
HAL Id: hal-00190373
https://telearn.hal.science/hal-00190373v1

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NLP-based scripting for CALL activities
Georges Antoniadis, Sandra Echinard, Olivier Kraif, Thomas Lebarbé,

Mathieu Loiseau, Claude Ponton

To cite this version:
Georges Antoniadis, Sandra Echinard, Olivier Kraif, Thomas Lebarbé, Mathieu Loiseau, et al.. NLP-
based scripting for CALL activities. eLearning for Computational Linguistics and Computational
Linguistics for eLearning, International Workshop in Association with COLING 2004, 2004, Geneva,
Switzerland. pp.18-25. �hal-00190373�

https://telearn.hal.science/hal-00190373v1
https://hal.archives-ouvertes.fr

NLP-based scripting for CALL activities

Antoniadis G., Echinard S., Kraif O., Lebarbé T., Loiseau M., Ponton C.
LIDILEM, Stendhal University

Grenoble, France, F-38025
{Antoniadis; echinard; kraif; lebarbe; loiseau; ponton}@u-grenoble3.fr

Abstract

This article focuses on the development of
Natural Language Processing (NLP) tools for
Computer Assisted Language Learning
(CALL). After identifying the inherent
limitations of NLP-free tools, we describe the
general framework of Mirto, an NLP-based
authoring platform under construction in our
laboratory, and organized into four distinct
layers: functions, scripts, activities and
scenarios. Through several examples, we
explain how Mirto's architecture allows to
implement state-of-the-art NLP functions,
integrate them into easily handled scripts in
order to create, without computing skills,
didactic activities that could be recorded in
more complex sequences or scenarios.

1 CALL: Conjugating NLP and language
didactics

It is generally reckoned that computer science
can prove itself to be a great aid in language
learning, when in fact, most often computer
scientists and didactics experts do not agree on the
notion of “language”. For the former, it
corresponds to a sequence of codes, while for the
latter it is a system of forms and concepts.

This divergence can easily be explained, when
considering the fact that computer science, by
definition, can only consider and process the form
of the language independently of any
interpretation, while, for language didactics, the
form only exists through its properties and the
concepts it is supposed to represent.

The consequences of these diverging approaches
are “visible” in the great majority of language
learning software. Many an imperfection of the
latter’s stem from the divergence mentioned above.
Most language learning software are thought and
implemented as computer products, only able to
take into account a language form deprived of all
semantics, or with extremely poor semantics.
Caricaturely, rules as basic as that of the
interpretation of the space remain ignored, which
leads to unfortunate learning situations. For
instance, if the learner answers “la casa”

(sequence containing two spaces), his or her
answer will not be accepted for the expected
answer was “la casa” (sequence with one space).
The pedagogical consequences of this poor “space
processing” are obvious; the software teaches that
the sequence of two spaces is not part of the
language, and also, that all word preceded or
followed by a space has nothing in common with
the same word without the space! This down-to-
earth example of the “spacebar syndrome”
characterizes, in our opinion, the deficiencies of
today’s language learning software.

As (Chanier, 1998) and (Brun & al., 2002) point
it out, and as (Antoniadis & Ponton, 2002) and
(Antoniadis, 2004) have shown it, only the use of
NLP methods and techniques allows to consider
and process language as a system of forms and
concepts. Considering them might lead to answers
for two of the issues of existent CALL software.

The first concerns the rigidity of software: the
data (instructions, examples, expected answers…)
is to be predefined and, a few exceptions aside, can
neither be modified nor enriched. Answer handling
processes are intimately connected to this data.
They are thus unable to consider new entries,
unless they were explicitly anticipated.

