
HAL Id: hal-00190284
https://telearn.hal.science/hal-00190284

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing to see and share structure in number
sequences

Yishay Mor, Richard Noss, Celia Hoyles, Ken Kahn, Gordon Simpson

To cite this version:
Yishay Mor, Richard Noss, Celia Hoyles, Ken Kahn, Gordon Simpson. Designing to see and share
structure in number sequences. The International Journal for Technology in Mathematics Education,
2006, 13:2, pp.65-78. �hal-00190284�

https://telearn.hal.science/hal-00190284
https://hal.archives-ouvertes.fr

Designing To See And Share Structure In Number Sequences

By Yishay Mor, Richard Noss, Celia Hoyles, Ken Kahn and Gordon Simpson

London Knowledge Lab, Institute of Education, University of London, UK

yishaym@gmail.com

Received: 7th October 2006 Revised: 8 March 2006

This paper reports on a design experiment in the
domain of number sequences conducted in the course of
the WebLabs project. We iteratively designed and tested a
set of activities and tools in which 10-14 year old students
used the ToonTalk programming environment to construct
models of sequences and series, and then shared their
models and their observations about them utilising a web-
based collaboration system. We report on the evolution of
a design pattern (programming method) called ‘Streams’
which enables students to engage in the process of
summing and ‘hold the series in their hand’, and
consequently make sophisticated arguments regarding the
mathematical structures of the sequences without
requiring the use of algebra. While the focus of this paper
is mainly on the design of activities, and in particular their
epistemological foundations, some illustrative examples of
one group of students’ work indicate the potential of the
activities and tools for expressing and reflecting on deep
mathematical ideas.

1 INTRODUCTION

This paper reports on a set of activities designed
for students to construct number sequences and sum them,
and consequently to be encouraged to reason and argue
about the structure of number sequences, both face to face
and at a distance. It is an initial component of a more
general effort in which they engaged in a range of
mathematical activities exploring issues such as cardinality
and convergence.

Pattern recognition and generalisation are
fundamental to mathematical thinking and a fruitful
pathway into algebraic thinking. In the words of John
Dossey (1998) “From whence does algebra grow? It
grows from the study of growth itself. One of the first
places students see growth is when they look at patterns
and patterns of numbers” (p 20). Kieran (1997) reviews
several examples of how activities originating in
observation of patterns in numeric or graphical sequences
can create opportunities for introducing algebraic thinking.
Sasman et al (1999) note that such an approach is implicit
in the design of many national curricula, yet, as noted by
Zazkis & Liljedahl (2002), most of the research focuses on
either fundamental counting sequences or on advanced
mathematical concepts. At one end of the spectrum we
find studies such as Steffe (1988; 1994) and Olive (2001)
which illuminate the construction of the basic number
sequence at an early age. At the other we find Davis &
Vinner (1986), Tall & Schwarzenberger (1978), Cornu
(1991) and, more recently, Oehrtman (2003), Kidron et al
(2001), Sriskanda (2003), and Floris (2004), all discussing
learning of limits of sequences and functions, typically in
the context of advanced high-school and college students.

In between these extremes, the literature is dominated by the
potentials and issues emerging from observing number patterns.

Mason (1996) notes that school algebra is traditionally
centred on numbers, and on functions of numbers. Observing
and reasoning about patterns in number sequences is an
opportunity for learners to experience the process of
mathematical generalisation. Yet at the same time, a number of
researchers, including Radford (2000) and Noss et al (1997),
point to the difficulties students encounter in shifting from
pattern spotting to structural understanding. Students often
tend to base their conclusions on superficial or incidental
patterns they observe in the sequence, rather than on arguments
referring to its structure. Although the use of structural
reasoning increases modestly with age, Küchemann & Hoyles
(2005) note that empirical reasoning remains widespread. The
study reported here attempts to address the gap between
fundamental and advanced concepts, by designing learning
experiences which allow students to construct bridges from
their primary intuitions to mathematical concepts of number
sequences and series.

In the case of number sequences, some of the
aforementioned researchers have suggested that one of the
obstacles to developing an appreciation of structure is students’
tendency towards a recursive view, that is, identifying the
relationship between consecutive terms rather than its general
rule of the sequence (e.g. describing the sequence described by
the function f: x → 2x + 1 as "add 2").

Several attempts have been made to explain these
difficulties. Cottrill et al (1996) use APOS theory, while others
propose co-variation, correspondence, or a property-oriented
view (Confrey & Smith, 1994; Salvit, 1997). Regardless of the
interpretative framework, two observations are universal: first,
that number-pattern spotting is a predominant solution strategy,
and second that the recursive form is a predominant description
strategy. Indeed, pattern spotting lacks the definitiveness of a
formal argument, and the recursive form does not generalise
easily to functions of the real numbers (f:R→R). Yet the
association between recursive and lack of structure suggests
that in some cases, researchers might be confusing structure
with representation. Consider the sequence: 1, 4, 7, 10…
It can be represented in closed form, as: an=13∗n

Or recursively as: a0=1 ; an=an−13

Both are functions. One is a function of the natural
numbers, the other a function of the previous term. Yet
whereas the former conflicts with base intuitions, the latter
stems from them. The disassociation between the perceived
structure of the sequence and its taught representation means
that the student needs to tackle two seemingly unrelated
challenges: the mathematical object and the algebraic

International Journal for Technology in Mathematics Education, Volume 13, No 2

the International Journal for
Technology in Mathematics
Education, 13 (2) : 65-78, 2006.

Yishay Mor, Richard Noss, Celia Hoyles, Ken Kahn and Gordon Simpson

representation. The result is, as noted in Noss et al (1997,
p 205):

… algebraic formulation is often disconnected
from the activity which precedes it, a
meaningless extra that neither illuminates the
problem nor provides a means for validating its
solution. Algebra is viewed as an endpoint, a
problem solution in itself rather than a tool for
problem solving.

From a design point of view, the challenge is to
construct learning environments that are contiguous with
existing knowledge, rather than seeking to replace it.
Weigand (1991) has posited that iteration sequences offer
rich mathematical experiences that should be exploited in
activity design. We too start from the supposition that we
need to construct activities and tools that allow students to
start from intuitive forms, formalise them, and develop
alternative ways to explore problem situations.

2 AN ALTERNATIVE REPRESENTATION FOR
SEQUENCES

This study adopts, in common with our approach
over many years, the harnessing of a programming
language as a medium of mathematical expression that
builds on students’ intuitive ideas of a particular
mathematical domain (see Noss & Hoyles, 1996, for a
historical overview of this approach, and its rationale).
The idea of developing alternative representational forms
has a concrete consequence in the domain of number
sequences. Traditionally, the predominant representation
of a sequence in computer programming was as a list: an
ordered set of items. This abstract definition needs to be
implemented with respect to the particulars of the chosen
language. Common educational implementations attempt
to capture the essence of the formal definition of a
sequence, as a function f:N → R. These representations
are static – at any given point in time, their content is
fixed. Additionally while lists are not limited in length and
can be extended on the fly, any actual list at any given time
is, of course, finite. This could be a source of epistemic
conflict. While we talk about infinite lists, the objects we
manipulate are inherently finite, and the algorithms used
are geared towards finiteness. Furthermore, by
emphasising the f:N → R formalisation of sequences it
risks a conflict with students’ recursive intuition

 f :an an1 .

