axioms can be interpreted either as elements of a theory, or as 
instruments for accomplishing algebraic activities. In the episode discussed above ([409], such 
polysemy, was exploited by the teacher, when she asked pupils to produce a new button on the basis 
of the axiom theorem, thus enriching it with operative meanings. In the following we are going to 
discuss in what sense, and how, the teacher exploits the polisemy of some specific word in order to 
foster the theoretical and instrumental meanings associated to axioms or theorems. We will discuss 
the case of theorems, similar arguments can be brought for the case of axioms.   

A word such as "theorem" is polysemic in the sense that it can be interpreted as referring both to 
an element of a theory (a statement and its proof), and to an instrument for producing new elements, 
i.e. proving new statements. The first meaning concerns the status of a given statement proven 
within a theory (theorem as an element of a theory), the other concerns the instrumental function of 
a given element of a theory when it is employed as a means for proving the validity of other 
elements (theorem as instrument). In order to foster both these meanings, associated to the word 
“theorem”, we use L’Algebrista, and the class algebra notebook, as semiotic instruments allowing 
us to split the word “theorem” into two different words “theorem” and “button”. Such a split is 
possible thanks to the contemporary presence of the world of Algebra (represented by of the class 
algebra notebook) and the world of L'Algebrista. At the beginning of the activities, the words 
“axiom” and “theorem” are referred to the elements of the class theory and related to the activity of 
editing and update of the class algebra notebook; whilst the word “button” is referred to the 
commands of the microworld, and associated to corresponding activities of transforming 
expressions in the microworld. In this way, for each of the two meanings of the word “theorem” 
considered, there are two dedicated word, and a dedicated class of activities. Thanks to L’Algebrista 
and the class algebra notebook, it is possible to foster both meanings separately, as they are rooted 
in two different practices and are represented by two different words. However, our educational aim 
is not to keep such meanings as separated, instead we want them to merge back into the word 
“theorem” at the and of the instructional sequence. For such a reason, a link is built on purpose, 
along the sequence of activities, between the “world” of Algebra (which includes the class class 
algebra notebook), and the (micro)world of L’Algebrista; this is done by passing countinuosly from 
one world to the other, so that the two meanings and the two words “theorem” and “button” can 
finally merge in the single word “theorem” with the two meanings.  

This process is long and may take time to be accomplished. In the episode that we are analysing 
below, it is showed an intermediate step in which we assist to a movement from the world of 
Algebra to the world of L’Algebrista. The use of the hybrid expression “Theorem button” (ita.: 
“Bottone Teorema”), witnesses the dynamical process of merging of the two meanings, one 
referring to the element of a theory and the other to the instrument, highlighting the contribute of 
each of the two world to the fostering and mearing of such meanings.   

As for the case of the polysemy of symbol "=", that was split into two component, by means of 
adding the symbol "= =", here the polysemy of the words "axiom" and "theorem" was split by 
means of adding the words "axiom button " and "theorem button". These hybrid words can be used 
either to bring instrumental meanings to the words "axiom" and "theorem" (derived from practice in 
L'Algebrista) either to bring theoretical meanings to the word "button", exporting in L'Algebrista a 
theoretical classification of its buttons. The words "axiom button" and " theorem button", result to 
be the junction nodes between buttons and axioms theorems.  This semiotic game clearly appears in 
the following teacher's intervention [409] , drawn from the same discussion previously presented:  

Excerpt 13 (class 2000) 
481. T: because we have a theorem, we have a new button which is not going to be an 

axiom button, but it will be a theorem button […] 

The theoretical meaning of the word “theorem” (as element of the class theory, and of the class 
algebra notebook), and the instrumental meaning of the word “button”, are merged in the word 
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"theorem button" that has the poslysemy that the teacher aims to foster for the word “theorem”. In 
fact the word “theorem button” represents at the same time a “theorem” and a “button”. It is a 
hybrid word that refers both to the world of Algebra and to the world of L’Algebrista, constituting a 
semiotic link between them, and as such it may function as a pivot for directing the focus of 
discurses from one world to the other. This is what happened in a excerpt that we are now going to 
analyse.  

The episode takes place at the end of the collective discussion that we have been analyising in 
this section. The episode begins with the teacher recalling an operation performed by Cri in a 
previous geometry lesson, while proving a statement concerning the angles of a geometrical figure, 
she transformed a+b+g = p into g = p-(a+b) Such a transformation, is then interpeted in terms of 
summing (-1)(a+b) to the two terms of the equality, and then cancelling opposite elements (by 
means of the related theorem proven by the class). Once this transformation is explained verbally, 
the teacher proposes to transform it in a “button”, that is an instrument that can be used whenever it 
is necessary: 

Excerpt 14 (class 2000) 
512. T: […] so, how could we translate into a button this thing, Cri? […]  

The request of generalisation of a practice happens through the request of creating a related 
button, that is of building an instrument to be used for such practice. However, the goal is also to 
introduce a new related theorem:  

517. T: […] but what is this? What do you aspect this to be? Axiom button? Theorem 
button? 

519. Gst: theorem button! 
519. T: theorem button, thus we are going to prove it 

At the direct request of the teacher to give a status to the new button (517), the new button is 
referred to as "theorem button", using this name the pupils recognize that  the new button must have 
a correspondent in a theorem of the theory,  thus “it needs to be proved”, like any  theorem. The 
word "theorem button", thanks to its polysemy, functions as a pivot, allowing movements back an 
forth between L’Algebrista microworld and the Algebra theory, the sphere of practice and the 
sphere of theory. Thanks to the polysemy of such a pivot word, theoretical meanings are conveyed 
to the sphere of practice, and vice versa, . 

9.4.6. The interplay between two worlds 

The episode we showed presents a cycle of production/evolution of meanings that was originated 
by a voluntary (directed by the teacher) interplay between two worlds: the world of L'Algebrista, 
and the world of algebra, outside L'Algebrista49. Drawing from the above discussion in this section 
we are going to sum up what movements the teacher directed from one world to the other and vice 
versa. 

 

 

 

 

 

 

                                                
49 Here we don't intend to give a strict definition of world, this is just a way to differentiates between class practices, 
and class knowledge, that are related directly to L'Algebrista and those that are not.   
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Figure 23 presents a scheme of what happened in the episode. During the first part of the class 
discussion, the axiom theorem was recalled, and was related to the solution of equations. During 
this first part there is no evidence of any reference to L'Algebrista, thus we placed it on the side of 
algebra world. Teacher's intervention [237] explicitly shifts the focus on L'Algebrista world and 
results in production of a hypotetical50 new button, corresponding to the axiom theorem. One of 
the consequences of such shift is the problem raised by Cri [273-289], she is wondering what 
happens if A and B are not equivalent, she is wondering how L'Algebrista could be able to do it; the 
functioning of button, due to the nature of the software, cannot correspond perfectly with the 
functioning of theorem originated in mathematics.. At this point the teacher takes this problem, 
originated within L'Algebrista world, and brings it back into algebra world [340,342], originating a 
brief discussion that leads the class to state and prove a new theorem corresponding to the 
transformation rule for equation expressed by the formula “A=/=B<=>A-B=/=0”. The last theorem 
is finally brought into L'Algebrista in the form of a new button [481]. From an algebraic point of 
view, this new theorem is not strictly needed, because it is an immediate consequence of the 
theorem represented by the “axiom theorem”. Nevertheless, because it was originated within the 
class discussion, the class decided to give it the status of a theorem of their theory, and decided 
create a corresponding button.  And this is the interesting point for our analysis. 

Figure 23 The interplay between the two worlds 

9.4.7. linking the two worlds  

In summary, The interventions of the teacher consist mainly in forcing movements back and 
forth between the two worlds. However, during  the discussion, it is possibile to identify another 
important kind of intervention. Consider the following intervention of the teacher [481]  

                                                
50 We recall that at the moment of the analysed collective dicsussions computers are not available 
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Excerpt 13 (class 2000) 
481. T: because we have a theorem, we have a new button which is not going to be an 

axiom button, but it will be a theorem button […] 

Here the teacher explicitly recalls the correspondence between axioms (and theorems) and 
buttons. This intervention is situated neither in the world of L’Algebrista nor in the Algebra world, 
rather it is situated at a metalevel where the relationship between the two contexts has to be 
elaborated. This intervention refers to what we can call the “linking knowledge”, concerning the 
relationship between the two worlds. Such relationship is not a perfect correspondence, and to 
"know"  means to control the shift of meanings to be accomplished when moving between the two 
worlds. In the case of intervention [409] (Excerpt 12) the correspondence is exploited in order to 
bring operative meanings from L'Algebrista to the world of algebra. On the contrary, in Excerpt 9, 
we observed that Cri's uneasiness (excerpt 9, [273-289]) arises because the pupils realises a 
discrepancy between the two worlds. During the discussion the software is not available, and Cri's 
reasoning is based only on her knowledge about what she can do inside L'Algebrista.  

In conclusion when the teacher moves from one world to the other, she may exploit not just each 
single world separately, but also the relationship between them, in order to guide the development 
of mathematical meanings, as separated from, but related to, meanings concerning the microworld.  

The analys of the discussion has shown  how the teacher used different elements of L'Algebrista, 
as instruments of semiotic mediation, exploiting "communication strategies aimed at guiding the 
evolution of meanings within the class community" ([51], Mariotti, 2002). The interventions we 
individuated are based on the distinction between two worlds, that of L'Algebrista and that of class 
mathematics (Algebra), and on the relationships between them. The relationship, and distinction, 
between the two worlds, is managed by the teacher also by using hybrid signs (for instance 
“theorem button” and its meanings) characterised by a polysemy that make it possible –both for the 
teacher and the pupils - to talk about both the two worlds and to compare them. Movements from 
L’Algebrista to algebra theory (and vice versa) are possible only if the participants to the activity 
are conscious that there is a distinction between them, and Cri's example shows how such 
movements can be effective when pupils are familiar with such distinction.  

As a consequence we hypothesise that one key point of an effective use of an artefact as 
instrument of semiotic mediation is to set up activities with focus on the relationship between the 
world of the artefact and the world of the mathematics we want to teach. Moreover it seems 
relavant to identify particular expressions, whose polysemy allows them to function as “pivot 
word”, fostering the movement between the two worlds. In the previous examples, the relationship 
between the two worlds was eploited by the teacher by means of the polysemy of words like: one 
derived from the sign of the microworld, i.e. "insert expression", the other coined expressly by the 
class, "theorem button".  these words were used by the teacher (but sometimes also by the pupils) to 
direct the focus of the discourse and to direct the nature of practices that had to be brought forward.  