The second problem concerns the inability of
CALL software to adapt the course to the learners.
Two types of courses are generally proposed. The
first, the more classic, offers a predefined linear
activity sequence. Whatever his (or her) answers
and expectations, the learner will do (and do over)
the same activities, using the same data. The
second type of course offered is a “free”
progression within a scenarized environment. It is
the case of exploration software in which the
learner is given a mission in a given environment
(virtual reality). The dialogue, grammar or other
activities are predefined, but will be performed in
an order which will depend on the learner’s
mission completion process. This latter type of
course, despite allowing a wider field of action for
the learner (order of the mission, choice of
activities…) does not offer real personalization or
adaptation of the activities to the learner. Indeed,
the course of action is independent of his or her
answers for each stage, out of the incapacity of
evaluating them. Last, we should bring to the

reader’s attention that if the order in which the
learner is confronted to the activities can vary
according to his (or her) mission, the content of
each activity remains invariable and will remain
the same, whenever included in the course.

The last problem, which partly derives from the
first two, characterizes current CALL software. As
didactic products, this software should, a priori, be
solely designed according to didactic solutions,
expressed without constraints using pedagogical
concepts. Now, current learning software are in
fact computer products which require their users
(language teachers, with little or no computing
knowledge) to manipulate concepts and notions,
which, a priori, do not belong to their language
learning set of problems. Thus, instead of
expressing pedagogic answers thanks to tools of
their own discipline, they are forced to look for
computerized solutions, which connect as much as
possible with their own models or pedagogic aims.
They might even have to give up on some
pedagogical solutions, for they are unable to
express them in a computer understandable way or
because computer science is not able to handle
them. To our knowledge, language didactics is
presently able to imagine open pedagogic scenarios
with exercises adapted according to each learner,
examples changing when repeating the same
activity within a given session, appropriate texts
chosen to illustrate pedagogical contexts and, open
and variable learning situations… Computer
science is (and will be) unable to take into
consideration these aspects with its own set of
problems. Resorting to other knowledge
(linguistics and language didactics) and to their
modeling is essential. The use of NLP tools can
constitute a way to resort to linguistic knowledge;
the collaborative work of language didactics and
NLP experts ought to provide answers concerning
language didactics knowledge.

The problems that we have just presented
explain, in our opinion, about the nature of
language learning software so far. They were
thought and implemented as computing problems
and products which only use the aspects of
language didactics that computer science is able to
consider. The pedagogical solutions are often
altered or truncated so that they can be computed.
This approach), and also most of CALL software
deficiencies, stem from computer science’s narrow
view of language (a simple sequence of codes.

Our approach towards the development of
language learning software is radically different
from those mentioned above. We consider that
language learning software is above all a didactic
product, a program which provides a didactic

solution to a problem of language didactics,
without altering, neither the solution nor, a fortiori,
the problem. The design of such software requires
that we should be able to adapt the possibilities of
computer science to the implementation of
pedagogical solution previously determined. In this
approach, considering language properties, which
are invariably present in every pedagogic solution
concerning languages, is a must-have. Considering
NLP methods, techniques and products only are
capable of satisfying this condition, then a
language learning software should be defined as
the adaptation of NLP possibilities to the
predefined didactic aims of language learning. In
our opinion, such an approach is the only way to
offer to language didactics experts not only tools
that would not narrow the scope of treatment of
their set of problems, but also tools with
pedagogical added-value, capable of widening the
set of problems of their discipline.

The use of NLP in the design of CALL software is
not a new idea; systems like ELEONORE (Renié,
1995), ALEXIA (Chanier & Selva, 2000), or the
EXILLS platform (Brun & al., 2002) resort to NLP
methods and use NLP resources. Nevertheless,
such examples remain marginal and concern non
commercial products. Paradoxically, CALL and
NLP, two fields centered on language, still seem to
be ignoring each other. Most of the time, not using
NLP is justified through the added cost resulting
from its use. But more than the often-invoked extra
cost, it is the lack of NLP culture, which should be
held responsible for its absence.

In the line of the systems mentioned above, the
Mirto platform (Antoniadis & Ponton, 2004)
(Forestier, 2002) is aiming at providing a global
answer to the problems of CALL software, through
an NLP approach on the one hand and on the other
hand a collaborative work with didactics experts.
More than a finished product, Mirto seeks to be a
tool for the creation of didactic solutions for
language learning. We present in the rest of the
paper the aspects of the system, which describe our
approach and its implementation.

