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Abstract 

This study investigates, using a perspective based on the work of Karl Popper, how students aged 
10-15 can learn about simple linear equations, with particular reference to the use of a 
computerised balance model of an equation. 

Popperian epistemology implies a conjectural view of knowledge, in which rigour is dependent 
on the potential for intersubjective criticism. A Popperian approach to psychology is advocated, 
in which “understanding” is viewed as problem-solving rather than sense-making, imagining or re-
enactment; and learning occurs through trial-and-improvement of strategic theories in response to 
concerns, rather than through the development of context-free modes of thought. From this 
perspective, explanatory constructs from research into learning algebra such as “letter 
interpretations” and “equation metaphors” are seen as recontextualised meta-algebraic theories 
rather than as slowly maturing “underlying” algebraic cognitive structures. 

A Popperian reinterpretation of the research literature into the problem of learning algebra 
enables the development of an instrument to detect learning in a range of principal algebraic 
concerns - representation, interpretation, transformation and utilisation. A computer program 
called EQUATION is also constructed, which acts as a research tool to explore the educational 
limitations of the balance model of an equation. 

Fieldwork is carried out to test conjectures relating to the program, involving around 100 
students. Analysis involves reconciliation of classwork learning and pre-post testing. It is argued 
that a concern for symbolic algebra can be initiated firstly by using the balance model to promote 
formal operations on equations and secondly by encouraging the formulation of equations to find 
an unknown number in a word problem. In addition, by providing progressive challenge and 
feedback on the effects of operations, it is possible for students to create, test and improve 
strategic theories for a number of transformation and representation problems. 
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Introduction 
The latest international studies and numerous cognitive research studies suggest that there is 
room for improvement in the algebraic knowledge of a large proportion of students. Particular 
difficulty is found with handling expressions and equations; and many students never seem to 
appreciate that algebra is a tool rather than some arcane ritual. How can more students be helped 
to appreciate the power and challenge of symbolic algebra? This research aims to explore using a 
Popperian perspective how students aged 10-15 can learn about simple linear equations, with 
particular reference to the use of a computerised balance model of an equation. 

Chapter 1 defines the research problem, taking account of associated background theories. In 
particular, “symbolic algebra” is taken in this research to refer to the use of letters to stand for 
numbers, and Popperian approaches to both epistemology and psychology are advocated. 
Popperian epistemology implies a conjectural view of knowledge, in which rigour is dependent 
on the potential for intersubjective criticism. Empirical validity is therefore concerned with the 
extent to which conjectures are tested by data, rather than with the origins of assertions. Popper 
also distinguishes World 3 - which contains published theories, problems and arguments - from 
the purely subjective World 2. Meanwhile, a distinctive psychological line is developed: 
“understanding” is viewed as problem-solving rather than sense-making, imagining or re-enactment; 
and learning occurs through trial-and-improvement of strategic theories in response to concerns, 
rather than through the development of context-free modes of thought. From this perspective, 
explanatory constructs from research into learning algebra such as “letter interpretations” and 
“equation metaphors” are seen as recontextualised meta-algebraic theories rather than as slowly 
maturing “underlying” algebraic cognitive structures. 

Chapter 2 examines various studies into the learning of algebra, especially CSMS (Hart, 1981) and 
the student-professor problem, in order to identify target algebraic theories and concerns. It is 
stressed that in explaining incorrect responses to a problem, a lack of understanding of the 
problem is a possible explanation. It is also argued that identifying strategies may be a valuable way 
of analysing learning. This reinterpretation of the literature using Popperian psychology enables 
the development of questions intended to detect learning in a range of principal algebraic 
concerns - representation, interpretation, transformation and utilisation. 

Chapter 3 looks at a range of algebraic learning activities, including the use of syncopated 
language, computer algebra systems, spreadsheets, the mathematics machine of SESM (Booth, 
1984), “Think of a Number” games and the arithmetic identities of Herscovics and Kieran 
(1980). Arising out of this review is an instructional proposal that focuses on the limitations of 
the balance model for learning formal methods for solving equations and the formulation of 
equations to represent situations. However, examples of apparent “transfer” of strategic theories 
between concerns are also noteworthy - not because transfer indicates underlying cognitive 
structures or overarching conceptions, but because it suggests that theories have partial 
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autonomy from the concerns that generated them. In particular, the thesis is developed that 
promoting the simplification of equations and easing the formulation of equations to represent 
word problems can provide a purpose for algebraic symbolism that can assist in other 
transformation and representation problems. 

Chapter 4 draws together threads from the previous chapters by arguing for the development of 
a computer program called EQUATION. This program is intended not so much as some sort of 
ideal learning environment, but as a research tool to illustrate theoretical arguments and to 
provide prima facie tests of certain conjectures. The program promotes a simplification strategy 
through a game-like balance model; it introduces algebraic notation as a convenient abbreviation, 
which enables negative signs and negative answers to break with the model; and it then promotes 
algebra as a tool for solving word problems. It also logs what students see on the screen, and 
what they click and enter. The development of EQUATION should be considered an integral 
part of the research; the reader is therefore advised to try out the program once the first four 
chapters have been read. 

Chapter 5 describes the development and execution of fieldwork to test conjectures relating to 
the balance model. It also discusses practical research design decisions, including the 
development and piloting of EQUATION and the pre-post test instruments. 

Chapter 6 analyses data from the fieldwork in an attempt to identify improvements in students’ 
equation theories and concerns as a result of using EQUATION, and to provide some clues as to 
when and why such learning might have occurred. Research data includes interview recordings, 
responses to written tests and questionnaires, recordings of conversations of students working at 
the computer, logs of students’ interactions with the program and word problems posed by the 
students themselves. Around 100 students in Years 6, 8 and 10 were involved. 

Finally, chapter 7 attempts to use the analysis and the Popperian psychological perspective to 
reconcile the classwork and pre-post testing, to explore limitations of the balance model and to 
compare EQUATION with other initiatives. 
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Chapter 1 
Defining the Research Problem 

1.1 Introduction 
This chapter initially sets out the broad problem of learning symbolic algebra by means of a brief 
historical outline. The subsequent section focuses on what many see as an indicator that the 
current generation of algebra students is on the cusp of a new era. An attempt to define the 
research problem follows, but certain aspects then require elaboration in later sections, in 
particular the research’s position on epistemology and psychology. The final section then 
redefines the research problem, but more specific research questions are developed as the 
argument of the thesis progresses in succeeding chapters. 

1.2 The Problem of Learning Symbolic 
Algebra 

A large-scale and influential UK study (CSMS: Hart, 1981) found wide variations in algebraic 
achievement and few signs of substantial student progress over two years. Sleeman (1986) asserts 
that “The difficulties of learning algebra have been greatly underestimated.” (p. 52). Herscovics 
(1989) affirms that UK and US assessment studies indicate that “algebra is a major stumbling 
block for many students in secondary school. Only a minority of pupils completing an 
introductory course achieve a reasonable grasp of the course content. Even fewer manage to 
build up enough courage for a second course.” (p. 60). More recent international studies such as 
TIMSS (reported in Keys, Harris & Fernandes, 1996) seem to corroborate this. Although 
performance in algebra for both England and Scotland was below the international mean - and 
well below Singapore, Japan and Hungary in particular - this could result from curriculum 
differences. The recent Royal Society / JMC report (1997) on teaching and learning algebra 
suggests that expectations in England and Wales of what students can achieve in algebra are 
generally lower than expectations in, for example, France and Germany. Even so, there is little 
difference in TIMSS algebra scores between the US, England and Germany. On the other hand, 
Robitaille (1989), reporting on the second IEA survey, notes that for all countries “performance 
levels on the Algebra subtest as a whole are a cause for concern internationally. Students’ 
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achievement, even on what appear to be quite straightforward items, was frequently very poor.” 
(p. 114).  

More in-depth research confirms that this is a problem not just with standardised written 
assessments and curriculum emphasis. English & Sharry (1996) summarise much of the research 
using classroom-observation and interviews when they describe the “major difficulties students 
experience in algebraic learning” as “well documented” (p. 135). In particular, Bednarz et al. 
(1992) note that “students have difficulty acquiring and developing algebraic procedures in 
problem-solving.” (p. 65); while Geary (1994) concludes, “Most people find the solving of 
algebraic word problems a cumbersome task.” (p. 127). The obstacles are generally considered 
two-fold. Firstly “students encounter major difficulties in representing word problems by 
equations” (Herscovics, 1989, p. 63). Secondly, many studies report that solving equations is 
found difficult (for example Carry, Lewis & Bernard, 1980), and this is corroborated by 
international assessment. When 15-year-olds were asked to solve 5x + 4 = 4x − 31 (an equation 
on the curriculum of all the countries involved), the success rate for countries ranged from 9% to 
58% (Foxman, 1992). There is also evidence suggesting that a quarter of UK schoolchildren never 
end up able to solve equations as simple as 2x + 4 = 10 (Foxman et al., 1991). Is it therefore 
surprising that numerical examples of a rule carry more conviction than algebraic proof (Lee, 
1987)? 

Meanwhile anecdotal evidence suggests that the formalism of algebra may be a contributory 
factor in declining mathematical confidence and enthusiasm between primary and secondary 
school. Certainly SCAA (1996) suspects that lack of algebraic manipulation skills at GCSE may 
hold back students from taking mathematics beyond the compulsory years. Moreover, despite the 
fact that many more students are taking A-level, the number taking mathematics A-level has 
declined by over a quarter since 1985. 

Attempts to address these difficulties have had minimal success. English & Halford (1995) note, 
for example, that “a large proportion of students do not acquire the expected levels of 
proficiency, even after several years of study” (p. 219). Moreover, Arzarello (1991) writes that “an 
effective construction of algebraic knowledge as a net of operative ideas and algorithms is 
difficult” (p. 80); while Arcavi (1994) points out: 

“many high school students make little sense of literal symbols, even after years of algebra instruction. 
Even those students who manage to handle the algebraic techniques successfully, often fail to see 
algebra as a tool for understanding, expressing and communicating generalisations, for revealing 
structure, and for establishing connections and formulating mathematical arguments.” (p. 24) 

Has learning algebra always been a problem? 

Sutherland (1990) writes, “Since the beginning of the century the teaching of algebra has been a 
central concern of mathematics educators, who have always been aware of the inherent 
difficulties in the subject.” (p. 155). English & Halford argue that fashionable ideas in psychology 
are often used to justify changes in curriculum and teaching methods. For example, Thorndike’s 
“law of exercise” was used to justify drill. Although “connectionism”, “associationism” and “S-R 
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bond theory” are no longer part of the vocabulary of mathematical education, the idea that 
mathematics is a set of behavioural habits which can be linked with specific stimuli using 
repetitive conditioning perhaps still influences practice. “Number bonds”, for example, are still in 
fashion in primary schools, and the notion of a bond’s “readiness to act” was one of Thorndike’s 
themes. He could be said to be responsible for the original argument that a teaching programme 
in mathematics should consist of fragmenting the knowledge into tiny nuggets of facts and skills, 
sequencing them in the right order, and then ensuring sufficient practice with each bond. Kieran 
& Wagner (1989) conclude from reviewing research into the learning of algebra between 1900 
and 1930, “All that seems clear from these studies is that the larger the number of steps required 
to solve an equation, the less often students were able to solve it correctly.” (p. 2). 

Sutherland notes a reaction against this early 20th century emphasis on definition, notation and 
exercises in substitution and simplification. Lack of enthusiasm or progress was sometimes 
attributed to students finding such a diet “uninteresting”, “meaningless” and “artificial” (see, for 
example, Mathematical Association, 1934). As a result, symbolic algebra started to be introduced 
in the context of practical problems, especially those in geometry and mechanics. Not only would 
such “applied” mathematics provide reasons for learning algebra, but it would provide a less 
abstract framework through which to understand the principles. Yet there was a basic quandary 
in this pedagogical movement. Because such practical problems are notoriously messy and 
complex, either they were artificially simplified - which meant that they could then probably be 
solved without the use of algebra anyway - or else the students were restricted merely to 
describing a situation using algebra and leaving solution aside. Both these scenarios tended to 
defeat the reasons for learning algebra in the first place, and made the whole activity appear 
rather unreal. Moreover, “Algebra word problems have been a source of consternation to 
generations of students.” (Berger & Wilde, 1987, p. 123). One reason, argues Sutherland, is that 
“what gives algebra its power is the potential to work with symbols without reference to ‘external’ 
meaning.” (p. 162), but without such reference students can find algebra literally “meaningless”. 
It is a classic Catch-22. 

English & Halford cite Wheeler (1935) as a proponent of more “meaningful learning” through 
experience rather than systematic instruction; and Brownell (1935, 1945) as a proponent of 
aiming for an understanding of mathematical relations and structure, before any drill and practice 
takes place. For example, “a child who promptly gave the answer ‘12’ to the fact ‘7+5’ would not 
be regarded as having demonstrated a knowledge of the combination unless she understood why 
7 plus 5 equals 12 and could convince others of its correctness” (English & Halford, 1995, p. 4). 
However Kieran & Wagner can find little research from that period into how this might work for 
algebra. The influence of the Gestaltists, English & Halford suggest, was felt more in the 
discrediting of connectionist and structuralist models of learning mathematics than in any 
positive theory of behaviour, cognition or effective teaching. But perhaps Pólya’s convincing 
discussion of “heuristics” is strongly redolent of the “saturation - incubation - inspiration - 
verification” model that some Gestaltists professed. English & Halford go on, however, to point 
out that Wertheimer’s (1959) distinction between productive thinking (grasping structural 
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relations and combining them into a dynamic whole) and reproductive thinking (repeating 
learned responses to individual subparts) may have encouraged the theory that the giving of 
ready-made steps can in fact be harmful for learning. 

The movement kick-started by the 1959 Woods Hole conference emphasised the laying of 
“foundations” for a proper grasp of modern mathematics; this included deductive reasoning, 
precision of language and unifying structures like sets, variables and functions. Widespread 
anecdotal evidence would indicate the unpopularity among students of what the Americans called 
“New Math”. Freudenthal was critical of this approach, especially of the use of letters to denote 
both sets and members of sets; and according to Sutherland, Chevellard (1984) criticised the loss 
of the dialectic between arithmetic and algebra. Whatever the reasons, Sutherland points out that 
“almost all traces” of New Math seem to have been removed from the National Curriculum for 
England and Wales. Kieran (1992), writing about the US experience agrees: “… those changes 
that have persisted into today’s algebra curricula have been more cosmetic than substantial.” 
(p. 392). Perhaps this trend stems from Bruner’s (1960) work into children’s developmental levels 
of representation (enactive, iconic, symbolic) and Dienes’ (1960, 1963) investigation of structured 
learning experiences, in particular their stress that algebraic formalism should come after more 
direct experience of objects and relations, and that a spiral of extending and elaborating concepts 
was preferable to a linear exposition of “foundations”. Clearly, too, English & Halford’s view of 
psychology’s impact on learning theory is supported by the authority given to Piaget’s work on 
developmental thinking, even though one aspect of his work (the invariance of stages of 
sensorimotor, pre-operational, concrete operational and formal operational thinking) has come in 
for particular criticism. Nevertheless, his view that “there is a parallelism between the progress 
made in the logical and rational organization of knowledge and the corresponding formative 
psychological processes” (Piaget, 1971, p. 13) has certainly sent many educators scurrying to the 
history books for ideas. Misinterpretations of Lakatos (1963) may hinge on this point. Kieran & 
Wagner note a dramatic increase in research from the late 1960s onwards, focusing more on 
mathematics education, and less on mathematics as a convenient domain for studying general 
questions of memory and skill development. 

English & Halford describe the “constructivist paradigm” as emphasising “children’s active 
involvement in their own learning” (p. 1). The introduction of “mathematical investigations” in 
Britain may be a part of this emphasis. Educators talk about a change in views of mathematics 
from a formal, external body of knowledge that has to be transmitted to learners, to a dynamic 
field in which each student can explore the processes through which mathematics develops by 
constructing knowledge on the basis of his or her own experience. Consequently children should 
be provided with activities that provide rich experiences, and opportunities for reflection, 
questioning and discussion. However, if active participation within a meaningful context does not 
guarantee “strong acts of construction” (Noddings, 1990, p. 14) and conversely “traditional 
instruction does not necessarily imply ‘weak constructions’ on the part of students.” (English & 
Halford, p. 12) then is it the nature of the activities that makes the teaching constructivist, or the 
teacher’s intentions, or the “strength” or “desirability” of constructions? 



Chapter 1 - Definition 7 

Although there have been many research studies into algebra, none has perhaps been more 
influential in the UK than CSMS. Sutherland, for example, argues that it is the most obvious 
influence on the algebra components of the National Curriculum, particularly in that “many 
pupils in Britain are… introduced to algebraic ideas at a later stage of their secondary schooling 
and with more caution than they were some years ago. This seems to be a direct consequence of 
i) the finding that pupils have difficulty with algebra and ii) a belief in Piaget’s theory concerning 
formal operations and the related idea that pupils will not be able to cope with algebra until they 
reach the stage of formal operations.” (p. 159). SCAA (1996) notes that a deliberate broadening 
of the pre-16 curriculum over the past twenty years has corresponded to a decrease in 
“manipulative algebra” (p. 25) but an increase in graphical representation of functions. Sutherland 
does not entirely attribute to CSMS the loss from the National Curriculum of the “close 
interrelationship between algebra and arithmetic” (p. 159). The “hierarchy of concepts” used for 
assessment is another matter: O’Reilly (1990) suggests that there are many possible “pathways” 
through mathematics, and yet the levels of CSMS have been largely enshrined as the hierarchy of 
the National Curriculum. Sutherland argues that the “suppression of symbolism” and the greater 
emphasis on “number patterns arising from a whole range of situations, as opposed to number 
patterns arising from the rules of arithmetic” (p. 159) probably owe more to a reaction against the 
early 20th century than to specific findings about children’s difficulties with algebra. For example, 
the highest marks in GCSE practical investigations are expected to be given to work containing 
algebra, sometimes even if the context does not lend itself to algebra. 

The consequence of this suppression of symbolism is that during the 1980s “pupils’ first 
introduction to algebra was more likely to be in the context of expressing generality” (Sutherland, 
1990, p. 160) rather than manipulating symbols. For example, Mason et al. (1985) emphasise 
expression of generality over the learning of isolated, apparently purposeless skills: 

“Algebra is firstly a language - a way of saying and communicating… algebraic language is a powerful 
means of communicating abstract and complex ideas. It is especially suited to expressing generalities. 
A second important feature of the language of algebra is that it contains its own manipulative rules 
which need to be learnt and practised. But the central of feature of algebra is that it is an ideal 
medium through which one can see and express general statements.” (p. 1) 

Scientific laws and relationships can be described concisely; patterns in numbers can be 
demonstrating using a “general” case. By widening the definition of algebra to encompass 
awareness of pattern and generality (which even babies can have to some extent), Mason et al. 
argue that “lack of facility in expressing generality renders formal algebra totally meaningless.” 
(p. 63).  

There once was a ‘gebra called Al, 
Who said ‘aren’t these numbers banal: 
To you the specific 
May seem just terrific 
But my statements are très général’. (Mason et al., 1985, p.1) 

However when MacGregor & Stacey (1993a) state that the “ability to perceive a relationship and 
then formulate it algebraically is fundamental to being able to use algebra.” (p. 181), it is not clear 
whether the perception in itself is algebraic. The Royal Society / JMC report judges not (p. 21). 
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Moreover, while this increased emphasis on variables through the encouragement of 
generalisation may be welcome, Sutherland points out: 

“There are many who believe that operating on the unknown is the most crucial and difficult aspect 
of algebra (Filloy & Rojano, 1989). In other countries pupils are faced with this idea when they solve 
algebraic equations. Algebraic equation solving has been de-emphasised within the National 
Curriculum for mathematics and we need to ask whether or not equation solving had a crucial role in 
helping pupils accept the important algebraic idea of operating on the unknown.” (p. 163) 

Because of OFSTED’s judgment that at GCSE “even the highest attainers produced poor 
answers to questions involving algebra” (SCAA, 1996, p. 9), GCSE syllabuses have now been 
forced to give greater emphasis to manipulation (p. 28-9). 

According to English & Halford, cognitive science “provides the most scientific method yet 
devised for analyzing the real psychological processes that underlie mathematics. By detailing the 
way “concepts are represented” it offers great promise for increased efficiency in mathematics 
education” (p. 14). Nevertheless, Chaiklin (1989) admits out that within a cognitive approach “As 
a rule, the instructional experiments conducted to date have not been particularly successful in 
helping students to develop word-problem-solving abilities. However, they illuminate the 
performance model and highlight issues that need to be addressed in developing effective 
instruction.” (p. 103). A related approach he discusses is that of artificial intelligence in education 
(see especially Wenger, E., 1987), which aims to apply programming techniques of knowledge 
representation and transformation to model teacher interventions and student learning. 

Yet despite all this curriculum variation, pedagogical innovation and research investigation, the 
problem of learning algebra remains. The Royal Society / JMC report summarises it thus: “The 
issue for mathematics education is how to re-emphasise the role of symbols without precipitating 
a return to the traditional and often ineffective means of teaching algebra which were prevalent 
20-30 years ago. These methods were ineffective because they only worked for a very small 
proportion of the school population and, as Cockcroft [1982] pointed out, actually alienated 
many pupils from mathematics.” (p. 5). 

Given this forbidding weight of contemporary and historical evidence that students find learning 
difficult, the question has to be asked: is algebra worth learning? 

The Royal Society / JMC report notes concerns from a number of bodies about the decline in 
numbers of A-level mathematics students and about “a serious lack of essential technical facility” 
in algebra among incoming undergraduates. These bodies include the London Mathematical 
Society; the Institute of Mathematics and its Applications; the Royal Statistical Society; and the 
respective institutions of chemical, civil, electrical and mechanical engineers. It would appear that 
it is not just the supply of future mathematicians that is threatened - the scientific subjects for 
which A-level mathematics is a “service course” may no longer be able to assume that students 
have adequate mathematical knowledge. If a large proportion of the population is not to be 
excluded at an early age from scientific occupations, “algebra for all” would appear to be an 
appropriate goal. On the other hand, there are also some who argue (see later) that new 
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technology means there is less need to learn the technical skills that computers and calculators 
can carry out much more quickly and accurately. Moreover, Lewis (1981) points out that perhaps 
not even those professional mathematicians using elementary algebra every day become flawless 
equation-solvers (p. 107). The Mathematical Association (1934) also notes the importance of 
mathematics for science and technology occupations, but doubts that using symbolic algebra is a 
vital part of skills for other occupations and for day-to-day living. 

Nevertheless, the Royal Society / JMC report suggests, with respect to the “life-skills” required 
by students on vocational courses, that “it is important for all students to become confident and 
competent with certain areas of pre-algebra and algebra in order to function effectively as citizens 
within a society which is increasingly shaped by mathematics and where problems are increasingly 
converted to forms for which there is a calculable solution.” (p. 24). However, it could be argued 
that none of the life-skills examples given in the report (setting up spreadsheet formulae for 
administration, numerically estimating timber production using a known relationship, having a 
“feel for number”, understanding percentages and interpreting visual presentation of data) 
involve symbolic algebra, which perhaps explains the report’s conclusion that “algebra for 
citizenship” should not focus on “formal” algebra. 

Moreover, even though the Mathematical Association similarly asserts that an educated person 
should learn “something of the part that mathematics has played and continues to play in the 
development of the modern world.” (p. 8), the fact that a society is “increasingly shaped by 
mathematics” does not imply that such sociological inquiry has to involve much algebraic activity 
in school. It may very well be desirable for citizens to understand the forces that shape their 
society, but there are many such forces: why single out algebra as having a favoured position in 
the general curriculum? The Association also notes that custom plays a large role in keeping 
topics in the curriculum. But just because a good pass in a school-leaving mathematics certificate 
(with its attendant algebra requirements) is currently a prerequisite for entry to a very wide range 
of courses and jobs, this does not mean that the curriculum should continue to require algebra. 

Are there any other possible arguments for keeping symbolic algebra in the curriculum? Beyond a 
probably small group of professional and recreational mathematicians, algebra does not appear to 
be valued universally as a beloved, aesthetically-pleasing, cultural artefact. However, if it is 
decided that there are reasons that mathematics is worthy of study other than the needs of 
everyday life or jobs - for example because it also provides training in analytical techniques - then 
there is a strong argument that one cannot appreciate mathematics properly without appreciating 
algebra. The Royal Society / JMC report asserts, for example, “algebra and the algebraic language 
are central to mathematics and if we do not teach algebra then we are not teaching mathematics.” 
(p. 5). 

From a pragmatic perspective, algebra is in virtually all secondary school curricula the world over, 
and that in itself is a good enough reason for researching ways of helping students (whether or 
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not they intend to pursue scientific occupations) to appreciate the power and challenge of 
algebra. That is therefore the research focus for this thesis. 

1.3 The Potential of Information 
Technology 

1.3.1 Some Questions 

Fey (1989b) writes that new technological developments “challenge every traditional assumption 
about what we should teach, how we should teach, and what students can learn.” (p. 237, 
emphasis removed). For school algebra, these technological developments include spreadsheets, 
graphics calculators, computer algebra systems, tutoring programs and dynamic geometry 
packages. Spreadsheets such as Microsoft Excel can ease repetitive numerical calculations, 
statistical analysis and sophisticated simulations; graphics calculators such as the Casio fx-7400G 
can provide instant views of functions and tables of values; computer algebra systems such as 
Derive by Soft Warehouse can solve many types of equations and carry out all the algorithms a 
mathematics student could imagine; tutoring programs can make mundane exercises more 
interactive; and geometry packages like Geometer’s Sketchpad or Cabri Géomètre make 
exploring geometry more fun. The TI-92 calculator from Texas Instruments, released in 1995, 
combines all the above facilities in a hand-held machine. Soon very few schools will be without 
access to the Internet. 

How does such information technology (IT) affect what should be taught? English & Halford 
suggest that improvements in technology and changed demands in society place more of an 
emphasis on analysing and interpreting data for making decisions than on routine algorithms. Tall 
(1989), for example, writes “the manipulation of algebra to solve equations will be less important 
for that class of problems for which a numerical solution is appropriate and for which simple 
numerical algorithms on the computer will suffice” (p. 91). Will there be a need to learn the 
product rule for differentiation, or the Newton-Raphson method for solving equations 
numerically, or the pencil-and-paper long-division algorithm, or even how to sketch a graph, if 
these can all be done faster and more accurately using technology? “Much of what goes on in 
higher secondary algebra is learning skills. Are these needed when supercalculators and computer 
algebra systems can do the work for us? Even more to the point, will the relief from 
concentrating on routine skills free students and teachers to study concepts in more depth?” 
(Monaghan, 1994, p. 201). Should the curriculum and assessment adapt to reflect new 
technological capabilities? For Fey (1989a), “The unanswered question standing in the way of 
reducing the manipulative skills agenda of secondary school algebra is whether students can learn 
to plan and interpret manipulations of symbolic forms without being themselves proficient in the 
execution of those transformations.” (p. 206-7). Are there learning processes or outcomes that IT 
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can render safely obsolete? Are there learning processes or outcomes that IT cannot render 
obsolete? 

Aside from the issue of what should be taught, how does IT affect teaching strategies? The 
number of questions rapidly proliferates. How is IT being used in the classroom? Can any general 
conclusions be drawn about what works and what doesn’t? Are there important differences in IT 
effects for distinct social groups? Is the apparent success of computers symptomatic of a 
fascination for novelty, or of something deeper? Do the students’ predominant modes of learning 
affect the success of IT-based activities? Teachers are rapidly adapting new technology and 
writing their own custom software to assist their students’ learning. How can these innovations 
be evaluated and shared? To what extent does IT replace, support or undermine the role of the 
teacher? Could a problem-solving approach to introducing algebra be made more realistic by 
computers handling the complexity?  

How does IT affect what students can learn? How is “understanding” affected by technology? Is 
it true that IT improves investigative skills and understanding at the expense of competence by 
reducing the opportunity for practice? Programming languages, such as Logo and BASIC, have 
been around in schools for over two decades; they are becoming higher level, easier to learn, 
more visual and more powerful. What impact have they had on students’ learning? Papert (1980) 
writes that computers can be used to “challenge current beliefs about who can understand what 
and at what age.” because history is no longer a good guide to potential intellectual development 
- we have a technologically richer environment than ever before. Can technology really refute the 
attribution of understanding to cognitive development (Sutherland, 1991)? 

Papert also suggests that computers could “contribute to mental processes not only 
instrumentally but in more essential, conceptual ways, influencing how people think even when 
they are far removed from physical contact with a computer” (p. 4). How does the nature of the 
tool influence the nature of responses to the problem? How is the notion of a “skill” determined 
by the available technology? If “square root” is now considered an elementary operation rather 
than a complicated algorithm because of calculators, how soon before “solve” moves that way? 
Why would “model” or “prove” not become operations? Monaghan (1994) suggest that it is not 
just the content of school mathematics that will change, but that “Computer-based technology is 
changing the character of mathematics... Computers not only introduce new areas of mathematics 
but bring with them new ways of thinking about mathematics.” (p. 193). In Papert’s words, 
computers can be “carriers of powerful ideas and of the seeds of cultural change” (p. 4). Does 
technology encourage a particular view of the nature of mathematics? 

Of course the availability of this IT raises many further important questions. For example: What 
are the major obstacles to IT usage? Access, tradition or ignorance? How should technological 
change be implemented? In which areas should money be spent on research and development, in 
equipment purchase, and in training? Should a handheld computer be the right of every child? 
Ernest (1991) describes a number of views of the mathematics curriculum - attributed to 
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“Industrial Trainers”, “Technological Pragmatists”, “Humanists”, “Progressive Educators” and 
“Public Educators”. To what extent does IT policy serve the interests of these viewpoints? More 
generally, how are different sociological groups affected by new technology? Is inequality of 
technological expertise and access class-based? Is there a gender differential? 

1.3.2 Some Answers? 

Given the large number of questions raised by the apparent potential of new technology to 
challenge assumptions about the learning of mathematics in general - and algebra in particular - it 
is perhaps unsurprising that there has been an enormous flurry of research activity in this area 
over the past few years (see, for example, Bednarz, Kieran & Lee, 1996). Yet Kaput & Thompson 
(1994) roundly condemn the mathematics education research community’s “lack of technological 
engagement” (p. 680), concluding that the likelihood of mathematics educators shaping the roles 
of educational technology (let alone its development and research) is small: 

“To use technology in mathematics education research is intellectually demanding - one must 
continually rethink pedagogical and curricular motives and contexts. To exploit the real power of the 
technology is to transgress most of the boundaries of school mathematics practice. And normally, a 
powerful technology quickly outruns the activity-boundaries of its initial design - students and 
teachers, as well as its designers, generate activities that were not conceived in the design process. 
This renders classroom-based research, especially research that extends beyond brief interventions, 
difficult - and makes direct comparison and tightly controlled experimental studies inappropriate.” 
(p. 681) 

Oldknow (1995) charts a recent history of IT for mathematics in the UK. Special national and 
local government funding for technology and training, the annual BETT conference, the teacher 
journal MicroMath and initiatives by the National Council for Educational Technology are all signs 
of “this unexpectedly rapid improvement in the IT provision for mathematics”, and evidence 
perhaps of a desire to adapt tools originating outside education for educational purposes. 

He makes a case for: 

1. An evaluation of the ways that IT is currently being used to support mathematics 
education. 

2. A research programme into the quality of learning with IT, and into attitudes towards 
IT. 

3. A curriculum review, taking account of the changing uses of IT in industry, 
commerce and research, and the power of IT to aid understanding and promote 
challenges. 

4. A forum for the international exchange of ideas. 
5. Teacher support in the learning of mathematics using IT. 

Oldknow warns that it is “all too easy to be carried away on a wave of enthusiasm”, which is 
perhaps a reminder that research studies involving enthusiasts, considerable external support and 
time for planning do not represent typical experience of IT. However, although this thesis is 
clearly attempting to contributing to the second proposal, the idea that educational technology 
innovations can be research-driven also seems important. But Fey (1989b) is pessimistic: 
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commenting on the myriads of innovations reported in the previous five years, he writes, “it is 
very difficult to determine the real impact of those ideas and development projects in the daily 
life of mathematics classrooms, and there is very little solid research evidence validating the 
nearly boundless optimism of technophiles in our field.” (p. 237). 

Hammond (1994) redresses some of the enthusiasm by noting: 

“… two major field studies, the Impact report (Watson, 1993) and the Plait report (Gardner et al., 
1992) have… thrown some doubt on the value of using IT. The Impact study was a major longitudinal 
study of 2300 children in primary and secondary schools across 19 local authorities in England and 
Wales. The major empirical finding was that ‘IT did make a contribution to learning, but the 
contribution was not consistent across subjects or age groups.’. 

“… In the Plait study 235 pupils in nine schools were given their own portable computers to use for 
one year… The study found that ‘The impact of personal access to laptop computers on pupils’ 
performance was not significant or at best marginal over one school year.’.” (p. 252) 

Hammond makes the point that although there is already a large body of research into IT use in 
education - part of the broader agenda of research into school innovation in general (Fullan, 
1982) - such research cannot hope to offer a productive evaluation of any “contribution to 
learning” if it does not pay attention to the design of the particular software, the topic-specific 
aims of the teachers, the way the software is used in class and the distinctive learning outcomes 
for individual children. Pea (1987), on the other hand, believes that it is possible to identify 
“transcendent functions” of cognitive technologies - “tools of the intellect provided by the 
culture” (p. 91). 

Berry, Graham & Watkins (1994) identify five ways in which Derive - and most other CASs - can 
be used in a mathematics course: as a mathematical tool, a problem solving assistant, an 
investigative environment, a demonstration aid, and an interactive tutor. Perhaps these categories 
apply to all IT that can be used to assist in the learning of algebra. 

Mathematical tool. Berry et al. argue that as a mathematical tool for backing up pencil and paper 
skills, a computer algebra system can save time, but may lead to students relying on it too heavily, 
and consequently failing to master the pencil and paper skills they are expected to learn. 
Nevertheless, Love (1995) suggests that “as more and more mathematical techniques are able to 
be carried out by software there is less and less need for anyone to learn to be able to carry them 
out, even with the aid of software.” (p. 116) and therefore the future curriculum requires radical 
reconceptualisation. 

Problem solving assistant. In courses where there is a greater emphasis on problem formulation and 
interpretation than on solution, a computer algebra system can lessen the time needed for 
solution, extend the range of problems, permit more complicated models, increase the accuracy 
of solutions and allow a focus on the validity and reliability of solutions (Heid, 1990). Kaput 
(1992) indicates that he, at least, is convinced that studies such as Hembree & Dessart (1986) 
demonstrate that “heavy use of calculators in the early grades… does not harm computational 
ability and frequently enhances problems-solving skill and concept development.” (p. 534). 
Ruthven (1995) offers a critical review of evidence from research over the past twenty years 
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concerned with the effects of calculator use. This evidence would appear to indicate, as 
Monaghan (1994) says, that “calculators are an aid in the process of solving problems” because 
they ease time-consuming calculations, thus allowing a focus on the type of mathematics 
required. Similarly, Sutherland (1995) concludes that the spreadsheet “frees pupils from the 
process activity of evaluating an expression, thus enabling them to focus more on the structural 
aspects of a situation.” (p. 285). The formalism of programming languages can also provide a new 
entry point to the formalism of algebra (Sutherland, 1990; NCET, 1994a). 

Investigative environment. But Sutherland also stresses that computer environments can support 
pupils’ development of an algebraic approach to problems. NCET stresses that the fast, reliable, 
non-judgmental and impartial feedback that computers can provide can encourage conjecturing 
and testing. Multiple representations can encourage the seeking of connections. Berry et al. 
suggest that as an investigative environment, a computer algebra system can help students to gain 
an “intuitive feel” for the ideas before they are formally introduced. π, i and e can arise naturally, 
for example. Similarly, diSessa (1995) describes how Boxer - a piece of software that allows visual 
programming - is successful as a collaborative medium. LaTorre (1995) describes how 
programmable graphics calculators “carry the computational burden” to allow undergraduates to 
experience linear algebra in an “active, constructive environment” and to “achieve understanding 
of certain concepts better”. Laborde (1995) says “The graphical and computing possibilities of 
some software now allow a reification of abstract objects and in particular of mathematical 
objects as well as numerous possible operations on these objects and various feedback.” (p. 36). 
But she also argues that these objects, although “embodied in a material environment”, are not 
necessarily accessible to the learner. 

Demonstration aid. Computers can create images to help visualise ideas. For algebra this can mean 
dynamically linking “multiple representations” - numbers, letters, graphs, icons and natural 
language, for example (see Kaput, 1989 & 1992; Fey, 1989b). However, Hunter et al. (1995) 
found that, for graphical work, there seemed to be little effective difference between use of a 
computer algebra system and the traditional methods of sketching and drawing. Mention should 
also be made of word-processors, reference programs, multimedia authoring software and the 
Internet - all of which involve communicating ideas in some way. Simulations enable complex 
models to be developed and monitored. 

Interactive tutor. Finally, as an interactive tutor (Wenger, E., 1987), computers can present problems 
to students, assess the knowledge of a student based on inputs, and manage the future 
instruction, activities and problems accordingly. They make mundane exercises more interactive, 
and can provide contextual help suited to the student. NCET (1994b) found that children 
working on a particular ILS “performed significantly better than children working in control 
groups, making gains of twenty months over the six-month period.” (p. 6). However, although 
one student said “It doesn’t go off and help someone else.” (p. 16) and the privacy was 
appreciated (“No one knows when you make a mistake”, p. 18), perceptions of progress by 
students were more negative than the tests would indicate. The research did not focus on the 
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algebra components. Various software under the labels of “Computer Assisted Learning”, 
“Computer-Based learning”, “Expert Systems”, “Intelligent Computer-Assisted Instruction” and 
“Integrated Learning Systems” are in development, given new lease thanks to more graphically-
oriented operating systems and programming languages. Following Olds et al. (1980), Kaput 
(1992) emphasises educational computer games as teaching tools: 

“The role of motivation [in educational games] has been extensively studied by the social psychologist 
Lepper and colleagues at Stanford University (Lepper, 1985; Malone & Lepper, 1987), although 
without much attention to the curricular value of the educational objects of the games involved.” 
(Kaput, 1992, p. 519) 

Love (1995) makes the point that the design intentions of software do not confine its category of 
use. For example, “Logo is valued not only for its geometric aspects, but as an opportunity to 
learn about the use of variables, or the modular construction of solutions to a problem.” (p. 111). 
He warns that, to some extent, the mathematics that the teacher sees in software is not inherent in 
software, and perhaps not even in the eye of the beholder. It would be hard to describe Visual 
Basic, say, as “containing” a finite number of mathematics concepts; but perhaps it would be 
slightly easier to delineate the potential of a given program. 

1.4 The Research Problem - A First 
Attempt 

The fact that one can imagine all five of these roles for technology within one program suggests 
that attempting to constrain the research by “type” of technology might be rather unavailing. But 
with regard to a mathematical focus, since the motivation for this research derives from wanting 
to help more students appreciate the power and challenge of algebra, one key element could be 
the equation. Equations could perhaps demonstrate the utility of algebra, because they are often 
used in tackling word problems. As we have seen, representing word problems using equations 
and then solving the equations are found to be very difficult. 

So an initial (and tentative) formulation of the research problem would be “What is the impact of 
information technology on students’ concept of equation?”. The substance of this thesis, 
therefore, is likely to relate to the psychology of learning about equations in the context of IT and 
the methodology for obtaining evidence relating to such learning. 

However, as soon as a focus arises, there is immediately a serious problem to be addressed: How 
is it possible to ignore the other issues of technology and algebra raised earlier? How is it possible 
to research the impact of technology on students’ thinking, without considering its impact on 
teaching, resource policy, the curriculum and assessment? Can one really focus on equations 
without considering functions and graphs? For example, the demand to have “functions replace 
equations as the fundamental objects of algebra” (Chazan, 1993, p. 22) seems to be gathering 
momentum for many reasons (Pimm, 1995, p. 104-6). Yet if I pretend (for the sake of having a 
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focus) that these issues need not concern me in this particular quest, is it not the case that the 
research is thus dependent on my unconscious prejudices? Surely all these subjective 
preconceptions must be made explicit? This issue is a very serious point to address, and cannot 
be properly debated until the nature of knowledge has been considered. 

1.5 Popperian Epistemology 
This research takes a robustly realist stance - there is a world of stones, sounds, trees, children 
and so on; and therefore the central questions that concern epistemology are: How is it possible 
to obtain knowledge about the world? How can we separate knowledge from opinion? A theory 
of knowledge is required as a rationale for two categories of knowledge here: the knowledge that 
the research itself finds or aims to find; and the algebraic knowledge that children are supposed 
to find. 

1.5.1 Obtaining Knowledge 

How is it possible to obtain knowledge about the world? There seem to be diverse views in the 
mathematics education research community on epistemological foundations. Hammersley (1995) 
discusses the relative merits of (1) positivism, including behaviourism; (2) interpretive research, 
including radical constructivism, hermeneutics, and phenomenology; and (3) openly ideological 
research, including Marxist, social constructionist, post-structuralist, feminist and anti-racist 
approaches. The major sources of authority or “foundations” upon which each paradigm is based 
appear to be (1) experiment; (2) personal experience; and (3) collective experience, respectively. 

A major difficulty that all three of these positions attempt to address can be illustrated by such 
claims as “The child thought that 3x meant thirty-x”. If, it is argued, such statements are not to 
be accepted dogmatically, we must be able to justify them; for as Hume said “If I ask why you 
believe any particular matter of fact… you must tell me some reason; and this reason will be 
some other fact, connected with it. But as you cannot proceed after this manner, in infinitum, you 
must at last terminate in some fact, which is present to your memory or senses; or must allow 
that your belief is entirely without foundation.”. This trilemma is elaborated by Popper (1934): 

“If we demand justification by reasoned argument, in the logical sense, then we are committed to the 
view that statements can be justified only by statements. The demand that all statements are to be logically 
justified (described by Fries as a ‘predilection for proofs’) is therefore bound to lead to an infinite 
regress. Now, if we wish to avoid the danger of dogmatism as well as an infinite regress, then it seems 
as if we could only have recourse to psychologism, i.e. the doctrine that statements can be justified not 
only by statements but also by perceptual experience. Faced with this trilemma - dogmatism vs. infinite 
regress vs. psychologism - Fries, and with him almost all epistemologists who wished to account for 
our empirical knowledge, opted for psychologism. In sense experience, he taught, we have ‘immediate 
knowledge’: by this immediate knowledge, we may justify our ‘mediate knowledge’ - knowledge 
expressed in the symbolism of some language.” (p. 93-4) 
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Hence we have the view that knowledge has to be related to sense perceptions and thus to our 
personal experiences, in particular our observations of the physical situation. Sfard (1994b), for 
example, appears to assent to the assertion that “our bodily experience is the only source of 
understanding.” (p. 46). So a researcher would be able to say, perhaps “It seemed to me that the 
child thought that 3x meant thirty-x.” or, better maybe, “I heard the child say ‘If x is 7 then 3x is 
37’” but not “The child thought that 3x meant thirty-x”, because we do not have direct access to 
the child’s thoughts. 

To avoid subjectivity, argue the positivists, these observations need to be experimental. For 
example, Carr & Kemmis (1986) describe this view as asserting that “science provides the 
methods of enquiry that educational research should seek to emulate and that scientific theories 
provide the logical criteria to which educational theories should aspire to conform.” (p. 51). 
However, the interpretivists point out the crucial role of subjective and social factors in the 
production of knowledge, with Kuhn (1962) being a key reference. In particular, observation is 
theory-laden - there can be no neutral description of facts. The interpretive approach therefore aims 
to unpack the personal preconceptions that cloud and shape observations, and indeed the whole 
conduct of the research; while the ideological approach might stress the normative, political 
aspects, particularly with respect to how the research might be used. The Hegelian solution to 
this difficulty is to unveil hidden ideologies; whereas those who are more pessimistic about the 
success of such “sociotherapy” sometimes use “oppression”, “democracy”, “equality” and so on 
as touchstones to help locate “underlying” assumptions 

Whether research is positivist, interpretive or ideological, it is possible to pursue a naturalistic line 
with respect to data collection - a paradigm that points out that the artificiality of research 
conditions can work against observations being valuable at all, and so conducts research in a 
situation free as far as possible from constraints imposed by the researcher (Lincoln & Guba, 
1985). On the other hand, if one wants to explore particular aspects of a situation such 
intervention may sometimes be necessary (Hammersley, 1995). 

It is also possible within all three positions to pursue a naturalistic line with respect to data analysis 
- a paradigm that refuses to prejudge a situation, and so seeks to use theoretical constructs that 
unfold as the research progresses rather than imposing a priori constructs (Lincoln & Guba, 
1985). On the other hand, if one wants to explore empirically the current theoretical situation 
with respect to a particular research problem (and it would appear unwise to ignore previous 
studies completely), then such constructs may sometimes be necessary (Hammersley, 1995). 

Popper discusses in great detail the view that knowledge has to be related to sense perceptions, 
and there is not space here to look at it in the depth required to compare it with other attempts to 
solve this problem of knowledge. However, one important point (against Hume) is that personal 
experiences are not necessarily any more reliable than other forms of data. In fact, as numerous 
court cases seem to suggest, eyewitnesses can make mistakes. Moreover: 
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“Every witness must always make ample use, in his report, of his knowledge of persons, places, 
things, linguistic usages, social conventions, and so on. He cannot rely merely upon his eyes or ears, 
especially if his report is to be of use in justifying any assertion worth justifying. But this fact must of 
course always raise new questions as to the sources of those elements of his knowledge which are not 
immediately observational.” (Popper, 1963, p. 22-3) 

Every empirical claim goes far beyond “what can be known with certainty ‘on the basis of 
immediate experience’”. For example: how do we (as readers of this particular claim) know that it 
was the child who said something? How do we know that it seemed to the researcher that the 
child said “If x is 7 then 3x is 37”? How do we know that what was claimed was said was said? 
How do we know it was English being spoken? How do we know that the child was not 
describing someone else’s view, or giving a reductio ad absurdum? How do we know that the child 
was not making up conventions to solve a particular problem? How do we know that what the 
researcher intended by the claim is what we understand by it? 

Popper makes the distinction between questions of origin (“How do you know?”, “What is the 
basis of the claim?”, “What is the source of your assertion?”) and questions of validity (“How can 
we test this claim?”, “What error-elimination has taken place?”, “What evidence is available to 
exclude possibilities?”). Questions of origin are “entirely misconceived: they are questions that 
beg for an authoritarian answer” (Popper, 1963, p. 25), and Popper says that we should be critical 
of all sources of authority because they are theory-laden and fallible. What has to be done in 
analysing the validity of claims, he argues, is to test claims rather than seek their sources. In doing 
so, of course, various sources will be cited, and their value has of course to be questioned; and 
moreover what constitutes evidence must be constantly re-assessed. But the point is that we can 
never know we are right; and so it is not the making of claims that depends on the reliability of the 
sources, but the testing, because we can sometimes know we are wrong; and hence we can learn. 
The possibility of mistakes prevents the slide into relativism, and thus perhaps we may get closer 
to the truth. So knowledge is possible despite Fries’ trilemma if it is conjectural rather than based 
on some sort of inductive logic from foundational statements. Although this formulation sounds 
simplistic, it seems difficult to grasp, perhaps because it relies on the rejection of the “intuitive” 
Wittgensteinian idea that a term (such as “truth”, “reality”, “value-neutrality”) is meaningless 
without a criterion for application. For example, Popper points out that the following assertions 
appear to be self-contradictory from an epistemic point of view, but clearly true from a 
conjectural point of view: 

“a theory may be true even though nobody believes it, and even though we have no reason for 
accepting it, or for believing that it is true; and another theory may be false, although we have 
comparatively good reasons for accepting it.” (Popper, 1963, p. 225) 

Furthermore, with respect to the ideological approach, Popper (1945) notes that the “sociology 
of knowledge hopes to reform the social sciences by making the social scientists aware of the 
social forces and ideologies which unconsciously beset them. But the main trouble about 
prejudices is that there is no such direct way of getting rid of them. For how shall we ever know 
that we have made any progress in our attempt to rid ourselves from prejudice? Is it not a 
common experience that those who are most convinced of having got rid of their prejudices are 
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the most prejudiced?” (p. 210-1). There is no substitute for a critical examination of the empirical 
and theoretical claims. 

However, despite Popper’s trenchant criticisms of positivism, subjectivism and the sociology of 
knowledge, his robust defence of empirical inquiry does not appear to have stemmed the post-
modern loss of confidence in the search for truth (as evidenced, for example, by the popularity of 
Rorty, 1980). Sfard (1994a) describes how the “message of relativity, sometimes interpreted as an 
eulogy of irrationality” was brought by such writers as Kuhn, Feyerabend and Foucault. The 
promise of progress was replaced by the hope for endless recapitulation.  