The teacher plays a key role in individuating and stressing differences and analogies / similarities 
between the two worlds: both differences and similarites can be exploited in order to guide the 
construction and evolution of mathematical meanings. The  example of the functioning of the pivot 
word “axiom theorem” can be considered paradigmatic.  
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10.  Conclusions 

10.1.  Microworlds and artefacts as instruments of semiotic mediation  

Research on the use on technological devices for educational purposes, has been showing 
potentialities and limits. One of the most interesting ideas that we find in literature is that of 
Microworlds, environments where it is possible to experience activities that are relevant to a an 
incorporated knowledge domain. Thanks to microworlds, learners are given the possibility to 
experience, phenomenologically, knowledge domains such that of mathematics, which otherwise is 
perceived as abstract, and far from pupils practical experiences. Thanks to microworlds, it is 
possible to set up mathematical practical fields of experience, that can be exploited for educational 
purposes. Activities in a microworld may result in learning outcomes that are relevant to the 
considered knowledge domain. However, research showed that, even if practices with mathematical 
microworlds result always in some learning outcomes, the knowledge learnt by the pupils may not 
always coincide with the teacher's intentional mathematical knowledge. As a matter of fact, a 
learner working in a microworld, learns knowledge concerning it, but the relationship between such 
knowledge and the teacher's intentional knowledge is not straightforward. In fact, if no specific 
interventions are set up, it is not even guaranteed that the pupil interprets the activity with the 
microworld as a mathematical one.  

In the case of microworlds, as for in the case of other artefacts used in educational research, it is 
not obvious that pupils interpret activities as mathematical ones, and in case they do, it is not 
obvious that their learning outcomes are consistent with mathematics. Research showed that the 
nature of specific microworlds, or other artefacts, themselves, is not enough to guarantee the 
consistency of learning outcomes with a teacher's intentional mathematical knowledge. This is 
essentially because the way a user perceives an artefact or a microworld, and activities with them, is 
not always foreseeable and may be not consistent with a teacher's plans.  

The problem that we described has been addressed by some researchers within the framework of 
semiotic mediation ([51], Mariotti, 2002) who present approaches in which learning outcomes are 
considered to be rooted in the phenomenological experience, but that can reach consistency with 
mathematics, thanks to an evolution guided by the teacher by means of peculiar communication 
strategies. Within this framework a key role is played by the idea of instrument of semiotic 
mediation, which refers to a special use of instruments in class practices: the instrument is 
introduced in the practices on purpose by the teachers, and it is exploited to accomplish 
communication strategies that aim at developing meanings related to the mathematical contents 
consistent with the motive of the teaching/learning activity. Within this framework a key idea is that 
of deriving, from a used instrument, hybrid signs which refer both to the sphere of practice with the 
instrument, and to the sphere of theory of the teacher's intentional mathematical knowledge. Such 
hybrid signs can be used as pivots for directing the focus of activities and discourses either toward 
the sphere of practice or toward the sphere of theory. Movements back and forth the two spheres are 
exploited to convey practical meanings to the sphere of theory and theoretical meanings to the 
sphere of practices, allowing to exploit microworlds as means for generating theoretical meanings. 
In this framework, how theoretical meanings are originated from phenomenological experience 
depends strictly on how the teacher exploits hybrid signs as pivot, structuring a complex 
relationship between the considered microworld or artefact, and the mathematical intentional 
knowledge. Meanings are developed under the guidance, thus under the control, of the teacher who 
is institutionally in charge of ensuring their consistency with mathematical knowledge.   

Within this framework, one of the objectives of this thesis was to study and to improve the 
formulation of teaching/learning practices that exploit microworlds as instruments of semiotic 
mediation.   
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10.2.  A theoretical approach to algebra 

The knowledge domain chosen for our research was that of algebra, and our educational goal 
was that of introducing ninth grade pupils to symbolic manipulation. Research on the subject 
showed problems with standard educational approaches for what concerns this knowledge domain. 
Particular highlighted problems are that of difficulties for pupils to move from the operational 
perspective, typical of arithmetic, to the structural perspective typical of algebra. A key point in 
such a passage is that of considering algebraic expressions not only as computation procedure to be 
executed, thus processes, but also as objects to be acted upon; the algebraic way to act upon 
expression is that of manipulating, and transforming them by means of a set of axioms, definitions 
and theorems. Such kinds of algebraic manipulations are based on the notion of equivalence of 
expressions, which can be defined either in terms of numerical computations, or in terms of axioms 
based transformations. As consequence it is possible to set up an approach to symbolic 
manipulation interpreted as an activity of comparing expressions and proving their equivalence, or 
non equivalence, by means of algebraic axioms, definitions and theorems. Within such an approach, 
expressions are not only computational procedures, but are also objects that are compared and 
consequently manipulated according to goal oriented transformations; the goal of such activities is 
thus to state on the equivalence of these objects,  differently for what happens in arithmetic, where 
the goal of computations of expressions is to get a final numerical result to be used to solve other 
external problems. In our research we chose to follow such a theoretical approach to algebra, which 
consequently leads us to define the second main educational goal of our study, that of introducing 
pupils to theoretical thinking.  

Within to the chosen vygotskian theoretical framework, we set up an educational approach based 
on the use of microworlds in order to introduce pupils to theoretical thinking and to symbolic 
manipulation. 

10.3.  A software specially designed for introducing pupils to algebra as a theory, 
within the framework of semiotic mediation  

Many researchers have been conducted on the domain of computers and algebra education, 
however, none of them is based on interpreting symbolic manipulation within a theoretical 
perspective. At the same time, no educational software had been implemented to introduce pupils to 
algebra and to theoretical thinking at the same time. As a consequence, for our research, we chose a 
theoretical framework based on the notion of semiotic mediation, within which we find examples of 
experiments focused on introducing pupils to theoretical thinking, in geometry, using microworlds 
such as Cabri. According to the hypothesis of this theoretical framework, the meanings rooted in the 
phenomenological experience within the microworld can evolve toward a teacher’s intentional 
mathematical knowledge under his/her guidance, by means of specific communication strategies. 
Within this framework, we realized a specially designed software, L’Algebrista, where it is possible 
to transform expressions by means of commands (buttons) that correspond to axioms, definitions 
and theorems of algebra (see chapter 4. ). The practice within this microworld can be interpreted in 
terms of activities of proving equivalencies of expressions by means of  the elements of a theory 
represented by axioms corresponding to the set of available buttons. Such a practice constitutes a 
phenomenological experience originating meanings that can evolve toward mathematical meanings 
related to, and consistent with, the teacher’s intentional algebraic knowledge. The elements 
constituting the software had been designed so that their relationship with corresponding elements 
of algebra theory is the most direct possible, in the sense that we tried to avoid commands that 
incorporate many axioms or theorems at the same time. Thus the relation between the commands of 
the software and the considered axioms, definitions and theorems, is almost biunivocal. This has 
been done because we wanted it to be possible to interpret L’Algebrista’s set of commands, as signs 
standing for the elements of an algebraic theory of expressions. It is then possible to exploit its 



 

 144 

relationship with mathematics, as a means for building mathematical meanings rooted in the 
practice with L’Algebrista. If this is the objective, then it is important to have a clear picture of the 
relationship of the microworld with algebra, of the knowledge incorporated in the software, and of 
the knowledge we foresee it can evoke. In chapter 5. we presented a detailed analysis of the 
knowledge that was incorporated in L’Algebrista by its creators, and we presented hypothesis of 
what is the algebraic knowledge that can be evoked by the software and that is consistent with our 
educational aims.  

10.4.  The experimentation 
Since 1998 we set up several experiments involving L’Algebrista, which evolved in itinere, 

together with our research, according to the methodology of research for innovation. The first year 
of experimentation is to be intended as a study of feasibility, which resulted in a better formulation 
either of the sequence of activities proposed to pupils, either of the educational strategies to be 
employed by the teacher to guide teaching/learning processes.  

In chapters 6. and 7. we give a description of the experiments firstly in terms of the general 
teaching/learning paradigm and then in terms of the key steps of the sequence of proposed 
activities. Both the paradigm and the sequence of activities, evolved in itinere along with the 
experimentation, and are to be intended as a result of this research.  

10.4.1. The key steps of the sequence of activities 

The sequence of activities we presented to pupils is characterized by the following key steps: 

- Introduction of the idea of proving equivalence relationships of numerical expressions by means 
of the axioms of a theory: instead of generalising arithmetic to literal expressions, we introduce a 
new practice for numerical expressions, an algebraic one, centred on goal oriented 
transformations by means of the elements of a theory. 

- Extension to literal expressions of the practices of equivalence proving by means of axioms: 
once such algebraic practices are established on numerical expressions, they are extended to the 
case of literal expressions;  

- Proving new theorems: due to the generality of literal expressions (each letter can represent an 
expression), it is possible to interpret the proof of the equivalence of two given expressions, as 
the proof of theorem stating that any two expressions having the same structures of the given 
ones, are equivalent. As a consequence, among the many proven equivalencies, some are chosen 
to be given the status of theorem of the theory of reference that the class is building. The new 
theorems can be used as means for proving other equivalencies; in fact we introduce many 
common transformation rules as theorems, for instance rules for summing or multiplying 
fractions, rules for managing powers, and rules for facilitating factorisation of expressions. 

- Equations: when comparing two expressions, we have two main cases: the two expressions are 
equivalent or not equivalent; in the first case we can prove it by means of axioms (or theorems) 
based transformation. In the second case, we prove it by substituting numbers and computing 
the obtained numerical expressions; if the expressions are non equivalence, then there are some 
numbers that substituted to the letters originate non equivalent numerical expressions. However 
practice shows that sometimes non equivalent expressions, for certain numbers substituted to the 
letters, originate equivalent numerical expressions: the problem of equations consists on 
individuating such numbers. Also the principles for solving equations can then be introduced 
within a theoretical perspective, for instance taking the rule “A=B <=> A-B=0” as an axioms, it 
is possible to easily prove the rule “A=B <=> A+c=B+c”; this is exactly what we do in our 
experiment.  
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10.4.2. The general teaching/learning paradigm 

In our experimentation all the activities are accomplished either in the paper and pencil 
environment, or in L’Algebrista. In fact the microworld has been designed on one hand for 
performing axioms or theorems based transformations, on the other hand for being enriched with 
new commands, corresponding to new theorems, and added to the software by the users. In other 
words not only it is possible to use buttons representing axioms as instruments for transforming 
expressions and proving theorems, but is also possible to create new buttons, corresponding to 
theorems, and that can be themselves used for transforming expressions and proving new theorems.  

As consequence it is possible to develop the key steps of our sequence of activities either 
working in paper and pencil, either in the microworld. One of the aims of our research was to study 
how such parallelism could be exploited, and how, starting from the practices with L’Algebrista, it 
is possible for the teacher to guide pupils’ learning toward her algebraic intentional knowledge. We 
started from the basis posed by previous research on the use of microworlds as instruments of 
semiotic mediation in the case of geometry, from which we pursued the key ideas of a 
teaching/learning paradigm that had proven to be effective. Consequently, the paradigm (described 
in detail in chapter 6. ) we set up for our experiment, consists of a cycle of activities developed 
either with L’Algebrista, or with paper and pencil, interwoven with class discussions.   