Sacristán (1997) proposes an alternative approach
that uses recursive programs as a representation of infinite
sequences. She focused on establishing intuitions by
visualising the sequences, an approach which proved
successful. However, she stresses the need to supplement
this approach with alternative representations in terms of
numeric values. This was achieved by allowing students
directly to manipulate the code that instantiated the visual
representation. Seeing the visualisation and the sequence
unfold together gradually allowed the students to consider
the sequence as a process and object and helped them to
identify local structure. Such a dual view, argue Sfard

(1991), Tall and Gray (1993), and others, is fundamental to
mathematical thinking. Sacristán’s design called for task
specific programs, which balanced functional richness with
code simplicity, so that students could observe the visualisation
and then tweak the code that produces it. Unfortunately,
simplicity is often achieved at the price of generality. A
function created to display one sequence cannot be used to plot
another. Arguably, this can be overcome by a minor code
change. Yet we may want students to work with code
components as building blocks without the need to recode
them.

We propose an alternative approach that generates the
terms dynamically, as these are needed. This is precisely the
idea behind the Stream structure. A stream is a dynamic
representation of a sequence. In object oriented languages
(such as JAVA or C++) it is implemented by an object with a
read () method (function) which retrieves the next term every
time it is invoked. The idea of ‘streams’ is not new. Abelson &
Sussman (1996, section 3.5) noted, for example:

If time is measured in discrete steps, then we can
model a time function as a (possibly infinite)
sequence. … we will … model change in terms of
sequences that represent the time histories of the
systems being modeled. To accomplish this, we
introduce new data structures called streams. From an
abstract point of view, a stream is simply a sequence.
However, we will find that the straightforward
implementation of streams as lists … doesn't fully
reveal the power of stream processing.

Shapiro (1988) explains why ‘streams’ are most useful in
concurrent systems, those in which many processes are
executed in parallel. Streams provide a structured mechanism
of dividing work between processes using an assembly line
metaphor: every process sends out a stream of outputs, which
are passed as a stream of inputs to the next. While process II is
busy, say, with the 5th term, process I is already generating the
6th, and process III can work on the 4th. Streams are used as a
fundamental mechanism in UNIX for communicating between
applications and operating system processes (SUN, 2005) and
the primary input – output framework in Java (Eckel, 2002). In
many scenarios, streams have computational advantages over
lists. A detailed comparison is, however, beyond the scope of
this paper.

In educational contexts, the potential of streams would
most likely be realised in concurrent languages, and one such –
ToonTalk (Kahn, 1996) – was utilised in the present study.
ToonTalk is a language and a programming environment
designed to be accessible by children from a wide range of
ages, without compromising computational and expressive
power. It does so by embedding complex programming
constructs in a video-game setting as shown in Figure 1. In
ToonTalk, every programming structure is concretised as an
animated cartoon object: robots (labelled 2 in Figure 1) stand
for programs, boxes (labelled 3) for data structures, birds (5)
for message sending, nests (6) for message receiving, scales for
comparisons, trucks for process spawning, and bombs for
process termination. The toolbox (11) contains the data types
and operators, while the notebook (12) provides a standard
library of stored procedures.

2006 Research Information Ltd. All rights reserved.

2]

Designing to See and Share Structure in Number Sequences

Figure 1 The ToonTalk Environment

The user directly manipulates objects using a
virtual ‘hand’ (labelled 1 in Figure 1), or with tools such as
the magic wand for copying (labelled 8), vacuum cleaner
(9) for cutting, pasting and erasing or bicycle pump (10)
for changing object size. Programs are created by training
a robot – directly leading it through the steps of a task it is
required to perform. The robot remembers what it is
trained to do, but only for the specific set of values with
which it was ‘trained’. These are stored in the robot’s
thought bubble (7). The robot’s memory can then be
generalised by ‘vacuuming’; that is, by erasing the values
and leaving an empty slot for ‘any value’. Thus the
concept of variables is introduced implicitly through the
programming metaphors. Needless to say, this mode of
programming is very different from that used in traditional
text-based languages, and induces different patterns and
styles of problem solving.

The implementation of ‘streams’ in ToonTalk is
straightforward (Mor et al, 2004). A robot generating a
‘stream’ uses a box with the internal variables it needs and

a bird for carrying the terms out. A robot processing that
stream uses a box in which it holds the nest of the bird from the
first robot. Robots can be chained in this manner to construct
complex “assembly lines” from simple self-contained
processes. Furthermore, ToonTalk is a concurrent language,
which means that several programs (robots) can run
concurrently. This allows us to generate a sequence and add up
its terms at the same time, while keeping the two processes
clearly distinguishable.

As we noted above, children’s intuition of sequences
tends to be predominantly recursive. The stream design pattern
allows us to capture this intuition and formulate it as code. A
typical implementation would use an internal variable to store
the value of the previous term, and use that to generate the next.
For example, consider the sequence an = 2n. In order to
generate it, a robot needs a box with two holes: one for the
current value, and one for the output bird. The robot iteratively
multiplies the current value by two and passes a copy of the
result to the bird, as illustrated in Figure 2.

Give the robot its input box The robot multiplies ‘current’ by 2 And passes a copy to the bird

The bird will carry it to its
nest

Sequence terms are stacked on the
nest

While the robot repeats its actions indefinitely.

Figure 2: Generating the powers of 2 sequence

International Journal for Technology in Mathematics Education, Volume 13, No 2

2

3

4
5

1

76

8

9

10

12

11

[3

Yishay Mor, Richard Noss, Celia Hoyles, Ken Kahn and Gordon Simpson

We have mentioned the importance of
maintaining a cohesive process-product view of sequences.
In traditional list programming, the process (generating the
sequence) is decoupled from the product (an enumeration
of the first n terms). Similarly, the relationship between
successive terms of the sum series is lost, as each one is
computed independently from the original list. A stream is
an object which ties together the process and the product.
This is particularly true in a language such as ToonTalk,
which allows the user to observe the execution of code, by
watching the animated components of the program play
out their programmed behaviour. Decomposing a complex
structure into a chain of simple ones encourages students
to toggle between the process view (in this case,
“summing up”) and the product / object view (in this
example, the sequence of sums).

A final rationale for the stream approach concerns
the nature of infinity and its (unsurprising) difficulty as a
concept for learners. Several researchers (Tirosh, 1991; Li
& Tall, 1993; Falk and Lavy, 1989; Dubinsky et al, 2005)
have commented on the tension between potential and
actual infinity. Any manifestation of infinity in a
computational medium is inevitably potential, since the
computer’s memory and processing power is finite. The
stream pattern is as close as possible to this intuitive
concept of infinity; it will continue providing terms
indefinitely until it is interrupted. It can also possibly
provide a bridge towards the conception of actual infinity:
since it is not possible to count the length of a stream (as is
possible with lists), the stream object itself represents all
terms of the sequence – ad infinitum. Again, the power of
streams is not in the representation of any specific infinite
process – but in the possibility of combining and
manipulating infinite processes.