For some, instrumentalism replaced truth: 

“… the criterion of truth and validity was replaced by the ideas of solidarity and of usefulness. People 
should no longer ask whether anything is objectively true; rather, they are expected to judge 
knowledge according to whether it can bring them together and whether it can do anything for 
them.” (Sfard, 1994a, p. 252) 

The prevalence of relativistic ideas in research in the last few decades has, according to 
Hammersley (1995), been encouraged by the later views of Wittgenstein that “science is just one 
form of ‘language game’ among others, having its own distinctive rules but not being in any 
general sense superior.” (p. 13). The work of Husserl in phenomenology was influential in 
promoting the view that “our understanding of the world is constructed on the basis of 
assumptions, rather than being a reflection of how the world actually is” and hence “different 
cultures produce different realities.” (p. 14). Similarly, Gadamer’s hermeneutics argued that 
understanding is based on interactions between culturally and historically based assumptions and 
phenomena. “The implication of this is that there is no method by which universally valid 
knowledge can be produced because all knowledge reflects the socio-historical context of its 
production.” (p. 14). The zeitgeist seems to be “the idea that knowledge is paradigm-dependent, 
in other words that its validity is relative to a set of assumptions about what the world is like and 
how it can be understood, those assumptions being beyond rational justification.” (p. 16). 

Nevertheless, given the Popperian view that knowledge is conjectural, it is not clear that a lack of 
a criterion for truth should necessitate the abandonment of the possibility of knowledge about 
the world. Following Tarski, truth can still be seen in Popperian epistemology as 
“correspondence to the facts” rather than based on strength of belief or utility. Although there 
cannot be guarantees of correspondence, truth is still (as Russell stressed) above human authority.  

1.5.2 Rigour and Objectivity 

Lincoln & Guba (1985) ask “How can an inquirer persuade his or her audiences (including self) 
that the findings of an inquiry are worth paying attention to...?”; “How can one establish the 
degree to which the findings... are determined by the subjects... and conditions of inquiry and not 
by the biases, motivations, interests, or perspectives of the inquirer?” (p. 290). Hammersley 
(1995) notes a trend in social science away from the view that it is vital to guarantee that other 
researchers obtain the same results (for example through controlled experiments), or even that 
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other researchers would have obtained the same interpretation when faced with the same data. 
This is sometimes characterised as a move from “validity” (in the senses of Campbell & Stanley, 
1963) to “credibility”: it is still expected that the reader is made fully aware of the basis upon 
which interpretations are made, but it is also important to convince the reader that the 
interpretations are reasonable by describing as much of the experiences that contributed towards 
the making of those interpretations as possible. However, if, as Popper says, questions of origin 
are “entirely misconceived” is the search for objectivity misguided? Moreover, is a solitary 
individual in a position to separate “data” from “interpretation”? Even a thorough research 
biography has to be selective about the assumptions it details - the researcher’s aims and 
preconceptions, the variety of analyses that might be carried out, the phenomenological issues, 
the theoretical models that might pertain, and so on. Finally, convincing the reader of one’s 
conclusions is not in itself desirable, because this can be done by rhetoric rather than by 
reasoning about evidence. 

The vision of rigour that comes from Popper (1934) is clear (see also Phillips, 1989), but it is 
eminently distinguishable from the three paradigms described above. Given that observation is 
theory-laden; that accounts are selective; that knowledge is produced in a socio-historical context; 
that situations have multiple perspectives; that knowledge about learning is neither handed down 
from on high by scientists in white coats, nor by mystics in coloured robes, nor by politicians in 
primary-coloured ties; Popperians conclude that it is not in general methods of production that 
warrant knowledge, nor even the authenticity or authority of the knowers, but the extent to 
which knowledge is tested critically - theoretically or empirically. 

However, while a study in which explicit conjectures are tested to the limit might be desirable, 
hypotheses about World 2 are often difficult to make and test; so whether a researcher is 
rigorous, in a Popperian view, depends on the extent to which steps are taken to try to eliminate 
error. This means that the limitations of testing (with particular regard to major alternative 
conjectures that might answer the research questions or fit the data) have to be apparent. Often 
the best way to test something is to put it into a form that can be checked by others. “It seemed 
to me that the child thought that 3x meant thirty-x.” is not easy to check, because it is a 
statement about my perceptions. However, “The child thinks that 3x means thirty-x” is more 
easily checked. It will probably turn out to be false, because by putting it in the present tense, the 
description has been removed from the particular situation of the child that prompted the claim 
to be made. However, if it is false then that may be revealing in itself: it would be very interesting 
to try to explore the situations in which the child does or doesn’t think that 3x means thirty-x, rather 
than those situations in which the researcher thinks that the child does or doesn’t think that 3x 
means thirty-x. But error elimination can take many forms: contrast, for example, the 
ethnographic analysis techniques described by Eisenhart (1988), the multi-level statistical analysis 
techniques used by Sammons (1995) and the theoretical analysis of Ernest (1991). 

Popperians do not view the products of research (observations, theories, characterisations, 
interpretations, and so on) as inherent in the data. They do not arise naturally from the data. They 
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are not implied or given by the data in some inductive sense. They are invented by researchers. 
However, because knowledge does not progress by establishing or “grounding” theories (cp. 
Glaser & Strauss, 1967), we need tests that our theories may fail (so we are challenged to find 
better theories) or pass (so we are challenged to find better tests or alternative theories). There is 
no absolute requirement, therefore, for every piece of research to include what Ball (1990) calls a 
“reflexive research biography”, unless, for example, accounting for the researcher’s emergent 
thoughts and feelings through introspection is one of the explicit objects of the research. 
Moreover, for some studies, it may be the case, as Phillips (1989) suggests, that “processes 
involved in, and even central to, the making of discoveries during the pursuit of a research 
program may not be involved - and might be counterproductive if allowed to intrude - when the 
discoveries are checked and tested and critically evaluated.”. One objection to this view is that without 
such a process of grounding, another researcher might reach different conclusions. However, if it 
is the case that another researcher might reach different conclusions, no amount of “grounding” 
will help because interpretation of evidence is probably also in dispute. What will help is the 
devising of crucial tests to decide between alternative interpretations. However, the nature of a 
“crucial test” for a descriptive theory of mental processes is highly problematic. 

Every statement is, in a sense, a claim. Since not all claims can be tested, some knowledge has to 
be taken for granted. In practice, one only attempts to produce a justification or evidence for 
claims that are in some way controversial. The choice of what claims are considered necessary for 
testing for the purposes of this research (and by implication, that which is considered “known”) 
is subjective in the sense that they are the decisions of the researcher. However, these decisions 
are objective in the sense that they are, in principle, open to intersubjective criticism. Because 
decisive refutation is rare, sometimes the best test available is (theoretical) intersubjective 
criticism. Therefore, it is not the making of unjustified claims that is wrong, it is the idea that a 
claim has been sufficiently tested. Popper argues that our presuppositions can be changed by 
decision and by experience; not all at once, of course, but piecemeal. This process of breaking 
down individual assumptions is endless - “Any assumption can, in principle, be criticised. And 
that anybody may criticise constitutes scientific objectivity.” (Popper, 1945, p. 209). The 
objectivity of a theory rests upon its criticizability. A theory that has survived tests it could have 
failed is to be preferred to an irrefutable theory, or one defended by ad hoc explanations. The 
search for “objectivity” - in the sense of the removal of the personal, subjective or partial from 
theories and research - is an endless quest for truth by a community committed to open criticism. 
Objectivity is not a product of the individual researcher’s impartiality, because it is “closely bound 
up with the social aspect of scientific method” - it is dependent on the intersubjective criticism 
provided by the research community. By this means, a study that might apparently only relate to a 
particular context might be germane to other contexts. All means of testing are considered - the 
alleged opposition between qualitative and quantitative techniques dissolves. 

While this rationale of research methodology is very different from the positivist paradigm 
(because the search for certainty is abandoned, and multiple perspectives are actively sought), 
from the interpretive paradigm (because the researcher’s experience is not seen as central, and the 
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social aspect of scientific method is emphasised) and from the ideological paradigm (because 
priority is given to seeking empirical tests), the practice may be difficult to distinguish sometimes. 
For example, the theoretical “justification” of a claim can be seen, perhaps, as an argument that 
the claim can be derived from less hotly debated conjectures. The empirical “basis” for a claim 
could be that the claim succeeded where competing conjectures failed. On the other hand, 
“validity” unquestionably concerns the relationship between conjectures and data that might test 
those conjectures rather than the relationship between propositions and their origins, their 
adherents or their political role. So it is vital in a research report to be fair in claiming whether the 
data collected constitutes a critical test that decides between conjectures. 

1.5.3 The Role of Background Theory 

Rather than providing an “underlying framework” or the foundations for empirical research, 
Hammersley (1995) argues that philosophy functions as background theory which, once explicit, 
is open to “correction and modification in the light of what we learn in practice”. Some of these 
theories are empirically testable (for example that children grow into adults, or that the 
curriculum includes equations); others are not (for example that other people exist, or that 
2 + 2 = 4). Lincoln & Guba (1985) distinguish three means by which a hypothesis may be tested: 
empirical (to see if it is “consistent with nature”); logical (to see if it is consistent with other 
knowledge); and methodological (to see if the person who asserts the hypothesis is conforming to 
certain ethical or professional standards of conduct). Moreover, there are certain “metaphysical 
beliefs” that cannot be tested by any of these means. 

Furthermore, Lincoln & Guba assert that these metaphysical beliefs “must be accepted at face 
value” (p. 14) - they are axiomatic “basic” beliefs - and so they “represent the ultimate 
benchmarks against which everything else is tested” (p. 15). However, Popper (1963) points out that 
the idea that the truth of a theory can be inferred from its irrefutability is an obvious mistake - 
there may be two incompatible theories that are equally irrefutable. He cites determinism and 
indeterminism; but there are many others: for example one could also have the axiom of choice 
and its negation; or “There is a simple incantation that makes everyone who hears it know all 
algebra instantly.” versus the view that there is no such incantation. 

So is it rational to believe that there is no incantation if we cannot prove it? Popper points out 
that we can try to refute an empirical statement or its negation, but there are still critical questions 
we can ask even if refutation is too tall an order. “A theory is comprehensible and reasonable 
only in its relation to a given problem situation, and it can be rationally discussed only by discussing 
this relation.”. So we can ask things like: “Does it solve the problem? Does it solve it better than 
other theories? Has it perhaps merely shifted the problem? Is the solution simple? Is it fruitful? 
Does it perhaps contradict other… theories needed for solving other problems?”. Irrefutability 
does not mean there are no good critical arguments. 
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Although there will be ideas taken for granted in any research, the next section makes explicit 
some important background theory. 

1.6 Some Background Theories 

1.6.1 Autonomous Knowledge 

Popper calls the physical world “World 1”; while “World 2” is the subjective world of our 
conscious experiences. But according to Sfard (1994a), the unattainability of truth challenges “the 
assumption that science aims at a discovery of mind-independent reality.”. Similarly, Lincoln & 
Guba criticise the assumption that “there is a tangible reality” by conflating realism with the view 
that “experience with [reality] can result in knowing it fully” (p. 82). This conflation entails not 
the orthodox idea that each of us creates theories about the world rather than having direct 
access to it (our knowledge of World 1 is a World 2 construction); it entails the more radical view 
that there is no world except that which is constructed by humans (World 1 is part of World 2). 
The difference is crucial for research. In the second case, one could only ever claim to be musing 
on one’s own dreams - it would not be legitimate to talk of pursuing knowledge about some sort 
of free-standing educational setting. The ideas that “participants” distinguishable from oneself 
could have “rights” over one’s data, or that there is some sort of “responsibility” to a wider 
“community of inquiry” would be unnecessary elements in the one-player game. Nevertheless, 
given a conjectural epistemology, it is not clear why the reality of World 1 has to be denied. 

Popper (1972) argues that if it is possible for theories about World 1 to clash with World 1 itself, 
then it must be possible to talk about their logical content. Theories that are accessible to other 
people (rather than just being inside a person’s head) are members of “World 3”. Examples of 
knowledge in World 3 include “theories published in journals and books and stored in libraries; 
discussions of such theories; difficulties or problems pointed out in connection with such 
theories; and so on.” (p. 73). Arithmetic, methods for solving equations, gravity, astrology, flat-
earth theory and fractals belong to World 3. World 3 contains false theories as well as true, and 
problems as well as arguments. It is not unchanging, because knowledge grows. 

Popper argues that World 3 is “a natural product of the human animal, comparable to a spider’s 
web” (Popper, 1972, p. 112), and is largely autonomous (which is why he refers to “objective” 
knowledge). For example, although humans created natural numbers, whether there is an infinite 
number of prime numbers is not something we make up - this problem and its resolution are 
unintended consequences of the original creation. Another argument for autonomy consists of a 
thought experiment in which all works of art and technology - and the knowledge in people’s 
heads about them - are destroyed: does the survival of libraries affect the re-emergence of 
civilization? Even von Glasersfeld (1995), who starts “from the assumption that knowledge, no 
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matter how it be defined, is in the heads of persons” and therefore denies the existence of World 
3, also wants to argue that ideas “should never be personal property”. 

But this autonomy is not complete - new problems and creative thinking may lead us to new 
theories and thereby add to World 3, creating “new unintended facts; new unexpected problems; 
and often also new refutations” (Popper, 1972). This process (albeit rather simplified) can be 
described using the schema: 

P1 → TT → EE → P2

P1 is the problem from which we start; TT is a tentative theory - an imaginative conjectural 
solution; EE is error-elimination, involving critical discussion or experimental tests; and P2 is the 
resulting problem situation, perhaps containing new problems. We can attempt to gauge progress 
by comparing P2 with P1. Note also that a problem situation incorporates background theories 
(some inherent in the structure of language). This is important for understanding Lakatos’ 
notions of progressive and degenerating problem shifts. 

This view of knowledge as autonomous is undoubtedly out of kilter with the prevailing 
philosophy of the mathematics education research community (Ernest, 1991) because of its 
perceived associations with four positions: 

1. The belief that mathematical language aims to capture unchanging “essences” in response to 
mathematicians’ direct intuitions of a Platonic realm of Forms (thus forgetting the human role 
in creating mathematical objects, rules and practices). 

2. The view that words and symbols carry fixed meanings (described by Sfard, 1994b). 

3. The arrogance that assumes that mistakes are never made in mathematics. 

4. The naïve version of positivism that ignores Fries’ trilemma and the subtlety of human 
thought and interaction by maintaining that controlled experiments are the only way to obtain 
knowledge about teaching and learning mathematics. 

The Popperian formulation outlined earlier would suggest that this association is unnecessary. 
Only if knowledge were foundational rather than conjectural would the existence of World 3 lend 
any support to these positions. Whatever the philosophical status of World 3, the unfortunate 
conflation of autonomous knowledge with these rather unsophisticated views (Edwards & 
Núñez, 1995) means that the researcher can feel uncomfortable talking about mathematical ideas 
unless they are portrayed as being in the head of a particular participant in the research (a 
hopeless situation if one wants to improve students’ existing knowledge). This conflation can also 
entail a significant failure to understand students’ thinking by ignoring their very real struggle in 
maintaining a consistent, memorable and workable set of mathematical ideas. At a minimum, 
World 3 should be seen as a construct for respecting the “weekday Platonism” (Davis & Hersh, 
1980) of those doing mathematics. 
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1.6.2 What is Algebra? 

Mathematics in the Popperian view is an archetypal member of World 3. Although it is a human 
creation, we can discover things about it. This fits very well with Davis & Hersh (1980), but does 
not answer the question “What is mathematics?”, let alone “What is algebra?”. 

Popper (1945) offers very striking arguments against the Aristotelian view of definition as the 
description of an essence. In this view, “A puppy is a young dog” answers the questions “What is 
a puppy?” or “What does ‘puppy’ mean?” or “What do we mean by ‘puppy’?”. Popper argues for 
using in philosophy the scientific method of labelling. For example, “A puppy is a young dog” 
would answer the question “What shall we call a young dog?”. A summary of Popper’s 
nominalist position would be that arguments about terminology are philosophically barren, and 
that we should ensure that nothing important depends on the meaning of terms. This is clearly 
directly opposed to Wittgenstein’s view of philosophy as the dissolving of linguistic confusions 
through the clarification of terms. Whether too much or too little has been loaded into terms 
depends entirely on the task to which they are put. 

Nevertheless, it should be made clear to avoid confusion that in this thesis, “algebra” is usually a 
shorthand for “symbolic algebra”, which is taken here (following Kieran, 1989a) to refer to the 
use of letters to stand for numbers (for example when students solve equations, represent word 
problems or express laws of arithmetic). Of course what needs justification in this thesis is not 
that the word “algebra” essentially means or should mean “the use of letters to stand for numbers” 
(because such discussions are ultimately barren unless one is interested in the history of words), 
but why this research focuses on the use of letters to stand for numbers, particularly in equations. 
This decision is because of the earlier formulation of the problem of learning algebra as being 
centred on difficulties with the symbolism, rather than because the use of letters is “the most 
obvious feature of algebra” (Booth, 1989a, p. 57). There are reasons (as will be seen) why the 
definition assumed here does not make use of a distinction between algebra as syntactical form 
and the semantic processes - mathematical or psychological - that “lie behind” the syntax (Hewitt, 
1985, Davis, 1986b); in particular why the definition is not in terms of a mode of thinking, such 
as “awareness of generality”, “handling the as-yet-unknown” or “appreciation of mathematical 
structure”. However, it is to be expected that each person has his or her own preferred definition, 
and to avoid futile arguments about terminology one would not want to defend particular 
definitions too strongly. For example, Radford (1995) shows clearly that the 9th century work of 
al-Kwharizmi, which predates the use of letters standing for numbers, involved procedures - such 
as treating the unknown as if it were known, and using arguments for the equivalence of two 
ways of calculating whatever the particular numbers selected - that are recognisably part of what 
students do in the classroom under the label “algebra”. Moreover, modern algebra need not even 
refer to arithmetic in that it can be generalised to the study of objects and the rules between 
them. Algebras such as Boolean or geometric transformational are not considered here. 
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So there are good reasons for alternative formulations. For example, the Royal Society / JMC 
report takes the view that “the mere use of algebraic symbols does not imply algebraic activity.” 
(p. 29), and consequently excludes trial-and-improvement solution of equations as an algebraic 
activity because it involves “moving forwards from a ‘known’ starting number to the ‘unknown’ 
number, whereas algebraic methods involve working backwards from an ‘unknown’ number to a 
known number.” (p. 8). 

As for identifying “algebraic problems and ideas”, it seems reasonable to claim that the problems 
described in the literature on research in the learning of algebra may be intended to involve some 
engagement with these problems and ideas. Of course the originators of the activities were 
making certain assumptions about what common algebraic goals are appropriate for students to 
attain, and these assumptions depend on theories about what problems of algebra are accessible, 
valuable and interesting for the particular students, and on the perceived constraints on the 
learning environment. So although one can start by looking for activities that are explicitly 
labelled “algebraic”, decisions can be made to exclude or include based on further criteria. In 
particular, the focus is largely determined by various conjectures that arise out of the 
reinterpretation of the research literature into the identification and improvement of students’ 
algebraic knowledge (chapters 2 and 3). But functions and graphs - which would probably form 
part of many people’s algebra curriculum - do not feature much in this research for reasons of 
time and thesis length. 

1.6.3 The Issue of Focus 

We have seen in section 1.5 how “that anybody may criticise” constitutes scientific objectivity. 
For example, the failure to address the questions in section 1.3 may fuel a criticism of a particular 
claim, method or bias in this research. If the criticism is a good one, this is to be encouraged. 
What constitutes a “good” criticism is of course debatable, but the point is that this research 
should not try to immunise itself from criticism. To take a particular case, a partial resolution of 
the question “To what extent is research into IT across the curriculum applicable to 
mathematics?” is to assume that, although IT is used across the curriculum for measurement and 
data-handling, there must be some research done which is specific to mathematics. This research 
is essential, it could be argued, if one is to adequately illuminate the relationship between IT and 
the specially mathematical processes of investigating pattern in number, shape and function, 
using the language of algebra and studying geometry. Now this argument is debatable; but it is 
not debated here. Rather, it is part of the background theory that is open to criticism. So why 
offer the argument? Simply because by exposing more theory to scrutiny, it makes it more likely 
that an error will be found. 

1.6.4 Ethics 

What rights do relevant parties have over the data? The research is based on co-operation with 
students, teachers and schools; therefore each participant should be made aware of the nature of 
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the research and given the option to exercise the rights of anonymity and confidentiality. This is 
all very well, but what about validity problems caused by data omissions? Such omissions would 
place limitations on the extent to which it would be possible to test theories, but this in itself 
would not necessarily completely negate the value of the research. These principles may sound 
like drastic limitations on the “right to know”, but while an ethical framework cannot cope with 
every moral dilemma, it is important to know the rules so that breaking them is then a conscious 
decision. Although it is potentially arrogant to fit others into our own theoretical frameworks, it 
is even more arrogant to suppose that this can be avoided. However, arrogance all round can be 
minimised by an epistemological approach that suggests there are always alternative theories. 

Another issue is whether it is fair to potentially advantage one group of students by providing 
them with technology that might (if a control group design were adopted) be prohibited from 
another group. Since this research is not longitudinal (see later) it will be possible to allow any 
students to eventually have access to any benefits. Conversely, the collaborative nature of the 
research means that the teachers involved could at any time terminate any activity that appeared 
to be unproductive. 

1.7 Popperian Psychology 
“I suggest that one day we will have to revolutionize psychology by looking at the human mind as an organ for 
interacting with the objects of the third world; for understanding them, contributing to them, participating in them; 
and for bringing them to bear on the first world.” (Popper, 1972, p. 156) 

“How do we think?” can be addressed on a number of levels. It is important to point out that we 
do not require here a description of neuronal brain activity, or solutions to the problems of 
consciousness, intelligence, personality, social behaviour, trauma, etc. Rather, because the 
research is directed towards the knowledge about mathematics inside students’ heads, we require 
a rationale for the relationships between World 2 knowledge, experience, learning and 
understanding. Note that “World 2 knowledge” here includes the products of understanding; 
subjective knowledge of “facts” (that is: “what is the case”, as opposed to propositions); and 
“skills” (the capability to solve problems). Note too that without something like the distinction 
between World 2 and World 3, any difference between epistemology and psychology would have 
to be denied. 

1.7.1 Learning 

The commonsense theory of commonsense knowledge is called by Popper the “bucket theory of 
the mind”: we open our eyes, prick up our ears, and information streams into the mind, 
accumulating and then being digested as knowledge. He argues that this theory is completely 
mistaken, and yet exerts a powerful influence on some theories of teaching, particularly the 
behaviourist notion of conditioning. Knowledge is treated as consisting of “thing-like” elements 
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(ideas, impressions, sense data) in us, that we passively receive (unless we actively create error by 
interfering with or “going beyond” these given elements); higher level knowledge establishes 
itself by the repetitive association of these elements. Opposed to this, “As children we learn to 
decode the chaotic messages which meet us from our environment. We learn to sift them, to 
ignore the majority of them, and to single out those which are of biological importance for us 
either at once, or in a future for which we are being prepared by a process of maturation.” 
(Popper, 1972, p. 63). This learning “consists of the modification (possibly the rejection) of some 
form of knowledge, or disposition, which was there previously; and in the last instance, of inborn 
dispositions.” (ibid., p. 71). Moreover, modification occurs by a process of trial-and-error-
elimination. That is, we somehow jump to a World 2 theory and then test it in the hope of getting 
nearer to the truth. 

So if learning starts from existing knowledge, but is discontinuous with existing knowledge, can there 
be any notion of “natural” (or even “proximal”) algebraic development? If increases in ability 
arise only through learning activities rather than by any age-related process of maturation, can 
commonalities between students be explained by common experiences? Sutherland (1991) 
suggests that IT has the potential to challenge the attribution of students’ misconceptions to 
cognitive development. If learning is creative and conjectural, can there be cognitive gaps between 
theories? (cp. Herscovics & Linchevski, 1994). 

1.7.2 Understanding 

Three popular (overlapping and partial) theories of understanding are: 

Sense-making: an act or process of constructing meanings, connections and rationale; a reflection 
on these; or a holistic perception (perspective, view, interpretation, “seeing as”, construal, 
reading, noticing, jigsaw) of these. See Sierpinska (1994) for some discussion of this theory. 
Kaput (1989), for example, writes, “meaning is the foundation of mathematics learning” (p. 168). 

Imagining: a construction or possession of an image (mental representation, model, metaphor, 
intuition, embodied schema, first approximation mental picture, result of reflection); or an 
examination of the properties and relations of an image. The Pirie-Kieren (1989) model is an 
explicit theory of mathematical understanding along these lines. English & Halford (1995) 
develop a sophisticated theory of cognitive models. Larkin (1989), for example, suggests that a 
large part of “understanding an equation” is being able to “construct a good internal 
representation for it” (p. 130); while Sfard (1994b) refers to non-propositional “image schemata” 
(following Lakoff, 1987 & Johnson, 1987) as a primary means for organising experience. 

“Re-enactment”: an act or process either of re-enacting through empathy another’s coherent 
experience, or of social construction. This is perhaps best exemplified by the work of Lave in the 
case of situated cognition, and Collingwood in the case of historical research. 
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The relationships between these theories in research studies are complex (see Davis, 1992, for 
example), especially with regard to language - as a factor in structuring thought; as an insight into 
thinking; as a means for understanding; as sharing of meaning; etc. There are also difficult issues: 
Are knowing how or when aspects of understanding? What is the role of understanding in 
developing and executing strategies? For example, one of the teachers involved in the research 
argued that “problems with manipulation all come from problems of not understanding… if you 
understand it then you can follow the rules”. Is to understand something to have the theories that 
enable one to be able to use it appropriately, or is it to have a theory relating it to simpler 
“knowns”? The sense-making theory is associated by Popper (1963) with Wittgensteinian notions 
of meaning and warrantability; but it captures in informal language the sensations of gradual 
piecing together and sudden insight. The imagining theory has much to recommend it, 
particularly its emphasis on models and their limitations, and the potential of similes such as “an 
equation is like a balance” to reduce the “cognitive load” demanded by memorisation or 
execution of algorithms. But can it be assumed that one can characterise failure to “perform” as 
the grasp of an inadequate image (or the inadequate grasp of an appropriate image)? The re-
enactment theory helpfully emphasises situations and their influences. 

One difficulty is that if computers cannot have understanding (and therefore knowledge), the 
operational definition of understanding has to tighten to compensate for computers’ capability to 
achieve tasks that previously were thought to require understanding. On the other hand, 
behaviour is not always an accurate guide to understanding. It is possible to devise a strategy, 
understand it in any of the senses above, even write a program to carry it out, but then find it 
difficult to execute, because of (say) the number of variables - some practical knowledge is 
needed (such as an image or pencil-and-paper notation) to keep track of the algorithm. 
Understanding a problem, understanding how to solve it and being able to solve it are quite 
distinct: researchers at NFER, analysing the mathematics scripts of KS1 students concluded that 
many of the errors were not caused by failure to read the problem, to understand the problem, or 
to represent the problem, but ultimately by transformation or process errors. In other words, the 
children either used an inappropriate strategy or executed a good strategy badly. 

As a general heuristic, Popper suggests that, contrary to expectations, if we want to know about 
how and why something is produced we can often learn more by studying the products 
themselves than by studying production behaviour. We can regard the outcome of the subjective 
process of understanding as a theory - a World 3 object; and the process of understanding as a 
sequence of theories. A psychological process can (and should, perhaps?) be analysed in terms of 
the World 3 objects in which it is anchored. Popper’s view is that understanding a theory is, at 
heart, understanding the problems it intends to solve and understanding why other solutions fail. This applies 
equally to language, science, religious belief, or any history of human action. His general problem-
solving schema: then applies: P1 → TT → EE → P2. In connecting understanding and problem-
solving, this view is perhaps closest to that of cognitive science (Chaiklin, 1989, p. 96). 
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If understanding a theory is a recursive metaproblem of understanding an underlying problem 
situation, what are the consequences for the desire for pedagogical knowledge, and the notions of 
a linear, spiral, modular or hierarchical curriculum? Under what circumstances could we talk 
about “degrees of understanding”, or “levels” or “types”? Rather than seeking students’ “grasp” 
of meanings and images, we should look at their theories. 

1.7.3 BVSR 

Campbell (1960) offers a mechanism for increases in knowledge that can be seen as an extension 
of Popperian ideas to creative thought. Blind-Variation-and-Selective-Retention (BVSR) is 
“fundamental to… all genuine increases in knowledge, to all increases in fit of system to 
environment.” (p. 380). Even mechanisms that shortcut BVSR have themselves been originally 
achieved by BVSR. Campbell also argues that such shortcut mechanisms still involve BVSR at 
some level, although this will not be assumed here. 

By analogy with evolution by natural selection, BVSR in understanding would require “a 
mechanism for introducing variation”, “a consistent selection process”, and “a mechanism for 
preserving and reproducing the selected variations” (p. 381). 

In line with Popperian psychology, the variations can be characterised as theories. The “selection 
process” is presumably (following Locke) provided by Worlds 1 and 3, and can be characterised 
(following the model of understanding outlined above) as a problem of special interest to the 
individual - a “concern”. Concerns would include desires, motivations and fears - in short: 
anything that exerts a selection pressure on the formation of theories. A concern is a World 2 
construction like a theory, and can be considered as incorporating what English & Halford (1995) 
refer to as the “student’s problem-situation model”. 

Campbell notes that the BVSR model of thought “joins the Gestaltists in protest against the 
picture of the learning organism as a passive induction machine accumulating contingencies. 
Instead, an active generation and checking of thought-trials… is envisaged. … Poincaré’s (1913) 
aesthetic criteria and the Gestalt qualities of wholeness, symmetry, organised structure, and the 
like can be regarded as built-in selective criteria completely compatible with the model.” (p. 389). 
However, “While ‘insight’ is accepted as a phenomenal counterpart of the successful completion 
of a perhaps unconscious blind-variation cycle, its status as an explanatory concept is rejected, 
especially as it connotes ‘direct’ ways of knowing.” (p. 390). Theories do not spring fully formed 
into being. 

Within such a model, learning need not necessarily be entirely conscious, in contrast to the view 
that “only things that students are fully aware of can form the basis of their learning and it only 
these awarenesses that can be used by the teacher to develop their learning.” (Hewitt, 1985, 
p. 15). 
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While decrying the deification of “the creative genius to whom we impute a capacity for direct 
insight instead of mental flounderings and blind-alley entrances of the kind we are aware typify 
our own thought processes” (p. 391), Campbell lists four ways in which thinkers may be expected 
to differ, according to the BVSR model: 

1. The accuracy of representations of World 1. 
2. The number and range of variations in thought trials produced. 
3. The accuracy and number of selective criteria. 
4. The ability to retain solutions. 

Of course there are difficulties with the model: Campbell himself notes it is difficult to test 
(giving a number of reasons for this) and it leaves variation itself unexplained. Nor do we have 
any idea to what extent shortcut mechanisms might be more influential in practice than simple 
BVSR. However, it might be reasonable to suggest (following Kant) that human physiological 
development has a very strong early influence on the propensity to construct certain theories - 
for example for space, time, quantity, quality and relation - that might then act as templates or 
constraints on future constructions. 

One shortcut mechanism for transfer between problems could be analogical reasoning 
(Rumelhart & Norman, 1981; English & Sharry, 1996), in which “The ability to form an effective 
problem-situation model can… assist students in recognising similarity in problem structure 
between a known (base) problem and a new (target) problem. This can facilitate transfer of a 
known solution model. Such analogical transfer involves constructing a mapping between 
elements in the base and target problems, and adapting the solution model from the base 
problem to meet the requirements of the target problem” (English & Halford, 1995, p. 244). 
Moreover, “Successful transfer to the target problem can lead to the induction of more general 
models encompassing the source and target problems; these models can facilitate solution of 
subsequent analogous problems” (ibid.). 

1.7.4 Some Elaboration 

Popperian psychology has several strong competitors, and there is much theoretical work to be 
done in this area. It is beyond the scope of this thesis to discuss in any detail its relationships to 
other perspectives, or to offer anything approaching a critique - this research can at most act as a 
preliminary illustration of some of its themes. However, it may be helpful to compare it briefly 
with a recent theoretical framework that shares some affinities, in order to bring out some of its 
features, in particular its congruence with Popperian epistemology. 

Drouhard & Sackur (1997) describe a developing framework for understanding the learning of 
algebra, influenced by Piaget and Vygotsky. They propose a “Triple Approach” that involves a 
subject, a social group and “reality” (either material or conceptual). Piaget’s idea of knowledge 
resulting from interactions between psychology and “reality” was a starting point. However: 
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“it seemed necessary to us to introduce a socially-related dimension, related to the society of past and 
present mathematicians and teachers amongst others. This dimension relies on the idea that 
mathematics is a social construction, and that if even some basic (e.g. logical) knowledge may be 
constructed just by the interaction of the child with his/her environment, it is highly improbable that 
s/he could build up by him/herself advanced mathematical ideas (those which have been built 
through a long and uncertain historical path) just by interacting with his/her environment. 

Obviously such ideas are related to those developed by Vygotsky [1962]. One may take care however 
that we are not focusing here on the social construction of the mathematical knowledge, but rather on 
the construction by an individual of the socially - and historically - already constructed (advanced) 
mathematical knowledge, that is not the same thing (even if related).” (p. 226) 

This latter distinction is essentially that between Popperian epistemology and Popperian 
psychology. Moreover, the two “realities” that Drouhard & Sackur mention are clearly Worlds 1 
and 3. But the Popperian approach would count in World 3 not just the “already constructed” 
mathematics but also the classroom’s locally produced knowledge (written, spoken or implied). 
So in focusing on the individual’s learning, the “social” - in either the local or the more extensive 
sense - is very far from being ignored. Although the teacher is usually the one responsible for 
setting the local rules of the game of mathematics, he or she will often have regard to the more 
widespread rules of the game that have developed over the centuries. 

Drouhard & Sackur have a rather different view of knowledge to Popper’s. For them, knowledge 
is all local - which seems to contradict their view of public mathematics - and true inside given 
limits. In the psychological area, “true” means coherent inside the domain where the subject may 
use it. In the social area, “true” means valid, in the sense of having been validated by a social 
group. In the “area of reality”, “true” means efficient. 

As previously discussed, knowledge in the World 3 sense is conjectural and “true” simply if it 
corresponds to what is the case. On the other hand, it can also be relatively adequate in solving a 
problem, and so in that sense might be considered “efficient”. However, false but efficient 
conjectures would hardly be acceptable as “true” in either science or mathematics. Newtonian 
mechanics, for example, is very useful for snooker table calculations, but with the advent of 
quantum mechanics would not be described as “true”. Similarly, the false claim that x2 + 1 = 0 
has no solutions is very “efficient” in early algebra classes. Drouhard & Sackur would therefore 
count “snooker tables” and “early algebra classes” as outside the respective “truth domains”. A 
logical argument or an empirical conjecture could also be considered “valid” vis-à-vis its 
relationship with the rules of the game; but although the rules can be created and checked by 
social groups, there is no sense in which either a valid argument from false premises or a valid 
conjecture from erroneous data is a desirable truth. Finally in this analysis of “truth”, it is possible 
to argue that knowledge in the World 2 sense is also “true” if it corresponds to the facts. A false 
idea which perfectly coheres with all one’s other ideas is better than a completely contradictory 
false idea, but not usually as good as a true idea. A false idea may equally well be “authentic”, 
“understandable” and “useful”. 

It may also be useful to point out another respect in which Popperian psychology as a tool for 
analysis is harmonious with Popperian epistemology as a model for research. English & Halford 
(1995) describe their approach as being… 
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“more specifically related to cognitive science than to any school or ideology. We have done this 
because… we believe cognitive science provides the most accurate account so far of the actual 
processes that people use in mathematics and offers the best potential for genuine increases in 
efficiency. However, it also entails an attitude of scientific inquiry. All the tenets we propose in this 
book are subject to verification in further research, both in the laboratory and in the classroom. … 
Some of the chief tenets of the constructivist position are… incorporated, but in a form that makes 
their underlying processes explicit and open to scrutiny.” (p. 306). 

This “attitude of scientific inquiry” is at the heart of Popperian epistemology: it entails trying to 
put our theories into a criticizable form. 

1.8 Preliminary Implications of 
Popperian Psychology 

1.8.1 Concepts 

Talk of “concept” is confusing, because (as we have seen) it can refer to very different theories of 
understanding; to Aristotelian essentialism; or merely to the realm of discourse. Having made a 
decision to follow Popper’s advice to consider the act of understanding as being essentially the 
creation of theories in response to a problem, treating “equation” as a precise psychological 
construct is not useful. Nor are students’ post hoc rationalisations about equations central. Perhaps 
referring to students’ theories rather than their “concepts” would be more appropriate. This has 
the advantage that it emphasises that what students perceive is a personal construction (rather than a 
direct record of reality), but one which is potentially at odds with what is there. Therefore some 
theories can be better than other theories. Although it is likely for there to be commonalities 
between different people’s theories because they have tackled similar problems, a World 2 theory 
is implicit because the knower is perhaps rarely aware of more than a small part of it at any one 
time and it cannot be transferred directly from one person to another. It is also imprecise because it 
is not concrete or formulated in logical terms, and its vagueness can help us to explore new 
situations and subtleties, by selecting perhaps mutually incompatible theories in different 
contexts. However, there are assumptions built into knowledge, and we can discover new things 
in existing knowledge that we did not realize by means of reflection. Although remembering what 
has been learned in lessons can seem difficult if it does not play a major role in everyday living, 
theories can linger. 

1.8.2 The Nature of the Research 

Rather than Collingwood’s “empathy” with the (World 2) emotions and desires of participants, it 
is necessary to attempt to reconstruct participants’ (World 3) problem situations: What problems 
were they trying to solve? What was the situation as they saw it? What was the situation? What 
theoretical solutions were proposed? Did they work? In the case of research into individuals’ 
learning mechanisms, this does not mean restricting analysis to the individual’s immediate 
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physical and social environment, because it is the intellectual environment that is of most interest 
and this is more than just the “taken-as-shared” meanings and practices of a particular classroom 
community (cp. Cobb, Yackel & Wood, 1992). For the learner, such local contributions to World 
3 are often indistinguishable from more widely known contributions, yet the researcher who is 
interested in the improvement of theories rather than purely their variety has to be concerned 
with both sets of World 3 contributions. Methods such as introspection, observation of behaviour, 
interviewing and studies of cultural artefacts are welcomed as sources of insight into mental 
processes, but they are not error-free. 

A second implication of a Popperian psychology for research is that there can be no law-like 
cause-and-effect relationship between IT and cognition. If one is interested in the learning 
mechanisms by which a student’s equation theories and concerns change, such broad slogans as 
“IT improves problem-solving at the expense of algebraic competence” have to be abandoned in 
favour of more subtle illuminations of the problem situation of the student. When students 
grapple with learning activities, therefore, the technology is portrayed as an inherent part of the 
problem situation. Treating “technology” or “algebra” as monolithic entities is simplistic. As 
Johnson, Cox & Watson (1994) discovered firsthand (also citing Niemiec & Walburg, 1992), 
large-scale studies involving thousands of students, several school subjects, numerous topics and 
a wide variety of software can sometimes tell us less about these learning mechanisms than in-
depth case studies. 

Davis (1992) describes how modern trends in mathematics education research are away from 
studying students solving routine tasks with which they are already familiar, towards “‘evaluation’ 
studies that map the student’s mental representations, ability to use these representations, and 
ability to build up new representations in order to deal with novel tasks.” (p. 239). In other 
words, from an emphasis on ranking students to an emphasis on understanding them: 

“Where possible, the new approach prefers not to try to infer mental processes from looking only at 
what a student has written on paper, but prefers to use videotaped records of task-based interviews, 
or of small group work, where what the student does, says, questions, revises, decides (and on what 
basis) can be observed more directly.” (p. 239) 

The research involves “cognition” is the sense that it tries to understand mental operations and 
their products in specific algebra tasks, but it is not directed towards finding “basic cognitive 
processes” that might underlie thought in general (cp. Chaiklin, 1989). This research does not 
focus primarily on how cognitive changes are dependent on characteristics of the student (such as 
social background, sex, or typical modes of learning), the teacher (for example, teaching 
strategies, experience, classroom organisation, or confidence) or the environment (such as setting, 
resources, class size), but on how changes occur as a potential result of particular activities. This 
does therefore not imply a focus on the “typical” experience of students in an algebra classroom; 
or on the sociological role of words that students or teachers use to talk about what they are 
doing (cp. Pimm, 1995); or on the metaphysical role of technology in human interactions (cp. 
Bolter, 1984); or on the attitudes and perceptions that might make one a better algebra teacher 
(cp. Mason et al., 1985). 
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1.8.3 Algebraic Thinking 

Love (1986) describes certain “modes of thought” as “essentially algebraic”: for example, 
“handling the as-yet-unknown, inverting and reversing operations, seeing the general in the 
particular.” (p. 164). Kieran (1989b) adds “knowledge of structures, use of variables, 
understanding of functions, symbol facility / flexibility,… ability to formalise arithmetic patterns” 
(p. 163) as further potential dimensions of algebraic thinking. Lins (1992) characterises “algebraic 
thinking” (distinct from “algebra”) as “thinking arithmetically, thinking internally, and thinking 
analytically”. He then uses this characterisation to explain the tensions involved in the historical 
production of algebraic knowledge. He also tries to show that the characterisation is an adequate 
framework for distinguishing students’ solutions and for identifying their sources of errors. Love 
goes further and claims that there is “no longer a series of topics called algebra, but rather a range 
of ways of thinking that need to be spotted, developed and encouraged.” (p. 50). It is interesting 
that both he and Davis (1985) contrast this purely World 2 view of algebra with “learning to 
manipulate meaningless symbols by following rules that you learned by rote” (Davis, p. 203) - the 
idea of representing situations using symbolic algebra does not seem to feature. 

However, the Popperian view would suggest that psychological processes relating to algebra have 
to be seen as an interaction with World 3 objects, and that the context-specific nature of these 
processes negates the possibility of a “mode” of thought that is somehow independent of the 
problem situation. (cp. Linchevski & Herscovics, 1996; Arzarello, 1991, Bednarz et al., 1992). 
Similarly, from a Popperian perspective, can there be “didactic cuts” between different types of 
thinking, such as that between “arithmetic thinking” (situation-specific strategies and values) and 
“algebraic thinking” (general objects, relationships and methods) as described by Filloy & Rojano 
(1989) and others? Talk of an “algebraic approach” may, however, be appropriate, if it describes 
heuristics to be contrasted with (say) a “whole-part” approach, a trial-and-error approach, or a 
spreadsheet approach to particular problems (Sutherland & Rojano, 1993). On the other hand, 
seeing operational or structural conceptions (Sfard & Linchevski, 1994) as explanatory devices 
could carry risks if one thought these were generalised context-free modes of thought that 
students can either exhibit or not exhibit. Trying to remove the context from students’ thinking 
might obscure the possibility that it is the nature of problems experienced rather than the “type of 
conception” that is crucial for appreciating students’ theory-construction. 

It is clear, then, that this research is not primarily about how new technology may influence ways, 
habits, paths, styles, modes or forms of thinking. It is rather less general than that, being more 
concerned with the learning of particular ideas in specific contexts. 

1.8.4 Behavioural Conditioning 

Nevertheless, at the other extreme, modelling algebraic knowledge as a set of behaviours, with or 
without the use of propositional facts also seems unsatisfactory (cp. Nicaud, 1992). Firstly, as has 
been seen earlier, such a model does not seem to reflect hypothesised ways of thinking, such as 
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the use of schema, imprecisely formulated ideas, analogies, images or metaphors. Secondly, it 
offers no plausible mechanisms for learning, beyond passive reception and repetitive association. 

How procedures and propositions might be related to the active generation and checking of 
thought-trials, as characterised by BVSR, remains to be elaborated; and will be considered further 
in the next chapter. Also, it cannot be denied that repetitive exercises can sometimes serve to 
impose a problem as a concern. Nevertheless, it is clear that from the Popperian perspective, 
portraying learning as the absorption of knowledge states is unhelpful. 

1.8.5 Symbol Meanings, Images, Interpretations & 
Metaphors 

The words that students use to talk about symbols or “the meanings that students ascribe to 
letters” are not, in the Popperian view, fundamental insights into students’ cognitive processes, 
but rather the theoretical consequences of past problems (especially ones solved using arithmetic 
or proportion). Sfard & Linchevski (1994) write: “Algebraic symbols do not speak for 
themselves. What one actually sees in them depends on the requirements of the specific problem 
to which they are applied.” (p. 192). Theories from past problems may be brought to bear on 
new algebraic problems, or on the problem of how to respond to an interviewer asking what x 
means. Such recontextualised “meta-algebraic theories” should not be seen as “causes” of 
difficulties or as “cognitive obstacles” but as genuine (albeit sometimes inadequate) attempts to 
solve problems. They are, however, valuable in that they may help teachers and researchers to 
conjecture students’ reasoning in a given problem situation. 

Similarly, metaphors such as the balance model do not reflect “understanding” but derive from 
the problem of providing a ready-made meta-algebraic theory to rationalise certain practices. 
Popperian psychology would suggest that Sfard & Linchevki’s expression interpretations are, in 
fact, theories that have been artificially separated from the problems they are intended to solve. 
For example, the theory that 3(x + 5) is a computational process would be relevant to a problem such 
as: “I think of a number, add 5 and then multiply by 3. If the answer is 99, what was my 
number?”. The theory that 3(x + 5) is a number might result from the problem: “Predict the xth 
number in this sequence: 18, 21, 24, 27, 30, …”. The theory that 3(x + 5) is a function might be 
relevant to the problem “If f(x) = x + 5 and g(x) = 3x, what is g(f(x))?”. Another example of 
recontextualisation is the claim of Behr et al. (1976) that some children “see” 2 + 4 as an 
instruction to add; others see it as a number. But when one is faced with a page of sums, the 
theory that 2 + 4 is an instruction is a pretty good one; whereas when one is solving the problem 
“What kind of entity results from adding two numbers.”, the theory that 2 + 4 is a number 
(rather than produces a number) seems not to be more relevant. 

Again, from a Popperian perspective, what Pirie & Kieren (1989) are describing is not therefore 
per se an image-based “growth of understanding” but a recontextualisation - the transformation of 
a strategy that solves a problem into a theory whose properties and relationships can be 
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examined. This characterisation of interpretations, images and metaphors as meta-algebraic 
theories brought about by recontextualisation could be contrasted with the “procept” analysis of 
Gray & Tall (1993). 

1.9 The Research Problem - A Second 
Attempt 

There are three elements to the research problem: 

1. identifying (for individual students) improvements in equation-related theories and 
concerns as a result of engaging in learning activities; 

2. relating the improvements to the problems found in the activities; and 
3. exploring the implications of Popperian psychology for the learning of algebra. 

In essence, the question is: “How can students’ equation theories and concerns improve?” 

This concludes the definition of the research problem and associated background theories. The 
next chapter examines various studies into students’ algebra, in an attempt to identify the 
algebraic theories of concern to teachers and students. The third chapter then looks at initiatives 
to improve students’ theories and concerns. 
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Chapter 2 
Identifying Algebraic Theories and 

Concerns 

2.1 Introduction 
Because of the importance of CSMS, this chapter starts by examining that study from the 
perspective of the problem of identifying students’ theories and concerns. After all, a snapshot 
(albeit a generation ago) of students’ abilities in solving algebra problems must give some 
indication of the theories they used, perhaps even the concerns which generated them (even 
though the study did not consider how students were taught). 

Further studies in the 1980s on students’ difficulties with letters in algebra, especially in the US, 
focus on the use of variables to represent situations. Although allegedly revealing deep insights 
into the conceptual structures used in solving algebraic problems, this chapter will argue that 
these studies may reveal rather more about the expectations of students as to the purposes to 
which symbolism is put (and thus both students’ theories and concerns). Such a result might 
apply to many studies which have researched the nature of algebraic thinking, and this is not to 
denigrate them; far from it - knowledge of such expectations may help teachers to hone them; 
and hence the section is titled “Recontextualised Theories and their Value as Insights into 
Concerns”. But the Popperian approach to psychology would suggest that undue authority 
should not be given to claims about having unearthed the fundamentals of thought. Incidentally, 
such a suggestion must also apply to Popperian psychology itself. 

Another strand of research relates to the theories used as strategies in solving problems, particularly 
solving equations, finding patterns in number, and tackling so-called “algebraic word problems”. 
This forms section 2.5. Finally, the implications of these studies for this research are discussed. 

2.2 CSMS 
The research programme “Concepts in Secondary Mathematics and Science” (CSMS) was based 
at Chelsea College, University of London, 1974-9. It considered the problem of the difficulty of 
various concepts for children at secondary school in the UK. The aim was to delineate a 
hierarchy of “levels of understanding” of concepts. The study was described in Hart (1981): 



“In many cases the order in which mathematics is presented to children is dictated by the needs of 
mathematics e.g. division before trigonometry or linear equations before quadratics. In other cases 
there is no clear order of presentation apparent in the mathematics and decisions have to be made by 
the teacher, based on experience and the dictates of the school syllabus. The research … took 
individual topics and attempted to form a hierarchy in each based on what the children tested 
appeared to understand.” 

In mathematics, this was tackled by administering pencil-and-paper tests in a variety of topics - 
including algebra. The tests were developed on the basis of “concepts” which the researchers 
considered important, an analysis of textbook treatments, discussions with teachers and 
interviews with children. The tests were intended to probe understanding rather than recall of 
standard methods, and were therefore free as far as possible of technical words. Trial items were 
provided to avoid the need for specialised knowledge (for example, to demonstrate the use of the 
arrow in x  3x and the use of a in a + 4 or 4a). 

In algebra, 27 children aged 13-15 were interviewed to trial the tests and to indicate some of the 
methods being used to tackle the items; and 3550 children from around 25 schools took the final 
test. 