According to our hypotheses, the meanings, raising from phenomenological experiences within 
the microworlds, have to evolve, under the guidance of the teacher, towards the mathematical 
meanings the teaching/learning activity aims to. In our teaching experiments, the main structure of 
class activities can be schematised as shown in Figure 24. 

Meanings originated in the phenomenological experience are shared within a collective 
discussion, fixed in the sets of command of Cabri and L'Algebrista and then reported in the personal 
notebook. Practical activities are verbalised in the forms of written reports and class discussions 
leading to the production of the class notebook and update of the commands of the microworld. The 
notebook and the sets of command of the microworld, are then cyclically revised in order to 
formulate their logical structure in terms of the logical relationship between the axioms and the 
theorems of a theory. 

 
 Figure 24 The main structure of  the class activities: practical activities are verbalised in the forms of written 
reports and class discussions leading to the production of the class nothebook and update of the commands of the 
microworld. The the notebook and sets of command of the microworld are then cyclically revised in order to 
formulate their logical structure in terms of the logical relationship between the axioms and the theorems of a 
theory. 

Practical activities: problem solving, 
discovery/production/proof of theorems in 

L'algebrista and paper and pencil. 

Class discussion 

Update of class notebook, and L'Algebrista 
commands. 
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The main elements constituting the paradigm are: L’Algebrista, the paper and pencil 
environment, class discussions, and the mathematical notebook. The roles played bye such 
elements, are defined in terms of the functioning of L’Algebrista as an instrument of semiotic 
mediation, which is strictly tied to the idea of exploiting the polysemy of the Italian word “calcolo” 
(en.: “computation activities” or “symbolic manipulation”). Such a word (Calcolo), among other 
meanings, is used to refer to algebraic computations, including both, numerical computations, and 
rule based computations. Calcolo, in general, refers to both, arithmetical and algebraic ways for 
handling expressions. However, such a word is associated mainly to the activity of “calcolare 
espressioni” which in the case of numerical expressions means “to compute the numerical result” 
whilst in the case of literal expressions means “to expand and simplify the expression”. In both 
cases one can proceed either computing the results of operations between numbers (when possible), 
or by using computational rules derived from the properties of the operations. In standard Italian 
approaches, pupils experience a lot of Calcolo with numerical expressions, then they are presented 
literal expressions, and asked to “calcolare” them, that is, the calcolo of numerical expressions is 
extended to literal expressions. This can result in pupils’ difficulties when the differences between 
the numerical case and the literal case are not enough highlighted, which is often the case when 
algebra is presented as generalized arithmetic.  

The key idea of our approach is situated exactly at this point, in fact, if we want to introduce 
symbolic manipulation within a theoretical perspective, the main focus of our activities has to be on 
transformations of expressions by means of the axioms of a theory. In other words we propose to 
interpret the rules based transformations of the calcolo as transformations based on the properties of 
the operations, which we take as the axioms of our algebraic theory. If in previous pupils experience 
the most relevant meanings of the word calcolo were the arithmetical ones, with the introduction of 
literal expressions, we wanted to stress the algebraic meanings of calcolo, fostering their evolution 
toward a theoretical view of symbolic manipulation. As a consequence we wanted to distinguish 
clearly the two different meanings associated to the word calcolo in order to avoid confusion and 
foster the evolution of both meanings within a theoretical perspective.  

The first step of our intervention was thus to introduce, through a class mathematical discussion, 
the idea of comparing numerical expressions questioning their equivalence relationships. Numerical 
expressions could then be compared either by means of numerical computations either by means of 
transformations based on the properties of the operations, which we, on purpose, began to call also 
“axioms”. This kind activity is the core of the activities proposed to pupils, and substitutes the 
activity of “calcolare” (“compute numerical results” or “simplify”) with which pupils were familiar 
prior to begin the experimentation. The word calcolo and the activities of calcolare are on purpose 
eliminated, at the beginning of the experiment, from class practices. As we said, we wanted to 
separate algebraic handling of expressions from arithmetical handling of expressions, as a 
consequence, given the mathematical problem of comparing expressions, we introduced two new 
words: verificare and dimostrare, which can be  translated with “to check” and “to prove”. The 
meanings of the new words, as they had been introduced in class practices, are strictly tied to the 
idea of comparing expressions in terms of their equivalence relationship. In fact two expressions, in 
our experiment, are considered to be equivalent if either their numerical results are the same, or if it 
is possible to transform one into the other using the axioms of the chosen theory. Once these 
definitions are discussed and shared by the class, the teacher introduces the new words to check and 
to prove (ita.: “verificare” and “dimostrare”) as referring to the two ways to define equivalencies of 
expressions. Thus, to check that to expressions are equivalent means to compute their numerical 
results and to check if the obtained numbers are the same, whilst to prove that two expressions are 
equivalent, means to transform one into the other by means of the given set of axioms51. These new 
words, introduced on purpose, structure a distinction between the arithmetical and the algebraic 
                                                
51 Of course, the chosen axioms are discussed in class, we generally begin considering only the properties of the 
operations, and then add gradually other needed axioms to the theory, as we explained in chapter 8.  
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meanings of the word calcolo which is now split respectively into check and prove (or proof). This 
distinction is forced, on purpose by the teacher, and it is to be considered as temporary. In fact, the 
meanings fostered through this distinction and following activities, are meant to be merged again in 
the word calcolo once the experimentation is over. Our objective is that of creating solid algebraic 
meanings, as opposed to arithmetical meanings, and that pupils internalised them as such; after that 
such meanings can merge in the polysemic word calcolo which pupils should be able to manage 
with its different meanings. The process that leads to an integrated interpretation of the word 
“calcolo” as referring both to arithmetical computations and algebraic manipulations, is supposed to 
be a long term one, and we couldn’t study, along this research, its complete evolution, thus further 
research is needed.  

 
Figure 25 The semiotic split of the sign /computing/ into the signs /checking/ and /proving/ 

Once the sign /calcolo/ is split into the two signs /verifica/ and /dimostrazione/ (/check/ and 
/proof/), the L’Algebrista, is introduced in the class practices. In fact, the microworld, due to its 
features, can play a key role in keeping the separation between the meanings associated to the 
words “check” and “prove”. The activities of “proving” and the activities of “checking” are 
performed, in the microworld, by using distinct commands, the “buttons of the properties of the 
operations” in the case of proving activities, and “buttons of numerical computations” in the case of 
checking activities. As a consequence, L’Algebrista can be a source for phenomenological 
experience rooting meanings related to both the activity of proving and the activity of checking. 
However, as we previously observed, what a pupil may learn by using a microworld, is not 
necessary consistent with the teacher’s intentional knowledge. Thus there is a need  for the teacher 
to have some means for controlling, and guiding, the evolution of meaning originated in the 
L’Algebrista toward meanings that are consistent to her/his intentional knowledge, and that at the 
end should not depend strictly on the microworld. In our approach, L’Algebrista is not supposed to 
be identified with the algebra theory corresponding to our educational goals, thus we need to create, 
in class practice, a separate context that can be identified with such algebra theory. In order to do 
that we introduce another semiotic split: the word “prove”, is split into “prove within L’Algebrista” 
and “prove”, while the word “check”, is split into “check within L’Algebrista” and “check”. The 
main environment for “checking” and “proving” is then the paper and pencil and refers to 
mathematics.  
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Figure 26 The semiotic split of the sign /proving/ into the signs /proving/ and /proving in L’Algebrista/ 

Now, in the case of “checking”, pupils already had mathematically consistent meanings 
associated to it, thus the interesting case for us is that of “proving”.  

The idea of “proving” that we are trying to foster within our experiment is that of “proving 
within a theory”, thus, every step of a proof has to be produced by means of the elements of the 
theory in question. In L’Algebrista the “elements of the theory” that can be used as means for 
proving are represented by the available buttons. As a consequence, if we want to develop meanings 
related to proving outside the microworld, we need to foster the idea of theory as a set of axioms 
(and then theorems). In order to foster this idea, together with L’Algebrista, we introduce the class 
algebra notebook, which is meant to be a collection of all the axioms and theorems shared by the 
class, and each pupil is supposed to keep his/her own copy. In other words the class algebra 
notebook represents the algebra theory shared by the class. At this point, proving outside 
L’Algebrista makes sense in terms of proving by means of the axioms and theorems contained in 
the class algebra notebook. 

L’Algebrista and the class algebra notebook are presented as related but not as the same thing. 
Key elements of the idea of theory, such as axioms and theorems with their proofs, are represented 
both within L’Algebrista and in the class algebra notebook. The relationship between the class 
algebra notebook and L’Algebrista is exploited in order to originate meanings in L’Algebrista, 
guiding their evolution toward algebraic meanings represented in the notebook. In section 9.4.5, for 
instance, we showed how this relationship can be exploited by the teacher to foster two peculiar 
meanings associated to the word “theorem”. A theorem, in fact, is both an element of a theory, and 
an instrument that can be used to prove other theorems. In order to foster both these meanings, we 
exploit the semiotic split between “proving” and “proving in L’Algebrista”. In fact we split the 
word “theorem” into “theorem as element of the class algebra notebook”, and “button in 
L’Algebrista”.  In the first case, the associated meaning is that of element, proven to be valid, of the 
class theory; in the second case the associated meaning is that of instrument that can be used to 
prove equivalencies in L’Algebrista.  
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Figure 27 The semiotic split of the sign /theorem/ into the signs /theorem/ (of the class algebra notebook) and 
/button of L’Algebrista/. 

The two meanings associated to the idea of theorem can thus be fostered on the one hand by 
practices of edition and revision of the class algebra notebook, and on the other hand by practices 
of proving theorems in L’Algebrista. However, our aim is that pupils interpret the word “theorem” 
both as an element of a theory and as an instrument for proving, thus we need to merge together the 
two meanings associated to theorems of the class algebra notebook and to the buttons in 
L’Algebrista. In section 9.4.5 we presented an episode in which the teacher guides the merging of 
these meanings by deliberately using the hybrid word “Theorem button”, which is used as a pivot to 
direct the focus of the discourse from the world of L’Algebrista to the world of algebra and vice 
versa. This a hybrid word conveys both the mentioned meanings associated to the idea of theory, 
but keeps track of how these meanings, in class practice, have been originated in the two different 
contexts. We hypothesise that hybrid words like this one can be the key for guiding the evolution of 
meanings that are originated in the microworld, toward mathematical meanings represented, in our 
case, by the class algebra notebook. The word “theorem button”, in the final phases of the 
experiment, is gradually substituted by the word “theorem”, as the microworld is gradually 
abandoned. In fact, as pupils internalise the use of the “theorem buttons”, they begin to feel the need 
to abandon L’Algebrista, which in the final phases proves to be obsolete for them because of its 
limitations. As a consequence the microworld is abandoned, and what remains is the class algebra 
theory with its axioms, definitions, and theorems, as represented by the class algebra notebook.  

