
HAL Id: hal-00190336
https://telearn.hal.science/hal-00190336

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Futurelab: The potential of open source approaches for
education

Seb Bacon, Teresa Dillon

To cite this version:
Seb Bacon, Teresa Dillon. Futurelab: The potential of open source approaches for education. 2006.
�hal-00190336�

https://telearn.hal.science/hal-00190336
https://hal.archives-ouvertes.fr

OPENING EDUCATION

The potential of open source

approaches for education

Futurelab

1 Canons Road
Harbourside
Bristol BS1 5UH
United Kingdom

tel +44 (0)117 915 8200
fax +44 (0)117 915 8201
info@futurelab.org.uk
www.futurelab.org.uk

O
P

E
N

IN
G

E
D

U
C

A
T

IO
N

T
h

e
p

oten
tial

of
op

en
sou

rce
ap

p
roach

es
for

ed
u

cation

Glossary 02

Foreword 05

Executive summary 07

1 Introduction 09

2 Some key terms 11

3 Evidence and resources in the field 16

4 Historical overview 21

5 Discussion of some strengths and weaknesses of FLOSS approaches 32

6 Peer-production approaches for education 36

7 Conclusion 49

Links 51

References 52

Appendix 1: Commonly used FLOSS solutions within schools 57

Contents

01

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

By Seb Bacon and Teresa Dillon

02

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

03

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

Free Software Foundation (FSF) founded by Richard Stallman to promote the
idea and practice of free software

Freeware software distributed at little or no cost, but often without FLOSS
licences or source code

GNU the ongoing project to develop a complete UNIX-style operating system
that runs only on free software

GNU Image Manipulation Program (GIMP) an open source image editor. Very
similar to Adobe Photoshop

GNOME one of the leading projects to create a graphic user interface for
Linux

GPL the GNU Public Licence: a model open source licence that aims to
protect the rights and freedoms of the user in perpetuity

Gratis software software of any type that is given away free of charge.

Internet a global network of connected computers. The internet and FLOSS
are interdependent

Interoperability how well a program works with another program, especially
different operating systems

KDE one of the leading projects to create a graphic user interface for Linux

Kernel the heart of an operating system. All software must run on top of a
kernel, which provides safe access to system hardware and software

Licence the terms of use for a specific program. A software licence is a legal
document since it formally restricts the rights of the user

Linux the leading and most successful FLOSS kernel. Also used more
generally to refer to any operating system that uses the Linux kernel

Lock-in when users can't choose a new company's software because they
have invested too much time or have too much data in their current software,
and the change is too costly or otherwise impossible

Mozilla an open source web browser; the Mozilla Public Licence (MPL) is a
model licence for open source software

Open source any program whose source code is made available for use or
modification as users or other developers see fit

Given the acronyms and technical terminology that abound within the FLOSS
community, this glossary is intended to provide a quick guide to the language
used within this paper. The explanations provided have been abbreviated from
various sources such as the North Regional Educational Laboratory1 and the
Australian government website2.

For the purpose of this review we are using the ‘catch-all’ phrase Free,
Libre and Open Source Software (FLOSS) as it encompasses notions of free
and open software and takes account of recent developments in this field.
Other acronyms used interchangeably with FLOSS and which refer to a
similar approach to software development include Open Source (OS), Open
Source Software (OSS) and Free Software. An overview of these terms is
included below.

Apache a web server platform for hosting web pages developed and released
as open source software

Backend the servers and other hardware that support a network; contrasted
with frontend, which may refer to a web browser or other desktop software

BSD (Berkeley Software Distribution) a version of the UNIX operating system
that exists in both open source and proprietary formats, comparable to Linux
(FLOSS operating system). Also a model licence for FLOSS developed by the
University of California Berkeley, originally for the BSD operating system

Binary the ones and zeros of a computer program as read by a computer.
This is ‘compiled’ from human readable source code

Compatibility how well a program works with a different program, especially
sharing files. Similar to interoperability

Copyleft an adaptation of copyright that aims to preserve the right of users to
copy and change a work in perpetuity

Copyright the licence that protects a creator's right to control copies and
changes to a work

Free software computer program with accessible source code that typically
uses copyleft to prevent future closed source versions of the software. Often
confused with gratis software

Glossary

04

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

05

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

OSS (Open Source Software) any computer program with accessible
source code. Anyone is legally and technically able to change and/or
redistribute the software. The official open source definition encompasses
free software, but also software whose source code can be included in
future closed source software

OpenOffice.org a FLOSS office suite, includes word processing, spreadsheets,
and slideshows. Very similar to Microsoft Office

OS (Operating System) the essential software to control both the hardware
and other software of a computer. It consists of a kernel plus supporting
programs

OSI (Open Source Initiative) the non-profit organisation behind the open
source movement

Proprietary software software without accessible source code. Sometimes
called ‘closed source’ or commercial software

Server any computer that provides a service to other computers in the
network

Shared source a Microsoft initiative to make some of its software transparent
to some users. This is not open source because only some people have
access to the source code and they can't make changes or copies

Source code The human readable language a program is written in, before it
is compiled to binary. A programmer needs to source code to change a
program

Thin client a minimalist workstation connected to a server

Total cost of ownership (TCO) the total price in money, time and resources of
owning and using software including purchase price, cost of upgrades,
maintenance and technical support and training (or re-training)

Transparent anyone with sufficient skill can see how a program works

Glossary cont.

Opening Education is a new series of publications from Futurelab. As its name
suggests, in this series we hope to open up areas for debate, to provoke, to
challenge, to stimulate new visions for education. At the same time, we hope to
literally ‘open up’ education, to not only bring together ideas from educational
practice and research but also to draw on the fields of creative arts, media and
technical innovation. Finally, in the ideas we present we hope to ‘open up’ the
walls of the educational institution – to present models of learning that show how
we can create connections between learners in different settings, how we can
enable collaboration between different organisations and institutions, how we can
make links between different approaches to and forms of learning.

The publications in this series are intended to act as a complement to our existing
resources. Where our literature reviews provide a survey of existing research in
the field and our handbooks provide practical overviews and guidance on
implementing new approaches, these Opening Education publications offer a
space to think, to challenge, to open up new ideas that may not yet be ready for
‘implementation’ or rigorous research. They are the early warning systems, the
‘canaries’ down the mine of educational strategies and practice.

Research into innovation in industry and commerce suggests that having a
superfluity of ideas is essential for growth and development – education is no
different. We need to have a surplus of ideas and strategies and visions and plans
so that we have enough to draw on when we face the serious challenges for
education that social, economic and technical change presents us with. Not all
ideas will become a reality, not all ideas will survive in the form in which they
were presented, but what cannot be denied is that education and educators need
to know that there is scope to dream, to think about new approaches and different
ways of doing things; to know that the ways we do things now will not be always
and forever the same.

So, we’re sending these ideas out to see if they live or die in the light of wider
debate. They are experimental and exploratory, both in their ideas and, in
subsequent publications, in the forms in which we publish – they won’t all look
the same, feel the same, say the same thing. They will all, however, attempt to
open up a new area for debate and for action and we look forward to hearing from
you and working with you to determine their fate.

Keri Facer
Research Director

Foreword

Free, Libre, Open Source Software (FLOSS) refers to any software distributed
under a licence that allows users to change or share the software source
code. The three most important characteristics of FLOSS are that:

• it allows free (unrestricted) redistribution

• the source code is available at minimal cost

• derived works may be redistributed under similar
non-restrictive terms.

These principles have emerged from a long and complex history that is
intricately bound up with early development practices around mainframe
computers, debates over the nature of knowledge and information, and the
emergence of home PCs and the commercial software market. FLOSS
principles have, from these origins, inspired new approaches to copyright
(such as Creative Commons) and have come to inform a cultural
phenomenon that is underpinned by technological development with the aim
of contributing to the public good.

Futurelab’s interest in this area stems from the belief that FLOSS provides an
example of peer-production which is driven by collaborative, social modes of
interaction and knowledge exchange. This paper discusses some of the
potential ways in which the approaches that characterise FLOSS might be
applied in educational contexts; specifically, whether they can act as a model
for education in:

• offering new approaches to teaching and learning, specifically enabling
personalised learning and enhanced learner voice

• enabling knowledge sharing and collaboration between teachers

• overcoming structural divides between developers of educational software
and its users.

The paper does not discuss the pros and cons of schools adopting open
source software systems, but examines the possibilities opened up by
pursuing an open source philosophy.

Executive summary

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

07

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

06

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

08

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

09

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

FLOSS defies easy description. The research literature describes it variously
as a phenomenon; a community of practice (Edwards 2001, p442; Tuomi
2005); a scene (Lehmann 2004); an approach to licensing (Perens 1999); an
economics model (Khalak 2000; Lerner and Tirole 2000); a value and social
system (Lessig 2004; Stallman 1992); and a hybrid model of innovation (Lin
forthcoming). These diverse interpretations indicate the multidimensional
aspects of FLOSS and its interdisciplinary relevance to a wide number of
domains including governance, policy, culture and industry.

All the above characteristics apply to FLOSS and in this respect it is a
potentially powerful example of new modes of production which challenge
received wisdom about the most effective means of generating and sharing
knowledge. It raises an interesting set of questions for education, particularly
for the development of education systems which have as their goal the
nurturing of young people able to react flexibly and creatively to the world
around them.

Despite the success of FLOSS over the last ten years (for example, FLOSS
servers such as Apache run over 70%3 of the world wide web), its relevance
as an approach to innovation and knowledge sharing is not always visible or
easily accessible to educators. FLOSS has been, to date, a closed community
riddled with jargon, often led by the technically savvy and with its origins
buried deep within varying historical accounts scattered across the world
wide web.

This discussion paper provides educators and those working to create
educational technologies with a historical overview of the development of
FLOSS and the key contemporary debates in the area. It aims to give an
understanding of some of the potential ways in which the approaches which
characterise the FLOSS movement might be applied in educational contexts
as a model for young people’s knowledge creation, teachers’ community
building and innovation in the development of educational resources.

The paper draws links between FLOSS approaches and current educational
agendas in an attempt to make the relevance of the FLOSS approach to

FLOSS approaches enable the creation of distributed collaborative networks
of people working together to solve problems. This might provide a powerful
way of thinking about how learners might work together, within or across
schools, to generate new knowledge and practice of relevance to them. It
offers the opportunity for learners to identify small tractable problems and
together create ultimately significant contributions to knowledge.

With regard to teachers, FLOSS approaches provide an insight into how
knowledge can be shared, modified and adapted across the teaching
profession and in different contexts. We could conceive of networks of
teachers and researchers working together on different educational
challenges to create new approaches that are open to and usable by all.
These approaches raise questions about the growing trend towards
copyrighting and selling of teaching strategies, curricula and schemes
of work.

It is also possible to conceive of young people or teachers working together
as programmers to create new resources and tools that are of relevance to
them in supporting their own learning. These approaches go beyond the
traditional distinction between ‘users’ and ‘producers’ of educational
resources, instead, they offer models of innovation in which these
communities are intermingled, the notion of ownership is changed and
the economical model of cost and reward is reworked. These new hybrid
models of innovation that FLOSS exemplifies require us to ask what models
of ownership we might need to develop; what mechanisms might need to
be put in place to encourage exchange between sectors; what role users
of educational resources might play in the creation of resources; and what
business models would need developing to allow further exploration in
this area.

FLOSS is more than software: it is of relevance to our understanding of how
people learn and produce knowledge; of how communities collaborate and
work to solve problems; and of how innovative practices emerge. As a
movement it raises a provocative set of challenges for educators and
developers of educational resources.