Here are some examples of items, with the facilities for Year 8 and Year 10 given in brackets: 

• What can you say about r if r = s + t and r + s + t = 30 (30%, 39%) 

• Part of this figure is not drawn: 

 

2

2 2 2 There are n sides altogether all of length 2. 
 
What is the perimeter of the figure? (24%, 41%) 

• Add 4 onto 3n (22%, 41%) 

• If cakes cost c pence each and buns b pence each, and 4 cakes are bought and 3 buns are 
bought, what does 4c + 3b stand for? (14%, 30%) 

• L + M + N = L + P + N is true: 
Always Sometimes (when: _____) Never (Circle one) (11%, 27%) 

• Multiply n + 5 by 4 (8%, 25%) 

• What is the area of this rectangle? (7%, 16%) 

2e

5

 
• If (x + 1)3 + x = 349 when x = 6, what value of x makes (5x + 1)3 + 5x = 349 true? (4%, 

16%) 

• Blue pencils cost 5p each and red pencils cost 6p each. I buy some blue and some red pencils 
and altogether it costs me 90p. If b is the number of blue pencils bought and if r is the number 
of red pencils bought, what can you write down about b and r? (2%, 13%) 
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• Which is larger, 2n or n + 2? Explain. (4%, 10%) 

The levels were found by a procedure which grouped items together by similarity of content and 
association of facility. While the levels might be interpreted as indicative of discrete stages of 
cognitive development, it is difficult to believe that one’s taught experiences are independent of 
the abilities to understand and solve problems. Is it really possible to distinguish clearly 
“understanding of algebra” from “acquisition of methods” as is claimed? How is fluency in 
English controlled as a variable? O’Reilly (1990) makes a good case that “while the CSMS study 
contains valuable information concerning the errors and strategies which children make and 
adopt in learning mathematics, its ‘hierarchies of understanding’, rather than being universal in 
application are at best the results of particular teaching methods and conditions in England in the 
1970s.” (p. 77-78). He cites attempts in Germany and Taiwan to replicate the results as evidence, 
and describes studies demonstrating that the facility of an item varies according to presentation, 
context and language. 

Nevertheless, in the light of Popperian psychology, the CSMS algebra results are still interesting, 
as they can be treated as indicating that students have tackled a range of different problems, with 
wide variation in degrees of success between students compared with other topics. This raises the 
question of how the variation between students can be explained. 

2.2.1 Explaining Variation in Facility 

One explanation of variation might be experience - the older the child, the more school 
mathematics they have experienced (facts, techniques, notation, and so on), and so the higher the 
level of attainment. There is a large gap between the performance of 13 year olds and 14 year olds 
in the study, while the 14 and 15 year-olds are rather closer together (p. 180), so surely this is a 
result of school experiences? Algebra being a more “abstract” topic - than, say, fractions or ratio - 
implies that children are less likely to have acquired the requisite knowledge for themselves 
without explicit teaching. 

However, a longitudinal study of 105 students carried out as part of CSMS suggested that degree 
of success tends to change little as the child moves from Year 8 to Year 10. Only 10% moved up 
more than a level (although the results have to be treated with caution as there was a 50% loss of 
respondents). Experience does not seem to count for much. 

A possible clue as to an explanation of variation was that certain errors were made very often. 
For example, a quarter of students in Year 8 gave some number between 32 and 42 as an answer 
for the perimeter of the n-sided figure. Almost half gave an answer of 3n4 or 7n for “Add 4 onto 
3n”, and over half stated that L + M + N = L + P + N is never true. 

Although several thousand children were tested, many of them would have been in the same 
classes, with the same teachers, in the same schools, or in similar LEAs. However, in “interviews 
it was found that children from very different educational backgrounds attending very different 
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types of schools made the same type of error and often used the same methods.” (p. 6). Could 
these errors explain children’s lack of progress in attaining the higher levels? 

Küchemann’s analysis of the errors, influenced by the work of Collis (1975, for example) on 
Piagetian notions of concrete and formal thinking, produced six categories of letter usage: 

Letter evaluated: the letter is assigned a numerical value from the start. 

Letter not used: the letter is ignored (or acknowledged, but without meaning). 

Letter as object: the letter is treated as a shorthand for an object or as an object in its own right. 

Letter as specific unknown: the letter is regarded as a specific but unknown number. 

Letter as generalized number: the letter is seen as able to take several values, not just one. 

Letter as variable: the letter represents a range of unspecified values, with a systematic 
relationship existing between two such sets of values. 

These categories were used to explain the popularity of certain errors. For example, the tendency 
to give a numerical answer as the perimeter of the n-sided figure might be indicative of treating 
letters as having a value which must be pre-determined, or of the ignoring of letters. The answers 
3n4 or 7n to “Add 4 onto 3n” could be interpreted as the child treating letters as objects which 
can be collected up or as entities without meaning - the child has difficulty in accepting an 
“unclosed answer” like 3n + 4 as an answer. The reason why L + M + N = L + P + N is never 
true could be because L is always 12, M is always 13, and so on (letter evaluated); or because there 
is an M on one side but a P on the other (letter as object). Even success can be explained, to 
some extent, in these terms: “Using a letter as an object, which amounts to reducing the letter’s 
meaning from something quite abstract to something far more concrete and ‘real’, allowed many 
children to answer certain items successfully which they would not have coped with if they had 
had to use the intended meaning of the letter.” (Küchemann, p. 107). 

One view is that these categories indicate the presence of deep-rooted conceptions for children at 
different stages of cognitive development, and these conceptions dictate the way the children 
then respond to items. An alternative view would be that while Küchemann’s letter interpretation 
categories are a useful way of cataloguing the variety of strategies that students may deploy, their 
ubiquity could be explained simply by commonality of prior experience. Meanwhile, Olivier 
(1988), who found that ¾ of 13-year-olds appeared to have the misconception that 
L + M + N = L + P + N is never true, portrays the misconception as a bad inference from “the 
same letter stands for the same number” (so the L on the left must represent the same number as 
the L on the right) to the converse “the same number stands for the same letter” (so the number 
that M represents could not also be represented by P) or even the inverse “‘Not the same letter’ 
stands for ‘not the same number’” (p. 513). 

Although the interviews were not used to probe understanding to any great extent but to trial the 
tests, evidence from them (and from a wide range of other research studies) indicates that 
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children tend to use their own “informal” strategies to tackle mathematics questions rather than 
the standard “formal” methods taught in the classroom. These strategies work on easy items, but 
fail in fairly predictable ways on harder items. Students therefore do not apparently realize the 
power of the formal methods they have been taught. Since the focus in the study was on 
“generalized arithmetic” - that is, the use of letters for numbers and the writing of general 
statements representing arithmetical rules and operations - failure might be related to the 
procedures used in arithmetic. 

Hart suggests that “achievement is closely linked to the IQ score of the child” (p. 210). In 
algebra: 

“There was a distinct difference in attainment (by the age of 15) between those with an IQ score 
below 100 and those with IQ score above 100. There were no children of IQ score greater than 100 
who were still at Level 1 whereas 40% and 17% of those in the IQ ranges IQ ≤ 89 and 90 ≤ IQ ≤99 
respectively were still only achieving this level.” (p. 185) 

If algebra makes more demand on intelligence than other topics (perhaps because of its abstract 
nature), and the interpretation of letters and usage of informal methods are responsible for 
particularly common errors, perhaps these facts are sufficient to explain variation in facility. What 
would follow from this for teaching? 

2.2.2 Suggested Implications for Teaching: 
The Notion of “Readiness” 

1. Hart suggests that teaching must be individualised: 

“The type of mathematics given to the children must be tailored to their capabilities. It is impossible to 
present abstract mathematics to all types of children and expect them to get something out of it. It is 
much more likely that half the class will ignore what is being said because the base on which the 
abstraction can be built does not exist. The mathematics must be matched to each individual and 
teaching a mixed ability class as an entity is therefore unprofitable.” (p. 210) 

2. She argues that algorithms should be introduced only when the child appreciates the need for 
them, and that they must build on informal methods: 

“We appear to teach algorithms too soon, illustrate their use with simple examples (which the child 
knows he can do another way) and assume once taught they are remembered. We have ample proof 
that they are not remembered or sometimes remembered in a form that was never taught… The 
teaching of algorithms when the child does not understand may be positively harmful in that what the 
child sees the teacher doing is ‘magic’ and entirely divorced from problem solving. … In order to 
avoid teaching rules which the child cannot apply we must first discover what the question we are 
asking him to answer means to him. If he does not see it as ‘multiply’ then giving him an algorithm for 
multiplication is not apposite. Secondly we must find out what method he normally uses to solve the 
problems of this type and build on that.” (p. 212) 

3. She suggests that teachers presenting a topic must be aware of the likely errors and take 
appropriate action: 

“They may even be able to build into their presentation examples which show the illogical outcome of 
the incorrect method. Instead of always asking a child to do a series of very nearly identical problems 
a useful exercise is to present a problem done in different (and erroneous) ways and ask the child to 
state which are wrong answers obtained from which wrong methods. To correct or discuss 
homework or set exercises simply by repeating the ‘teacher method’ seems to be of limited value. If 
that is all that is needed then the child would have been able to take in the method on its first 
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presentation. … Perhaps we should get away from ‘I’ll show you’ and into ‘let us discuss what this 
means’” (p. 214) 

4. Topics must be taught in an “order of difficulty”: 

“It is hoped that the presentation of a hierarchy in each topic in this book will give teachers some 
guidance on the sequencing of the topic they teach” (p. 216) 

5. More time could be spent consolidating foundational work, such as whole number arithmetic: 

“Is there really any point in teaching something we know most children will not understand? One 
reason given for doing this is that the child will become familiar with the idea and understand it later. 
We have no proof of this, in fact our results show that the understanding does not ‘come’. Surely all 
that happens is that the child becomes familiar with a lack of success and that mathematics is 
something you do but it makes no sense. Is the possible answer to state that fractions and decimals 
are topics fit only for secondary school children and so encourage the primary school to limit its 
number work to whole numbers? … This does not mean that the brighter child is penalised. In order 
to stretch him we do not need to present him with a new set of numbers but with new situations in 
which he can use the numbers he knows how to handle.” (p. 217) 

Küchemann concurs, suggesting that the majority of 13, 14 and 15 year olds were, in Piagetian 
terms, at the stage of concrete operations, “which means that for most children, the teaching 
should be firmly rooted in this level whether the aim is to consolidate their understanding or to 
ease the transition to formal operational thought.” (p. 118). 

6. Finally, we have in summary the key message of the research: 

“All children make some progress but it is very slow. The less able pupil may be slowly moving 
through the type of mathematics which occurs in stages 1 and 2 and if he is given the type of 
mathematics which is essentially abstract, he is unlikely to assimilate any of it until he is ‘ready’. The 
problem is always to find what his ‘knowledge base’ is and build on that. As teachers we have 
expectations of what a child ‘should’ know, very often based on intuition and usually very different 
from the actuality. (Hart, p. 217) 

However, there is a tension in these recommendations, at which Küchemann hints: 

“It … seems sensible to base the teaching given to children at Levels 1 and 2 on the meanings for the 
letters that these children readily understand. On closer examination this is by no means a 
straightforward task, for example, the use of letters as objects totally conflicts with the eventual aim of 
using letters to represent numbers of objects. However, it may well turn out to be the case (see 
Inhelder et al., 1974) that it is precisely through being made aware of such conflicts that children see 
the need to reorganise their thinking and thereby move towards a higher level.” (p. 119) 

In what sense are students not “ready”? Is it in the sense that a new-born baby is not yet able to 
walk - some biologically-based maturation needs to take place? Or is it in the sense that a 1-year-
old is not yet able to talk - more experimenting is needed before sufficient behaviours are 
available? Or are students not “ready” in the sense that a child who does not know either side at 
the Battle of Hastings would not know who won - some prerequisite facts are needed? Or is it in 
the sense that a colour-blind person might not be able to tell which cloth is red and which green - 
certain innate faculties are missing? Or are there other possibilities? 

The Popperian formulation “Understanding a theory is understanding the problems it is intended 
to solve or which it solves, and understanding why other potential theories are not solutions.” 
might look like a sleight of hand. After all, if we want to know the pre-requisites for a theory, we 
then have to know the pre-requisites for the problem - which presumably are theories in their 
turn - and so on. It does not seem to get us any further forward. However, if one looks at the 



examples given in CSMS, it could be argued that the reason that 92% of Year 8 students could 
not multiply n + 5 by 4 was that they did not understand the problem. 

Following this line of argument, virtually all of the items in CSMS contain algebra in their 
formulation and require familiarity with mathematical conventions for their understanding. For 
example, the problem “multiply n + 5 by 4” is a demand (by convention) to find an equivalent 
but simpler expression. A student who gives the answer “n + 20” is apparently either not aware 
that equivalent expressions can be checked by substituting particular numbers, or is not 
concerned to check (for whatever reason). In other words, the success criteria for this problem 
are not apparently accessible to students. 

On the other hand, a problem such as… 

Here are some piles of matches: 
 
How many matches are in the 100th pile? 
What is the number of the pile with 568 
matches? 

 
 Pile 1 Pile 2 Pile 3 

… does not require the use of algebra in its formulation; but it is easily grasped, and those who 
have grasped algebraic techniques can demonstrate that they can use them. The objection that 
this problem can be solved by arithmetic means is not helpful; the formula governing the 
matches can be made sufficiently complicated so that algebra is an advisable shortcut (after all, 
why bother with algebra if arithmetic will always do?), or students can be asked to justify their 
solutions and compare them with other students’ reasoning. The use of this sort of problem for 
learning is praised by Küchemann: “… the task of finding the relationship, of representing it 
economically and unambiguously, and of comparing the equivalent representations provides 
children with a worthwhile challenge.”. Hart notes that in the interviews, replies to the question 
“why?” were “often tautologous” or “an expression of feelings” (p. 217). Such an activity could 
help students to clarify what counts as a valid explanation. 

The above discussion is intended to show that evidence from the CSMS algebra test does not 
allow us to decide between the hypothesis that students understand the problems they are being 
asked to solve but lack the intellectual resources to find an answer, and the hypothesis that 
students do not understand the problems. 

Sutherland makes a different, although related criticism: 

“I suggest that the difficulties which pupils develop with algebra will at least be partly related to the 
ways in which algebra has been introduced to them in school. It seems surprising therefore that a 
major study, the CSMS algebra study, did not in any way attempt to describe or link the algebraic 
practices from which these difficulties stemmed, especially since at the time of the study it is likely 
that some schools were using the ‘new mathematics’ approach and others a more traditional 
approach.” (Sutherland, 1990, p. 159) 

O’Reilly (1990) was “struck by the lack of controls in a major research project of this nature” 
(p. 84), particularly with respect to teaching schemes and styles. The schools in the sample were 
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self-volunteering, and the only variable attended to was IQ: comprehensive schools were mostly 
used, but grammar schools used when the “IQ distribution departed from the normal curve and 
extra children with high IQ were needed” (Hart, 1981, p. 5). 

2.2.3 Further Questions and Issues 

There are several questions arising from CSMS for which further evidence would be very useful. 
How can variation in facility between students be explained? Why are certain errors common? Is 
algebra especially difficult? But this research will not be focused on these issues. It concerns itself 
rather with the question: given a lack of progress in algebra, “what experiences, if any, might 
bring about a more substantial change?”(Küchemann, p. 118). 

Of special interest to this research is the experiential pathway of equation solving described 
earlier by Filloy, Rojano and Sutherland; a pathway distinct from the pathways of simplification 
using the general rules of arithmetic (as in the early 20th Century), representing situations 
symbolically (as in CSMS), and exploring patterns using letters (as in the 1980s). The issue of how 
children’s difficulties with symbolism should be managed is of crucial importance in comparing 
such experiences. Before examining this issue in detail in chapter 3, further important research 
delineating students’ theories is considered, especially those used as strategies and - in the next 
section - those that appear to give insight into cognitive processes. 

2.3 Recontextualised Theories and their 
Value as Insights into Concerns 

Pereira-Mendoza (1987) asserts that “Comprehending the solution of equations, factorisation, 
polynomials, etc., depends on students’ comprehension of algebraic symbolisation. Without this 
comprehension, algebra will be internalised as a set of disjoint and meaningless rules.” (p. 331). 
Popperian psychology requires a reinterpretation of this position. Interpretations of expressions 
and letters have already been described, in sections 1.8 and 2.2 respectively. This section 
considers the interpretations of letters in expressions, interpretations of the equals sign, and 
interpretations of equations. 

2.3.1 Interpretations of Letters in Expressions 

Küchemann’s categories of letter interpretations are frequently used in research as an explicative 
device. Indeed, in a sequel to CSMS, called SESM, Booth (1984) found in interviews that 
“children may handle letters as ‘objects’, especially in more abstract examples” and that they “may 
interpret letters as specific unknown numbers in situations which require consideration of them 
as generalized number.” (p. 38). However, for problems such as “Add 3 to 5y”: 



Chapter 2 - Identification 46 

“It would… seem that the level of letter interpretation may bear little relation to success… in that 
children interpreting letters as objects may get the item right as well as wrong, while children who 
recognize letters are representing number may still produce the erroneous answer. It appears, 
therefore, that the meaning of letters may not be something which children take into account in 
answering such items; and in fact during the interviews each of 16 children who gave the erroneous 
answer ‘8y’ did so by applying the ‘rule’ of adding the numbers and writing down the letter, regardless 
of the meaning which they then went on to ascribe to the letter itself.” (p. 28) 

This raises the rather important question: what is the interpretation - that which is evidenced by 
the answer or that which is brought out in response to a direct request for an interpretation? 
Ursini (1990) found, in a test of 65 11-14-year-olds’ abilities in symbolising situations and 
interpreting symbolisations, that these skills were not obviously interdependent. Bell (1988) 
provides evidence with a class that “the distinction between x as a specific unknown and x as a 
generalised number did not appear to relate to conceptual difficulty.” (p. 152). Moreover, there 
are a larger number of ideas that students may have than are covered by the categories. Booth 
describes, for example, interpretations such as 4y representing not just 4 × y but also 4 y’s, forty y 
or 4 + y, which might explain substitutions for y = 3 of 12, 7 or 43. 

Kutscher & Linchevski (1997), meanwhile, observed that their students found it easier to treat 
multiplicative algebraic expressions (such as 4x) as a single number-like entity than additive 
algebraic expressions (such as x + 6). Some students found brackets useful in this regard. For 
example, the sum of x and “x•4” (meaning x × 4) could be represented by these students as 
x + 4x, but the sum of x and x − 31 proved more problematic until the teacher demonstrated 
x + (x − 31). Kutscher & Linchevski suggest one possible explanation: that the “manipulation of 
x•6 or 6•x to 6x assists in the evolving of the structural aspect of the expression.” (p. 171). 

However, characterising the “interpretation” or “meaning” as a theory which can be used or not 
used, be made explicit or remain unconscious in various situations gives an added versatility to 
Küchemann’s categories. This perspective acknowledges that to some extent students’ thinking is 
being “recontextualised” by such analysis (recall Sfard & Linchevski on expressions in chapter 1), 
and that it is difficult to tell whether this recontextualisation is giving us a deeper insight into 
cognition at a basic level, or a broader and richer, but shallower, panorama. For example, early 
empirical work for this research indicated some extra interpretations to be considered at A-Level: 
“unknowns” are constants to be found; “constrained variables” vary according to external rules; 
“unconstrained variables” can be varied by the mathematician; and “parameters” specify 
particular constraints. Do these belong to the “deep” or “panoramic” variety of 
recontextualisation? Perhaps one should be wary of letting anything that is formally taught into 
the “deep” category. 

On the other hand, Booth suggests that misconceptions can be attributed not only to 
“inadequacies in the teaching-learning situation” (p. 87), but “some of the difficulty which 
children have appears to be related more to a ‘cognitive readiness’ factor. … the view that there is 
a deeper basis to this conception appears to be supported by the data which indicated a strong 
resistance, on the part of children in the present study, to the assimilation of the idea of letter as 
generalized number even within the context of a teaching programme specifically designed to 
address this aspect of algebra.” (p. 87). The dangers of such an inference were made clear in the 
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section on CSMS. Booth wants to link this finding to Collis’ suggestion that appreciating the 
generalized nature of letters is characteristic only of those at the stage of formal operational 
thinking. Nevertheless, although propounding this classically Piagetian view, she goes on to say 
about the acceptance of unclosed expressions that “the apparent effectiveness of the teaching 
programme in restructuring children’s thinking in this regard would suggest that the notion was 
not beyond the conceptual grasp of these children.”. However, this is indicative, for her, that “the 
acceptance of lack of closure, and the view of letters as generalized rather than particular number, 
may relate to different levels of conceptual difficulty, rather than be manifestations of a single 
cognitive structure as suggested by the Collis-Piaget formulation.” (p. 91). The way to challenge 
this formulation, therefore, would be to succeed where SESM failed. SESM is discussed in more 
detail in chapter 3. 

Nevertheless, whatever the merit of particular categories of letter interpretations, or the truth of 
developmental theories, it should be apparent that students’ concern to use literal symbols for 
algebra is a desirable, but often elusive goal. For example, one of the teachers associated with this 
research commented about GCSE students’ difficulties with the idea of x standing for numbers 
that “They can’t visualise it, they can’t do anything with it. They can do lots of things with a 2, 
but what can you do with an x? I was amazed that it took so long for them to realize that if there 
is a 2x somewhere, it actually means 2 times x.”. Similar difficulties are reported in Gallardo & 
Rojano (1987). The students’ question “What can you do with an x?” can be explicated, in the 
Popperian view, as “What problems can you solve with an x?”. The raising of the question would 
suggest that the students lack concerns for letters. 

Kieran (1989a) writes that “High school algebra usually starts with instruction in the concept of 
variable.” (p. 40) and suggests this may be a remnant of the New Math view of it as a unifying 
idea. Pereira-Mendoza (1987) writes for example that “The basis of algebra is the concept of a 
variable and its associated notations.” (p. 331). Meanwhile, according to Sakonidis & Bliss (1990), 
“The concept of a variable is one of the keystones of the discipline of mathematics” (p. 133). 
Schoenfeld & Arcavi (1988) see “The concept of variable” as “central to mathematics teaching 
and learning in junior and senior high school.” (p. 420). Mason et al. (1985) seem to see 
unknowns as special cases of variables. But in unifying unknowns, constrained variables, 
unconstrained variables and parameters, the distinctions may have been blurred (Matz, 1982). 
Variables are often seen as more cognitively sophisticated entities than unknowns (English & 
Halford, 1995, p. 220), yet they address different concerns. 

2.3.2 Interpretations of the Equals Sign 

How do young children interpret the equals sign? Behr et al. (1976) carried out non-structured 
individual interviews with children from 6 to 12 years old. They found that the equals sign is seen 
as a request for an answer, a “do-something signal”, rather than a relational symbol comparing 
two expressions. 

Some considered the sign acceptable only when one or more operation signs precede it (so 
2 + 4 = 6 is acceptable, 6 = 6 is not). Meanwhile, when faced with non-action sentences such as 
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3 = 3 or 3 = 5, children wanted to make an action out of it, for example by re-writing as 
3 + 3 =  or 5 − 3 = . Many young children thought the answer should always be on the right, 
so  = 2 + 4 is not acceptable because it appears to be written backwards; and some children 
even rewrote it as 2 + 4 =  or  + 2 = 4. “2 and 4 make 6” would be a typical reading. 

Identities such as 2 + 3 = 3 + 2 were rejected by 6-year-olds, and rewritten as separate sums 
(2 + 3 = 5 and 3 + 2 = 5) or as one big sum (2 + 3 + 3 + 2 = 10). 

“[They] do not view sentences like 3 + 2 = 2 + 3 as being sentences about number relationships. 
They do not see such sentences as indicating the sameness of two sets of objects. Indeed, it appears 
that the children considered these as “do something” sentences. In most cases the presence of a plus 
sign along with two numerals, suggests that another number, an answer, is to be found.” (p. 15)  

To a few, 2 + 3 = 3 + 2 could be acceptable, because both sides contain the same numerals; but 
then 2 + 3 = 4 + 1 would not be acceptable. 

Kieran (1981) writes about the notions of the equals sign as a “do something signal” or “makes”: 

“It can be argued that these notions reflect the kind of instruction that these children have received. 
One might then assume that later exposure to equality sentences involving the commutative and 
associative properties might broaden the elementary school child’s notion of the equal sign. However 
this does not appear to be the case.” 

To back up this claim she cites the conclusion of Behr et al. (1976) that “there was no evidence to 
suggest that children changed in their thinking about equality as they progressed to upper grades; 
in fact, even sixth graders seemed to view the equal sign as a ‘do something signal’.” (p. 319). 
Kieran also refers to Denmark et al. (1976), who “designed a teaching experiment to teach the 
concept of equality as an equivalence relation to a group of first grade students” (p. 319) using a 
balance and written equations, and they understood 3 = 3, 3 + 2 = 4 + 1, 5 = 4 + 1, etc. But they 
still saw the equals sign as an operator primarily, not as indicating a “relation between two names 
for the same number”. More recently, Dickson (1989) asked 11-13 year-olds the question “What 
does ‘=’ equals mean?” to test for the relational notion of equality, as opposed to an operational 
“gives the answer”. The operational interpretation was found to be common among and 
persistent throughout a period of instruction in solving equations by formal methods. 

Herscovics & Kieran (1980) found similar results: 

“It is telling that when we asked seventh graders to provide an example in which they used the equal 
sign, they limited themselves to an operation with two numbers on the left side and the result on the 
right.” (p. 573) 

But Herscovics & Kieran managed to find an approach that successfully broadened the notion of 
the equals sign within arithmetic using identities (see section 3.4.7). This suggests that experience 
does seem to be the crucial factor in expanding notions. Moreover, how would the specifically 20th 
century use of the equals sign in programming (n = n + 1 is an operation to increment n, not a 
relation governing n) fit into some “natural” conception of the equals sign? In any case, in many 
contexts, the equals sign is a “do something signal” - it means give a simpler answer; in others it 
means “makes the same as”. Admittedly, 3 = 3 can never be a “do something signal”, but what 
sort of exposure have children had to such cases? How is such a statement useful to them? What 
concerns would such identities address? 
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Kieran describes high schoolers as being in transition “between requiring the answer after the 
equal sign and accepting the equal sign as a symbol for equivalence.”, and this is corroborated by 
Cooper et al. (1997).  

Kieran also considers the use of the sign in such cases as 1063 + 217 = 1280 − 425 = … may 
conceal a “tenuous grasp of the underlying relationship” (p. 317). “Even college students taking 
calculus, when asked to find the derivative of a function, frequently seem to be using the equal 
sign merely as a link between steps.” (p. 324). But this could alternatively demonstrate that the 
concern to “show working” in as concise a way as possible outweighs any concern to 
demonstrate equivalence statements - perhaps because students have not appreciated the 
importance of this algebraic convention. 

Cortés, Vergnaud & Kavafian (1990) give four meanings of the equals sign: introducing a result, 
equivalence, identity and definition; while Kieran (1992) distinguishes sameness”, “equality” 
(“comparative” or “operator”), “equivalence” and “identity”. Early empirical work for this 
research found uses of the equals sign among A-Level students including both as a relation 
(identity of references, similarity of references, equality of values) and as a process (“Makes”, 
“Leaves”, “Is made by”, “Is worked out using the formula”, “Gives the answer”). But does such 
a variety of uses give us any insight into students’ “concepts”? 

Kieran is in no doubt: “The importance of the equal sign in high school algebra cannot be 
overestimated. Most children identify algebra with equations. In fact, the absence of the equal 
sign seems to create huge conceptual problems.”. For example, “a means nothing... there is no 
equal sign with a number after it.” (p. 324). “Perhaps this explains why students have difficulty in 
dealing with polynomials later in high school when they are introduced as indeterminate forms.” 
(p. 324). This is corroborated by Chalouh & Herscovics (1988) who documented students 
believing that expressions, representing areas (say), were somehow incomplete unless they 
included an equals sign: Area = 4x + 4y and 4x + 4y = 10 were legitimate; but the expression 
4x + 4y by itself was not. 

2.3.3 Interpretations of Equations 

Little research has been carried out into interpretation of equations, as opposed to interpretations 
of symbols within an equation. The view that interpretations must be considered the “root” of 
students’ difficulties with equations would make such research a priority. Popperian psychology 
dissents. 

However, there are some interesting meta-algebraic theories about equations. SMP (1978), for 
example, introduces equations initially as a description of a flow diagram turning the input into 
the output; but this is generalised to a relation containing an equals sign and “at least one letter 
(usually x) representing some number whose value is not known to begin with” and “correct for 
only a few values of x”. (p. 2). A formula, meanwhile, is “a relation between two or more 
variables associated with a particular object or situation” (p. 29). On the other hand, SMP (1983) 
introduces equations in the context of balances (to ease the rule “What you do to one side, you 
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do to the other.”), and the unknown weights are eventually represented by letters. But in addition 
to equations being portrayed as a flow of operations, a relation and a balance, it is also possible to 
emphasise how one might use an equation. For example, Cortés, Vergnaud & Kavafian (1990) 
quote 7th and 8th grade students in France describing an equation as “it translates a text”, “it 
simplifies like a shorthand”, “the unknown can be put on one side and it is possible to calculate it 
more quickly” (p. 30). Additionally, there were early indications in this research that students 
would associate equations with particular solution methods, such as “balance”, “formula” and 
“function”. Such methods will be considered in section 2.5. 

There are also some serious misconceptions reported. For example, Stacey & MacGregor (1997) 
and Dickson (1989) found students believing that an x in one part of the equation might have a 
different value to an x in another part of that equation. In Booth (1984), in response to the 
question “Can x + y + z ever equal x + p + z?”, several 15-year-olds justified their answer 
“Never” by something akin to “But if y and p were the same, you’d have thought they would have 
put x, y and z; instead of x, p and z.”. Moreover, Dickson (1989) records some students thinking 
that when x + y = 10, x and y cannot both be 5; they also fail to consider that x could be zero or 
negative. Wagner (1977) asked the question “Would different solutions be obtained from 7w + 22 
= 109 and 7n + 22 = 109 ?” of a variety of children. Some said that the solution of the first one 
would always be greater; and others that they couldn’t tell until they had solved the equation. 
Those who had no doubt that the same solution would be obtained from both equations (and 
thus realised that a change of letter does not affect the solution) were called “conservers”. About 
half of 12-year-olds and a fifth of 14 and 17-year-olds failed to “conserve equation”. Dickson 
(1989) notes that some children could quite happily see 109 as the answer. 

Kieran & Wagner (1989) point out Thorndike’s (1923) preference for keeping separate from the 
start the two aspects of an equation: “a thing to be solved” and “an expression of a general 
relation among variables”. But the blurring of all usages of letters as aspects of variables 
(described above) may have been unfortunate for the understanding of equations. For instance, 
Clement (1982) suggests that “understanding an equation in two variables appears to require an 
understanding of the concept of variable at a deeper level than that required for one variable 
equations.” (p. 22). This suggestion arises from a particular set of predominantly US studies. 

2.4 The Student-Professor Problem 
Various studies examined the difficulties that students have with translating word problems into 
algebra. One classic problem originates with Kaput & Clement (1979): 

Write an equation, using the variables S and P to represent the following statement: 
‘At this university there are six times as many students as professors.’ 
Use S for the number of students and P for the number of professors. 
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Rosnick (1981) gave the problem to around 150 entrant engineering students at the University of 
Massachusetts. Over a third could not write the correct equation, S = 6P. An even more 
incredible ¾ of the students failed when the ratio was 4:5 instead of 6:1. Social scientists did 
worse still. The most common error was the “reversed equation”, 6S = P. 

Rosnick used evidence from interviews to argue that S was being used to stand for “students” 
rather than “number of students”. In other words the letter was being as a label for objects rather 
than numbers. To test this, students were given the following information in a questionnaire “At 
this university, there are six times as many students as professors. This fact is represented by the 
equation S = 6P” and asked what the S stood for using a list of options (professor, student, 
students, number of students, none of the above, more than one of the above, don’t know). 
Almost half failed to select “number of students”, including 22% who thought it stood for 
“professor”…! 

Rosnick suggests that his results show that “the misconceptions that students have surrounding 
the use of letters in equations contribute significantly” (p. 418) to translation difficulties from 
English sentences into algebraic expressions. If college students struggle to distinguish letter as 
variable from letter as object label, no wonder they struggle to understand when letters are labels, 
variables, constants, parameters, etc. 

“The curriculum of mathematics... follows a path of increasing abstraction. As the curriculum 
becomes more abstract, the symbols used become more obscure. For many students, as was true for 
me, unfamiliarity with mathematical symbols and the abstract concepts to which they refer breeds 
contempt for mathematics.” (p. 418) 

Gibbs & Orton (1994) point out that “research in the past has been more adept at identifying the 
problem issues than at providing guidance for effective intervention in the classroom.” (p. 102). 
Rosnick bemoans the apparent resistance of this error to whatever teaching strategies were tried. 
Perhaps its persistency and prevalence are indicative of some deep-rooted psychological structure 
or obstacle that must be altered or overcome before true algebraic enlightenment is attained. 
Philipp (1992) is in no doubt, for example, that his study aimed not just to find theories used to 
solve this sort of problem, but to “gain further understanding of students’ conceptions of 
algebraic variables”. 

Wagner (1983) analysed, in this vein, the similarities and differences between letters and 
numerals, and letters and words which might hinder the learning of algebra. This sobering 
exchange is given: 

Teacher: Suppose we use x to represent an unknown integer. How can we write the next 
consecutive integer after x? That is, how can we represent the number we get when we add 1 to 
x? 

Student: (without hesitation) y 

Wagner argued that “Literal symbols [are] easy to use but hard to understand.” (p. 474), and cites 
many potentially confusing characteristics of letters. For example, a letter can be used as an 
abbreviation for a word, as a name for an object, or as a representative of a number subject to 
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numerical operations and relations. Letters are like numerals in many ways; however “numerals 
represent a single number but letters can represent, simultaneously yet individually, many 
different numbers, as in 0 < n < 20 or y = 3x + 2” (p. 475). This “property of simultaneous 
representation” helps to produce general, but concise and unambiguous statements. Different 
letters can represent the same number but (in a given context) one letter should stand for the 
same number or numbers each time. -1 is negative, but –x may be positive or negative. There is 
no connection between alphabetical order and numerical order. 3mn means 3 × m × n, whereas 
347 means 300 + 40 + 7, and this relies on the fact that, because letters can represent multidigit 
numerals, there is no ambiguity. Letters are like pronouns in that “both can act as placeholders in 
certain expressions” (p. 476). For example, the “He” in “He is a mathematics teacher” can be 
replaced by the names of different men to make true or false statements; just as the x in 3x2 = 10 
can be changed. Yet if we changed the “He” to a “She” this would, in itself, make a difference to 
the reference, whereas changing the x to a y would not. Hence perhaps Wagner’s (1981) results 
on “conservation of equation” referred to above. 

Wagner concludes: 

“The more characteristics [of literal symbols] we can identify, the better able we are to devise teaching 
strategies to help students understand and appreciate these things we call variables.” 
(p. 474-5) 

Other studies (such as Rosnick & Clement, 1980; Clement, 1982; Kaput & Sims-Knight, 1983; 
Wollman, 1983; Cooper, 1984; Cooper, 1986; Lochhead & Mestre, 1988; Fisher, 1988) found 
similar results to that of Rosnick; with secondary school and university students and teachers; in 
the US, Fiji and Israel; with situations of varying familiarity; with and without pictures or tables; 
with different variable names, and so on. 

2.4.1 Examining Strategies 

However, myriads of explanations have been proposed that do not see the cause of the student-
professor error as misconceptions deriving from abstract characteristics of letter usage. For 
example, Gibbs & Orton (1994) go along with the argument that “It is the very structure and 
grammar of the English sentence that leads to mistranslation to the algebraic equivalent.” 
(p. 102). The “natural order of the sentence is followed in translating to the algebraic equivalent”. 
Thus one thinks: “There are 6 times as many students (that is, 6S) as professors (that is, = P)”. It 
is only “thinking about the meaning of the sentence or substituting real numbers” which reveals 
the error. 

Clement (1982) described four strategies used by students to construct the equation: 

• word order matching - This is also called the “direct-translation approach” or “syntactic 
translation” (Herscovics, 1989) and has been identified by a number of studies (see Kieran, 
1992). It “involves a phrase-by-phrase translation of the word problem… Some semantic 
knowledge is often required… but solvers typically use nothing more than syntactic rules” 
(p. 403). In the student-professor problem, it appears to be the formulation “There are… 
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times as many… as…” that ensures this strategy fails. If the sentence were “The number of 
students is 6 times the number of professors.” then word order matching would succeed. 

• static comparison - the number is placed next to the letter representing the largest group: 
“There are 6 students (that is, 6S) for every professor (that is, = P)”; or perhaps “One 
professor (that is, P) is worth 6 students (that is, = 6S)”. One could argue that this strategy 
also assumes an interpretation of the equals sign as “is worth” or “for every” rather than the 
usual “is the same as” (Wollman, 1983), but interviewees might equally say, “6 students equals 
one professor”; so even the word “equals represents correspondence rather than equivalence. 
The number acts as an adjective. 

• operative approach - a operation is sought that turns one number into another: “multiply the 
number of professors by 6 in order to get the number of students (that is, 6 × P = S)”. 
Clement says that the equation in this case “does not describe the situation at hand in a literal 
or direct manner; it describes an equivalence relation that would occur if one were to perform 
a particular hypothetical operation, namely, making the group of professors six times larger than it 
really is.” (p. 21). Other operative approach solutions include S/6 = P, S/P = 6 and P/S = 
1/6. This produces correct responses because, unlike word order matching and static 
comparison, it corresponds to mathematical usage. The 6 is a multiplier on a variable quantity 
P to produce another quantity S. 

• substitution - the student seeks likely equations (such as 6S = P and 6P = S), chooses some 
numbers which fit the situation described (such as P = 10, S = 60), substitutes the numbers 
into the equation, and chooses the one which works. The use of the word “times” next to the 
S in the problem, always suggestive of multiplication, may be used by some to choose an 
equation rather than trying a substitution. 

Word-order matching could be eliminated as a strategy, perhaps, by using pictures or well-known 
relationships that do not have to be stated explicitly. Pictorial representations actually seemed to 
increase the difficulty (Mestre & Lochhead, 1983; Sims-Knight & Kaput, 1983). Sims-Knight & 
Kaput (1984) found that problems using familiar quantitative relationships (5 fingers on a hand, 
for example) were more difficult than unfamiliar relationships (such as 6 students to 1 professor); 
however, they did not take steps to avoid explicitly stating the relationship. MacGregor & Stacey 
(1993b) produce further evidence that word-order matching is not, after all, a common strategy. 
“In test items designed so that syntactic translation would produce a correct equation, most 
students did not translate words to symbols sequentially from left to right” (p. 217). For example: 
“‘The number y is eight times the number z.’ Write this information in mathematical symbols.” 
(p. 222) was answered correctly by only 37% of 281 Australian 14-year-olds drawn from 68 
classes and 21 schools. 52% produced some sort of reversal, although this includes expressions 
and inequalities in which the 8 was associated with the y rather than the z. Better performance 
was seen on an item asking “‘z is equal to the sum of 3 and y.’ Write this information in 
mathematical symbols.”, and MacGregor & Stacey conjecture that “is equal to” is a better prompt 
for word-order matching than “is”, and a clear test of this would be useful. The facility of the 
following problem was half that of the previous one: “s and t are numbers. s is eight more than t. 
Write an equation showing the relation between s and t.” Could this be because “more than” is 
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harder to translate than “is equal to”? Only a third of around a thousand 13-15 year-olds could 
answer the following question correctly: “I have $x and you have $y. I have $6 more than you. 
Which of the following equations must be true? x = 6y, 6x = y, x = 6 + y, 6 + x = y, x = 6 − y” . 

MacGregor & Stacey also take care in their items to avoid the potential use of letters to refer to 
objects rather than numbers, but they have not entirely eliminated the use of a strategy based on 
static comparison of objects, as they imply. For example: “The number y is eight times the 
number z.” could be translated as “Whatever y counts, there are 8 of them for every thing that z 
counts. So 8 y’s for every z. So 8y = z”. Even so, if a static-comparison strategy were to be caused 
by a misinterpretation of letters as standing for names rather than numbers, one would expect 
that warnings to this effect or the use of neutral letters would diminish the number of reversals. 
Most studies show this not to be the case. Fisher (1988), for example, used Ns and Np as 
variables and the results were even worse. So how can the popularity of static comparison be 
explained. 

2.4.2 Another Perspective: Problem Expectations 

Now the important point made about the CSMS problems - that they predominantly require 
familiarity with mathematical conventions for their understanding, and hence their success 
criteria may not be easily accessible to students - also applies here. The student-professor 
problem is a professor’s problem, not a student’s. However the answer is found, the only way it 
can be checked is by reference to the ways in which one expects it to be used. 

How will it be used? Presumably to answer the question “How can we find S given P, or P given 
S?”. If the question were to predict how many professors there would be if there were 120 
students, no doubt anyone with the equation 6S = P would be able to think “Right, 20 times as 
many students, so 20 times as many professors.”. If the question were to predict how many 
students there would be if there were 10 professors, no doubt anyone with the equation 6S = P 
would be able to think “Right, 6 students for every professor, and there are 10 professors so 
6 × 10 students.”. In other words, so long as the interpretation of 6S = P remains “There are 6 
times as many students as professors.” or “There are 6 students for every professor.”, it will also 
possible to use ratio arguments - or imagining one group of people being multiplied or divided to 
get another - to solve problems requiring a numerical answer. That the resulting form is “wrong” 
stems more from convention than “understanding”. For those who got it wrong, 6S (in the sense 
of “6 students”) is a number, but S isn’t (it is “students”). Wollman (1983) suggests that 
computation is straightforward, even for those who reversed equations; while Seeger (1990) 
appears to show, for around 550 students between the ages of 13 and 24, that those students 
giving the reversed equation were mostly able to produce a correct computed solution from an 
equation. 

However, if the expected usage is to solve a problem demanding algebraic (as opposed to ratio) 
arguments, conflict and possibly errors will occur. For example, one might expect to be asked to 
substitute the value S = 72 into the equation (as opposed to finding the number of professors if 
there are 72 students); or to make S the subject of the formula; or to compare this university with 
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another for which (say) S = 4P + 9; or to communicate the fact to another mathematician who 
knows the convention that equations should be amenable to algebraic operations such as 
substitution or re-arrangement and may therefore interpret 6S = P as “6 times the number of 
students is the number of professors”. Wollman (1983) suggests the question “Can you tell from 
the sentence which number is greater?” can enable many students to correct reversals, a result 
which at first glance conflicts with this analysis. However, almost 80% of Wollman’s students 
were using word order matching rather than static comparison - a much higher percentage than 
most other studies, especially MacGregor & Stacey’s. Indeed, Wollman writes that static 
comparison reversals “were less readily corrected during interviews. Moreover, the students who 
made these errors seemed less confident of their corrected answers.” (p. 76). 

MacGregor & Stacey “explain the forms of students’ responses by a theory of cognitive models” 
(p. 221). They are unambiguous about the process of formulating equations from situations: 
“Students generally try to make sense of the text of problems, and in doing so they intuitively 
construct mental images or models. What they then write on the page is an attempt to reproduce 
the content and form of the model.” (p. 230). However, if one has shown that there is no 
mathematical or pedagogical justification for an apparent and persistent distinction in student 
behaviour, the distinction does not have to be explained by postulating an “underlying cognitive 
model”. The incorrect responses could be equally well interpreted as indicative of a lack of 
concern for algebraic convention. By seeing students’ mathematical knowledge in terms of 
strategic theories and concerns, such reasoning is unnecessary. If one wants to view these 
theories as symptomatic of anything, it should be of an attempt to solve a problem, rather than of 
“non-linguistic conceptual structures based on fundamental relations such as grouping, 
comparison and contrast.” (p. 228). A confident assertion that the response tells us something 
about pre-existing causative psychological entities has to be tempered by the reminder that we 
may not even know what problems students are trying to solve. 

To summarise: getting the reversed equation perhaps tells us more about students’ expectations 
of the concerns that they think are relevant than about cognitive structures or obstacles. These 
concerns will be central to this research. The strategies they use - such as word-order matching or 
static comparison - are symptomatic of such concerns. 

2.4.3 A Sample Analysis - Philipp (1992) 

One of the most recent investigations of the student-professor problem was carried out by 
Philipp (1992) with 295 high school students. One variation of the problem replaced obvious 
letters like S and P with “neutral” letters like X and W. Another variation involved implicit 
relationships: 

Pennies-Dime Problem 

You have a pile of pennies and another pile of dimes. The value of the pile of 
pennies is the same as the value of the pile of dimes. Write this as an equation, using 
P for the number of pennies and D for the number of dimes. 
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The students were from two schools, and involved 13 classes (4 first-year algebra, 5 geometry, 
and 4 second-year algebra). One of four questions was given to each student, presumably at 
random; so although there is no way of comparing outcome in one problem with outcome in 
another, we can compare proportions succeeding with the different problems. Philipp concluded 
that problems involving implicit relationships are significantly harder than those requiring an 
explicit statement of the relationships; while the choice of letters made little difference to the 
proportion of correct results in either problem. But the data he gives can be analysed to bring out 
more subtle conclusions. 

For the student-professor problem, 33% were correct, 41% reversed and 25% made some other 
error. Using neutral letters in the algebra classes seemed to increase the reversals, but decrease 
other errors. Why? Unfortunately, no classification of other errors is given, but could it be that it 
is easier to check an equation is correct by substitution or the operative approach if it is obvious 
which letter refers to which group? Does the need to move one’s head between the statement of 
the relation to the equation to the definition of the variables, while perhaps keeping an image in 
mind, increase the chance of forgetting the need for such comparison with algebraic convention? 
But none of this explains why the proportion of other errors decreases. The only way to make 
progress with this is to find a way of determining which strategy students are using, which Philipp 
indeed attempts (see below). 

Meanwhile, compare these results for high-school students with Kaput & Clement (1979), in 
which 63% of first-year college engineering majors were correct and 43% of social science 
students were correct. It may be that those who can succeed in such problems go on to do 
engineering, or that those who want to do engineering tend to improve their performance 
dramatically from Algebra 2 (40% correct). It may be that those who end up doing social science 
do not improve from Algebra 2, or that there is a wide variation from class to class. 

Turning to the penny-dime problem, 13% were correct, 38% reversed and 49% made some other 
error. Again, using neutral letters in the Algebra 2 classes seemed to increase the reversals, and 
decrease other errors. Why is the penny-dime problem so much harder than the student-
professor problem? One would perhaps expect that a problem involving both frequency and 
value would be harder than one only involving frequency. Seeking an operation is fraught with 
extra difficulties, because imagining a pile of dimes being multiplied up by 10 seems to be harder 
than multiplying a group of professors - a dime is inherently worth more than a penny; whereas a 
professor has no numerical value in terms of students. Are any of the students writing “P = D” 
to indicate the piles have equal value rather than frequency? What about “a dime (that is, D) is 
worth 10 pennies (that is, = 10P)”? Wouldn’t we therefore expect more reversals? 

2.4.4 Results from Interviews 

There is a serious difficulty with the quantitative approach to researching conceptions of 
variables. Varying word order, the letters used, or the presentation of the problem neglects to 
take account of the fact that many students will no doubt, in translating the information given 
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Even showing the information in the form of a table (right) would suffer from the 
same problem. Many students would no doubt want to codify a proposition 
expressed in natural language, and hence we are back to “translation” issues. 

Even asking students how they know their answer is correct (hoping they will say 
something like “I substituted the numbers P = 10…” or “I imagined a small group 
of professors being multiplied…”) is not as straightforward as one supposes, as Philipp’s second 
study demonstrates. 

P S 
1 6 
2 12 
3 18 
4 24 

Half-hour interviews were carried out with 7 adults, aged 25-35, of diverse mathematical 
backgrounds. One wonders why only adults were interviewed. The obvious thing would have 
been to interview some of the students, to gain an insight into their strategies. Are adults 
expected to be more eloquent? There are good reasons for expecting different results to the 
quantitative study. Surely adults will make less use of automatic (and potentially meaningless) 
syntactic processes such as those practised in high-school algebra classes? And if they do not use 
mathematics regularly in their work, surely they will be less attuned to the mathematical 
conventions? 

Liz describes how she (correctly) answered the question: “There are more pennies. Ten times as 
many pennies as dimes. So we must multiply the number of dimes by ten to get the number of 
pennies.”. Moving from “Multiply the number of dimes by 10 to get the number of pennies” to 
P = 10D (i.e. using the operative approach) appears to be less fraught with dangers than moving 
directly from “There are ten times as many pennies as dimes.”, which could go either way. Pat 
(“computer scientist with strong mathematics background”), for example, starts off: “There are 
six times as many students as professors. So P is (writes P = 6S) equal to six… (pauses) … whoops. 
Let’s see, there are six times as many students as professors. So six times P (writes 6P = S) is equal 
to S.”. Perhaps he started off seeking a literal representation of the ratio relation, and then 
corrected himself by imagining multiplying a group of students by six. While being questioned as 
to his thought processes, he was suddenly gripped by the thought that he was right the first time, 
and then had to substitute numbers to reassure himself. Does the realization that ratio relations 
do not mix with algebraic relations avoid confusion? When he then attempted the pennies-dime 
problem with X for the number of pennies and W for the number of dimes, he said “there are 10 
times as many pennies as there are dimes” and immediately wrote the reversed equation 
10X = W. Philipp points out that, after a long struggle with trying to make sense of this reversed 
equation in terms of both numbers of coins and of values of piles, Pat managed (at different 
times) to describe X as representing the number of pennies (as stated in the question), the value 
of the pennies (which is the case), and the value of a single penny. 

