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Abstract : In order to generate an exercise page on a particular knowledge, exercises
have to be indexed according to the knowledge useful to solve them. Hence, the main
idea of this project is to use a problem solver, Argos, to help us deal with this
indexation.
Argos aims not only at solving geometry problems, but also writes their proofs just as
a teacher or a pupil would. Consequently, the meaningful data have to be extracted
from the proofs found by the solver.
Argos automatically generates rules from the properties given to it in a declarative
way. We have linked the rules with geometric properties in order to deal with them,
because the granularity of Argos’ rules is too fine.
The  useful theorems are stored in a database, so it is easy to build an exercise page on
a particular subject (e.g. Pythagoras’ theorem) by interrogating it.
Hence the system we propose provides an assistance to the teaching of the curriculum
or to the planning of activities in an Intelligent Tutoring System.

Keywords:  Ontology, Metadata, Automatic demonstration, Knowledge
Representation, Indexation.

Introduction

There has been a lot of changes in the profile of high-school pupil over the last years:
not only as regard as their social and cultural origins, but also as to their learning and working
methods. To cope with these evolutions, teachers have had to change their pedagogical
methods. The lack of homogeneity of the classes has compelled them to diversify their
teaching within a single group, even if it just consists in giving level-adapted exercises on the
same topic.

This problem is particularly crucial to cumulative knowledge, as mathematics or foreign
languages: year after year some pupils accumulate deficiencies that make any new acquisition
impossible. It is not sufficient to give simpler exercises or to add intermediary questions to
enable a learner to progress when the block lies upstream. In order to help a learner deal with
such a situation, it is necessary to go back to notions taught a long time before.

Thus, our purpose is to offer teachers and learners a system which could select a array of
exercises focusing on a particular topic that needs to be probed or discovered. This approach
presents two advantages. On the one hand, learners would become actors of their learning
process, and their relationship with the computer is important, as mentioned by Soloway in
[1]. Knowing he/she has difficulties with Thales’ theorem, a pupil would be able to have
access easily to a list of exercises using it, and he/she could thus work autonomously. On the
other hand, it facilitates teachers’ work by giving them the possibility to select categorised
exercises. Moreover, such a system could be of great help in a dynamic scheduling of sessions
in an ITS, possibly according to the learner’s model [2].

Hence, exercises need to be index-linked by the properties that help to solve them.
However, in order to propose a reasonable amount of exercises, this indexation has to be done
automatically. This explains why we decided to use an automatic solver of the field taught.



Since we have at our disposal at the Centre de Recherche en Informatique de Paris 5
(research centre in computer science) in the university René Descartes a high performance
problem solver in the field of geometry, Argos [3], which has solved more than 300 exercises
up to the level of the French “baccalauréat” (approximately from the 8th to the 12th form in
the British educational system), we have applied the above mentioned idea to geometry.

In this paper we first present Argos briefly, and we introduce the problems raised by
indexing. Finally we present the system we have developed, and we conclude by giving some
perspectives offered by this work.

1. Argos

Argos was developed by J-P.Spagnol. It is derived from Muscadet, a problem solver
conceived by D.Pastre [4]. Contrary to most of the other problem solvers, it is not based on the
resolution principle, but on methods of natural deduction, trying to be closer to the human
reasoning, that is to say closer to researchers’ cognitive progression.

Predicates are used to represent the problems, but there is no need to translate them into
conjunctions of clauses. In the same way the traces of the proofs produced by the system are
readable and understandable; they are close to a demonstration made by a human, whereas a
refutation has no meaning for a non-specialist. Therefore, Argos is well adapted to learning
environments [5].

Argos is a voluminous system and its behaviour is therefore not always easy to
understand. For instance, Mentoniezh deals with 51 rules [6] written by its developers,
whereas Argos counts several thousand rules, automatically generated by the system from the
knowledge given in a declarative way. Moreover, this system is able to solve rather difficult
problems and to write their demonstrations.

1.1. Properties declared to Argos.

The mathematical knowledge is expressed declaratively to the system, as logical implications.
For instance, Pythagoras’ theorem is given as follows:
propriete([general],pythagore,
RightTriangle(A,B,C) => length(B,C) * length(B,C) equal 
length(A,C)*length(A,C)+length(B,A)*length(B,A)
[We have: BC^2=AC^2+BA^2,because ABC is a right-angled
triangle in A]).
We can easily recognise Pythagoras’ theorem expressed as an implication, then , in brackets,
the explanatory model, that is to say the sentence that will be used when the demonstration of
the proof is written by Argos.