 The scheme in Figure 28 represents the evolution of the word “theorem” and the associated 
meanings. The word was deliberately split by the teacher into “theorem” (in the sense of “valid, and 
proven, element of the class algebra notebook”) and “button”; we may call this phase semiotic split. 
The initial meanings associated to these two words evolved under the guidance of the teacher in two 
distinct ways: on the one hand, through activities of proving theorems both in L’Algebrista and with 
paper and pencil (using the elements of the class algebra notebook); on the other hand through 
activities of edition (insertion of new theorems) and revision of the notebook, and insertion of new 
buttons in L’Algebrista (with “Il Teorematore”). We may call this phase meanings evolution. 
Finally the meanings associated to the two words “theorem” and “button” are merged together by 
means of the hybrid word “Theorem Button”; we may call this phase semiotic merging.  
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Figure 28 Thanks to the use of the hybrid word “Theorem button”, the theoretical meanings associated to the 
theorems of the class algebra notebook, and the instrumental meanings associated to the word “button” are merged 
together, posing the bases for fostering the idea of theorem both as an instrument and as an element of a theory.  

A Mathematical object can be interpreted both as an element of a systematized theory, and as a 
means for accomplishing tasks and solving problems, in other words it is associated to both 
theoretical meanings and to instrumental meanings. In our approach these two meanings are 
introduced separately starting from the introduction of the class algebra notebook and the 
microworld L’Algebrista. Different words are used to refer to elements of the class algebra 
notebook and their counterparts in L’Algebrista (for instance “theorem” and “button”), in this sense 
we operated a semiotic split. The meanings associated to the two words develop separately because 
they originate in different contexts, that of algebra, represented by the class algebra notebook, and 
that of L’Algebrista. However, the features of the microworld allow the teacher to guide the 
evolution of the two meanings, keeping them tied to each other, for instance by using hybrid words, 
such as “theorem button”, that function as nodes between the world of algebra and the microworld. 
Thanks to such hybrid words it is then possible to close the semiotic split, merging the originated 
signs into a unique sign where a mathematical word is used to represent both the theoretical and the 
instrumental meanings that have been developed. At the end of the teaching/learning process, when 
the microworld is abandoned, hybrid words are gradually merged with, and substituted by, words 
belonging to the domain of algebra as it is represented by the class algebra notebook. The pupils of 
class 2000 in our experiment named this final phase the “death of L’Algebrista”; in fact they 
decided to abandon the microworld because they realised that in L’Algebrista it wasn’t possible to 
prove certain statements that they were able to prove with paper and pencil referring to the elements 
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of the class algebra notebook. Thus the world of L’Algebrista was finally encompassed in, and 
replaced by, the world of algebra.   

We argue that a similar educational approach can be extended to other situations where the 
educational goal consists in introducing pupils to both the theoretical and the instrumental aspects 
of a given area of mathematics. A class mathematical notebook could be used to represent the 
mathematical theory shared by the class, and a microworld could be exploited to foster instrumental 
meanings to be associated to the elements of such a theory. However, further research is needed in 
order to identify what areas of mathematics this approach is suitable for, and in order to identify 
what kinds of microworld (or maybe other kinds of artefacts) can be used as instruments of semiotic 
mediation.  
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11.  Appendix: The meanings of some key words 
Here we report the definitions of some key words as they are reported in some dictionaries. Each 

section will be a list of definition for a word.  

11.1.  Objects and things 

"Object: a material thing; that which is thought of or regarded as being outside, different 
from, or independent of, the mind (as opposed to subject); that upon which attention, interest, 
or some emotion is fixed; a thing observed; […]" 

([23], The Chambers Dictionary, 1998) 

"Object: n. physical thing; focus of thoughts or action; aim or purpose; […] article, boy, fact, 
item, reality, thing […] aim, butt, focus, target, victim […] design, end, goal, idea, intent, 
motive, objective, point, purpose, reason." 

([24], Collins, pp. 418, 1994) 

"Objeto: m. Todo lo que puede ser materia de conocimiento intelectual o sensible […]. || 
Propósito, intención […]. || Asunto, motivo […]." 

([36], Garcia-Pelayo y Gross, pp. 393, 1983) 

"Oggètto: s. m. 1. Entità fisica o spirituale in quanto contenuto di un’esperienza o di 
un’attività (l’o. della conoscenza, delle percezioni; l’o. dei miei studi) che può identificarsi in 
un ‘fine’ (l’o. di una ricerca, di un desiderio) o in un ‘argomento’ (l’o. del discorso) | […] 
concr. Unità materiale distinta da una propria sussistenza per lo più di ordine quantitativo o 
qualitativo: un o. pesante; o. artistici; aveva le tasche piene di o. inutili | […] 2. In ottica: 
punto-o. […] il punto da cui vengono (o. reale) o sembrano provenire (o. virtuale) i raggi che 
concorrono a formare l’immagine fornita da un sistema ottico. [dal lat. Mediev. Obiectum, 
neutron sostantivato di obiectus, participio pass. Di obic�re ‘metter di fronte’." 

([27], Devoto et al., pp. 1531, 1971) 

"Thing: n. material object; object, fact, or idea considered as a separate entity; […] affair, 
article, body, concept, entity, fact, matter, object, part, portion, substance […]. Apparatus, 
contrivance, device, gadget, implement, instrument, machine, means, mechanism, tools […]" 

([24], Collins, pp. 621, 1994) 

"Cosa: f. Palabra indeterminada cuyo significado (materia, objectos, bienes, palabras, 
acontecimiento, asuntos) se precisa por lo que la precede o la sigue […]. || Ser Realidad, por 
oposicióon a aparencia […]. || Lo que se piensa, lo que se hace, lo que pasa […]." 

([36], Garcia-Pelayo y Gross, pp. 393, 1983) 

"Cosa: s. f. 1. Nome estremamente generico, che riceve determinazione solo dal contesto del 
discorso; oggetto ideale o materiale: c. corporee, incorporee, temporali, eterne; […] part. In 
filosofia (fino a Kant): c. in sé, ciò che sussiste indipendentemente dal nostro conoscere." 

([27], Devoto et al., pp. 604, 1971) 
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11.2.  Artefact 

"Artefact: a thing made by human workmanship; […]" 
([23], The Chambers Dictionary, 1998) 

"Artefact, artefact: n. something made by man" 
([24], Collins, pp. 418, 1994) 

"Artefatto: agg. Adulterato, insincero. [dal lat. Arte cactus ‘fatto con arte’ e cioè ‘con 
artificio’]." 

([27], Devoto et al., pp. 174, 1971) 

11.3.  Instrument 

"Instrument: a tool or utensil; a contrivance for producing musical sounds; a document 
constituting a contract; a formal record; a person or thing used as a means of agency; a term 
generally employed to denote and indicating devices but also other pieces of small elecrical 
apparatus" 

([23], The Chambers Dictionary, 1998) 

"Instrument: n. tool used for particular work; object played to produce a musical sound; 
measuring device to show height, speed, etc.; Informal person used by another. […] 
appliance, contrivance, device, gadget, implement, mechanism, tool, utensil" 

([24], Collins, pp. 324, 1994) 

"Instrument: […] a means whereby something is achieved, performed, or furthered […]" 
([58], Merriam-Webster, 2003) 

"Instrument: n. 1. A means by which something is done; an agency. 2. One used by another 
to accomplish a purpose; a dupe. 3. An implement used to facilitate work. See Synonyms at 
tool." 

([78], The American Heritage Dictionary of English Language, 2000) 

"Instrument: 1. That by means of which any work is performed, or result is effected; a tool; a 
utensil; an implement; as, the instruments of a mechanic; astronomical instruments." 

 ([84], Webster's Revised Unabridged Dictionary, 1996) 

"Instrumento: m. Aparato, utensilio o herramienta para realizar trabajo || Aparato para 
producir sonidos musicales […]. || Escritura con que se justifia una cosa […] || Fig. Lo que se 
emplea para alcanzar un resultado […]." 

([36], Garcia-Pelayo y Gross, pp. 304, 1983) 

"Strumento: [..] s. m. 1. Arnese indispensabile per lo svolgimento di un’attività, di un’arte, 
di un mestiere […]. 3. Mezzo di cui ci si può attivamente servire per il conseguimento di uno 
scopo: della penna si fece s. di lotta; non vorrei essere s. dell’ambizione altrui […] ." 

([27], Devoto et al., pp. 2386-2387, 1971) 
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11.4.  Tool 

"Tool: a working instrument, esp one used by hand; the cutting part of a machine tool; 
someone who is used as the mere instrument of another; anything necessary to the pursuit of a 
particular activity; any of several devices used to impress a design on a book cover; an 
impressed design on a book cover; a weapon, esp a gun; the penis; a utility, feature of 
function available as part of a word-processing packgage or database" 

([23], The Chambers Dictionary, 1998) 

"Tool: n. implement used by hand; person used by another to perform unpleasant or 
dishonourable tasks. […] appliance, contrivance, device, gadget, implement, instrument, 
machine, utensil […]" 

([24], Collins, pp. 627, 1994) 

"Tool: Something regarded as necessary to the carrying out of one's occupation or profession: 
Words are the tools of our trade. " 

([78], The American Heritage Dictionary of English Language, 2000) 

"Attrezzo: [..] s. m. 1. Ciascuno degli utensili o strumenti occorrenti ad una determinata 
attività: gli a. del falegname; a. teatrali; a. navali […] ." 

([27], Devoto et al., pp206, 1971) 

"Arnese: [..] s. m. 1. Strumento o utensile di un’arte o mestiere […] ." 
([27], Devoto et al., pp206, 1971) 

11.5.  Uses and usage 

"Usage: act or mode of using, treatment; practice; custom […]" 
([23], The Chambers Dictionary, 1998) 

"Usage n. act or a manner of using; constant use, custom, or habit. […] control, employment, 
management, operation, running, treatment […] conventions, custom, form, habit, method, 
mode, practice, procedure, regime, routine, rule, tradition." 

([24], Collins, pp. 652, 1994) 

"Use: the act of using; the state or fact of being used; an advantageous purpose for which a 
thing can be used […]" 

([23], The Chambers Dictionary, 1998) 

"Use […] n. using or being used; ability or permission to use; usefulness or advantage; 
purpose for which something is used. […] application, employment, exsercise, handling, 
operation, practice, service, usage […]. Advantage, application, avail, benefit, good, help, 
point, profit, service, value, worth […]. Custom, habit, practice." 