2.1 The Experimental Context

The work reported here formed part of the
WebLabs Project (www.weblabs.eu.com, European Union,
Grant # IST-2001-32200), which aimed to explore new
ways of constructing and expressing mathematical and
scientific knowledge in communities of young learners.
Our approach brought together two traditions:
constructionist learning as described by Harel & Papert
(1991) and collaborative knowledge-building in the spirit
of Scardamalia & Bereiter (1994). We use ToonTalk as our
primary platform for construction, building open ‘toolsets’

for students to construct models, and supplementing these with
other appropriate tools as necessary (for example, Excel). As a
parallel and intimately related development, we have designed
and built a web-based collaboration system called WebReports
for sharing and discussing these constructions. This system
allows students to seamlessly embed their models in free form
text documents they publish them on the web. Thus the central
tenets of the approach are that students simultaneously build
and share models of their emerging mathematical knowledge.
The details of the system have been described elsewhere, by,
for example, Mor et al (2005), and Simpson et al (2006).

Alongside the technical development, a main focus of
WebLabs was on designing and testing a set of activity
sequences to support learning. Our activities followed a
common pattern. We identify our learning aims and then began
each activity sequence by discussing an intriguing
mathematical theme. We encourage students to propose
conjectures or derive concrete questions to explore, which are
then formulated by us into modelling/programming tasks.
Students complete these tasks individually or in pairs and
publish their individual models (ToonTalk programs) along with
their observations about them, in personal webreports (we use
WebReports to refer to the system and webreports to refer to
actual documents within it). Students are encouraged to
comment on each other’s models, which are then used as input
to an instructor-led group discussion. The product of this
discussion is a group webreport which represents the shared
understandings of the group, a process that encourages students
to reflect on their work, to acknowledge the need to construct
rigorous arguments for their claims, and to negotiate socio-
mathematical and socio-technical norms within the
(international) community, using the terminology of Yackel &
Cobb (1995).

Ideally, at this point in the students’ work the
webreport would be reviewed by another group, perhaps in
another country, and an inter-group discussion would ensue,
using the WebReports ‘comment’ mechanism (see Figure 3 for
an illustration of the WebLabs common activity framework). In
fact, we rather seldom succeeded in orchestrating such a
discussion, largely due to pragmatic limitations but also
because of the difficulty in establishing a distributed
community of practice. More usually, a class was split to
produce group webreports and each group then elected a
representative to present their webreport to the whole class
using the electronic whiteboard for whole class discussion.

2006 Research Information Ltd. All rights reserved.

4]

Designing to See and Share Structure in Number Sequences

Figure 3 WebLabs common activity framework

The above pattern of activities emerged following iterative
design and evaluation in this domain and others, for
example 1D collisions, as described in Simpson et al
(2005)

3 DESIGN OF TOOLS AND ACTIVITIES FOR
SEQUENCES AND SERIES

3.1 The preliminary programming task

The first activity we used was the “Add-a-number
challenge”. Its motivating question was posed more as a
ToonTalk puzzle than a mathematical one. We asked the
students “how would you train a robot [the ToonTalk
equivalent of ‘program a procedure’] to count 1, 2, 3, 4,
and so on”? As expected, students would generally
propose a construction similar to the one in Figure 4, and
we would follow their instructions on the interactive
whiteboard. Even this preliminary activity confronts
students with one of the most fundamental concepts of
algebra: the idea of variables and generalisation. This
concept is prompted by a unique affordance of ToonTalk.

Most programming languages distinguish clearly between
constants and variables. Code is written for the general case
(“any n”) and tested for specific cases (or written for a singular
setting). ToonTalk employs programming by example. This
means that robots are trained for specific values, which can
then be generalized by ‘erasing’ the specific value from the
robot’s memory. In the case of this task, generalisation is
required immediately - after the robot runs once, the value of
current is no longer 0, and needs to be generalised if we want
the robot to continue counting past 1.

However, this solution has a serious shortcoming - the
robot does not keep a record of the numbers it generates. Since
all computations are done ‘in place’, the only term of the
sequence we can access is the last. This problem provides a
motivation for introducing birds - ToonTalk’s message-passing
mechanism. Whenever a bird is given an object, it will carry it
to its nest. If we provide our robot with a bird, and train it to
hand the sequence term over to it, we will have them stacked on
the nest as the robot runs.

Train the robot to take a number 1
from the toolbox and drop it on the
input, to increment it.

Generalise the program by erasing
the value of the input from the
robot’s memory.

Give the robot its input box. The robot will
continually repeat the actions it has been
taught.

Figure 4 Training a robot to countHowever, this solution has a serious shortcoming - the robot does not keep a record of the
numbers it generates. Since all computations are done ‘in place’, the only term of the sequence we can access is the last. This
problem provides a motivation for introducing birds - ToonTalk’s message-passing mechanism. Whenever a bird is given an
object, it will carry it to its nest. If we provide our robot with a bird, and train it to hand the sequence term over to it, we will

have them stacked on the nest as the robot runs.

International Journal for Technology in Mathematics Education, Volume 13, No 2

Individual modelling

Individual report

Commenting

Group discussion

Group discussion

Group report

Question?

Site 1

Individual modelling

Individual report

Commenting

Group discussion

Group discussion

Group report

Question?

Site 2

[5

Yishay Mor, Richard Noss, Celia Hoyles, Ken Kahn and Gordon Simpson

3.2 Training Add-a-number: from the natural
numbers to arithmetic progression

The first programming task that we set for
students was to train a robot to generate the natural
numbers, and send them to a nest. To scaffold students’
work, we provide an active worksheet: a webreport
template that includes the instructions for the task and
questions related to it. Students create a webreport of their
own by clicking a button on this page, and use the prompts
on it to scaffold their report. The unique feature which
makes the worksheet ‘active’ is that the ToonTalk tools
required for the task are embedded in it, and at the click of

the mouse students can load them into their programming
environment. In this particular case, the worksheet contains a
task-in-a-box (see Figure 5) - a ToonTalk box containing task
instructions, an untrained robot, an input box, and output nest.

The task-in-a-box serves several purposes at once.
First, it helps students overcome the shift in medium from a
(mainly textual) web page to the animated programming
environment. More important, it supports their work by
providing the input box to be used in training. Last, it
implicitly sets a standard for packaging and sharing ToonTalk
models, one that can be used to establish a shared culture for
discussion and exploration within and across school sites.

Figure 5 Add a number active worksheet and task-in-a-box

Note, as illustrated in Figure 5, that the input box
contains two holes with numbers: an increment and the
current value. A third hole contains the output bird. The
robot needs to be trained to perform two actions: hand a
copy of current to the output bird, and then drop a copy of
the increment over current (thus adding them). This is the
first occurrence of the Stream pattern: the numbers are
sent out to the nest, one after the other, ‘ad infinitum’.

From a mathematical point of view, the streams
method generates the natural numbers by repeated
application of the successor function. At this stage, this
kind of observation was not shared with the students.
Instead, the students were engaged in constructing this
procedure, manipulating it and using it as a building block
in larger constructions, thus establishing their concept of
the natural numbers as an object, the product of this

process. The structure of the input box we provide the students
provokes them to take generalisation one step further. The
preliminary task already illustrated the need to generalize the
current variable. However, by generalising the increment as
well, students can use the program to generate any arithmetic
progression! The next part of the worksheet asks students to
predict which sequences can be generated by their robot and
which cannot. These questions aim to promote students’
mathematical conjecturing and argumentation, and specifically
raise their awareness to the relationship between the procedural
and the structural facets of sequences. After reflecting on these
examples, students are asked to provide one more sequence that
their robot can generate and one it cannot. The latter question
is probably the hardest - in order to say that the robot cannot
produce a sequence one has to argue about the nature of the
class of sequences it can produce.