1 Introduction

10

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

11

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

education more accessible and visible. It discusses the potential application
of this approach in three key areas:

• new approaches to teaching and learning, considering young people as
knowledge builders and creators

• supporting teachers within a community of practice

• the development of new models of innovation and software development
in education.

FLOSS approaches are only beginning to be explored in education and at the
present time the research literature is partial and fragmented. As a result, it
is not possible to make definitive statements about the most beneficial
applications of FLOSS approaches in education. We do believe, however, that
this is a debate that is worth exploring further and that by doing so, we can
raise a set of provocative and powerful questions that are relevant to debates
in education today.

These approaches may have relevance specifically to discussions relating to:

• the personalisation of education (the degree to which learners are able to
shape educational experiences to meet their own needs)

• the development of the teaching workforce (the degree to which ongoing
collaborative knowledge sharing is likely to be important in the future)

• the design of digital resources for learning (the degree to which learners,
teachers and educators are able to work alongside programmers to
create resources tailored more specifically to their educational needs).

At a time of rapid change in our relationship to knowledge and our views of
teaching and learning in ‘information societies’ it is timely to consider how
FLOSS approaches may be of relevance to educational policy and practice.
The bottom-up organisation, where distributed self-motivated individuals
creatively collaborate and work together on shared problems, has relevance
both in terms of the creation of digital technologies we use for education,
and as an approach that could be adopted as part of the teaching and
learning process.

2.1 Open source
The term ‘open source’ refers to what has been described as the “bill of
rights for the computer user” (Perens 1999). In other words, the licence that
describes how the software should be distributed, and the rights you have as
a user to change or share the software source code.

Source code (often called source or code) refers to the human-readable
expression of the instructions required to make a computer carry out tasks.
When a developer creates software, they write it in a programming language:
something that resembles human language in superficial ways, with its own
grammar, verbs, nouns and adjectives. The human-readable code runs
through a process called compilation which converts it into binary, effectively
a long string of zeros and ones, which the computer can then use to perform
the necessary actions.

Code, therefore, shares some superficial similarities with human language.
As a result it is considered by many working in this field as a form of
expression; software that accomplishes exactly the same result (say, sorting
a pack of cards) may theoretically be written in an infinite number of ways,
depending on the particular intuitive or artistic preferences of the
programmer. It is not by chance, therefore, that many of the legal debates
around software are couched in terms of artistic copyright or free speech,
and it is in this conception of software, as expression rather than as a form of
machine, that the origins of FLOSS software lie.

2.2 Free software
The term ‘free’ is applied to software in two senses. In the first instance it
can mean software that has a zero purchase price. In the second instance it
is software that is not restricted by licences or has a licence that ensures its
freedom. It is the latter meaning that is applied throughout this review, with
the term ‘gratis’ used to describe the former.

2.3 FLOSS
Early approaches to FLOSS, in particular the Free Software movement,
emphasised the rights and freedoms of the expressive programmer. In 1998

2 Some key terms

12

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

13

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

2.4 Commons-based peer-production (CBPP)
There are many approaches to FLOSS which have resulted from a mesh of
control factors and choices of licence, governance and artisan models.
Underlying all these different approaches, however, is a method known as
‘commons-based peer-production’, or CBPP (Philips 2005)6. Within this
review we have adopted a similar understanding of FLOSS, considering it as
an exemplar of CBPP.

The term was first coined by Professor Yochai Benkler and refers to the
collaborative efforts and outcomes of a large number of people working
incrementally on a problem or artifact without being organised on either a
market-based, managerial or hierarchical model7. Benkler, like many others
(Lessig 2002, 2004; Stallman 1992; Boyle 2001), considers CBPP as an
emerging “third model of production” (Benkler 2002), which maximises
human creativity through the use of ubiquitous computer communication
networks (eg mobile telephony, internet). According to Benkler such networks
are bringing about a dramatic change in the scope, scale and efficacy of peer
production. One key example of this is FLOSS, where the internet has been
central to the movement’s development.

Drawing on the work of Benkler, the following key characteristics of CBPP
which underlie the FLOSS approach to software production, have been
derived:

• Motivation: individuals are not necessarily motivated by money when
working on a project; many are happy to be involved for other reasons
such as recognition, public good and so forth on a project.

• Chunking: many individuals work incrementally and asynchronously on
small aspects of a problem. Problems are usually fine-grained so they do
not take much time but are intrinsically motivating to those working on
them.

• Multi-disciplinarity: peer-production projects usually include a large
number of contributors, with varying but complementary expertise,
working on fine-grained aspects of the same problem.

• Integration: successful peer-production enterprises are usually low-cost,
which maximises chances for successful integration.

the Open Source Initiative4 (OSI) was established, with the goal to develop a
coherent understanding of FLOSS and the legal licences under which it
operates for a wider business-oriented community. The following ten criteria
provide a snapshot of how FLOSS is most commonly understood and defined.
Of the ten criteria5, the first three are the most important:

a. Free to redistribute

b. Open source code – the program must include source code, and must
allow distribution in source code as well as compiled form. If some form
of a product is not distributed with source code, there must be a well-
publicised means of obtaining the source code for no more than a
reasonable reproduction cost, preferably downloading via the internet
without charge.

c. Derived works – the licence must allow modifications and derived works,
and must allow them to be distributed under the same terms as the
licence of the original software.

d. Integrity of the author's source code – ensures that developers use the
source code in a productive way. Ensures that the originator’s coder
reputation is protected.

e. No discrimination against persons or groups – ensures maximum
diversity to avoid ‘locking’ anybody out of the process.

f. No discrimination against fields of endeavour – the licence must not
restrict anyone from making use of the program in a specific field of
endeavour. Also encourages commercial users to join the community, not
feel excluded from it.

g. Distribution of licence – rights attached to the program must apply to all
who use it, without need for additional licences.

h. Licence must not be specific to a product – the rights attached to the
program must not depend on the program's being part of a particular
software distribution.

i. Licence must not restrict other software – the licence must not place
restrictions on other software that is distributed along with the licensed
software.

j. Licence must be technology-neutral – no provision of the licence may be
predicated on any individual technology or style of interface.

14

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

15

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

2.5 Open standards
‘Open standards’ and ‘open systems’ are terms often used interchangeably
with open source. The term ‘open standards’ refers to the detailed,
descriptive overview of a process, protocol or format. This overview is
formulated through stakeholder consensus, must be openly published and
usually has no legal or intellectual property (IP) restrictions. Open standards
are generally defined by groups within standards organisations.

There is greater synergy between FLOSS and open standards than between
proprietary software and open standards. The general consensus is that open
standards provide users with greater choice, open competition and
accelerated progress, which in turn can lead to the commoditisation of a
particular technology (Australian Government Report 2005). Open standards
are useful for creating higher levels of interoperability and greater choice in
component procurements, which leads to more competitive markets.
However proprietary companies do not always choose open standards
because that approach can reduce their opportunities to tie consumers to
their own products. Moving from proprietary software with closed standards
is difficult and gives rise to product lock-in.

2.6 Open systems
In the early days of computers, systems were expensive and
decompartmentalised. Pressure came from users and from the computing
industry to achieve interoperability and cost-effectiveness between different
platforms sold by different vendors. One of the key outcomes of these
pressures was the development of POSIX-capable systems (POSIX being an
open standard) interconnected on open systems (the TCP/IP networks).

16

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

17

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

Much of the primary material on FLOSS was for a long time only available
from scattered locations across the internet, but in 1999 the most important
first-hand accounts were collected in ‘Open Source: Voices from the Open
Source Revolution’ (DiBona, Ockman and Stone 1999). ‘Free as in Freedom:
Richard Stallman's Crusade for Free Software’ (Williams 2002) gives a
compelling biographical account of the most important and controversial
figure in the movement, Richard Stallman. The manifesto that launched
FLOSS into the wider public consciousness, ‘The Cathedral and the Bazaar’,
is available under a Creative Commons licence and is reproduced in many
places across the internet.

The FLOSS community itself provides a valuable, if partisan, source of
information. This form of descriptive, anecdotal, case-based material has
been invaluable in raising the profile of the community, addressing critical
debates and influencing practitioners to adopt FLOSS. Online forums,
archives, FLOSS companies and key advocates in this field have utilised the
internet to its full potential. What the novice reader has to quickly learn is
how to distinguish between the informative and the evangelistic. Within the
field of education, key online communities and resources are:

• Schoolforge9, the international resource, web forum and archive

• Schoolforge UK10, which is similar to the international branch, runs an
online wiki of resources, information, support and training for the FLOSS
education community in the UK

• SIGOSSEE11, a pan-European project which runs conferences and holds
regular meetings, runs a comprehensive weblog and projects; key issues
the group tends to focus on are standardisation and interoperability

• FLOSS Posse12 is a wiki focusing on EU and international discussions on
FLOSS within education.

Recent years have begun to see an increase in government and public sector
funded research into FLOSS models at UK, EU and international levels.
Significant amongst these is a major international project FLOSSWorld13,
which aims to promote international collaboration between the EU and
developing countries. The project will be the first to carry out research and

There are multiple voices, at times contested and competing, that have
influenced and continue to influence the development of FLOSS approaches.
Given the commercial sensitivities in this area, much of the research to date
on the potential of FLOSS in education or the public sector focuses primarily
on FLOSS as a business model. There are comparatively few discussions of
how FLOSS as an approach might have implications for educational
approaches and philosophies (Becta 2004, 2005a; Moyle 2003; Staring,
Titlestad and Gailis 2005; also refer to www.ossite.org).

It is important to note that FLOSS is still in its early stages. It is only in the
last five years that major quantitative studies of the implications of FLOSS at
a national and EU level have been undertaken (Becta 2005b). To date, there
are no empirical studies which offer a reliable insight into the potential uses
of FLOSS approaches as a basis for teaching and learning or the development
of teacher communities, although there are parallels that might be drawn
between FLOSS approaches and emerging pedagogies such as those
advocated by adherents to constructivist and ‘knowledge building’ practices
(Chawner 2005; Edwards 2001; Lin 2004; Stürmer 2002).

Academic research in FLOSS tends to be sporadic and driven predominately
by individual researchers’ questions and backgrounds. Consequently, one
tends to find that researchers of law focus on legal issues, economics and
production models; researchers from computing science focus on the code;
while researchers for the social sciences, arts and education focus on new
modes of collaboration and the implications this has for knowledge building8.

The history of FLOSS is documented in a relatively small number of key
sources. ‘Hackers’ by Steven Levy (Levy 1984; 1994) describes the cultural
software engineering milieu which gave birth to FLOSS. It is compiled by Levy
from both written accounts and hundreds of interviews with some of the most
important figures in computing, including Bill Gates (author of Altair BASIC,
which become the foundation stone of Microsoft), Professor Mariv Misky (who
ran the MIT AI lab), hackers such as Richard Greenblatt (often cited as
founding the hacker community), Steven Jobs (co-founder of Apple), and
Richard Stallman (who founded the free software movement and has been a
central figure in FLOSS).

3 Evidence and resources in the field

communities-of-interest (eg Health and Education)”, and recommends
that the UK government should test the viability of the OSS approach to
such software.

As noted, FLOSS is still quite a recent approach to software development
and research into it is still within its infancy. As a result, much of the work to
date consists of attempts to address the potential implications of FLOSS and
the models of development and social interaction which underlie it. Much
research remains to be done in proving or disproving the validity of different
approaches, and this discussion paper is therefore presented in the spirit of
generating debate and discussion, rather than advocating specific strategies
in this area.

development on policy related to open source software at a global level.
Another EU project FLOSSPOLS (at the University of Maastricht, The
Netherlands) has provided valuable information on the uptake, uses and
potential application of FLOSS within Europe14.