([24], Collins, pp. 652-653, 1994) 

"Uso: m. Acción de utilizar o valerse de algo. […]" 
([36], Garcia-Pelayo y Gross, pp. 604, 1983) 
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"Use: to put some purpose; to avail oneself; to employ habitually […]" 
([23], The Chambers Dictionary, 1998) 

"Use […] v. put into service or action; behave towards in a particular way, usu. Selfishly; 
consume or expend. […] apply, employ, exercise, operate, ply, practice, utilize, wield, work 
[…]. Exploit, handle, manipulate, treat […]. Consume, exhaust, expend, run through, spend, 
waste" 

([24], Collins, pp. 652, 1994) 

"Utilizar: v. t. Emplear, servirse de." 
([36], Garcia-Pelayo y Gross, pp. 605, 1983) 

11.6.  Learning and Teaching 

"Learn v. learning, learnt or learned. gain skill or knowledge by study, practice, or 
teaching; memorize (something); find out or discover. [..] 1. Acquire, attain, grasp, imbibe, 
master, pick up 2. Get off, pat, learn by heart, memorize 3. Detect, discern, discover, find out, 
gain, gather, hear, understand." 

([24], Collins, pp. 353, 1994) 

"Teach v. teaching, taught or learned. Tell or show (someone) how to do something; cause 
to learn or understand; give lessons (in a subject). […] advise, coach, direct, drill, educate, 
enlighten, guide, impart, implant, inculcate, inform, instil, instruct, school, show, train, tutor." 

 ([24], Collins, pp. 614, 1994) 
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12.  Appendix: Review on symbolic manipulators to teach symbolic 
manipulation 

In this appendix, for the purposes of this thesis, I report a slightly modified version of a 
document that I presented at the "Working Group on Technological Environments" of the 12th ICMI 
Study Conference "The Future of the Teaching and Learning of Algebra", which was held in 
Mealbourne (Australia), December 9-14, 2001.  

Each member of the working group prepared a research brief that was circulated among Working 
Group participants; the briefs, and the discussion of the working group, contributed to the 
realisation of a chapter ([46] Kieran and Yerushalmy, in press) dedicated to technological 
environments, in the 12th ICMI Study book ([46] Kieran and Yerushalmy, in press). 

12.1.  Introduction 

Research literature includes an enormous quantity of papers concerning the use of technology in 
mathematics education and the range of papers remains vast even if we restrict to the teaching of 
algebra. Thus I am going to describe the research criterions that I used in order to help the reader 
understanding what I may have left out consciously or unconsciously.  

The aim of this review was to identify research papers on a quite peculiar subject, symbolic 
manipulation, in particular I aimed at individuating research papers referring to software designed 
specifically to be used to teach symbolic manipulation. As a consequence I had two paths to follow: 

4. Research for material (papers, pieces of software, demos, reviews) concerning the existing 
technology in order to find out which software have been designed for such a specific aim. 

5. Look for research material (conference reports, books, journal papers) concerning the use of 
symbolic manipulators specifically designed to be used to teach symbolic manipulation. 

From a first look at web archives (for instance Kluwer Academic web archive at 
http://www.wkap.nl) revealed that there are almost no relevant papers for 2, thus I enlarged my 
objective to: 

6. Look for research material concerning the use of symbolic manipulators in the teaching of 
symbolic manipulation. 

In the following I will first describe what I found out for 1. And then for 3.. In both cases I will 
first discuss how I searched for material, and then I will describe the obtained results, thus the 
reader may chose to skip some paragraphs and jump to the results. 

12.2.  The existing technology concerning symbolic manipulation 

A quick look at the presentations of most famous computer algebra systems suggested me that 
actually almost no software seemed to be designed to introduce pupils to symbolic manipulation. As 
a consequence I shifted my attention to analyse whether a software could be classified as a symbolic 
manipulator or not. I personally reviewed a few software and classified them, in the luckiest cases I 
could test the software or a demo, in other cases I red their presentations on dedicated web pages. 

12.2.1. What do we mean with symbolic manipulator? 

For the aim of this review I used the following definition: 

a symbolic manipulator (or calculator) is an environment providing instruments in order to 
operate on representations of algebraic expressions transforming them following mathematical 
rules.  
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Such a definition clearly excludes programming languages such as LOGO and PASCAL, while 
it includes for instance Mathematica, DERIVE, MAPLE, etc.  

12.2.2. What is the objective of a software? 

It is quite hard to find out what a software have been designed for, the only explicit information 
we have depends on how the software is presented by its creators and distributors. In this review, 
given an objective O and a software S, I considered O to be an objective of S iff one of the 
following conditions is verifued: 

7. Its been declared to be so by the designers, or the creators, or the producers, or the distributors, 
or the maintainers. 

8. It is distributed together with a package (CD, or booklet or whatever) describing how the 
software S could be used aiming at objective O. In case O is an educational objective the 
package should present an educational approach to O based on S. 

In this review I used this criterion to analyse the available software. 

12.2.3. What about the available software?  

When we try a generic search on the internet for words such as symbolic, manipulator, 
calculator, computer algebra system etc. we find a huge quantity of different software packages. As 
a consequence it is impossible to classify all of them, thus I analysed a few in order to find out 
whether the software has been designed to teach symbolic manipulation (“teach” in the below table) 
or to be used to perform symbolic manipulation (“perform” in the below table). I left unfilled 

objective cells where I did not find information concerning the original objective of the software. 

12.2.4. Information or promotional resources concerning software 

The number of material describing or promoting specific software is very high, as high is the 
number of software. Here I am going to list only a few concerning the most popular pieces of 
technology. 
Algebrator: 

Algebrator – an Algebra Problem Solver for Students and Teachers. Available at 
http://www.softmath.com/home-fr.htm including an online demo and the below listed reviews. 

Software Objective: teach vs perform 
Alged Perform 
AMP Perform 
Derive Perform 
L’Algebrista Teach 
Maple Perform 
Mathematica Perform 
Mathomatic Perform 
Milo  
Symbolic Math Guide for T-91 & T-82 Teach 
Symbmath Perform 
WICAT Teach 
EXPRESSIONS Teach 
RESOLVER Teach 
Theorist   
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A review of the software: Technology. Mathematics Teacher, Volume 93 n. 2, February 2000. 
National Council of Teachers of Mathematics. 
A review of the software: Software, focus on math. The Journal, vol. 26 n. 10, May 1999. 

DERIVE:  
Kutzler (1995 and 1999). The author is the actual promoter of DERIVE in Europe, a critique on 
his discourse can be found in Lagrange  
Texas Instruments (2001): DeriveTM 5 The Mathematical Assistant for Your PC. Available at 
http://education.ti.com. 
Barozzi & Cappuccio (1997). 
http://www.derive.com 
http://www.kutzler.com  

MACSYMA: 
Martin W.A.,Fateman R.J. (1971): The MACSYMA system. Proceedings of the second 
symposium on Symbolic and algebraic manipulation.  
Moses J. (1979): The MACSYMA system for formula manipulation..Proceedings of the APL 
Quote Quad conference part 1. 

Mathematica:  
http://www.wolfram.com 

Matlab: 
Symbolic Math Toolbox (For Use with MATLAB). Copyright 1993-1998 by The MathWorks, 
Inc. available at http://www.mathworks.com. 

MuPad: 
Postel (1999) explains how the software can be used as a tool, a tutor and a tutee within school 
mathematics activities. 

SureMath: 
Grandgenett N. (1995): Review of SureMath. Mathematics and Computer Education, Vol. 29, 
No. 3, Fall 1995. Available at htttp://www.suremath.com 

T-91 & T-82 and Symbolic Math Guide for T-91 & T-82:  
Child (2000) presents the environment and gives some hints of how it could be used for 
educational purposes. The environment presents transparent commands to do symbolic 
manipulation step by step, in the paper it is discussed the case of exponential commands.  
Texas Instruments (2001) TI-89/TI-92 Plus Symbolic Math Guide (guided tour). Available at 
http://education.ti.com Texas Instruments: Symbolic Math Guide A Concept APP for the TI-89 
and TI-92 Plus. Available at http://education.ti.com. 
Kutzler (1996). 

12.3.  Research on symbolic manipulators in the teaching/learning of symbolic 
manipulation 

Many research papers concerning the teaching of symbolic manipulation do not even mention 
the expression “symbolic manipulation”. Thus I needed to set up some criterions to individuate 
papers concerning such subject. I do not intend to give my own definition of “symbolic 
manipulation”, I just list some aspects that have been taken into account in existing literature (e.g. 
Kieran 1998, Lagrange 2000, Mariotti Cerulli): 

• Transformations of expressions  

• transformations of equations 

• equivalence relationships between expressions 

• equivalence relationships between equations 
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• structure of expressions and equations 

For this review I took into account only educational research resources involving any such items 
and involving the use of computers and calculators. 

In order to have a continue story line of past and recent research I reviewed the proceedings of 
PME conferences from 1987 to 2001.  In particular I followed indications contained on a survey of 
research reports concerning algebra within PME (Malara 1997). 

The other main source I used is the Kluwer Academic on-line archive (http://www.wkap.nl) 
where I performed searches on the whole archive and on the specific archives of the following 
papers: Journal of Mathematics Teacher Education, Educational Studies in Mathematics; Science 
& Education; International Journal of Computers for Mathematical Learning; International 
Journal of Technology and Design Education; Education and Information Technologies; Journal of 
Science Education and Technology. I searched for combinations of the following words: symbolic; 
manipulation; manipulator; calculator; calculation; CAS; computer; algebra; software; mathematics. 

I also did a generic internet search using the Google search engine (http://www.google.com) 
using the same key words.  

12.3.1. Some relevant contributes in chronological order 

1987. Lesh and Herre (PME52) focus on some results of computer based activities used to 
illustrates Dienes’ instructional principles. The reported examples are based on the software SAM 
(by WICAT) “developed to enable students to write graph, transform, and solve algebraic 
expressions and equation” (Lesh, Herre 1987). In particular they expose an example concerning the 
resolution of second grade equations; in this case the software is used to transform the equation and 
to show at the same time graphic representations of the involved expressions. For instance, given 
the equation A[x]=B[x] the software plots y=A[x] and y=B[x]. When the equation is transformed 
into A[x]+C[x]=B[x]+C[x] the software plots the new functions y=A[x]+C[x] and y=B[x]+C[x]; 
this happens for any transformation rule applied to the equation. As a consequence it is possible to 
see how the set of solutions of the equation remains constant when the equation is transformed.  

Thompson and Thompson (PME) present a study that took place over nine consecutive weekdays 
concerning an attempt to overcome students difficulties related to structures of algebraic 
expressions. The study is based on the use of EXPRESSIONS a “special computer program […] 
that enabled students to manipulate expressions, but which constrained them to acting on 
expressions only through their structure”. The software represents expressions as trees and the use 
can operate on expressions by clicking on the action to do (for instance distribute, commute, etc.) 
and then clicking on the head of the branch of the represented expression that has to be transformed. 
The proposed activities consisted in transforming a given expression into another given expression. 
This was done both with numeric expressions and literal expressions. In particular we may observe 
that the software allowed step by step transformations and included transformation principles based 
on field properties, such as the properties of neutral elements. The authors present a brief analysis of 
students errors and conclude that attention to expression structure seems to be important. 
Furthermore they observe that pupils had no problem approaching manipulation with letters as such 
an activity seemed to base more one the structure of the expressions then on the nature of its terms. 
Finally they observe that few students spontaneously built expression trees to facilitate themselves 
evaluating them, this seems to be remarkable as the students had never seen an expression tree 
before.  