3.3 Training Add-up: constructing the partial
sums series as an operation on a sequence

Once students have posted their Add-a-number
robot and answered the questions, they are introduced to
the next task: train a robot to add up the terms of a
sequence. We refer to this as the Add-up robot.
Mathematically, this robot embodies the concept of a
sequence of partial sums, and implements it as a function
on the domain of sequences: for any given sequence, it
will produce the sequence of its partial sums. In concrete
terms, we give the nest of the first sequence to the Add-up
robot, which sums the numbers coming in to that nest, and

sends the results out to its output nest Figure 6 illustrates how
Add-a-number and Add-up robots are working in conjunction.
The arrows, step numbers and dark bubbles (added for clarity)
show the order of operations as an element passes down the
stream. Students chain the Add-a-number robot to the Add-up
robot by placing the former’s output nest in the latter’s box.
Add-a-number generates an arithmetic sequence by repeatedly
adding a copy of the ‘add’ to the current value (1) and copying
the result to the out bird (2). The out bird carries this result to
the nest in Add-up’s input box (3). Add-up then adds this value
to the total (4) and copies the result to its own out bird (5),
which takes it to its nest (6) .

2006 Research Information Ltd. All rights reserved.

6]

Designing to See and Share Structure in Number Sequences

Figure 6 “Chaining” Add-a-number to Add-up

Directing students to this pattern addresses two
aims. First, our initial experiments have shown – as
suggested by the literature – that students tend to become
confused between source sequences and the corresponding
sequences of partial sums. This confusion causes
difficulties in reasoning about limits, and sequence
behaviour in general. Second, by using one sequence as
an input to a process which generates another one, we
address both process and object perspectives and
encourage students to construct connections between them.

Students are asked to construct the Add-up robot
and post it on their webreport. They then chain it with the
Add-a-number robot, and experiment with summing
different sequences. Next, they are asked to answer some
questions regarding the chain of robots. Observing the
patterns in and between these examples can lead to
conjectures regarding the rules governing the co-variance
of the source sequence and the corresponding sequence of
partial sums. The Add-a-number and Add-up phase of
activities is concluded by a group discussion, driven by the
goal of composing a consensus webreport based on the
individual webreports for Add-a-number and Add-up.
First, the Add-a-number robot is constructed by the group.
Students instruct the teacher how to train the robot, and
where others disagree, discuss their solutions until a
consensus is reached. After the robot is trained and
posted, the students continue to discuss the answers to the
questions in the worksheet, and when necessary the
teacher displays students’ individual webreports to refresh
their memory. This process is iterated for the Add-up
robot.

4 A FEW ILLUSTRATIVE EXAMPLES OF
ACTIVITIES (AND LEARNING)

While the main focus of this paper is on the
design of the activities and their close-knit relationship
with the knowledge we were attempting to build, we
provide here a very general overview and a few illustrative
examples of what one group of students did and – we hope
– learned. The results reported here are from an
experiment conducted in London in autumn 2004. This

experiment involved a group of 10 boys, aged 13-14, for 6
hourly sessions and a full day workshop. The activities were
also undertaken by students in Bulgaria, Cyprus and Portugal,
although we do not report these here. Our main sources of data
are the models and texts that students published, and in-
activity-probes: short interviews – typically up to five minutes
– conducted while a student was engaged in an activity and
referring to it. The use of this tool aims at capturing the
process of knowledge construction and allows students to
express their situated abstractions in the context that they are
formed.

Most students found the activities engaging. They
completed the tasks successfully, and then refined their answers
through collaboration. They identified the natural numbers as a
case of arithmetic progression, and then expanded that class to
a more general one. They used formalisations derived from
their ToonTalk experience to make sophisticated mathematical
arguments.

4.1 Using Robot structure as a stepping stone to
mathematical structure

Establishing elaborate norms of mathematical
discourse is a lengthy process, the foundations of which can be
seen in this activity. At the initial stage of the activity, we saw
a shift from modelling a particular robot to thinking about a
class of sequences. This shift was prompted by questions about
which sequences their robots could and could not generate.
Interestingly, some students interpreted this as which sequences
could you generate with a robot similar to yours (see the
example provided in Figure 8). This indicates that they did not
see the robot as an isolated item, but as a representative of a
mathematical class.

Students’ initial classifications matched our
expectations from the literature. For example, they exclude
negative numbers or fractions from the arithmetic progression
class (defined by the Add-a-number robot). These
classifications were refined, and later elaborated, in the course
of the activity. We saw two forces driving this refinement:
students testing of their conjectures by manipulating the tools
they created, and challenging each other’s claims through

International Journal for Technology in Mathematics Education, Volume 13, No 2

1

2 3
4 5

6

1, 2, 3, 4…

1, 3, 6, 10…

[7

Yishay Mor, Richard Noss, Celia Hoyles, Ken Kahn and Gordon Simpson

webreports commenting and face to face discussion. The
dynamics of learning through collaboration and
communication are discussed further below.

BOB (we use students’ internet pseudonyms as
anonymised identifiers) published a characteristic report
on Add-a-number. Following the worksheet structure, he
first included the robot he had constructed and answered
the questions regarding the specific sequences. He then
reflected on the on the task, generalising the class of
sequences that can be generated by such a robot:

How would you explain to a friend what kind of
sequences your robot can generate, and how it
can be used to generate those sequences?

It can generate quite a lot of sequences, e.g. x 3
by copying the number 2 times, then dropping,
one by 1 the numbers onto the original. Or, the
nine times table, by copying the number 8 times
etc. However, it cannot produce non whole
numbers (I think)

Describe one sequence that cannot be generated
by it, and explain why.

Dividing e.g. by 4.

Note that BOB does not consider changing the
input to the robot, but sees a class of robots which can be
trained ‘similarly’ to the one he trained. This class of
robots corresponds to the class of arithmetic progression
sequences.

Martin, on the other hand, sees that he does not
need to retrain the robot. In an ‘in-activity-probe’ taken
right after he trained his first robot, we asked him if he
could use it to generate other sequences and how.

M: Just go into it, I have to change it but I won't
have to erase it, I could add 1 for that – 1 there
[points to ‘add this’ hole], I could just make it
add 2, I could just change its function to have to
add 2.

In other words, use the same process but change
the input. Another in-activity-probe at the same stage
shows an interesting confusion. As before, we probed
Albert immediately after he had trained his Add-a-number
robot, and asked him how to use it to generate other
sequences. He suggested changing the increment from 1
to 3. We asked him what sequence would result:

Albert: Going up time 3 .. er.. times 3 sequence.

Y: Times 3 sequence.

A: Or add 3 sequence.

Albert is confusing the closed form (an = 3*n) with the
recursive form (an = an-1 +3). The term times 3 relates to
the times 3 table with which students are familiar from
school. On the other hand, the term add 3 relates to
students intuition, whish also maps directly to the
ToonTalk representation.