“Pat demonstrated something common in all five people who wrote incorrect equations for the 
penny-dime problem. They all tried to justify the meaning of their equation by changing the meaning 
of the variables. The definition of the variable, though explicitly stated in the problem, was often 
changed to fit the equation written.” (p. 172) 
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The interviewer constantly asked the subjects about the meaning of letters or expressions such as 
10P. This in general seemed to confuse people. Pat got very annoyed at his confusion because 
“these are very simple”, but it could be considered that it is not at all simple to have to handle 
relations and operations, and values and frequencies in the same problem. Pat thinks his 
confusion is just between value and number, but perhaps the confusion would not have arisen 
had he sought an operation rather than a relation (as Clement, 1982, conjectures). Finding an 
operation for the value does not make sense because the values of the piles are equal. So one seeks 
an operation for the numbers; the values are equal but dimes are worth more than pennies, so 
there must be more pennies; there must be 10 times as many pennies as dimes; 10 times the 
number of dimes gives the number of pennies; 10W = X. Seeking operations easily extends to 
more complicated equations such as 2x + 3y = x2 + z, because “Represent the relationship 
between x, y and z using an equation” is but another way of asking “What sequence of operations 
connects x, y and z?”. 

In each transcript given, it is noticeable that it is only when the subjects considered how they can 
obtain one number from another (i.e. looking for an operation) that they made progress. 
Considering meanings actually got in the way. Although Philipp acknowledges the divide between 
algebra and ratio equations - described by Davis (1986a) as the difference between “numerical 
variables equation frame and the labelling frame” - and emphasises the number of meaningful 
referents for variables as a possible reason for the increased difficulty of the penny-dime 
problem, his conclusions seems to miss the crucial point that mixing up meanings may be a 
symptom of having different problem expectations to the interview and not a cause of errors. 

2.4.5 Future Research on Variables 

Philipp’s questions for future research are: 

“… how do students actively change the meaning of variables within problems? Second, how is 
problem difficulty affected by explicit versus implicit information in the problems? Finally, what 
effect do the variable representations have on students’ performance? Answers to some of these 
questions will help us to understand the many problems students have with algebra word problems in 
particular and algebra in general.” (p. 175) 

Against this agenda, I would suggest that students’ changing of meaning is an inherently contextual 
phenomenon, dependent on their particular expectation of the problem. However, research could 
profitably ask students how they might use the equations they produce. This would both 
demonstrate students’ expectations of equation usage and test the view that the reversed equation 
was only “wrong” from the point of view of the conventions of mathematics professors rather 
than of mathematics students. Nevertheless, it could still be argued that a particular student was 
using the original situation rather than the equation to solve the problem he or she posed. This 
scenario would perhaps indicate that the student’s algebraic concerns are better tackled through 
non-algebraic means, and would raise the question “How can we better make algebraic problems 
concerns?”, rather than some demand for reflection on meaning. 

Philipp asks: 
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“(1) Why do students encounter difficulty with the student-professor problem?” 
“(2) Will the knowledge gained in pursuing the answer to question (1) help mathematics educators 
develop a better understanding of the difficulties students have with the concept of variable?” (p. 165) 

The discussion above indicates that the answer to question (2) is No, because their difficulties in 
the student-professor problem give us insights not into their “concept of variable”, but into their 
concerns and the strategies they use. As for question (1), students find the student-professor 
problem difficult because it is not clear to them what the equation is for. This is partly 
corroborated by Wollman (1983) in that those students who used static comparison corrected 
their reversals once they were told that the equation should represent the mathematical 
operations for obtaining the number of students from the number of professors. Moreover, they 
“still felt that their original ‘equation’ was an equally valid rendition of the meaning of the 
sentence” (p. 176). Likewise, Pawley & Cooper (1997) found that giving the students worked 
examples (presumably of operational calculations) similarly reduced the reversals; and also found 
that it did not make much difference if students were asked in addition to check that the larger 
quantity in the sentence is also the larger quantity in the equation, or if they were asked in 
addition to check by using trial numbers. In other words, this corroborates the claim that seeking 
operations rather than relations may help to clarify the purpose of an equation. 

2.5 Theories used as Strategies 
Clement’s strategies for the student-professor problem can be seen as theories about what 
mechanisms can generate a legal and valid equation from a description of a situation. 
Küchemann’s letter interpretations are theories about what symbols represent in algebra; but they 
can also be seen as elementary strategies for dealing with letters in certain types of problems. 

For a given problem, there are myriads of theories that may be used as distinct strategies or 
approaches for solving the problem; and so no particular classification can be considered 
definitive as either complete or unique. Moreover, it is inevitable that it is easier to consider 
publicly-known strategies which have proved valuable over time than the implicit, individual, 
contextual strategies that students actually use in a particular situation; because the latter are often 
implicit, highly individualistic and contextual. A thorough analysis can therefore only take place 
when a small number of problems has been selected. Nevertheless, these “public strategies”, 
highlighted by research, can serve as a starting-point for analysing students’ knowledge. So 
without attempting to be encyclopaedic, this section considers six further important sets of 
strategic theories: for simplifying expressions, solving equations, representing situations using 
simple linear equations, representing situations using equations with two variables, solving word 
problems and proving using symbols. These theories, while focusing on linear equations, relate to 
a large part of what Kieran (1992) describes the “core” of school algebra: 

“Many first-year algebra courses begin with literal terms and their relation to numerical referents 
within the context of, first, algebraic expressions and, then, equations. After a brief period involving 
numerical substitution in both expressions and equations, the course generally continues with the 
properties of the different number systems, the simplification of expressions, and the solving of 
equations by formal methods. The manipulation and factoring of polynomial and rational expressions 
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of varying degrees of complexity soon become a regular feature. Interspersed among the various 
chapters are word problems, thinly disguised as ‘real world’ applications of whatever algebraic 
technique has just been learned. Students eventually encounter functions and their algebraic, tabular, 
and graphical representations.” (p. 395) 

The aim here is not to summarise all the research that has ever been done relating to these 
problems; but to identify strategies that may help us to understand students’ algebraic knowledge, 
and if possible to find questions that help to identify these strategies. 

2.5.1 Simplifying Expressions 

CSMS considered the problem of simplifying expressions, and found strategies of evaluating 
letters from the start, ignoring letters and treating letters as objects. Only a brief outline of 
additions to this research is given here. 

A number of studies (including Wenger, R H. 1987; Becker, 1988; and Lewis, 1981) have looked 
at students’ simplifying of expressions and have found many errors (Kieran, 1992, also cites 
Davis, Jockusch & McKnight, 1978; Greeno, 1982; and Carry, Lewis & Bernard, 1980). Some of 
the more common strategies include: 

• Assume implicit addition. For example, 39x means 39 + x rather than 39 × x, so 39x − 4 
becomes 35x; similarly, 2yz − 2y = z; and if x = -3 and y = -5 then xy = -8 

• Treat letters as digits. For example, if x = 3 and y = 2 then xy = 32 

• Read expressions from left to right. For example, a + a + a × 2 becomes 3a × 2; a + a × 2 + a 
becomes 5a 

• Give higher priority to simplifying letters than numbers. For example, a + a + a × 2 becomes 
3a × 2; a + a × 2 + a becomes 6a 

• Treat brackets as optional. For example, 4(6x − 3y) + 5x becomes 4(6x − 3y + 5x), 4 + 5x, 
24x − 3y + 5x or 24x − 12y + 12x 

• Associate a term with the sign that appear after it. For example, 2x + 9 − x becomes 3x − 9 

• Ignore signs. For example, 2x + 9 − x becomes 3x + 9 

• Assume that the coefficient of x is 0. For example, 3x ÷ 3 = 0 

• Collect like terms. 

• Multiply out brackets before collecting terms. 

• Multiply out brackets and collect terms in one pass. 

These (and many other) strategies can coincide in the same problem with varying consistency of 
application, making a definitive identification difficult. 

Robitaille (1989) states that “On the whole, the range of achievement scores [in algebra] is very 
similar to that on the Arithmetic subtest.” (p. 111) which raises the issue of the extent to which 
algebraic proficiency is dependent on arithmetic strategies (Lee & Wheeler, 1989). Pereira-



Chapter 2 - Identification 61 

Mendoza (1987) describes a complex set of relationships between algebraic and arithmetic 
“space” that can be “faulty” or misperceived. On the other hand, Kirshner (1987a, 1989) sees the 
problem as one of using the visual cues of ordinary notation (as opposed to rules about the order 
of operations) to make syntactic decisions. Kieran (1988a) argues that it is a failure to recognise 
and use “surface structure” (the arrangement or disposition of the terms and operations) that lies 
at the heart of students’ errors. Sleeman (1984) distinguishes “manipulative mal-rules” (where 
steps in sound algorithms are omitted or varied) and parsing errors (where aspects of notation are 
misinterpreted and algorithms are therefore misapplied). Matz (1982) suggests that “errors are the 
result of reasonable, although unsuccessful, attempts to adapt previously acquired knowledge to a 
new situation.” (p. 25), and that errors must be relied upon as the central evidence for a model of 
algebraic competence” (p. 26). 

Moreover, these inappropriate strategic theories for simplifying equations may indicate that while 
students may realize that “something simpler” is required, they perhaps do not understand that 
such simplifications must be true for all values of the unknowns, and that therefore trial 
substitutions can reveal incorrect simplifications (Davis et al., 1978; and Lee & Wheeler, 1989). 
One has to say “perhaps” because it is also possible that many students are unwilling to check 
using substitution because it would reveal an error that they are hoping does not exist, and for 
which they would not want to spend any more time worrying about; or it is also possible that 
they do not know how to substitute; or it is also possible that they are not sufficiently confident 
of their ability to substitute that substitution would act as an adequate check; or it is also possible 
that they have substituted incorrectly, because their simplification heuristics are based on flawed 
substitution rules. This range of possibilities suggests that using errors in simplification to draw 
conclusions about inappropriate strategic theories is problematic. 

As for successful strategic theories, the fact that simplifications are usually one-step acts, without 
intervening working or accompanying explanations, means that it is very difficult to conjecture 
how students might be arriving at their simplifications. Presumably, though, they are often making 
implicit use of fairly basic identities (Davis, 1986b). One might conjecture a set of heuristics 
something along the lines of the following: “Identify terms. Those that are numbers can be added 
or subtracted. Those that are x’s can be added or subtracted. Those that are y’s can be added or 
subtracted… Those that are x2’s can be added or subtracted… If there are brackets it may be 
possible to multiply out; if not, perhaps factorisation may be a good idea…”. Even so, this still 
requires further strategies for combining x’s, expanding brackets and so on. Alternatively, one 
might conjecture something like: “3 times x plus 5 times x. Now what is that the same as? Well if 
we have 3 of something and 5 of something, then another way of saying this is that we have 8 of 
something…”. Another approach might be: “Multiplication is distributive over addition. So 
3x + 5x ≡ x(3 + 5). The bracket simplifies to 8, and now the brackets can be removed, making 
8x.”. 

On another level, Sproule (1988) provides evidence that both the speed and accessibility of such 
strategies are student concerns. “Some students were inclined to persist with more secure, if more 
time consuming strategies. Alternatively, some students, upon reflection, recognised the time 
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consuming or inefficient nature of their strategy and proceeded to search for a more efficient 
approach.” (p. 309). Lewis (1981) suggests that mathematicians routinely “set their own trade-
offs among speed, effort and accuracy” (p. 107). 

In conclusion: there is a very large number of possible strategic theories for simplifying 
expressions, and it is difficult to find questions that help us to distinguish these strategies. Hence 
one must be cautious when interpreting student responses to problems of this type. It may 
sometimes be only possible to gather whether a student has a successful strategy or not. 

2.5.2 Solving Equations 

Radford (1995) identifies an aesthetic component to mediaeval mathematics; and the “resolution 
of problems and difficult riddles… constituted an ad hoc instrument of social recognition for the 
master.” (p. 31). The exploration of problems that bore only a cursory relation to practical 
problems became highly refined. This refinement brought about the idea of an equation: a 
description of the problem situation that was sufficient to contain the information required to 
solve the problem, that used standardised notation, and that could therefore be tackled using 
standard techniques. Bednarz et al. (1996) state that current teaching often reduces algebra to 
transformation rules, the historical role of problem-solving degraded to tacked on “applications”. 
However Chaiklin (1989) points out that solving equations in isolation may not be the same as 
solving equations that the student has generated from a situation (p. 102). 

What strategies do students use to solve equations? CSMS and SESM steered clear of equation-
solving on the whole, but many of the transformational errors recur in equation-solving; for 

example, 
3x
2x  simplified to 2x. Bell, Costello & Küchemann (1983) describe a number of research 

studies comparing equation-solving methods. However, they conclude “It is difficult to point to 
any generally useful conclusions from such studies: they are neither extensive nor convincing.” 
(p. 142).  

However, these studies do, at least, tend to identify commonly occurring errors. Matz (1982), 
Kieran (1989b, 1992), Payne & Squibb (1990), Moncur (1994) and Becker (1988) provide further 
examples of such errors. Bell, Costello & Küchemann assert “perhaps the most obvious 
conclusion is that many errors are caused by children who have developed skill in manipulating 
meaningless symbols being disinclined to think in terms of meaning or to consider that the 
symbols represent numbers.” (p. 144) 

Of course equations can be often solved numerically. Kieran (1992) reports on studies that have 
shown students using recall of number facts (for example, solving 5 + n = 8 by remembering the 
fact that 5 plus 3 is 8), counting techniques (for example, solving 5 + n = 8 by counting on “6… 
7… 8…” and noting that 3 numbers were involved) or a “cover-up” method (for example, 
solving 2x + 20 = 6x by reasoning “Since 2x + 20 totals 6x, the 20 must be worth 4x, so x is 
5.”). Dickson (1989) notes in relation to numerical skills that “Some pupils, particularly lower 



attainers, depended on non-generalisable strategies to solve problems.” (p. 188). This may limit 
the range of cases that can be considered. 

Forms of trial-and-improvement using substitution can be time-consuming and prone to error 
unless a means is found to record guesses systematically. A recent variation on trial-and-
improvement is to use a spreadsheet or calculator to produce tables of values for both sides of an 
equation, and vary the value of the unknown until equality is reached.  

Graphs, too, can be used effectively, but they are outside the remit of this research. 

When there are multiple unknowns or non-numerical coefficients all the above strategies are 
trickier to implement (see for example Carraher & Schliemann, 1987); and in many cases 
solutions may be missed, or it may be impossible to demonstrate beyond reasonable doubt that 
all the solutions have been found. 

There is also the method of “undoing” or “inversing” which can solve many linear equations (for 
example 4x − 7 = 18). One version is to interpret the equation as a “think of a number” problem 
(see for example Dickson, 1989): I think of a number, multiply it by 4 and then subtract 7. If the 
answer is 18, what was my number? x can be found by the following (analytic) reasoning: the 
number from which was subtracted 7 to make 18 is 18 + 7 = 25. The number which was 
multiplied by 4 to make 25 is 25 ÷ 4 = 6¼, and so we have x. Alternatively, this reasoning can be 
automated by writing down the expression 4x − 7 and working out the operations that reduce it 
to x: i.e. + 7 then ÷ 4. These operations are then applied to 18 to give the answer. 

Another version of the method is demonstrated by SMP (1981) and Austin & Vollrath (1989), 
and involves showing the equation as a “function machine” or “flow diagram”: 

x 18× 4 − 7
 

The idea is to run the flowchart backwards with inverse operations: − 7 becomes + 7; and × 4 
becomes ÷ 4. So x = (18 + 7) ÷ 4. This strategy is synthetic because it does not require one to 
manipulate an unknown. Both the analytic style of reasoning and the synthetic use of inverses fail 
to solve equations with unknowns appearing on both sides - those equations that Filloy & Rojano 
(1989) call “non-arithmetical” and therefore beyond the “didactic cut” between arithmetic and 
algebra. But even multiple unknowns on just one side can cause problems: Kieran (1988b) found 
that some students solved 3x + 4 − 2x = 8, for example, by taking 8, dividing by 2, adding 4 and 
then subtracting 3. In other words, using inverse operations blindly. Bernard & Cohen (1989) 
point out that a simple equation like 14 − x = 8 is not directly solvable by undoing. Herscovics & 
Linchevski (1991), for such reasons, prefer to characterise the cut as “the student’s inability to 
operate with or on the unknown” (p. 180) rather than in terms of mathematical form. 
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Sometimes students are found using strategies that were intended by teachers as an accessible 
introduction to the idea of solving equations rather than as a general method. For example, the 
problem 5x + 20 = 7x can be modelled by a balance: 

 

where the white blocks represent unknown weights and the black blocks are (say) kilograms. 
Then, pairs of blocks of unknown weight can be removed (one from each side), which maintains 
equilibrium, until none remain in the left hand pan. We then know that 2 of these weights weigh 
20kg, and so we have the unknown. Unfortunately this can be time-consuming to draw, and there 
is no easy way for equations involving negative signs or negative solutions to be rationalised in 
this model, although attempts have been made. 

However, the usual focus of attempts to teach algebra are the formal methods that allow not only 
the solution of a wide range of simple equations, but also easily extend to “changing the subject 
of the formula” or “re-arranging the equation”. They involve treating unknowns as if they were 
known, refer to no particular problem situation and make use of the rules governing arithmetic. 

Radford shows that mediaeval mathematicians simplified unknown terms on the same side of the 
equation (for example, 12t + 9t becomes 21t). Thus the simplification of expressions, as 
described previously was devised to make the solution of equations easier, by condensing the 
number of cases to be considered. They also “restored” equations which were “broken” by the 
presence of a subtracted term. For example 3 − 2x = 10x could be restored to 3 = 12x. There are 
two standard formulations of a general rule for this. One is “operating on both sides of the 
equation with additive and multiplicative inverses”, which Filloy & Rojano (1989, p. 20) attribute 
to Euler. Schliemann et al. (1992) provide a quotation from Leibniz that seems to capture very 
well the spirit of this method of formal operations: 

“if from two equal things the same quantity be taken away, the things will remain equal; likewise… if 
in a balance everything is equal on the one side and on the other, neither will incline, a thing which we 
foresee without ever having experienced it” (p. 298) 

Radford also suggests that, as a late historical development, mediaeval mathematicians transposed 
terms from one side to the other. This would allow all the knowns to end up on one side and the 
unknowns on the other. Filloy & Rojano point out that in “pre-symbolic algebra textbooks” of 
the 13th to 15th centuries, most solution strategies for x2 + c = 2bx and x2 = 2bx + c are 
completely different; and “This difference would not exist if the authors had had recourse to the 
rule of transposing terms from one side of an equation to the other” (p. 19). However, an 
arithmetic without negative numbers would see such a difference as natural. Filloy & Rojano 
attribute the transposition strategy to Viète. 

Kieran (1981) makes the point that: “not only does equation solving involve a grasp of the notion 
that right and left sides of the equation are equivalent expressions, but also that each equation can 
be replaced by an equivalent equation (i.e. one having the same solution set). Unfortunately, very 
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little research has addressed itself to the question of how this concept is acquired by high 
schoolers.” (p. 323). See also Kieran (1984) and Steinberg, Sleeman & Ktorza (1991). Within both 
the formal methods, strategies such as “get the unknown by itself on one side of the equation” 
and “collect like terms” would make sense. 

The transposition strategy of moving terms from one side of the equation to the other is 
mathematically equivalent for most purposes to the Leibniz strategy of operating on both sides of 
an equation. But a question inspired by Lins (1992) occurs: are there important psychological 
consequences that flow from the choice of formal strategy? Take for example the transformation 
of the equation 120 − 2x = 315 into the equivalent equation 120 = 315 + 2x. Is there a major 
difference between “adding 2x to both sides” (i.e. thinking up an operation to use on an equation) 
and “move the − 2x over to the other side and it becomes +2x” (i.e. deciding on an object in the 
equation to move)? There seems little detailed research on this. Davis (1986b, 1989a) associates 
the transposition strategy with an emphasis on notational rules divorced from understanding. But 
of course this need not be the case: if A is 6 more than B (A = B + 6) then B is clearly 6 less than 
A (so A − 6 = B). This justification for transposition seems as “reasonable” as: if A is the same as 
B plus 6 (A = B + 6) then 6 can be subtracted off both A and B + 6 (so A − 6 = B). It seems just 
as likely that the justification for “doing the same thing to both sides” is forgotten (algebraic 
operations on equal things do not change the equality) as that the justification for “change the 
side; change the sign” is forgotten (adding onto one side is the same as subtracting off the other; 
multiplying one side is the same as dividing the other). However, English & Halford (1995) 
consider that transposing “does not emphasise the symmetry of an equation.” (p. 227). 

In any case, many studies report that the problem of finding a solution to an equation by formal 
methods is a major source of student difficulties: 

“... for a large number of high-school students, there are many cognitive obstacles involved in 
perceiving an equation as a mathematical object on which they can perform operations. It is equally 
difficult for them to grasp the idea of equivalent equations and construct a meaning for the formal 
solution procedures” (Linchevski & Herscovics, 1996) 

These two “formal” methods - the Leibniz and transposition strategies - can also be contrasted 
with the “informal” methods outlined earlier, such as using balances, flowcharts and numerical 
trial-and-improvement. The 1997 Royal Society / JMC report points out that “trial and 
improvement seems to be becoming the preferred and probably only method which the majority 
of pupils are confident with in pre-16 education.” (p. 7). Some students have consequently been 
noted using trial-and-improvement on linear equations, and failing to realise that there are two 
solutions to quadratics. The report also suggests that “When pupils have become proficient with 
trial and improvement methods for solving equations they are unlikely to want to learn algebraic 
[formal] methods.”. This is not to say that trial-and-improvement should not be taught - the 
report describes it as a “valuable technique” that allows a wider class of equations to be tackled 
and, moreover, Davis (1986b) notes that it has troubleshooting potential when learning formal 
methods - but that it may have edged out the formal methods. SCAA (1996), for example, noted 
an increased emphasis on such iteration in O-level and GCSE since 1975. 
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Kieran (1992) reports studies showing that although substitution is generally dropped when 
formal methods are eventually learned, students “also seem to drop it as a device for verifying the 
correctness of their solution” (p. 400). Kieran (1988a) points out that, just as for simplifying 
expressions, students often “do not know how to show that an incorrect solution is wrong, 
except to re-solve the given equation. They do not seem to be aware that an incorrect solution, 
when substituted into an incorrectly transformed equation will yield different values for the left 
and right sides of the equation. Nor do they realize that is it only the correct solution which will 
yield equivalent values for the two expressions in any equation of the equation-solving chain.” 
(p. 437). That is: they do not know that an incorrect solution can be tested, and they do not know 
that a “value which works” must be a solution. Kieran (1992) cites Lewis (1980) on this. 

Interestingly, Mayer (1985) found that students given equations to solve such as 
(8 + 3x) ÷ 2 = 3x − 11 tended to use a formal strategy to isolate x; whereas students given 
syncopated equations such as “Find a number such that if 8 more than 3 times the number is 
divided by 2, the result is the same as 11 less than 3 times the number.” attempted to “reduce” 
the problem to something simpler systematically - for example a first step might be to consider 
the problem “Find a number such that if 8 more than it is divided by 2, the result is the same as 
11 less than it.”. 

The problem for research of identifying the individual steps in strategies is often profound. 
Studies undertaking this can be put into three broad categories according to research method. 

The first method is to use a “clinical interview” (as in Herscovics & Linchevski, 1991). 
Clarifications, justifications, extensions and so on can be requested. Models are then formulated 
to explain each student’s responses, and then generalisations attempted across students. 
Herscovics & Linchevski were able to identify strategies of inverse operations, grouping terms, 
guessing an operation, checking, trial-and-error, and so on, for a range of types of simple linear 
equations. 

The second method involves examining student responses to written items, and formulating 
models to explain the responses. Sometimes individuals’ responses are compared qualitatively; 
sometimes facilities for different items are compared quantitatively. 

However, with both these methods, one soon runs into the same difficulty as for simplifying 
expressions - the number of potential explanations for errors on an item depends exponentially 
on the number of postulated “attributes” (procedures, skills, facts, etc.) required to answer the 
item; and the data at our disposal is limited. The mind seems to work in such a way that it often 
does not seem to be able to examine how a step was taken; let alone articulate the method. So 
even asking students how they did it does not usually help. Sometimes a post hoc rationalisation is 
the best that can be obtained (noted by Drouhard & Sackur, 1997; see also Dennett, 1993 and 
Popper & Eccles, 1977). 

The third method is to describe a range of problems in terms of “attributes” (such as 
associativity, cancellation of elements, collection of like terms) and use all the problems to model 
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students’ skill. Birenbaum et al. (1993), for example, used a sophisticated statistical refinement 
(“rule space”), to handle the complexity. For example, the study cited found that, for 231 Israeli 
14-15 year-olds taking a 32-item diagnostic test in solving linear equations, a set of attributes that 
took into account that students might try to minimise operating with negative numbers if 
legitimately possible was better able to explain the variance of responses than a set of attributes 
that ignored this strategy. 

The big disadvantage of this “attributes approach” is that it depends very much on having an 
accurate set of the required attributes for each item. However, it has the advantage that errors 
that are either “wild” or result from “slips” do not have as great a potential to lead researchers 
astray. It also provides a means of testing models of students’ theories that is more open to 
scrutiny and criticism than the traditional “item-by-item” approaches of interviews and written 
tests: one can compare how well different models appear to account for the range of responses 
that a student or a group of students makes. On the other hand, even when we have identified 
the attributes that we are interested in, an item-by-item approach is perhaps less likely to fall into 
the trap of assuming that the same set of attributes are appropriate for all problems. An attributes 
approach would be useful when we have a large range of very similar problems which differ in 
subtle but identifiable and known ways, and students can solve some but not others. An item-by-
item approach would be useful when we have a small number of problems for which we want to 
examine the range of possible strategies. 

The choice of research methods for this research depends largely on the level of detail that is 
required to fill the gap in research that I hope to have identified by the end of chapter 3, given 
the constraints of research resources. However, an item-by-item approach is likely to be 
preferable in a study with a large number of sufficient (as opposed to necessary) strategic theories. 

Related to the attributes approach is the AI diagnostic approach. Sleeman (1986), for example, 
catalogued a very wide variety of rewrite “mal-rules” in the context of solving equations, using a 
diagnostic computer program. But he found that the program was unable to determine the mal-
rules deployed merely on the basis of the answer. The sheer number of possible rules at each step 
of a solution process made precise determination difficult. Moreover, several inferred mal-rules 
were wrongly identified as the result of the student making wild guesses. On the other hand, 
when a human took over the role of identifying the problematic mal-rules (interviews were find 
to be the most effective way), two tests of a group of students four months apart appeared to 
show students’ consistency. Sleeman concludes from a variety of studies (including Paige & 
Simon, 1966; Lewis, 1980; Davis, Jockusch & McKnight, 1978; Matz, 1982 & Sleeman, 1984) that 
“Pupils have a great facility for inferring their own rules, or sometimes higher level schema, and 
then using them consistently and often in inappropriate situations.” (p. 52). 

On the other hand, Payne & Squibb (1990) found that there are many infrequent mal-rules, and 
few frequent ones; and that it is rare for students to use a mal-rule in as many of half of its 
applicable conditions (p. 478). They also discovered that identifying mal-rule is easier with 
students who make fewer errors. 
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Sleeman used his results to question the assumption of Brown & Burton (1978) that all errors are 
the result of perturbations to correct rules (p. 45). On the other hand, Payne & Squibb 
demonstrated firstly that the 99 separate mal-rules that they identified could be grouped into 
more abstract principles; and secondly that the ten most frequent mal-rules in schools diagnosed 
67% of the errors in that school, but fewer than 10% in another. Payne & Squibb concluded that 
“specifics of educational experience seem to have a heavy influence on acquired mal-rules.” 
(p. 455). 

Given a set of “Domain Rules” (such as 3x = 6 ⇒ x = 6/3, 2 + 3x = 6 ⇒ 3x = 6 − 2 and 
2x + 3x = 15 ⇒ 5x = 15) and a set of mal-rules (such as 7x = 4 ⇒ x = 7/4, 
2 + 3x = 6 ⇒ 5x = 6 and 4x = 2x + 3 ⇒ 4x + 2x = 3), AI techniques can also allow software to 
model student reasoning. However, a big difference between an AI approach and an educational 
approach is that for educational purposes, the details by which students develop and implement 
strategic theories are of interest only insofar as there appear to be difficulties in addressing target 
concerns. 

AI models of cognition can be criticised for artificiality (Chaiklin, 1989), but is characterising 
students’ thinking as something like a number of modular, interacting programs any more 
artificial than the abstract metaphors of “awareness”, “concept”, “relation”, “experience”, 
“process”, “idea”, “expression”, “skill”, “meaning”, “error”, “behaviour” and so on that 
permeate current discussions of learning? Popperian psychology shares with the “competing 
rules” model of Payne & Squibb a critique of the simplistic account of errors that student 
performance can be partitioned into “Executing the right rule correctly”, “Executing the right 
rule incorrectly” and “Executing the wrong rule”. Indeed, BVSR suggests that strategic theories 
are “in competition” in a given problem situation. However, the student’s perception of the 
problem itself must also be taken into account, and AI studies to date do not appear to have 
modelled students’ problem representation in equation solving contexts. 

2.5.3 Representing Situations Using Simple Linear 
Equations 

Wollman (1983) notes that “The ability to translate sentences into algebraic relationships figures 
heavily among the problem-solving skills required in quantitative science courses and 
mathematics courses in secondary school and college.” (p. 169). Yet… 

“Generating equations to represent the relationships found in typical word problems is well known to 
be one of the major areas of difficulty for high school algebra students.” (Kieran, 1992, p. 403) 

Similarly, Lochhead & Mestre (1988) write: 

“It is well known that word problems have traditionally been the nemesis of most mathematics 
students. The translation process from words to algebra is perhaps the most difficult step in solving 
word problems.” (p. 134) 

According to Chaiklin (1989), there are two main approaches to representing relations given in 
sentences as equations: “direct-translation” and “principle-driven”. Phrase-by-phrase translation 
is rather limited in the range of pertinent problems. Paige & Simon (1966) also found that 



Chapter 2 - Identification 69 

students using this approach failed to detect the contradictions in certain problems, whereas 
those using the principle-driven approach could. This latter approach involves using cues to 
recognise and organise the relations according to various schemata or templates, such as whole-
part, rate, age and multiplicative (Mayer, 1981). These templates can be vital in students 
developing future problem-situation models (English & Halford, 1995, p. 240-245). 

Mayer (1982a) distinguished the propositions in word problems as: assignments, relations and 
questions. He found (Mayer, 1982b) that, for college freshmen, relations were harder to 
remember than assignments; and when they were asked to construct their own word problems, 
the students rarely made use of relations. Yet Chaiklin observes that “to solve algebra word 
problems successfully, students must be able to interpret and understand the mathematical 
relations in these problems.” (p. 93). 

Berger & Wilde (1987) distinguish three tasks in representing a situation: 

• Value assignment: setting a noun phrase equal to a numerical value or to a symbol. 

• Value derivation: operating on assigned values to produce new values, using relationships and 
formulae that are either given in the question or expected to be known. 

• Equation construction: creating a computational representation of the structural relationship 
between variables. 

Although it may seem as though this order is the order in practice, “if one can determine the 
form of the final equation, the range of possibly appropriate value assignments and derivations 
may be reduced.” (p. 127). This is borne out by a study of high school students, which also 
suggested that value assignment was found to be easier than value derivation, which was easier 
than equation construction. In addition, making use of formulae that are expected to be known 
appeared to be harder than using a given relationship. 

Cortés (1988) notes that situations to be represented generally make use of objects, lengths or 
prices “whose additive and multiplicative properties students, in general, know.” (p. 209). She 
suggests that the concepts of equivalence and “numerical function” (which can be interpreted 
here as “expression”) and the principle of “homogeneity of terms” are implicitly required 
cognitive demands in such representation. She identifies three strategies that partition the 
problems found in 8th-grade French textbooks: 

“I - substituting unknowns with given numbers and units into a given formula or into a constructed 
function. 

II - substituting unknowns with linear functions into a two (or more) unknown equation. 

III - equating two linear functions.” (p. 210). 

2.5.4 Representing Situations Using Equations with Two 
Variables 

“It is tempting to believe,” writes Herscovics (1989), “that after extensive work with equations in 
one unknown, students will have an easier time constructing expressions and equations in two 
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variables. But, the presence of more than one variable appears to compound their difficulties.” 
(p. 63). 

The earlier discussion about the student-professor problem has clearly introduced some of the 
relevant strategies for this class of problems, but there are further strategies to be considered. 
Reed, Dempster & Ettinger (1985), for example, found that “Students had considerable 
difficulties in specifying the relations among variables.” (p. 123). 

As has already been pointed out, in the UK such representation is more likely to be from number 
patterns found by the student in objects, pictures or tables than from sentences. The term 
“situation” here covers all four of these contexts, but note that this section does not consider the 
generalising of arithmetic rules such as (x + y)2 ≡ x2 + 2xy + y2. 

MacGregor & Stacey (1993a) gave problems like the following to 143 Australian students aged 
about 14, in a pencil-and-paper test: 
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(A) Look at the numbers in this table and answer the questions: 

 x y   
 1 5  (i) When x is 2, what is y? 
 2 6  (ii) When x is 8, what is y? 
 3 7  (iii) When x is 800, what is y? 
 4 8  (iv) Describe in words how you would find y if you were told what x is. 
 5 9  (v) Use algebra to write a rule connecting x and y. 
 6 ..   
 7 11   
 8 ..   
 .. ..   

(B) The results of an experiment that measured two quantities L and Q were: 

 L Q 
 3 9 (i) What would you expect Q to be when L is 30? 
 5 15 (ii) What would L be when Q is 99? 
 9 27 (iii) Describe in words how you would find Q if you were told what L is. 
 21 63 (iv) Use algebra to write a rule connecting L and Q 

(C) Look at the numbers in this table and answer the questions: 

x 0 1 2 3 4 5 6
y 2 5 8 11 14 17 ..

(i) When x is 6, what is y? 
(ii) What x is 10, what is y? 
(iii) When x is 100, what is y? 
(iv) Describe in words how you would find y if you were told what x is. 
(v) Use algebra to write a rule connecting x and y. 

They found that “more students could find and use a relationship for calculating than could 
describe it verbally or algebraically.” (p. 181). This seems to confirm Herscovics (1989). 
MacGregor & Stacey suggest that this is because the students were primarily “focusing on 
recurrence patterns in one variable rather than on relationships linking two variables” - the facility 
of C (iii), for example, was much lower than that of C (ii). It is also pointed out, nevertheless, that 
many students who could use a functional relationship for calculating were unable to describe the 
rule in either words or symbols. So whereas the facility for A (iii) was 61%, that for A (iv) was 
49% and that for A (v) was 35%. Moreover, in interviews with 15 students, the researchers were 
struck by the “variety of patterns perceived and the large proportion of generalisations expressed 
verbally that cannot be expressed in the elementary algebra that students are learning.” (p. 184). It 
is interesting that although half of the students could describe a correct rule verbally for problems 
A and B, only a third wrote down a correct algebraic formula. For problem C, 17% could 
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describe a rule verbally, and 12% wrote down a correct formula. Students found it more difficult 
to find a rule for calculating in B, perhaps because of the absence of constant differences. 

From the report of this research, a number of strategies for solving pattern-seeking problems can 
be identified: 

• find the numerical value of one variable from another by using proportion (so for A (iii), to 
find y when x = 800, multiply 800 by 5 because this works for the first row of the table; or 
multiply by 100 the value of y when x = 8, because this direct proportionality has worked in 
previous problems); 

• find the next number in a sequence by using a recurrence rule; 

• find a recurrence rule by looking at differences, ratios, the number of integers in the gap, and 
arithmetic operations (this is not termed an algebraic problem); 

• express a recurrence rule algebraically; 

• find a functional rule by looking at differences, ratios and so on (again, not an algebraic 
problem); 

• express a functional rule algebraically; 

• find a functional rule by finding the “inverse” of a known rule between the variables. 

2.5.5 Solving Word Problems 

Radford (1995) describes how mediaeval mathematicians used algebra to solve problems arising 
primarily from commerce in which an unknown quantity was to be found. The main “goal of the 
works or chapters dedicated to algebra is not to explain the geometrical algorithms nor to learn 
how to carry out calculations on binomials but to show how to use the techniques of algebra to 
solve word problems.” (p. 30). This suggests that “algebra was intended to be, above all, a problem-
solving tool” and one which is more “fertile” than those based on numerical or geometrical 
approaches. For example: 

Denarii Problem 

Two men have a certain amount of money. The first says to the second: if you give 
me 5 denarii, I will have 7 times what you have left. The second says to the first: if 
you give me 7 denarii, I will have 5 times what you have left. How much money do 
they have? 

One of the teachers taking part in this research suggested that it is more sophisticated to see 
algebra as a tool than as someone else’s game. Word problems may provide a test of this 
sophistication, because unlike the student-professor problem, the use of algebra is not a 
prerequisite. Hence a “symbolic algebraic approach” (defining letters to represent unknown 
quantities, creating equations to represent the relations between these quantities, solving the 
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equations and then interpreting the answers in the context of the problem) can be contrasted 
with (say) a numerical “trial-and-error” approach or a contextual “whole-part” approach. 

However, Reed (1984) showed that averages or intuition are often preferred strategies to algebra, 
perhaps even in circumstances in which the student suspects that the intuition may not be sound. 
Lee (1987) describes research indicating that “Students who can competently handle the forms 
and procedures of algebra rarely turn spontaneously to algebra to solve a problem even when 
other methods are more lengthy and less sure.” (p. 317). 

The Driving Problem 

Mr. Sweetmann and his family have to drive 261 miles to get from London to Leeds. 
At a certain point they decided to stop for lunch. After lunch they still had to drive 
four times as much as they had already driven. How much did they drive before 
lunch? And after lunch? 

Lins (1992) used word problems like this to test out the extent to which his characterisation of 
“algebraic thinking” could be useful to “distinguish and understand, on the fly, the thinking and 
learning processes which are developing on the part of the learner.” (p. 21). The essential 
characteristics of algebraic thinking, he argues, are that it is “arithmetic”, “internal” and 
“analytical”. Taking the driving problem as an example; thinking “The distance plus 4 multiplied 
by that distance makes 261” rather than “That bit of road combined with 4 similar bits of road 
has a length of 261” is illustrative of arithmetic rather than whole-part thinking. Suppose that a 
student decided to use the equation x + 4x = 261. If, in solving this equation, no further 
reference to the situation is made, this is a hint of internal thinking - the “meaningfulness of each 
expression produced is related only to the perceived correctness of the process that produced it” 
(p. 202) rather than to the relationships described in the situation. So “In most of the solutions 
using equations we could reasonably establish that the reference to the problems’ context was 
abandoned, in particular through the generation of expressions where the minus sign could not 
be given an immediate non-algebraic interpretation”. Analyticity, meanwhile is manipulating the 
unknown (“x + 4x is 5x… Divide 5x by 5 and 261 by 5…”). 

Lins’ extensive analysis of word problems results in a description of an algebraic approach: 

1. forming an equation by analytically converting a series of arithmetical calculations “analogically 
associated with the problem’s ‘story’ or context” into expressions; 

2. linking these expression using equalities, again “analogically associated with the context”; 

3. treating each equation internally (all p. 227). 

Now clearly, from a Popperian psychological perspective, this formulation is not acceptable 
because it makes use of “modes of thinking”. However, it is perfectly possible to distinguish, as 
Lins does very effectively, different strategies for solving problems. Non-algebraic approaches 
include a whole-part approach (“1 lot of x plus 4 lots of x is equal to 261”) and a trial-and-error 
approach (“10 is too small, 100 is too large, …”). Some scripts also showed that algebraic and 



non-algebraic approaches can be used at “different stages of the same solution process, 
highlighting the possibility of usefully combining algebraic and non-algebraic models, and at the 
same time emphasising the dissimilarities between them.” (p. 303). For example, a student could 
find an algebraic representation of the situation by representing a whole-part relationship, but 
then solve it by non-algebraic means such as trial-and-error. One can view such strategies as 
theories which aim to solve the problem; and one could even use Lins’ characteristics of algebraic 
thinking as indicators of an algebraic strategy that is distinct from a symbolic algebraic strategy 
(although this is not done in this thesis). 

Lins shows not only that the facility for word problems depends crucially on the numbers 
involved (2/3 of students got the driving problem correct, but only 16% got the problem right 
when the integer 4 is replaced by the decimal 2.7) but also that the choice of strategy is similarly 
dependent (because adding 1 part and 2.7 parts and then dividing 216 by 3.7 parts is not as 
familiar a strategy as adding 1 part and 4 parts and then dividing 216 by 5 parts). 

His method was to give two question papers to each of 10 classes of Year 9 and Year 10 students 
from England and Brazil (228 students in total). There were three varieties of these papers, so 
varying the numbers used and the “situational context” could be studied. Each paper contained 6 
questions, was attempted in a 50 minute session, and did not mention the word “algebra”. 

Lins’ results show that facility also depends crucially on the context of the problem. For example, 
the tickets problem was consistently easier than the driving problem in whatever form: 

Tickets Problem 

Sam and George bought tickets to a concert. Because Sam wanted a better seat, his 
ticket cost four times as much as George’s ticket. Altogether they spent 74 pounds 
on the tickets. What was the cost of each ticket? 

Lins replicated these results with problems based on different “underlying equations”: 

The Seesaw Problem 

 

 

Sam throws away 5 
bricks and George 
throws away 11 bricks. 
Now they are balanced. 
What is the weight of 
one brick? 

Sam and his bricks
weigh 189 kg

George and his bricks
weigh 213 kg

[NB This problem has been slightly adapted] 
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Sale Problem 

Maggie and Sandra went to a records sale. Maggie took 67 pounds with her, and 
Sandra took 85 pounds with her (a lot of money!!). Sandra bought 11 LP’s and 
Maggie bought 5 LP’s. As a result, when they left the shop both of them had the 
same amount of money. What is the price of an LP? 

Now, from the Popperian epistemological perspective, one would not want to talk about 
equations “underlying” a situation any more than one would want to claim that theories are 
“inherent” in a situation. One would say, rather, that these problems can be solved by means of a 
common equation; and the relationship between problem and equation is no stronger than that. 
Mayer (1981) termed such problems as belonging to the same “family”. So the results of Reed, 
Dempster & Ettinger (1985) and Reed (1987) would be interpreted as potentially indicating a lack 
of transfer of understanding between families. Moreover, Lins seems to show (if I re-interpret his 
results) that the facility of a problem will depend not only on whether each student has an 
adequate strategy to solve the problem, but also on the student’s understanding of the problem, 
and on the student’s expectation of the ease of execution of each strategy that the student expects 
might solve the problem. 

This result presents a seemingly insurmountable obstacle for those wanting to graduate word 
problems in order of difficulty. However, in practice it often turns out to be possible (see for 
example, Robertson, 1994; Hinsley, Hayes & Simon, 1977) to conjecture, for a particular group 
of students and a given problem, the understanding that students in that group might have of the 
problem, the strategies that they might have available, and their expectations about the ease and 
adequacy of those strategies in solving the problem. For without such conjectures, teachers 
would be unable to make judgments about questions that would be helpful for students to 
consider. Moreover, Hinsley, Hayes & Simon provide compelling evidence that students not only 
use a line-by-line procedure in attempting to comprehend word problems, but they also often try 
to classify the problem as soon as possible in order to make use of strategies associated with 
standard problems. Word problems that appear so similar to the student that none of these 
expectations are substantially different could be said to belong to the same “class”. In this way, a 
single problem can be used as a research item to test for ability to solve a class of problems. 

Returning to Lins’ work to find some suitable problems, the main distinction he makes about the 
Tickets and Driving problems (that for the whole-part approach, the visualisation of the 
expensive ticket as four tickets is easier than the visualisation of the longer distance as four short 
distances) is not significant for this research because the change of facility by context is taken for 
granted. The 2.7 version of the Driving problem can be used as a potential indicator of an ability 
to use equations to solve problems, because it is the hardest one of the four relating to equations 
like x + 4x = 74. 

The Seesaw problem is superficially a balance problem of the type often used to introduce 
equations, but in fact is not of the standard variety; because even though what is modelled is still 
a balance, it does not use the weights and bricks as they appear on the scale, but an act of 
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balancing itself. It brings a superb opportunity for negative signs to be brought into use, and is 
not easily soluble by trial-and-error. Those with a superficial grasp of the potential of algebra may 
very well represent the problem by an equation which includes the weights of the people. On the 
other hand, it may also be possible to find a useful equation such as 189 − 11b = 213 − 5b (where 
b is the weight of a brick) while still interpreting the 11b as “11 bricks”. This would not affect the 
result so long as the operations on the equation were carried out. There is also a similar problem 
in which we are told not about the number of bricks thrown off, but only that George throws 
away four times as much weight as Sam does and we are asked for how many kilograms George 
throws away. There seems (at first glance) to be not enough information here. We don’t know the 
weights of either person, of a single brick, of all the bricks on either side, or of the bricks 
removed. Yet we can still magically solve the problem by using the equation 189 − x = 273 − 4x. 
Comparing the two Seesaw problems, the two Sale problems and a Secret Number Problem (“I 
am thinking of a secret number. I will only tell you that 181 − (12 × secret 
no.) = 128 − (7 × secret no.) What is my secret number?”), the 4× Seesaw problem was the 
hardest (facility 22%) and the 11-5 Sale problem the easiest (facility 39%) - a difference which 
Lins says may be explained perhaps by the potential number of referents for letters. However he 
also points out that those with the most experience of solving equations - the Brazilian 8th grade 
students - obtained a facility for the secret number problem of 88%. Only 4% of the English 
Year 9 students could tackle it effectively. This may indicate that “the development of algebraic 
thinking is a process much more akin to cultural processes than to age-related stages of intellectual 
development.” (p. 228-9). This is reinforced by the English students’ immense comparative 
success with a pattern-seeking type problem in which a formula was given, with which they, but 
not the Brazilians, had had much experience. Many of the successful English students justified 
their solution by “reversing the formula” (which is, incidentally synthetic, not analytic) whereas 
most of the successful Brazilian solutions used equations. 

Lins concludes that solving the “secret number” problem depends heavily on the use of 
equations - only 5 out of 146 students apparently managed to solve it by using a non-algebraic 
model. For the other problems, most of the incorrect solutions by the Brazilian 7th graders do not 
attempt to use an equation; whereas most of the incorrect solutions by the Brazilian 8th graders do 
represent a mistaken use of equations. “This suggests that for the Brazilian 7th graders the 
‘default’ approach is non-algebraic, and for the 8th graders it is an algebraic one, namely the use of 
equations.” (p. 199) The younger Brazilians used non-algebraic approaches when they could, and 
only switched to algebraic approaches when they couldn’t solve the problem any other way. They 
did this even when they couldn’t solve the equations produced. The problems in this group do 
not seem to tell us substantially different things about students’ abilities or strategies. So can a 
single, sufficiently difficult, problem act as a test for an algebraic strategy? For example, as far as 
it was possible to tell from the scripts, 6% correctly used an equation to solve the 11-5 Seesaw 
problem; 26% got it right without an equation (for example, by analysing the situation 
qualitatively, or by transforming the situation - “it is as if George threw away 6 and Sam didn’t 
throw away any, so the weight of 6 bricks is the difference in weights”); and 68% could not solve 
the problem. If a set of activities could be found that enabled more to get it right, the change in 
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percentage using equations could be used as a measure of the extent to which the activities were 
making an algebraic approach more accessible. 

Another problem inspired by Lins is the following: “A limousine and two minis end-to-end are 
9.8m long. The limousine is 1.7m longer than three minis. How long is the limousine?” which 
seems like a situation one could envisage being of interest to students, in contrast to the 
traditional application of algebra to problems such as “Kate thinks of a number, and Liz thinks of 
a number. It turns out that the numbers add up to 162. Also, three times Kate’s number minus 
twice Liz’s number is 16. What was Liz’s number?”. Nevertheless, Lins’ results seem to suggest 
that the former problem may be more accessible to non-algebraic strategies than the latter 
because car lengths may have more “meaning” to students than imagined numbers. The evidence 
also suggests that {x + 2y = 9.8, x − 3y = 1.7} would be even less accessible, because students 
would find it difficult to “model back” the problem into a context in which whole-part 
operations would be possible. 

This section can be summarised by noting that a number of problems have been identified that 
might indicate whether students can use equations as a strategy. 

2.5.6 Proving using Symbols 

Harper (1987) gave to 144 secondary school students from Years 1 to 6 problems such as: 

Sum and Difference 

If you are given the sum and difference of any two numbers, show that you can 
always find out what the numbers are. 

Harper identifies three strategies for solving this problem: 

• rhetorical: specification of a general procedure. For example: “You divide the sum by 2 then 
divide the difference by 2; then to get the first number add the sum divided by 2 to the 
difference divided by 2; to get the second number take the difference divide by 2 away from 
the sum divided by 2.” (Harper, 1981, p. 81) 

• Diophantine: letters represent unknown quantities. For example: “If the sum is 8 and the 
difference is 2, then x + y = 8 and x − y = 2; then solve for x and y. This works for any 
numbers.” 