1989. Yerushalmy (PME) reports a research aiming at studying a specific kind of difficulty 
encountered by students when transforming expressions: the absence of meaningful feedback. The 
                                                
52 Conference of the International Group for the Psychology of Mathematics Education. 
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researcher uses a software called RESOLVER (designed by Schwartz and Yerushalmy) that 
represents graphically expression transformations in the following way: the user enters an 
expression, then the user enters another expression obtained transforming (not in the computer) the 
original expression; the computer plots the graphic of the two expressions and the graphic of the 
difference between them, if the transformation is correct then such difference graphic would 
correspond to y=0. The user can go on inserting transformed expressions and at each step the 
software will plot the mentioned graphics. The author does not mention it, but it seems to be 
reasonable to imagine that the software works only with expressions with the variable x. The author 
presents some results of a couple of tests aiming at studying how students used the visual feedback; 
students are given expressions to be simplified.  

In the introduction the author refers to some older researches on the use of computer for 
symbolic manipulation: “A Computer’s uses range from a tutor which direct students to carry the 
right simplification (Brown 1985), through computerized tools which direct students to understand 
the deep structure of algebraic expressions (Thompson 1987) to the use of programs that could 
carry symbolic transformations for the user such as MuMath (Fey 1984, Heid 1988)”.  

1991. Yerushalmy (PME). “This study examined the effect of graphic representation of algebraic 
expressions on performance of tasks involving tranformations” (Yerushalmy 1991). The research 
follows up from previous 1989 PME report (Yerushalmy 1989), but in this case the experiment 
includes a teaching intervention where functions and transformations of algebraic expressions are 
introduced using single and multiple representation. The used software are The Function Analyzer 
(Schwartz & Yerushalmy 1989), The Function Supposer (Analyzer (Schwartz & Yerushalmy 1989) 
and Transformer. 

1994. Kieran (PME) presents a project based on a functional approach to introduce students to 
algebra. To crate meaning for algebraic expressions two approaches are proposed, a process-
oriented one and an object-oriented one. The first is based on a the software CARAPACE (Boileau 
& Garçon, 1987) in order to write algorithms to help building expressions from word problems; the 
object-oriented one is based on “Math Connections: Algebra II” (Rosemberg 1992), a software 
allowing working with graphs, tabulars and algebraic representations. Meaning for algebraic 
manipulations is created by comparing expressions using the mentioned software. Expressions are 
considered to be equivalent if they have the same graph or the same table of values. The study of 
equivalent expressions lead to the introduction of the main properties of algebraic expressions 
(associative, distributive, commutative). 

1996. Auricchio et al (in Italian) give a detailed comparison of the computer programs DERIVE, 
MILO and Theorist from an educational point of view. The authors try to point out and compare 
those aspects of the interface that may help learning processes. 

1999. Yerushalmy in a paper concerning more general issues discusses the special case of 
equivalent equations and transformations between them. Two technological approaches to the 
problem are described (with references to past researches) and discussed and a third one is 
proposed. The central node seems to be how the equivalence between equations is represented. 

2001. Mariotti and Cerulli (PME). The authors discuss some results of a long term project 
concerning the introduction of students to symbolic manipulation within an axiomatic approach. 
The study is based on a symbol-manipulation microworld created by the authors. The paper 
concerns aspects of the theory of semiotic mediation in relation to the use of the specific software. 
The microworld presents strong analogies to the one used by Thompson and Thompson (1987), but 
the research aims at realizing an educational approach to algebra viewed as an axiomatic theory 
(Cerulli and Mariotti in press). Activities consist mainly on proofs of equivalencies between 
expressions; proofs consist on transformations bymeans of axioms (distributive, associative, 
commutative). The author aims also at intorducing students to the idea of theory and proof within a 
theory. 
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Bouhineau, Nicaud, Pavard, Sander.  Authors’ abstract: “This paper describes the design 
principles of a microworld devoted to the manipulation of algebraic expressions. This microworld 
contains an advanced editor with classical actions and direct manipulation. Most of the actions are 
available in two or three modes; the three action modes are: a text mode that manipulate characters, 
a structure mode that takes care of the algebraic structure of the expressions, and an equivalence 
mode that takes into account the equivalence between the expressions. The microworld also allows 
to represent reasoning trees. The equivalence of the expressions built by the student is evaluated and 
the student is informed of the result. The paper also describes the current state of implementation of 
the microworld that will lead to a prototype available in February 2001.”  

12.3.2. Specially designed symbol-manipulation microworlds 

The researches concerning microworlds specially created for learning/teaching symbolic 
manipulation that I found are the following ones: Lesh and Herre 1987; Thompson and Thompson 
1987); Mariotti and Cerulli (2001). 

12.3.3. Manipulation of expressions (or equations) preserving equivalencies 

We find many researches focusing such a nodal question within symbolic manipulation. The 
followed approaches are mainly two: 

• multirepresentational approach: equivalence between expressions (or equations) is rendered 
by using two or more representations (symbolic and graphic representations, and tables of 
values). The to transformation rules, that correspond to algebraic principles, are viewed as 
transformations that keep some invariant in the multiple representations of expressions (or 
equations). In this class we find Lesh and Herre 1987 (equations), Yerushalmy 1989 
(expressions), Kieran 1994 (expressions), Yerushalmy 1999. 

• Structured manipulation: the microworld offers commands that transform expression (or 
equations) operating on their structures and preserving equivalencies. Here we find 
Thompson and Thompson 1987, Mariotti and Cerulli (2001), Bouhineau et al. 2001. 

12.3.4. Study of difficulties or intervention? 

From a very general research objectives point of view we may split papers into two classes: 

• papers concerning technological environments designed and/or used to study students 
difficulties: Yerushalmy 1989,  

• papers concerning design and/or use of technological environments for teaching 
interventions: Lesh and Herre 1987, Thompson and Thompson 1987, Kieran 1984, 
Yerushalmy 1999, Cerulli Mariotti, Bouhineau et al. 2001. 

12.3.5. Related but unchecked papers 

There are a few papers that I could not access to but that might be related to the subject. I found 
references of such papers, and sometimes abstracts, using the following resourches: 

• Proceedings of Annual Conferences on Technology in Collegiate Mathematics (ICTCM) 
available at http://archives.math.utk.edu 

• Web site of the Inst. De Recherche sur L’Enseignement des Mathematiques (IREM) 
http://www.univ-montp2.fr/~irem  
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• Zentralblatt für Didaktik der Mathematik (International Reviews on Mathematical 
Education). 

For some of them I can give some indications on the contents: 

Aczel 1998: Considers the contribution of computer software to understanding processes of 
solving equations. 

Mainini 1998: discussion on computational skills concerning those calculations that are now 
done by computers. 

Tynan et al. 1998: discussion of performance of pupils using CAS in symbol manipulation. 

Frenc 1999: suggests how powerful manipulators may influence educational approaches to 
symbolic manipulation.  

Gage 1999: presents a theorem prover that solves equations step by step. 

Henrich 1999: influence of graphic calculators on pupils’ computational skills. 

Drijvers 2000: Experience of CAS for equations. Steps to develop functional use of 
mathematics tools. 
Below is the whole list of such related papers: 

Aczel J., Tilley D. (1998): Algebra: rebalancing the equation. Micromath (Summer 1998), v. 14(2), pg. 11-13. 

Drijvers P., Van Herwaarden O. (2000): Instrumentatie van ICT-gereedschap: algebranet computer-alggebra. Nieuwe 
Wiskrant (sep 2000), v.20(1), pg. 38-43. 

Fauvre C., Fontana J., Nogues M. (2000): Calculatrices symboliques et algebre. Montpellier-2 Univ.. Inst. De 
Recherche sur L’Enseignement des Mathematiques (IREM). L’algebre au lycée et au collège. Actes Journees de 
formation de formateurs. Boisseron (France). 

Frenc D. (1999): Factorizing with TI-92. Mathematics in school (Harlow) (Jan 1999), v. 28(1), pg. 30-34.  

Gage J. (1999): Using the graphic calculator to teach algebra in lower secondary. Proceedings of the 4th International 
Conference on Technology in Mathematics Teaching (ICMT 4). Maull W., Sharp J. (eds). 

Guichard J.P. (1999): L’algèbre au lyceé et au collège. Actes des journées de formation des formateurs. Publication de 
l’institut de recherche sur l’enseignement des Mahématiques, Boisseron. 

Grahm A., Thomas M. (1999): A graphic calculator approach to algebra. Mathematics Teaching (Jun 1999), n.167, pg. 
34-37. 

Henrich R. (1999): Erziehen wir durch Verwendung grafikfarhiger Tescherechrer zu’ Knopfchendruckern”. 
Mathematik in der Schule (Mar-Apr 1999), v. 37(2), p. 107-110. 

Horwitz A. (1995): Using MATHEMATICA to Prove and Animate a Property of Cubic Polynomials. Electronic 
Proceedings of the Eighth Annual Conference on Technology in Collegiate Mathematics, 8-C35. Huston. 
Available at http://archives.math.utk.edu. 

Jurkovic (1986): Edusym—educational symbolic manipulator on a microcomputer. Proceedings of the symposium on 
Symbolic and algebraic computation . 154 - 156 Series-Proceeding-Article. ACM Press New York, NY, USA.  

Lehmann, E. (1999): Terme im Mathematikunterricht, unter Verwendung von Computergrafik und Computeralgebra. 
Schroedel. Hannover (Germany). 

Lichtenbergar F. (1984): Self-explanatory Symbolic computation for Math Education, SIGSAM Bulletin, Vol 18.  

Mainini G. (1998): Calcolatrice numerica e programmi di elaborazione simbolica. Bollettino dei docenti di Matematica 
(Dec 1998), n.37, pg. 75-78. 

Moses J. (1971).: Algebraic simplification a guide for the perplexed. Proceedings of the second symposium on 
Symbolic and algebraic manipulation, p.282-304, March 23-25, Los Angeles, California, United States  

Stout D.R., Yun D.Y.Y. (1980): Symbolic Mathematical Ccmputation. Encyclopedia of Cc~puter Science and 
Technology, Vol 15. 
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Thomas M., Hall D. (1998): A computer environment to encourage versatile understanding of algebraic equations. 
Proceedings of the 21 annual conference of MERGA Inc., pg 605-612. Kanes C., Goo M., Warren E. (eds.). 
Gold Coast (Australia).  

