
HAL Id: hal-00190281
https://telearn.hal.science/hal-00190281

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Design Engines as Remote Control to Learning
Support Environments.

Andreas Harrer, Nils Malzahn, Kay Hoeksema, Ulrich Hoppe

To cite this version:
Andreas Harrer, Nils Malzahn, Kay Hoeksema, Ulrich Hoppe. Learning Design Engines as Remote
Control to Learning Support Environments.. Journal of Interactive Media in Education, 2005, 05.
�hal-00190281�

https://telearn.hal.science/hal-00190281
https://hal.archives-ouvertes.fr

Harrer, A., Malzahn, N., Hoeksema, K. & Hoppe, U. (2005).

Learning Design Engines as Remote Control to Learning Support Environments.

Journal of Interactive Media in Education 2005(05).

[jime.open.ac.uk/2005/05].

Andreas Harrer, Nils Malzahn, Kay Hoeksema,
and Ulrich Hoppe, Universität Duisburg-Essen. Page 1

25 August 2005

ISSN: 1365-893X

Learning Design Engines as Remote Control to
Learning Support Environments

Andreas Harrer, Nils Malzahn, Kay
Hoeksema, Ulrich Hoppe

Abstract:
Context:

Chapter 5 of the Learning Design book describes the operational model of a learning design
engine based on the concept of finite automata with output alphabet. We rely on this event
concept to include pre-existing learning tools in flexibe and rich learning designs.

Contribution:

We sketch an approach for the integration of complex learning environments in learning
designs. Interactive learning support environments, such as argumentation or modelling
tools are pre-existent and have a high potential when integrated in learning designs.

We propose an approach that aims at a clear separation of the learning design engine, the
specification of the learning flow (as LD documents) and learning environments. According
to its current state, the engine controls the learning environment with events (such as "start
a new phase"), defined as a vocabulary for a set of environments, that are mapped to the
environments' existing functionality (such as "create new workspace"). Thus the engine
remotely controls the learning tools while the tools can initiate state transitions in the
engine on specific events in the tool.

Keywords: Learning Design Engine, Learning Support Environment, Interoperability

Commentaries:
All JIME articles are published with links to a commentaries area, which includes part of
the article’s original review debate. Readers are invited to make use of this resource, and to
add their own commentaries. The authors, reviewers, and anyone else who has ‘subscribed’
to this article via the website will receive e-mail copies of your postings.

Learning Design Engines as Remote Control

Journal of Interactive Media in Education, 2005 (05) Page 2

Harrer, et al. (2005)

1 Learning Support Environments without
Learning Design Engines and vice versa

Up to now complex learning support environments (LSE) and learning design plays are
largely unrelated and co-exist, but do not co-operate. On the one hand learning support
environments, such as WISE (2005), Co-Lab (2005) or Belvedere (Suthers, Weiner,
Connelly, & Paolucci (1995)), either have a specific ("hard-wired") process model
embedded or do not have an explicit learning process model at all. On the other hand
environments that use learning design documents as process scaffolds or "scripts" are
usually oriented towards delivery of web-content and some simple services, such as
conference tools. Making the learning processes explicit in a formal specification, such as
IMS/LD, offers the possibility to re-use the pedagogical rationale that is reflected within the
specification. This makes it attractive for pre-existing learning support environments to
utilize the formal character of IMS/LD and the availability of learning design engines
(LDE), such as CopperCore (2005), to have an explicit process support within the learning
environments without having to implement a process model from scratch for each
individual environment. In the next section we will present our approach to achieve synergy
between both lines of computer-based learning and an architecture supporting this
approach.

2 Bringing it all together – flexible
integration of LSE and LDE

Our starting point that leads to an integration effort of these both lines of development and
research in computer-supported learning was, that we have been using the collaborative
modelling and discussion support environments Cool Modes (Pinkwart, 2003) and
FreeStyler (Hoppe & Gaßner, 2002) in a wide variety of domains (such as brainstorming,
UML modelling, System Dynamics modelling, creation of argumentation graphs) and with
different social forms, such as dyads, small groups and classroom groups. The scope of
these tools' usage is very broad, but on the other hand setting up the scenario and having a
pedagogically-based sequence of learning activities had to be done manually and without
explicit process structure within the system. Thus the availability of formal descriptions of
learning processes with IMS/LD and their interpretation within LD engines attracted our
attention. The challenge is now to integrate a full-fledged learning support environment
with a learning design engine without comprimising either of the two sides on the
implementation level.