• Vietan: letters represent unknowns and knowns. For example: “Let the numbers be x and y, the 
sum be m and the difference be n. Then x + y = m and x − y = n. Solve these to get 
x = (m + n)/2 and y = (m − n)/2.” 

“In Year 1, all of the correct solutions were rhetorical. In years 2 and 3, the rhetorical solutions 
continued to outnumber the other two types. It was only from Year 4 onward that the balance shifted 
in favour of, first Diophantine and, then, Vietan solutions.” (Kieran, 1992, p. 407) 

Kieran (1992) suggests that “the use of the letter as a Diophantine ‘unknown’ is more cognitively 
accessible than is the use of the letter as a ‘given’” (p. 407); and that “procedural conceptions of 
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literal terms precede structural ones” (p. 407); but Harper’s study could alternatively be 
interpreted as demonstrating students’ growing confidence in algebraic manipulation to prove 
results. This problem, then, could be a useful test of concern to use algebra. 

Another problem given could be similarly useful: 

Consecutive Numbers 

Take three consecutive numbers. Now calculate the square of the middle one; 
subtract from it the product of the other two… Now do it with another three 
consecutive numbers… Can you explain it with numbers?… Can you use algebra to 
explain it? 

Kieran quotes Lee & Wheeler’s (1987) finding that out of 118 grade 10 students given the 
following problem, only 9 provided a satisfactory answer: 

Think of a Number Proof 

A girl multiplies a number by 5 and then adds 12. She then subtracts the original 
number. She notices that the answer she gets is 3 more than the number she start 
with. She says “I think that would happen, whatever number I started with.”. Using 
algebra, show that she is right. 

The overwhelming strategy, even amongst these 9, was to use numerical evidence rather than 
algebra. Lee (1987) provides corroborating evidence that “For most students, numerical instances 
of generalisation carry more conviction than an algebraic demonstration of the generalisation.”; 
and that “Many students do not appreciate that a single numerical counter-example is sufficient 
to disprove a hypothesised generalisation.” (p. 316). Thus we have another test to distinguish 
between strategies. 

2.6 Discussion of Research Implications 
An action, strategy, plan, heuristic, procedure or process can be considered as theory. Being able 
to use such a theory might be called a “skill” or an “ability”. Such a theory can be used without 
being consciously devised, willed or recognised. Concern to use it can therefore vary. Being 
concerned about a problem may lead to a concern with strategic theories that are perceived as 
potential solutions. It has been concluded that students have myriads of complicated, implicit and 
context-related theories (perhaps not all strategic), produced by a wide variety of mathematical 
experiences and concerns; and therefore generalised analysis of these theories and experiences is 
difficult. However, this research is considering “algebraic concerns” - that is, those concerns 
which are related to algebra and its use in some way. An example is a concern for algebraic 
convention: the need for mathematical expressions to be unambiguous, for example, constitutes a 
problem to be solved when using algebra (albeit an elementary one for those with experience). 
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Another is the concern to work out the number of students given the number of professors and 
the student-to-professor ratio. Another is to avoid looking stupid in front of one’s peers. Now it 
might be objected from this that “algebraic” does not really limit the concerns one might be 
interested in improving, because any concern that might happen to be important to a student at 
any time when using algebra could be relevant. This is a good point; but while there are clearly 
many concerns that might be relevant to an analysis of the use of symbolic algebra in a classroom 
situation, the “target” algebraic concerns are those problems of elementary algebra itself. For 
example, to find an unknown quantity; to demonstrate a conclusion beyond reasonable doubt; to 
discover rules governing arithmetic; and so on. A number of these concerns have been 
distinguished in this chapter. These, and some others, can be put into a table: 

Types of algebraic problems 

Represent situations 
using equations and 
expressions. 

Graph data and 
functions. 

Symbolise arithmetic 
identities. 

Solve and rearrange 
equations. 

Simplify, factorise and 
expand expressions. 

Substitute. 

Find unknowns in 
situations. 

Find patterns & 
relationships. 

Justify, prove, predict, 
explain and pose 
problems. 

Interpret equations 
and expressions 
within particular 
situations. 

Interpret graphs. 

The first column can be labelled as “representation” (Kieran, 1996, describes them as 
“generational activities”); the second as “transformation”; the third as “utilisation” in that they 
are considered here to be “algebraic” only if symbolic algebra is used as a tool (Kieran calls them 
as “global, meta-level activities”); and the fourth as “interpretation”. Representation problems 
tend to start with a situation external to algebra, and end with something more formal, 
conventional or symbolic; for interpretation problems it is usually the other way round; and in 
transformation problems there is usually no reference to any situation external to algebra. There 
are also the “meta-algebraic” problems of considering meanings, interpreting symbols, discussing 
metaphors, creating rationales, and so on. These types are not intended to be a complete 
characterisation of algebraic activity, nor is the typology unique, nor are the types mutually 
exclusive - tackling one problem will bring in others. Note that these problems are, of course, 
subject to quality criteria such as: complexity (for example, more complicated equations, variables 
or solution steps), applicability, discrimination (for example, more relevant application), facility 
(less effort), speed, accuracy, precision, reliability and completeness. The various studies into 
children’s learning of algebra also place differing emphases on these problems. 

Turning to the assessment of students’ knowledge, understanding is not viewed as sense-making, 
imagining or re-enactment; it is problem-solving. It has therefore been argued that symbol 
interpretations, images, meanings and metaphors are not necessarily deep insights into cognitive 
processes and structures: but are theoretical consequences of past problems. These “meta-
algebraic” theories can allow students to examine properties and relationships of processes; and 
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they can give us an insight into students’ experiences, rationalisation of experiences, and 
concerns. Identifying meta-algebraic theories may thus help us to conjecture students’ thinking in 
a given problem situation; but they might not be a good guide to future mathematical behaviour. 

In analysing incorrect student responses to mathematical problems, it is important to attempt to 
distinguish those that are based on a misunderstanding of the problem, from those that are 
caused by strategic theories (they don’t work; they haven’t been followed through correctly; they 
involve an absent-minded slip; or they are an incoherent response stemming from an inability to 
think of a strategy). Donaldson’s (1978) comment about one of Piaget’s experiments seems 
pertinent: “the questions the children were answering were frequently not the questions the 
experimenter had asked.” (p. 49). A student’s concern includes a view of the problem situation 
that may not coincide with that of the person who posed the problem. But the concern provides 
the basis on which the student tackles the situation. In the language of English & Halford (1995), 
this signifies the crucial importance of the student’s “problem-situation model” (especially p. 241-
2). 

It ought to be clear that merely solving (or failing to solve) a problem cannot constitute sufficient 
evidence for a concern (or a lack of one). A guiding principle is that there must be some sort of 
struggle, an element of trial-and-improvement. What else can help identify concerns? Much work 
has been done within and across school subject boundaries about motivation, rewards, emotion, 
attitudes, affective considerations, etc.; and it is true that “identifying concerns” falls within such 
research. Yet it seems that there exists no consensus that one may draw on to help here. There is 
only one guideline that is regularly offered. Papert (1980) puts it: “Anything is easy if you can 
assimilate it to your collection of [cognitive] models. If you can’t, anything can be painfully 
difficult.”. The mechanism of what Piagetians call “assimilation” is, in Popperian psychology, that 
of trial-and-improvement in response to a concern. In other words, learning a theory is easy if it 
addresses a concern. So not only must children’s strategies be taken seriously, but their concerns 
and errors must be seen as the fuel to power learning. 

Teaching a theory is a kind of “trick” to make the problems into concerns, however briefly. By 
attempting to address one’s concerns, theories are produced; these may contain further problems 
which may become concerns; and the original concerns do not necessarily disappear. Given the 
conjectural nature of learning, the attribution of students’ misconceptions to “natural” cognitive 
development is considered a claim requiring the highest standards of testing. The hypothesis that 
some target theories are beyond the “conceptual grasp” of certain students can be challenged by 
finding activities that not only give students on opportunity to grasp and demonstrate their grasp 
of these theories; but that are also effective in improving students’ theories and concerns as 
evidenced (through interview or written test) by the items identified within this chapter. What 
constitutes an “activity”? Because it is engagement with algebraic problems that is crucial for making 
target public theories more graspable, an activity is an experience that promotes such 
engagement. 

CSMS appears to have been influential in shaping school algebra. The Royal Society / JMC 
report suggests, for example, that activities directed towards representation problems are 
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prioritised over transformation and utilisation problems, and “fluency with symbols has become 
confused with rote manipulation” (p. 5). However, many of the suggested “implications for 
teaching” of CSMS would be challenged by a study that could find activities making a dramatic 
impact on students’ theories - activities that do not attend explicitly to the apparent psychological 
or mathematical “prerequisite” foundations for these theories, but instead engender genuine 
concerns to use equations. This is the starting point for the next chapter. 
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Chapter 3 
Improving Students’ Equation 

Theories and Concerns 

3.1 Introduction 
Answers are sought to the question “What activities can improve students’ equation theories?”. 
Algebraic theories have been categorised in the previous chapter by the problems they are 
intended to address: utilisation, representation, interpretation and transformation. Cortés, 
Vergnaud & Kavafian (1990) describe the learning of algebra as being an “epistemological jump” 
from elementary arithmetic to algebra; and ask the questions “How to start teaching algebra? 
With which types of problems?” (p. 27). Given that the theories-concerns instrument has 
identified a particular student with a wide range of difficulties with all problem types, is it possible 
to predict a sequence of activities that could best improve the equation theories of this student? 
This is asked independently of any particular teaching or learning styles or strategies as such - 
“reflection on experience”, “whole-class teaching”, “small groupwork”, “individualised learning”, 
“investigational approaches”, “waiting for cognitive readiness” - although, of course, it is 
extremely difficult to separate these from learning activities in practice. 

The baseline sequence is to practise tackling each of the problem types individually. For example, 
to promote utilisation, students are given larger numbers of examples and exercises, progressively 
growing in complexity and abstractness, in which equation is used to represent situations in 
which unknowns must be found, to prove theorems, to explore patterns, etc. In the sections that 
follow, deviations from this baseline are considered. Why, after all, should success or experience 
in one problem type transfer at all into others? Given that this research starts from the 
presumption of conjectural solutions to problems, every prima facie case of transferability is most 
interesting, as it may indicate commonalities between theories used for different problems or 
even identical theories. Geary (1994) concludes from various studies in cognitive science: “it is 
clear that metacognition in mathematical problem solving requires extensive experience in solving 
similar types of problems” (p. 126). The levels in CSMS could be interpreted, for example, as 
suggesting that simplification, the finding of unknowns and representation illustrate Geary’s 
different “types” of problem. Studies which demonstrate an activity that improves students’ 
ability to solve more effectively problems other than those inherent in the activity chip away at 
Geary’s baseline assumption. On the other hand, studies that demonstrate an activity easing just 
one or two of these problem types reinforce the idea of channelling instruction via separate types. 
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There is an attempt below to organise broad instructional schemes by means of the most relevant 
problem type, although this is somewhat arbitrary in a few cases. It ought to be made clear that 
even though the studies described here may not have explicitly set out to address the question of 
improving theories, they may perhaps contribute something to answering it. This may be no 
more than a suggested “implication for teaching” arising out of a priori analysis, but it could be as 
much as a controlled comparison of activities. The discussion is constrained by the potentiality of 
the theories-concerns instrument, developed in the previous section, to gauge improvement. 

The first section discusses activities that aim to promote meta-algebraic theories. The second 
section focuses on activities that aim to promote equations as a mathematical tool, in particular 
by easing transformation. The third section considers how representation and interpretation 
theories may be improved (these two problem types are considered together because of their 
close relationship). The final section includes attempts at promoting equation solution strategies. 

There are a number of reasons for gloom about the notion of comparing activities:- 

• Different things work for different people 

People have their own ways of learning. No single activity will be appropriate for everybody. It 
will always be possible to point out people for whom a particular activity is inappropriate. 

• Contexts can limit 

Knowledge does not automatically transfer between contexts. It will always be possible for 
students to gain from an activity theories that are appropriate to that particular experience and 
little else. 

• Understanding is always incomplete 

Knowledge is infinite. No single activity could hope to trigger all the learning one would want. It 
will always be possible to point to a deeper level of understanding that students have not 
acquired. 

• Learning cannot be timetabled 

No-one can tell in advance how long an activity should take, or after how long a particular theory 
will have been grasped. 

• An activity does not depend on its rationale 

The success of activities does not depend on the claims used to support their proposal. Other 
claims can support a proposal, and the rejection of a reason does not necessitate a rejection of the 
activity. 

• Benefit is intangible 

Benefit from an activity is difficult to measure. There will always be theories that are not learned, 
or theories that are learned and then forgotten, theories that were wrongly identified as learned, 
and theories learned that were never identified. 
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Whether there is any hope left after such gloom remains to be seen. 

3.2 Meta-Algebraic Theories for 
Equations 

In the previous chapter a number of suggestions were quoted from various researchers 
suggesting that students’ meaning for algebraic symbolisation might be the “root” of students’ 
difficulties with algebra. However, there is a large ambiguity in such common phrases as “the 
meaning that students have for letters”, “the meaning of the equals sign”, “meaning for formal 
procedures”, “meaningless rules”, “meaningless symbols”, “meaningful referents”, “meaningful 
learning”, “external meaning”, “sharing of meaning”, “negotiating meaning”, and so on. It is 
rarely made clear whether the author means by “meaning” something like “intention”, 
“denotation”, “entailment”, “purpose”, “importance”, “definition”, “idea”, “interpretation”, 
“rationale”, “understanding”, “gist”, and so on; or sometimes even whether the word is a noun 
or verb. It is even rarer to find criteria for detecting such meaning in practice. 

Even when authors have taken great trouble in their papers to spell out clearly what they denote 
by meaning, quotations are easily ripped from their context. This is rather important when claims 
are made such as: “[The students] seem unable to encode meaning from natural language… And 
they seem not to be able to recognize meaning in an algebraic sentence either.” (Burton, 1988, 
p. 4); “[It] seems sensible to base the teaching… on the meanings for the letters that these 
children readily understand.” (Küchemann, 1981, p. 119); “acts of practice and exercise… are 
invigorating and stimulating only if they have meaning and purpose” (Griffin & Hirst, 1989, 
p. 20); “Algebra takes on a much clearer meaning in the solution of problems which are insoluble 
or difficult to solve through arithmetic.” (Cortés, Vergnaud & Kavafian, 1990, p. 27); “an 
understanding of generalised arithmetic is a necessary prerequisite for meaningfully operating a 
computer algebra system” (Hunter et al. 1995, p. 318); “Children need to be encouraged to reflect 
upon the meaning of the mathematical expressions” (Booth, 1994, p. 93); “Word problems are 
essential to create relevance for algebra; however, they may fail to develop meaning for equations.” 
(Herscovics & Kieran, 1980, p. 572); “[The] issue around which all the others can be organised, is 
that of meaning.” (Lins, 1992, p. 276); “meaning is the foundation of mathematics learning” 
(Kaput, 1989, p. 168). 

Among all the conflicting meanings for meaning, it is necessary here to draw a distinction 
between “meaning for letters” as referring to what sort of thing students perceive the letters to be 
(how students interpret them, how students describe what they are, students’ notion or concept 
or idea or understanding of letters, what metaphors or images are invoked by students in 
connection with letters, and so on); and as referring to what purpose students perceive the letters 
to have (how important students think the letters are, what significance students attach to them, 
what students think letters can be used for, and so on). The former category is considered to 
refer to meta-algebraic theories about letters; the latter refers to concerns about letters. 
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So what is being discussed in this section are activities presupposing that students’ meta-algebraic 
theories (or lack of them) cause students’ difficulties with algebra. Such theories would include 
awareness of imagery, beliefs about the role of language, characterisations of misconceptions and 
perceptions of the nature of algebra. 

“The teaching of high school algebra usually begins with the topics: variables, simplification of 
algebraic expressions, equations in one unknown, and equation solving. Students’ difficulties with 
these topics have been found to centre on (a) the meaning of letters, (b) the shift to a set of 
conventions different from those used in arithmetic, and (c) the recognition and use of structure.” 
(Kieran, 1998a, p. 433) 

This is suggesting, reinterpreting this using Popperian psychology, that students’ difficulties 
centre on inadequate meta-algebraic theories for algebraic symbols, particularly letters and 
expressions. 

Griffin & Hirst (1989) is a “professional development resource pack” for helping teachers to 
“come to an understanding of the notion of an equation” and to “feel confident about what is 
needed” in preparing to teach equations (p. 4). It deliberately eschews the provision of either 
“ready-made classroom activities” in favour of promoting the teacher’s meta-algebraic theories. 

The book begins with the following questions: 

“Is 7 + 3 = 10 an equation? 

What is the difference between an equation and a formula? 

Does every equation with an unknown have a solution? 

Have you ever noticed that pupils who are able to follow the necessary rules for manipulating an 
equation and who are often able to obtain the correct answer are unaware of the meaning of the 
solution? 

What is an unknown? To whom is it an unknown?” (p. 4) 

The algebraic problems that were identified in chapter 2 are present, it seems, only to the extent 
that they “help teachers in assisting their pupils to develop a better understanding of the nature 
of an equation” (p. 5). The justification for this emphasis is apparently the following: 

“Quite a large part of the secondary mathematics syllabus is concerned in some way or another with 
equations and their solutions, but the idea of an equation involving an unknown quantity, which can 
be manipulated according to certain rules, is a source of great mystery to many pupils. Even though 
many of the standard methods and techniques of solving equations can be automated and performed 
with apparent success, many errors and misconceptions still remain.” (p. 4) 

Note that it is the idea of an equation that is causing difficulties and must therefore be promoted, 
rather than the “skills of manipulation” which “most teachers would like their pupils to achieve” 
(p. 20). The main method for developing such understanding is by reflecting on the language, 
experiences, questions, feelings and imagery that are evoked by tackling the problems. Such 
reflection might “help assess the meaning of what you are doing” (p. 6). Implicit, then, are the 
ideas that such reflection is difficult, that it is not always undertaken, and that it can be 
encouraged by forthright demands to do so. 

However, it should be asked to what extent inadequate meta-algebraic theories inhibit further 
progress with algebra more than difficulties with transformation; and also whether the best way 
to learn the conventions of algebraic notation that are required for representation is to develop 
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meta-algebra theories first. In early empirical work for this research, one student said vehemently, 
“I think you have to definitely have the basic understanding. You don’t really need to know, but I 
think it’s so much better that you do. Anybody can say that ‘that equals that’. But ask them what 
it means, and they’re stumped… Anybody can plug a few numbers into an equation and get an 
answer. But if you ask them ‘What does that answer mean?’ then you haven’t got a hope in hell, if 
they don’t understand what they’re doing. It just appears a jumble of letters. Well, what the hell 
does that mean?”. 

This is perhaps more precisely put by Davis (1986b) when he distinguishes an emphasis on 
notation (for example, the use of letters, knowledge of convention, skills in symbolic 
manipulation and simplification), from an emphasis on “the ideas which the symbols are supposed 
to represent” (p. 21) - what Booth (1989a) calls the “semantic” aspects of algebra. English & 
Halford (1995) suggest that although the syntactic components are a vital part of learning algebra, 
they are insufficient: 

“What is also needed and is frequently not acquired by students is the semantic component. An 
understanding of just what algebraic statements represent, and of why we can make certain 
transformations on these statements, is essential. … When students lack this semantic understanding, 
they simply manipulate symbols with little sense of purpose or meaning.” (p. 220). 

From a Popperian epistemological perspective, this distinction between the form and content of 
language is clearly very attractive. But Popper does not make the distinction in order to argue that 
the form is somehow just an adjunct to content - this is completely incorrect. It is only through 
objectifying ideas by means of public discourse that contents can be critically examined. Popper’s 
nominalist position as regards language would suggest that the implications, constraints and roles 
of specific language forms do not have to be fully appreciated before they are used, because it is 
through usage that such meta-linguistic theories are best developed. 

This research is concerned with letters standing for numbers because, as has been suggested by 
numerous authors in the preceding chapters, many children’s difficulties centre precisely on 
creating and dealing with such representations. As was noted earlier, the Royal Society / JMC 
report follows Lins (1990, 1992) in distinguishing symbolic algebra from algebraic thinking; and 
so it suggests that one reason “why symbolic aspects of algebra have been under-emphasised is 
that it is clear that the mere use of algebraic literal symbols does not imply that pupils are acting 
and thinking algebraically.” (p. 4). However, a Popperian reinterpretation of this suggestion is 
that the mere use of symbolic algebra does not imply that students have algebraic concerns (i.e. 
they do not understand the purposes of algebraic symbols) or algebraic theories for why symbolic 
transformations work, even when they are creating and transforming representations apparently 
successfully. 

Such concerns and theories are clearly very important factors in future learning, such as 
representing new situations and solving new equations; and so these algebraic concerns and 
algebraic theories are perhaps better candidates for “causes” of algebraic difficulties than are the 
meta-algebraic theories described in section 2.3 and above. But even if meta-algebraic theories were 
per se responsible, Popperian psychology would suggest that they are better developed by using 
symbolic algebra in the tackling of algebraic problems than by explicit demands for reflection. 
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Other proposals for improving meta-algebraic theories will therefore be discussed in the 
appropriate sections below. 

3.3 Equation Utilisation 
Burton (1988) describes student responses to problems such as: 

Combines Problem 

The Cornhusker Combine Company has manufacturing facilities in Omaha and 
Irkutsk. Management finds that for every 5 combines made at the Omaha plant, 3 are 
produced at the Irkutsk plant. Each year 75 combines from Omaha, and 325 
combines from Irkutsk, are found to be defective as they come off the assembly line. 
Management wishes to market, in all, at least 8000 combines annually. How many 
should be produced in Omaha? 

Typical responses avoid algebra, and use proportional reasoning to produce a 5000:3000 split or 
(to compensate for rejects) a 5075:3025 split. Even where students use algebra, they tend to be 
unsuccessful. 

Why do students find such word problems difficult? How could students be helped to choose an 
equation as a tool? Kieran (1992) remarks, “cognitive studies in algebra problem solving have, up 
to now, been unable to explain why certain methods of instruction in the learning of schematic 
relations for solving word problems are more effective with certain students than with others.” 
(p. 403). 

The activities for promoting utilisation theories (or, to put it another way, to improve concern to 
use equations) can be divided into two broad categories. The first assumes that provided the skills 
of transformation are available, students will naturally see the value of using symbolic algebra. 
Transformation provides the purpose for representation, so transformation theories must be 
promoted. Activities for doing this are considered in section 3.5 below. 

However, Burton argues that “a major component of student difficulty with algebra is the 
inability to make sense of the algebraic symbol system as a language, and accordingly that 
remedies should be sought by considering algebra in a linguistic sense.”. (p. 2). More precisely, 
“Whatever their syntactic facility in manipulating the expressions of the algebraic language, many 
students cannot attach meaning to an algebraic expression.” (p. 2). Both syntax and semantics 
must become available: “If the young student receives only a quick and abstract initial encounter 
with variables followed by practice in the essentially syntactic skills of manipulating algebraic 
expressions, the semantic component of the new language may never be realized.” (p. 6). 

So the second category of activities assumes that “The primary source of difficulty in solving 
algebraic word problems is translating the story into appropriate algebraic expressions.” (Geary, 
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1994, p. 127). Cortés, Vergnaud & Kavafian (1990) state that the “first step in solving a problem 
algebraically is to express it as an equation.” (p. 27-8); and it is the failure of translation to and 
from algebraic symbolic language that Burton argues is responsible for the retreat from 
semantics: students’ “remaining option is to use algebraic language simply to carry out formal 
manipulations on patterns of symbols. Their algebraic language is empty, having only syntax.” 
(p. 4). It is often suggested that “for many pupils, a greater problem [than solving equations] is to 
formulate the equation which needs to be solved.” (Mathematical Association, 1992, p. 65). So in 
order to promote utilisation, representation theories must be promoted. Activities for doing this 
are considered in section 3.4 below. 

3.4 Equation Representation and 
Interpretation 

Griffin & Hirst (1989) advocate asking students for a “story” to go with an equation, which may 
encourage more fluidity between context and symbols. In this way, activities that promote 
representation can also promote interpretation, and vice-versa; so the two are considered together 
here. 

3.4.1 Syncopation 

Burton suggests that to help students to create equations from natural language problem 
descriptions, there are two approaches: 

1. define unknowns and then seek to arrange the information given in such a way that it forms 
an equation; 

2.  assemble the whole sentence in English first, and gradually transform the sentence via (what 
others have called) “syncopated” sentences into algebra. 

Take, for example, the following problem: 

Wallet Problem 

A wallet contains $460 in $5, $10 and $20 bills. The number of $5 bills exceeds twice 
the number of $10 bills by 4, while the number of $20 bills is 6 fewer than the 
number of $10 bills. How many bills of each type are there? 

1. The traditional strategy is to let x = number of $5 bills, and so on; write down the side 
conditions (x = 2y + 4, x = y − 6) and the values (5x, 10y, 20z); and finally construct the 
central equation 5x + 10y + 20z = 460 

2. Burton’s proposed approach is to reason as follows: 
TOTAL MONEY is $460 
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so VALUE of FIVES + VALUE of TENS + VALUE of TWENTIES = $460 
so $5(FIVES) + $10(TENS) + $20(TWENTIES) = $460 
so 5[2(TENS + 4)] + 10[TENS] + 20[TENS − 6] = 460 
and now notice that we have an equation in one unknown that can be solved. 

The advantage of the second method, is it argued, is that the algebra seems to “flow” from 
expression in natural language. Nevertheless, it hinges on starting with the total value; whereas 
some students may start with, say “NUMBER OF FIVES is twice NUMBER OF TENS plus 4”. 
So the argument rather begs the question: how do students know what constitutes a useful 
syncopated form? Lins (1992), for example, warns that if letters are used as abbreviations for 
words, different quantities can sometimes end up being represented by the same letter; and that 
the order of verbal syncopation does not necessarily match the conventions of arithmetic. 
Similarly, MacGregor & Stacey (1993b) caution “Students should be made aware that some 
relationships (such as “eight more than”) are easy to express in natural language and easy to 
comprehend but must be paraphrased, reorganized, or reinterpreted before they can be expressed 
mathematically.” (p. 229). 

3.4.2 Recording Trial-and-Error 

Rubio (1990) activity followed this sequence: 

1. use of numerical trial-and-error; 

2. representation of the trial-and-error process using letters to stand for unknowns; 

3. algebraic and/or numerical resolution of the equation. 

The selection of problems presented took account of the number of times unknowns appeared in 
“the equation associated with word problem” (p. 128); whether the unknown might appear on 
both sides; the difficulty of expressing an unknown as a function of the others; equations in 
which the unknown is a divisor; and the need for brackets. However, for a trial-and-error 
approach, these attributes were difficult to characterise, particularly as the accessibility of the 
context seemed to have a greater impact on difficulty. Rubio suggests that this use of a numerical 
approach “generates consciousness of the equivalence between two expressions” (p. 131). 
However, students sometimes failed to formalise operations carried out mentally. Moreover, 
those students who had not already grasped the transposition method from previous lessons had 
great difficulty in attempting to “understand the equation as an equivalence relationship and 
therefore to establish and assign meaning to the equations derived from the word problem.” 
(ibid.). 

3.4.3 Tables 

One way of encouraging representation is through the use of tables of values, as described by (for 
example) Demana & Leitzel (1988) and Kutscher & Linchevski (1997). The latter study asked 
students to fill in a table of values based on a word problem, and encouraged them to find 
general terms in the last row: 
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Basketballs and T-Shirts 

Danny bought 3 basketballs and 12 T-shirts for his basketball team and paid a total 
of $243. A ball costs $6 more than a T-shirt. What is the price of a ball and of a T-
shirt 

Price of a ball Price of a shirt Cost of 3 balls Cost of 12 

T-shirts 

Total Paid 

10 10 − 6 3•10 12•(10 − 6) 3•10 + 12•(10 − 6) 
14 14 − 6 3•14 12•(14 − 6) 3•14 + 12•(14 − 6) 
… … … … … 
… … … … … 

x x − 6 3•x 12•(x − 6) 3•x + 12•(x − 6) 

The researchers noted that students were “not solely generalising vertically, but using a 
spontaneous combination of both vertical and “horizontal” generalisation.” (p. 170). That is: they 
could use previous columns to find an expression as well as previous rows. 

Syncopation, the recording of trial-and-error and this usage of tables are special cases of the 
formalisation of method. 

3.4.4 Formalising Method for a Variable 

In the project SESM, Booth (1984) describes the difficulties of representation as being partly 
caused by children’s use of implicit, “informal”, context-dependent arithmetic methods that are 
troublesome to symbolise. However, she also recognises that children may not see that 
formalising is “an appropriate thing to do.” (p. 38). A teaching experiment designed to alleviate 
these difficulties used the metaphor of a “mathematics machine” that can accept instructions to 
solve problems. This focused students’ attention on the “need to make explicit the procedure by 
which a problem is to be solved, and on the need for precision in representing that procedure” 
(p. 41), and provides a rationale for the use of expressions. So, an example problem would be “I 
want the machine to add 5 to any number I give it. How will I write the instructions?”, expecting 
the answer n + 5. Another example is “Find the area of any square.”, expecting something like 
a × a. So the programme essentially consists of tackling representational problems, although some 
comparison of equivalent expressions (and hence transformation) was initiated by the teachers. 

The experiment was conducted over five or six 40-minute lessons with seven classes. Variations 
on the CSMS algebra test were used as tests - about half were representational and most of the 
rest transformational. 

In one school, a comparison (of “parallel” classes) between the “mathematics machine” approach 
and the usual algebra programme for that school suggested that, although both programmes 
improved performance on the test, the “gain for those children who followed the experimental 
teaching programme was significantly greater than that of those who participated in the control 
programme.” (p. 73). Meanwhile, a comparison in another school demonstrated that parallel 
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groups that received no instruction made little progress from pre-test to a delayed post-test some 
three months later. However, one class that was taught using the usual approach achieved 
comparable results to a parallel class taught using the experimental approach. 

Booth concludes that the programme was “effective in improving children’s general level of 
understanding in elementary algebra, as measured by a sustained improvement in performance on 
test items in this topic. At the same time, gains observed were not great, being in the order of an 
average gain of three to seven items correct out of a total of 21.” (p. 84). 

Booth’s argument that “some of the difficulty which children have appears to be related… to a 
‘cognitive readiness’ factor.” (p. 87) because “the observed similarities in the nature of the 
informal methods used by different children… suggest some generality in cognition which 
requires explanation.” (p. 95) would if valid, have important implications for teaching. It is clearly 
a bold argument, since as Olivier (1988) notes (about “L + M + N never equals L + P + N”) that 
“certain experiences (instructional interventions) may well address this misconception 
successfully, disproving the developmental hypothesis” (p. 512). SESM itself provides an example 
of how swift improvement with respect to a particular strategic theory can challenge the 
hypothesis that grasp of the theory is dependent on maturation factors: Booth “noted that the 
idea of an unclosed, non-numerical answer was initially not accepted by children in the age range 
investigated here, namely 12 to 15 years. However, the apparent effectiveness of the teaching 
programme in restructuring children’s thinking in this regard would suggest that the notion was 
not beyond the conceptual grasp of these children.” (p. 91). Nevertheless, there is a way out for 
the neo-Piagetians, and it is to conjecture (as Booth does) that “acceptance of lack of closure” 
and “seeing letters as representing generalised numbers” are on different “cognitive levels”. 
Nevertheless, Booth hints strongly that it may be simpler to admit that traditional Piagetian 
cognitive development does not ensure the growth of algebraic understanding, and so provides a 
number of recommendations: 

 “1. Since children appear to be predisposed to the idea of letters as specific unknown values, it may 
be useful to adopt the generalized number interpretation of letters from the time that letters are first 
introduced.” (Booth, 1984, p. 92). 

Although this initially appears to be a quite dramatic implication, Booth subsequently seems to 
imply that, aside from the use of a “mathematics machine” model, this suggestion deviates from 
current practice solely in seeing that the x in x + 5 = 8 (say) can take a whole range of values, 
only one of which makes the equation true. It could be argued that the distinction is merely 
technical, because even if one views x as representing just one specific (but unknown) value, it is a 
necessary consequence that one can imagine many other proposed values for x. It is then a simple 
step when one gets to quadratics or equations in more than one variable to discover that there are 
multiple correct values for these equations. 

On the other hand, Kieran (1992) mentions the Soviet approach described by Davydov (1962), 
based on extensive teaching with “part-whole relations and the use of problems involving only 
literal data” (Kieran, 1992, p. 404). Pimm (1995) describes an activity called “Rulers” (a version of 
which was later computerised as “Grid Algebra”) for first recording and then generating moves 
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around a grid in which horizontal moves involve adding or subtracting something to the current 
cell and vertical moves involve multiplying or dividing. By starting at a cell with y in it, for 
example, one can move two cells left to y − 2 and one cell down to 2(y − 2). Expressions name 
specific squares, but also tell you what to do to get from one privileged location (x or y, or 
whatever) to the one named by the expression.” (p. 94). So one could also start from y and move 
one cell down to 2y and two cells left to 2y − 4. This is the same cell as previously, so 2(y − 2) 
must equal 2y − 4. In introducing the grid, the teacher used certain noises and gestures to focus 
attention and aid recall. 

Booth notes that a “de-emphasis on the requirement for a final numerical answer has been 
suggested to be a prerequisite for children’s acceptance of the unclosed expression as a legitimate 
‘answer’.” (p. 94). An activity that blatantly disregarded this suggestion and yet was successful in 
improving students’ tolerance of expressions would constitute a useful test of the advice. 

“2. Since many children confuse the arithmetic and algebraic usage of literal expressions, it may be 
useful to make this distinction explicit by discussing, for example, the alternative meanings of terms 
such as 3m (‘3 times m’ or ‘3 metres’). This discussion may usefully include consideration of the 
meaning of such symbols as the equals sign.” (p. 92) 

On the other hand, we have seen how attempted instruction based on such consideration of the 
meaning of symbols was of limited success in connection with the student-professor problem 
(Rosnick, 1981; Philipp, 1992). 

 “3. Several work schemes use algebraic initialisation, such as ‘V = the number of vertices’ as a 
mnemonic device. However, since children do not always appear to make a distinction between ‘v for 
vertices’ and ‘v for the number of vertices’, such usage may be best avoided, at least initially.” 

Evidence from the student-professor research would appear to be equivocal on this point. So 
only if instruction that persisted in using initial letters as variables were able to produce significant 
improvements in such items, would the advice be compromised. 

“4. Children need to be encouraged to reflect upon the meaning of the mathematical expressions they 
meet. This is essential to an appreciation of the need for rigor in symbolising different mathematical 
operations (such as division and subtraction expressions) and so must form a part of any attempts to 
help children’s understanding of the formalisation of mathematical procedures… It is also useful to 
the child’s handling of algebraic simplification exercises of the kind ‘2a + 5b + a’. The consistently 
successful handling of examples of this type can only proceed from an awareness of the letters as 
representing possibly different numerical values.” (p. 93) 

This is the clearest possible demand for students to consider meaning (that is: active development of 
meta-algebraic theories as opposed to algebraic concerns). “Repeated interpretation of the 
symbol’s meaning” (p. 94) is advocated. But representations only have power when they are seen 
to represent, so if a student cannot relate the symbols to a concern, then he or she will not 
understand those symbols. 

3.4.5 Formalising Method for an Unknown 

The “Think of a Number” (TOAN) activity is another way of concentrating students’ minds on 
representing method, but by aiming to find an unknown number (usually by the reverse-
flowchart approach described in section 2.5.2) rather than by aiming to produce a representation 
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of a method applicable to “any number”. Morelli (1992), for example, shows how concrete and 
iconic approaches to TOAN could lead to exploring the distributive law, the collecting of like 
terms and eventually symbolic algebra. Pimm (1995) describes how a teacher used TOAN to 
generate a notation; he then aimed to refine that “functioning and consistent notation into the 
one that is conventionally employed, rather than striving for the fully-fledged, conventional one 
from the outset.” (p. 93). 

The software-based “Marble Bag Icon Laboratory” of Feurzeig (1986) and Roberts et al. (1989) is 
similar, in that students are shown how to create and solve stories about bags containing an 
unknown number of marbles. An iconic representation of the story problems can be converted 
into natural language; but students are also introduced to algebraic notation as a shorthand way of 
writing the stories. For example (see Thompson, 1989), the student could be asked to construct a 
story ending in 2(4x) + 2. They could also be asked to find the number of marbles in a bag, given 
the total at the end. The inversing method for solving equations is used; although Kieran (1992) 
comments that in doing so “the student is able to operate exclusively with numbers” and thus 
avoid operating on equations. 

Another example is the proposal offered by Meira (1990), who suggests “the value of dynamic 
physical systems as powerful aids in promoting students’ understanding of symbol systems and 
concepts. (p. 107). But it is arguable from the case study that while the students’ understanding of 
the system grows and the students’ representation of the system (a winch pulling a block, which 
follows the rule Final Position = Number of Spool Turns × 4 + Initial Position) gets closer to 
conventional notation, the representation does not appear to play much of a role in that 
understanding. Nevertheless, it is suggested that the creation and solution by students of their 
own marble bag stories, TOAN puzzles or dynamical systems could assist the introduction of 
algebraic notation; but representation of equations with unknowns on both sides should not be 
ignored. 

3.4.6 Belief-Revision Software 

Aziz (1996) applied AI techniques in a program (TRAPS) that models student’s thinking in 
representing situations using equations with two variables (like the student-professor problem), 
and in interpreting such equations. The program either confronts students with contradictions 
between their representations and interpretations; or, if there is no contradiction, provides 
“canned text” explaining, for example, that “S stands for ‘number of students’, not ‘students’.”. 

However, Aziz points out that such an approach may help students get the symbols the right way 
round in the short-term (although the wordiness of the explanation may be counter-productive), 
but this could easily be because they deliberately put the equation in the form they know the 
computer thinks is correct rather than the form that they themselves think is correct. In 
particular, one must suspect (based on the arguments in section 2.4) that those who are 
consistently using static comparison would not value the argument provided by the canned text. 
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Although the program’s student model was effectively pre-programmed, Aziz gives examples of 
other programs that can act as a tutor to help students do the translation - such as Hawkes et al. 
(1993) and Singley & Anderson (1989). However, software that mimics what teachers do is of less 
interest in this chapter than software that can improve students’ equation representation theories 
in ways that teachers cannot. A more exciting use of AI would be the student teaching the computer 
to solve new problems (Papert, 1980), perhaps by building on programs that can translate only a 
small set of word problems into equations at first (such as Bobrow, 1968). 

3.4.7 Step-by-Step Extension of Existing Representations 

Herscovics & Kieran (1980) suggest that traditional approaches to introducing equations can fail 
to “establish a meaning for equations.”. Hence children are lost when recall of arithmetic facts is 
unable to solve “open sentence” problems like 3.1 × �  = 296. Moreover, the “Think of a 
Number” type approach is beyond “those who cannot accept the representation of a number by 
a letter.” (p. 572); and translating word problems into equations is akin to translating into an 
unknown language. “Word problems are essential to create relevance for algebra; however, they 
may fail to develop meaning for equations.” (p. 572). Here, an “expansion of meaning” for the 
equals sign and a “construction of meaning” for algebraic equations are examined; a 
“construction of meaning” for operating on equations is discussed in section 3.5 (below). 

First, students are asked to give an example of an equation. Should it be of the typical form “two 
numbers on the left side and the result on the right”, they are asked “Can you use the equal sign 
with an operation on both sides?”. Most students responded with an example involving 
commutativity, for example 5 × 4 = 4 × 5. The next question, then, is “Can you give me an 
example with a different operation on each side?”. So answers are obtained such as 6 + 3 = 3 × 3. 
Then, “Can you give me an example in which you have more than one operation on each side?”; 
for example 2 + 2 + 2 = 2 × 3. Some of the equations did not follow the conventions of 
operation order; for example 2 + 1 × 5 = 3 × 4 + 3, so students were also asked for an example 
involving brackets. 

By creating these “arithmetic identities ”, students had in effect “expanded the meaning” of the 
equals sign from being a “do-something signal” to indicating that the operations on each side 
yield identical values: 

“If this expansion were not done first, the student would be bringing with him into the study of 
algebraic equations the idea that the result is always on the right side of the equal sign. Thus, 
equations such as 3x + 5 = 26 might fit in with his existing notions, but 3x + 5 = 2x + 12 would not. 
Not only would the presence of this multiple operation on the right side be foreign to him, but also 
seeing it for the first time within the context of an algebraic equation would add to the cognitive 
strain.” (Kieran, 1981, p. 321) 

English & Halford (1995) note that “The important point that emerges from analogy theory is 
that learning algebra will depend crucially on how well arithmetic relations are learned, because 
arithmetic relations are the source for starting to understand algebraic relations” (p. 72). This is 
supported by Booth (1989b) who found that arithmetic notions of inverse operations, 
commutativity, and associativity by beginning algebra students were poorly understood. She 
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therefore suggests that “students’ difficulties in algebra are in part due to their lack of 
understanding of various structural notions in arithmetic” (p. 141). 

Some might see this approach as a pre-algebraic attempt to avoid a “cognitive obstacle”. 
However, it can be re-interpreted in Popperian terms: although it does not initially appear to 
involve algebraic problems, it challenges the theory that equations can only solve problems like 
“What number is 6 × 8?” and opens up the possibility that equations can solve problems like “Is 
6 × 8 the same number as 12 × 4?”; and this has clear ramifications for the range of situations 
that can be symbolised algebraically. 

Turning to the “construction of meaning” for algebraic equations: 

“It is now possible to define the concept of an equation by expressing the mathematical idea involved 
without resorting to unnecessary formalism. 

“We take an arithmetic identity and cover up one of its numbers with a finger. Thus we define an 
equation as an arithmetic identity with a hidden number.” (p. 575) 

Then the empty box notation is introduced; and finally the box is replaced with a letter of the 
alphabet. Many letters are used. Children soon learn that a given arithmetic identity can lead to 
many different equations. They are also taught that they can put two letters in the equation. If the 
same letter is used more than once, it has to hide the same number each time; but there is, of 
course, nothing to stop us hiding the same number in different locations with different letters 
(another “cognitive obstacle” avoided). 

The advantage of this approach is that students’ knowledge of arithmetic can be “transformed 
gradually so that they can build for themselves the notion of an algebraic equation.” (p. 573), 
although there is an initial lack of generality (all equations have a solution). But: 

“… that such equations develop an existence of their own is evidenced by the fact that our students 
quickly went on to constructing equations without first writing arithmetic identities.” (p. 576) 

For example 2x + 3 = 2x + 4 can be invented, which has no solution. So the definition of 
equation moves from “an arithmetic identity with a hidden number” to “any algebraic expression 
of equality containing a letter (or letters)” (p. 577). 

So by an “expanded meaning for the equals sign” and a “construction of meaning for algebraic 
equations” one understands the step-by-step extension of existing representation theories to a wider range of 
relevant problems. What is lacking from this improvement is any sense of why a student would be at 
all interested in such problems, unless they are being posed by a researcher. 

3.4.8 Automatic Equation Solvers 

Lins (1992) concludes: “we have shown that non-algebraic models used as primary ways of 
dealing with problems involving the determination of a number or numbers do constitute an 
obstacle to the development of an algebraic mode of thinking” (p. 328). If one considers learning 
algebra to be about acquiring a set of potentially useful strategic theories (rather than “developing 
a mode of thinking”) then this conclusion suggests that the availability of non-algebraic means for 
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solving problems may inhibit the perceived need for algebraic representation much as a pen 
might be an “obstacle” to proficiency with the word-processor. One might agree, in that case, 
with Cortés, Vergnaud & Kavafian (1990) that the value of algebra becomes more apparent when 
tackling problems that are insoluble or difficult to solve through arithmetic; and that therefore 
students learning utilisation should not be given problems for which non-algebraic methods are 
available. However, this has the twin difficulties that such problems may be difficult for students 
even to start thinking about, because arithmetic strategies are inapplicable; and that the 
transformations required to solve the program may be rather difficult. A way out of this hole may 
be to let technology deal with the transformation, and so make an algebraic approach more 
attractive than, say, trial-and-improvement or a whole-part approach. 

Word problems offer one method of providing a purpose for symbolic algebra, yet “Describing 
the problem situation in an algebraic form may be high on the teacher’s agenda, but not on that 
of the pupils.” (Ainley, 1995b, p. 26). Can technology provide an incentive for students? 

Heid (1990) and Heid & Zbiek (1995) describe “Computer-Intensive Algebra” (CIA) in which 
transformation (including graph plotting) is entirely relegated to computers so that realistic 
problems can be explored, with the aim of developing students’ concepts of function and 
variable. Heid & Zbiek cite research results suggesting that “with access to tools, CIA students 
can solve typical algebra word problems and perceive similar structures in word problems as well 
as or better than traditional algebra students.” (p. 655). It seems from the examples given that 
equations tend to arise only as meeting points of functions, and in situations where numerical 
solution would be sufficient; but this may not be typical of the actual activities undertaken. On 
the other hand, the use of automatic equation solvers to solve numerically can enable students 
“to tackle a very much wider range of equations than has been possible with the purely algebraic 
techniques which have hitherto been customary in most mathematics classrooms, and which have 
usually limited problems to those which lead to linear or quadratic equations.” (Mathematical 
Association, 1992, p. 65). The possibility of more realistic problems may promote the value of 
symbolic algebra. 

This focus on tackling interesting problems leading to mathematical ideas rather than learning 
mathematical ideas leading to subsequently interesting problems clearly fits very well with the 
Popperian psychology emphasis on concerns as the driving force for learning. Davis (1992) 
expresses this very clearly, when he rejects “application” as just some sort of afterthought to 
mathematical theory: 

“Instead of starting with ‘mathematical’ ideas and then ‘applying’ them, we would start with problems 
or tasks, and as a result of working on these problems the children would be left with a residue of 
‘mathematics’ - we would argue that mathematics is what you have left over after you have worked on 
problems. We reject the notion of ‘applying’ mathematics, because of the suggestion that you start 
with mathematics and then look around for ways to use it. Fourier did not develop Fourier series, and 
then decide to ‘apply’ them to the study of heat flow; he set out to study heat problems, and when he 
had worked on this for a while he had Fourier series as one of the by-products. Presumably, in the 
remote past, someone set out to keep track of something - sheep, perhaps? - and when they had 
invented a way to do this they had begun to develop the idea of ‘counting’.” (p. 237) 
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He gives a classroom example in which children developed the idea of mathematical proof as a 
by-product of their work on a task. “They could talk about mathematical proofs in an intelligent 
way because they were speaking from experience.” (p. 238). That is: experience with problems. 

However, when Hunter et al. (1995) used Derive with 14-15 year old students, it was concluded 
that the computer algebra system failed to develop students’ understanding of generalised 
arithmetic: “A [computer algebra system] can be of benefit for the students’ learning of algebra as 
long as the students are mathematically ready to use it. However a more traditional approach with 
its attention to constructive detail is more appropriate up to that stage.” (p. 322). On the other 
hand, it is noted that the “investigative intention of the experimental groups’ work was not fully 
realised in practice. This is in contrast to the results of the pilot studies reported in Hunter & 
Monaghan (1993), where students regularly created and tested their own rules.” (p. 321). This is 
attributed to better motivation in the pilot groups and to “the smaller amount of student-student 
debate when they used palmtops as opposed to laptops.” (p. 322). Interviews with the students 
revealed that “Opinions as to the usefulness of Derive were mixed. Some students felt that it had 
assisted their progress in the topic whilst others felt that they had spent their time simply pushing 
buttons. Several students expressed their frustration with the technicalities of operating the 
machine.” (p. 317). 

Does experience of automatic equation solvers follow through to environments in which the 
technology is not available? The evidence is still ambiguous at this stage. Since there are now 
calculators available that incorporate such facilities, further research in this area seems important. 

3.4.9 Word Problem Representation Software 

Garançon, Kieran & Boileau (1990) believe that the use of computable algorithms to represent 
word problems “constitutes an intermediate step in the development of standard algebraic 
representations.” (p. 51). To explain a rule to a computer requires a formality that is not necessary 
to explain a rule to humans, and this can be an opening to symbolic algebra. Kieran, Boileau & 
Garançon (1989) used the software tool CARAPACE to allow students to express relationships 
in a form closer to syncopated natural language than equations. Students then explored 
expressions using substitution. Kieran (1992) suggests that “students were moved toward 
thinking in terms of forward operations rather than inverse operation” (p. 405). English & 
Halford (1995) identify thinking in terms of forward operations as “a major cognitive shift for the 
beginning algebraic student” (p. 240). Kieran continues: “The teaching approach used in this 
study was effective in helping students develop a problem-solving method that they could 
formalise with apparent ease.” (p. 405). Problems that, if represented as an equation would have 
two occurrences of a variable “appeared to be no more difficult to represent and solve than 
traditional algebra word problems involving only one occurrence of the variable.” (ibid.). This, 
Kieran states, is in contrast to the findings of Filloy & Rojano and others “which showed 
students experienced considerable difficulty not only in setting up a single equation involving two 
occurrences of the variable but also in solving it by formal methods.” (ibid.). 
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Similarly, Thompson (1989) found substantial progress in quantitative reasoning when middle 
school students entered relationships between quantities into the “Word Problem Assistant”; 
while, the “Algebraic Proposer” (Schwartz, 1987) is another software tool that can assist in the 
representation of problem situations; but in this case only if the student already knows algebraic 
conventions. Abidin (1997) found gains in problem solving performance when students used the 
“FunctionLab” to represent word problems using a schematic language. 

