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Summary: User modelling is a significant part of usage analysis. We present a case 
study in the field of the learning of algebra that aims at producing automatic 
diagnosis rules, based on the analysis of tracks of students solving algebra exercises 
within the Aplusix learning environment. We present two experiments that were 
conducted among 8th and 9th grade students. Manual analyses performed on the data 
made it possible to contribute to the construction of a library of rules aiming at 
modelling students by hand or automatically. The automatic diagnosis, based on the 
use of a library of correct and incorrect rules, and on a heuristic search algorithm, 
reveals a high performance on some of the algebra fields and will be extended to 
other fields through iterative comparisons with the results of the manual diagnosis. 

 
 
1. Problematic 
 
Within the scope of a project aiming at automatic student’s modelling in algebra [9], we 
conducted tracks analyses with a variety of students from 8 and 9 grades, in order to 
identify the systematic errors they commit when solving algebra exercises, and to use the 
identified incorrect rules [5, 7] for automatic diagnosis of the students’ transformations in 
term of rule applications. In our view, this requires: (i) Designing relevant tasks, i.e., 
relevant algebra exercises; (ii) Identifying, a set of correct and incorrect rules; 
(iii) Designing an automatic diagnosis algorithm; (iv) Assessing the quality of this 
diagnosis. For gathering the data, we have used the Aplusix learning environment [3] that 
allows students to freely make calculation steps and records all the students’ actions 
(Figure 1). This part of our research work is described in this paper. The diagnoses obtained 
are next used to model students in term of conceptions1 [4]. In a longer term, we plan to 
insert our global process in the Aplusix system to be used in ecological situations where the 
students will learn algebra skills with Aplusix in usual school situations and Aplusix will 
calculate on- line the students’ conceptions and inform the teacher. 

Students rely on conceptions, inadequate in some contexts, that are likely to subsist 
despite learning [1, 2, 8]. One target of this study, due to the lack of converging and 
exhaustive results on conceptions in algebra, is to build a panel of exercises and to analyse 
the errors observed. In other words, we aim at identifying a “map” of incorrect rules and of 
conceptions. This project is quite ambitious since, to our knowledge, this is the first time 

                                                 
1 An example of part of a conception is the following: When a sub-expression is moved from one side to the 
other in an (in)equation, its sign is always changed. Note that this is sometimes correct (e.g., x-3 = 5 →  x = 5+3) 
and sometimes incorrect (e.g., -3x = 5 → x = 5/3). 



   

that a work aims at achieving exhaustiveness in the field of elementary algebra2 with a data 
driven approach. More precisely, we aim, in a first step, at providing a methodology that 
could be applied at a larger scale in order to provide the expected exhaustiveness. For this 
reason, the experimental work focuses only on semi-beginners in algebra (8th and 9th 
grades) and part of the study is achieved only on a subfield, namely solving linear 
equations. 

 

 
Figure 1. Aplusix problem solving interface 

 
Beyond the incorrect rules identified, the manual analyses performed hereby provide 
contributions in at least two directions that address issues relevant to many cases of usage 
analysis involving user modelling: (i) Reaching a conclusion about the stability of the 
behaviours of the students in the use of the incorrect rules, measured as the repetition of the 
same behaviour within the same context. This stability is crucial since it conditions the 
relevance of the diagnosis. (ii) Evaluating the quality of the automatic diagnosis by 
providing a basis of comparison. 
 
2. Methodology 
 
2.1 Choice of the relevant exercises 
 
We designed two experiments, with complementary purposes. The first one, designed for 
grade 9 students, intends to make possible gathering a large set of data covering the whole 
range of rules that might be applied at this level of the curriculum. It is composed of 31 
exercises listed below (Table 1). This set of exercises makes possible to observe a large 
range of incorrect rules in order to build a library of the rules involved. However, this 
experimental setting reveals some limitations since the importance of the range covered is 
not compatible with an accurate assessment of the context of application of the rules and of 
their stability; an apparent lack of stability in the behaviour of a user might reveal that s/he 
categorizes the situation as different from the previous one despite that they are equivalent 
from an expert point of view. For this purpose, we designed a second experiment that 
investigates a subfield in a more systematic manner, namely solving linear equations. 