Because of the way knowledge is expressed in the system, theorems containing
equivalences have to be divided in two parts: one property for each implication of the
equivalence. Moreover, the properties are not always entirely given in a declarative way. Thus,
the property pointCoordinatesUsingVectorRelation enables to get the
coordinates of a point using a vector relation. Mathematically, it consists in using the equality
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. This is not exactly a theorem. It is a combination of definitions and properties: Chasles’
relation, the coordinates of a linear combination of vectors, and of course the definition of the
coordinates. Typically, this is a practical skill, a know-how that should be mastered by the
pupils. Know-hows are methods, skills: they are operating knowledge. Similarly
thalesEquation describes how to get an unknown length using the equality obtained with



Thales’ theorem. The introduction of such properties in Argos is due to the impossibility for
the system to solve some questions only by using declarative knowledge, so, in a way, it has
the same difficulties as a human learner. In paragraph 3.1 we explain how we try to deal with
the presence of operating knowledge in Argos.

1.2. Knowledge operationalisation and proof searching.

With each property, Argos creates rules. For instance, when dealing with Pythagoras’
theorem, the system generates the rules pythagorasDeduction and
pythagorasDeductionCreation2, which we do not explicit. The first leads to the
calculation of the “unknown length”, while the second creates the lengths of the right-angled
triangle sides that do not exist already, in order to enable their computation. Afterwards, the
system does not mention the properties given by the expert anymore, it uses only the generated
rules to perform its search of a proof.

The search of a proof progresses just as in Muscadet : the methods of Bledsoe’s natural
deduction are used as follows. The facts base is divided in two parts: hypotheses and
conclusions. Proving a fact consists in leading it from the category of conclusion to the
category of hypothesis. The system proceeds as similarly to human beings as possible. For
instance, looking again at the case of the well-known Pythagoras’ theorem, the rule
pythagoreDeduction says that if the calculation of the length AC is one of the conclusions, if
the fact that ABC has a right angle in A, B or C and the length AB and BC are present in the
hypothesis, then, the exact value of BC, obtained with Pythagoras’ theorem, must be added to
the hypothesis.

Once the exercise is solved, that is to say, once all the conclusions have become
hypotheses, Argos builds the graph of the proof: beginning with the last deducted fact, it looks
for its parents and so on. Then, once the graph is obtained, the proof is written using the
typical sentences that are attached to each rule, drawn from those declared with the properties.

2. Indexing exercises using the knowledge useful to solve them.

2.1 Knowledge representation

 We aim at getting an automatic indexation of exercises in the field of geometry , so we
have to lay the stress on knowledge representation in geometry. The need of ontologies in the
field of ITS is widely recognised. Not only to generate pedagogical resources from documents
[7], but also to facilitate interoperability and data management in pedagogical platforms.
Moreover, the question of the re-use is central for such topics, in that the existence of domain
ontologies should enable an incremental conception of a system cumulating more and more
functionalities [8]. This is not the case yet because of the diversity of knowledge
representations used.

In order to clarify our words, we will use the terms “rule”, “property”, and “theorem” in
the following senses: the theorems are mathematical statements, the properties are the
statements declared to Argos and the rules used to solve the exercises are automatically
generated by the system.

In fact we have not build an ontology of geometry. The domain we have to represent is
not geometry in itself, but the geometry exercises. As we have to proceed to an indexation
using mathematical theorems, these are the primitive concepts of the knowledge representation
that we use.



This is not a trivial topic: one might have built an ontology of geometry exercises using
the concepts occurring in their descriptions. Actually, we are interested in indexing the
geometric proofs. That’s the reason why the calculation properties are not relevant to our
indexation.

Moreover, as we are using an automatic solver to proceed to this indexation, we have to
consider the knowledge representation of theorems already existing, at least implicitly in
Argos. Nevertheless, the properties declared in Argos are not exactly mathematical theorems.
We have already explained that the knowledge given to the system is sometimes partly
operationalised. For instance the property
pointCoordinatesUsingVectorRelation should be simultaneously subsumed by
the concepts Chasles’ Relation and Vector Coordinates.

In the same way, some theorems are split in Argos in different properties, as theorems
expressed by a logical equivalence. For instance, the vectorial characterisation of the midpoint
is split in two properties, vectMidpoint and reciprocalVectMidPoint:

property([vectorialCalculus],vectMidpoint,
midpoint(A,B):I => vect(A,I) equalVect vect(I,B),
[I is the midpoint of segment [A,B] hence,vect(A,I)=
vect(I,B)]).

property([vectorialCalculus],reciprocalVectMidpoint,
vect(A,I) equalVect vect(I,B) => midpoint(A,B):I,
[I is the midpoint of segment [A,B] because vect(A,I)=
vect(I,B)]).