2 Mirto description

The Mirto project is determinedly
pluridisciplinary, and aims at giving an NLP
toolbox to language teachers in order to design
scenarios in their own pedagogical set of problems.
The main goal of Mirto is to propose to the
language teacher the possibility of designing
pedagogical scenarios while fully taking advantage
of NLP technologies in a user-friendly manner.
Thus, those scenarios will be open (dynamical text
database), will allow an individualized adaptation

according to the learner (automated generation of
exercises, qualitative evaluation of the answers…)
and should allow new possibilities (work on long
texts, automated production of aids or exercises,
design of non-linear scenarios …). The approach
of Mirto is determinedly user-oriented since it is
meant for language teachers who, a priori have
little or no skill in computing nor in NLP. The
technical nature of NLP has to be transparent to the
language teacher and only the didactic aspects are
to be visible and available to him.

In that way, four hierarchical levels (function,
script, activity and scenario), associated with the
text database, structure Mirto as it is illustrated on
fig.1.

2.1 Function level

The functions (1 to 5 in fig.1) represent the
Mirto lower level objects. They correspond to a
basic NLP process such as tokenization (text
splitting in forms) or language identification.
Considering its technical nature and its
independence from a didactic application, this
level is not visible for any final users of Mirto (i.e.
teachers and learners).

2.2 Script level

This level corresponds to the application of NLP
functions to language didactics. A script (S1 to S3
in fig. 1) is a series of functions with a didactic
purpose. So, this level needs both NLP and
didactical competences and its design will be the
result of an interdisciplinary work. For instance,
the automated design of a gap-filling exercise is
considered as a script because it connects the
functions of language identification, tokenization,
morphological analysis and gap creation depending
on parameters chosen by the user.

2.3 Activity level

This level with the next one (scenario level) is
the didactic core of Mirto. An activity (A1 to A4 in
fig. 1) corresponds to the didactic contextualization
of a script (previous level). Its goal is to associate a
script with a text from the corpus database, some
instructions, possible aids and an optional
evaluation system. In order to create a gap-filling
exercise, one only has to choose to apply the script
of the previous example to a text while specifying
the gaps criteria (for instance, hiding the preterit
verbs and replacing them by their infinitive form),
associating an instruction as “Fill in the blank with
the preterit form” and specifying the evaluation
form of the activity.

2.4 Scenario level

This level allows the teachers to define the
sequence of activities in order to answer to their
pedagogical objectives throughout the learner
progression. This expected progression is not the
same for each learner. Effectively, each of them
will have a personal learning process linked to
different factors. Mirto is dealing with that reality
while proposing non-linear scenario creation. The
path through the scenario depends on the
individual process of each learner (learning course,
evaluation…). That course is stored in a learners’
tracing database. For instance, according to his
progress in a given scenario, a learner can be
redirected to remediation activities, or retry an
activity on another text or simply advance in the
scenario.

2.5 Levels and users

There are three kinds of users in Mirto: NLP
specialists, language specialists (didactic experts,
linguists and teachers) and students. The following
table shows the intervention level of each user of
Mirto.

Level Use User

Function Conception NLP specialist

Script Conception NLP specialist +

Language specialist

Activity Conception Language teacher

Conception Language teacher Scenario

Playing Student

Tab.1 – The intervention level of each user

This article deals more precisely with the
NLP/CALL meeting, which takes place in the
« script » level. However, before exposing the set

of problems of script designing, it is necessary to
stress on the activity level, which uses that script
level first.

3 Activity design

An activity is the implementation of a precise
minimal pedagogical aim (for instance, having a
work on a grammatical notion, revising
conjugations, writing a paragraph, etc.). Activities
are designed by language teachers through a
specific interface: the activity editor. The activity
editor (cf. Fig.2) is an authoring system. It allows
to manipulate and format pedagogical objects such
as texts (or text corpora), scripts and instructions.