4.2 Distinguishing process, parameters and
product

Students came to recognise that observed patterns can
be decomposed into generic processes and the varying
parameters they are initiated with. This realisation is a further
step towards developing a structural view. This distinction is
made salient by the particular design pattern we promoted for
the Add-a-number robot. In the naïve implementation of the
robot, both the process (incrementing by a constant) and its
parameters (the value of the increment) are defined by the
robot’s training. By asking the students to train the robot with a
box that contains the increment of 1, we enable them to later
generalise that increment to any number. The process defines
the class of sequences (arithmetic progression) while the value
defines its domain (natural, integer or rational numbers).

Indeed, students acknowledged this distinction, and
characterised the classes of sequences associated with the robot.
They were able to explain how modifying the parameters
affects the generated sequence, and what’s more, how it
determines its mathematical properties.

The streams pattern was very conducive to this affect.
By seeing the output sequence not just as a pattern of numbers,
but as the result of a composite process, students were able to
decompose this process to its original elements and achieve a
sophisticated analysis of the sequence structure. Albert
suggested providing his robot with the initial value 1 and
increment 4, to generate the sequence {1, 4, 7…}. We asked if
this sequence would ever contain a number divisible by 3:

A: Yes, No, one above.

Y: How can you get the same robot to generate a
sequence which will have numbers divisible by 3?

A: Yes, you change their current to 0 when you start
off.

Albert sees which properties of the sequence are
determined by the process and which by the initial conditions,
and how these interact.

Constructing the Add-up robot inspired further sophistication of
students’ arguments. Again, when asked if a particular
sequence (2, 6, 16, 20, 30 …) can be generated by the chain
they remarked:

No. Because you can’t retrain the robot. You would
need to add these boxes (4 and 10) or retrain the robot
to alternate between adding 4 and 10 (change the
value by typing).

This is less of a programming claim than a
mathematical one. Add-a-number can generate any arithmetic
sequence. Chain it with Add-up, and you get a corresponding
sum series. The sequence at hand is the result of alternately
adding 4 and 10 – and is neither of the first form nor the
second. an= an-1 + 4 : n =2m, an= an-1 + 10 : n =2m+1.

But when Allen presented their response in a group
discussion, a second observation emerged:

We believe if you change the 16 to a 12 it would be
fine. If you um… started with um… with the ‘in’ as
2 ‘cause each it’ll go up by 2: [pointing at the spaces
between the sequence terms] 2, 4, 6, 8, 10, 12 and so
on. So you get the answer, uh, and that would be a
way without actually having two birds, which is
impossible.

2006 Research Information Ltd. All rights reserved.

8]

Designing to See and Share Structure in Number Sequences

The sequence was not a sum series of an
arithmetic progression, but if you changed the third term to
12 it would be. Not only did he note the structure of the
sequence, he also saw how a new structure could be
constructed from it.

4.3 Developing programming and mathematical
norms

The task-in-a-box method proved to be highly
effective. Students picked up the standards we set by
imitation, without us having to detail explicitly the

conventions for programming, packaging and publishing
ToonTalk models. Figure 7 shows Luminardi’s Add-a-number
robot, as he had published it in his report. Using the scheme
we initiated in the active worksheet but appropriating to his
needs, he replaced box labels to describe how his tool should be
used. Establishing such conventions as norms was crucial to
facilitate communication in later phases. It ensured that models
shared by one student would be readable by another.
Furthermore, they were important even from an individual
perspective, as they allowed students to easily revisit work they
had done, reuse tools they had constructed or reflect on the
evolution of their ideas.

Figure 7 Luminardi’s add a number robot

Figure 8 Superpat313’s add a number and its description

While these norms emerged at the level of
programming style, they evolved into a standard of
mathematical discourse. Students quickly got into the habit
of attaching written descriptions to their models, labelled
‘description’ or ‘read this’. Superpat313 published his
robot in a similar way (see Figure 8). He followed the
same convention (from the description text in the leftmost
hole to the nest in the rightmost). In contrast to
Luminardi’s product, the labels on Superpat313’s report
suggest that he was more focused on presentations (‘what I
did’, ‘my trained robot’) than on usage.

As expected, most of the descriptions by students
were procedural. Nevertheless, they constitute a first step
towards students’ reflective articulation of their work. For
example, students used the box we provided as a package
for the task to package their completed models. By doing
so, they adopted the programming conventions we set
without us needing to impose them explicitly. Students
appropriated the packaging scheme to their needs –
changing the box labels and adding box cells (holes in
ToonTalk terminology) as needed. This packaging
convention goes beyond aesthetics: it standardizes the use
of ‘streams’, and prompts students to attach a reflective
text to their model.

4.4 Refining individual knowledge through
communication and collaboration

Our original vision saw the WebReport system
mainly as a vehicle for highly structured communication
between remote groups. We envisioned one group
publishing a well thought out report on its findings,
another responding to it, until a joint consensus report
emerges from the discussion. We now realise that this

view was over-ambitious. We have managed, in several cases,
to facilitate inter-group discussion around a report, but this
never went as far as publishing a joint report. We believe that
the reasons behind this are predominantly pragmatic, rather
than fundamental. The need to coordinate activity calendars,
the length of time required to compose group reports and the
availability of technology are the prime factors we found for
the lack of success in this area. We believe that all this would
change in an environment where such inter-group discussion is
embedded in curricular activity.

In a way, these pragmatic shortcomings worked to our
advantage. We split the London group into two sub-groups, let
each one publish a group report and comment on the others
report, and then had representatives of each group present the
report and the responses to the class. This procedure led to an
animated discussion in which the students reflected deeply on
the activity. Writing the group report and group comments
provided a sense of joint enterprise, which was highly
engaging. The realisation that they are publishing to a wider
audience entailed a strong commitment of students to their text.
Having the text, and no less important – the ToonTalk models –
available for discussion proved to be valuable cognitive aids for
discussion. Students could draw on these artefacts to stimulate
their memory or support their arguments.
The need to negotiate a common agreement provoked students
to refine their classification of sequences. The dichotomy of
‘sequences that can / cannot be generated by Add-a-number’
gave way to a hierarchy of ‘sequences that can / cannot be
generated under such and such conditions’.
At the same time we, as designers, learnt an important lesson:
these forms of collaboration are as effective in a traditional,
face-to-face, setting as they are for a remote one. We
conjecture that in fact, in order for a medium to successfully

International Journal for Technology in Mathematics Education, Volume 13, No 2

[9

Yishay Mor, Richard Noss, Celia Hoyles, Ken Kahn and Gordon Simpson

promote remote collaboration it should first be grounded
in existing classroom practices.
After publishing their individual webreports on Add-a-
number, the London students had a quick group discussion
about which sequences it can generate. They had no
problem generalising to a wide range of arithmetic
progression sequences, including negative progression:

Q: Now if I wanted to generate the sequence
that’s written down here, that’s 2, 3, 4, 5?

L: Change the current to 1.

:

Y: The next thing is, what about this sequence?
Minus 1, minus 2, minus 3, minus 4? Yeah,
Mark.

M: Change the current to 0 and change the add
this to -1.

G: So what is it that stays the same and what
changes to create this sequence compared to 1, 2,
3, 4, ...?

Axel: Um, its just, it ... what it does stays the
same but just the numbers it uses are changed.

Many students retrained a robot for each sequence when
working individually. We were surprised to note that the same
students saw that you could obtain the required sequences by
changing the input conditions, without changing the robot - that
is, they saw the process. We asked them to explain this
phenomenon. They offered two factors. Albert put it down to
reflection:

Well, when you're like, um, working on it yourself
and you're just doing it, you don't really think about
all the different ways you just like try and do it in the
one way you think you would ... you know how to do
it. If you actually like, discuss it you kind of try a
different way.