2.1 The basic idea

We propose an approach that aims at a clear separation of learning design engine, the
specification and implementation of the learning flow (as LD documents) and learning

Learning Design Engines as Remote Control

Journal of Interactive Media in Education, 2005 (05) Page 3

Harrer, et al. (2005)

environments. In this proposal we assume that the learners interact excusively with the LSE
without having to know anything about being "scripted" or "scaffolded" by the LDE resp.
the LD document. According to Vogten, Koper, Martens, and Tattersall (2005) learning
design engines can be considered as a collection of finite state machines that react to
changes of properties with state transitions by sending events of a specific output alphabet.
In the loosely-coupled connection of an engine with a learning support environment
presented in figure 1, the engine controls the learning environment with output events (such
as "start a new phase", event 1.), defined as a vocabulary for a set of environments, that are
mapped by the environment to its existing functionality (such as "create new workspace",
the configuration of the LSE through event 1.1). The learners interacting with the learning
support environment create events (user action 2.), such as "phase is completed" (either
directly or monitored by the LSE), that map to the input alphabet of the engine's state
machines and are propagated to the LDE (message 2.1). The triggered state transition
(message 2.2) causes the learning process to advance and will again trigger control
messages (event 3.) to be accepted by the LSE. In that way we get the regulation cycle of
figure 1 with the LDE and the LSE influencing each other's state. Using a generic
vocabulary of communication primitives between the LDE and LSE has the advantage, that
the LD document can be used with a variety of different LSEs without any changes to the
document, given that the LSE can make use of primitives of the vocabulary.

Figure 1: UML communication diagram for interaction schema between LDE and

LSE

To explain the basic idea we introduce the simple learning flow sketched in Figure 2 as an
example. First the students explore a phenomenon (e.g. the ballistic curve of a stone) and
describe what they see. Then they model the observed phenomenon within a modelling
environment. Every time a student states that the model is sufficient, it is frozen and each
student has to vote if he approves the model. If there is a consensus the students present
their model to the teacher. If they do not agree the modelling activity is continued.

This pattern is quite common for problem based learning. It can be varied, e.g. by changing
the condition by which the students can finish the modelling phase. Alternatives to the

Learning Design Engines as Remote Control

Journal of Interactive Media in Education, 2005 (05) Page 4

Harrer, et al. (2005)

consensus decision are:
- a majority decision

- a teacher's decision

- a time constraint

- a semantic system constraint (e.g., the system checks the current model against a
database of correct solutions and ends the modelling activity automatically if there
is a match)

Figure 2: learning flow diagram describing an example process with activities
supported by LSE(s)

To model this learning flow in IMS LD we will map each of the four learning activities to
an activity element within IMS LD. In the beginning only the introductory activity is

Learning Design Engines as Remote Control

Journal of Interactive Media in Education, 2005 (05) Page 5

Harrer, et al. (2005)

shown, all other activities are hidden. The following properties are set up:
- current_activity ∈ {observing, modelling,presenting}

- voting_demanded ∈ boolean

- voting_active ∈ boolean

- voting_result ∈ real

- consensus_achieved ∈boolean

The properties, defined at IMS/LD level B, enable the dynamic regulation of the learning
process within the LSE inititiated by the control messaged the LDE sends to it. The
associated workspaces within our LSE are shown and hidden according to the orders the
engine gives it. Depending on the state of the properties that are changed by the user's
actions within the workspaces, e.g. conducting a voting, the engine's state machines are
updated and lead potentially to state transitions. This is formalized in the Learning Design
description as conditions, such as "if voting-result greater-than 0.8" or "if consensus-
achieved is true". Evaluating the conditions causes new control events that are sent to the
LSE to initiate a new setup there, e.g. going from state "Decision on solution" to state
"Presenting the solution" when a consensus has been reached, which means that the
presentation workspace will be made visible and properly configured with the produced
solution.

2.2 The practical implementation

For the practical implementation we defined an architecture that brings together LSEs and
LDEs without having to make substantial changes in either of the two components: the
schematic overview of the architecture can be found in figure 3 and the components
introduced have the following function:

Learning Design Engines as Remote Control

Journal of Interactive Media in Education, 2005 (05) Page 6

Harrer, et al. (2005)

Figure 3: Remote Control Architecture for interaction between LDE and LSE

• Engine Extension (CopperCore Extension): this component extends the event

propagation mechanism of the learning design engine, so that on state transitions
within the engine, events are sent to the LSE to remotely control the learning
process according to the LD document's description. This event is sent indirectly
to the LSE via the Remote Control Component

• Remote Control Component: this component is the mediator between LDE and
LSE; it maps events coming from the LDE to one or more communication
primitives, that build the vocabulary for remotely controlling learning support
environments, such as Co-Lab or Cool Modes. These "commands" are then sent to
the "remote API" of the specific LSE.