3.4.10 Programming 

Research has been conducted into ways of using the formal (but not quite algebraic) notation of 
computer programs as a stepping-stone to symbolic algebra: 

“Like algebra, Logo is a formal system with precise syntax and rules and pupils must perceive it as 
such before they can use it in any meaningful way.” (Sutherland, 1990, p. 163) 

Environments and languages such as Boxer (diSessa, 1995), Visual Basic, calculator programs and 
spreadsheet macros are similarly valuable tools. Sutherland suggests: 

“One of the difficulties with ‘traditional’ algebra is that it is not easy to find introductory problems 
which need the idea of variable as a problem solving tool. Many introductory algebra problems can be 
solved without using algebra. This is not the case in the Logo programming context. Logo is a 
language for expressing generalities and in order to express the generality it is essential to name and 
operate on a symbol as representing a variable.” (p. 164) 

Nevertheless, the Mathematical Association (1992) makes the point: 

“There are, of course, differences between the ways in which variables are used in programming and 
in symbolic algebra. In programming, for example, variables are used as placeholders for numbers 
which will be known at the time at which the program is operating. There is no need for algebraic 
manipulation and so, when writing programs, pupils may make use of algebraic notation without 
necessarily understanding that 2(a + b) is the same as 2a + 2b or that x − (y − z) is the same as 
x − y + z.” (p. 67) 

Of course programmers are often striving for ever faster, neater and more economical ways of 
achieving the same end; and this striving can lead to them learning about simplification of 
expressions: the lack of memory on my first computer meant that x − y + z would have been 
evaluated quicker and used up 2 fewer bytes than x − (y − z); which is a significant consideration 
when the entire program has to fit into less than about 900 bytes and land the spaceship on the 
moon in real-time (or whatever). However, to what extent programming assists the fostering of 
theories for representing problems using equations is questionable. Moreover, Soloway et al. (1982) 
found that students tackling the student-professor problem who were encouraged to write a 
program to model the relationship were more successful than those writing an equation. (On the 
other hand, this finding supports the earlier suggestion that seeking an operation rather than a 
relation might be preferable when representing a situation). 

In Logo, meanwhile, the variable in the procedure title line can be subjected to lines of 
programming without the need for evaluation until runtime. Sutherland (1987) found some 
evidence of students accepting algebraic expressions as useful objects after using Logo, and of an 
understanding that a variable name represents a range of numbers. But there seems to be little 
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evidence that theories for representing situations using equations are improved by using Logo 
(Sutherland, 1988 and 1989a; Hoyles & Sutherland, 1989). 

3.4.11 Spreadsheets 

Sutherland (1995) reports on a study into how students’ experiences with and spreadsheets 
influence their learning of algebraic ideas (see also Sutherland, 1993; Rojano & Sutherland, 1991; 
Sutherland & Rojano, 1993). 

“At the beginning of the study most of the pupils said that they could not answer the algebra 
questions because they had never seen anything like them before. Many of them interpreted a letter as 
representing the position in the alphabet. In subsequent interviews some pupils began to refer 
spontaneously to their Logo or their spreadsheet work when presented with the algebra questions.” 
(p. 279) 

For example: 

Marbles Problem 

If John had J marbles and Peter had P marbles what could you write down for the 
number of marbles they have altogether? 

Rachel moved from adding the alphabet positions to saying “Well J marbles could be anything 
and P marbles could be anything… say J could be 10 and P could be 12… so the answer could be 
any number.”. Sutherland suggests that “this represents an important move in the development 
of algebraic thinking and that this development has been mediated by the algebra-like symbols of 
the computer environment.” (p. 279). 

Perimeter of Field Problem 

The perimeter of a field measures 102 metres. The length of the field is twice as 
much as the width of the field. How much does the length of the field measure? 
How much does the width of the field measure? 

None of the 14-15 year olds were able to solve the field problem at the beginning, even using 
methods such as a whole-part strategy (i.e. 102 ÷ 6) or trial-and-improvement; but all could solve 
it using a spreadsheet by the end and many could solve it without a computer. The spreadsheet 
method is something akin to: put a trial width in one cell (A2, for example); a rule for the length 
of the field in another cell (for example the formula =A2*2 could go in B2); a rule for the 
perimeter in a third cell (for example A2 + B2 + A2 + B2 could go in C2); and then vary the trial 
width (A2) until the perimeter (C2) is 102. The spreadsheet method can be portrayed as similar to 
the algebraic approach (Let width of field = x. Then length of field = 2x. Then perimeter = x + 
2x + 2x + x. So perimeter is 6x. 6x = 102, so x = 17); except that the last step is trial-and-error 
rather than algebraic manipulation. 

A previously unseen problem was used in the post-interviews: 
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Chocolates Problem 

100 chocolates were distributed between three groups of children. The second group 
received 4 times the chocolates given to the first group. The third group received 10 
chocolates more than the second group. How many chocolates did the first, the 
second and the third group receive? 

Jo outlined on paper a spreadsheet-type solution: 

A B C D 
first group second group third group Total 100 

=B1-4= =A1×4 Return =B1+10 =B1+A1+C1 
Similarly, Ainley (1995b) used spreadsheets and graphs to explore ways of introducing children to 
“the power of generalising through formal algebraic notation” (p. 27). Two 11-year-olds who did 
not know algebraic notation and had never devised a spreadsheet formula were shown how to 
enter and replicate a given spreadsheet formula; with little further help they were eventually able 
to come up with the expression = 30 − B11 * 2 to help them solve the sheep-pen problem. The 
cell reference was initially “little more than an alternative name for the value of the width. Later 
Jordan at least used it as a placeholder for a potential number soon to be realised. … Finally he 
seemed to be using the cell reference as a placeholder for a range of numbers” (p. 32). 

How easy would it be to move from spreadsheet representations to symbolic algebra? When 
Sutherland asked Jo “If we call cell A2 X what could you write down for the number of 
chocolates in the other groups?”, Jo wrote down: =X, =X×4, =X×4+10. 

“Jo, who had always been unsuccessful with school mathematics, had successfully carried out what is 
considered to be the most difficult part of solving an algebra story problem, that is representing the 
problem in algebraic code.” (p. 285) 

Expressions are suddenly involved in Jo’s strategies for word problems: “Results so far suggest 
that it is not as problematic as we might have supposed to transfer from, for example, a 
spreadsheet expression (3A5 + 7) to an algebraic one (3x + 7). This seems to be because both the 
spreadsheet symbol and the algebra symbol come to represent “any number” for the pupils.” 
(p. 285). However, Dettori et al. (1995) point out that the equals sign in spreadsheets assigns a value 
to a cell, but in algebra it represents a relation: “The inability to write relations in a spreadsheet 
implies that it is not possible to use it to completely represent algebraic models.” (p. 265). 
Moreover, they argue, as with the Mathematical Association earlier about programming, that the 
spreadsheet is ultimately limited by its inability to handle unevaluated relations, and hence 
equations. On the other hand, the links with expressions are strong (Rojano & Sutherland, 1997). 

3.4.12 Graphical Representations 

Although graphs lie outside the scope of this thesis, The potential for graphing software to make 
the relationships between symbolic and graphical representations more transparent has been 
recognised for some time: 
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“… the dynamic nature of the medium supports dynamic changes in variable values that renders the 
underlying ideas of variable and function more learnable, which should make them accessible to a 
younger population, and which in turn makes possible a much more gradual and extended algebra 
curriculum, beginning in the early grades.” (Kaput, 1989, p. 192) 

Much work has been done in this regard (see Kaput, 1989 and 1992, for a survey of the 
literature). 

Fey (1989b) points out the dynamism offered by computer representations in carefully 
constrained exploratory environments; and he also notes that “while some multiple embodiment 
computer programs might be viewed as poor simulations of more appropriate tactile activity, it 
has been suggested that this electronic representation plays a role in helping move students from 
concrete thinking about an idea or procedure to an ultimately more powerful abstract symbolic 
form.” (p. 255). One interesting innovation is the software environment of Nathan, Kintsch & 
Young (1992), which is able to animate aspects of equations when instructed by the student. Such 
an approach would allow students to learn about representation by examining the effect on 
animations. 

3.4.13 Expressing Generality 

Mason et al. (1985) present a book full of ideas for encouraging the “expression of generality” 
(see also Mason & Pimm, 1984). They argue about algebra that “… like all language learning, it is 
best learned by constant use. That means using it to express the otherwise inexpressible.” (p. 53). 

As Sutherland (1990) has already noted: “During the 1980s and influenced by the CSMS research 
findings… the introduction of symbol manipulation was delayed and pupils’ first introduction to 
algebra was more likely to be in the context of expressing generality” (p. 160). Very often this was 
in the context of seeking patterns, as in the matches example in chapter 2. MacGregor & Stacey 
(1993a), for example, cite official recommendations for the investigation of patterns as a route to 
algebra. Typically, the student would be asked to predict the hundredth number, find a general 
method and then express this method algebraically. Some argue forcefully that the activity of 
expressing relations algebraically is necessary to avoid over-stressing the importance of symbolic 
manipulation. Booker (1987) states that “Rather than focus on [the] procedural side of algebra 
from the outset, it would be more appropriate to build up an awareness of the need for a concise 
representation of relationships and, indeed, to focus on the determination of these general 
relationships.” (p. 278). Davis (1984) suggests that students could be introduced to algebra 
through expressing concisely such relationships as: 1 + 0 = 1, 2 + 0 = 2, 3 + 0 = 3, …, 
1066 + 0 = 1066, … Lamon (1998) describes a systematic method for representing a situation: 
identifying the variable quantities in a situation, making explicit necessary assumptions, describing 
the relationships between quantities verbally, representing the relationships using arrows between 
tabulated quantities and finally classifying structurally similar situations using algebraic notation. 

However, Lee (1987) concludes from one research project that “A majority of students do not 
appreciate the implicit generality of algebraic statements involving variables.” (p. 316). Moreover, 
“From the child’s point of view, it is difficult to see any purpose in formalising the pattern in 
algebraic terms: a verbal description of the pattern, or a generic method for calculating values, 
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may seem just as efficient for giving the solutions required.” (Ainley, 1995b, p. 27). See also 
Ursini (1991). 

But it was suggested in the discussion of Popperian psychology in chapter 2, and in section 3.2, 
that concern for symbolic algebra crucially involves having a genuine purpose for it. It is 
potentially disastrous if “once generalised statements are produced most students do not invest 
them with any meaning or see any use for them other than as a condensation of the problem 
statement.” (Lee, 1987, p. 316). Cortés, Vergnaud & Kavafian (1990) support Lee’s claim: “Most 
pupils are not familiar with the concept of the equation. For them an equation is an abbreviated 
way of writing the terms of the problem: a summary. The purpose of the equation largely escapes 
them.” (p. 28). Ainley (1996) writes that “the lack of any sense of purpose for the use of formal 
algebraic notation in traditional approaches to beginning school algebra may contribute to 
children’s difficulties in accepting formal notation.” (p. 405). Sutherland (1991) suggests that, 
from a Vygotskian perspective, “If algebra is a language which can structure thinking then we 
might predict that methods which present the algebraic language as a final translation of an 
already understood process will restrict pupils in their development.” (p. 44). 

Moreover, as Popper (1972) points out, while “it is always possible to ‘explain’ every linguistic 
phenomenon… as an ‘expression’ or a ‘communication’”, human interactions also depend on the 
‘descriptive’ and ‘argumentative’ functions of language. In the case of algebra, it is not sufficient 
for appreciating the value of algebra to practise the expressive function, or even the signalling 
function. Even if it is granted that representations can be true or false (for example 2, 4, 8, 16, 31 
being described by 2n), the argumentative function of language (even at the elementary level of 
seeking to omit the false) is required to analyse the validity of representations. 

Take, for example, the programming of a computer. The significance of learning a formal 
language is not just that students identify relationships within a problem and then attempt to 
express them by signalling to the computer that it should execute various instructions. It is also that 
in executing the program or pressing the return key students are also running their argument, 
subjecting their theories to the higher authority of the problem situation. In the Logo and 
spreadsheet studies, it was not just the fact that students used variables in their symbolic code that 
helped them to greater success in some of the CSMS tasks; it was also that in attempting to find a 
way to represent their strategic theories for solving the problems, they had to put their 
representations to the test. Considered linguistically, the external protocols of formal languages 
such as symbolic algebra, Logo and spreadsheets are not just expressions, instructions or 
assertions - they are also tools for argumentation. 

If this emphasis on the argumentative function seems abstruse, one practical question that it 
informs is whether it is easier to start learning symbolic algebra by: 

1. thinking of x as a particular (but unknown) number; and then move on to the possibility of x 
representing several values simultaneously; and then to the idea of x representing “any” 
number; 

or by 
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2. thinking of x as a variable used to express generality, and exploring what that might mean in a 
variety of contexts; one of which would be when a simple linear equation acts as a constraint 
on x and the “process of solving an equation can be seen as seeking a succinct explicit 
description of its scope.” (Mason et al., p. 60). 

However one seeks to characterise the choice (“specific unknown versus generalised number”, 
“procedural versus structural”, “seeing particularity versus expressing generality”) it is clear from 
the literature that the whole thrust of 20th century school algebra (curriculum and pedagogy) has 
been away from the first approach, towards the second. It is time to question this move. 

This is not to suggest that the second approach is not valuable, but that the first approach should 
not be rejected for poor reasons. The line of reasoning above would suggest that the crucial 
factor in learning symbolic algebra is not whether the letter represents an unknown or a variable 
(for clearly different problems call for a wide variety of different roles for letters), but that 
learning takes place through tackling concerns in which the use of symbols is a genuinely 
convenient reasoning tool. The obvious inference is that a context must be found in which the 
equation is a genuine problem-solving tool rather than part of the required background theory of 
the problem situation. 

This hypothesis can be illustrated by means of the compelling examples that have been seen in 
this chapter that the mediating role of symbols - in helping students to treat the unknown as if 
known, to extend in a step-by-step fashion the range of problems amenable to algebraic 
strategies, to explore relationships between variables and to explore arithmetic identities - is a role 
that cannot just be “grafted on” as a final stage in the algebraic process (Sutherland, 1991). 

Moreover, if one goes along with Hewitt (1985) in claiming that “Algebraic statements are only 
the proof that some algebra has already taken place.” (p. 15), or with Lins (1990) in claiming that 
“the ‘symbolic calculus’ of algebra was but a consequence of the development of a body of 
knowledge that already embodied the calculus” (p. 95-6), then there may be a temptation to view 
symbolic algebra as merely grafted onto students’ pre-symbolic algebraic understanding. The 
symbolic language would play no role in the development of that understanding. 

3.4.14 Word Problems 

It is considered that the case that representation difficulties can be addressed by experience of 
word problems has much merit, because such problems can provide a concern for algebraic 
symbolism. In simple terms: algebra can be useful. Kieran (1992) reports that Bell, Malone & 
Taylor (1987), for example, encouraged students to construct equations for problems such as: 

Piles of Rocks 

There are 3 piles of rocks. The second has two more than the first; and the third has 
4 times as many as the first. There are 14 rocks in total. Find the number of rocks in 
each pile. 
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All students initially started with the first pile as x; but they were then encouraged to solve the 
problem using the second pile as x. When they wrote x − 2 and 4x − 2 for the other two piles and 
found that the resulting equation produced a different result, a discussion ensued about the need 
for brackets. When they used the third pile as x, most students wrote x ÷ 4 + 2 + x ÷ 4 + x = 14, 
collected the 3x together and wondered what to do with the numbers. Thus concerns for both 
representation and transformation arise naturally from the situation, rather than artificially from 
the teacher. 

Problems that are of clear practical, everyday relevance will often involve accessible success 
criteria, familiar relations and objects with easily visualised properties. Such characteristics 
improve the chances that a problem can be converted into a concern. It seems to be this 
“graspability” - not the realism of the context - that is crucial. The reality of a problem may entail 
messy issues that can actually detract from the target theories; and while experience of such 
messiness is sometimes helpful, Lins points out that it may not be helpful for promoting an 
algebraic approach. Conversely, we have seen how programming (an accessible, but hardly 
“realistic” activity) can be used to encourage the use of variables. Therefore, English & Halford 
(1995) suggest that “In solving algebraic word problems, students require guidance in forming an 
appropriate problem-situation model that informs and constrains the formal expressions required 
for solution.” (p. 303). This suggestion would fit with the strategies suggested by Mayer (1981), 
Berger & Wilde (1987) and Chaiklin (1989), as described in section 2.5.3. Berger & Wilde note 
that “Novices are much more likely to stop after they have generated a list of value assignments, 
unable to see relationships inherent in the structure of the problem. A key advantage that experts 
hold is that they are familiar with a large number of problem forms.” (p. 135). On the other hand, 
it is not at all clear, they argue, how such expertise is developed - it could be that symbols play a 
crucial mnemonic role in standard problem-situation models. 

What formalisation and expressing generality have in common is that “pupils are usually asked to 
express a mathematical relationship in natural language before they are asked to express it in 
algebraic language.” (Sutherland, 1995, p. 276). Moreover, apart from the authority of the teacher 
or textbook, “Beginning algebra students have no resources for interrogating the appropriateness 
of their algebraic construction.” (Sutherland, 1993, p. 43). But there is “no evidence which 
suggests that expressing a mathematical relationship in natural language necessarily comes before 
being able to express it in symbols.” (Sutherland, 1990, p. 170). As has been seen here from 
discussions of the use of automatic equation solvers, programming languages, spreadsheets and 
word problem representation software, “Work with computers is provoking a re-questioning of 
this dominant anti-symbol ideology. Algebra-like computer languages support pupils in their 
problem solving constructions.” (Sutherland, 1995). 

The reinterpretation of the activities described so far using Popperian psychology would suggest 
the following conclusions. There is a set of software tools that have a number of desirable 
characteristics. Each tool allows students to enter representations; it checks the syntactical legality 
of those representations according to some predefined conventions; it provides feedback that 
enables students to improve their strategic theories for the syntax of representations; it enables 
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transformation of those representations to be made easier in some way (such as by automatically 
solving equations or supporting numerical trial-and-improvement), which enables students to put 
their representations of the problem situation to the test and thereby to improve their strategic 
theories for representing that problem situation. 

In short: such “representation software” can allow the student to learn representation theories as 
a by-product of assisting the student in tackling word problems, by enabling the representation to 
function as a tool that addresses concerns rather than as an end in itself. 

However, there are three additional characteristics, one or more of which each software tool 
lacks: 

1. the use of standard algebraic notation and explicit equations in the representations allowed; 

2. accessibility to students who have no prior knowledge of how to represent the situation using 
the predefined conventions; 

3. the promotion of formal equation-solving. 

The search for representation software that also incorporates these additional characteristics - a 
search that is the subject of the next section - can be designated by the following question: 

“Can we develop a school algebra culture in which pupils find a need for algebraic symbolism to 
express and explore their mathematical ideas?” (Sutherland, 1991, p. 46) 

3.5 Equation Solving 
Researchers refer to equation solution as being a “source of great mystery” (Griffin & Hirst, 
1989, p. 4), to it requiring “extensive practice” (Geary, 1994, p. 125), to it being “not easily 
acquired” (Kieran, 1992, p. 402) and to it being not easily accessible by “spontaneous 
developments” from students’ “initial grasp of operational algebraic behaviour” (Filloy & Rojano, 
1989, p. 24). 

Moreover, Cortés, Vergnaud & Kavafian (1990) note the lack of concern: “the algebraic 
treatment of equations is initially a response to the teacher’s request. Pupils learn, for sure, but 
the introductory process is slow and rests entirely on the pupils’ acceptance of the didactical 
contract.” (p. 27). 

3.5.1 Informal Methods 

One way to start equation-solving is with students’ own informal methods. Kieran (1992) notes 
Petitto’s (1979) point about the lack of generality - but greater practical success - of informal 
methods. Meanwhile, Geary (1994) describes the work of Sweller et al. (1983): 

“asking students to simply solve for X, as is done in most classrooms, did not greatly influence their 
problem-solving approaches. Even after extensive practice, they still used problem-solving 
approaches that are commonly used by novices. However, more general goals, such as asking students 
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to find different ways to solve the same problem, did lead to the use of problem-solving approaches 
typically used by experts.” (Geary, 1994, p. 126) 

For example, Demana & Leitzel (1988) continued the sequence of instruction based on tables 
(described in section 3.4.3) with questions such as: “Find w if w2 + 4w = 45”, where 45 would be 
in the table. This was followed by asking similar questions, but in which the numerical values 
would not be in the table. The students at this point tend to develop their own solving methods. 

Booth (1984) similarly suggests that teachers, when introducing equations, should define the 
activity as that of “developing general equation-solving procedures which can be used to find the 
unknown value in a whole range of problems” (p. 94) rather than as that of ‘finding x’. On the 
other hand, “Only when children become aware of the limitations of their own methods… will 
they be prepared to contemplate the value of the more formal methods which the teacher is 
attempting to teach.” (p. 93). 

Dickson (1989) identifies a number of informal ideas and methods that might stand in the way of 
learning a formal method, including the “letter as object” interpretation; an operational 
interpretation of the equals sign; the use of “counting on” rather than subtraction; the theory that 
different letters necessarily represent different values; and the theory that letters have to represent 
integers. 

For example, Olivier (1988) discusses a student who did not permit equal values as a solution to 
the problem “If a + b = 4 what values of a and b will make the sentence true?”. He was 
encouraged to construct the expression 4a + 3b to represent the total points scored by a team in a 
rugby match, when they scored a tries and b penalties. When he successfully used the expression 
to find the total points when a team scores 3 tries and 3 penalties, the inconsistency with his 
earlier response was pointed out. The result of this attempt to induce cognitive conflict resulted 
in confusion. Of 22 students with the misconception, cognitive conflict resulted in an even split 
between persistence in the misconception (for example insisting on excluding equal values in the 
rugby match), total confusion and successful remediation (for example realising that a and b could 
both equal 2). 

3.5.2 Expressions 

One of the difficulties with analysing proposals for teaching equation solving is the wide range of 
approaches and contexts. It does, however, seem common that (with the exception of simple 
open sentences for which the recall of number facts or the use of counting techniques are 
appropriate) simplification of expressions and substitution into expressions tend to precede 
formal solution of equations. Note this order in Kieran’s account of introductory algebra: 

“Many first-year algebra courses begin with literal terms and their relation to numerical referents 
within the context of, first, algebraic expressions and, then, equations. After a brief period involving 
numerical substitution in both expressions and equations, the course generally continues with the 
properties of the different number systems, the simplification of expressions, and the solving of 
equations by formal methods. The manipulation and factoring of polynomial and rational expressions 
of varying degrees of complexity soon become a regular feature.” (Kieran, 1992, p. 395) 
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And in SMP (1981): 

1. Substitution of numbers into expressions. 
2. Simplification of expressions. 
3. Solving equations 

(i) using flow diagrams and trial-and-error; 
(ii) using flow diagrams and inversing; 
(iii) by operating on both sides of an equation using inverse operations. 

4. Multiplying out brackets. 
5. Solving inequalities using inverse operations. 
6. Solving simultaneous equations. 
7. Solving equations using graphs. 
8. Solving inequalities using graphs. 
9. Construction of a formula from (i) data; (ii) description of relations 
10. Using formulae. 
11. Changing the subject of a formula. 
12. Finding gradients and equations of straight lines. 

Does there lurk in this order of expressions and equations a belief that knowledge of an entity 
depends on knowledge of its components’ behaviour? Do students therefore need to learn about 
variables before expressions before equations? Leitzel (1989) certainly asserts that “before 
students see algebraic equations, they need to have considerable experience with mathematical 
expressions arising from concrete problem situations.” (p. 30). 

Linchevski & Sfard (1991) contrast: 

• thinking of an equation as a propositional formula, and of solving an equation as finding the 
truth set that makes the equation a true proposition, by applying elementary operations to the 
equation; 

with 

• thinking of an equation as two computational procedures on numbers, and of solving an equation 
as finding the inputs for which the procedures give the same results. 

The first approach, they argue, can lead to a “pseudostructural” conception, with which students 
of an equation would be unable to relate elementary operations on equations to arithmetic 
operations. They would have failed to reify the “primary processes” and “Once the 
developmental chain has been broken… the process of learning is doomed to collapse” (p. 318). 
Without the abstract objects of expressions, students’ understanding is instrumental, in Skemp’s 
terminology. An illustration of this is given in an empirical study investigating whether students 
aged 15-17 used transformability of equations as a criterion of equivalence (rather than, 
presumably, “having the same solution set”): 

“The findings seem to reinforce the impression that for many respondents, an equation or inequality 
was nothing more than a string of symbols which can be manipulated according to certain arbitrary 
rules.” (p. 323). 
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The framework for this research has questioned the value of generalising about “conceptions” in 
this way. Moreover, the study’s definitions of “transformable” and “equivalent” are debatable. 

Expressions can be made easier to understand: Thompson & Thompson (1987) used expression 
trees displayed on a computer screen with eight 7th-grade students (12-year-olds). Expressions 
and equations could be operated upon by a variety of algebraic identities. The students’ success in 
transforming expressions is attributed by Kieran to an improved “ability to recognize the form of 
surface structure of an algebraic equation” (p. 436). Thompson & Thompson, on the other hand, 
point out that the students were not assessed outside the computer environment and so “It is 
quite conceivable that had these students been left to their own devices, they would have 
committed errors on paper and pencil that they learned not to make while using the computer.” 
(p. 253). Even so, it does appear from the study that the availability of automatic transformations 
and a visual display of the structure of an equation assisted the exploratory learning of where 
these transformations might be appropriate. For example, one theory that was challenged was 
(a + b) × c ⇒ a + (b × c). The students also seemed to prefer the tree displays to sentential 
strings of characters (Thompson, 1989). Moreover, Thompson suggests that students were not 
“bothered by the introduction of letters in expressions” because they only had to manipulate 
expressions, rather than evaluate them (p. 153). 

Nevertheless, although it is usual to define equations in terms of expressions, it is certainly 
possible to introduce them via a context that does not feature algebra in its composition but can 
make use of algebra (i.e. a word problem). There is, moreover, a good reason for introducing 
solution before simplification: when equations and analytic operations are used to solve the 
problem “What numbers satisfy these conditions?”, potential solutions can be checked against 
the original problem; whereas when expressions and a simplification calculus are used to solve 
the problem “What is the standard way of representing this arithmetic procedure?”, potential 
solutions can only be checked for a sample of values, and are dependent on mathematicians’ 
conventions for their accuracy. 

So why does simplification precede methods of solution? Perhaps it is argued that the use of 
equations to find an unknown in a situation is dependent on having a standard method of 
solution; or that formal methods require a simplification calculus. Perhaps it is simply because of 
the contrast between the diversity of solution methods and the apparent simplicity of combining 
“like terms”. 

3.5.3 Substitution 

Whatever the reason for teaching a simplification calculus before solution methods, when 
students are eventually taught how to solve equations, it is apparently common for trial-and-error 
substitution to precede the transposition and Leibniz methods (Kieran, 1992; Bernard & Cohen 
1988; Zehavi, 1988). 

Numerical computation was seen as providing insight into the order of operations and into 
simplifying expressions. Kieran (1992) suggests that “students who use substitution as an early 
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equation-solving device… possess a more developed notion of the balance between left and right 
sides of an equation and of the equivalence role of the equals sign than do students who never 
use substitution as an equation-solving method… this awareness is helpful in successfully making 
the transition to the formal method of equation solving” (Kieran, 1992, p. 400). She proposes the 
use of computer-generated tables for solving equations (as produced by spreadsheets and some 
calculators) as one way of easing the memory demands of trial-and-error substitution. Thomas & 
Tall (1986, 1988 & 1989), Tall & Thomas (1991) and Graham & Thomas (1997) found evidence 
that exploring equivalent expressions using substitution (via BASIC, specialised software or 
calculators, for example) could assist in CSMS questions. 

Dettori et al. (1995) similarly argue that spreadsheets can be used “to understand what it means to 
solve an equation, even before knowing what an equation is” (p. 272). “Tables are potentially 
dynamic, that is, columns and rows can be added” (p. 267) and so spreadsheets can be used to 
“make and to test conjectures about a function’s trends”. And the “spreadsheet can be useful to 
introduce the concept of generalisation of a problem and to learn to distinguish between variables 
and parameters.” (p. 268). 

However: 

“… the resolution approaches of algebra and spreadsheets are strongly different: in algebra the 
solution of a problem is found by formal manipulation of equations describing it, while with a 
spreadsheet successive numerical approximations must be performed until a numerical solution is 
reached. This basic discrepancy can even lead students to misunderstand what is algebra if they are 
told that, using a spreadsheet, they are learning algebra.” (p. 265) 

This is perhaps overstating the case, unless one takes a very restricted view of algebraic activity as 
requiring formal manipulations of equations. But Dettori et al. also make the point that the 
opportunity for numerical solution might actually discourage students from making an effort to 
manipulate equations. It ought to be pointed out that formal manipulation is an important skill, 
because problems involving multiple variables are not in general easily solved by trial-and-error: 
for example, {x + y = 100, 8x + 6y = 650} is difficult to solve unless one manipulates the 
constraints so that one of the variables is calculated rather than varied. Even if we succeed in 
solving the equations without manipulation, we cannot guarantee with a spreadsheet that the 
solution obtained is the only one. Another example is 4x + 3y = 100, for which the solution is an 
infinite set of pairs of values. 

Nevertheless, Booth (1984) suggests that difficulties with algebra are actually founded on a lack 
of experience with explicitly considering method in arithmetic and with dealing with general 
objects. It could be that just investigating the effect of varying a cell value on the result of a 
spreadsheet formula could be enough to raise sufficient awareness of method and generality to 
improve students’ theories for formal methods. Additionally, if the computer can free students 
from having to evaluate expressions, perhaps they will be more able to consider structural aspects 
of the situation. Even so, there is no evidence yet that representing situations using equations has 
been helped in this way.  



Computer programs and substitution software such as CARAPACE can be used to find 
numerical answers, in a similar way as for spreadsheets; but again no use is made of formal 
methods. Sutherland (1988) explicitly avoids suggesting that programming in Logo will help 
pupils to solve algebraic equations. Moreover, Blume & Schoen (1988) concluded that 
programmers and non-programmers did not differ, when solving word problems in the 
“frequency or effectiveness of their use of variables and equations, or in the number of correct 
answers to problems.” (p. 154). However, “Programmers also checked for and corrected more 
errors in their potential solution.” (p. 153), which one might have expected to provide an 
advantage. But the susceptibility of the problems to algebra may be a factor here, because Blume 
& Schoen also noted that “programmers used systematic trial more frequently than non-
programmers did.” (ibid.). 

3.5.4 Flowcharts 

One approach studied by Dickson (1989) followed this sequence: 

1. Representation of arithmetic procedures as flow diagrams, such as: 

2 6 10
+ 4× 3

 

2. Representation of those flow diagrams as expressions (for example 3x + 4) or functions (x→ 
3x + 4). 

3. Representing “Think of a Number” type problems by finding the input of a given flow 
diagram from the output (using inverse operations). 

4. Finding the operations missing from a flow diagram starting at x: 

x + 4 3(x + 4)x
? ?

 

5. Finding the operations missing from a flow diagram ending in x: 

x + 3 x2(x + 3)
? ?

 

6. Solving equations using the “undoing” method mentioned in chapter 2. For example, solving 
2(x + 3) = 18 by finding the operations that reduce the expression 2(x + 3) to x (using a flow 
diagram) and then applying these operations to 18. The checking of an answer by substitution 
in 2(x + 3) or in its flow diagram can be emphasised. An alternative version of this step, as 
used in SMP (1981) is to write the flow diagram for 2(x + 3) and then reverse it to find the 
inverse operations. 

7. Solving equations by finding the required inverse operations in the same way, but this time 
abandoning the flow diagrams for applying the operations to the isolated constant term and 
using standard algebraic notation. For example, for example 2(x + 3) = 18; so x + 3 = 18 ÷ 2; 
so x + 3 = 9; so x = 9 − 3; so x = 6. 
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8. Solving equations, but omitting the flow diagrams when the students felt they did not need 
them. 

Dickson found that brackets could cause a few difficulties, and that students tended to be 
unconfident in the transition from the context of functions to the idea of an equation and its 
solution. The students were not able to explicate the connections between the written symbols 
and the flow diagrams all that well. Five of the six students interviewed who had previously 
solved equations using a version of transposition had difficulty interpreting transposition in terms 
of flowcharts. Although they were able to use both transposition and flowchart methods at the 
end of the series of lessons, only one of the five could use flowcharts three months later. The 
sixth pupil interviewed used a slightly modified form of the flowchart method successfully. 
Dickson claims that the flowchart approach is “more mathematically sound” (p. 188) than 
transposition, but it is not clear why. 

One advantage of this sort of approach is that students could, in principle, solve a very wide 
range of equations without further assistance; for example (x + 11)/6 = 1 or 2(x/5 + 6) = 14. 
On the other hand, it relies on there being an isolated number on one side of the equation. 

Kieran quotes research by Whitman (1976) with six US 7th-grade classes comparing the cover-up 
and formal methods, which found that “students who learned to solve equations by means of 
only the cover-up method performed better than those who learned both ways in close 
proximity, whereas students who learned to solve equations only formally performed worse than 
those who learned both techniques.” (Kieran, 1992, p. 400). Kieran infers from this that “the 
students who had been taught to solve equations by the formal method alone were not 
conceptually prepared to operate on equations as mathematical objects with formal, structural 
operations” (ibid.). On the other hand, the result surely suggests the possibility that they had not 
learned the formal method properly. A proposed activity to promote a formal method would 
enable a re-test of Whitman’s result. 

3.5.5 Arithmetic Identities 

The method of Herscovics & Kieran (1980) for using arithmetic identities to motivate the idea of 
“solution” may be useful in introducing operations on equations in a “natural” way. For example: 
suppose we start with 2 × 5 = 10. Students are asked “What happens if 7 is added on the right 
hand side?”, which hopefully elicits a reply along the lines of “It’s no longer an identity”. They are 
then asked to make it an identity again by using only addition, and hence we have the idea of 
operating on an equation. However, one has to be careful with the order of operations: if we start 
with 4 + 5 = 9 and multiply the right hand side by 3, students sometimes conclude 
4 + 5 × 3 = 9 × 3 instead of (4 + 5) × 3 = 9 × 3. 

When numbers are hidden, concern to solve arises naturally: “The process of hiding a number 
seemed to carry inherently the reverse process of uncovering.” (p. 576) and the idea of multiple 
solutions emerged easily. For example, hiding the 2s in 3 + 4 = 10 ÷ 2 + 2 might lead one to 



realise that 5 could also work. The idea of an infinite number of solutions comes fairly easily: hide 
both 3s in 2 + 3 = 3 + 2. 

To solve 7x + 48 = 139, Herscovics & Kieran propose writing the identity 7 × 13  + 48 = 139 

next to the equation, and then asking “What must be done to the 139 to get back to 13?” 
(p. 578). This then focuses on the method, rather than the answer. 

So for example: 

 7 × 13  + 48 = 139 7 × x + 48 = 139 

 – 48 = – 48 – 48 = – 48 
 7 × 13  = 91 7 × x = 91 

Students’ attention is drawn to the fact that you have to subtract 48 on both sides, because 
otherwise it would not remain an arithmetic identity. The – 48 = – 48 notation saves re-writing 
the equation and reminds one to operate on both sides. 

 
7 × 13

7   = 
91
7    

7 × x
7  =  

91
7

  

 13  = 13 x = 13 

This approach was tried in individual interviews with 6 students of varying abilities in grades 7 
and 8 in different schools. Post-tests 6 weeks later showed that students had retained a clear 
understanding of arithmetic identities, equations and the justification of the algebraic rules. 

However, Kieran (1988a) reports a study in which she used this activity with “six average ability 
12-year-olds who had not had any previous algebra instruction” (p. 438). She found that “those 
students who had initially preferred inversing… were in general unable to make sense of the 
solving procedure being taught, that is, performing the same operation on both sides of an 
algebraic equation.” (p. 438) and, in fact, this undoing method “seemed to work against them” 
(Kieran, 1992, p. 401) when an unknown appeared more than once. Those who had initially 
preferred trial-and-error substitution did not have the same problem. She describes the 
relationship between left-and right-hand expressions of equations as a “cornerstone of much of 
the algebra instruction taking place.” (Kieran, 1988a, p. 439) and yet “it has been found that for 
some students, teaching methods based on this aspect of the structure of equations often do not 
succeed. For these students, who tend to view the right side of an equation as the answer and 
who prefer to solve equations by transposing, the equation is simply not seen as a balance 
between right and left sides, nor as a structure that is operated on symmetrically.” (p. 439). As a 
result of these findings, Kieran (1992) proposes substitution as an “intuitive basis” for structural 
solving methods as opposed to inversing. Although inversing “seems much closer to the 
problem-solving methods used in arithmetic” (p. 401), it “appears to encourage the learner to 
bypass the algebraic symbolism rather than deal directly with the equation as a structural object.” 
(p. 401). 
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Moreover, the above method does not offer a mechanism for operating on unknowns; only on 
numbers. The method runs therefore into difficulties when there are unknowns on both sides, 
just as for the flowchart method. Filloy & Rojano (1989) have investigated such equations, and 
found that students tend to resort to trial-and-error methods rather than attempting to operate 
on the unknowns. “Suitable interventions from a teacher at the point of transition may be crucial 
for students learning algebra for the first time.” (p. 19) Is this always true? Could there be an 
activity that inspires students to operate on the unknown, rather than to use inverse operations or 
trial-and-error? 

Herscovics & Linchevski (1992), reasoning that operations on the equation as an object cause 
difficulty, attempted instruction in which a term is decomposed into a sum or difference with the 
aim of cancelling identical terms on both sides of the equation. So, for example, 5n + 41 = 8n + 5 
becomes 5n + 41 = 5n + 3n + 5. Unfortunately, students became confused when decomposing a 
term into a difference. 

3.5.6 Standard Forms 

Dickson (1989) describes a sequence of activities used by one teacher, which has striking 
similarities to the typologies of equation that Radford (1995) describes mediaeval mathematicians 
as using: 

1. The class was shown that equations like 3x = 20 and 25x = 12 could be solved by dividing the 
constant term by the coefficient of the unknown. Students practised solving many of these 
types of equations, using a variety of numbers and letters. This made the equation type ax = n 
familiar. 

2. A justification for (1) along the lines of “What you do to one side you have to do to the other” 
was provided. For example, to justify the move from 3x = 20 to x = 20/3, it might be said: 
“You divided 3x by 3 to get x. So you had to divide the 20 by 3. This gives you x.”. However, 
based on the classroom observation, Dickson would dispute the existence of this step. 

3. The teacher now told the class that equations of the type ax + b = n could be solved by 
reducing them to the familiar form ax = n. “So, for example, he described the equation 
3p − 2 = 7 as having something ‘funny’, ‘wrong’, ‘different about it’, and continued ‘I’m going 
to get shot of this minus two. I’m going to lose it… How can I get rid of that minus two?’.” 
(p. 175). The idea then presented was of adding 2 to each side. Students practised such 
problems. 

4. A justification for both (1) and (3) along the lines of “If you want to get rid of something from 
one side, you can put it on the other side so long as you change the sign.” was now provided. 

5. Finally, the students practised representing “Think of a Number” situations using equations to 
find the number. For example: “When a certain number is multiplied by 6, and 9 is subtracted, 
the result is the same as when it is multiplied by 4 and 11 added. Find the number.” 
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This method is basically one of training the students to recognise standard forms, and supplying 
them with appropriate procedures to apply to those forms. Justifications are used to tie the forms 
and procedures into existing ideas to make recall easier. 

Dickson highlights, however, a number of difficulties that students had with representation and 
interpretation after this sequence. There is little evidence, nevertheless, that these difficulties were 
caused by the sequence. Moreover, nearly all the students (11-12 year-olds in a top set of three) 
were successfully able to solve equations of the forms they had practised. There were difficulties 
among some students, however, with equations containing unknowns on both sides. 

Interestingly, although the meta-algebraic justifications were used by the teacher to introduce and 
reinforce new techniques and forms of equations, the students seemed not to be able to repeat 
these justifications later to the researchers, even when the techniques were successful. Note also 
that, although the teacher referred to a seesaw and being “out of balance” in his justification, 
there are two ideas here that could potentially become confused. There is the idea of “doing the 
same thing to both sides” which is the point of using the balance models discussed in chapter 2 
(and below). But the teacher also seemed to refer to the equation 3p = 7 as being in the balanced 
form, and the equation 3p − 2 = 7 as being “out of balance”: the minus two is “throwing it all out 
of balance”. In early empirical work for this research, some students referred to an equation “as a 
balance” because “what you do to one side, you’ve got to do to the other”; others referred to an 
equation “as a balance” because “you’ve got to balance it”. Those students that referred to both 
types of balance ideas did not seem to be confused by it in interview; and it is possible that they 
would not be confused by it when solving equations, because the role of these justifications or 
stories is largely in binding together apparently different techniques after they have been 
thoroughly automated. This binding is a preamble to new forms or techniques, but it does not 
necessarily interfere with those already learned. 

It is a moot point whether, in operating on equations, including a step with the operation 
unevaluated is an improvement. On the one hand, the additional transcription errors introduced 
by this method have been cited many times as being a major drawback; on the other hand, 
Cortés, Vergnaud & Kavafian (1990), for example, suggest that it “allows the pupils more easily 
to check their work; it permits the construction of a script-algorithm which is used to provide 
guidance in the very beginning” (p. 33). 

3.5.7 Concrete Models 

Soh (1995) studied using the Pirie-Kieren model (Pirie & Kieren, 1994) two 11-year-olds tackling 
the balance puzzles that SMP (1983) used to introduce equations: 



Stage 1: Single object on
only one side of the scales

Stage 2: Weights on only
one side of the scales

Stage 3: Weights and
objects on both sides

 

The textbook intended to teach pupils to solve a balance puzzle by removing identical objects or 
known weights from both sides of the balance. One of the students - called Dale - grasped the 
weights strategy for “Stage 1” puzzles (above), and the objects strategy for the Stage 2 puzzles, 
but was unable to combine them for the Stage 3 puzzles. Instead, she took off weights and 
objects from either side separately so as to be left with the same objects and weights on each side. 
The intended purpose of the method - simplifying the puzzle without changing the equality - was 
lost. It seems possible that she was using a matching strategy which became unwieldy, and would 
also be far more difficult to translate into operations on equations than a subtraction strategy 
would be. But when the textbook insisted on cancellation, she showed great anxiety about the 
untidiness that resulted from the repeated drawing of the balance puzzles after each step. 

Unlike Dale, the other student Ken could not work out what to remove in any of the Stages, nor 
what to do with the objects and weights left on the balance. On video, the tension in these 
children is noticeable. Ken found that the hedgehog in one puzzle apparently weighed more than 
the dog in a previous puzzle; and thereafter in the work he seemed to feel that his common-sense 
was out of place. He would take off just two objects from both sides because that is what the 
example showed, or because that is what worked last time, even when more could have been 
taken off. At Stage 3, he developed the strategy of dividing the total weight in the picture by the 
total number of objects in the picture. If this did not produce an integer, he re-read the textbook 
example (if this happened to Dale, she tended to discard the fractional part of the answer). Soh 
writes, “Although this strategy was successful in only one out of ten questions, he was not 
deterred from using it in every question that came up.”. Again, the purpose of the taught method 
was unclear to him. This child - who if faced with a real balance scale would probably clear all the 
objects off, put the unknown weight on one side and start putting known weights on the other 
until equilibrium - seemed to see little connection between the exercises he had to do and 
problems he might care about. The answer was right or wrong, but that had nothing to do with 
the relationship presented on the scales, and everything to do with accurate adherence to the 
unwieldy rigmarole (as far as he was concerned) that the textbook wanted him to perform. 

Schliemann et al. (1992) investigated Brazilian children’s ability to find unknown weights on 
marketplace balance scales. 75 children were involved, between the ages of 5 and 12. When 
unknowns appeared on just one side of the scale, only 5 and 6 year olds had difficulties. When 
unknowns were on both sides, the 5 and 6 year olds could not solve the puzzles at all; older 
children, meanwhile, tended to use trial-and-error. When the puzzles got harder, the children 
were shown the cancelling strategy. The 11 and 12 year olds were more inclined than the younger 
subjects to use it. With a subsequent series of questions aimed at discovering whether they had 
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grasped the Leibniz theory, it was the 11 and 12 year olds who tended to give justifications along 
the lines of “They will still balance, because you are taking the same amount from each side.”, 
whereas the younger children attempted to compute the weights left on the scales. This study is 
not given here as evidence for a developmental stage theory (it is not clear whether those who 
gave computational justifications failed to give an explanation involving the Leibniz theory 
because they had not grasped it, or because they were deliberately seeking to illustrate what they 
considered obvious to an interviewer who apparently did not find it obvious); rather it is given to 
suggest that spontaneous cancellation is rare for children at least up to the age of 12, and that 
even after prompting the strategy is not necessarily readily adopted. Of course, it is likely that 
children from different backgrounds, with different experiences, and under different 
circumstances may contradict this suggestion. The point is that one should not expect the 
cancellation strategy to be part of every child’s theoretical arsenal. 

Austin & Vollrath (1989) describe how balances, washers and containers (which weigh, when 
empty, the same as a washer) can be used to represent equations. By removing paired washers, 
the number of washers in each container can be found, and the solution steps are then 
represented using symbols. Equations such as 2(x + 1) = 8 can be represented by using two piles 
on the left-hand side - each containing one washer and one container. Two washers are removed 
from each side; and it can then be checked that each container contains 3 washers. A balance set 
up to represent 2(x + 1) = 2x + 2 confused many students, and only after putting different 
numbers of washers in the containers did students realise that some equations have many 
solutions. Austin & Vollrath also describe two-balance problems using different coloured 
containers. “Whereas students readily accept that the colour of the containers does not affect the 
solution, some students think that the letter used to represent a variable affects its value” (p. 609) 
- recall Wagner (1981). They suggest that using physical objects in this way can make it easier for 
some students “to understand equations and why each transformation is used in solutions.” 
(p. 611). 

However, Lins (1992) uses his characterisation of algebraic thinking to conclude that the use of 
scale-balances in learning algebra contribute “to the constitution of obstacles to the development 
of an algebraic mode of thinking”; this is “not only for very quickly becoming a complex net of 
what are in effect different models, but also for not fostering a frame of mind adequate for the 
development of an algebraic mode of thinking.” (p. 209). It would be useful to try to test this claim by 
finding activities that use the balance model extensively and exploring the extent to which 
students were able to adopt an algebraic approach. 

Moreover, Mordant (1993) suggests that the balance model is a “very poor substitute” (p. 22) for 
starting with expressions, because quadratics cannot be solve by physical operations with a scale 
pan and because “a scale-pan presents the student with an exceptionally poor notion of the 
algebraic expression”. A related point that should be made here is that the model does not in 
itself promote conventional algebraic notation rather than idiosyncratic or syncopated 
representations. After all, representing a balance as “4a5:3a10” might be rather confusing for 
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others, but it could be good enough for one’s own solution method. How do students know what 
constitutes an “appropriate” form of algebraic representation? “Appropriate” for what? 

A teacher in Dickson (1989) used a balance model followed by practice in using the Leibniz 
method. When later interviewed by the researcher, the students did not seem have a relational 
view of the equals sign, a recognition that one does not need to work with specific values, 
improved representational or substitution abilities, a numerical interpretation of letters or a 
concern to use symbols. Moreover, a concern for the Leibniz method appeared to have been 
grasped by only a few students, and the ability to carry them out by even fewer. Dickson 
concludes that the “Think of a Number” type questions would, in relation to five students under 
scrutiny “perhaps have been a better starting point for their introduction to algebra in general and 
equations in particular. The container mode of representation could perhaps be retained 
indefinitely to ensure the appropriate development of the notion of a variable.” (p. 166). 
However, recall that the “Think of a Number” type problem introduces inverse operations on 
numbers but not operations on unknowns or equations; secondly note that the students were 
only shown the balance model - they did not actually practise solving balance problems; and thirdly 
it is important to realise that the balance model used in the study involved balancing the values of 
symbols (for example b + 2 on one side and 5 on the other) rather than the more familiar idea of 
weights. 

Another teacher balanced numbers of objects (loose apples, and apples in apparently weightless 
boxes), but again the link between practice in erasing extraneous objects and subtracting terms 
from algebraic representations does not seem to have been sustained, as evidenced by interviews 
some months later. In the delayed interviews, it was noticed that “On the whole the pupils did 
not employ the formal written approach for solving equations” (p. 171), their approaches 
seeming to “vary according to the type of equation under consideration and the mode of 
presentation. The balance diagrams usually elicited a ‘crossing out’ or ‘grouping / matching’ 
strategy and the algebraic symbolisation usually invited a mental version of a ‘formal’ approach or 
a trial and error strategy.” (ibid.). 

Booth (1987) concludes from Dickson’s study that “’concrete or ideographic approaches, though 
designed to help children gain in understanding of the formal procedures, may be unsuccessful in 
doing so if children never see the connection between the two.”. She also notes that it was only 
the students “who had perhaps least need of the ideographic approach in the first place” who 
appeared to see and make use of this connection. Kaput (1987) interprets the study as 
emphasising that concrete models are weak because “of the inherent particularity of such models 
a particularity which runs entirely opposite to the inherent generality and abstractness of algebraic 
statements.” (p. 352). 