In order to illustrate the steps of activities
design, let us give the example of a teacher who
wants to create an activity for the systematic
revision of the preterit, using a gap filling exercise.

The design work is then broken up into five
steps (cf. Fig.2). The first consists in selecting a
script in the toolbox, which allows him to generate
a gap filling exercise. The second is the definition
of a didactic context for the script application. This
script setting operation allows the teacher to select
elements from a text base and determine the
elements (criteria on the form, the category or/and
morpho-syntactical features). These first two steps
produce the desired gap-filling exercise, which will
be integrated into the activity. Before the effective
production of the activity, three steps remain:
writing the instructions, precising the aids, which
will be given to the learner, and finally specifying
the evaluation criteria.

4 CALL/NLP scripts

The script level represents the computing side of
the didactic tools available in the Mirto
environment. Scripts are integrated modules that
implement one or several NLP standard resources
and processes such as tagging, stemming,
lemmatizing, parsing, dictionaries, etc. The
standardization of these functions is an important
aspect, because Mirto does not aim at developing
new NLP techniques, but only at giving a
framework to take advantage of the existing state

of the art: Mirto is a car running with a NLP
engine, and the engine may be changed, as a
simple interchangeable part, if a new engine allows
to get better performance.

Thus, scripts are the core of Mirto's architecture:
their design should allow to transform the engine
kinetic energy into movement and direction on the
road of didactic activities, without requiring that
the driver to have mechanic skills.

4.1 Parameters

As any computing module, a script will be
directed by a set of parameters. These parameters
shall not be accessible to the end-user directly, but
through a control panel. This control panel shall be
relevant from the didactic point of view; that is
why the controls may be transcribed into a set of
parameters. Let us take the example of the gap-
filling exercise generator. By the mean of a simple
form, the user may define:

a) which the units are to be removed from the
text. Any linguistic feature should be used for this
definition: lemma (e.g. to drive), part-of-speech
(ex. verb), morphosyntactic description (ex. past
tense), or even meaning (e.g. "car" semantic field -
this functionality has not been implemented yet).

b) what information has to be given in the gap :
none, the lemma, the morphosyntactic features, a
synonym, a definition (not implemented yet) etc.

c) if the removed words should appear or not as
an ordered list in the text header.

d) if the learner's answer should initiate a feed-
back process immediately after it was entered.

On the user interface, the controls have to be:
- simple: two many features could discourage the

user
- declarative: the user is not supposed to handle a

tough formal language, so the control definition
has to be intuitive and immediately
understandable.

- user-friendly: the interface must allow to pick
out the important information. For instance, a first
form may present the standard settings for a
control, and a second optional form may give
access to advanced settings of the generator.

It is clear that the definition of linguistic features
in a) involves a simple transcription process in
order to determine the script parameters: the
tagged and lemmatized texts handled by the
generator use specific codes for morphosyntactic
description. Declarative features as "Verbo, Prima
coniugazione, Indicativo, Presente, Prima persona,
Singolare" will be transcribed into a parameter set:
"base=er$", ctag="verb", msd="IndP SG P1".

Even if this transcription process appears to be
unavoidable, the script design must render the

Selection
criterion

Script
type

Example of
activity

Expected answer Involved NLP
functions

Semantic lexical
spotting

Spot every word
related to the "car"
topic

Spotting of "drive",
"taxi", "engine", "road",
etc.

morphosyntactic tagging,
lemmatization, semantic
net interrogation

Semantic lexical
question

Give an Italian
translation for "to
drive"

Entering of "guidare" morphosyntactic tagging,
lemmatization, bilingual
dictionary interrogation

Morpho-
syntactic

gap-
filling

Replace every
infinitive verb in the
gaps, using the
appropriate tense

Replacement of "to wait"
by "have been waiting"...

morphosyntactic tagging,
lemmatization

Morpho-
syntactic

lexical
question

What would be the
contrary of the
adverb "lentement"?