• LSE Remote API (Translator): this interface accepts communication primitives
that have been defined for a variety of different LSEs and maps these primitives to
the specific functionality available in the concrete LSE. For example. the

Learning Design Engines as Remote Control

Journal of Interactive Media in Education, 2005 (05) Page 7

Harrer, et al. (2005)

communication primitive "ShowWorkspace for Decision Phase" could be mapped
to calling the functionality "Make visible a workspace with title 'Decision on
Solution' and add a Voting Plugin" in the Cool Modes environment (see figure 4).
The primitive that has been sent out from the Remote Control Component to the
subscribers of this primitive (all LSEs that understand the primitive) is then
translated to a call of the respective functionality of the LSE; thus this can be
considered a remote call of the LSE functionality by the Remote Control
Component.

Figure 4: The Cool Modes

learning environment before (left) and after (right) transmission of the
communication primitive "ShowWorkspace for VotingPhase" from CopperCore
Engine. In the right part the voting plugin was added (small icon in top right corner)
and an additional window appeared to conduct the voting.

If some decisions in the learning process should be taken by the teacher at runtime, the
remote control component is planned to be used in combination with a GUI frontend for the
teacher to control the learning process, using the same functionality as the LDE. This
analogous way of using the remote control is shown in figure 3 at the bottom right.

We implemented this architecture proposal prototypically using CopperCore as LDE and
Cool Modes as LSE. Both creation of events in the engine extension and the mapping to
Cool Modes functionality by a "Cool Modes translator" have been realized. The Remote
Control Component encapsulates the mapping from LDE events to general communication
primitives and uses the Java Message Service (JMS) to publish the primitives to the

Learning Design Engines as Remote Control

Journal of Interactive Media in Education, 2005 (05) Page 8

Harrer, et al. (2005)

translators subscribing to the Remote Control, i.e. the components that provide the remote
interface to integrate Learning Support Environments into the learning design. At the
moment we are in the process of generalizing and extending the vocabulary of
communication primitives useful for different LSEs and the mapping to concrete LSEs, like
Cool Modes and Co-Lab.

3 Conclusion and Outlook

The work presented here makes a first step in the integration of learning design descriptions
and engines with complex learning support environments, that might be used for a variety
of activities of a learning design. The basic idea is to keep the process execution and the
practical activities separated, such that both engines and learning environments do not have
to be modified substantially. This is achieved by definition of a vocabulary to let the LDE
control remotely the LSEs that is used to regulate and configure the LSEs accoring to the
state of the learning process. The central component to achieve this loose coupling is called
"Remote Control Component".

In our presentation we assumed implicitly that the learners interact exclusively with the
LSE without knowing anything about the process state of the learning design. When, in
contrast, the learners should be made aware of the process, e.g. to give them a help in their
orientation of what they have already achieved, a tool that visualizes the current state of the
engine (much like the conventional function of a player) could be introduced. This process
awareness tool could also have control elements for the process (such as "proceed to the
next phase") to initiate events and thus state changes within the engine. Similarly a teacher
could use the Remote Control Component (see figure 3 lower right) via a teacher frontend
in case the teacher has to decide personally on the regulation of the learning process, e.g. if
some details cannot be described in advance in the LD document.

Acknowledgements: We thank our student Benedikt Roth for his implementation
work on integrating CopperCore and Cool Modes. Additionally we thank all the
people that helped us to refine the idea of the "remote control" in discussions, such
as our partners in the COSSICLE European Research Team in the Kaleidoscope
Network of Excellence.

4 References
Co-Lab (2005): Collaborative Laboratories, European Founded IST-Project No. IST-2000-
25035, Accessed online on 3 May 2005 at: www.co-lab.nl,

Learning Design Engines as Remote Control

Journal of Interactive Media in Education, 2005 (05) Page 9

Harrer, et al. (2005)

CopperCore (2005), The IMS Learning Design Engine, Accessed online on 3 May 2005 at:
coppercore.org/

Hoppe, H. U. & Gaßner, K. (2002). Integrating collaborative concept mapping tools with
group memory and retrieval functions. In G. Stahl (Eds.), Computer Support for
Collaborative Learning: Foundations for a CSCL Community . Boulder, USA: distrib.
Lawrence Erlbaum.

Pinkwart, N. (2003). A Plug-In Architecture for Graph Based Collaborative Modeling
Systems. In U. Hoppe, F. Verdejo & J. Kay (eds.): Proc. of Artificial Intelligence in
Education, Amsterdam, IOS Press.

Suthers, D., Weiner, A., Connelly, J. & Paolucci, M. (1995). Belvedere: Engaging students
in critical discussion of science and public policy issues. In Greer, J. (Ed.), Proc. of AI-ED
1995. Washington DC (USA).

Vogten, H., Koper, R., Martens, H., and Tattersall, C. (2005). An Architecture for Learning
Design Engines. In Koper, R., Tattersall, C. (eds.): Learning Design. Springer: Berlin.

WISE (2005) : the web-based inquiry science environment, Supported by the National
Science Foundation NSF, Accessed online on 3 May 2005 at: wise.berkeley.edu