There are other concrete models that could be described here, each of which have their various 
advantages and limitations. For example, Bruce et al. (1993) describe an activity using cups and 
beans; which enables representation of equations such as 4x − 3 = 2 and 3(5 + x) = 15 + 3x; but 
does not easily extend to powers. Vollrath & Austin (1989) describe the use of line segments. 
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F. M. Thompson in Coxford (1988) shows how a pictorial representation of an equation using 
coloured stickers can assist solving. 

But Booker (1987) has further reservations: 

“While the use of materials to represent [unknown] values appears attractive by analogy with the 
number situation, in reality the material does not serve as a forerunner to the use of letters; rather 
letters label the material which is manipulated. It also leaves the question of why these letters should 
themselves be the object of mathematical manipulation unanswered.” (p. 278). 

“Only when the development of a generalised arithmetic has established the need for and power of 
algebraic symbols can algebra be extended to a topic in its own right and meaningful procedures for 
manipulating the symbols be considered.” (p. 279) 

This lack of generalised arithmetic is crucial: 

 “Algebraic symbolism should be introduced from the very beginning in situations in which students 
can appreciate how empowering symbols can be in expressing generalisations and justifications of 
arithmetical phenomena... By displaying structure, algebraic symbols are not introduced as formal and 
meaningless entities with which to juggle, but as powerful ways to solve and understand problems, 
and to communicate about them.” (Arcavi, 1994, p. 33) 

Nevertheless, according to Nolder (1991), although the mathematics can be taught without 
metaphors, imagery is “something concrete and familiar to help them to understand an 
unfamiliar, abstract idea... linking a new concept to the learner’s past experience. ... the teacher 
aims to make that piece of mathematics more secure and hopes that the metaphor by its novelty 
may enhance memorability.” (p. 108). Similarly, in early empirical work for this research, A-Level 
students claimed about the equation as a balance something along the lines of “It helps you to 
make sense of ‘What you do to one side, you have to do to the other’.”. This is a compelling 
reason for at least attempting to find an appropriate metaphor. On the other hand, other usages 
were also met: “The left-hand side is equal in value to the right-hand-side.”; “If you take the same 
thing from each side, the sides are still equal.”; “If you take the same thing from each side, the 
answer is still the same.”; and “Balancing is taking equal things from each side.”. Also recall the 
teacher in Dickson (1989) talked about the − 2 in 3x − 2 = 7 “throwing it all out of balance”. 
Maybe the differences between these usages are not large, but they do mean that there is at least 
the potential for confusion when invoking the metaphor of a balance. 

Moreover, Filloy & Rojano (1989) state their belief that “there are theoretical reasons for 
believing that a semantic approach to learning algebra is more likely to lead to good algebraic 
performance in later years than a purely syntactic one.” (p.20). In other words, that modelling 
analytic operations, in some concrete, familiar context - in which “the first elements of an 
algebraic syntax are constructed on the basis of the behaviour of the model” (p. 20) is more 
effective in the long run than learning the syntactic rules by rote. They presented students with 
concrete models involving the use of either balances or areas. For example, the following picture 
models the equation 5x + 20 = 7x: 



75

20

 

Solution follows by comparing areas: 

5 7

20

 

So we have a new equation 2x = 20 which can be solved by inspection - simple reasoning or 
recall of multiplication facts. 

Filloy & Rojano noticed a “temporary loss of previous abilities, coupled with behaviours fixated 
on the models.” (p. 21). But an alternative interpretation could be that the students expected that 
they had to use the model to solve for example 3x + 30 = 9, even if they already knew other 
methods. The researchers also noted both successful and unsuccessful attempts to transfer 
operations within the model to operations on the equation. For example, for 15x + 13 = 16x, a 
student says “16x minus 15x equals 1. So 1 and 13 equals 14.”. The extent to which students 
seemed inclined to break away from the model varied from student to student, with preferences 
for solutions methods “ranging from the most operative and algorithmic to the most semantic 
and analytic.” (p. 23). 

They also point out some limitations of the models, especially the “lack of meaning” for negative 
solutions; and hinted that using the geometric model might lead to the obstructive expectation 
that integer answers should be obtainable. In comparing the models, they explained that “With 
the balance model, the step from solving the type Ax + B = Cx [where the capital letters are 
given] to solving the type Ax + B = Cx + D is a small one since ‘iterated cancellation’ will reduce 
both types to arithmetic equations.” (p. 24); this may not be true for the geometric model. On the 
other hand, “… the transition to types Ax − B = Cx and Ax − B = Cx + D, while impossible for 
the balance model can be accomplished in the geometric model with the introduction of the 
operation of removing areas when negative terms are involved. This extension does not do 
violence to the semantics of the model.” (p. 24). For a concrete model to be successful, and 
enable students to abstract a rationale for the operations without undue reliance on the 
particularities of the model, there must be a drive to detach aspects of the semantics of the 
model. Unfortunately, mastery of translation of an equation into a concrete model can inhibit this 
detachment of the semantics, and hence “delay the construction of an algebraic syntax” (p. 25). 
And in detaching the semantics, essential elements of the solution process may be lost. 
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In a similar vein, Carraher & Schliemann (1987) suggest with regard to 25 market vendors using 
weighing scales that “transference from the practical setting to a hypothetical one with unknowns 
on only one side of the scale was observed in all cases. … transference to situations with two 
unknowns is observed less frequently” (p. 294). Whether this is indeed attributable to 
“transference” is questionable, without controls. 

Boulton-Lewis et al. (1997) argue that use of different, unfamiliar models that are not explicitly 
related to the target theories are confusing. They found that none of a class of students who had 
been taught a containers and objects approach to solving linear equations spontaneously used the 
method - the majority used inversing. Only four out of 21 were able to reproduce the concrete 
method. The researchers suggest that this supports the view that equations must be understood 
in terms of sequences of operations rather than a “structural” concrete approach, because the 
latter entail a “heavy cognitive load” (p. 190). 

Margolinas (1991), who comes close to the Popperian view of mathematical objects being 
dependent on problems, as opposed to existing in distinctive complementary dualistic forms (cp. 
Gray & Tall, 1993), describes, with respect to the solving of equations, some of the subtlety in 
the relationship between the result of the solution and the answer to the problem. She shows 
how such subtlety can be lost in textbook or classroom discussions; and explains the 
consequential difficulty in conveying the notion of algebra as a tool. However, pessimism with 
respect to concrete situations in this regard could neglect their potential analogical role. On the 
other hand, English & Halford (1995) appear to share this pessimism: “concrete analogs do not 
appear as effective and as versatile in teaching algebraic concepts as they are in promoting 
arithmetical understanding.” (p. 240). 

Meanwhile, Kieran (1988a) describes a study carried out by O’Brien (1980) with two groups of 
3rd-year high school students. One group was taught using concrete materials; the other was 
taught using transposition rules. The latter group became the more proficient equation solvers. 

Moreover, Herscovics & Kieran (1980) point to the greater generality of arithmetic identities 
compared to the balance scale: 

“The physical limitations involved with the scale can be avoided by the use of arithmetic identities, for 
these are an arithmetic representation of the concept of equilibrium and not subject to physical 
restrictions.” (p. 577) 

They state that the balance model “does not lend itself readily to addition and subtraction of 
arbitrary rational numbers nor to the more complex operations of multiplication and division” 
(p. 577). 

Dickson seems to prefer the flowchart approach - despite its limitation to equations with isolated 
constant terms - to the balance model. Her reasons are that the latter does “not readily represent 
situations involving subtractions” (p. 189); it leads students into talking in terms of “one side 
becoming lighter or heavier”; it ignores the actual mass of objects and containers; it cannot 
incorporate powers or roots; it sometimes bears no resemblance to the formal approach used by 
students; it promotes (through the ‘getting rid of’ actions) “an interpretation based on superficial 



Chapter 3 - Improvement 121 

symbol manipulation and a rote relationship to the ‘change the side, change the sign’ rules’… 
[and hence] a diminishing need to understanding the underlying rationale and process” (p. 190); 
and it is “less mathematically sound” than the flow diagram approach. 

“[The student was] perturbed by the positioning of the cans. She knew from practical experience that 
this would not work on a real balance because of the need to position weights very carefully to 
preserve equilibrium. This discrepancy distracted the pupil from the concept being developed and it 
required skilful handling by the teacher to remove the confusion.” (Nolder, 1991, p. 110). 

However, the researchers engaged in the “Children’s Mathematical Frameworks” research 
(CMF), of which Dickson (1989) is a part, describe the students’ success rate in learning formal 
methods for solving equations (by whatever instructional approach) as “extremely low” (p. 223) 
and mostly attribute this to the “difficulty that children have in linking the formal rule to that 
used prior to the teaching or in the pre-formalisation work” (p. 222). Moreover, Schliemann et al. 
(1992) note about the Leibniz theory of equality that “Mathematical axioms are sometimes so 
convincingly obvious that it is tempting to treat them as a priori truths known to anyone with the 
power of reason.” (p. 298). My personal experience of observing students working on the balance 
puzzles from SMP (1983) suggests that many children never really appreciate the “necessary 
truth” of the Leibniz theory. If it is never really grasped, then not only will the link that CMF 
describes never be made, but the whole purpose of the balance approach is destroyed. 

Kaput (1987) suggests that work using concrete models… 

“would have vastly different outcomes (1) if their concrete models had been instantiated in the 
computer medium, a medium much more congenial to variation and hence conceptual generalisation, 
and even more importantly, (2) if those models were then actively linked to the associated algebraic 
formalisms, so that transformations of a concrete model would have salient consequences in its formal 
counterpart, and vice-versa.” (p. 352). 

However, this assumes (as made clear earlier in Kaput’s paper) that it is the making and 
meaningfulness of the links between different representational systems that should constitute the 
imperative of a substantive attempt to improve algebraic theories and concerns; and, moreover, 
that it is generality that is lacking from concrete models. (This is what Kaput calls the 
“representational perspective”.) If, on the other hand, the imperative is a conjectural, problem-
solving environment which allows students to grasp transformational and representational 
problems (regardless of the “inherent generality and abstractness” of the algebraic statements 
involved), the simultaneous display of transformations’ effects on concrete models and 
symbolism might not be crucial. But in this case, some other sort of feedback is required, to 
support - as Edwards (1991) puts it - “children’s ‘debugging’ of their own solutions, and of their 
own conceptual models of the mathematical entities instantiated in the environment.”. 

For example, Feurzeig (1986) and Roberts et al. (1989) provide a computerised balance model 
(“The Marble Bag Balance Laboratory”) in which students can operate on one side or both. The 
balance tilts if the student does something that does not maintain equivalence. However, it does 
not attempt to overcome the physical limitations of the model, to demonstrate the value of the 
Leibniz strategy over informal strategies, or to transfer the strategy to new situations. 
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Can a software environment be created that help students to grasp the Leibniz method? Can the 
physical limitations of concrete models that Herscovics & Kieran, Filloy & Rojano, and Dickson 
describe be minimised by setting the problem situation inside such a software environment? Such 
a use of technology relates to the allusion of Kaput (1987) to “the need to focus research on the 
possible learning environments of the future rather than those of the past - to take an inherent 
difficulty… and then build and test new teaching and learning environments that respond to that 
difficulty.” (p. 352). I suggest that the finding of an unknown weight on a balance scale may be 
slightly easier to make a concern than learning rules governing expressions, easier than finding a 
missing number in an arithmetic identity, and easier than using inverse operations in a flow 
diagram. I suggest that such a software environment could allow students to make the transition 
from informal to formal methods for themselves, and this would be done without “superficial” or 
“rote” symbol manipulation. And I suggest that generalisability to subtraction, powers and roots 
is irrelevant while such large numbers of children seem to spend much of their schooling 
worrying about simpler equations. However, if one were to follow through such suggestions, 
what would this software environment look like? What facilities would it need to provide? How 
exactly would it help students to learn the Leibniz method? 

3.5.8 Automatic Equation Solvers 

The work of Heid (1990) and her colleagues suggests that when students on Computer Intensive 
Algebra courses are taught paper-based transformation skills, it takes 6 to 8 weeks for them to be 
able to perform as well as “their counterparts in year-long traditional courses.” (p. 655). Is this 
because of the more realistic contexts, or because CIA allows a focus on exploring (rather than 
acquiring) methods? However, while performance in word problems is undoubtedly enhanced by 
the use of an equation solver, is the ability to solve transformation problems maintained when the 
technology is withdrawn?  

Hunter et al. (1995) carried out a study in which 14-15 year old students studied quadratic 
functions; some classes with Derive, parallel classes without. All classes plotted functions, found 
minima and intercepts, solved equations, and expanded and factorised expressions. Pre- and 
post-tests based on CSMS showed little improvement attributable to software usage. In an 
additional post-test based on the quadratic content, in which computers were not allowed, the 
control groups did better than the experimental groups. Those using computers were allowed to 
use them on this test two weeks later: their scores improved on the pencil and paper sitting; but 
in one school, the score was still lower than the control group. 

Because automatic equation solvers like Derive remove the choice element from transformation, 
students do not have the opportunity to discover that the power of algebra is dependent on the 
existence of standard transformation rules. Without this discovery, the need for standardised 
representation does not become manifest. Moreover, the opportunity to learn those rules by 
conjectural means does not arise. 
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3.5.9 Interactive Manipulators 

Fey (1989b) notes that “Use of computer symbol manipulation or computer algebra systems as 
tools for learning about symbol manipulation itself is an almost totally unstudied area. But 
imagine the discoveries that students could make if they could call on an algebraic assistant to test 
the effects of various operations on a planned series of example expressions.” (p. 254). 

The program GED devised by McArthur (1987) and McArthur, Stasz & Hotta (1987) provides 
such a focus on solution strategy. It allows students to enter the equation for each step in a 
solution procedure, to go back to a previous equation and try alternative procedure, and to see a 
record of all the solution paths in a “tree” display. The program can indicate the correctness and 
appropriateness of steps, suggest a new step, and elaborate the details of suggested steps. 
Thompson (1989) suggests that it is the screen record of the steps taken that is of most value, 
because the path can then be examined as an object in itself, fostering an appreciation of the 
relationships between the tactical choice of operator and the strategic goals. 

Larkin (1989), meanwhile proposes a program to show the structure of equations using various 
levels of tiles (p. 132) during the solution process, which she suggests might not only improve 
transformation strategies, but also the use of hierarchical representation. 

The “Algebra Workbench” (Roberts et al., 1989), “Algebraland” (Brown, 1985) and 
“EXPRESSIONS” (Thompson & Thompson, 1987) allow students to enter an equation and 
then have the computer carry out whatever formal operations are requested. For example, solving 
equations such as 2 + x = x/17 by hand involves transformations such as “subtract x from both 
sides” or “take the x over to the other side”. Transformations such as x/17 − x must then be 
known. However, in such a tutor the choice to initiate a transformation is made by the student, 
while the performance of that transformation can be executed by the computer (which is 
instantaneous, responsive and reliable, unlike a textbook, a busy teacher or a fellow student). This 
allows students to focus on the solution strategy rather than on the tactics of performing an 
operation. EXPRESSIONS converts each equation into a tree display; Algebraland shows 
solution paths in a tree; while the Algebra Workbench shows solution paths and can suggest a 
next step. APLUSIX (Nicaud, 1992) offers similar facilities for the factorising of polynomials. 

A non-computer attempt to achieve the separation of choice and execution is described by 
Shavelson, Webb, Stasz & McArthur (1988), and is characterised by Kieran (1992) as the teacher 
reminding students after each tactical “lower-level transformation” of the role of the 
transformation in fulfilling strategic “higher-level reasoning” purposes. Nevertheless, a reminder 
from the teacher to pay attention to “global” features of an equation is unlikely to be very 
effective with students who are struggling with the “local” difficulties of arithmetic and 
performance of algebraic transformations, and are rather unconfident about what those global 
features might be. Hence, the computer is extremely useful in taking care of these local 
difficulties. 
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Such interactive manipulators can provide vital feedback: Sleeman (1986) concludes that “Few 
pupils have evolved mechanisms by which they can verify whether a proposed algorithm is 
feasible.” (p. 52); but studies such as Lewis, Milson & Anderson (1987), Sleeman et al. (1989) and 
Anderson, Boyle, Corbett & Lewis (1990) seem to suggest that a learner can correct his or her 
strategic theories in the light of experience, as an AI system’s “self-diagnostic routine” might 
attempt to “debug” its reasoning procedures. 

The question also arises: can allowing students to focus on the strategic choice of operation 
actually improve performance of that operation? It would be interesting to examine the extent to 
which simplification theories are improved as a by-product of separating choice and performance 
of solution steps. 

However, in all of these activities, the assumption is made that students already have a concern 
for equation-solving and at least tentative strategic theories for formal operations. They also rely 
on a teacher or textbook choosing appropriate tasks for the student to tackle within the 
environment. They do not therefore seem by themselves appropriate as a first introduction to 
algebra. Nevertheless, Thompson & Thompson show how the EXPRESSIONS program can be 
used to explore arithmetic identities before introducing letters, thus increasing the accessibility of 
the Leibniz method. The “Marble Bag Balance Laboratory” of Roberts et al. (1989) comes close, 
in that it provides a context accessible to novice algebra students, but does not appear to 
introduce the transformations progressively. When the laboratory was piloted, quantitative and 
qualitative evaluations “suggested that the sixth-grade students could learn algebra concepts” 
(p. 265) in the context of the program. Although any improvements could not be attributed to 
use of the laboratory, since other software and Logo programming also formed part of the 
curriculum, testing appeared to indicate, in any case, that children had difficulty in transferring 
what they had learned within the laboratory to the “more traditional content of an algebra 
curriculum” (p. 265). 

3.5.10 Tutors 

Lewis, Milson & Anderson (1987) and Anderson, Boyle, Corbett & Lewis (1990) provide a 
computer algebra tutor underlying which “is an ideal model of how students should solve the 
[transformation] problems and a model of how students err.” (1990, p. 29). They also detail some 
of the tensions underlying the construction of such software. The tutor characterises skills 
acquisition in terms of symbolic manipulation goals (for example “collect constants”, “clean-up”, 
“distribute”); it is recursive in decomposing problems to primitive sub-goals; and lower-level 
goals are optional for the student if he or she can carry out higher-level goals. However, it should 
be noted that at this stage it does not seek to make the top level goals such as solving equations 
into concerns; and it does not introduce algebraic ideas piecemeal. Even so, its designers are clearly 
committed to increase the effectiveness of computer-based instruction from the typical “less than 
half of a standard deviation of improvement” (p. 43) towards the 2 standard deviations of 
improvement over standard classroom instruction that they cite as being common for human 
tutors. The success of such a mission would raise many issues; but from a cognitive point of 
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view, it would be most interesting to find out in what ways the explicit models of student skills, 
errors and learning assumed by the software can be improved. The tutor does not allow students 
to pursue “non-optimal” problem-solving paths, for example. 

Roberts et al. (1989) raise some further issues about such tutors: 

“Should the software know the best solution through a problem at any point along the way? Should 
the software allow students to make mistakes? How small should the steps be when the computer 
presents a solution (when multiplying both sides of an equation to eliminate fractions should the 
cancellation be explicit?)” (p. 263) 

Moreover, how responsive and adaptive to students’ thinking does a so-called “intelligent 
tutoring system” have to be? Sleeman et al. (1989) investigated “model-based remediation” in the 
context of learning algebra using human tutors. This is when a model of students’ thinking is 
developed, errors are pointed out and the consequences of the errors are discussed. This may 
include showing why an error is an error, by comparing the strategy with a rule such as “whatever 
you do to one side you must do to the other” or “if you want to undo add, use subtract” or “try 
to get all the unknowns on one side”; asking why the error is an error, which seeks comparison 
with such rules; or showing that an error is an error, for example by substitution. It was found, 
against expectations, that model-based remediation seemed to have a similar effect to straight re-
teaching, although there may have been methodological reasons for this result; in particular that 
the distinction between the specific model-based remediation and re-teaching employed in the 
experiment may not have been very great in practice. 

However, Kaput (1987) suggests that all such tutors, even though they may enrich the experience 
of symbol manipulation by providing “history windows” and interactive feedback, accept the 
reduction of mathematics to learning compartmentalised skills, and that students respond by 
using “ever more superficial learning strategies”. Alternatively, when Lesh & Kelly (1991) studied 
a “human simulation of computer tutors”, they found that as the human tutors developed 
progressively greater expertise, they spent less time trying to diagnose or correct students’ 
procedural errors, but instead emphasised multiple representations, and asked questions that 
encouraged manifold types and levels of interpretations and responses. But it is not clear from 
the report that such trends were independent of the nature of the problems that the students 
were tackling. Nor was the interaction between students and teachers in the study (via pre-
prepared email messages and “simple graphics that the teacher could create at runtime”) as great 
as the interaction possible between students and the interactive algebra tutors described earlier. 
Even so, the study’s results question the implicit assumption of some “procedurally-oriented 
types of AI-based tutors” that an evermore precise model of the knowledge state of a student is 
crucial to the improvement of that student’s theories. 

3.5.11 Games 

Edwards (1991) describes a slightly different model for learning using technology (in the context 
of “Green Blobs” - see Dugdale & Kibbey, 1986 - which links symbolic and graphical 
representations of equations): 
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• “Instead of directly teaching the properties of the mathematical entities, these entities are 
incorporated into a game-like situation, in which the learner must use them to solve a problem. 

• “In order to use the entities effectively, the student must understand how they work. 

• “This understanding is built through an iterative process of conceptual debugging: Students 
generate solution attempts based on their current model of how the entities work; if these 
attempts fail, they compare their internal model of the entities with what they see on the screen. In 
their next attempt, they refine their solution based on this visual feedback. The process continues 
until the learners have gained a sufficient understanding of the entities to succeed in the game.” 
(p. 7) 

Unlike algebra tutors and learning management programs, the learning that results from algebra 
games is (as far as the student is concerned) a by-product rather than an explicit aim. Of course, 
from the teacher’s point of view there is no difference in aims. 

On the other hand, Hoyles et al. (1991) raise questions about such programs: 

“Conventional wisdom asserts that by exploration and use of… computer tools and reflection upon 
computer feedback learners will come to understand the mathematical structures and relationships 
which have been planted according to a priori learning objectives. Our experience suggests however, 
that mathematical learning tends not to be unproblematic. Key issues of debate centre on the degree 
of explicitness and timing of pedagogical intervention whilst maintaining a climate of pupil decision-
making and exploration.” (p. 197) 

3.6 Conclusions 
As can be seen from this chapter, the reasons given earlier for gloom about the prospect of 
comparing activities can in fact provide criteria for comparisons between activities: 

• Different things work for different people 

But one can conjecture that, for a particular theory, activity A works for more students than 
activity B. While it would be a safer approach to assume that an appropriate choice of teaching 
strategy depends on the particularities of the student’s existing theories, it can be worth 
attempting to investigate the limitations of generalising about activities. 

• Contexts can limit 

But one can conjecture that activity A leads to a grasping of theories of greater transferability 
than theories encouraged by activity B. 

• Understanding is always incomplete 

But one can conjecture that activity A enables a deeper understanding than activity B. 

• Learning cannot not timetabled 

But one can conjecture that activity A takes less time than activity B to produce the same 
engagement. 

• An activity does not depend on its rationale 



Chapter 3 - Improvement 127 

But supporting claims can sometimes be challenged by comparing outcomes from different 
activities. 

• Benefit from an activity is difficult to measure 

But one can conjecture that activity A is of more benefit that activity B for a particular individual. 
We could be wrong, but the whole idea of helping someone to learn depends on the fact that our 
guesses are sometimes good. 

It may have been noted that a theme runs through this chapter. It has been suggested in section 
3.4 that meta-algebraic theories may be potentially useful by-products of engagement in algebraic 
problems rather than “causes” of failure. It was also suggested that concern to use equations can 
be a by-product of engagement in word problems, especially when software is used to support 
representation as a tool rather than as an end in itself. It has now been suggested in section 3.5 
that formal equation-solving theories can be by-products of engagement with a computer game 
employing a minimal level of diagnostic management, and in which a balance model and the 
separation of operation choice and execution might feature. If the representational and 
transformational aspects could be combined, it would appear that the reinterpretation of research 
into the learning of algebra using Popperian psychology has led to an instructional proposal. 
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Chapter 4 
A Proposal for Improving 

Students’ Equation Theories and 
Concerns 

4.1 Introduction 
This chapter draws together the arguments of the previous chapter into an argument for certain 
constraints on an activity that could productively test conjectures arising from the 
reinterpretation of the research literature from a Popperian perspective. 

It has been maintained that finding ways to turn problems amenable to algebra into concerns is 
crucial for improving algebraic theories. It has also been concluded that learning equation 
theories may best be done by constructing an activity that enables students to develop a genuine 
concern for symbolic algebra. 

A number of activities have been seen in chapter 3 for promoting representation: 

• attention to meta-algebraic theories 

• formalisation of method, using syncopation, recording of trial-and-improvement or 
tables 

• step-by-step extension of existing representations 

• word problem representation software: programming, spreadsheets, automatic 
equation solvers 

• expressing generality via patterns or rules. 

It has been argued that acquiring a concern for symbolic algebra should involve word problems, 
because the advantages of algebra over informal strategies can be appreciated. Formalising 
method and expressing generality may not be of such obvious value to a student (although 
several innovative counter-examples to this have been examined). Rather than being portrayed as 
the focal “causes” of failure, meta-algebraic theories can develop from engagement in problems 
in which symbolic algebra plays a mediating role. It was therefore suggested that a learning 
environment that provides syntactical and transformational feedback can effectively enable 
students to extend existing representation theories by tackling word problems.  
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However, such an environment may not be enough to enable students who have no prior 
knowledge of how to represent a situation using standard conventions to learn to represent 
situations. It may also not be enough to promote the Leibniz method for solving equations. The 
first section of this chapter looks at what advantages the balance model may offer in these 
regards. The second section formulates some conjectures that could be tested by computerising 
the balance model in certain ways. The third section describes the software environment that has 
been written as a result of this analysis. 

4.2 Rationale for using the balance 
model 

A number of activities for promoting transformation were seen in chapter 3: 

• attention to meta-algebraic theories 

• learning explicit rules for an expressions calculus, the Leibniz method or 
transposition 

• trial-and-improvement substitution 

• flowchart methods - undoing, inverse operations, cover-up 

• concrete models - balance scales, areas, cups & beans, lines 

• automatic equation solvers 

• interactive manipulators, tutors, games 

A rationale was reconstructed for each proposal, so that what these proposed activities might 
improve could be discussed and compared. The indicators of improvement used by these studies 
were considered critically; but although the test items came in for heavy criticism in chapter 2, it 
was not concluded that the items could in principle tell us nothing about children’s algebraic 
theories and concerns. What was seen, however, was that many of the “suggested implications 
for teaching” and rationales would be challenged by an activity, with certain characteristics, that 
promoted analytic uses of equations, as detected by a collection of those very test items that were 
used to justify alternative proposals. 

The balance model was found to have several advantages, in particular that it can promote the 
formal Leibniz method for solving equations by starting in a familiar, concrete situation. 
Moreover, if Lins (1992) is correct that the balance model is “one of the most popular didactic 
artefacts used to teach the solution of linear equations” (p. 208), then this in itself justifies an 
attempt to explore its deficiencies critically. Nevertheless, the model is seen to suffer from a 
number of severe limitations, including physical limitations, potential metaphor confusions, 
misleading letter interpretations, the use of unknowns not variables, ineffectiveness in promoting 
a cancellation strategy, and ineffectiveness in promoting conventional algebraic notation. 
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By combining the balance model with some of the features of interactive manipulators, tutors 
and games, it may be possible to overcome some of the limitations, and also give students an 
opportunity to create and test strategic theories. 

4.3 Questions and Conjectures 
The unifying influence of the Popperian psychological perspective enabled the construction of 
some conjectures from the vast research into activities for initial learning about equations. To test 
some of these conjectures, an activity with certain characteristics has to be constructed. The 
following table summarises the conjectures and the consequent implications for the activity. 

Conjecture Characteristics 

The balance model cannot effectively promote 
a simplification strategy of formal operations 
for solving simple linear equations. 

A balance context. 

Simple linear equations. 

No explicit Leibniz, transposition or expression 
rules. 

No encouragement for substitution or 
flowcharts. 

The balance model cannot lead naturally into 
negative signs, negative solutions, decimal 
coefficients, multiplication and division. 

Equations with negative signs, negative 
solutions, decimal coefficients, multiplication 
and division. 

The balance model cannot effectively promote 
a strategy of using conventional algebraic 
notation. 

Word problems. 

Conventional notation. 

The balance model encourages the view of 
letters as objects rather than numbers. 

Initial letters used to represent quantities (e.g. S 
for number of students) 

The balance model does not establish the 
power of algebraic symbols, because students 
can only consider procedures for manipulating 
symbols as meaningful when generalised 
arithmetic has established the need for algebra. 

Unknowns rather than variables. 

No expression of generality. 

No formalisation of method. 

Emphasis on finding a particular numerical 
value for x rather than developing general 
solution methods. 

The desired outcomes of the activity are firstly, improved strategic theories and concern to use 
the Leibniz method (once students have this they can appreciate why algebraic transformation 
might be useful for them); secondly, improved strategic theories and concern to formulate equations 
using algebraic notation (once students have this they can appreciate why algebraic representation 
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might be useful for them); thirdly, possibly, improved meta-algebraic theories about equations, 
expressions and letters. Whether or not such theories “underpin” knowledge, they can at the very 
least be useful as strategic theories in contexts other than the one in which they were created. On 
the other hand, one must remain sceptical about other proposed functions of such theories. 

Note that the following are target strategic theories: 

1. Taking the same quantity off each side of a balance makes it easier to work out an unknown 
weight. 

2. Taking the same number (known or unknown) off each side of an equation makes it easier to 
work out an unknown number. 

3. If you perform the same operation on each side of an equation, the answer is still the same. 

4. Performing the same operation on each side of an equation can sometimes make it easier to 
work out an unknown number [simplification]. 

5. Finding an equation to represent a situation can sometimes make it easier to work out an 
unknown quantity [utilisation]. 

But the following are not target strategic theories: 

1. If from two equal things the same quantity be taken away, the things will remain equal. 

2. In a balance, if the sides weigh the same as each other, there will be no tilting. 

3. In a balance, if there is no tilting, the sides weigh the same as each other. 

4. An equation is like a balance in that the left hand side is equal in value to the right hand side. 

5. In a balance or an equation, what you do to one side, you have to do to the other, otherwise 
equality will not be maintained. 

One issue involved in computerising the model is how much the computer automates. If too little 
of the transformation strategy is carried out automatically for the students (as with solving 
equations without a computer), the students may get so bogged down in the details of 
transformation that firstly, they fail to realise that transformation aims to make finding a solution 
easier, rather than constituting an end in itself; and secondly, the problem of representing a 
situation does not become a concern, because a representation entails angst about 
transformation. On the other hand, if too much of the transformation strategy is carried out 
automatically (as with computer symbol manipulators), why should the problem of developing 
strategic theories for transformation become a concern? 

One way out of this transformation dilemma is to use word problem representation software 
(spreadsheet, Logo, CARAPACE, etc.). The solution strategy is controlled by the student, but 
transformation is made easier by the computer carrying out the substitution of the requested 
number in the requested formula. However, in this case, the transformation uses trial-and-
improvement rather than formal operations on equations. One solution is to construct an 
environment in which firstly, students are permitted a very limited range of transformation 
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strategies; secondly, in which transformations chosen by the student are carried out by the 
computer; thirdly, in which it is obvious when certain transformation strategies result in a simpler 
situation; fourthly, in which the situation progressively becomes represented by conventional 
algebraic equations, and the transformations progressively become formal operations; and finally, 
in which the range of transformation strategies is gradually increased. 

Although several IT innovations have been attempted for promoting operations on equations 
(the algebra tutor of McArthur et al., 1987; the Algebraland software of Brown, 1985; the Balance 
Laboratory of Roberts et al., 1989; the EXPRESSIONS software of Thompson & Thompson, 
1987; and the algebra tutor of Anderson et al., 1990), none of these has simultaneously 
incorporated:- 

• the tackling of word problems in a challenging context 

• accessible success criteria at all stages (i.e. it is necessary to find a number, rather than to use 
certified representations or to perceive “underlying structure”) 

• an option for transforming the situation which becomes increasingly necessary as the 
problems get harder and informal strategies become more difficult to implement 

• the separation of the choice of operation to simplify from the execution of that operation 
(which obviates the need for arithmetic, and for accurate theories of operations on 
expressions and therefore allows students to focus on strategic operations) 

• the piecemeal introduction of algebraic notation to represent the situation more conveniently 

• a retreat from the context to extend the applicability of the representation 

• the introduction of a course of solving suitably chosen situational problems that can be 
tackled using equations to demonstrate the power of the extended representation 

A program incorporating all the above features (call it “EQUATION”) could allow four research 
questions to be explored: 

1. To what extent can EQUATION improve students’ algebraic theories and concerns, as 
measured by the test instruments developed here? 

2. How can these pre-post improvements be related to the students’ experiences of the learning 
activity? 

3. What are the limitations of the balance model? 

4. How do these effects compare with those of related activities in the research literature? 

The first research question relates to the possibility of transferable learning: 

“If pupils already have experience of using and manipulating symbols in computer-based 
environments, what effect could this have on their developing understandings within a paper-based 
algebra context?” (Sutherland, 1990, p. 171) 

The analysis in chapter 3 would suggest that if students could develop a concern for symbolic 
algebra then they may be better able to construct strategic theories not just for solving equations 
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and word problems away from the computer, but also (if what has been argued about the 
transferability of knowledge between problems is accurate) for certain representation and 
transformation items. Clearly, this conjecture can be explored. For example, with which students 
does EQUATION succeed and fail? With which problems, theories and concerns? Do students 
become aware that algebra is a tool? Cortes, Vergnaud & Kavafian state about a first attempt at 
using algebra in word problems that “The gap between the problem to be solved and the pupil’s 
knowledge creates a paradox which can only be resolved through the teacher’s tutorial activity.” 
(p. 29). Clearly, then, this assertion is testable. Aside from solving word problems, do students 
seek to express generality using algebra? Are there any improvements in meta-algebraic theories 
of equation objects, processes and relations?  

The second research question addresses the challenge of how to explain potential improvements 
identified in addressing the first question. One way of illustrating Popperian psychological 
analysis is to attempt the important task of reconciling pre-post testing with data gathered on 
students’ learning experiences with EQUATION. 

Conjectures and issues relating to the third research question have been detailed earlier in this 
section. 

Finally, the fourth research question is not intended to refer to a direct empirical comparison of 
learning activities using matched samples or random allocation, but relies on comparing 
EQUATION’s effects with those reported in the research literature for other initiatives. This is 
firstly because prima facie evidence that EQUATION can in fact improve theories and concerns 
in some way is required before such a direct comparison could be undertaken; and secondly 
because it is necessary to explore the effect of merely repeating the written test without overt 
learning activities having taken place. There are reasons for suspecting particular test items could 
show improvement merely because of a repeat sitting. The fourth question is raised rather 
because if EQUATION were to improve representation theories, this would potentially challenge 
the claims to pedagogical priority of activities such as: 

• practising the formalisation of method 

• expressing mathematical relationships in natural language before algebraic language 

• explicit consideration of meta-algebraic theories 

• practising the production of unclosed expressions as legitimate answers 

• the introductory use of letters to represent generalised numbers 

• lengthy experience making explicit “the transition from procedural to structural 
conceptions” (Kieran, 1992, p. 414) 

• explicit teaching of conservation of equation. 

It is also noted that EQUATION could, if it improved transformation theories, potentially 
challenge the priority claims of: 

• learning explicit rules for an expressions calculus, the Leibniz method or 
transposition 



• trial-and-improvement substitution 

• flowchart methods 

• waiting for “cognitive readiness”. 

Note that the reinterpretation of the research literature using Popperian psychology has generated 
the conjectures and questions above, which place constraints on what the software does and 
looks like. It is, however, possible to analyse the design of the program in greater detail, again 
using Popperian psychology, and this is done in chapter 5 as part of the description of the 
development of the program. EQUATION constitutes an integral part of this research, 
therefore, for three reasons. Firstly, the major constraints outlined above on its specification 
illustrate Popperian psychology applied to the research literature. Secondly, within these 
constraints, the particular decisions made in its development illustrate Popperian psychology 
applied to the design of educational software. Thirdly, in using EQUATION in empirical 
research, the conjectures and questions generated from the reinterpretation of the literature are 
explored. 

4.4 How does EQUATION work? 
EQUATION has now been written for Windows 95 and Windows 3.1. The program starts with 
balance puzzles that are accessible to many students’ informal strategies. The interface is that of a 
computer game rather than a tutor program. 

1kg 1kg 1kg10 kg
5 kg

1kg 1kg

 

As the puzzles get increasingly difficult, concern to use the Take off… buttons grows. These 
buttons eventually lead to algebraic operations on equations. Once students have shown they can 
solve the puzzles at a particular level of difficulty, they are promoted to the next level. Note that 
the levels are those of a computer game, not the National Curriculum. Students also get a score 
which depends on their speed and skill. Clearly there are issues of when to promote, what 
assistance to provide and how to acknowledge failure. Piloting of the software (outlined in 
chapter 5) has helped to shape policies. 

Level 1 involves up to 4 barrels, which weigh an integer number of kilograms. The puzzles are of 
the one-step form mb = c and b + c = d where b is the weight of a barrel, m is the number of 
barrels, and c and d are the total weight on one side of the balance. For Level 2, puzzles are of 
the two-step form mb + c = d or the one-step form mb + a = (m+1)b with a one-barrel 

Chapter 4 - Proposal 134 



difference between the sides (and potentially across the “cut” of Filloy & Rojano). For Levels 3, 
the puzzles are of the form mb + c = (m+1)b + d. The potential number of barrels and their 
weight increases at level 4, and halving is necessary in the three-step form mb + c = (m+2)b + d. 
Level 5 puzzles are of the form mb + c = nb + d where n is the number of barrels on the right-
hand side. Note that although division may be necessary, the answer is still ensured to be an 
integer. At Level 6, this restriction is eased to allow simple decimal or fractional answers (e.g. 
0.25, 2/3, 0.7), and lifted completely at Level 7. 

At Level 7, the weights are combined; and on Level 8 the barrels are labelled with a “b”, and 
there is just one button, labelled  − . Levels 9 and 10 replace the balance pictures with simple 
linear equations that could represent balance pictures. Levels 11 and 12 introduce negative 
answers and negative signs. 

EQUATION offers a major advantage over paper-based exercises. Although the student chooses 
the operation to perform, the computer executes it. This means firstly that attention can be 
devoted to strategic simplification decisions, without worrying about arithmetic; and secondly 
that students see the effect of an operation instantly, thus preventing pages and pages of error-
strewn workings: 

 

Suppose the student decided 
here to try to subtract an 
unknown (a typical error).

  

It is clear to the student now that subtracting was not a useful strategy. It is necessary to add. 

   

Note that this use of the balance picture as a “source domain” from which students can learn the 
“target domain” of the equation fits with the recommendations of Rumelhart & Norman (1981), 
based on their analysis of analogical learning: 

1. “[The source domain] should be based on a domain with which the student is very 
knowledgeable and in which the student can reason readily. 

2. The target domain and the source domain should differ by a minimum number of specifiable 
dimensions. 
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3. Operations that are natural within the target domain should also be natural within the source 
domain. 

4. Operations inappropriate within the target domain should also be inappropriate within the 
source domain.” (p. 358). 

However, they go on to say “Typically, no single model will suffice for any reasonably complex 
subject matter.” and they suggest the creation of several such models for the target domain. In 
introducing negative answers and negative signs within the equation domain, no new source 
domain is introduced. In this way, the limitations of the balance model are explored for research 
purposes, although ideally for teaching purposes alternative models should be introduced. 

The final levels contain word problems, similar to those in the research literature. They can be 
represented as an equation by using the Model button, which gives them some feedback on 
syntax. 

  

1. The 
problem is 
presented. 

2. Enter an 
equation. 

3. Solve the 
equation, by 
telling the 
computer the 
operations to 
perform.

4. Enter the 
answer to the 
problem. 

Level 13 involves a description in words of balance puzzles; Level 14 involves puzzles that may 
include negative signs; Levels 15 and 17 tends to be about combining ratios; and Levels 16 and 
18 require the use of expressions. By graduating the problems in this way it is hoped that students 
will develop five or six standard problem-situation schema (Berger & Wilde, 1987). 

EQUATION incorporates three further useful features. Firstly, students can enter their own 
equations into the computer. Secondly, teachers can prepare a standard file of puzzles for 
students. Thirdly, as in Thompson & Thompson (1987), each student’s puzzles and entries into 
the computer can be recorded in a log file. This means that a student’s problem-solving 
experiences can be re-played on-screen; the research is not limited by the number of video 
cameras or recorders available; and the data for a number of students can be easily analysed 
quantitatively if required (for example, to chart the abandonment of guessing as a strategy). 

This design addresses most of the “conceptual difficulties” of Cortes, Vergnaud & Kavafian 
(1990): the particular conventions of equations are made apparent; the “concept of the 
unknown” is clear; the equals sign is used to indicate equivalence; “pre-requisite” arithmetic is 
bypassed; and “detour behaviour” (simplifying before attempting to calculate the unknown) is 
encouraged. The homogeneity of an equation is not, however, addressed explicitly. With regard 
to the categories of Berry, Graham & Watkins (1994) outlined in chapter 1, the program 
combines several functions to some degree. It is clearly an interactive tutor, in that it has specific 
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learning targets; on the other hand it does not have extensive management capabilities, because 
the range of activities included is strictly limited (in line with the constraints outlined at the 
beginning of the previous section). It is a demonstration aid, in that an iconic display turns into 
an equation and into a natural language problem; however it makes no attempt to link multiple 
representations dynamically. It is clearly also an investigative environment for exploring the 
simplification of balance situations, operations on equations and the representation of word 
problems; on the other hand the range of options open to the student is limited. It is a problem 
solving assistant, in that it supports the development of algebraic strategies for solving word 
problems; and it can also act as a mathematical tool for solving equations and word problems 
given to the student by the teacher. 

4.5 Final Remarks 
Programming represents another way of interacting mathematically with a computer, and one 
that is, in many ways, of much greater potential benefit to a child than EQUATION. 
EQUATION is about the child “programming” the computer using algebra, but in a much more 
limited way than Logo, Boxer or Visual Basic. It is certainly about computers acting as “carriers 
of powerful ideas” (Papert, 1980, p. 4), but only in a modest way. It should also be pointed out 
that, as far as the students are concerned, algebra is introduced as a game; and then shown as a 
linguistic tool; and perhaps only later will they appreciate its other qualities. But it is primarily a 
research instrument rather than an idealised teaching activity, and in this sense it does have the 
potential to “challenge current beliefs about who can understand what and at what age.”, as 
Papert puts it. More levels are clearly possible - for example simultaneous equations, fractions 
(× and ÷ buttons), quadratics and re-arranging formulae - but this initial set of problems is 
sufficient to test the conjectures that have been devised above. 

In order to illustrate Popperian psychology, fieldwork will be carried out to explore the questions 
asked in this chapter. In particular, it is hoped to identify improvements in students’ algebraic 
theories and concerns using the pre-post instruments generated in chapter 2; to relate these 
improvements to the algebraic problems contained in the software; and to compare the 
improvements with the initiatives described in chapter 3. The empirical research will be a success 
if it contributes something towards finding out about the extent to which a computerised balance 
model could enable students to use algebraic symbolism to explore problems. 
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Chapter 5 
Fieldwork 

5.1 Introduction 
The previous chapter described a proposal to improve students’ theories and concerns that would 
illustrate the theoretical arguments of this research and provide prima facie tests of conjectures 
arising from the reinterpretation of the research literature. That chapter therefore set the major 
constraints on the fieldwork. This chapter provides details of the development, planning and 
execution of the fieldwork. 

As has been seen in the previous chapter, the fieldwork requires a student activity that can promote 
particular learning in particular ways; research instruments that can detect such learning and provide 
a comparison with other activities; and arrangements that can allow data collection on the 
relationship between the activity and the learning. 

With regard to the activity (EQUATION), chapter 4 has examined the major constraints on its 
design - constraints set by the need to test the claims arising from the analysis of the research 
literature. This chapter summarises the development and piloting of EQUATION, including the 
many minor practical design decisions that had to be made, their reasons, and the pros and cons 
of alternatives. 

With regard to the research instruments, chapters 2 and 3 provided a large number of test items 
that might detect learning while at the same time allowing comparison with other activities. This 
chapter summarises the development of a written test instrument that incorporates some of these 
items, and supplements them with questions designed to probe equation concerns and 
consideration independently of particular mathematical problems. This includes the use of 
interviews. 

The major constraints on the student activity also tend to place limits on the arrangements for 
data collection. However, many minor decisions had to be made in practice, arising out of 
negotiation with the teachers collaborating in the research and constrained by the available 
resources. This chapter summarises these arrangements, from the earliest pilot work to the three 
main experiments. The nature and extent of data collected are indicated. 
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5.2 The Development of EQUATION 
Popperian psychology can provide three criteria against which the potential of an activity for 
promoting certain target theories could be judged: 

1. there are problems for which target theories offer advantages over existing theories; 

2. there are mechanisms for these problems to become concerns; 

3. there are opportunities for the target theories to be created and tested. 

These are not “all or nothing” characteristics of the activity. For example, changing an aspect of 
the activity could change the problems and hence the relevant “existing theories” and 
consequently the “advantages” offered by the target theories. Similarly, changing an aspect of the 
activity could affect the mechanisms for turning problems into concerns, or the opportunities for 
target theories to be created and tested. Therefore, different options for changing the activity 
might be judged “better” or “worse” against these criteria. So what are being sought (as argued in 
chapters 1 to 4) are improvements to problems, mechanisms and opportunities for the target 
theories of operating on equations and formulating equations to find an unknown number in a 
situation. 

Note, however, that in the early stages of EQUATION’s development, the perspective was not 
fully elaborated, and so the construction of the program was rationalised in less constrained 
terms. 

5.2.1 The BALANCE Program 

If struggling with procedures gets in the way of understanding the strategy of simplification by 
operating on both sides of an equality, and if this strategy does not depend on algebraic symbols, 
could less abstract experiences be provided to promote the strategy prior to formalisation? The 
first version of EQUATION (called “BALANCE”, and started in February 1996) was intended 
to correct some of the deficiencies identified by Soh (1995) in the pictorial textbook experience 
and the findings of Schliemann et al. (1992) that children rarely use such a strategy spontaneously 
to find unknown weights on physical balance scales. 

BALANCE gave feedback on answers, allowed arithmetic to be bypassed in the way described in 
the previous chapter, allowed experimentation with strategies without the need for re-drawing or 
crossings out, allowed a variety of strategies, but visibly showed the benefit of simplification. It 
did not pretend to be “concrete”, but provided a constrained environment in which the range of 
possible confusions was reduced because the range of actions was limited. At this stage there was 
no intention to make a link with algebraic symbolism, or to test the limitations of the balance 
model. The program started with barrels on both sides - barrels so that the weights of actual 
objects did not intrude and so that there could be a wide variation in the possible weights of the 
objects used. There were 5 levels, and it was possible to skip up to the next level if desired. 
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Equations could be entered to be turned into pictures, but there was no algebraic notation 
introduced in the program. 

The basic rationale was simple. Since the balance puzzles are initially accessible to informal 
strategies - such as guessing, cover-up, matching or part-reasoning - more sophisticated strategies 
such as trial-and-improvement, graphs or inversing are not necessary. As weights and barrels 
appear on both sides, and the numbers involved get larger, informal strategies are harder to 
implement; but the Take Off… buttons allow the puzzles to be simplified without arithmetical 
error. It is usually obvious that the situation is simpler after using the buttons. By separating the 
task of deciding what to do from doing it, developing strategic theories for the latter can be left until 
later, leaving the student free to refine strategic theories for the former. Given this problem 
situation, mechanisms to turn the problem of simplification into a concern included: accessible 
success criteria (finding an unknown number in a concrete situation); a game-like interface in 
which success in solving the problems is rewarded by a score and a new challenge; the likelihood 
of early success; few penalties for failure and encouragement of experimentation; the usefulness 
of competition and collaboration with one’s colleagues; the futility of giving up (not even a hint); 
colourful pictures; minimal reading and writing; minimal requirements for prior knowledge or 
help from external sources; potentially worrisome arithmetic is bypassed; tolerance for 
experimentation allows curiosity to explore what the Take Off… buttons do; and the puzzles are 
easy once the target strategic theory has been constructed. 

Larkin (1989, p. 131) suggests some criteria for a display that attempts to represent a theory: 

1. It should be isomorphic to the theory. 
2. It should not imply spurious relations. 
3. It should use the standard notation. 
4. “… ordinarily difficult processes should be represented by easy perceptual 

processes”. 
5. It should be memorable. 

Lewis, Milson & Anderson (1987) note in addition the interface should minimise keystrokes and 
mouse clicks, it should be highly interactive, it should be responsive to student errors and it 
should keep to a minimum the number of parts of the screen to be scrutinised. These principles 
capture something of the initial rationale for the interface, although - as will be seen in the next 
section - certain of these aspects needed to be improved. 

A number of design decisions were made that seemed reasonable at the time, given the limited 
aims of this first attempt at the program, but which could now be questioned. 