Entering of "rapidement" morphosyntactic tagging,
lemmatization, semantic
net interrogation

Morphologic
al

lexical
spotting

Spot every word
derived from the
verb "traduire"

Spotting of "traducteur",
"traduction",
"retraduite", etc.

morphosyntactic tagging,
lemmatization, stemming

Morphologic
al

gap-
filling

Fill every gap by a
word of the
"traduire" verb
family

Entering of "traducteur",
"traduction",
"retraduite", etc.

morphosyntactic tagging,
lemmatization, stemming

Tab.2 - Example of scripting for activity generation

parameters as close as possible to the user's
control.

4.2 Incremental approach

It is impossible to determine from scratch what
the exact form of a script must be. There are two
reasons for this uncertainty:

- NLP functions are multifaceted, they may
require complex sets of parameters to give an
expected result, and the form of their input and
output may have many different forms.

- the application field of NLP for a didactic use
has been so far unexplored. New activities, new
pedagogical habits, and new teachings are likely to
emerge from these new technologies.

We strongly claim that only the pedagogical
practice can pave the way.

Thus, designing the script, one may offer
complex functionalities without real interest. Other
scripts may appear to be very useful in some
applications for which they were not initially
designed. What we propose is to combine both top-
down and bottom-up approaches: the proposed
tools may offer wide possibilities, among which
the pedagogical practice may select a few
interesting features. Conversely, the practice may
give rise to new needs that the technology will try
to meet.

As suggested by (Kraif, 2003), to initiate the
incremental process of script designing, we have
chosen existing activities that may take advantage

of simple improvements from NLP techniques. For
these activities, we have tried to define scripts with
a major modularity, i.e. scripts that may be
reusable in different contexts and for a large
spectrum of didactic applications. At last, another
important criterion was given by the performances
and limitations of the implemented functions:
when a NLP task yields a 20% error rate, the
results may not be valid for every kind of activity:
erroneous information may be very confusing for a
learner.

4.3 Examples of scripting

Most of the following examples are not
implemented in the Mirto platform yet: but they
are all realistic, given the current NLP state of the
art, and may be added to Mirto in the short term.

The scripts fall into three categories

4.3.1 Activity generators
Given an input text, NLP techniques allow to

select lexical units and expressions that bear
specific lexical, idiomatic, grammatical or
semantic features. This ability makes it possible to
create a wide range of activities using generators
for gap-filling, lexical spotting (i.e. identification
of specific units of the text) or lexical questions
(i.e. questions about units occurring in the text,
concerning synonyms, contraries, translation
equivalents, etc.). Table 2 shows various examples
of generated activities.

Other scripts can be used upstream for the input
text constitution: for instance a concordancer
allows to extract from a corpus every unit (and the
surrounding context) that satisfies the former
selection criteria.

Such a concordance script, integrated with an
appropriate interface, may give rise to a full
activity, in order to allow the learner to search by
him/herself examples (in context) that may help
him/her solve a problem. A bilingual concordance
script, involving an NLP aligning function, may
also be very useful for this kind of text mining.

Similar activity generators may work without

any input text, applying the selection criteria on a
dictionary, and using, if necessary, a random draw
to select a single unit:

- Conjugator: e.g. "Conjugate the expression
tomber en panne sèche to : subjonctif imparfait,
première personne du singulier"

- Lexical question: e. g. "Give a synonym for the
word phare."

- Morphological question: e.g. "Give a noun
derived from the verb conduire".

Another interesting application of NLP

technique for activity generation is to implement a
kind of "chat-bot", following the classical model of
Elisa, able to simulate a conversation with a virtual
interlocutor on a given subject.

4.3.2 Comprehension aid
For any kind of activity (reading a text, doing an

exercise, etc.), it is possible to propose interactive
aids for the learner. Most of the NLP tools
available on the Exills platform belong to this
category: at any time the learner can ask questions
to a robot, that gives access to dictionary
definitions (after a context sensitive
disambiguation) and to a conjugator, or allows to
find the correct form of a wrongly spelt word.