While Alan suggested confidence:
 um, maybe when you’re changing it in the box, you
may do something wrong and it will muck up so you
think it doesn’t work and you go on to do training
robots.

The students then split into two groups. Each group published
a consensus webreport.

Whereas most students were very cryptic in their
personal reports, often skipping some of the questions, the
group reports are far more elaborate.
Yishay’s group’s responses regarding the Add a number
sequences are given in Table 1:

Sequence Explanation
2, 3, 4, 5… Yes. Start the current on 1.

-1, -2, -3, -4… Yes. Start the "in" as -1, current as 0.

-7, -6, -5, -4.. Yes. Start the current as -8.

2, 4, 6, 8… Yes. Have the in as 2 (current as 0).

5, -1, -7… Yes. In is -6, current is 11.
0, 3, 6, 9,...
1.1, 2.1, 3.1, 4.1...
-4, -6.9, -9.8, -12.7...

current -3, in is 3
in is 1, current 0.1
current -1.1, in is -2.9

Table 1. Yishay’s group’s responses regarding the Add a number sequences

Gordon’s group’s responses regarding the Add a number sequences are given in Table 2.

Sequence Explain

2, 3, 4, 5… Change the Current to 1 (The Add this value being 1)

-1, -2, -3, -4… Change the Add this value to -1 (the Current being 0)

-7, -6, -5, -4.. Change the Current value to -8 (the Add this value being 1)

2, 4, 6, 8… Change the Current value to 0 (the Add this value being 2)

5, -1, -7… Change the Current value to 11 (the Add this value being -6)

Write down a sequence of your own,
which can be generated by your robot.

8, 16, 32, 64...

Write down a sequence of your own,
which cannot be generated by your
robot.

Triangle numbers. 1, 3, 6, 10, 15...
(The Add this keeps changing)
You also can’t to Perfect numbers.

Table 2. Gordon’s group’s responses regarding the Add a number sequences

2006 Research Information Ltd. All rights reserved.

10]

Designing to See and Share Structure in Number Sequences

After they completed their reports, each group commented
on the reports from the other group. Having both groups
on the same site gave us the opportunity to allow them to
present their comments verbally. Several comments dealt
with establishing norms. For example, Gordon’s group
posted a comment titled ‘can you explain’ which included
the following issues:

We think you should use the boxes labels instead
of "in" and "n". Or you can say what in and n
mean.

In your answers in the first table, you haven't
completed your all your statements - you haven't
said what value the other field ("in") should
hold.

You haven't defined "r".

When presenting it, Albert argued why the other group
should have used precise variable names:

Ok, what we thought… our team … on looking
at your, um, report … saw that you’d used ‘in’
… um… ‘in’ and ‘n’ to express your um…
expressions or what. So we think that you
should, um, have used the box labels instead of
‘in’ and ‘n’ ‘cause otherwise we can’t tell what
‘in’ and ‘n’ mean.

Yishay’s team classified the sequences that can be
generated by the Add-a-number robot as “Any sequence
that adds the same number each step to the current” and
noted:

you cannot do:

- square numbers
- anything where you times or divide
- in can't go up in prime numbers
- any sequence with two stages
- triangular numbers

It can only go up (or down) in the same number
each time.

To which the other group commented:

You assumed that you cannot multiply or divide,
but this can be done. You can also do the square
numbers, by using ^2. We disagree with your
statement "any sequence with two stages"
because you could use advanced formulas (*2;
+1).

This second group of students had discovered that
ToonTalk allows them to replace the additive variable with
any unary function. Instead of adding the value of this
variable to the current term, it would apply the function it.
In doing so they had re-formalised arithmetic sequences as
a special case of iterative sequences. Later in the
discussion, Alan (from Yishay’s group) responded to these
comments, acknowledging what they had learnt from
them:

Um, again, before we knew that you could use
the semi-colon, before we knew you could do
the semi-colon, we didn’t think you could do
multiplication or division.

Not only had Alan’s group obtained a richer concept of
sequence structure through the discussion, they

acknowledge the evolution of their knowledge. This
acknowledgment is important in the individual meta-cognitive
sense, as it promotes critical reflection. It is also important in
the development of a community of practice, in which changing
one’s stance is legitimised.

4.5 Using ToonTalk language to talk about sequences

ToonTalk terminology became part of the students’
repertoire, allowing them to develop a formalism for rigorously
describing and sharing information about sequences. During
discussions students could refer to their models as taken-as-
shared, and use them to fill the gaps in their mathematical
terminology for describing sequences. In several groups,
students consistently referred to the natural numbers as “the
add-one sequence”. Thus, where a mathematician would say
“an = B*n +C, where B = 3 and C = 1” our students would say
“an Add-a-number robot with current equals 1 and add-this
equals 3”. Not only are these descriptions equivalent, they are
both as precise. Once the formalism is established, the natural
numbers become an instance of the class of arithmetic
sequences. Furthermore, using a recursive formalism meant
that the arithmetic sequences became in turn a special case of a
much larger class, as the examples in the previous section
demonstrate.

Using this language, students can construct new
structures from existing ones by applying conceptual metaphor
(Lakoff & Núñez, 1998). They could describe the powers of 2
in terms of “replacing the add-this in Add-a-number with a
times two”.

Students became very proficient at using the tools, both in
terms of completing the programming tasks, and in terms of
using the tools they created when appropriate. During a group
discussion, Alan demonstrated how to train the Add-up robot.
When he finished training, he tested it on the floor.

Alan: It's run out of numbers.

Y: So if you wanted not to run out of numbers?

A: You'd create... you can create an add a number
robot.

Y: Do you have the one you’ve created on the web?

A: yeah…

Y: so go fetch it.

Alan downloaded the Add-a-number robot he built in a
previous session and chained it to his newly built Add-up robot.
He explained:

So you take it out [takes out input box] and you want
to take this robot out [takes add a number robot out of
the box] and you give this numbers box to the in [takes
Add a number’s nest and puts it in add up’s hole] and
then you start this robot up [points to Add a number]

We then asked Paul to give a commentary on Alan’s robots
while they ran:

The 'add up' robot is taking the numbers from the nest
which says numbers I think, and the numbers in the
numbers nest are coming from the other sequence
which the other robot is doing so he's taking these
numbers and he's adding them on to the total creating
a different sequence out of the other sequence.

International Journal for Technology in Mathematics Education, Volume 13, No 2

[11

Yishay Mor, Richard Noss, Celia Hoyles, Ken Kahn and Gordon Simpson

Celia: What is this different sequence that it's
created? This last sequence what is it, can you
describe it?

P: It's,(pause) it adds, it's going up I think,
(laugh) it's going up 1 and adding that number on
each time to the total.

While the first part of his description is procedural, his
answer to Celia’s question shows a deeper understanding.
He describes a process which isn’t seen on screen: the
result of the application of Add-up to the output of Add-a-
number.