Many EU countries are implementing policies in this area, which has led to a
number of projects primarily investigating the potential costs of such
initiatives (see for example Shankland 2003). Such government initiatives
seem to be changing how software is procured in some countries, which has
consequently led major commercial companies, such as Microsoft, to
respond. One such outcome is that Microsoft started a programme to share
the source code underlying Windows 2000, XP, Server 2003 and CE with some
governments15. Another key area of government interest, particularly in
countries such as South Africa, Brazil and Venezuela, is in the potential for
FLOSS to challenge ‘digital divides’ and boost economies (see for example
Kingstone 2005; Proffitt 2002).

Work carried out by Demos16 in the UK or by government agencies such as the
Joint Information Systems Committee (JISC)17 and the British Educational
Communications and Technology Agency (Becta)18 is of specific relevance to
the UK education sector, and discusses in particular the question of Total
Cost of Ownership (TCO) in relation to FLOSS in education. The JISC website
also provides a practical overview of the field, archiving and disseminating
resources to its members as well as discussing in lay terms the key issues
around the debate. The UK Office of Government Commerce (OGC) and the
Office of the E-Envoy also provide resources and information.

From industry sources, the QuinetiQ report (Peeling and Satchell 2001) was
one of the first of its kind in the UK, which focused on the ‘Analysis of the
Impact of Open Source Software’19. The report concludes that FLOSS
highlights a “fundamental change in the software infrastructure marketplace,
and is not a hype bubble that will burst”. Evidence for this claim drew on
market research which showed that Linux has become one of the fastest
growing operating systems20. Discussing the growth of FLOSS, its benefits
and issues for developers and users, future trends and implications, the
report concludes that FLOSS offers a “new paradigm for funding software in

18

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

19

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

The following history provides readers new to the field with an outline map
of some of the diverse and overlapping narratives which inter-relate in the
history of the FLOSS movement. It is a history which interweaves legal
issues and licences with programming practices, technological
developments and new forms of collaboration and communication. All of
these factors need to be considered in understanding the implications of
FLOSS for educational practice.

In the early 1960s, before software development was a major industry,
most code was created in an academic-style environment, albeit one
often embedded in a commercial context. It was circulated around
communities of experts, discussed, peer-reviewed, and built upon.
Computers were vast physical objects the size of rooms and the cost of
running programs was high.

Consequently, all software was developed in well-funded organisations,
often in technologically advanced academic institutions in collaboration
with the military, security forces and large commercial enterprises. As the
number of software producers and consumers was too small to allow for a
commercial software ecology, source code was not considered a valuable
commodity. As it had marginal economic value, it was natural to consider
source code a public good.

Many of the enthusiasts who understood how to program were more
interested in solving problems than making money. In this environment,
new software moved around quickly on magnetic tape, on punch cards or
on paper printouts.

4 Historical overview

21

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

20

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

BSD TCP/IP and networking code, including some of the networking software
inside Microsoft Windows.

Attention turned to the question of whether it might be possible to remove
all AT&T code from BSD to create a standalone release completely free of
restrictive licences. It was widely regarded as a nearly impossible feat, but in
fact was made possible by an innovation enabled by BSD in the first place:
the internet.

Keith Bostic23, one of the creators of the BSD system, saw the potential of
mass development of software using the internet whereby people who had
never met each other could work together on a single project. The enthusiast
culture that had grown up alongside BSD, combined with the unique
collaborative potential of the internet, allowed the removal of nearly all of the
AT&T code from BSD within two years (McKusick 1999).

The success of BSD, combined with how easily it could be copied and
incorporated into commercial code, led to a dispute between the University of
California at Berkeley and AT&T through its spin-off company USL (UNIX
System Laboratories). The case was settled with a crucial stipulation: USL
would not sue anyone using the settled version of BSD as the basis for their
own system.

Today, there are four major variants of BSD derived from the original BSD
code that are widely used, including Darwin (the basis of Apple Mac systems)
and NetBSD (an open source project for building a BSD-based operating
system that is both free and available for many platforms). These BSD
licences are examples of ‘permissive’ licences that impose almost no
conditions on what a user does with the software. This means that
redistributors can use it for proprietary products, so derived works do not
need to be open source.

4.2 The birth of GNU and copyleft
The freedom offered by the licensing arrangements to use and modify BSD
code were not considered ‘free’ enough by some.

23

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

4.1 UNIX and the birth of the internet
In 1969, as part of their work with Bell Labs (a division of AT&T telephone
company), software engineers Thompson and Richie developed a new
operating system called UNIX (see Salus 1994). Since so few computers
existed (all room-sized mainframes) UNIX wasn’t conceived as having
potential commercial benefit. In addition, anti-trust legislation forbade AT&T
from entering the computer business21, so UNIX maintained its academic-
style culture of free circulation and peer-review (McGowan 2005).

The University of California at Berkeley started licensing UNIX from AT&T in
1975 and researchers developed the code further. Recent changes to the
software were packaged and released under the name Berkeley System
Distribution (BSD) to anyone who requested it. UNIX began to develop very
fast until so much of the source code had been rewritten and extended that it
was hard to see the BSD as the same as UNIX.

In 1984 AT&T entered the computer business (McGowan 2005) with UNIX.
Initially, BSD was more successful, partly because it contained more
desirable features, but the BSD project continued to share their work with the
UNIX originators and this flow of innovation allowed UNIX to dominate a
growing commercial marketplace. Berkeley focused on academic research
and exploring the next generation of technological developments.

Under a contract with DARPA (United States Defence Advanced Research
Projects Agency) the team at Berkeley added networking code to BSD so that
it ran with other types of network. This part of BSD, known as TCP/IP22,
became the building block of the internet and allowed BSD (and consequently
UNIX) users across the world to communicate using a single networking
system. As the TCP/IP parts of BSD had been developed entirely without
AT&T UNIX code, the BSD team decided to release those portions
independently, under a very unrestrictive licence which stipulated that anyone
could use and copy the code as long as they credited BSD.

This was the first instance of an open source licence and was crucial to the
later development of the FLOSS movement and to the further spread of the
internet; much of the world’s internet software is derived from the original

22

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

In order to preserve these freedoms permanently, Stallman came up with a
novel and inverted way of using the legal system of copyright – by developing
what is known as copyleft (DiBona et al 1999).

Copyright is a form of intellectual property that allows the licence holder the
sole legal right to copy their works of original expression, for a defined period
of time. It is designed to protect the creator’s right to control copies and
changes to a work, and by default copyright is usually used by the originator
of a work to restrict how it is used. Stallman ingeniously used copyright to
restrict peoples' rights to distribute the GNU software unless they agreed to
distribute it under exactly the same terms as they received it. Where
copyright protects the creator of the work, copyleft protects the right of users
to copy and change a work in perpetuity. By creating a licence that protects
the commons from private appropriation, the concept of copyleft gave power
back to the user and made various other forms of FLOSS licences and its
derivatives such as the Creative Commons possible (Lessig 2004)29.

4.3 The growth of FLOSS
In 1981 IBM’s personal home computer was launched and it became clear
that software could also be viewed as a commodity. Companies, such as
Microsoft, that specialised in particular variants of software started to appear.
The exceptional skills of the hackers at the MIT AI Lab became more valuable
and, as public funding of the lab tailed off, members began to work in other
commercial and non-commercial contexts. Many set up their own spin-off
companies, drawing on the fruits of their earlier research. Eventually the
main research project at the lab, the Lisp machine30, was taken completely
into the proprietary domain, and the source code was no longer distributed as
a public good (Williams 2002).

The internet provided a networked, global resource through which software
could be shared. With the release of Stallman’s GNU code and GPL licence
over the net, other programmers began to build and extend it. One key
addition was made in 1991 by a young Finnish computer science graduate,
Linus Torvalds.

25

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

The hacker culture encompasses its own jargon, symbols and expressions,
many of which explicitly oppose or subvert the ‘mainstream’ (defined in terms
of ‘normal’ values and working habits) expressed in the proprietary software
model to which the FLOSS paradigm is opposed24. The most relevant aspect
of the culture to the emergence of FLOSS is the ‘hacker ethic’: the idea that
information sharing is a powerful and positive good, and that hackers have an
ethical duty to increase the public information commons. The ethic is often
summed up in the phrase “information wants to be free” (Stallman 1992).

The most significant development that emerged from MIT’s hacker culture
was Richard Stallman's GNU project, in many ways a direct reaction to the
increasing commoditisation of software. The explosion of the software market
led to the closure of source code, which became a trade secret. Prior to this,
hackers and others with programming knowledge were able to fix computing
breakdowns because they had the ability to ‘get into the engine’ on the
machine. Users of software like Microsoft’s MS-DOS were no longer able to
fix errors themselves.

Stallman's dictum that source code should be freely available began to take
on a totemic quality and he decided to attempt to develop a complete UNIX-
like operating system, to be called GNU25. In 1985, Stallman published the
‘GNU Manifesto’, which aimed to "knit the diffuse post-1980 community of
hackers into a coherent social machine for achieving a single revolutionary
purpose"26. He labelled his philosophy ‘free software’ and formed the Free
Software Foundation27 (FSF) as a vehicle for implementing his manifesto. In
particular, Stallman developed the ‘Four Freedoms of Free Software’28. These
are:

• the freedom to use software however you wish (a freedom most programs
give you)

• the freedom to change software to suit your needs

• the freedom to distribute the software to anyone else, and in doing so the
freedom to ‘help your neighbour’

• the freedom to distribute altered versions of the software, and in doing so
cultivate a community based around the evolution of that software.

24

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

frequent, and new features were tested by large numbers of people as soon
as they had been sketched out. A process of natural selection eventually
allowed the good ideas to thrive.

For Raymond, this insight is the key to the phenomenal success of Linux. By
spreading the ideas and software as far as possible, an emergent,
evolutionary process ensured the progression and quality of the software.
Raymond coined the phrase “many eyes make bugs shallow” to express one
advantage of the distributed FLOSS approach: when the source code is
available to all, the software becomes more robust and secure. This
phenomenon is counterintuitive to many from outside the FLOSS community:
surely a piece of encryption software, for example, is far more secure if its
internal details are effectively locked away? However, there is a wide
consensus that exactly the opposite is true when it comes to cryptographic
software, and many in the FLOSS world believe this same principle applies to
all software.

4.4 Free versus open source
Raymond’s account of the software culture that emerged from the early UNIX
and MIT camps is informed by an anarcho-capitalist, market-oriented
worldview. This is in strong contrast to Stallman’s adherence to his
understanding of the principle of freedom. Indeed, Stallman’s ‘viral’ free
software definition of FLOSS has been argued in America to be restrictive,
anti-competitive, and even un-American, and has been subject to sustained
challenge by Microsoft (Raymond 2001). Stallman, however, strongly refutes
the charge of economic leftism, claiming that the four freedoms of the GNU
manifesto encourage true competition rather than closed monopolies
(Stallman 2002). Nevertheless, there is a strong suspicion across all FLOSS
subcultures that commercial interests tend to co-opt the socially-oriented
goals of the developers – a suspicion which is strongest amongst the
GNU/FSF advocates.

Raymond formulated a plan to move the free software movement towards a
more business-friendly arena, and took the position that in order to maintain
and extend the success of the free software approach it was necessary to
package it in a format palatable to business and the media. The phrase ‘free
software’ was felt to be ambiguous: it confuses free (unhindered) with free

27

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

Torvalds wanted to adapt the GNU system to run as a fully functional
operating system on his home PC. The part that was missing was the
‘kernel’, which he developed under the name Linux31. Three key factors
converged to make his vision possible: he was able to use the GPL to ensure
that his work would remain fully free; he was able to use the internet to
distribute his code; and affordable home computers meant that development
was in reach of people without access to expensive mainframe computers.