This second experiment was designed in order to focus on a subfield and to check out 
the possibility of increasing the assessment of the stability of the behaviours identified 
through a more accurate description of the context of use of the rules. Thus, we built 15 

                                                 
2 We term elementary algebra, the calculations made on polynomial and rational expressions, polynomial and 
rational equation and inequation up to highschool. Most of the research devoted to student’s modelling in 
algebra concerns very beginners.  



  

linear equation exercises listed below (Table 2) and we manipulated in quite a systematic 
manner the parameters that could lead to the identification of the context of application of 
incorrect rules. More precisely, in an equation of the form ax+b=cx+d we varied the nature 
of a, b, c, and d and the relations between these values along the dimensions that might be 
relevant from a naïve point of view; for instance, whether there value is zero or not, and if 
not whether they are positive or negative numbers, integers or fractions. This methodology 
is intended to be reproducible in other subfields, in order to encounter the whole range of 
exercises in algebra as they are categorized by the learners. 
 
 
2.2 Gathering data and the tool for visualization and construction of numerical indicators 
 
Each action of the student is recorded and can be transcribed by a “video tape recorder” 
integrated into the software. As a first step of the diagnosis and before its automation, 
manual analyses were performed. For each student the detail of the resolution of each 
exercise was looked at with the video tape recorder of APLUSIX (Figure 2) and the rules 
which made it possible to explain the transformation of an expression into another were 
identified by the analyst.  
 

 
Figure 2. Aplusix’s videotape recorder 

 
We built several numerical indicators. Because of the length of these exhaustive manual 
analyses (several hours for one hour of one student problem solving session), we applied 
them only to a small part of the whole population that we tested in other studies [9]; namely 
3 classes of grade 8 students and 3 classes of grade 9 students. 

We measured the rate of occurrence of each incorrect rule among our population. 
First, this indicator makes possible to distinguish the marginal rules, known as orphan, that 
seldom occur and that do not deserve designing specific remediation strategies, from the 
dominant ones that are present in a significant part of the population and deserve to be 
taken into account seriously. Second, the orphan rules shall not be implemented in the 
automatic diagnosis in order to avoid combinatorial explosion, whether the most frequent 
ones have to be implemented in order to avoid diagnosis failures or psychologically 
implausible automatic diagnoses. 

We measured the predictive character of the identified rules with a binary indicator. A 
rule is regarded as predictive when its use alone leads to the result given by the student. We 
took a restrictive criterion since we considered that the use of several rules altogether 
implies that none of the rules are predictive, just as calculation or copy errors interfering 
with an incorrect rule. This is a strict criterion that might be considered as gathering the 
cases for which the automation of the diagnosis appears more easily accessible.  



   

We measured the stability of each rule for each student. One of our concerns was to 
test the robustness of the analyses carried out by the construction of ind ices on the 
systematic character of the use of the identified rules, being quite obvious that the 
diagnoses related to the protocols have interest if one observes a certain stability of the 
behaviours. The stability is calculated by a ratio between the frequency of use of the rule 
and the total frequency of cases in which it could be used. 
 
 
3 Manual diagnoses 
 
3.1. Results with 9th graders 
 
We analysed in a systematic manner the protocols of 73 students (3 classes from a Parisian 
school) solving the 31 exercises of the first experiment. We organized experimental settings 
in small groups (from 8 to 10 students) and with as many sessions as necessary in order to 
solve the whole range of exercises. The list of the exercises, as well as the frequency of 
success, are provided Table 1.We then performed manual protocol analyses: all in all, 104 
rules were identified, and gathered within a typology: (i) Power rules (P1 to P10); (ii) 
Priority of operators rules (O1 to O11); (iii) Factorization rules (F1 to F10); (iv) 
Distributivity rules (D1 to D18); (v) Sign rules (S1 to S12); (vi) Elimination of the 
coefficient of the unknown rules (Eu1 to Eu18); (vii) Elimination of the fixed value rules 
(Ef1 to Ef16); (viii) Calculation rules (C1 to C9) 
 

Table 1. List of exercises and frequency of success for the first experiment 
 Exercises  Class1/21 Class2/25 Class3/27 Sum /73 

