
HAL Id: hal-00190243
https://telearn.hal.science/hal-00190243

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generating reports of graphical modelling processes for
authoring and presentation

Lars Bollen

To cite this version:
Lars Bollen. Generating reports of graphical modelling processes for authoring and presentation.
12th International Conference on Artificial Intelligence in Education, 2005, Amsterdam, Netherlands.
�hal-00190243�

https://telearn.hal.science/hal-00190243
https://hal.archives-ouvertes.fr

Generating Reports of Graphical Modelling
Processes for Authoring and Presentation

Lars BOLLEN
University of Duisburg-Essen

Faculty of Engineering
Institute for Computer Science and Interactive Systems

47048 Duisburg, Germany

Abstract. Today's computer supported modelling environments could provide much
more information about the users’ actions and problem solving processes than they
usually store for later usage. Thus, relevant information about learning processes
which could be used for reflection and analysis is lost.
This paper describes an approach to tackle this issue by generating “reports”, in the
sense of augmented summaries of states and action traces from modelling processes.
This approach includes a) gathering information about actions and states from specific
modelling environments, b) analysing these information using domain knowledge (if
available) and c) represent the results in a way suited for various use cases like
authoring, presentations or monitoring of learning processes.

1. Introduction and problem description

In many areas of teaching and learning (especially in natural sciences and computer science),
the task of modelling is crucial for students to get deeper insights into the problem domain, to
be able to create hypotheses and predictions of complex phenomena and to improve
communication and coordination between peers and with the teacher [1]. Especially when
learners create models themselves that are executable and actively explorable, there is
definitely value added compared to static representations (e.g. in books or on a chalkboard).
While modelling, the learner interacts with computational objects, manipulates them and
thereby makes his thoughts explicit. In this context, the phrase “objects to think/work with” has
been introduced in [2], meaning that the exploration, manipulation and creation of artefacts
support in establishing understanding.
 Having these ideas in mind, the modelling environment Cool Modes (Collaborative
Open Learning and Modelling System) [3] has been developed. Cool Modes is a framework
for collaborative modelling with graph based visual languages like Petri Nets, System
Dynamics, UML class diagrams and many more.
 Nevertheless, when a learner finishes a modelling task with a modelling environment
like Cool Modes, usually only a result is stored. The process of creating and exploring a model
is compressed to a single artefact. In more detail:
• The process of his work gets lost, since only the result is stored. The single actions that

lead to this result, are usually lost.
• Information about different phases (e.g. phases of argumentation and coordination with

peer, design, verification, revision, annotation etc.) the user went through in his problem
solving process gets lost.

• The design rationale is lost, unless the user made it explicit in his solution or in additional
documents.

• Elaboration of alternative solutions usually cannot be reproduced, since older creations are
simply overwritten by newer ones.

• Information about collaboration gets lost having only a single artefact as the output of a
modelling process.

Knowledge about these issues is helpful for various target groups and for various purposes:
• The learner himself could use this information for self reflection, self / peer assessment,

peer authoring / vicarious learning [4] and for presenting own results.
• Teachers could be supported in assessment, authoring (by demonstrating solutions and

presenting prepared material) and for finding typical problems in students’ solutions.
• Researchers in the field of AIED / CSCL could use the additional information for

interpreting and understanding learners’ actions and results and for applying different
analysis mechanisms on the stored states and action traces.

So, having the various information mentioned above might be helpful for different target
groups and different use cases. The challenge is to obtain the required information, to interpret
the information, to organise and present it in a general but still useful way.

2. Related work

2.1 Record and Replay

Some approaches like Ottmann’s “Authoring on the fly” [5] and Rojas’ “E-Chalk” [6] store
process-related data in additional to the result, too, but they use a “record and replay”
approach. The purpose is to record whole lectures in universities in order to stream them via
internet or to replay them later. The target group of this approach is mainly students. Only a
linear structure of material is supported; alternative solutions cannot be represented easily
without recording a completely new session. During the record, there is no analysis or
interpretation of actions taking place. Thus, you have to cut or skip irrelevant phases manually.