Such aids can be either generic (like dictionary

or concordance consultation, grammar lessons,
conjugator, phonetiser) or context dependent (a
click on a word can give access to its
morphological tags, lemma, syntactic function,
definition and/or translation). As an example, we
have implemented a contextual aid that
automatically links to specific grammar lessons
according to the morphosyntactic features of the
clicked word: when an Italian verb is at the
"passato remoto" tense, a hyperlink is
automatically pasted in the contextual popup,
giving access to the corresponding grammar lesson
(see fig. 3).

Fig.3 - Example of generated contextual aid

For the teacher, the handling of these scripts
corresponds to specific settings of the final activity
interface.

4.3.3 Automated evaluation
The learner production, in the framework of an

activity, may have very various forms: clicks on
check box, words, sentences or even texts.

The evaluation of sentences and texts is a tough
problem: NLP techniques cannot really give
reliable information about features that require a
human interpretation (meaning, style, etc.). Even
for the simplest task of error detection, the existing
models are both silent and noisy at the same time:
some errors are not detected, and correct
expressions are wrongly pointed out as errors.

On the opposite, the evaluation of a multiple
choice questionnaire is a trivial problem that does
not need the expensive implementation of NLP
tools.

For now, we think that the most realistic and
promising application concerns the evaluation of
simple lexical productions. We are currently
studying a three levels protocol for the evaluation
of a given answer with respect to the expected
correct answer. If the given answer is different,
three cases are considered:

1- Spelling error: if the entered chain does not
exist in an inflected form dictionary, one can
assume that it bears a spelling error. If the chain is
very close to the correct answer, a message can be
displayed, warning about the spelling error. Else, a
list of resembling existing words can be proposed
to the learner, asking him to make a choice.

2- Morphosyntactic level: at this stage, the
answer is integrated in the linguistic context of the
activity (for instance, the sentence where the gap
was done, in a gap-filling exercise), in order to
compute a morphosyntactic analysis with tagging

and lemmatization. If the lemma is the same than
the lemma of the correct answer, a warning can be
displayed about the difference in the
morphosyntactic features (e.g. "wrong tense",
"wrong number", etc.).

3- Semantic level: in the case of a different
lemma, a semantic wordnet is searched in order to
check whether a close semantic link (synonymy,
hyperonymy, hyponymy, meronymy, antonymy)
can be found between the given answer and the
expected one. Then, a warning can be displayed
such as "be more precise", "not exactly", etc.

In the global architecture, such a script could be

useful for the evaluation of various activities: gap-
filling, lexical questions, etc. According to the
specific context and aim of a given activity, the
feed-back to the learner may be very different. For
instance, if a gap-filling exercise is designed to test
the ability to conjugate verbs in a given tense, the
fact that the lemma of the learner's answer is
different is not very important, provided that the
verbal flexion is correct.

Therefore, in the design of such an evaluation
script, it is important to separate the comparison
and the feed-back. We plan to implement too
scripts:

- the comparison script that takes as an input: the

linguistic context, the expected answer, the given
answer; and returns a difference code such as:

0: no difference
1.1: spelling error on the expected answer
1.2: spelling error on another answer (with a list

of close words)
2.1: different lemma
2.2: different morphosyntactic features
2.2.1, 2.2.2,...: different number, different

gender, etc.
3.1,3.2,...: synonym, hyperonym, etc.

- the feed-back script that takes as an input the

difference code, and returns a message, such as :
"yes, but the spelling is wrong", "be more precise".
Even if one can propose standard messages for
each difference code, the teacher should obviously
be able to edit an adapted message set depending
on the didactic context of a given activity.

5 Current functionalities of Mirto and
perspectives

The development of Mirto started about a year
ago. A total of three years should be necessary to
complete the first prototype. A handling period is
to be foreseen in order to allow teachers to master

the use of the product. We plan to integrate Mirto
to the Stendhal Intranet for experimentation.