Tynan D., Asp G. (1998): Exploring the impact of CAS in early algebra. Proceedings of the 21 annual conference of 
MERGA Inc., pg 621-628. Kanes C., Goo M., Warren E. (eds.). Gold Coast (Australia). 

Von Wright J. (1998): Learning mathematics with a theorem prover. Proceedings of the 4th International Conference on 
Technology in Mathematics Teaching (ICMT 4). Maull W., Sharp J. (eds). 
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Auricchio V., Dettori G., Lemut E. (1996): Uso di software per la manipolazione algebrica nella scuola secondaria 

superiore. Rapporto tecnico n. 10/96. Instituto per la Matematica Applicata – CNR, Genova. 

Barozzi G.C., Cappuccio S. (1997): Le calcolatrici grafiche nell’insegnamento della matematica. Pitagora Editrice 
Bologna. 

Boileau A., Garçon M. (1987): CARAPACE [Computer Program]. Montréal, Canada: Université du Québec à Montréal, 
Département de Mathématiques. 

Bouhineau D., Nicaud J.F., Pavard X., Sander E. (2001): Un micromonde pour aider les élèves à apprendre l'algèbre. 
ATIEF – Sciences et Techniques Educatives, vol. 8. Rédactrice en chef Monique GRANDBASTIEN, Institut 
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Child D. (2001): The symbolic math guide and the laws of exponents. Micromath, Vol. 17 n. 2, Summer 2001. Edited 
by Wright D and Edwuards J.A. 
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13.  Examples of activities proposed to pupils 

13.1.  The preliminary test 
T 2. Observe the following writings, for each of them explain why you think it is correct, or why 

you think it is wrong. 

• - (6 - 1) + 3 = - 6 + 1 + 3 

• 17 + (6 + 9) = (17 + 6) + 9 

• 6 + 2 · (4 · 5) = 6 + (2 · 4) · 5 

• 3 · 11 + 6 - 6 = 3 · 11 

• 15 + 6 · 4 + 19 · 4 + 11 = 15 + (6 + 19) · 4 + 11 

• 17 = 10 + 7 

• 5 · 2 + 7 = 7 + 7 

• 8 + 9 · (3 + 2) - 17 = 8 + 27 + 18 - 17 

• 10 + 7 = 5 · 2 + 7 

• 3 + 6 · 73 + 6 · 8 + 13 = 3 + 6 · (73 + 8) + 13 

 

T 3. Write what you know concerning each of the following words and phrases, for instance you 

can write phrases containing them, or you can explain their meaning. You can also write 

examples. 

1. Evaluate 

2. Result 

3. Expression 

4. Power 

5. Associative property 

6. Collect 

7. Proprietà distributiva 

8. Proprietà commutativa 

9. Equazione 

10. Espressione letterale 

11. Prodotto notevole 

12. Operazione 

13. Somma algebrica di 

monomi 

14. Monomio  

15. Soluzione 

16. Proprietà 

17. Regola 

18. Calcolo del valore di 

un’espressione 

19. Formula 

20. Disuguaglianza 

21. Incognita 

22. Uguale 

23. Polinomio 

 

Which of the above phrases and words do you think are connected with each other? Why? 
 

T 4. Which of the following writings may correspond to the phrase "In the basket there are more 

apples then pears": 

• a + p 
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• a > p 

• apples + pears 

• p > a 

• apple > pear 

• p < a 

•  

 

 

       

•  

•  

 

                                 

T 5. Which of the following phrases may correspond to the writing “2a = p “: 

• For each pear there are two apples 

• For each apple there are two pears 

• There are double many pears then apples 

• There are double many apples then pears 

13.2.  Numerical expressions 
CL 1. Insert the following expression: (3+5)*7-3*(2-8) 

• What happened to subtractions? 

P       A 

A             P 

A  
                   P 
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• Compute the result using the computation buttons. 

CL 2. Compute, with the computation buttons: 7-5. 

Compute, with the computation buttons: 5-7. 

CL 3. Given the expression 3*(3+5). Compute the result and write a description of the followed 

computation procedure. Then, for the same expression, think of a different computation 

procedure, write and describe it, and verify that the results are the same.  

Follows a class discussion on the equivalence the different computation procedures. 

CL 4. Prove the following equivalence once transforming the leftmost expression, and once 

transforming the rightmost expressions: 3*4+3*7 == 3*(4+7) 

CS 1. We transformed two expression using the buttons of L'Algebrista, can you indicate, for each 

step, what button53 we used and on which part of expression we applied them? Are all the steps 

correct?  

2*3+2*5+2*(4+7)-(8+5)*2 

 2·3+2·5+2·(4+7)+(-1)·(8+5)·2  

2·3+2·5+2·(4+7)+(-1)·(8+5)·2 

2·3+2·5+2·(4+7)+(2·(8+5))·(-1) 

2·3+2·(5+(4+7))+(2·(8+5))·(-1) 

2·3+2·(5+(4+7))+(2·8+5)·(-1) 

2·3+2·(5+(4+7))+((2·8)·(-1)+5·(-1)) 

2·3+2·(5+(4+7))+(2·8)·(-1)+5·(-1) 

2·3+2·(5+4+7)+(2·8)·(-1)+5·(-1) 

3*(2*5)+(2*3)*5-60 

 3·(2·5)+(2·3)·5+(-60)  

3·(2·5)+(2·3)·5+(-60) 

(3·2)·5+(2·3)·5+(-60) 

(3·2+2·3)·5+(-60) 

(6+6)·5+(-60) 

(12)·5+(-60) 

60+(-60) 

0 

CS 2. Consider the following expressions: 

7-2+6(3+4)+5·6 
(3+4+5)·6+7-2 

1) How would they look after being inserted in the program that we are using in the computer 
lab? 

2) Check that they are equivalent computing their results 

3) Prove that they are equivalent: 

a) Transforming the first expression into the second one; explain each step with reference to 

the properties of the operations or to the buttons of the program. 

b) Transforming the second expression into the first one; explain each step with reference to 

the properties of the operations or to the buttons of the program. 

CL 5. Insert (in L'Algebrista) and compare the following expressions, if you think they are 

equivalent, prove it, otherwise check that they are not equivalent. 

                                                
53 Pupils were furnished with an image of the buttons available in L'Algebrista, Toeria 0 (see Figure 2). 
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4*(7+11)+8*4+(3+17)*4+4*(23+2)==(7+11+17+3+8+23+2)*4 

Then answer the following questions: 

1) What procedure did you followe? In particular, which buttons did you use? 

2) Can you explain the functionning of each of the buttons that you used? 

3) Which properties do they refer to? 
4) Which is the button that you think it played the most important role in your script? 

note: If it is not a problem for you, write youw ansers on the computer, below each question, 

otherwise write them in a sheet of paper. 

CL 6. Insert (in L'Algebrista) and compare the following expressions, if you think they are 

equivalent, prove it, otherwise check that they are not equivalent: 

3(5*8)+8*11 == (3*5+11)*8 

Then answer the following questions: 

1) What procedure did you followe? In particular, which buttons did you use? 

2) Can you explain the functionning of each of the buttons that you used? 

3) Which properties do they refer to? 
4) Which is the button that you think it played the most important role in your script? 

note: If it is not a problem for you, write youw ansers on the computer, below each question, 

otherwise write them in a sheet of paper. 

CS 3. Consider the following three expressions: 

(3*(-8)+(3*7)*6-7*6)+(7+3)*6 
7+3*6+3*(-8)+3*7*6-7*6 
(-8+7*6)*3+(7*6+6*3-7*6) 

1) How would they look after being inserted in the program that we are using in the computer 

lab? 

2) Compare the three expressions, are they all equivalent? If yes, prove it and explain each step 

with reference to the properties of the operations or to the buttons of the program. 

3) What kinds of difficulties did you find?  

4) Are you sure of all your answers, or is there anything that you would like to discuss in class? 

If yes, what is it about? 

CS 4.  

a) When an expression is inserted in the program, we noticed that subtractions are tranformed, 
can you say how? Why do you think the creator of the software decide to transform subtractions? 

b) Why in some buttons of the program the operations are represented with the symbol "�" 

instead of with the usual simbols "+" for the sum and "�" for the multiplication? 

c) What do we mean when we say that two expressions are equivalent?  
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d) In class we distinguished between two words, to prove  and to check, can you explain the 

meaning of each of them? 

e) Write a scheme resuming the properties of the operations that we met till now, and write what 

we have learnt for each of them. 

f) Do you think that the buttons of L'Algebrista are all the needed ones, or would you add some 

more button? If yes, explain how it should function. 

13.3.  Introduction of literal expressions 
CL 7.   

13.4.  Proving equivalencies 
CS 5. Consider the following expressions54: 

  a*a – b*b 

  (a – b)*(a + b) + 2*b*(a + b) 

  (a – b)*(a – b) + 2*(a – b)*b 

1) Which of them do you think are equivalent? 

2) Why? Can you prove it? 

3) Analyse your proof and indicate, for each step, if you have used a theorem or an axiom 

(property) 

4) Can you find a geometrical figure whose are can be computed by means of the above listed 

expressions? 

CL 8. Consider the following expressions: 

  m + n +(2 + m)*n + (3 + m)*m + 3*(m + n) - m*(m + n) 

  7*m + 6*n 

  6*(m + n) + m*(n + 1) - n 

                                                
54 with this activity we introduce the words axiom and theorem as a way to distinguish between statement produced and 
proved in class by pupils, from given statements. 

Discussing on the picture on the left, three friends found 
three different ways to compute the area of the part 
colored in grey:  

Roberto proposes:  
(a + b)*a + a*b 
Valentina instead:    
(a + b)*b - b*b + a*(a + b) 
Finally Marco suggests:   
b*b + (b + a)*a + (a - b)*b 

1) Who do you think is right?  
2) Why? 
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1) Which of them do you think are equivalent? 

2) Why? 

CS 6. Consider the following expressions: 

  (m - n)2 

  2•(m + n)•n + m2 – 2•n•n 

  n•m +(n2+m*m) – 3•m•n  

  m2 – 2•m•n + n2 

1) Which of them do you think are equivalent? 

2) Why? Can you prove it? 

3) Analyse your proof and indicate, for each step, if you have used a theorem or an axiom 

(property) 

4) Can you find some numbers to subsitute to the letters m and n in the four expressions in 

order to obtain the same result from each of them?  

How many did you find? 

Do you think others can be found? 

CL 9. Prove that55 13•m + m•17 == 30•m 

CL 10. Consider the following expressions: 

(h - k)•(k + h)+(c - d)•(2•d - 2•c) - 8•c•d 

8•c+(h - k)•(k + h) - 5•d 

h•h - (c + d)•(2•d + 2•c)- k•k 

h•h - k•k 

1) Which of them do you think are equivalent? 

2) Why? Can you prove it? 