1 5x2+3x-7-3x2+2x+8 Simplify and order 18 20 20 58 
2 (-3-6)*(6-8) Calculate 14 19 23 56 
3 x+2=-3 Solve 20 24 24 68 
4 7x+(2x-8)-(-3x+12) Expand, simplify and order 13 12 17 42 
5 (-2)*(-5)*(+3)+(-2)*(-4) Calculate 20 24 24 68 
6 9-x=12 Solve 17 17 16 50 
7 2-3(-5x-5)+5(4x+8) Expand, simplify and order 17 13 12 42 
8 4x=16 Solve 20 18 26 64 
9 8a+8b Factor 21 22 23 66 

10 5x=9 Solve 20 19 22 61 
11 7x(3x+5) Expand, simplify and order 18 17 17 52 
12 8a+40 Factor 21 22 22 65 
13 (9x-5)(-6x+2) Expand, simplify and order 14 8 11 33 
14 12x2-7x Factor 19 21 23 63 
15 8x-4=3x-2 Solve 14 19 15 48 
16 10x+1-6x2+5-3x2+6x-6 Simplify and order 19 15 19 53 
17 -9*(-2)-7*(-6+2) Calculate 17 13 15 45 
18 10+x=-8 Solve 21 18 24 63 
19 9x-(-4+5x)-(5x+10) Expand, simplify and order 16 7 12 35 
20 5x=25 Solve 19 23 26 68 
21 4/3+7/6 Calculate 20 23 24 67 
22 4x(-1-7x) Expand, simplify and order 20 11 16 47 
23 x/3=-7 Solve 20 16 23 59 
24 2/5-1/7 Calculate 17 17 25 59 
25 10(-4x-1)-2(4x²-6) Expand, simplify and order 18 12 16 46 
26 -8=-7x+5 Solve 12 14 16 42 
27 -10/9*-6/-5 Calculate 16 14 17 47 
28 (1+5x)(2x-3) Expand, simplify and order 13 11 17 41 
29 -2x+8=3+2x Solve 12 11 10 33 
30 2-5*5-7*3 Calculate 17 12 10 39 
31 7x=4/5 Solve 15 17 10 42 

 



  

Thus, we achieved our goal of identifying a large set of incorrect rules that are used by 
students solving algebra exercises. In this sense, the usage analysis appeared to be very 
informative. However, if this first experimentation made it possible to identify a library of 
rules, the analyses of the associated numerical indicators described above, which is not 
detailed hereby, revealed that the stability was often quite low. We reached the conclusion 
that because of the variety of the exercises, the identification of the context of application 
of the rules is made dubious, and some indices of non stability of the rules might in fact 
reveal different contexts of application: conditions that seemed strictly equivalent from the 
expert point of view were not for the students. So it seemed necessary to carry out a more 
systematic analysis on a subfield, as discussed above. In order to avoid ceilings effects 
related to a too high level of the students, this experimentation was carried out with grade 8 
students, after they already studied the resolution of linear equations (ax+b=cx+d type). 
 
3.2 Results with the 8th grades 
 
Table 2 indicates the list of exercises as well with the frequency of success (the numbers 
are not always integer numbers since some intermediate 0,5 mark were attributed in some 
specific cases). 
 

Table 2: List of exercises and frequency of success for the second experiment 
 Exercise Type Class1/30 Class2/30 Class3/30 Sum/90 
1 -1/4 x=6 Solve 4,5 1,5 14 20 
2 

3
7

=
x

 
Solve 17 19 26 62 

3 7=28x Solve 8 6 15 29 
4 -4x=-27 Solve 12 6 21 39 
5 12-6x=-15x-3 Solve 11 6 16 33 
6 8x-11=7+10x Solve 12 6 10 28 
7 2=-x+15 Solve 20 15 18 53 
8 -9=x-7 Solve 9 9 14 32 
9 11-x=-12 Solve 13 11 11 35 
10 -x+2=7+x Solve 12 4 13 29 
11 -3+2x=-2x-2 Solve 15 10 16 41 
12 

5
2
7

=− x  
Solve 8,5 1,5 8 18 

13 
4

8
3

=x  
Solve 10 3,5 15 28,5 

14 

2
27

9 =x  
Solve 9 4,5 13 26,5 

15 

2
22

11 −=− x  
Solve 8 4 16 28 

 
We used the same typology of rules than with the previous experiment. Due to the 
systematic manipulation of the factors that might influence the choice of the rules, we were 
able to identify, for each student, the context of application of the rule and it’s stability. 
Table 3 and Table 4 are extracted for the tables gathering the data from the students. 
Table 3 indicates, for a sample of the participants, the numerical indicators that were 
performed: percentage of rules identified relative to the number of exercises that the student 
got wrong, predictability relative to the total number of failures, and predictability of the 
identified rules (2nd column divided by first column). Table 4 indicates, for a sample of the 
participants, the  total number of incorrect rules identified for a given student and the degree 
of stability of these rules. 