With Linux the phenomenon of free software took on a new characteristic.
The movement had always been about collaboration, but typically this
collaboration took the form of swapping ideas between individuals or small
teams. The combination of circumstances that led to the fast spread and
development of Linux was mainly characterised by the sheer size of the
developer community.

In 1999, Eric Raymond, self-styled “tribal historian and resident
ethnographer” of hacker culture, published ‘The Cathedral and the Bazaar’,
an essay examining the importance of the ‘scale’ phenomenon to the
successful development of Linux (Raymond 1999). Raymond was astonished
to find, associated with Linux, a complete and usable system – he had been
an enthusiastic user of free software for some years without ever seeing the
movement create complete systems (the GNU operating system had been a
decade in the making).

His analysis was that the ‘old’ model of software development, typified in
projects like GNU, was top-down: run by a small number of key hackers, who
acted as the gatekeepers to the source code. Contributors submitted their
software changes to the gatekeepers, who then made a decision on whether
or not to incorporate those changes into the central source code. Raymond
(1999) compares this to the construction of medieval cathedrals.

By contrast, Linux had developed in a similar way to the nascent free market
represented by the medieval bazaar, where order arose spontaneously when
enough people met to exchange and socialise. In this account, Linux evolved
in an organic, even chaotic manner. Developers exchanged and contributed
source code without any direction from above. Software releases were

26

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

At the present time, while acknowledging the difference between free and
open source software, many people have chosen to use the encompassing
term FLOSS. This is a compromise term but it encapsulates all possible
meanings that have evolved from the free software movement: Free, Libre,
Open Source Software.

4.6 Widening influence of FLOSS approaches
The development of a strong hacker subculture in parallel with the
emergence of the proprietary software model from an initially heavily
regulated sector was a major factor in the evolution of FLOSS, from a quasi-
academic way of developing operating systems to a movement with global
influence. Linux, for example, is the fastest-growing sector in the server

29

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

(gratis). The phrase ‘open source’ was picked to represent the movement,
and a foundation was set up to certify licences as open source. Both BSD-
style licences and GPL-style copyleft licences are open source in that they
permit the programmer to read and modify the source code of a piece of
software to which they apply. The ideas expressed in ‘The Cathedral and the
Bazaar’ helped the software industry understand how free software could
actually help them in achieving high quality, secure software.

The first high-profile open source convert was Netscape Communications,
who had effectively lost the browser wars of the 1990s to Microsoft’s Internet
Explorer software. They decided their best strategy for preventing Microsoft
from using its position to dominate the web was to release the entire source
code for the Netscape Communicator web suite to the community. It took far
longer than anyone imagined, but the seed they planted is now growing in the
form of the Firefox web browser32. Other companies are also exploring the
open source route: IBM is now an open source consulting firm and Intel is
moving towards releasing its latest chip specifications under an open source-
inspired licence33.

4.5 Internal controversy - coining the FLOSS term
The two major camps of free software (on one side the FSF/GNU community
voiced by Stallman, and on the other Raymond’s OSI and the BSD
communities) often engage in vigorous, sometimes acrimonious debate. In
particular, Stallman argues that non-copyleft licences inherently undermine
the principle of freedom in allowing third parties to co-opt and close the
source code, while the BSD and OSI side claims that the restrictions of
copyleft are themselves not commensurate with the goal of freedom. Others
(Berry 2004; Collman and Hill 2004) have argued that the philosophy is
politically agnostic, and analyse the competing interpretations as “iconic
practices” which lend themselves to multiple meanings that belie the political
inclinations of those who espouse them.

28

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

Free software culture Open source software

culture

Organisation Free Software

Foundation

Open Source Initiative

Figurehead Richard Stallman Eric Raymond

Favoured licence type Gnu Public Licence:

‘viral’, ensuring

openness of code in

perpetuity

BSD-style licences: not

placing any restrictions

on use

of software

Perceived benefits of

FLOSS

Freedom of information Better quality software

Values outside

software

Leftist; communitarian;

idealist

Libertarian; laissez-

faire; pragmatist

Table 1: Difference between free and open source software

31

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

market (Gould, Barnett, Kimberly, Dowling and Hogan 2005) and has become
a longstanding, major player in this area; and the arrival of software such as
OpenOffice, and the web browser Firefox, has meant that the world of FLOSS
has begun to penetrate the edges of the public consciousness and to
challenge for the consumer software market (Fisher 2004).

The FLOSS movement is beginning to have implications outside the world of
software. Despite the sometimes profound disagreements within the
community, one issue has become a totem for the entire movement: that of
patent law. As hackers see software as a form of expression, the application
of patent law to software is seen as absurd, just as it would be ridiculous to
patent the music of Beethoven. The anti-software patent position is widely
held across all FLOSS subcultures (for example Lessig 2004).

Many in the movement, spearheaded by Stallman, have taken the argument
about patents further, to encompass all intellectual property issues (Stallman
2002). Inspired by technological developments that have made the circulation
of mass media artifacts such as films and music simple, proponents claim
that technology has rendered the old IP system redundant, and that the
music and film industries must adapt or die out.

Even further from software, FLOSS licences like the GPL have inspired a slew
of licences that can be applied to forms of expression other than software –
in particular the Creative Commons project aimed at building a layer of
reasonable copyright. Two significant recent developments along these lines
are the open-content encyclopaedia Wikipedia (edited by any visitor who cares
to do so), which aims to constantly improve following the Bazaar principle
described by Raymond, and the BBC iCan website, which aims to create a
platform for cooperation between people to get information about and
address issues that concern them (eg starting local campaigns). iCan is an
example of a open model that allows individuals to pursue hobbies of interest
or in order to develop social capital (Davis 2004).

30

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

companies do not have the resources to adequately invest in design or in
appropriate documentation (eg user manuals, help sections). Consequently
ease-of-use features tend to arrive later than commercial products and in
some cases never arrive at all. For learners and teachers, who simply want to
‘pick-up-and-go’ and do not have the time for experimenting, much of the
existing FLOSS educational software needs to be further developed.

5.3 Community structure
Commons-based peer-production methods generally comprise of a large
number of individuals working on fine-grained aspects of a larger shared
problem. This model can be very productive, responsive to incoming needs
and cost effective. Key to this success is a shared common goal and the belief
that the outcomes of the project will have wider benefit. Programmers
working on large as well as small-scale FLOSS projects often consider bug
fixing, adding new features or peer reviews as important and valuable
insights which motivate them to continue to work on the problem, without
monetary gain (Lehmann 2004). However as with any large-scale
collaborative activities, minority groups can co-opt a project for their own
ends, distorting the project’s original intention (Mulgan, Steinberg and Salem
2005). Fissures and dissension within the group can be the downfall of FLOSS
projects, which is why open source licences have been created and why open
forums on the internet retain a certain level of centralised control or operate
within a clear set of guidelines or rules. So although many FLOSS
communities are often considered non-hierarchical, it is misconception to
consider them as anarchic. Although they may not be as tiered as
commercial organisations, successful projects often have a central figure or
company who is the main facilitator and decision maker (eg Linus Torvalds is
the central figure within Linux; the Apache Foundation is the central company
coordinating the Apache server).

5.4 Creativity
Although many successful FLOSS projects bring together multidisciplinary
groups of people, the group’s composition does not necessarily mean it is
more creative. Many FLOSS products are not new but open replications of
existing proprietary software. However as FLOSS works on the basis of open
standards and systems, the availability of such software has been shown over
the long term to increase competition and creativity within the market place
(Australian Government 2005; Peeling and Satchell 2001).

33

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

The following section draws on Benkler’s (2002) work on commons-based
peer-production models, and discusses some of the common strengths and
weaknesses of FLOSS approaches today as they might apply within
educational settings.

5.1 Transparency
Open standards and systems such as FLOSS ensure that participants
understand what they are contributing to and make the code visible and
available for others to use in an open way. However it is important to realise
that much of the programming work carried out in the FLOSS community is
done by a dispersed and often small group of programmers. Consequently
just because the code is available and transparent does not mean that anyone
can pick it up and start to work it. Like any computer language, you need the
skills to be able to make FLOSS software. So despite advocates claiming that
FLOSS empowers anyone to make their own work, you still need to be
motivated and have the skills to work in this field.

5.2 Ease of use
Some forms of FLOSS software such as Linux, Apache and Mozilla are
mature and therefore easy to install. In most circumstances in companies
and schools the installation of such backend operating systems and servers
is carried out by a technician or system administrator. Consequently, for most
users this side of FLOSS may not be obvious to them as they are not involved
or interested in how their computer servers work. Like all software, some
FLOSS products are easier to install than others but for the most part they do
not provide the lay person with a user-friendly or engaging interface.

For those interested in software and using FLOSS there are a range of
products available on the market (refer to Appendix 1: Commonly used FLOSS
solutions within schools). Looking through the myriad of applications
available, one notices that many simply replicate existing proprietary products
with little improvement, and in some cases are actually worse.

In this respect one has to tread carefully when making the case for FLOSS
being easy to use; user interface design is costly and many small FLOSS

5 Discussion of some strengths and
weaknesses of FLOSS approaches

32

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

its originator was at university. However, FLOSS methods of development
continually push the boundaries of how software is made and developed.
For example, the online peer-production encyclopaedia Wikipedia has been
produced with little initial investment.

In sum, as Mulgan, Steinberg and Salem (2005, p23) note:

“Open source ways of developing software projects are exciting and
powerful, but they are by no means universally applicable, or without
downsides even when applied successfully. They share some of the more
general limitations of networks, which tend to be relatively poor as a
means of raising capital, concentrating resources or sustaining
themselves through crises.”

Acknowledging the limitations of networked-based approaches to peer
production is necessary as it provides greater understanding of the
appropriateness of such models for development. The following section
builds on this discussion, focusing on the use of such models for education.

35

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

5.5 Peer efforts
One of the core strengths of the FLOSS approach is the peer review systems
that underlie much of the development. Many people working on a problem at
the same time can solve the problem quickly and easily. However, for a
FLOSS product to be successful it needs to have enough critical reviewers in
the pool who are reviewing and testing the software, and enough
programmers who will fix the bugs. Projects can sometime die if this critical
mass does not exist.

5.6 Business mode
Much is made of the cost-saving aspects of FLOSS. Reports by Becta (2005a,
2005b) demonstrate that the total cost of ownership is lower for schools when
using FLOSS, indicating that FLOSS may be a useful solution for the
deployment of large operating systems and servers in the public sector.
However, this does not mean that moving to FLOSS means no cost at all;
FLOSS is a business which utilises a different model from current proprietary
software. Proprietary companies generally expect users to pay money upfront
for their products, with the idea that they are ‘buying’ into a product line.
Commercial FLOSS enterprises, on the other hand, do not expect users to
pay upfront and do not lock users into one product type. They receive their
money by providing services to the user; in this respect there is a shift from
paying upfront to paying over the long term. The benefits of long-term
investment are that as the product develops the user experiences are
continually improving. In addition as FLOSS products comply with open
standards, users are not tied in to one product and there is greater chance of
interoperability between other FLOSS products (though not with proprietary
software).

5.7 Funding new projects
As the code is open and available to all in FLOSS products, funding projects
can be an issue. For example, investment capitalists are reluctant to invest in
a venture that has a slow turnover. In addition, many FLOSS enterprises were
developed or conceived as a result of non-open source funding, often secured
through universities. For example, Linux is an open source version of the
UNIX operating systems, parts of which were developed by funds from the
Defence Advanced Research Projects Agency, and Linux was developed when

34

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

36

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

In the fields of biotechnology (Rai 2005), politics (Starr 2002; Blume 2000),
and religion34, open source has begun to inspire more open and collaborative
ways of thinking (Mulgan, Steinberg and Salem 2005). The main intention of
this paper is to explore the wider implications of the FLOSS approach when
applied to knowledge generation35.