Students made sophisticated structural arguments using
ToonTalk terminology. While discussing the sequence 2,
6, 16, 20, 30 … they argued whether it could be produced
by the Add-a-number and Add-up robots. One group
claimed you “needed to retrain the robot to first add 4 then
add 10”. However, Simon remarked:

I think … that sequence would work if it was
possible to have two birds [unclear] one nest,
because you’re using two alternating sequences
and you’re putting them all into one, like, end
result basically
Richard: and if you could have two birds, what
would these two alternating sequences be?
Simon: it would be… one would be ‘add 4’ and
the other one would be ‘add 10’

Simon saw the sequence as a composite of two other
sequences, a structure he did not have the tools to describe
algebraically – and might not for several years – but could
argue about in a coherent manner using a language situated
in his programming experiences.

5 CONCLUSIONS

Our main conclusion is that, under rather
carefully controlled circumstances and with a great deal of
design effort, the modelling approach (in which students
construct and share programs that express the organisation
of rich phenomena) can assist in developing students'
understandings of structure and consistency in
mathematical situations. For some of these phenomena, it
is likely to take several years before our students will
encounter the armoury of algebraic tools that would enable
them to conduct a detailed study. Given this scenario, the
tools we designed did provide an interim solution to this
difficulty that at least led to the students engaging with
non-trivial ideas in mathematics. The examples we include
demonstrate students’ engagement with ideas of variables,
partial sums, equivalence and rate of change.

We saw how the ‘streams’ design pattern allowed
students to mould their intuitions into a situated formalism
with which they could explore quite complex ideas, and
argue convincingly and with commitment for their
hypotheses. Nevertheless, it would be premature to argue
that we can explicitly illustrate any relationship between
our students’ activities and their subsequent ability to
handle algebraic expression: this putative linkage is, more
generally, an area that warrants subsequent research.

By constructing robots that generate number
sequences and then publishing their theories about the
class of sequences which could be generated by their

robots, students were led to reflect on structures rather than
merely patterns. Their initial conjectures were, not
unexpectedly, based on simple patterns. At first, students did
not make implicit mathematical statements: their discourse
remained strictly within the bounds of what was
straightforward in the ToonTalk domain, based on simple
procedures – add 2, ‘times by 3’ etc. Yet given time, the
statements students made regarding the sequences that they
constructed illustrate how they came to transcend the purely
procedural view, and associated the process of generating the
sequence with its mathematical structure. This can be seen
even in the early examples of identifying the type of sequences
that can be generated by robots similar to the one they
constructed. Using the ‘streams’ paradigm, the sum series was
modelled by passing the output of one process as an argument
to another. This approach encourages a view of sequences that
is both a process that unfolds and an object which can be
manipulated by another process. As a result, some students
began clearly to express the relationship between a sequence
and its series, an issue many learners find – again
unsurprisingly – confusing.

Collaboration and discussion played a central role in
the construction of individual and group knowledge. The need
to publish their thoughts in writing, and in a public medium,
provoked students to reflect on their experiences and intuitions.
The process of writing a joint report required that they find a
shared mathematical language, and revisit their arguments.
Reading others’ reports critically, encouraged attention to
detail. Yet all these results were contingent on two major facets:
that the students had something engaging to talk about, and that
they had a reason to talk about it. In our case, the former
consisted of their models and conjectures, and the latter was
built into the activity structure.

In conclusion, we note that our evidence confirms the
claim, well observed in the literature, that students’ intuitions of
number sequences are intuitively recursive (that is, between
successive terms of the co-domain, rather than as a relation
between corresponding elements of the domain and the co-
domain). The ‘streams’ approach seemed to offer a viable
bridge between these two ways of expressing a sequence as a
function. Of course, this is not to suggest that the standard
functional form should be rejected; rather to propose a more
approachable route into sequences and functions that is
contiguous with students’ intuitions. Once students have
established their skills, our expectation would be to address
functions of the natural numbers in a ‘streamlike’ way, for
example, by chaining an Add-a-number robot with an Apply-
function robot, which applies a function to every incoming
input and outputs a stream of new values. This idea was
employed in our design of activities on cardinality of infinite
sets, as discussed by Kahn et al (2005).

As for the group of students referred to in this paper,
the power of the ‘stream’ approach was indeed revealed several
months later, when they returned to study sequences but at a
much higher level. We challenged them, for example, to
construct sequences that ‘get closer to zero but never go below
it’. Although they had not been working in this domain for
very long, the students demonstrated impressive proficiency in
‘stream’ programming – using it to construct complex
sequences and initiate surprising explorations.

2006 Research Information Ltd. All rights reserved.

12]

Designing to See and Share Structure in Number Sequences

REFERENCES

Abelson, H. and Sussman, G. (1996). Structure and
Interpretation of Computer Programs. Cambridge, MA,
MIT. 2nd edition.

Confrey, J., and Smith, E. (1994). Exponential functions,
rate of change, and the multiplicative unit. Educational
Studies in Mathematics, 26, 135-164.

Cornu, B. (1991). Limits. In ed. D. Tall. Advanced
Mathematical Thinking. pp 153-166. Dordrecht, Kluwer.

Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K.,
Thomas, K. and Vidakovic, D. (1996). Understanding the
limit concept: beginning with a coordinated process.
Journal of Mathematical Behavior, 15, 167-192.

Davis, R. and Vinner, S. (1986). The notion of limit: Some
seemingly unavoidable misconception stages. Journal of
Mathematical Behavior, 5, 281-303.

Dossey, J. (1998). Making algebra dynamic and
motivating: A national challenge. In The Nature and Role
of Algebra in the K-14 Curriculum: Proceedings of a
National Symposium. pp 17-22. Washington, DC, National
Academies Press.

Dubinsky, E., Weller, K., McDonald, M., & Brown, A.
(2005). Some historical issues and paradoxes regarding the
concept of infinity: An APOS based analysis: Part 1.
Educational Studies in Mathematics, 58 No 3, 335-359.

Eckel, B. (2002). Thinking in Java. Upper Saddle River,
NJ, Prentice Hall.

Falk, R. and Lavy, S. (1989). How big is an infinite set?
Exploration of children’s ideas. In Proceedings of the
Thirteenth Annual Conference of the International Group
for the Psychology of Mathematics Education. Vol. 1 pp
252-259.

Floris, R. (2004). Some didactical variables for the study
of numerical sequences using a mathematical pocket
computer. In Procceedings of ICME 10. Copenhagen,
Denmark. July 4-11, 2004.

Harel, I. and Papert, S. (1991). Constructionism. Norwood,
NJ, Ablex.

Kahn, K. (1996). ToonTalk - An Animated Programming
Environment for Children, Journal of Visual Languages
and Computing, 7 No.2, 197-217.

Kahn, K., Sendova, E., Sacristán, A. and Noss, R. (2005).
Making Infinity Concrete by Programming Never-ending
Processes. Paper presented during the Symposium on the
WebLabs project at the 7th International Conference on
Technology in Mathematics Teaching, Bristol, UK, July
2005.

Kidron I., Zehavi, N. and Openhaim, E. (2001). Teaching
the limit concept in a CAS environment: students dynamic
perceptions and reasoning. In Proceedings of the 25th

International Conference for the Psychology of
Mathematics Education. Vol 3 pp 241-248. Utrecht

Kieran, C. (1997). Mathematical concepts at the secondary
school level: the learning of algebra and functions. In eds.
P. Bryant and T. Nunes. Learning and Teaching

Mathematics: An International Perspective. pp 133-158. Hove,
Psychology Press.