So far, the development of Mirto mainly
concerned the script creation module. Completing
this module allowed the integration of various NLP
(and non-NLP) software. Other software,
especially NLP-based, ought to be integrated. The
choice of the number and nature of integrated
software can only be done through a process of
exchange involving both language teachers and
NLP experts. We consider that, the software
integrated so far allowed the creation of enough
scripts for an experimental use of Mirto.

In order to perform tests and validate the global
approach, a first version of the activity and
scenario editor has been implemented. It allows the
creation of almost every type of activity (excluding
the evaluation) and the design of linear scenarios
that will not trace the learner training history.

The definition of the approach underneath Mirto,
along with making use of it, originated various
research works, which are currently being carried
out. Apart from the implementation of the
prototype of the system, our efforts particularly
concern the following aspects:

- the pedagogical annotation and indexation of
texts towards the creation of a corpus to be used by
language teachers (Loiseau, 2003)

- the automatic analysis and pedagogical analysis
of the learners’ answers using NLP based tools and
techniques.

- scripting and interfacing for activity generation
The first results of these works should find their

application in Mirto.
At the crossroads of three branches – language

didactics, NLP and computer science – Mirto
raises new problems, not only in each of these
branches (advances in NLP for instance) but also
problems for which no solution can be reached
unless the branches (and their specialists) work in
quasi osmosis. One can mention among others the
examples of the automatic definition of the
appropriate response for the learners’ answers, the
modeling and implementation of computer
functions manipulating language didactics
concepts (so as to provide language teachers with
no specific computational skills with tools they can
handle), the definition and pedagogical
exploitation of the trace of the learners’ activity or
the modeling of non-linear scenarios… Unless we
find answers to these problems, CALL will have to
settle for the creation of pedagogical-added-value-
less-products.

References

G. Antoniadis and C. Ponton. 2004. Mirto : un
système au service de l'enseignement des
langues, UNTELE'2004, Compiègne, France.

G. Antoniadis and C. Ponton. 2002. Le TAL : une
nouvelle voie pour l'apprentissage des langues.
UNTELE'2002, Compiègne, France.

C. Brun, T. Parmentier, A. Sandor and F. Segond.,
"Les outils de TAL au service de la e-formation
en langues", Multilinguisme et traitement de
l’information. F. Segond, ed., pages 223-250,
Hermès Science Publications, Paris, France

T. Chanier. 1998. Relations entre le TAL et l'ALAO
ou l'ALAO un "simple" domaine d'application du
TAL ?. International conference on natural
language processing and industrial application
(NLP+IA'98), Moncton, Canada.

T. Chanier and T. Selva. 2000. "Génération
automatique d’activités lexicales dans le système
ALEXIA". Sciences et Techniques Educatives
7(2):385-412, Hermès, Paris, France

G. Forestier. 2002. Plates-Formes pour
l’enseignement des langues : le cas de Mirto.
Mémoire pour l’examen probatoire en
Informatique, CNAM, Grenoble, France.

O. Kraif. 2003. "Propositions pour l’intégration
d’outils TAL aux dispositifs informatisés
d’apprentissage des langues, Intercompréhension
en langues romanes". LIDIL, n° 28, C. Degache
ed., pages 153-165, Grenoble, France.

M. Loiseau. 2003. Vers la création d’une base de
données de ressources textuelles indexée
pédagogiquement pour l’enseignement des
langues. Mémoire de DEA en Sciences du
Langage, Stendhal University, Grenoble, France.

D. Renié. 1995. Modélisation informatique de
l’acquisition des interrogatives directes en
français langue seconde dans leur dimension
pragmatique, proposition d’un environnement
offrant un apprentissage collaboratif :
ELEONORE. PhD Thesis, Clermont II
University, Clermont-Ferrand, France

	CALL: Conjugating NLP and language didactics
	Mirto description
	Function level
	Script level
	Activity level
	Scenario level
	Levels and users

	Activity design
	CALL/NLP scripts
	Parameters
	Incremental approach
	Examples of scripting
	Activity generators
	Comprehension aid
	Automated evaluation

	Current functionalities of Mirto and perspectives