Consequently, using Argos properties to realise the indexation does not appear really
judicious. A pupil that has to work on the vectorial characterisation of the midpoint should not
have to have to choose between exercises using VectMidpoint and those using
reciprocalVectMidpoint. Moreover, the granularity of the knowledge representation
in Argos does not always fit the level of the pupils it is intended for. We categorise the 150
Argos properties using 75 concepts in a basic ontology of  of secondary education theorems.

To sum up, the knowledge representation that we use is the following: any exercise is
represented by its slots: its name and the theorems that are useful to solve it. These theorems
are embedded in an basic ontology of secondary education theorems.

2.2 Argos’ modifications1

We had to modify the Argos code in order to make it generate a file containing the
predicates that were necessary to get the indexation file.

2.2.1 Links between rules and properties

Argos dynamically creates rules that will be used to solve problems. It creates the names
of each rule according to the name of the property it comes from by adding a suffix or a prefix.

                                                          
1 Initially we thought about using Argos to get different solutions to the same problem, in order to make a
wider indexation, but we had to give up: during a informal conversation, Dominique Pastre, who developed
Muscadet, from which Argos is derived, explained to us that solvers based on Bledsoe’s natural deduction are
not meant to be satured. It is contradictory with their conception.



When writing the proof, the system does not make reference to the properties, but only to the
rules.

The list of the rules used to solve an exercise is memorised by Argos as a logical
predicate: listUsefulRules(nameExercise,[rule1,…,ruleN]).

By analysing the strings rule1 to ruleN we should be able to get the list of useful
properties for any given exercise. However, this analysis should be done for each indexation,
and that is the reason why we would rather memorise the links between rules and properties
directly each time a rule is generated.

For different technical reasons not detailed in this paper, it is more efficient, due to the
Argos architecture, to memorise this link when the name of the rule is created. We add the
goal linkPropertyRule(P,R) as a sub-goal of the creation of the rule’s name. Hence as
soon as a new rule R is created and named from a property P, the fact
associate_property_rule(P,R) is written in the file linksPropertiesRules.
Consequently, this file contains the links between properties and rules in Prolog fact form.

2.2.2 Links between properties and theorem

As the links between rules and properties, the links between properties and theorems are
memorised in Prolog fact form. For instance,
linkPropertyTheorem(reciprocalVectMidPoint,vectMidPoint)
expresses the instanciation link between the property reciprocalVectMidPoint and the
vectorial characterisation of the midpoint.

2.2.3 the list of useful theorems

We developed different procedures to get the list of useful theorems from the facts
memorised. The system proceeds as follows: for any rule appearing in the list of useful rules, it
searches to which property the rule is linked, then the theorem from which that property
comes. This theorem is then added to the list of useful theorems, that will be formatted in
order to be stored in a database.

3. The system

The modifications and additions we made were done in Prolog as it is the language in
which Argos has been developed. For this language, easy to use GUI are not easily available,
and because it seems contradictory to create a system for secondary school pupils and to make
them write Prolog queries, we have decided to index the exercises in a database, then to
interrogate it through a graphic interface.

From the data obtained by Argos, the system creates a file storable in the database.
Through a web page developed in php, the pupil or the teacher questions the database as
simply as possible. The user has to choose a theorem in a menu list (fig.1), then his/her choice
is translated into a mysql query.



Figure 1: menu list.

The result of this query, problems names and descriptions are displayed on the next page
(fig.2). The descriptions are given in the formal language that is used to describe the problems
to Argos, which is rather easy to understand.

Figure 2: problems descriptions.

4. Results and prospects

The aim of this project is to generate an exercise page from an automatic indexation of
geometry exercises, considering the theorems useful to solve them.

In order to enable a real adaptation to the learner, we should take the level and the
difficulty of a proof into consideration for the indexation. This could be done by using a
heuristic taking into account the number of steps in the demonstration, the number of objects
created by the system and the complexity of the theorems used.

Otherwise the ontology of geometric theorems could be ramified adapting its granularity
to different school levels.

We think that the topic of this paper is rather general. When developing an ITS to teach
problem solving, the idea of building an index of exercises should naturally emerge, and in
order to propose to the user a large number of problems, these exercises need to be
automatically index-linked. Thus, any ITS including a problem solver could get an indexation
add-on program and an exercise page generator similar to the one we have developed.



However to make it happen, that is to say to enable a real interoperability between systems, it
is necessary to build and disseminate ontologies, a problematics treated by many authors, for
example R.Mizoguchi and J.Bourdeau [9] or C.Desmoulins and M.Grandbastien [7].
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