We take a particular focus on three areas of education: learners as
knowledge builders; teachers as a community of professional practitioners;
and innovation in software development for education. We have chosen these
areas of focus in the light of current debates about the nature and goals of
education, and in the light of calls for different approaches to the creation of
educational resources. In particular, this discussion relates to:

• Current concerns with personalised learning and learner voice, both of
which raise the question of how learners can be enabled to have more
control and responsibility for their learning (Green et al 2005; Leadbeater
2004)36.

• Questions about the nature of the curriculum, and whether learners
should be encouraged to develop competences rather than simply acquire
content knowledge in the education process (Bayliss 1999; RSA 2005)37.

• Debates on the nature and future role of teachers in deploying and
developing resources for teaching38 and the current trend towards schools
developing and selling curriculum materials and schemes of work39.

• How to overcome the structural divides between developers of educational
software and its users in order to create digital resources for education
that more closely meet the needs of teachers and learners40.

This discussion is not a marginal issue relating only to the question of
whether schools should adopt open source systems to run their school
networks, but is more profoundly related to issues central to current
educational concerns.

6.1 FLOSS methods as a new approach to learning
There are two main ways in which we believe it may be possible to learn from
FLOSS approaches to commons-based peer production in rethinking our
approaches to teaching and learning.

6 Peer-production approaches for education

37

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

6.1.1 Collaborative networks
In the first instance, distributed collaborative networks working together to
solve problems could provide a powerful way of thinking about how learners
might work together, within or across schools, to generate new knowledge
and practice of relevance to them. This is primarily related to adopting FLOSS
approaches and using digital technologies to mediate these in the goal of
exploring other knowledge domains.

For a substantial period of time there has been concern that mass, industrial,
teacher-directed pedagogies are not the most effective means of teaching in
all instances. Instead, researchers and educators have led for calls for more
collaborative, learner-centred approaches to education (Kumpulainen and
Mutanen 1999; Littleton and Häkkinen 1999). This has led to a body of
academic and practical work where emphasis is placed on facilitating
learners in constructing knowledge through peer, cooperative and
collaborative networks (Kruger 1992; Lave and Wegner 1991; Mercer 1995;
Rogoff 1990). Some approaches, for example in the work of Scardamalia and
Berieter (1991), have drawn on the principles of young people peer-reviewing
the work of each other, collaboratively working on chunks of problems and
coming to create a body of knowledge that is larger than anything an
individual child might achieve on their own. Central to this idea is that
learning and development are fundamentally the results of participation in
social interactions and culturally organised activities with others41.

It may be possible to draw on the lessons of the FLOSS movement and link
these with the work in education theory, to create educational experiences for
young people that allow them to work collaboratively on shared, practical
problems to create knowledge of relevance to themselves and the wider
community. Given the ongoing research into networked learning
environments and computer-supported collaborative learning, it is possible to
see how various research strands could provide us with a greater
understanding of the role and implication of FLOSS for learning.

However, to date only limited research and practice has been carried out in
linking FLOSS approaches with educational strategies, primarily in the field of
work-based learning and higher education (Crowston and Howison 2005; Kim

2003; Lin forthcoming; Staring et al 2005). Much of this research focuses the
social role and relationships, and forms of coordination and collaboration that
occur when working on FLOSS projects. We suggest this is a line of enquiry
that is worth pursuing at primary and secondary school level, particularly as
it is now becoming feasible to consider the creation of education networks
that link every child in every school through broadband connections and
virtual learning environments. What might happen if mathematics problems,
historical debates, scientific experiments and others were presented as
shared challenges for young people to take up and tackle collectively, using
the principles of free access to and use of information between children?

6.1.2 Children as programmers
In the second instance, it is possible to conceive of young people working
together as programmers to create new resources and tools that are of
relevance to them in supporting their own learning. This is more specifically
related to using the programming practices of the FLOSS community to
enable young people to engage with the business of building their own
resources.

There is a long history of studies of children as programmers. Led by
Seymour Papert’s work with Logo this identifies clear benefits for children in
participating in programming activity42. To date, however, there are few
opportunities for young people to progress from Logo to other forms of
participation in programming, nor sustainable models for them to enter the
communities of practice surrounding technological development. Would the
adoption of FLOSS approaches which blur the boundaries between developers
of educational resources and users of these resources provide an interesting
opportunity in this area?

It is useful to diverge to a related and contemporary field of interest that
explores young people’s out-of-school practices with digital technologies.
‘Modding’, generally defined as the practice of modifying and extending
officially released games with fan-produced content, is one of the most
distinctive features in current computer gaming culture. According to
researchers at the Games Research Lab, Tampere, Finland:

39

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

38

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

“With its collaborative DIY aspects, appropriative nature and innovative use
of new technology, modding represents a particularly illustrative example of
the so-called ‘participatory culture’.”43

Participatory culture refers to the new media environment where the
boundaries between audiences and producers have become increasingly
blurred because of rapid advances in digital technology (Jenkins 1992). We
are not suggesting that FLOSS and modding are the same thing, but that
modding is an example where young people actively engage in a community
of programming and software development, which shares some of the
underlying principles that we find in peer-production approaches to software
development. A principal difference between modding and the FLOSS
approach, however, is that users are locked-in to the game - you can only
play the mods on the original game platform44.

Although this aspect of modding radically departs from FLOSS’ core
principles of open standards and format policies, it does indicate how access
to source code can have greater good: pushing businesses to change their
products, extending the life of a product, creating new communities of
developers and in some cases even creating new economies and forms of
learning and training. Mod communities provide a non-formal learning space
for people to develop their skills, working on real, authentic and motivating
problems, which have public significance. In addition, some companies pay
modders and some modders become employed by the commercial
companies; similar relationships and benefits between commercial
enterprise and FLOSS communities have also been discussed (Lin
forthcoming; Staring et al 2005). Modding demonstrates the benefits of
engaging young people in programming problems where they can work on
small chunks of larger games, changing them for their own ends.
Encouraging young people to develop and customise programs, with
facilitation from appropriate peers and mentors, is an avenue we believe
worth further exploration. Would it be possible to develop (or further develop)
open source educational resources where young people, able to access the
underlying code, played a participatory role in improving, co-designing and
creating these resources?

6.1.3 UK school examples
Early UK adopters of FLOSS, such as Richard Rothwell45, provide anecdotal
evidence to indicate that training young people and making them more aware
of different computing systems has been beneficial for their learning.
Reluctant to continually spend money on new computers, Rothwell began to
explore FLOSS as an alternative. His school runs all its desktop computers
using Linux, with OpenOffice as their main word processing application.
Working with students to build the initial system in 2002-3, the school tested
several small networks. With input from Sun Microsystems, the school
improved its systems designs and added LTSP (Linux Terminal Server
Project) to the existing Linux system, which allowed it to connect low-
powered thin-client terminals (ie a network computer without a hard disk
drive which uses a central server) to the main server. In 2003, Rothwell and
colleagues formed the UK arm of Schoolforge which has become a central
hub of activity and dissemination about FLOSS within the UK46.

Rothwell encourages pupils to recycle and build computers for use in the
school and wider community. The school continues to offer a wide variety of
application choice to pupils, training young people and making them more
aware of different computing systems and continually training staff in the
migration to FLOSS. The school has received special Maths and Computing
Status and because of this will be making all of its learning resources
available online.

Another key UK example in this field is Orwell High School, also a specialist
technology college, where the Deputy Head, John Osborne, has been
instrumental in leading the school’s FLOSS program. The escalating costs of
running computer networks forced Osborne to consider FLOSS alternatives.
With the support of the company the Cutter Project (www.cutterproject.com)
the school significantly reduced the costs of buying in new computers by
running a thin client on its existing machines. It runs a variety of FLOSS
applications (Linux, Rosegarden, StarOffice) and has been able via the thin
client architecture to embed work stations across the school. With the money
saved, the school has supported teachers working with FLOSS applications in
their own subject areas and provided access to pupils and teachers outside
normal school hours47.

41

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

40

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

It might be possible to conceive of FLOSS as offering models both for new
approaches to collaborative, peer-reviewed educational experiences (perhaps
also applicable to assessment systems) and for enabling young people to
participate in the creation of digital learning resources. To date, however,
evidence remains anecdotal and in order to further explore the potential
benefits in this area we need strategic collaborations between the education
software industry, the FLOSS community, teachers and learners and
education researchers.

6.2 Knowledge sharing and collaboration between teachers
The FLOSS movement and its underlying open principles of software
development and knowledge sharing have been considered as a prime
example of collaborative learning in practice. As Kim notes:

“The open source software communities are one of the most successful -
and least understood - examples of high-performance collaboration and
community-building on the internet today. Other types of communities could
benefit enormously from understanding how open source communities
work.” (Kim 2003)

Although Kim highlights that we lack an adequate understanding how FLOSS
communities operate, research to date draws on the notion of community of
practice as a way to analyse and discuss the practice and approaches of the
FLOSS movement (Edwards 2001; Krishnamurthy 2002; Mockus, Fielding and
Herbsleb 2002; Stürmer 2002; Tuomi 2000). In this section we discuss how
the underlying principles of FLOSS could be applied to develop open-teacher
based practices to enhance knowledge and practice in the education field
(see Hargreaves 2003).

6.2.1 Communities of practice
Before summarising some of the research projects that have analysed FLOSS
as a community of practice, it is necessary to explain what we mean by the
term. For many years researchers (Brown, Collins and Duguid 1989; Lave
1979, 1988; Lave and Wegner 1991; Resnick and Resnick 1989) have argued
that to understand learning we need to take into account how people learn
not only in schools but also in everyday, home and community settings.

One of the most influential researchers within this area has been Jean Lave.
One of Lave’s (1979) main interests was how people solved problems in
everyday life. Taking an anthropological perspective Lave considered everyday
life as the fundamental context of problem-solving and together with Etienne
Wenger, in their seminal book ‘Situated Learning, Legitimate Peripheral
Participation’ (Lave and Wegner 1991), explored how people move from being
novice outsiders to key members of a community of practice.Through a series
of case study apprenticeships from tribal Yucatec midwives, to Vai and Gola
tailors, navel quartermaster and meat cutters, Lave and Wenger discussed
how newcomers to a particular practice engage in real, legitimate work that
is connected to the work of the old-timers or masters. In doing so the
apprentice becomes socialised into the field and their participation becomes
more central.

Wenger (1998) extended this view of learning as a social process in his
conception of a community of practice. Communities develop around things
that matter to people (1998) where members of the community are involved in
a set of relationships over time (Lave and Wegner 1991, p98). Participants are
linked via a common purpose or particular area of knowledge and activity
gives members a sense of identity and joint enterprise, that is, they have a
common goal or set of goals pursued by the community. For a community to
function there also needs to be a sense of mutual engagement and
interdependence, which can in part be generated through a shared repertoire
of ideas, commitments and memories. It also needs to develop various
resources such as tools, documents, routines, vocabulary and symbols that in
some way carry the accumulated knowledge of the community.