3) Analyse your proof and indicate, for each step, if you have used a theorem or an axiom 

(property) 

4) If you substitute numbers to the letters c and d, you obtain new expressions containing only 

the letters h and k. Can you find numbers to substitute to c and d so that two non equivalent 

expressions become equivalent?  

CS 7.  

1. Prove that: 

a. a – a == 0      

b. b•5 – 6•b + b == 0 

c. 7•m + 2       is not equivalent to 3 + m•2 

                                                
55 The symbol "==" in this case, according to the notation shared by the class, stands for "equivalent". 
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d. x2 – y2 == (x – y )•(x + y) 

e. (3•a + m•2)  is not equivalent to  22•(a2 + m2 + 3•m•a) 

5) Analyse each of the proofs you produced and indicate, for each step, if you have used a 

theorem or an axiom (property). 

2. Considers the two expressions of 1.c.: can you find numbers to substitute to m so that the 

two expressions become equivalent? 

3. Considers the two expressions of 1.e. can you find numbers to substitute to a so that the two 

expressions become equivalent? 

4. Invent two literal expressions that are not equivalent, but that can become equivalent by 

substituting particular numbers to the letters. 

13.5.  Introducing new theorems with the Teorematore 
CL 11. Prove that (a – b)•(a + b) = a2 – b2 

CL 12. Conjecture a formula for the expression (a+b)3 and create a new button representing it. Are 

you sure that it is correct? Why? 

CL 13. Prove the equivalence (a + b)3 == (a + b)•(a2 + b2 +2•a•b). Can you reduce the number of 

steps of your proof?  

CL 14. Consider the expression (a – b)2, conjecture a formula analogous to the one that we found 

for (a + b)2 and compare the created buttons. Do you think both formulas are necessary? Or do 

you think one can be used to accomplish also the tasks of the other? And what do you think in 

the case of their buttons? 

CS 8. Conjecture a formula for the expression (a + b)4. Are you sure that it is correct? Why?   

CS 9. Prove the equivalence (a + b)2•(a – b) == (a2 – b2)•(a + b). Can you reduce the number of 
steps of your proof? 

13.6.  Revising the work done 
CL 15. Consider the following equivalencies, prove them if you think they are true, otherwise prove 

that they are false. 

I. a•a = a2 

II. (-b)•a = -(a•b) 

III. (-b)•b = (-1)•b2 

IV. -(b•b) = (b•b)•(-1) 

V. (-b)•(-b) = b2 

VI. a•(-b) + b•a = a•0•a 

VII. a•(-b) + b•c = a•0•c 
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CL 16. Someone of you wrote that in order to prove that two expressions are equivalent (or not 

equivalent), he/she "computed them algebraically". What do you think he/she meant to say? 

CS 10. Consider the following dialogue: 

Valentina: “To prove that two literal expressions are equivalent (or not equivalent), it is enough 

to substitute numbers to the letters.” 

Marco: “I think, instead, that it sufficies to transform one expression into the other, using the 

available axioms and theorems.”  

Luigi: “I think that you are both wrong, in fact if I cannot transform an expression into the 

other, how can I know if they are really different, or if it is me who is not able to prove 

their equivalence? Moreover, if ,substituting numbers to the letters, the two expressions 

lead to the same result, how can I be sure that ther isn't any number for which the results 

are different? ”. 

What is your opinion? You can help yourself showing examples. 

CL 17. During the activity we did in class last thursday, some of you wrote the following 

expressions, that have an odd result whatever is the number substituted to the letters:  

a. 8•a + 1 

b. y0•x0 

c. x/x 

Which odd numbers is it possibile to obtain? 

Is it possibile to obtain the number 5 with any of these expressions? 

Write an expression with which it is possibile to obtain all the odd numbers. 

Write a similar expression for even numbers. 

13.7.  Factorisation and other activities propaedeutical to the introduction of 
equations 
CL 18.  

I. Prove that 2•a + 2 is divisible by 2. 

II. Prove that 3•a + 7 – 4 is divisible by (a+1) 

III. Prove that a2 – 4 is divisible by (a+2). Is it divisible by anything else? 

IV. Prove that  n•(m + 2)•3•(4 + n)  and  4•n + n2  do not have any common factor. 

CS 11.  

• Prove that b2 + 4•c•b + 2•(2•c2) is divisible by (b+2•c) 

• Prove that a2 + b2 + 2•a•b   and   a2 – b2   share some factors. 

CS 12.  
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I. Write a literal expression using the letter a so that, substituting the number 2 to the letter a 

the result of the obtained numerical expression is 0. (If you want you can use also other 

letters) 

II. Try to substitute other numbers to the letter a, can you find other that lead to the result 0. 

III. Try now to build another expression, with the letter a, so that substituting 4 or 5 to a you 

get the result 0. 

CS 13.  

I. Prove that a2•a3 == a5 

II. Prove that ab•ac == a(b+c) 

III. Prove that a(3•2) == (a3)2   

IV. Prove that a(b•c) == (ab)c  

CL 19. Consider the number 2•3•4•6•7•9•10•13•17•27•31 

a. Can you say, without computing it, if it is divisible by 2? And by 19?  

b. Can you say, without computing it, if it is a multiple of 3? And of 8? And of 13•7? 

c. For which other numbers is it divisible? 

d. Is it a multiple of which other numbers? 

e. Can you find a formula to express the fact that a generic number is divisible by 31? 

f. Can you find a formula to express the fact that a generic number is multiple of 31? 

g. Can you build a number which is divisible by 23 but that is not divibles by 3? 

h. Can you build a number which is multiple of 36 but not of 4? 

i. Build a literal expression so that, whatever is the number you substitute to the letters, the 

result is always odd. 

CL 20. Consider the expression 2•(a+3)•6•(b-1) 

a. What numbers is it divisible by? Explain your reasoning. 

b. What expressions is it multiple of? Explain your reasoning. 

c. Build an expression that is divisible by 2, but not by 3 

d. Build an expression that is multiple of a+1 

e. Build two expressions that share the factor 3 but that are not equivalent. 

f. Build an expression that is divisible by 3 and by (a – b); how many of such expressions is it 

possible to build? 

CS 14. The truth game: Luigi, Marco, Roberto and Valentina read on their book the expression: 

(2•a + 4•b)•(a – 2•b + a – 2•b). 

The teacher asks them what they can argue concernine such expression; the pupils answer: 
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Marco: I think that it is equivalent to 2•(a+2•b)•(2•a – 4•b) 

Valentina: I think you are wrong, in fact it is not divisible by 2 but it is divisible by 4 

Roberto: I think that it is equivalent to a 4•a2 + 4•b2 

Luigi: I believe, instead, that it is equuivalent to (2•a)2 – (4•b)2 

What would you say? 

CL 21. For each of the following statements explain why you think it is true or false. 

a. The expressions 9•3•5 + 7 2  and  9•3•5 – 53 are different, but share 3 as a common 

factor 

b. (a – b)•3•x + 7   is multiple of either of (a – b) and of 3 

c. The two following expressions are different but share three factors 

(3•a – 4)•b2•5•c•(a2 – a)•4•a•3•b•2•c 

(4•a – 3)•b2•5•c•(a2 – a)•2•b•4•c•5•a 

d. The two following expressions are different but share three factors 

a•b•c2 + b2 

a2•b + c + 3•a•b 

e. The following expression is divisible either by 3 and by (a – b) 

3•(x + y + z) + a•b•(a – b) 

CL 22. Factorize the following expressions (hitn: try to find all their divisors) 

a2 – b2 + a – b  
b2 + a + 2•a•b + b+ a2 

CS 15. Consider the expression  a + b +(3•a – 3•b)•2 + 3•b, which equivalent expression do you 

think it is convenient to transform it into, in the case that: 

a. You have to compare it with another expression. 

b. You have to prove that it is divisible by 2 and not by 3. 

c. You have to prove that it is divisible by a + b. 

d. You have to substitute numbers to a and b to compute it, and you want the computation to 

be the easiest possible. 

CL 23. Compare the following expressions 

(m + 2)•(m – 3)•m•(m – 4)•(m – 5)(2 – m – 2•m2 + m3) 

(m – 1)•(m + 1)•(m – 2)•(34•m2 – 120•m + 23•m3 – 10•m4 + m5)(m – 6) 

(m + 2)•(m – 3)•m•(m – 4)•(m – 5)•(m – 1)•(m + 1)•(m – 2) 

a. Are they equivalent or different? Why? 

b. Factorize the three expressions 

c. How many factors do they share? 

d. Which numbers can you substitute to the letter m in order to get the result 0. 
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13.8.  A final test 

FIRST PART 

1. The symbol "=" 
a. What do you think the symbol "=" means in algebra? 

b. Write examples using this symbol 

2. The word "equal" 
a. What do you think the word "equal" means in algebra? 

b. Write examples using this word 

3. The symbol "equivalent" 
a. What do you think the word "equivalent" means in algebra? 

b. Write examples using this word 

4. Other symbols and words 
a. What relationship do you think there is between the symbol "=", the word "equal" and the 

wor "equivalent"? You can eventually show examples 

b. Write other symbols and words that you know, and you think are related to the symbol 
"=" or to the words "equal" and "equivalent". You can eventually show examples 

5. Algebraic expression 
a. What do you think an algebraic expression is 

b. What do you think it can be done using an algebraic expression? You can eventually 
show examples 

c. What do you think it can be done using an expression in Mathematics? You can 
eventually show examples 

d. What relationship is there between numerical expressions and literal expressions? Can 
you do the same things using them? 

6. Axioms, theorems and proofs 
a. What do you think an axiom is in algebra? What can it be used for? You can eventually 

show examples 

b. What do you think a theorem is in algebra? What can it be used for? You can eventually 
show examples 

c. What do you think a proof is in algebra? What can it be used for? You can eventually 
show examples 

d. What do you think a theory is in algebra? What can it be used for? You can eventually 
show examples 

SECOND PART56 

7. L'Algebrista 
a. Suppose you have to explain to someone what L'Algebrista is, what would you tell 

him/her? 

                                                
56 The second part is submitted to pupils only after they finished the first part. 
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b. What do you think L'Algebrsita can be used for? You can eventually show examples 

c. Do you think L'Algebrista is ok how its is now, or would you change anything? You can 
eventually show examples 

d. What aspect of L'Algebrista do you like most, and what aspect do you like less? 

e. What relationship is there between the symbol "= =" of L'Algebrista, and the symbol "="? 

f. Do you think that an expression of L'Algebrista, and an expressions written on paper, are 
equal or different? Why? You can eventually show examples 

g. What elements of L'Algebrista correspond respectively to the axioms and the theorems of 
algebra? 

h. Do you think that proving in L'Algebrista is the same as proving in paper and pencil? Do 
you think there are any differences? Why? You can eventually show examples 

i. If you would have to choose to accmplish a task in L'Algebrista or in paper and pencil, 
what would you choose? Why? 

j. Was L'Algebrista anyhow useful for you? Did you learn anything by using it? 
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