Küchemann, D. and Hoyles, C. (2005). Pupils’ awareness of
structure on two number / algebra questions. In Proceedings of
the Fourth Conference of the European Society for Research in
Mathematics Education (CERME 4).

Lakoff, G. and Núñez, R. (1998). Conceptual metaphor in
mathematics. In ed. J. Koenig. Discourse and Cognition:
Bridging the Gap. Stanford, CA, CSLI Publications.

Li L. and Tall, D. (1993). Constructing different concept
images of sequences and limits by programming. In
Proceedings of the 17th International Conference for the
Psychology of Mathematics Education. Vol 2, pp 41-48.

Mason, J. (1996). Expressing generality and roots of algebra. In
eds. N. Bednarz, C. Kieran and L. Lee. Approaches to Algebra:
Perspectives for Research and Teaching. pp 65-86. Dortrecht,
Kluwer.

Mor, Y., Hoyles, C., Kahn, K., Noss, R. and Simpson, G.
(2004). Thinking in progress. Micromath, 20 No 2, 17-23.

Mor, Y., Tholander, J. and Holmberg, J. (2005). Designing for
cross-cultural web-based knowledge building. In Proceedings
of CSCL ‘05: The Tenth International Conference on Computer
Support for Collaborative Learning, Taipei, Taiwan.

Noss, R. and Hoyles, C. (1996). Windows on Mathematical
Meanings: Learning Cultures and Computers. Dordrecht,
Kluwer.

Noss, R., Healy, L. and Hoyles, C. (1997). The construction of
mathematical meanings: connecting the visual with the
symbolic. Educational Studies in Mathematics, 33 No 2, 203-
233.

Oehrtman, M. (2003). Strong and weak metaphors for limits. In
Proceedings of the 27th Annual Meeting of the International
Group for the Psychology of Mathematics Education (PME).
Honolulu, Hawaii, vol 3, 397-404.

Olive, J. (2001). Children’s number sequences: an explanation
of Steffe’s constructs and an extrapolation to rational numbers
of arithmetic. The Mathematics Educator, 11 No 1, 4-9.

Papert, S. (1991). Situating constructionism. In eds. I. Harel
and S. Papert. Constructionism. Norwood, NJ: Ablex.

Radford, L. (2000). Signs and meanings in students’ emergent
algebraic thinking: a semiotic analysis. Educational Studies in
Mathematics, 42 No 3, 237-268

Sacristán, A. I. (1997). Windows on the Infinite: Creating
Meanings in a Logo-based Microworld. Unpublished PhD
Thesis, University of London, Institute of Education.

Salvit, D. (1977). An alternate route to the reification of
function. Educational Studies in Mathematics, 33, 259-281.

Sasman, M., Olivier, A. and Linchevski, L. (1999). Developing
and stimulating generalisation thinking processes and skills. In
Fifth Annual Congress of the Association for Mathematics
Education of South Africa. Vol 1, pp 177-182. Port Elizabeth,
SA, Port Elizabeth Technikon.

Scardamalia, M. and Bereiter, C. (1994). Computer support for
knowledge-building communities. Journal of the Learning
Sciences, 3 No 3, 265-283.

International Journal for Technology in Mathematics Education, Volume 13, No 2

[13

Yishay Mor, Richard Noss, Celia Hoyles, Ken Kahn and Gordon Simpson

Sfard, A. (1991). On the dual nature of mathematical
conceptions: reflections on processes and objects as
different sides of the same coin. Educational Studies in
Mathematics, 22, 1-36

Shapiro, E. (1988). Systolic programming: a paradigm of
parallel processing. In ed. E. Shapiro. Concurrent Prolog:
Collected Papers. pp 207-242. Cambridge, MA, MIT
Press.

Simpson, G., Hoyles, C. and Noss, R. (2005). Designing a
programming-based approach for modelling scientific
phenomena. Journal of Computer Assisted Learning, 21
No 2, 143-158.

Simpson, G., Hoyles, C. and Noss, R. (2006). Exploring
the mathematics of motion through construction and
collaboration. Journal of Computer Assisted Learning, 22
No 2, 114-136.

Sriskanda, N. (2003). Using Excel spreadsheet to
understand the limiting value of a sequence. In Electronic
Proceedings of the Sixteenth Annual International
Conference on Technology in Collegiate Mathematics.
Chicago.

Steffe, L. (1988). Children’s construction of number
sequences and multiplying schemes. In eds. J. Heibert and
M. Behr. Number Concepts and Operations in the Middle
Grades. pp 119-140. Hillsdale, NJ, Lawrence Erlbaum
Associates.

Steffe, L. (1994). Children’s multiplying schemes. In eds.
G. Harel and J. Confrey. The Development of
Multiplicative Reasoning in the Learning of Mathematics.
pp 3-40. Albany, NY, State University of New York Press.

SUN (2005). STREAMS Programming Guide. Santa Clara,
CA: Sun Microsystems.

Tall, D. and Schwarzenberger, R. (1978). Conflicts in the
learning of real numbers and limits. Mathematics
Teaching, 82, 44-49.

Tall, D. and Gray, E. (1993). Success and failure in
mathematics: the flexible meaning of symbols as process
and concept. Mathematics Teaching, 142, 6-10

Tirosh, D. (1991). The role of students’ intuitions of
infinity in teaching the Cantorial theory. In ed. D. Tall.
Advanced mathematical thinking. pp 199-214. Dordrecht,
Kluwer.

Weigand, H. (1991). Iteration sequences and their
representations. Educational Studies in Mathematics, 22
No 1, 411-437.

Yackel, E. and Cobb, P. (1995). Classroom socio-
mathematical norms and intellectual autonomy. In
Proceedings of the 19th International Conference for the
Psychology of Mathematics Education. Vol 3 pp 264-271.

Zazkis, R. and Liljedahl, P. (2002). Generalization of
patterns: the tension between algebraic thinking and
algebraic notation. Educational Studies in Mathematics, 49
No 3, 379-402.

 BIOGRAPHICAL NOTES

Yishay Mor holds an MSc in computer science from
the Hebrew University, Jerusalem. Before being a researcher
with the Weblabs project he was a software engineer with Cisco
systems. He is now a researcher with the Learning patterns
project.

Richard Noss is Professor of Mathematics Education,
and co-director of the London Knowledge Lab. He has a
Masters degree in pure mathematics, and a PhD in
mathematical education. Professor Noss was, until recently, the
Pro-director (ICT) of the Institute of Education.

Celia Hoyles is Professor of Mathematics Education at
the Institute of Education. She is the first recipient of the Hans
Freudenthal Medal, and was awarded an OBE in 2004. She is
currently the Government's Chief Adviser for Mathematics.

Gordon Simpson holds a BE in Electrical and
Electronic Engineering and MSc in Psychology from the
University of Canterbury, New Zealand.

Ken Kahn holds a PhD in computer science and
artificial intelligence from MIT. He is the designer and
developer of ToonTalk. Prior to this, he researched
programming languages at Uppsala University and Xerox
PARC.

2006 Research Information Ltd. All rights reserved.

14]

	1Introduction
	2AN ALTERNATIVE REPRESENTATION FOR SEQUENCES
	3Design of tools and activities for sequences and series
	4A FEW ILLUSTRATIVE EXAMPLES OF ACTIVITIES (AND LEARNING)
	5Conclusions
	References