Examining FLOSS from the perspective of communities of practice, Tuomi
(2005) draws attention to parallels between Lave and Wenger’s work and how
networked, distributed communities such as FLOSS operate. Tuomi, like
many researchers (Edwards 2001; Krishnamurthy 2002; Mockus et al 2002;
Stürmer 2002), considers FLOSS as a prime example of what Lave and
Wenger would consider as an active community of practice. In describing
FLOSS in this way, Tuomi notes:

43

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

42

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

“The new developers can learn their skills and work practice by developing
code that extends the system’s functionality but does not interfere with its
core functionality. Gradually, the novices can then earn a reputation as
reliable developers, and become masters and gurus in the project
communities. This process of social integration and skills development is
closely related to the architecture of the technical system that is being
developed.” (Tuomi 2005, p437)

Relating these understandings to teachers’ practice one can begin to see how
FLOSS could augment new modes of collaborative knowledge creation and
sharing; specifically, how the FLOSS approach could extend teachers’
practice through open content development and knowledge sharing.

6.2.2 Teaching communities of practice
Many researchers are concentrating their efforts on developing interoperable
tools through which teachers, in collaboration with other professions, can
develop new learning resources. Stephen Downes (National Research Council
of Canada), in his keynote speech to the Open Source for Education
conference48, argued that we are moving towards a networked learning
environment, central to the success of which is open content and software.
Downes’ vision for such networks is that they:

• are driven by user-generated content (eg like Wikipedia)

• are portable and genuinely owned by the participants

• support mixed modes of interaction

• are centres for personalised learning

• are diverse, interwoven and open.

Drawing an analogy between Benkler’s (2002) analysis of commons-based
peer-production, Downes concludes with a similar solution to how open
learning networks should develop in the future. The key, he believes, is not in
developing large-scale, integrated systems but small flexible components
that can be easily integrated and responsive to changes in the environments.
The following list provides an indication of some of the work in this area (for a
detailed inventory refer to www.ossite.org):

45

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

• MIT’s OpenCouresWare (OCW)49 - offers open access to course materials
to MIT courses.

• Becta’s Learning Platform Conformance Regime50 - aimed at improving
interoperability between UK schools in relation to the information and
purchasing of different platforms. The scheme’s goal is to address
standardisation issues and ensure that schools and will be able to 'plug
and play' with transparency.

• Stanford University’s CourseWork systems51 - a website development and
distribution system for educators to share materials.

• MIT’s Open Knowledge Initiative52 - a multidisciplinary group aimed at
developing the next generation of networked e-learning resources.

• eXeLearning53 - a project developing an offline authoring environment to
assist teachers and academics in the publishing of web content without
the need to become proficient in HTML or XML markup.

• Schooltool54 - an ambitious project to develop a common global school
administration infrastructure or framework that is freely available under
an open source licence.

• Skolelinux55 - a network architecture solution tailored for use in schools.

The relevance of FLOSS approaches to knowledge sharing and collaboration
is not limited only to the potential new forms by which digital resources
could be designed for education. It relates more profoundly to the question
of how knowledge can be shared, modified and adapted across the teaching
profession and in different contexts (Hargreaves 2003). It also relates to
ongoing concerns about the relationship between educational research
and practice.

We could conceive of networks of teachers and researchers working together
on different elements of educational challenges to collaboratively create new
approaches that are open to and usable by all. FLOSS approaches also offer
potential routes by which educational research tools might be developed,
refined and tested in different contexts with knowledge and results shared
within the community. These approaches also raise questions about the
growing trend towards copyrighting and selling on teaching strategies,
curricula and schemes of work.

There is significant interest in this field at present, with online communities
for teachers, school leaders and school advisors rapidly emerging. What the
FLOSS approach highlights is the motivating factor of common goals and
common problems around which people can work together through new
networks. It offers an approach to these resources which moves them from
information dissemination and sharing to collaborative problem solving.

6.3 Hybrid models of innovation
FLOSS embodies an exemplar community of practice engaged in the peer-
production of software which has implications beyond the software arena. It
offers a hybrid model of innovation where user and producer communities are
intermingled, the notion of ownership is changed and the economical model
of cost and reward is reworked. Luke notes:

“…When communities of practice are fostered and created around the use of
new technologies, digital divides can be ameliorated, accommodated, and
overcome. These communities are the Community Learning Networks, the
Community Access Centres, the Open and Public Knowledge Initiatives, and
the informal community based groups that share information and
knowledge, support the acquisition of information and knowledge, and
support and encourage community members to participate in the
knowledge based society… cultivating communities of practice and learning
networks that foster civic engagement and ensure open access is a key step
in ensuring that digital citizenship is founded upon fundamental rights of
participation and engagement for the public good.” (extract taken from
Luke’s homepage: luke.rcat.utoronto.ca/thesis.html, accessed 15 May 2005)

For many advocates of FLOSS the wider socio-economic and cultural
ramifications and implications of these working practices are of utmost
importance (DiBona et al 1999; Ghosh 2005; Lerner and Tirole 2000; Lessig
2002; Tuomi 2000, 2005). As Lin notes:

“The development of FLOSS democratises software innovation processes
and allows lay people to develop their understanding and knowledge of a
shared problem or issue, especially through the web, to challenge
established views on the issue.” (Lin 2004, p1)

44

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

47

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

46

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

In this respect FLOSS can be considered as a “hybrid model of innovation”
between the public and private sectors (Lin forthcoming). To best utilise this
model, Lin, Cook and Burt (2001) argue that it is necessary for us to
understand how this community mobilises social capital, achieves its shared
goals and resolves internal differences. Underlying this community is a
structure in which technology-producing communities substantially overlap
with technology-using communities (Tuomi 2005).

This emphasis differentiates FLOSS from proprietary commercial models of
software development where users and developers are separated and only
connect through economic transactions. This is of particular significance in
the education arena, as argued in the UK Department for Education and
Skills e-learning strategy consultation document 2003:

“The lack of a direct relationship between the users and the suppliers
means that the products developed are less likely to meet learners’ and
teachers’ real needs. We have not yet found the right mechanisms for the
partnerships we need between developers and users. We have to create the
conditions in which innovative ideas for e-learning pedagogy will flourish...
Commercial suppliers usually employ teachers at some stage in the design
process, but unless the partnership is close, and educational requirements
lead the development, there is little chance of achieving either good
pedagogy or profitable products.”

The FLOSS model also leads to alternative understandings of ownership
whereby control lies in the developmental dynamic of an evolving product
(Tuomi 2005, p442)56. This naturally leads to differences in the value, cost,
benefit, distribution and consumption of goods. Benefits to the programmers
involved in such endeavours are not immediately visible or easily quantifiable.
For example the developer many not gain a monetary payment but may gain
access to information and system functionality that they may otherwise not
have (von Hippel and von Krogh 2003).

FLOSS provides a challenge to our current economic models, which are
based on traditional notions of supply and demand and the scarcity of
resources, as it demands new models and ways of thinking about innovation

and economic development (Tuomi 2005). New economic models of
technological innovation bring together traditional thinking with a
contemporary understanding that consumers have now also become
producers (Jenkins 1992). At the heart of this model is the concept of
collective production and social exchange for the public good. This has led to
the notion of new hybrid systems of innovation that use the openness of
FLOSS while revising our notions of ownership and intellectual property.
Lessig (2002) notes that this requires us to understand the values of FLOSS
as essentially the values of a free society, and proposes that our challenge is
to find ways to get people to see the value of the common good as well as
intellectual property.

The FLOSS approach offers open models of innovation where code is shared
between public and private sectors so that new innovations can emerge. This
form of knowledge sharing has been a precursor to many major technological
innovations. The free sharing of code characteristic in the early stages of
software development continues today in many academic institutions. This
may be effective as a method of encouraging industrial exploitation of
academic research (Peeling and Satchell 2001). Drawing a similar conclusion
from her research on hacker culture, Lin (2004) notes that there has been a:

“…Strategic collaboration between the public (ie the free software
community) and the private (ie information technologies corporations)
sectors [which] symbolises a pattern of hybrid innovation that entails
complex communications and networks.”

The complexities of this relationship are often overlooked or ignored. FLOSS
has not developed in isolation from the proprietary market. In many ways, one
side of the coin cannot exist without the other and this interconnected model
has been very popular within the US for many years. As Peeling and Satchell
note, it is “hard to over-state the beneficial effect this has had on the
technology and the wider computer industry” (2001).

49

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

48

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

In the creation of digital education resources, these hybrid models of
innovation open up a number of questions and challenges. They require us
to ask:

• What models of ownership might we need to develop for public-private
collaboration?

• What mechanisms might need to be put in place to encourage the early
stage exchange of code between different sectors (notwithstanding the
fact that many cutting edge technologies are primarily developed for the
business rather than education sectors)?

• What role might users of educational resources want to play in the
creation of these resources, and what might need to be put in place to
facilitate this?

• What business models would need developing to allow further exploration
in this area?

These are strategic and fundamental questions that will need addressing in
order to fully exploit the potential for improved technologies offered by the
model of sharing code openly between different communities.

FLOSS is more than software: it is a cultural phenomenon that is
underpinned by technological development with the aim of contributing to the
public good. It is of relevance to our understanding of how people learn and
produce knowledge; of how communities collaborate and work to solve
problems; and of how innovative practices emerge.

The early history and development of FLOSS has been dependent on the
availability of technologies that connect large numbers of people in a
distributed network. The availability of such technologies continues to
increase and the power of them continues to expand. Educators are just
starting to understand the implications of such technologies and to
incorporate them into teaching and learning models.

In an attempt to accelerate debate in this area we propose a series of
questions that should stimulate thinking and highlight challenges. If you use
these questions or have comments to make on any of the issues raised we
would be very interested to hear from you at research@futurelab.org.uk.

Teachers and learners as co-creators

• To what extent would learners and teachers want to or be able to become
involved in co-creating digital resources?

• What might be the barriers to this? What might be the enablers?

• What kinds of open systems would teachers and learners want and what
levels of functionality and ease-of-use would they require?

• What kinds of authoring tools need to be developed in order to support
teachers and learners to become more actively involved in co-creation of
resources?

• What kinds of resources and policies do we need to put in place in order
for the different communities (FLOSS, software industry, researcher and
educators) to work together?

• What business models would need to be developed to enable co-creation
to support all sectors?

7 Conclusion

51

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

50

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

Developing learning within communities of practice

• How can FLOSS as an example of commons-based peer-production be
applied to other areas of learning, both in and out of schools?

• For learners and for teachers as researchers, what common problems or
goals would be most tractable for a commons-based peer-production
approach to be beneficial?

• What infrastructure would need to be in place to enable commons-based
peer-production across and within schools?

Supporting hybrid innovation at policy level

• What time-spans are we working towards – 5, 10, 15 years? What would
our shared visions for these periods look like?

• What levels of ‘openness’ would need to be embedded within any FLOSS
models in education?

• How can we ensure any FLOSS systems that are developed are flexible
and scaleable to suit small and large scale organisations?

• What kinds of resources and expertise do school ICT departments need to
develop if they are to explore FLOSS approaches - eg what forms of
documentation, training and assistance are necessary, do they exist and if
not how we can begin to develop such resource?

• How can we support existing good practice with FLOSS approaches?

• What kinds of resources are necessary to invest in schools that have
already migrated to FLOSS, so as to ensure they have a healthy future?

• How can we best distil and disseminate the lessons learnt and the best
practices that have emerged from the wider FLOSS community to
education?

This list is a starting point for links relating to FLOSS software and resources. For a more

definitive list refer to Becta (2005b), Bruggink (2003), Vuorikari (2003).