2.2 Series of snapshots: COPRET

A different approach called COPRET (“COllaboration Progress REproduction Tool”) can be
found in [7]. Here, a collaborative discussion support tool is observed by an analysis
component that generates snapshots (images) of the learning environment at well defined
points in time (e.g. after a change of control between the users or after insertion, modification
or deletion actions). As a result, this tool produces a Word file that contains the teacher’s and
the students’ actions and messages as well as screenshots in a chronological order. This
approach combines some basic aspects of analysing user actions and storing process-related
data, but focuses on supporting teachers assessing and interpreting students’ results and cannot
be used for authoring or presentations.

2.3 Behavior Recorder / CTAT

Another approach that focuses on analysing and tutoring problem solving processes is
described by Koedinger et. al [8]. For well-defined problems (including a well-defined user
interface) like the addition of two fractions, the so-called Behavior Recorder is able to record
various paths of actions, which are specified by a teacher, that lead to correct or incorrect
solutions. Enriching these paths manually with tutor messages builds a pseudo cognitive tutor
that is able to feed back messages into the learning environment when the same (correct or
incorrect) actions are done again by a learner. Recently, this approach has been extended to

analyse collaborative, open modelling tasks [9]. Alternative solutions can be recorded and
displayed, but they cannot be fed back into the modelling environment. Thus, the focus in this
approach is on analysing and tutoring users’ actions.

3. Approach and prototypical implementation

The problem that has been described in the chapters above can be addressed and solved by
generating reports. Reports, in the sense of this approach, are summaries of states and action
traces from modelling processes. The problem description raises some requirements that a
report generation tool has to comply with.
 Generally speaking, a modelling environment can provide information about the actual
state of a model as well as information about the actions that the learners execute while
modelling. Thus, a report generation tool has to be able to gather and organise both types of
information. Collecting information about states and about actions of a modelling environment
enables for a rich examinations of the modelling process, since action-based analysis methods
as well as state-based analysis methods can be applied [10].
 Having these different kinds of information calls for an appropriate way of visualising
them. A graph-based visualisation of a report generation tools seems to be adequate for two
reasons. First, most modelling environments use graph-based visualisations themselves, so it
reduces cognitive load when teachers, students or researchers are using a modelling
environment and a report generation tool. Second, when talking about traces of actions that
lead to different states, it seems to be quite similar to paths on a map that lead to different
places. Thus, a graph-based representation seems to be quite naturally (see figure 1).
 The problem description came up with the possibility of using reports for presenting
results to peers or to students. This requirement can be fulfilled by having means for interactive
browsing and for feeding states from the reporting tool back into the modelling environment,
thus providing flexibility in presentation.
 When using a report generation for authoring learning material, re-arranging, modifying
and establishing new connections between states in the captured material has to be possible,
providing creativity in authoring.

Figure 1. Using GRAP with Cool Modes when modelling a Petri Net. On the left, the modelling environment

Cool Modes is shown; on the right, the report generation tool GRAP. The basic modes of operation, capturing and
feeding back, are sketched in the figure.

 On the way fulfilling and implementing these requirements, a prototypical report
generation tool called “GRAP” (“Generating Reports for Authoring and Presentations”) has
been created. GRAP’s basic modes of operation are capturing states of a modelling

environment at specific times during the learning / modelling process as well as storing the
actions that occur between these states, display this information in a graph-based structure and
feeding these states back into the learning support environment. Typically, the nodes of this
graph represent the states of a model while the edges hold the information about the users'
actions (see figure 1).
 The decision about suitable moments for capturing is critical for having a useful
summaries of modelling processes. According to specific usage scenarios, this can be decided
by the user of GRAP herself (e.g. for authoring, see chapter 5) or automatically by the system
(e.g. for automated documentation). In the latter case, the report generator has to interpret the
actions to be able to detect phases or milestones in the modelling process to find detect suitable
moments for capturing. This interpretation of user actions is usually dependent on the domain
that these actions are related to, as it has been described in [1].
 Cool Modes provides all requested features like supplying information about the actual
state of the model, about the users' actions and it is capable of playing back states and actions.
Technically speaking, Cool Modes is able to be synchronised with other application by using a
communication server called MatchMaker [11], replicating the state of the modelling
environment on each client and propagating user actions. GRAP is attached to this distributed
system as just another client, able to listen to user actions, to capture the complete state of the
modelling environment and to feed information (e.g. states or actions) back into the system.
 These features made Cool Modes an appropriate candidate as a modelling environment
to build a prototypical implementation of a report generation tool. At the current moment,
GRAP is able to capture the states and user actions of the modelling environment Cool Modes
at any time. This information is organized in a graph-based structure (see figure 1, right hand
side); the nodes represent different states, the edges represent the actions that lead from one
state to another (these actions are not shown in figure 1). The states can be fed back into the
modelling environment at any time.