   

 
Table 3. Numerical indicators regarding rate of incorrect rules and rules predictibility 

Student Rules/Failures Predictibility/Failures Predictibility 
Beck 62,50% 37,50% 60,00% 
Bert 40,00% 40,00% 100,00% 
Beri 42,86% 42,86% 100,00% 
Bong 50,00% 36,36% 72,73% 
Dasi 65,22% 52,17% 80,00% 

 
Among the failures, we were able to identify an incorrect rule for 58% of the failures in 
average. The cases in which no rules were identified concern mostly calculation errors and 
unachieved exercises. The average rate of predictability among the rules identified is 67%. 
 

Table 4. Stability of the identified rules. 
Student Stable Intermediate Non stable Total 
Beck 1 2 3 6 
Bert   1 1 
Beri 1 1  2 
Bong 2 1 1 4 
Dasi  4 1 5 
…… …… …… …… …… 
total 46 162 152 360 

 
If the rate of full stability (the rule is used in 100% of the cases) appears to be quite low 
(13% of the total), partly due to calculation errors, 45% show intermediate stability (the 
rule is used in at least 50% of the cases), which might show competition between the 
correct rules and the ones taught in school, as well as the use of opportunistic strategies that 
we identified with grade 9 students as well and which consist in using in an ad hoc manner 
a rule that make the problem simpler; the opportunistic rule appear to have a low stability 
because their context of application is not captured by the manipulated factors. 
 
 
4. Local automatic diagnosis 
 
The purpose of the local diagnosis is to automatically find a sequence of rules (correct or 
incorrect) that explains a transformation made by a student (e.g., 7=28x → x=28-7). The 
term “local” is used because we consider only one transformation at this point. Such 
diagnosis is achieved to be followed by other automatic treatments: (1) Calculation of the 
frequencies of incorrect rules used by a student or a class; (2) Attribution of conceptions to 
students, conceptions being more global representations of the students’ knowledge, see 
details in [9]. We only develop the local diagnosis work in the rest of this paper. 

 We have implemented formal rules in a computer language and we have 
implemented an algorithm for providing diagnoses. At the present time, our focus is on the 
rules that apply to linear (in)equations and the rules for performing expansions and 
reduction (for other fields, like factorization and fractions, just a few rules have been 
implemented). As the goal is to automatically diagnose a lot of students’ transformations (a 
class working during 2 hours with Aplusix produces about 1000 transformations to be  
diagnosed and we have more that 100 classes to study), we did not implement the rules that 
are very specific and very rare.  

We have combined the above cognitive study of the students’ productions and 
epistemic study of (in)equations to produce the rules to be implemented. This led to 
consider two sets of rule. First, we consider the correct fundamental operations on both 
sides of the (in)equations (addition, subtraction, multiplication, division) like A = B →  
A+C = B+C. Second we consider the correct movement rules that are compiled form of 



     

these rules when they are combined with reduction; there are additive movement rules like: 
A+C = B → A = B–C and multiplicative movement rules like AC = B → A = B/C (C?0); in 
these rules, C is said to be moved from one side to the other; and we consider incorrect 
movement rules obtained by the following processes: (1) Incorrect (un)change of the sign 
of the moved expression, like in 4x+5=7 → 4x=7+5; (2) Incorrect (un)change of the 
orientation of the inequality sign, like in -4x<7 → x<-7/4; (3) Incorrect operator linking the 
moved expression to the global expression (e.g., move C from a multiplicative to an 
additive position like in 28x=7 → x=28+7). The combina tion of these processes and of the 
sort of relation (=, <, etc.) and of the orientation (left to right, right to left) lead to more that 
1000 rules. We did not implement 1000 specific rules but a general rule with features that 
correspond to the above “processes”. For example, the transformation 4x<7 → x>7-4 is 
diagnosed as the application of the movement rule with the features: <, LefToRight, 
NumeratorToNumerator, InitAdditive, FinAdditive, SignChanged, OrientationChanged. 