General

History of open source: www.opensource.org/docs/history.html

Eric Raymond, author of ‘The Cathedral and the Bazaar’, homepage:

www.catb.org/~esr/

Lawrence Lessig: www.lessig.org/blog

Creative Commons: creativecommons.org

Open Source Initiative (OSI): www.opensource.org

Newsforge: www.newsforge.com - online paper on Linux and open source

Sourceforge: sourceforge.net – main industry site

Red Hat: www.redhat.com - international company providing FLOSS solutions

Linux: www.linux.org - official site for this FLOSS operating system

Education and general policy

Becta, Open Source Teaching: www.becta.org.uk/research/research.cfm?section=1&id=3197

Uk Government policy and guidelines on FLOSS: www.ogc.gov.uk/index.asp?id=2190&

EU FLOSS forum: www.ossite.org

Samba: us1.samba.org/samba - an Australian-based open source software initiative

providing interoperability between computers running Linux/UNIX and those running Windows

eEurope 2005 Action plan: europa.eu.int/information_society/eeurope/2005/index_en.htm

UK e-Government Interoperability Framework (e-GIF):

www.govtalk.gov.uk/schemasstandards/egif.asp

FLOSS educational examples and resources

Schoolforge-UK: www.schoolforge.org.uk

Cardiff Schools: www.cardiffschools.net

Schools Interoperability Framework Association: www.sifinfo.org

SchoolTool: www.schooltool.org

The Association for Free Software: www.affs.org.uk/education

Linux in education: seul.org/edu

BBC resources: www.bbc.co.uk/opensource

MIT course projects for schools: ocw.mit.edu

General information on best practice for schools: www.ict-register.net

K-12 Linux Project: www.k12linux.org – large-scale US project, supporting the use of

Linux in K-12

KDE Edutainment Project: edu.kde.org - focusing on developing open source educational

products for 3-18 year-olds

Links

Australian Government (2005). A Guide to Open Source Software for Australian Government

Agencies: Developing and Executing an ICT Sourcing Strategy. Australian Government

Information Management Office. Retrieved 1 November 2005.

www.sourceit.gov.au/__data/assets/pdf_file/42065/A_Guide_to_Open_Source_Software.pdf

Bayliss, V (1999). Opening Minds: Education for the 21st Century. London: The Royal Society

for the Encouragement of Arts, Manufactures and Commerce (RSA)

Becta (2004). Using ICT to Share the Tools of the Teaching Trade. Coventry: British

Educational Communications and Technology Agency (Becta)

Becta (2005a). Open Source Software in Schools. Coventry: British Educational

Communications and Technology Agency (Becta)

Becta (2005b). A Study of the Spectrum of Use and Related ICT Infrastructure Costs.

Coventry: British Educational Communications and Technology Agency (Becta)

Benkler, Y (2002). Coase's penguin, or Linux and the nature of the firm. The Yale Law

Journal, 112

Berry, DM (2004). The contestation of code: a preliminary investigation into the discourse of

the free/libre and open source movement. Critical Discourse Studies, 1(1)

Brown, JS, Collins, A and Duguid, P (1989). Situated cognition and the culture of learning.

Educational Researcher, 18(1), 32-42

Bruggink, M (2003). Open Source Software: Take it or Leave it? The status of open source

software in Africa: a study towards informed decision-making on ICT platforms.

www.ftpiicd.org/files/research/reports/report16.pdf

Chawner, BL (2005). Participant Satisfaction with Open Source Software. Victoria University,

Wellington

Clements, DH (2001). Mathematics in the preschool. Teaching Children Mathematics, 7(4),

270-275

Cole, M (1991). On socially shared cognitions. In L Resnick, J Levine and S Behrend (eds),

Socially Shared Cognitions (pp136-170). Hillsdale, NJ: Erlbaum

Collman, B., & Hill, M. (2004). How Free Became Open and Everything Else Under the Sun.

MC: Journal of Media and Culture, 7(3).

Crowston, K and Howison, J (2005). The social structure of open source software

development teams. First Monday (peer-reviewed journal on the internet)

Davis, W (2004). Trade Union Membership and the Internet: Lessons from Civil Society.

London: IPPR

DiBona, C, Ockman, S and Stone, M (eds) (1999). Open Source: Voices from the Open Source

Revolution: A Set of Primary Texts from the Key Players in the Development of FLOSS.

Sebastopol, CA: O'Reilly & Associates

References

53

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

52

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

Edwards, K (2001). Epistemic Communities, Situated Learning and Open Source Software

Development. Retrieved 16 May 2005 from

opensource.mit.edu/papers/kasperedwards-ec.pdf

Fisher, D (2004). Open Source and the Corporate Desktop. Retrieved May 15 2005, from

www.nccmembership.co.uk/pooled/articles/BF_WEBART/view.asp?Q=BF_WEBART_124159

Ghosh, RA (2005). Free/Libre/Open Source Software as a Learning Environment. Paper

presented at the International Symposium on Open Source Software, Abano Terme, Padova

Gillespie, CW (2004). Seymour Papert’s vision for early childhood education? A descriptive

study of head start and kindergarten students in discovery-based, Logo-rich classrooms.

Early Childhood Research and Practice, 6(1)

Gould, M, Barnett, L, Kimberly, Q, Dowling, Q and Hogan, L (2005). Open Source Usage is

up, but Concerns Linger. Forrester

Green, H, Facer, K, Rudd, R, Dillon, P and Humphreys, P (2005). Personalisation and Digital

Technologies. Bristol, UK: Futurelab

Hargreaves, D (2003). Working Laterally: How Innovation Networks Make an Education

Epidemic. DfES/Demos: London

Jenkins, H (1992). Textual Poachers. Television Fans and Participatory Culture. New York &

London: Routledge

Khalak, A (2000). Economic Model for Impact of Open Source Software. Retrieved 16 May

2005, from opensource.mit.edu/research_directory.php

Kim, EE (2003). An Introduction to Open Source Communities. From

opensource.mit.edu/papers/blueoxen.pdf

Kingstone, S (2005). Brazil Adopts Open Source Software. Retrieved 3 June 2005, from

news.bbc.co.uk/1/hi/business/4602325.stm

Krishnamurthy, S (2002). Cave or Community: An Empirical Examination of 100 Mature

Open Source Projects. Retrieved 15 May 2005, from

www.firstmonday.dk/issues/issue7_6/krishnamurthy/

Kruger, A-C (1992). Peer collaboration: conflict, co-operation or both. Social Development,

2(3), 165-182

Kumpulainen, K and Mutanen, M (1999). The situated dynamics of peer group interaction:

an introduction to an analytic framework. Learning and Instruction, 9(5), 449-473

Lave, J (1979). What's special about experiments as contexts for thinking? In YEM Cole and

O Vasquez (eds), Mind, Culture and Activity: Seminal Papers from the Laboratory of

Comparative Human Cognition (pp57-69). New York: Cambridge University Press

Lave, J (1988). Cognition in Practice. Cambridge University Press

Lave, J and Wegner, E (1991). Situated Learning: Legitimate Peripheral Participation.

Cambridge, England: Cambridge University Press

Leadbeater, C (2004). Personalisation Through Participation. London: Demos

Lehmann, F (2004). FLOSS Developers as a Social Formation. Retrieved 31 May 2005, from

www.firstmonday.org/issues/issue9_11/lehmann/

Lerner, J and Tirole, J (2000). The Simple Economics of Open Source. Retrieved 16 May

2005, from www.nber.org/papers/w7600

Lessig, L (2002). Open code and open societies [draft]. Paper presented at Free Software - a

Model for Society? Tutzing, Germany

Lessig, L (2004). Free culture: how big media uses technology and the law to lock down

culture and control creativity. New York: The Penguin Press

Levy, S (1984). Hackers. New York: Anchor/Doubleday

Levy, S (1994). Hackers: Heros of the Computer Revolution. Garden City: Anchor Press

Lin, N, Cook, K and Burt, RS (eds) (2001). Social Capital: Theory and Research. New York:

Aldine de Gruyter

Lin, Y (2004). Hacking Practices and Software Development: A Social Worlds Analysis of ICT

Innovation and the Role of Free/Libre Open Source Software. University of York Science and

Technology Studies Unit, Department of Sociology, York

Lin, Y (forthcoming). Hybrid innovation: how does the collaboration between the FLOSS

community and corporations happen? Knowledge, Technology and Policy

Littleton, K and Häkkinen, P (1999). Learning together: understanding the processes of

computer-based collaborative Learning. In P Dillenbourg (ed), Collaborative Learning,

Cognitive and Computational Approaches. Pergamon

McGowan, D (2005). Between logic and experience: error costs and United States v Microsoft

Corp. Berkeley Technology Law Journal, 20(2)

McKusick, MK (1999). Twenty years of Berkeley UNIX: from AT&T-owned to freely

redistributable. In C DiBona, S Ockman and M Stone (eds), Open Sources: Voices from the

Open Source Revolution. Sebastopol, CA: O'Reill

Mercer, N (1995). The Guided Construction of Knowledge, Talk Among Teachers and

Learners. Clevedon, Philadelphis, Toronto, Syndney, Johannesburg: Multilingual

Matters LTD

Mockus, A, Fielding, T and Herbsleb, JD (2002). Two case studies of open source software

development: Apache and Mozilla. ACM Transactions on Software Engineering and

Methodology, 11(3), 309-346

55

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

54

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

Moyle, K (2003). Open Source Software and Australian School Education. Education.au

limited for consideration by the MCEETYA ICT in Schools Taskforce

Peeling, N and Satchell, J (2001). The Analysis of Impact of Open Source Software. London:

QinetiQ

Perens, B (1999). The open source definition. In C DiBona, S Ockman and M Stone (eds),

Open Sources: Voices from the Open Source Revolution. Sebastopol, CA: O'Reilly &

Associates

Philips, S (2005). Modelling Open Source. Paper presented at FLOSSIE (Free, Libre, Open

Source Software in Education), Bolton, UK

Proffitt, B (2002). Venezuela's Government Shifts to Open Source Software. Retrieved 15 May

2005, from linuxtoday.com/developer/2002083001126NWLLPB

Rai, AK (ed) (2005). Open and Collaborative Research: A New Model for Biomedicine.

Washington, DC: AEI-Brookings Press

Raymond, ES (1999). The Cathedral and the Bazaar. Sebastopol, CA: O'Reilly & Associates

Raymond, ES (2001). Why Microsoft smears - and fears - open source. Spectrum, 38,

8, 14-15

Resnick, LB and Resnick, DP (1989). Assessing the Thinking Curriculum: New Tolls for

Educational Reform. Washington, DC, National Commission on Testing and Public Policy

Rogoff, B (1990). Apprenticeship in Thinking: Cognitive Development in Social Context

RSA (2005). Opening Minds, Giving Young People a Better Chance. The Royal Society for the

Encouragement of Arts, Manufactures & Commerce (RSA): London

Scardamalia, M and Bereiter, C (1991). Higher levels of agency for children in knowledge

building: a challenge for the design of new knowledge media. Journal of the Learning

Sciences, 1(1), 37-68

Shankland, S (2003). Munich Breaks with Windows for Linux. Retrieved 31 May 2005, from

news.zdnet.com/2100-3513_22-1010740.html?tag=nl

Stallman, RM (1992). Why Software Should Be Free. Retrieved 31 May 2005, from

www.gnu.org/philosophy/shouldbefree.html

Stallman, RM (2002). Free Software, Free Society: Selected Essays of Richard M Stallman.