4. Scenarios

To clarify this approach and to point out the usefullness of the solution described above, three
scenarios will be presented in the following.

4.1 Authoring

A teacher of a biology course in school chooses the to model predator-prey interactions (e.g.
foxes and rabbits) as a topic for the next lesson. He decides to use a modelling software like
Cool Modes (using the System Dynamics plug-in [12]) to model, visualise and simulate the
equations that represent the predator-prey interactions. Creating the model from scratch would
be too time consuming for a lesson in school; presenting a pre-constructed model is probably
too difficult for the students. He starts creating the model the day before at home, using GRAP
to snap important steps during the modelling process. He creates several, different, non-linear
presentation paths to be able to explain intermediate results and alternatives, to show typical
mistakes and dead ends and to have answers to possible questions at hand. During the lesson,
the teacher uses GRAP to feed back different stages of the model into the modelling software,
still being able to use the modelling tool as such, rather than doing a predefined slide show.
GRAP may propose presentation paths from given start and end states to visualise (and to
understand) the evolution of a desired solution.
 Thus, GRAP would be used in a way similar to an authoring tool. Prepared material can
be arranged in a complex, non-linear structure to have flexible means for presenting prepared
material, still being able to shift into modelling activities and simulations at any time.

4.2 Documentation on-the-fly

During discussion in class at school or during meetings in a research group, it is quite common
to create concept maps of the problem domain, to create QOC [13] networks to document
design decisions or to point out (or even solve) problems. For people that could not attend the
meeting, for students trying to remember the course of a lesson, or simply for late-comers, it is
often difficult to reconstruct the meaning and creation process of a model or the evolution of a
concept map. GRAP will be able to analyse modelling actions while they take place, decide
about important stages and take snapshots from these important steps. These snapshots are
arranged in a graph, showing which state lead to another. In a linear process this graph will be
a simple linked list. However, if the users go back to a previous state and continue from there
to create an alternative solution, the graph becomes more complex. This graph can be used to
catch up on the content of the discussion, meeting or lesson.
 In this way, GRAP can be used for documenting and retrieving various modelling
processes. Viewers do not have to watch whole replays, but can fall back on a compressed, yet
relevant summary of a modelling process.

4.3 Monitoring and analysing

A researcher in the field of computer-supported learning and artificial intelligence in education
is interested in particular features of collaboration such as joint exploration of a given model.
He uses GRAP to capture the state of a modelling environment at specific times while groups
of students are trying to solve modelling tasks. Various filters and analysis methods could be
applied to the states and action traces that are gathered by GRAP. Even more, results and
process related data from different groups of students are displayed and compared at the same
time, still being able to feed back intermediate results to get a detailed insight into the learning
process that is being analysed.
 Here, GRAP is used to support analysis of learning processes by capturing states and
action traces from modelling environments and applying state based analysis methods as well
as action based analysis methods.

5. Challenges and future work

On the way to finish this prototypical implementation, several challenges have to be mastered:
 One of these challenges is an appropriate analysis, interpretation and assessment of user
actions, potentially taking into account the domain and the context of these actions. This
interpretation of user actions helps identifying phases and milestones in modelling processes,
thus being a way to find suitable moments for capturing the state of a model.
 Another challenge is the elaboration of the meaning of edges between states in the report
graph. Here, an appropriate approach for teacher’s authoring could be the classification into
didactical relations (e.g. “X introduces to Y”; “X is exemplified by Y”) as described in [14].
 Another interpretation of the meaning of edges might be the “degree of relevance” of
user actions. Considering the domain and context of an action (as described above), the system
will be able to decide the relevance of particular actions for the modelling actions.
 A challenge on a broader scale is to find a way to integrate a report generation tool like
GRAP into several other modelling tools like CoLab [15] or ModellingSpace [16]. Therefore, a
common data format to describe actions and states on modelling environments has to be found
or defined. A standardised message and state description opens the way for integration, which
would be obviously beneficial.