The implemented rules are based on the above cognitive study but some of the rules 
were slightly generalized and the very specific and very rare rules were abandoned. We 
have not yet implemented a complete set of rules for the calculation of fractions. 
 
 
4.1. The algorithm of the diagnosis 
 
The diagnosis algorithm that we have implemented is a heuristic search algorithm of the 
“best first” type [6]. Such an algorithm manipulates objects or states (algebraic expressions 
in our case) based on the use of operators (rewriting rules in our case) and uses a heuristic 
in order to constrain the search; the heuristic being a function that provides a proximity 
measure between two objects. Initial data are composed of two objects, the algebraic 
expressions A and B in our case, B being the result of the transformation of A by the 
student. The algorithm searches a list of operators (correct or incorrect rewriting rules in 
our case) allowing the transformation of A into B. For achieving this purpose, it builds a 
search tree, A being included in the root, and develops successive nodes. Developing a 
node N consists of applying all the rules that are applicable to the object that it contains, 
and to generate a successor of N each time a new object is generated. Algebra is a difficult 
domain for this kind of search because of: (1) an important branch factor (number of 
successors of a node) coming from a large number of applicable rules; (2) the presence of 
cycles in the application of rules; (3) the absence of a good distance to evaluate the 
proximity of a produce expression with the target. For these reasons, we had to adapt the 
general algorithm, in particular, some rules take into account the goal: they are not applied 
when they are applicable if some conditions regarding the goal are not verified. This is the 
case of the above movement rule that can be applied for 8 expressions in 
2x+3+4x+5=6x+7+3x+2 and each time with a lot of  features, and can be applied as many 
times in the produced nodes. Such an algorithm sometimes fails. When the algorithm does 
not reach the target after a chosen number of developed nodes (we often chose 30 nodes), it 
fails. When the target is reached, the obtained diagnosis can be considered as inappropriate 
because it makes a bizarre combination of rules when the analyst has a better diagnosis.  
 
4.2. Results 
 
Here is an example of diagnosis of the transformation of 2x–6 = 7x-8 into –5x = –14. It is 
diagnosed with 4 rules: (1) Incorrect additive move of 6, leading to 2x = 7x–8–6; (2) Correct 
additive move of 7x, leading to 2x-7x = –8–6; (3) Correct additive reduction, leading to –5x = 
–8–6; (4) Correct additive reduction, leading to –5x = –14. The current application of the 
automatic diagnosis on recorded data of a grade 8 class (29 students) and a grade 9 (21 



   

students) provides a good ratio of “success” presented in table 6. The “appropriateness” ratios 
of these diagnoses are presented in table 7 for the incorrect transformations of the two 
families studied (expansions, reductions and transformations on equations). 
 

Table 6. Success of the automatic diagnosis (i.e., when it did not fail). 
Class Type Number Success Ratio 

Grade 8 Correct transformations 1070 1005 94% 
Grade 8 Incorrect transformations 434 351 81% 
Grade 9 Correct transformations 1071 985 92% 
Grade 9 Incorrect transformations 155 121 78% 

 
Table 7. Appropriateness of the automatic diagnosis for incorrect expansions, reductions  

and transformations on equations (i.e., when it is judged appropriate by the analyst). 
Class Type Number Appropriate Ratio 

Grade 8 Incorrect transformations on equations 78 76 97% 
Grade 8 Incorrect expansions and reductions 126 103 82% 
Grade 9 Incorrect transformations on equations 33 28 85% 
Grade 9 Incorrect expansions and reductions 50 46 92% 

 
 
5. Perspectives 
 
We are now working on the process of improving the quality of the automatic diagnosis 
through the implementation of other fields (e.g., fractions, factorization) and iterative 
comparisons with the results of the manual diagnosis. The diagnoses produced by this 
process are used in another part of our project devoted to the production of conceptions, 
conceptions being more global representation of the knowledge of the student. This work is 
presented in another communication of the workshop. 

Besides providing libraries of incorrect rules and of conceptions to the scientific 
community, our results will be used later for two purposes: (1) to calculate students’ 
conceptions in the Aplusix system and present them to the teacher; (2) to build artificial 
tutor devoted to remediation of inadequate conceptions. 
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