GNU Press. www.gnupress.org/gnupresspub.html

Staring, K, Titlestad, O and Gailis, J (2005). Educational transformation through open source

approaches. Paper presented at the Information Systems Research Seminar in Scandinavia

(IRIS), Kristiansand, Norway

Stürmer, M (2002). Open Source Community Building. Never of Bern, Bern

Tuomi, I (2000). Internet, Innovation, and Open Source Actors in the Network. Retrieved 15

May 2005, from www.firstmonday.org/issues/issue6_1/tuomi/

Tuomi, I (2005). The future of open source: trends and prospects. In M Wynants and J

Cornelis (eds), How Open is the Future? Economic, Social and Cultural Scenarios Inspired by

Free and Open Source Software. Brussels: VUB Brussels University Press

von Hippel, E and von Krogh, G (2003). Open-source software and the 'private-collective'

innovation model: issues for organisation science. Organisation Science, 14(2), 209-223

Vuorikari, R (2003). Why Europe Needs Free and Open Source Software and Content in

Schools. Brussels: European Schoolnet

Vygotsky, LS (1978). Mind In Society: The Development of Higher Psychological Processes.

Cambridge, MA: Harvard University Press

Vygotsky, LS (1988). On inner speech. In MB Franklin (ed), Child Language: A Reader,

pp181-187. London, Oxford University Press

Wenger, E (1998). Communities of Practice - Learning, Meaning and Identity. New York:

Cambridge University Press

Wertsch, J and Tulviste, P (1998). LS Vygotsky and contemporary developmental psychology.

In D Faulker, K Littleton and M Woodhead (eds), Learning Relationships in the Classroom.

London and New York: Routledge in association with The Open University Press

Williams, S (2002). Free as in Freedom: Richard Stallman's Crusade for Free Software.

Sebastopol, CA: O'Reilly

Yelland, N (1995). Logo experiences with young children: describing performance, problem-

solving, and social contexts of learning. Early Child Development and Care, 109, 81-74

57

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

56

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

School networks – administration and management
FLOSS is a very popular backend systems solution (backend solutions refer to
the servers and other hardware that support a network, eg internet gateway,
web servers, and e-mail servers). The technicians that build backend
computing systems are usually looking for the simplest, most powerful,
secure and cost-effective solution. Linux is an international, leading edge
FLOSS operating system and as noted has become one of the greatest
success stories of the FLOSS movement, while Apache has become a similar
leading edge web server. Many schools use Linux and Apache without users
even realising they are using FLOSS tools. Schools don't have to use Linux to
use open source software, as there are many open source programs for use
with Microsoft Windows or Apple Macintosh.

Computer software
Some of the most commonly used content FLOSS applications such
StarOffice57, OpenOffice58 and GIMP59 offer schools significant advantages with
easily deployable solutions, low risk and costs and, as suggested in the recent
Becta report (2005b), have proven to be extremely successful in schools.
Becta found a wide range of different FLOSS programs installed in the
schools they examined, the most popular of which are described in Table 2.
For more detailed descriptions of the range of FLOSS software used in
primary and secondary schools please refer to the appendix at the end of the
Becta (2005b) report.

Appendix 1: Commonly used FLOSS
solutions within schools

Purpose Open source software Equivalent or similar
proprietary software

Operating system Linux Microsoft Windows

Web browser Mozilla60 Internet Explorer

Office suite OpenOffice.org or
StarOffice

Microsoft Office

Scaleable database MySQL61 Oracle or Microsoft
SQL Serve

Scripting language for
the web

PHP62 ASP or Coldfusion

Web server Apache63 Microsoft IIS

Online learning content
management package

Moodle64 Microsoft Press

Audio editor Audacity65 Sony Sound Forge or
Steinberg Wavelab

Real-time circuit
simulator

Crocodile Clips66 LEGO Mindstorms

Graphic viewer for
Windows

IrfanView67 Adobe Photoshop

Image editor GIMP Adobe Photoshop

Desktop publishing Scribus68 Adobe Photoshop

Drawing Inkscape69 Adobe Illustrator

Music sequencing
package

Rosegarden70 Stenbergs Cubase or
eMagic Logic

59

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

58

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

Table 2: Commonly used FLOSS alternatives

Taken from www.netc.org/openoptions/pros_cons/comparing.html, North
Regional Educational Laboratory, Portland, Oregon)

1 www.netc.org/openoptions/pros_cons/comparing.html (retrieved 8 August 2005)

2 www.sourceit.gov.au/__data/assets/pdf_file/42065/A_Guide_to_Open_Source_Software.pdf

(retrieved 9 August 2005)

3 news.netcraft.com/archives/web_server_survey.html

4 The Open Source Initiative: www.opensource.org (retrieved 15 May 2005)

5 Abbreviated from source: www.opensource.org/docs/definition.php (retrieved 8 August 2005)

6 For a full report of the conference at which this paper was presented see

www.schoolforge.org.uk/index.php/FLOSSIE_2005_Report (retrieved 10 August 2005)

7 www.yale.edu/yalelj/112/BenklerWEB.pdf

8 For a comprehensive snapshot of research in this field refer to opensource.mit.edu. This site attempts to establish a

community in which information is freely exchanged, with the aim to further understanding of open source and its

implications outside the realm of software development

9 www.schoolforge.net (retrieved 11 November 2005)

10 www.schoolforge.org.uk/index.php/FLOSS (retrieved 11 November 2005)

11 www.ossite.org (retrieved 11 November 2005). The SIGOSSE project closed in December 2005. The project will

continue under the guise of a new EU network initiative called ‘The Bazaar’, which will provide a European platform

for all stakeholders around open source for learning. Details of the project will be available in 2006 at www.bazaar.org

12 flosse.dicole.org (retrieved 11 November 2005)

13 FLOSSWorld project: flossworld.org

14 FLOSSpols: flosspols.org/index.php

15 msdn.microsoft.com/library/default.asp?url=/library/en-us/modcore/html/deconsourcecodesharing.asp

16 www.demos.co.uk

17 www.jisc.ac.uk

18 www.becta.org.uk

19 www.govtalk.gov.uk/documents/QinetiQ_OSS_rep.pdf

20 For example refer to: news.netcraft.com/archives/2004/01/28/debian_fastest_growing_linux_distribution.html

(retrieved 15 November 2005)

21 Regulatory Keynesian models of economy were the norm, and strict regulations were designed to hold back large

corporations from the monopolistic excesses of the utility industries of the 1920s and 1930s

22 TCP/IP (Transmission Control Protocol/Internet Protocol) refers to the suite of communications protocols (ie the set of

rules which defines how devices communicate to each other) used to connect hosts on the internet. TCP/IP uses

several protocols, the two main ones being TCP and IP. TCP/IP is built into the UNIX operating system and is used by

the internet, making it the de facto standard for transmitting data over networks. Even network operating systems

that have their own protocols, such as Netware, also support TCP/IP (definition taken from

www.webopedia.com/TERM/T/TCP_IP.html, retrieved 31 May 2005)

23 One of the senior technical members of the Computer Systems Research Group at the University of California,

Berkeley, who joined in 1986 and is now the founder member of Sleepycat www.sleepycat.com (retrieved 11 November

2005)

24 The hacker culture which has become central to the open source philosophy grew out of early mainframe users at

MIT who had an ethos of sharing and co-development (Levy 1984)

25 Refer to the GNU Operating System site: www.gnu.org (retrieved 31 May 2005)

26 See www.gnu.org/gnu/manifesto.html

27 Free Software Foundation: www.fsf.org (retrieved 31 May 2005)

28 Taken from www.gnu.org/gnu/thegnuproject.html (retrieved 8 August 2005)

29 creativecommons.org

30 Lisp is a functional programming language developed at MIT by John McCarty and is used today in a variety of

programs. For a history of Lisp refer to en.wikipedia.org/wiki/LISP#History

31 www.linux.org

32 Mozilla Firefox: www.mozilla.org/products/firefox

33 Intel Open Source Products: www.intel.com/software/products/opensource

Notes

60

T
h

e
p

ot
en

ti
al

of
op

en
so

u
rc

e
ap

p
ro

ac
h

es
fo

r
ed

u
ca

ti
on

34 www.opensourcejudaism.com (retrieved 15 November 2005)

35 Although Mulgan and colleagues consider this positive, they reiterate that ‘open source’ is still a very recent term,

which specifically describes work where the source code is open. Mulgan et al believe that applying it to non-software

areas muddies the waters and is unhelpful and confusing. As a result they claim we need new terms which

“acknowledge the growing diversity of open methods”. In this respect we are careful in applying FLOSS approaches to

non-software areas, to be sensitive with the terminology we use

36 www.demos.co.uk/catalogue/personalisation (retrieved 30 November 2005);

www.futurelab.org.uk/research/personalisation.htm (retrieved 30 November 2005)

37 www.thersa.org/projects/publications.asp

38 Refer to Ralph Tabberer’s presentation at Futurelab’s ‘Beyond the Blackboard’ conference, 2004:

www.futurelab.org.uk/events/past/bb_pres/rt01.htm (retrieved 30 November 2005)

39 For example: learningmatters.com/ThomasTelfordTraining (retrieved 30 November 2005)

40 For example: www.dfes.gov.uk/publications/e-strategy (retrieved January 2004)

41 Underpinning most of these approaches is a sociocultural theory of learning drawing on the work of Vygotsky (see

Cole 1991; Rogoff 1990; LS Vygotsky 1978, 1988; Wertsch and Tulviste 1998)

42 Although there have been conflicting results as to the cognitive benefits of Logo (Yelland 1995), many researchers

have found that it can influence, for the better, children’s ability to construct ideas (Gillespie 2004), their spatial

awareness, general problem-solving ability (Clements, ‘Metacognition, learning, and educational computer

environments’ #116, 2002 #117) and mathematical understandings (Clements 2001)

43 www.uta.fi/hyper/projektit/mc2/research_intro.html (retrieved 11 November 2005)

44 One of the first games to enable modding was Doom (id Software 1993), the company actively encouraging players to

change the game by designing it to be modified (Kushner 2003, 165-169). www.idsoftware.com (retrieved 11

November 2005)

45 Head of Computing, Handsworth Grammar School, Birmingham: handsworthgrammarschool.co.uk

46 www.schoolforge.net

47 www.orwellhs.suffolk.sch.uk

48 To view Downes’ PowerPoint presentation, refer to www.downes.ca/files/heerlen.ppt (retrieved 17 November 2005)

49 ocw.mit.edu (retrieved 15 November 2005)

50 www.becta.org.uk/industry/advice/advice.cfm?section=5&id=4370 (retrieved 15 November 2005)

51 aboutcoursework.stanford.edu/overview.html (retrieved 15 November 2005)

52 www.okiproject.org (retrieved 15 November 2005)

53 exelearning.org (retrieved 15 November 2005)

54 www.schooltool.org (retrieved 15 November 2005)

55 www.skolelinux.org/portal (retrieved 15 November 2005)

56 www.dfes.gov.uk/publications/e-strategy/strategy.stm (retrieved 5 January 2004)

57 www.staroffice.org

58 www.openoffice.org

59 www.gimp.org

60 www.mozilla.org

61 www.mysql.com

62 www.php.net

63 www.apache.org

64 moodle.org

65 audacity.sourceforge.net

66 www.crocodile-clips.com

67 www.irfanview.com

68 www.scribus.org.uk

69 www.inkscape.org

70 www.rosegardenmusic.com (educational licence is £40)

About Futurelab

Futurelab is passionate about transforming the way people learn. Tapping

into the huge potential offered by digital and other technologies, we are

developing innovative learning resources and practices that support new

approaches to education for the 21st century.

Working in partnership with industry, policy and practice, Futurelab:

• incubates new ideas, taking them from the lab to the classroom

• offers hard evidence and practical advice to support the design and

use of innovative learning tools

• communicates the latest thinking and practice in educational ICT

• provides the space for experimentation and the exchange of ideas

between the creative, technology and education sectors.

A not-for-profit organisation, Futurelab is committed to sharing the lessons

learnt from our research and development in order to inform positive

change to educational policy and practice.

Registered charity 1113051