6. Conclusion

It has been described, that the potential information about learning and modelling processes
from modelling environments is not used to a full extent at the moment. Details about
intermediate states of models and about users’ actions get lost in most cases.
 This information can be valuable for target groups like students, teachers and researchers
for use cases like authoring, documenting and analysing modelling processes.
 An approach and a prototypical implementation called GRAP has been described. This
approach uses state based and action based analysis to capture the states of a modelling
environment at specific time as well as storing the users’ action that occurred. The captured
states and actions are summarised in a report, that is visualised in a graph-based structure.
These states can be fed back into the modelling environment.
 Still, there are several challenges like using domain knowledge to interpret the actions,
calculating suitable moments for automated capturing of states and finding a common,
standardised description for states and action of modelling processes.

7. References

[1] Harrer, A., and Bollen, L. (2004). Klassifizierung und Analyse von Aktionen in Modellierungswerkzeugen zur

Lernerunterstützung. In Workshop-Proc. of Modellierung 2004, Marburg.
[2] Harel, I. and Papert, S. (eds.) (1991): Constructionism. Ablex Publishing. Norwood, NJ.
[3] Pinkwart, N. (2003). A Plug-In Architecture for Graph Based Collaborative Modelling Systems. In Proc. of

the 11th Conference on Artificial Intelligence in Education (AIED 2003), Amsterdam, IOS Press.
[4] Rummel, N., and Spada, H. (2002). Combining worked-out examples and vicarious learning to promote the

coordination of computer-mediated interdisciplinary collaboration. In Proc. of AERA 2002, New Orleans.
[5] Müller, R., Ottmann, T. (2000). The "Authoring on the Fly" System for Automated Recording and Replay of

(Tele)presentations. Special Issue of Multimedia Systems Journal, Vol. 8, No. 3, ACM/Springer.
[6] Rojas, R., Knipping, L., Raffel, W.U., and Friedland, G. (2001). Elektronische Kreide: Eine Java-

Multimedia-Tafel für den Präsenz- und Fernunterricht. In Beck, Sommer (eds.): Tagungsband der Learntec,
Vol 2, pp. 533-539, Karlsruhe.

[7] University of Aegean / LTEE (2004). State of the Art on Interaction Analysis: Interaction Analysis
Indicators. Deliverable D.26.1 of Kaleidoscope “Network of Excellence” research project on “Interaction
and Collaboration Analysis supporting Teachers’ and Students’ Self-regulation”.

[8] Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B. M., and Hockenberry, M. (2004). Opening the
Door to Non-Programmers: Authoring Intelligent Tutor Behavior by Demonstration. In Proceedings of 7th
International Conference on Intelligent Tutoring Systems, ITS 2004, Maceio, Brazil.

[9] McLaren, B., Bollen, L., Walker, E., Harrer, A., and Sewall, J. (2005). Cognitive Tutoring of Collaboration:
Development and Empirical Steps Towards Realization. Accepted for the Conference on Computer
Supported Collaborative Learning, CSCL 2005, to take place in Taipei, Taiwan in May/June 2005.

[10] Gaßner, K., Jansen, M., Harrer, A., Herrmann, K., and Hoppe, H.U. (2003). Analysis methods for
collaborative models and activities. In Proceedings of the International Conference on Computer Supported
Collaborative Learning (CSCL 2003), Bergen.

[11] Jansen, M. (2003). Matchmaker - a framework to support collaborative java applications. In the
Proceedings of Artificial Intelligence in Education (AIED 2003), IOS Press, Amsterdam.

[12] Bollen, L., Hoppe, H.U., Milrad, M., and Pinkwart, N. (2002). Collaborative Modelling in Group Learning
Environments. In Proc. of the Int. Conf. of the System Dynamics Society, Palermo (Italy), July 2002, pp. 53.

[13] MacLean, A., Young, R., Belloti, V., and Moran, T. (1991). Questions, options, and criteria: Elements of
design space analysis. Human-Comput. Interaction, 6(3–4), 201–250.

[14] Baloian, N. (1997). Strukturierte Erstellung und Kooperative Nutzung von Instruktionsmaterial in einem
Computerintegrierten Klassenraum. PhD Thesis. University Duisburg, Germany, September 1997.

[15] CoLab – Collaborative Laboratories for Europe, website http://www.co-lab.nl
[16] ModellingSpace - website http://www.modellingspace.net