For example, the balance is never seen to tilt. Therefore the balance shown on the screen is 
largely iconic, and the point of removing items from both sides is not made. One way of making 
this point, suggested one teacher involved in the research, is to see the balance wobble when the 
items are removed; or the items could be removed from one side just before the other, and the 
balance starts to tilt before moving back. However, it could be argued – citing the psychological 
principle of learning occurring in response to concerns – that this feature would serve no useful 
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purpose as far as the student is concerned; it has no impact at all on the actions that need to be carried 
out, and would add to background “noise” merely to try to satisfy those already in-the-know that 
some sort of attention was being paid to this aspect. The same would apply to showing - at the 
same time as the balance picture - an algebraic representation of the situation on the screen, or a 
line graph, the “ghosts” of removed items, or a record of actions and past balances,. No doubt 
more mathematically sophisticated users of the program would find much of interest in such 
representations, but the activity is intended for precisely those who do not have such prior 
concerns. A better solution to the problem of promoting the need for taking the same items from 
both sides would appear to be requiring separate buttons for each side; the student would then 
have to discover that taking the same items from both sides was the only way to achieve balance. 
Unfortunately, this has disadvantages too. If the program restricted the student to taking off only 
those items which have a corresponding item on the other side, one non-algebraic strategy would 
be to take off as many items as allowed from one side, and then do the same to the other. On the 
other hand, if the program allowed all the items to be taken off, the student could end up in a 
situation in which it was impossible to find the weight unless items could be put back on. In this 
case, the non-algebraic strategy of clearing off all objects except for one barrel and putting 
weights progressively on the other side would work. In any case, having to remove from both 
sides makes simplification twice as cumbersome, and so makes it less attractive than alternative 
informal methods. Most importantly, this feature detracts from the idea of simplification by 
subtraction. The problem of finding a way for the program to promote doing the same operation 
to both sides still remains, although dealing with negative signs might eventually address this. 

Alternatively, when a wrong guess is made, the balance could tilt appropriately. Firstly, of course, 
this might seem counter-intuitive - after all, the barrel has a weight, independently of what is 
guessed, so why would the mere action of guessing affect the physical situation? Therefore, in 
order to provide a physical model for guessing causing tilting, the barrels could be seen to be 
replaced by the guessed weight before tilting, and then returned to equilibrium when the barrel is 
reinstated. More significantly, this guess-and-tilt feature would encourage a strategy of trial-and-
improvement. Now this may be very desirable, as it could perhaps be turned into algebraic 
substitution. However, it is the idea of simplification by operating on the equality that is the 
target theory, rather than of substitution. In chapter 4 a number of theories that are not targets 
were described. In particular, the following were not target theories: “In a balance, if the sides 
weigh the same as each other, there will be no tilting”; “In a balance, if there is no tilting, the 
sides weigh the same as each other”; “In a balance or an equation, what you do to one side, you 
have to do to the other, otherwise equality will not be maintained”. Nevertheless, a guess-and-tilt 
feature could be useful in a future version of the activity, perhaps as a separate series of levels, so 
as to avoid confusion with the promotion of simplification. 

Another decision was that items are removed by clicking on a button to call up a “dialogue-box” 
in which the required number of barrels or kg can be entered, rather than the perhaps more 
natural method of dragging-and-dropping. This was because drag-and-drop again runs into the 
difficulty of more attractive non-algebraic strategies. Interestingly, one researcher when shown 
the program immediately attempted to transpose a barrel from one side to the other, because 
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“getting the unknown by itself” by moving things between the sides is the algebraic strategy he 
uses. Another objection to drag-and-drop is that it makes weight-splitting seem unnatural: 
although the removal of “items” has been talked about, this is not quite the same as removing 
“objects”. A 10kg weight can have 1kg removed if necessary. By experimenting with such 
operations, students can quickly discover that the actual weights that are present are not 
significant - it is their total. Automatic weight-splitting offers an advantage over the textbook 
approach, which can cause confusion on this point. Such confusion of course raises the question: 
why have different types of weights at all? There were a number of reasons behind this. Firstly, 
showing single weights would have made a visual matching strategy easier than removing weights, 
even when the numbers get large (because whole rows can be matched at a time); and it would – 
for those without a matching strategy – have necessitated lots of potentially error-prone counting. 
Secondly, Schliemann et al. (1992) show that children tend to use idiosyncratic methods based on 
the particular weights present; so showing totals from the start might have prematurely made the 
assumption that students were convinced that the particular weights could be ignored. Thirdly, 
showing different types of weights rather than totals would make a matching strategy easier when 
the numbers are small - and this was seen as a good thing because such a strategy would lead 
naturally onto removing matched objects completely when the numbers got larger. Finally, 
several “mathphobic” adults who tried the program commented that they found the solid, multi-
coloured pictures more reassuring than a spartan total number would have been. At a higher 
level, the multiple weight pictures were replaced by a single total weight, once it was considered 
that the simplification strategy had been grasped, (and hopefully therefore that only the total was 
important). 

The dialogue boxes can provide an example of the many minor interface improvements that took 
place, that do not greatly affect the promotion of mathematical strategies and so are not discussed 
here. Many students clicked on Take Off Barrels ; then entered a number; and then, rather than 
clicking OK (as is customary under the Windows interface), clicked Take Off Barrels again. This 
had the effect of recalling (and blanking) the dialogue box rather than removing the requested 
number of barrels (as might have been the student’s intention). Now of course it would have 
been possible to make the Take Off Barrels button disappear once it was clicked, or provide a 
beep to indicate this was not a possible action (as is current Windows practice). Instead, because 
there was little confusion caused by such an action, re-clicking the button was changed to remove 
the barrels. Many such interface design issues occurred, and of course there were myriads of 
purely programming design decisions that had to be taken; but they are omitted from this 
account because their significance is considered small with respect to the research conjectures. 
Nevertheless, interface issues such as this one or programming issues such as the speed of 
operation can lessen the opportunities for concerns to be grasped and for strategic theories to be 
created and tested; and so can contribute to the learning environment that is under scrutiny. 

Confusion can arise over the representation of the scale pans. Many students know from personal 
experience in the playground or from science experiments, that the distance of an object from the 
pivot of a seesaw affects how much the object makes the seesaw tilt. Nolder (1991) has described 
how a student was distracted by the positioning of the objects. The decision was taken to show 
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the scale pans schematically on the screen. The evidence available from piloting this version of 
the program seemed to suggest that there was no confusion on this point. 

Another decision was to “grey out” each Take Off… button when it was no longer applicable. 
This was to draw attention to the fact that the button was no longer useful - which may go a little 
way towards emphasising that it must be possible to remove the same items from each side. This 
feature was also there so that greying out would act as a prompt on later levels involving negative 
answers and negative signs that a certain action was no longer helpful. However, it would have 
been perfectly possible to allow the entry of attempts to remove more items. Such attempts 
would, moreover, have provided an insight into students’ appreciation of the possible actions. 
Nevertheless, it was considered important that in the early stages of introducing simplification, as 
little as possible should interfere in the efficient grasping of the strategy. The program should 
then, in later stages, ease this restriction, so that careful thought would be required as to whether 
the action was useful. 

It was adversely noted by one teacher that attempting to take off impossible weights, or wrong 
guesses were not signalled. Although correct answers are acknowledged (with text, a noise, and a 
picture), no other feedback is given. This was to encourage experimentation - vital at this stage if 
the strategy of splitting weights is to be grasped, and important later when negative signs come in. 
However, there could be more feedback. What happens if the students get stuck? How are they 
to understand the reasons why what they wanted to do could not be done, or why the answer was 
wrong? How do they know that the computer has understood their entry? At this stage there was 
no real answer to these questions, and we return to this point later. 

Another decision was to keep the order of weights and barrels constant. So although the program 
varies the sides - so you could get both “20kg weighs the same as 2kg plus a barrel” and “2kg 
plus a barrel weigh 20kg” - you couldn’t get “A barrel plus 2kg weighs the same as 20kg”. There 
were three reasons for this. The first reason was purely opportunistic: it was easier to program 
fixed positions, and - like the idea of having just barrels rather than a variety of objects of 
unknown weight – order did not seem crucial to grasping the strategy of simplification. 
Moreover, it was conjectured that there would be very few students who would fail to appreciate 
that the order of weights and barrels was not a relevant factor in either the value of the unknown 
weight or the simplification strategy for finding it. The second reason was slightly more subtle: 
keeping irrelevant variation initially fixed (against the spirit of Dienes’ variability principles) was 
seen as a good thing, because it would allow students to focus on the more important aspects of the 
situation (such as the numbers of barrels and the total weights) rather than to be side-tracked by 
issues of lesser importance. The variation should, of course, be introduced at some point in the 
program, but an interesting question is at what point. The third reason for a fixed order is to do 
with this point, and makes sense within the context of the move to algebraic symbolism, and so is 
discussed later. 

The decision to generate puzzles randomly (within the parameters of each level) was taken to avoid 
recall or copying being of use, to minimise the possibility of idiosyncratic strategies based on 
particular numbers, to provide a modicum of variety and to save the bother of creating puzzles 
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by hand. However, the puzzles could have been fixed, so as to ensure a full variety of cases were 
tackled, to ensure progression within each level, and to provide standardised questions for 
comparing students. Another possibility was random generation from a bank of puzzles. The 
advantages of random generation were roughly considered to outweigh the advantages of “given” 
puzzles. At this stage, variety was to be achieved by the researcher, teacher or student choosing 
the moment for the move up to the next level; and by constructing the levels so that variety 
within a level would be only a minor factor in determining the difficulty of a level and in any 
comparison of students. 

A decision that outraged one teacher was the apparent measurement of “weight” in kilograms 
rather than Newtons. This decision was angst-ridden. On the one hand, personal experience has 
taught that neither “mass” nor “Newtons” are as familiar from life outside school to students as 
“weight” and “kilograms”; on the other hand, science teachers have long complained about the 
confusion between the ideas of mass and weight, and between their units, that could perhaps be 
minimised by consistent usage of the terms in all classes. And in this artificial computer 
environment, surely measuring the weight in Newtons can be enforced without doing much 
damage to the student’s grasp of the situation? Nevertheless, the overriding consideration here 
was making the situation as accessible as possible; even though guilt was only partially assuaged 
by the thought that usage in just this one program would be unlikely in itself to be enough to 
sway students either to or from the confusion. 

It could be argued that the BALANCE program should be just one of a number of activities used 
if the general effects of IT on learning were to be studied. However this was not the intention of 
the research, nor could it have been a feasible objective within the constraints of time and 
resources. Moreover, in many ways having such a sharp focus would have the advantage that 
more attention could be given to identifying instantaneous learning outcomes in as much detail as 
possible, isolated as far as possible from other algebraic activities. The main disadvantages of 
using just one activity would be firstly a lack of breadth of experiences, which would limit the 
scope of the conjecture-testing; secondly a smaller time-scale and range of environments over 
which to assess learning; and thirdly a lack of comparison with other activities. In order to 
mitigate the second disadvantage, detailed evidence would have to be collected from the 
classwork and not just from a written instrument and interviews. The third disadvantage is partly 
addressed by selecting items that can be compared with activities studied in the literature. 

5.2.2 The EQUATION Program – Pre-symbolic 

So that this activity could be used in a wider range of school computer systems, with fewer 
installation obstacles and licensing issues, and so that certain interface features could be made 
more user-friendly, the program was re-written in Microsoft Visual Basic 4 (rather than VBA for 
Microsoft Excel). In order to emphasise the change in aims of the activity – from an attempt at 
correcting textbook deficiencies in one aspect of a “concept” to a research tool for exploring the 
improvement of certain student theories and concerns – the program name was changed from 
“BALANCE” to “EQUATION”. 
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A primitive mechanism for promotion to the next level was also introduced – 5 puzzles solved 
correctly without error would enable promotion; several errors would mean extra puzzles might 
have to be solved. A score was displayed. Although such one-dimensional assessments of 
progress can be confidence-sapping, this score could only increase (as in many computer games). 
The dangers of competition – such as a concern to increase score rather than appreciating the 
learning “for its own sake”, and diminished self-esteem for those with low scores – were carefully 
thought about, but were eventually accepted, given the motivational advantages from portraying 
the program as a game rather than a set of exercises. 

The program was trialled with a variety of people, to improve the interface and functionality. In 
most cases, no more than half an hour was spent on the program. 

Firstly, four pairs of students aged 10-13 at School B used the program. The school is a middle 
school on the outskirts of a town in the South Midlands. The two Year 8 students soon got the 
idea of simplifying the situation to solve problems, and rapidly attained the highest levels. This 
usage suggested that the program did not start, perhaps, at an unreasonably high level, and that 
progress through the program was not guaranteed to be patronisingly slow. The students had met 
equations before, but only one of the students seemed to appreciate the connection (“Have you 
done anything like this before?” “Yeah… like equations”). Their teacher commented that it was 
really simultaneous equations where their difficulties lay, rather than with linear equations in one 
unknown. However, no testing was carried out as part of this trial. It would be possible to 
incorporate some simultaneous equations levels in the program in the future, but these were not 
seen as vital aspects at this stage. 

All four Year 7 students found the idea of subtracting barrels and weights an obvious thing to do, 
despite no experience of equations. However, the idea that if 2 barrels weigh 10kg, one barrel 
must weigh 5kg was not immediately obvious; and various guesses were tried. After two 
problems like this, they got the idea of dividing (although they found the arithmetic, even in cases 
like 12 ÷ 3, to be taxing) and once they were prompted to enter the calculation they wanted to do 
(i.e. a fraction) as an answer, they had no further difficulties with the program and attained the 
higher levels. This suggested that each level should contain at least 3 problems of the same type 
before moving on, to give the students a chance to confirm their strategies before the 
introduction of greater complexity. Moreover, the decision to allow fractional answers (such as 
“5/3” or “1 2/3”) seemed to have been vindicated, in that were this not the case, progress with 
simplification would probably have stalled. 

On the subject of fractions, it was decided that the program should not insist on lowest terms, 
because it is the solution process (rather than the form of the answer) that is being emphasised. 
This does mean, however, that students can get into the syndrome of entering a string of 
characters (such as 12/3) without necessarily appreciating that a simple numerical answer is 
available. It was suggested by an adviser that students should see the simplest answer displayed, 
when “Correct” is shown. But would this really address a student concern? A better method may 
be to introduce levels on which lowest terms were required, although this does not address an 
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algebraic theory. An alternative, then, would be to insist on lowest terms on levels where a  ÷  
button is available, so that the student ends up having to construct an algebraic theory. 

Neither Year 6 student found the idea of subtracting barrels and weights at all obvious. They 
initially tried to solve the picture of x + 13 = 20 by trial-and-error. After prompting about the 
Take Off… buttons, one of the students suddenly got the idea, and would happily subtract as a 
first step. However, he would always subtract one barrel at a time, even when there was more 
than one barrel on each side. The other student struggled with the idea of subtraction. Whether 
this was because she considered it “cheating”, whether she was intimidated by her colleague’s 
confidence, or whether she just did not appreciate the value of subtracting is not clear. 
Nevertheless, these two students made it to level 4 of the program, with some prompting about 
fractions. 

There was some enthusiastic comparison of scores, and three of the students apparently returned 
in their own time to attempt to beat the highest score reported. Although discussion between the 
students was limited (see later), the existence of a score did not seem to inhibit questioning - 
“Can you add weights?” asked one Year 6 child, in a situation something like 
37kg + 4 barrels = 9kg + 5 barrels (adding 3 kg might have made the subtraction 37 – 9 easier). 
On the other hand, diminished self-esteem might be an unlikely characteristic to be clearly 
observed. 

Minor improvements to the design of the program were made in the light of this trial. These 
included providing a background to fill the whole screen, thus removing superfluous windows 
from view, and reducing the chance of multiple loading of the program. Minor bugs were 
corrected. The promotion mechanism (which had functioned incorrectly) was made more 
sophisticated, and now used the time taken to solve each puzzle and the number of actions as 
factors. Because the Year 6 students found certain puzzles – particular those with barrels and 
weights on both sides – on the existing first level much harder than others, it was decided to 
insert two levels before this one (the levels were then re-numbered). This meant that the new first 
level introduced the ideas of subtracting weights and dividing weights separately (and mentally); 
the new second level then allowed puzzles in which subtraction and division might both occur, 
and also puzzles in which there was only a one-barrel difference between the sides. So those 
students who struggled with the old first level would now find the same puzzles on level 3 easier. 

This gradation of the first level meant that the age for which the program is appropriate could be 
explored. A six-year-old was given the program to play with. Although she was shown how the 
interface worked by her parents, she continued with it in her own time, and determinedly stuck 
with it, by herself, without deliberate pressure from adults. (Judging by her grasp of language, she 
was a rather advanced six-year-old). She reached level 5, and then was distraught to discover that 
she could not save her work. A save option was left out not only because experience had shown 
that file-handling on school networks led to frustrations for students and teachers alike; but also 
because it was hoped to be able to see what happened when students returned to the program, in 
particular to what extent the strategies had been remembered. It was also seen as useful revision, 
and the new promotion mechanism meant that very little time was wasted in starting from Level 
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1. The Enter an Equation button would enable teachers or students to skip to a higher level, 
should this be desired. Alternatively, by this time an option for loading a file of pre-prepared 
equations had been added, so that each student could tackle the same problems, and so that 
higher levels could be introduced more quickly. 

A small number of teachers did not like the word “guess” on the button allowing entry of the 
weight of a barrel. This, they suggested, would encourage precisely that - guessing - rather than a 
more algebraically sophisticated strategy. It has to be pointed out that this was precisely the point. 
Informal strategies should be encouraged, because students construct their concern to find better 
strategies only by their existing strategies being put under stress. After all, if informal strategies 
prove to be more attractive than simplification in the long run, then why bother with 
simplification? The evidence from trialling appeared to be that blind guessing as an initial strategy 
was used by only an extremely small proportion of students. Meanwhile, nearly all students 
seemed able to experiment with all the buttons on the screen - encouraging such experimentation 
was another aim of using the word “guess” to license failure. 

In response to the earlier questions about providing more feedback, an option was incorporated 
into the program to give messages to indicate why certain actions were not possible, to indicate 
why certain entries were invalid, to indicate that the answer was wrong, and to suggest ways 
forward if the student appeared stuck. The presence of a Give Up button also became optional. 
Nevertheless, as had been expected, the message features were much less popular than the 
standard version of the program. The excitement that so many students exhibited when using the 
standard version was rarely found amongst the 4 or 5 people who tried the message version. One 
or two when questioned about this even pointed that “It is much more fun to find things out for 
yourself” than be patronised in this way. Rather than the curiosity engendered by a computer 
game, the message version encouraged the view that this is a “program that teaches you maths”, 
with all the negative connotations that that might inspire in some. Experimentation, commitment 
and tenacity were noticeably diminished. In reply to those earlier questions, then, it appears that 
in the absence of such messages, students do their best not to get stuck, or use the Give Up 
button as a license to tackle a fresh problem, or trade insights with their friends. They work out for 
themselves what might be going wrong or what the computer might intend, and (as we shall see), 
their explanations are something equally wrong, but these can be put to the test and the 
minimalist approach allows them to see failure as a step on the road to success. 

One “bug” in the program that remained unfixed for some time was actually seen as a “feature”. 
If the weight on one side of the balance went over 385kg (as it could do, on some levels), there 
was the possibility that not all the weights could be seen. For the sake of interface simplicity an 
expanding window was not implemented; and the illegibility of shrunk weight pictures precluded 
that option. The easiest solution would have been to limit the total weight on a single side to 
385kg. However, this was not done, because it was felt that students would gain an appreciation 
of the value of the simplification strategy if the only way they could solve the problem was by 
removing sufficient items from both sides so that the weights on the obscured scale pan could 
then be seen. However, there were puzzles in which even doing this would not make all the 
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weights visible. Again, these puzzles could have been excluded from generation, but it was 
thought that the principle that no one method was sufficient for all problems would be promoted 
by the only feasible strategy - intelligent guessing to eliminate the possible values. However, many 
teachers and students found this occurrence to be annoying; and once the study of the research 
literature was complete, it was found that this insufficiency principle did not form part of the 
conjectures being tested. So the bug was fixed. However, entry of puzzles that would be only 
partly visible was later allowed, to give teachers the option of promoting the insufficiency 
principle, and to allow students to experiment with the larger range of puzzles. 

Some adults who considered themselves “non-mathematical” enjoyed using the program very 
much. Several of these were, however, reluctant to use the Take Off… buttons, preferring to 
demonstrate their mental arithmetic skills. It was noticeable that complete simplification was 
rarely carried out even as far as Level 5. However, in situations where they were not confident 
about the results they used the Take Off… buttons rather than guess, and thereafter were happy 
to use the buttons on each puzzle. Although virtually all teachers who have tried the program 
have particularly praised the bypassing of arithmetic, some researchers have disliked this because 
students would not be able to practise their arithmetic and would, in exams, have to carry out the 
simplification without a computer. Nevertheless, several teachers have suggested that students 
would, in any case, want to bypass the Take Off… buttons if they could calculate the sums 
quicker in the head and thus gain a higher score. Moreover, the issue of “not being able to see the 
wood for the trees” (i.e. not being able to grasp the point of algebra because of arithmetical 
difficulties) was seen as a very real issue by various teachers. 

5.2.3 The Move to Algebraic Symbols 

When students have finished solving the balance puzzles, do they then understand the algebraic 
strategy of simplification? It seemed unlikely that the purpose of symbolic algebra would be 
automatically clear. So promotion of pre-symbolic simplification was not enough - further levels 
were required to introduce the algebraic symbolism. Moreover, it was conjectured, based on 
experience of variations of the balance situation, that the transition to equations with negative 
signs could be better made by moving away from the balance situation rather than trying to adapt 
it (e.g. by using balloons or “negative weights). Alternatively, new situations (as described in the 
previous chapter) could be introduced. Tackling the physical limitations of the balance model 
requires an attempt to introduce negative signs, and negative solutions; however decimal 
coefficients were left until the modelling levels - a decision that occurred by default, and that 
could now be questioned. 

On the level after multiple weights were reduced to a single total weight on each side, a level was 
added labelling barrels with the letter “b” and turning the two Take Off… buttons into a single 
Subtract button. The next level replaced the balance picture with an algebraic equation, but 
returned to the use of two buttons for removing unknowns and constants; the level after re-
introduced a single  −  button. The idea was to introduce algebraic notation gradually as a 
convenient abbreviation; while the de facto separation of operation decision from operation 
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execution obviates the need for an initial requirement for accurate theories of operations on 
expressions. The letter “b” had to be chosen in order to maximise the potential for an “object 
view” of letters, as outlined in the constraints on the research activity in chapter 4. Levels with 
negative signs and negative answers were also added, thus breaking with the balance model. 
Finally one modelling level was added. The concern mechanisms are just as before, although it 
must be pointed out that the transition to conventional algebraic notation is intended to be as 
unthreatening as possible. Some adults trying the program found the jump worth noting by a 
worried noise such as “Mmm!”, “Ooh!” or “Oh no!”, but very few children did so - the closest 
some came was “Ah!”. 

A further reason for a fixed order of weights and barrels was intimated earlier. When an equation 
appears on the screen for the first time, where a balance picture used to be, the intention is to 
encourage the view that the equation is merely a shorthand for the balance situation. This is in 
line with the idea of attempting to facilitate the transfer of the simplification strategy from 
balance puzzle to equation. By fixing the position on the screen of the weights and barrels, there 
can be an exact match between the order of weights and barrels and the order of constants and 
unknowns; and this match helps to encourage the shorthand view. However, there are two points 
that need to be made. Firstly, should the variation of this fixed order occur before or after the 
transfer to symbols? If before, the advantage is lost of matching weights to constants and barrels to 
unknowns; if after, the advantage is lost of understanding that the variation does not affect the 
solution or strategy in terms of moving objects around on a single scale pan. Since the variation 
was never implemented anyway, this question did not have to faced. But a compromise would be 
to introduce variation prior to the level on which the single Subtract button appears, return to 
fixed positions on that level and the symbolic one after, and then return to varied positions from 
then onwards. The second point is that the failure to introduce variation meant that the equations 
selected for solution on the written test were coincidentally in the “wrong” order, so those who 
did not grasp the unimportance of order would not have an adequate strategy to tackle the item, 
and thus potentially diminishing any improvement in facility. It would have been useful to have 
included some test items checking what the effect of varying order might be. 

A feature that is suddenly of prime importance when there are negative signs is the role of 
feedback. By instantly replacing the equation when an operation is selected, the effect of that 
operation is seen straightaway, rather than misconceived ideas about what it does being 
incorporated into the method of solution, as is possible with pencil-and-paper. This speed of 
feedback makes it less likely that the student will lose the thread of what they are doing. 

Changes were again made to the design of the program. 

The effect of pressing the Give Up button was changed from reducing score and allowing 
another puzzle on the same level to be tackled to slipping back a level. This was because it was 
recognised that if students moved on too quickly to higher levels (for example, they were entering 
or loading equations that they could not solve, or had not acquired an appropriate strategy at the 
previous level), there had to be some means for them to return to a lower level. 
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The scoring was improved by being multiplied by a factor of 10. This not only made the scores 
appear more dramatic (and more like the scores on video games or pinball machines), but 
allowed greater diversity in score - which would go some way to countering the false impression 
that there was a fixed path through the program. For similar reasons, a bonus score was added 
for speedy solution. This also meant that the Year 8 students who had tried the program before 
would have been able to move up to higher levels more quickly. The loss of score on giving up 
was fixed to be roughly the equivalent of having to solve another 1½ puzzles; wrong guesses lost 
1 point (about 5% of the standard score for solving a puzzle); and the speed bonuses were fixed 
so that it usually required at least 3 goes to get onto the next level. 

The Enter an Equation facility was improved. Firstly, equations entered with solution 0, negative 
signs or decimal coefficients were now allowed, because with the introduction of symbols, there 
was no longer any need to reject equations that do not conform to the limited balance model. 
Secondly, entered equations were also now allowed to use letters other than “b”. Unfortunately, 
none of the symbolic levels ever introduced letters other than “b”. This was a serious failing, 
because students would be expected to use other letters on the modelling levels. Finally, a major 
change occurred that at first sight might appear entirely internal, and without implications for the 
visible operation of the program. A module that checked entered equations were legal and linear 
in one unknown was replaced by an all-purpose algebraic module written for another program. 
This other program (called Noy) was originally - before it was decided that one activity could 
provide sufficient data to test the research conjectures - destined not only to provide all the 
computer algebra system facilities (simplification, solution, factorisation, expansion, substitution 
and iteration) required by students tackling the activities, but also all the algebraically-useful 
facilities of a graphics calculator and spreadsheet. Noy had the advantage over its nearest rivals 
(Derive, Excel and the TI-82 calculator) that it was much easier to use (one-key simplification, 
solution, graphing, tabling, etc. rather than multiple menus and entries) and free (therefore not 
placing any licensing limits on the number of students or schools involved in the research). 
Although the user would see no difference in operation, the use of this all-purpose algebra 
module meant that modelling levels could be much more flexible in accepting equations. For 
example, brackets, division and multiplication could be entered. 

The idea that the computer could record all the students’ interactions in a “log file” for research 
purposes was important. This idea meant that it was possible to obtain data from every student 
using the program, no matter how many computers, researchers or videos were available. Of 
course such a log has advantages and disadvantages compared to other means of collecting data, 
and these are discussed later. But an immediate impact of this innovation was that in developing 
the program it was possible to reproduce exactly what the student did and saw. 

The Subtract button was re-labelled as  −  so as to minimise the words that have to be 
understood, and to provide a standard subtraction button throughout. The Subtract unknowns 
and Subtract numbers buttons on the symbolic levels were also replaced by this  −  button, 
because few difficulties had been observed in using the button for either the balance pictures or 
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the equations, and the move back to two separate buttons did not seem to offer much of an 
improvement. 

On levels 9 to 11, there is no  +  button, so the  −  button is firstly disabled when the equation 
reaches the form ax = b (where a and b are positive); and secondly, when the equation has a 
negative answer (on level 11), the program prevents the user reaching a state where the  +  
button is required, e.g. -40 − 10x = 0. Students could of course always add 40 by subtracting -40, 
but the intention of the level with negative signs was ensure that the student realises as quickly as 
possible that the answer has to be negative if ax + b = 0 or ax = -b, rather than to explore the 
effect of subtracting negative numbers. On level 12 and the modelling levels, however, the 
buttons are never disabled, which forces students who are not yet confident of their strategy to 
consider the circumstances under which the operations are appropriate. 

The program had also previously used whatever letter the student had used in his or her 
equations for all equations on levels 9-12. This was changed to “b” as standard, because some 
had experimented with entering equations before they had moved from pictures to symbols, and 
would therefore not have the advantages and disadvantages of “b for barrel” as a mnemonic. 

One mathematics teacher suggested that for many Year 10 students, the re-arrangement of 
formulas presents great difficulties, especially the move from numerical coefficients to variable 
coefficients. The original intention was to add levels requiring ÷ and ×, followed by re-
arrangement of formulae and simultaneous equations. This did not happen, however. 
Development time was perhaps the most significant constraint on the range of algebraic 
problems that could be incorporated in the program; but it was also realised (when the study of 
research literature was complete) that there were more than enough ideas to test in an activity 
computerising the balance model, moving to symbolism and introducing modelling.  

One suggestion, from several people, for improving the program, was to keep each equivalent 
equation on the screen. This would make the program more like AlgebraLand (Brown, 1984), 
which shows a trace for each solution attempt. However, such a trace would, in this program, not 
help to introduce or address target concerns. Moreover, by increasing the apparent complexity of 
the situation each time an operation was attempted, the trace would interfere with the theory that 
the Leibniz method can make the situation simpler. On the hand, it must be admitted that such a 
trace is an attractive device that may clearly aid the understanding of more complicated 
operations than addition and subtraction (such as factorisation, or formula rearrangement), 
because comparing a resulting equivalent equation with the previous equation can be made easier 
if the previous equation can be seen rather than remembered. This would have an advantage over 
an “undo” facility, in that it would be possible to compare the equations visually term-by-term. 
Longer traces would later enable the comparison of different solution methods, perhaps made a 
concern by requiring the shortest solution path. 

It was found at School D that students would enter answers such as “34/7b” or “34kg/7” rather 
than “34/7”, and that these answers were accepted by the program. The first answer could in 
principle cause great confusion if transferred to paper; while the second is at best clumsy, and is 
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counter to the principle of dealing with pure numbers rather than quantities in order to aid the 
transfer of strategies from balance puzzle to equation. The program was duly altered to allow 
only the third type of answer. 

For some teachers, the issue of the level at which to start students weighed heavily. Although this 
has to be a matter of judgment, it should be noted that someone who has thoroughly grasped the 
appropriate strategies can take just 3 minutes to get to the first symbolic level. On the other hand, 
when the students at School D started their second lesson, they were encouraged to experiment 
with the Enter an Equation button as a challenge to find an equation as hard as the ones they 
were solving the previous lesson, and some of their entries are very interesting in terms of what 
they might indicate about their understanding. When the students at School E started their 
second and third lessons, they were given equations to enter. This was problematic for some, 
who may have benefited from revision of the early levels, but there were constraints of time 
(algebra was not strictly part of the Year 7 curriculum). 

So for example: 
50 + 11b = 34 + 13b would take them to Level 4 (balance puzzles with a two-barrel difference); 
98 + 3b = 46 + 15b goes to Level 7 (balance puzzles with fractional answers); 
2.1 + 5x = 1.4 + 12x goes to Level 10 (symbolic notation); 
5 − 6x = 2 + 17x goes to Level 12 (equations involving negative signs). 

Should they end up at too high a level, the Give Up button allows movement down the levels. 

5.2.4 The Modelling Levels 

A science teacher at School B thought at first glance the balance pictures were to introduce the 
idea of moments. This misconception inspired the inclusion of a wider range of puzzles via the 
modelling levels. The research literature yielded a large number of problems, but a decision had 
to be taken about which word problems were to go into EQUATION, and which into the test 
(see later). Contingent limitations of the symbolic algebra program module meant that problems 
for the computer would have to be considered solved by the student entering a single numerical 
answer. Concern mechanisms are similar to those listed earlier, with the addition that the 
continued availability of the  −   and  +  buttons (that have been so useful) is intended to bestow 
confidence. 

Other decisions centred on the role of equations in the solution. Firstly, in order to conform to 
the principle that students must discover that their existing strategies are inadequate, it was not to 
be a requirement for the Model button to be used to solve the problem. This meant that some 
students initially used other methods (such as blind numerical trial-and-error, operational trial-
and-error, trial-and-improvement, or parts reasoning). When they subsequently became stuck on 
higher levels, it was often necessary at School D not only to point out the Model button, but also 
to redirect them to a previous level in order to explore how it might work. 
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A second decision was that the computer would disallow illegal equations (giving feedback on 
incorrect syntax, e.g. displaying a message saying that a letter was required, or that there had to be 
an equals sign, that only one letter could be used, or that the equation was just not understood by 
the computer), but that inadequate equations would be allowed (i.e. the equation was syntactically 
correct, but would not obtain the correct solution to the problem when solved). Illegal equations 
were treated this way because the program would be sometimes used by those who had never 
formulated an equation before, and needed to be aware of the specific constraints on the form. 
But the acceptance of inadequate equations meant that when students solved the equation (a 
solution of which they would now be confident, because they were using the computer in the 
same way as previously), their attention would almost inevitably be pulled back to the original 
equation. They would then be able to improve the model. It is much harder to simulate this 
process when using pencil-and-paper; firstly, because there isn’t usually any immediate feedback; 
secondly, because students are not confident that they have solved the equation correctly; and 
thirdly because they cannot easily see the effect of re-working the equation. 

Why was it expected that those without prior algebraic modelling experience would be able to 
cope with these levels without teacher intervention? It was with this question in mind that at first 
some of the problems that were judged to be more difficult to formulate were moved to another 
level; and then the problems were graduated over four levels (the “types” of problems were listed 
in the previous chapter), with the first modelling level (13) containing only word descriptions of 
balance puzzles. Therefore, the students have been solving balance puzzles over Levels 1-8; they 
have, in effect, seen these balance puzzles being represented symbolically, for the first time on 
Level 9; they have solved a variety of equations, many of which could be interpreted as 
representing balance puzzles; and the first word problems they have to solve are descriptions of 
balance puzzles. 

Some of the problems at higher levels (e.g. “Think of a number”) started to cause difficulties for 
those students who earlier had had successful strategies by thinking in terms of combinations of 
objects, but who now had to construct each side using operations on an unknown number. It 
may have been preferable to find some way for this challenge to the object interpretation of 
letters to have come prior to modelling (which has its own complexities). 

Moreover, it was found at School D that there were difficulties with problems for which the 
obvious choice of unknown quantity to be labelled by a letter was not identical with the unknown 
quantity requested in the word problem. For example, the driving problem caused great 
frustration for many students when it asked how far had to be driven after lunch rather than 
before. Not only did they have to contend with formulating an equation expressing a more 
complex relationship than earlier, but they also had to realise that if they constructed the equation 
d + 7.9d = 445, their answer would have to be multiplied by 7.9. Even if they noticed the 
discrepancy, most were tempted to try to re-formulate the equation rather than use the found 
quantity to carry out the simple calculation (in most problems) that would have obtained the 
quantity required. For this reason, the program was modified for School E so that the word 
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problems were graduated over 6 levels rather than 4; and problems with a potentially problematic 
choice of unknown were reserved for the higher levels. 

Another design decision was that once an equation is formulated, each side is simplified to 
standard fixed linear form so that it can be solved using the strategic theories already learned for 
formal operations. In this way, it is made easier to formulate and solve an equation than to use 
guessing, numerical trial-and-improvement, operation trial-and-error, part-reasoning, simple 
arithmetic, graphs or inversing. So for example, in the wallet problem, brackets can be introduced 
prior to any rules about how to simplify or expand them. Students did not seem to find this 
automatic simplification confusing on the whole, but one or two students (and David Hewitt, 
creator of Grid Algebra) noticed that, because of the fixed order for constants and unknowns, the 
program in effect rearranged their entered equations for no apparently good reason. Another 
criticism that could be made (and one that was made against computer algebra systems earlier, in 
the context of formal operations on equations) is that learning how to factorise and expand are 
not promoted as strategic theories because the computer does it for them. Nevertheless, there 
does not seem any great harm (and some advantages) in using brackets to represent situations 
before one knows anything about how to deal with them formally. 

The choice of names of individuals featured in the word problems was tricky. Rather than 
attempting to stick to the original names found in the research (which may have been tied to 
particular circumstances) or rewriting the problems to be name-free (which would have made the 
problems more wordy and less attractive) - names were randomly selected from a bank of original 
names, and those students who piloted the program. This had the advantage of not favouring any 
one name for any particular problem, thus neutralising any potential for recall of strategy being 
based on recall of name. The equal likelihood of the names being male or female also minimised 
possible gender stereotyping. Although the actual scenarios might not be free of gender bias 
(scarcely yet “cultural bias”), an attempt was made to create a number of scenarios for each type 
of problem, and each level selected from an appropriate bank of problems. Of course names and 
scenarios could be added to the program - the teacher could even prepare a file of such problems, 
which the students then load using the Get a file of equations button. However, unlike the built-
in problems, the program cannot randomly vary the parameters, or randomly select problems 
from the file. 

The numbers in each built-in problem are randomly generated within sensible limits. This was in 
order to minimise numerical recall as a strategy, although little could be done about operational 
recall, beyond creating a number of similar problems involving slightly varying relationships. 

When piloting the program, two adults who had previously expressed great dislike for word 
problems at school progressed very fast through the levels, and particularly enjoyed tackling the 
word problems using the program. They were soon building up expressions on Level 16. The 
feature, mentioned earlier, whereby no buttons ever become inactive on the modelling levels, was 
found to be extremely interesting to a number of those using the program, who took advantage 
of this to experiment with simple algebraic manipulations. One feature that was added after this 
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was that the previous equation could be clicked to recall it for editing, thereby making it easier to 
improve on the model, because it did not have to be retyped. 

Nearly all the teachers who tried the program expressed approval of EQUATION’s approach to 
introducing algebra; on the other hand, several advisers who tried the program wanted to know 
what the prerequisites for the program might be. Perhaps the demand for “prerequisites” is 
symptomatic of a concern that students with certain existing strategic theories may have 
unfortunate experiences with the program; but since they consistently failed to specify what these 
theories might be, perhaps it is symptomatic of a view (which Vygotsky, 1978, characterises as 
typically Piagetian) that students should not face problems before they are “ready” in terms of 
cognitive maturity. Meanwhile some mathematics education researchers who tried the program 
independently pointed out that the program could not be considered to encompass all algebra. 
The issue as to whether the program “covers” all algebra was not one that was ever given any 
priority - after all, what could such a program look like?! Nevertheless, this comment could be 
aiming (quite fairly) to determine what aspects of algebra are not addressed by the program. The 
apparently obvious suggestion that it does not help with dealing with variables is, as has been 
discussed in the previous chapter, one of the conjectures that is being tested. 

5.2.5 Further Piloting and Changes 

The only strongly negative comments came from a teacher whose school had just purchased an 
Integrated Learning System, and she considered that using another computer program for 
mathematics would confuse students. In particular, the ILS introduces new topics “only when 
they’re ready”, and who is to tell whether they are ready for EQUATION? This would appear to 
rather diminish the learning-management role of the teacher. It should be noted that this teacher 
had not yet used the ILS with any of her classes, nor did she know how to select algebraic topics 
as opposed to any other. 

One teacher proposed a printed certificate indicating students’ progress, demonstrating that the 
students have not been wasting times in lessons. On the other hand, the level is a pretty good 
indicator of what has been grasped already, and the last two digits of the score give an indication 
of progress through the level. Another teacher suggested cross-referencing against the National 
Curriculum and providing a list to the teacher indicating what skills each level introduced. The 
most obvious relevance of EQUATION to the National Curriculum is at NC Level 6, which 
demands the ability to “formulate and solve linear equations with whole number coefficients”. 
This then provides the foundation for simultaneous equations, re-arranging formulae, and solving 
inequalities at higher levels. However, it is a corollary of this thesis that EQUATION can in fact 
provide a purpose for symbols to describe situations and hence the use of letters to represent 
variables. This, then, has immediate relevance to the KS2 Programme of Study in Number: 
“Pupils should be given opportunities to… progress to interpreting, generalising and using simple 
mappings, e.g. C = 15n for the cost of n articles at 15p, relating to numerical, spatial or practical 
situations, expressed initially in words and then using letters as symbols”. 
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The two 9-year-olds at School C (see later) were able - given an hour a week, for 4 weeks - to get 
to Level 14 of the program, with minimal intervention from the researcher. This confirmed that 
the program did not require major changes to improve accessibility. The students also showed 
great enthusiasm. On the final day, they showed such a determination with the program that they 
worked furiously for 75 minutes without a break. 

When the program was used at School D (see later), it was found that the first lesson was a great 
success in terms of accessibility - all the students were on task for a whole hour, and 90% got to 
the modelling levels. The second lesson was less successful - from Level 14 onwards severe 
difficulties started to emerge, and off-task behaviour increased dramatically. Nobody managed to 
solve a level 16 puzzle unaided. The increased frustration that was noted by both researcher and 
teachers led directly to the subsequent further graduation of the word problems. An additional 
suggestion from one teacher was to have the modelling levels accessible through a separate 
button on the program, so that the student would have the satisfaction of knowing that they were 
now accomplished in solving simple linear equations, and any frustrations felt with modeling 
problems would not affect that feeling of satisfaction. 

5.3 The Development of the Test 
The choice of individual items for the test - and the knowledge they might indicate - has been 
largely dealt with in chapters 2 and 3. This section considers the test as a whole. 

The test was intended to provide a snapshot of the algebraic problems that a student could solve; 
to supply clues as to the strategies that the student might be using; and hence to indicate potential 
improvements as a result of using EQUATION. However, as will be seen when the subtleties of 
individuals’ work in class are compared with what they write down when attempting the test, such 
a “before and after” written test that can be completed in an hour and that attempts to test all of 
initial algebra - including equations, expressions and variables, although excluding functions and 
graphs - is only a crude instrument for detecting improvements in strategic theories. Why then 
use a before-and-after extensive, 45 minute written test? 

It is clearly not because of some notion that the only appropriate research techniques for 
assessing student’s understanding are quantitative measurements (Popper, 1934, 1963). The main 
reason is simply that of ease of comparison with other studies. The research issues, the 
conjectures, the interventions, the tests, the data collection arrangements, and so on, do not form 
themselves in a vacuum; nor are they predetermined by some sort of logical dissection of the 
meanings of words. They have arisen as a result of complex interactions between judgments 
about the best ways to illustrate the perspective, constraints on what is feasible in practice, 
negotiations with the teachers involved in the study, expectations about what is possible and 
expectations about what might happen; hence this chapter attempts to capture the most salient 
aspects of such interactions. 
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Since some conjectures related to the potential for transfer between different problems, an 
extensive test was devised in preference to testing in greater detail only those aspects of algebra 
that EQUATION ostensibly aimed to improve (i.e. equation-solving and modelling). This did, 
however, limit the extent to which item variations could be used to explore more precisely the 
limitations of the relevant strategic theories. The items used in the interviews were different 
versions of a small number of the written items. The interview schedule was designed with a eye 
to it being used as a working document for discussion about differences in responses in the post-
interview. 

There was limited room in a test that had to be completed in under 45 minutes; a time limit set so 
that it would fit into a single lesson and so not take up too much of the Year 7 students’ time (for 
whom algebra was not an explicit part of that year’s scheme of work), nor add too much to the 
already large test burden on the Year 10 students. So, what with the need for a clearly legible font, 
reasonably-sized diagrams and spaces for “working out” included on the test paper (to minimise 
student effort in moving between a question sheet and an answer sheet), the original 11 pages 
had to be reduced substantially. This was done by removing items that seemed similar (using 
judgment about the similarities of the strategic theories that were expected to solve the items), 
and splitting the test into two - the second test was intended to contain those items that only 
someone who was able to get most of the first test correct should tackle. In the event, the 
maximum score of any student in the study on the first test and first attempt was 74%; only 
around 10% of the students got over 60%; and those who were given the second test found little 
they could do; so it was not thought worth using the second test for comparisons. 

Piloting of the test with a variety of individuals suggested that 45 minutes was a reasonable length 
of time to tackle the test. However, when the final version was used as part of a regular school 
lesson of an hour’s length at School D, great variations in working speed were found. Some 
students ran out of time, and speed of response was not intended to be a factor here. The 
number of items (43) is also deceptive. The first section (Patterns) consists of 2 groups of linked 
items (7 in total); the second section (Modelling) contains only 3 items, but may each require a 
much longer solution time than other items; the third section (Representation) contains 12 items, 
many of which involve short symbolic answers, but also reading a description or studying a 
diagram of a situation; the fourth section (Transformation) contains 21 items, but many can be 
answered quickly with only a moment’s thought. The number of items could probably have been 
reduced to a smaller set, like the items used for interview; but Year 7 at School E was given the 
same test as Year 10 at School D so that comparison between the two age-groups would be 
possible. 

Could a more compact test have sufficed? Looking at the quantitative results obtained for these 
four classes, little would have been lost by omitting Patterns items A1(i), A1(ii), A2(i), A2(ii) and 
A2(iii); Modelling items B1 and B3; Representation items C1(i), C1(ii), C1(iii), C2(i), C7 and C8; 
and Transformation items D2, D4(i), D4(ii), D4(v), D6, D7, D8, D9, D11 and D12. These 23 
items were largely unchanged between test sittings, and the correlation between the test without 
them (20 items) and the test with them (43 items) is about 0.98 (and not less the 0.9 for any one 
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class). Qualitatively, however, there are interesting features about the lack of change shown in 
these items, and about strategic theories and concerns evidenced by responses to them. 

Although all the Year 10 students would have nominally covered all the topics addressed by the 
paper, only a few of the Year 7 students would have met any of the topics. The order of items 
was therefore important to avoid students accidentally missing out items that they might be able 
to attempt, because of worries induced by so many alien questions. The Patterns and Modelling 
items - with the exception of A2(iv) - do not require algebra in the item text or solutions; so these 
sections therefore had to come first. Since the Patterns items required fewer steps, these were put 
on the first page, and Modelling on the second. Although the Representation items involved 
more text than the Transformation items, they were considered marginally easier; and so came 
next. In each section, an attempt was made to put the items in ascending order of expected 
facility, to minimise student anxiety; although in the case of linked items (A1, A2, C1, C2, D1, 
D3, D4) the ascending order was internal. On the evidence of the Year 7 and Year 10 classes, this 
judgment was about right, although C5 and C7 were found to be harder than C8, and the order 
for D4 onwards was mistaken. 

The choice of word problems for the test was a difficult one. A1(iii) is a variant of the patterns 
questions suggested by Küchemann (1981); the sequence B1 is from Sutherland (1993); B2 is 
from Lins (1992); while B3 is a “Think of a Number” problem that can be modelled by an 
equation of the form ax + b = cx + d. B2 is found in EQUATION; B1 and A1(ii) are not; while 
there are variants of B3 in the program. There were many other alternatives choices here.  

One error has already been mentioned - the accident by which the order of unknown and 
constant in D3 was the reverse of that arbitrarily fixed in EQUATION. Another error related to 
the creation of a post-test. On the whole, the wording and the structure of diagrams in the post-
test stayed the same as the pre-test; but numbers and symbols were changed so as to minimise the 
possibility of recall. One error in preparing the post-test was that the rectangle whose area had to 
be found in C1(iii) changed from of a width 3b and length 4b to a width of 4c and a length of 3d. 
This erroneous change clearly resulted in improvements in this item’s facility in all classes. There 
is always the possibility that other changes can cause more subtle, undetected effects. 

The test items are not identical to those found in other studies. Wordings and diagrams were 
changed in relatively minor ways to minimise potential linguistic confusions. For example, 
compare B2 with Lins’ original formulation which included arrows pointing downwards, referred 
to “Sam plus bricks” with 189kg just below, did not include scale pans but did include a second 
diagram showing the balanced situation. Finally, it should be pointed out that the test results were 
presented to the students’ teachers as a means of formative assessment. 
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5.4 The Development of the 
Questionnaire 

The first phase of the fieldwork at School A aimed to see what was realistically possible to find 
out about the theories that relatively successful students (i.e. A-level students) might have about 
what sort of thing an equation is; and to construct an interview schedule for accessing such 
theories. 8 students (chosen by the teacher for an interesting cross-section) from two Year 12 
classes were interviewed in pairs about their “consideration” (perceptions, experiences, 
rationalisations, opinions) of objects, processes and relationships, reasons for changes in 
knowledge. So, for example: “What sort of thing is an equation?”, “What verb do you connect 
with equations?”, “What does the equals sign tell you?”, ”What do the letters mean?”, “Is an 
unknown called that because it doesn’t have a value, or because you don’t know it?”, “Do you 
think there are equations to which no-one knows the answer?”, “How are equations and graphs 
connected?”, “How do you like equations? Have you always regarded them this way?”, “What are 
the most interesting things you have done involving equations?”, “What do you think about the 
view ‘Students should not use calculators or computers until they have understood and learnt the 
ideas thoroughly.’?”. 

Interviewing pairs was found to be helpful in that there was less pressure on each student, and 
the disagreements and clarifications of each other’s responses (even when one student did much 
more of the talking) were very informative. This pilot work was also helpful in improving 
interview techniques. 

Yet as has already been indicated, later work became increasingly sceptical about the role of such 
abstract rationalisations in students’ mathematical understanding. So while the data which 
resulted from the interviews could be analysed from many possible perspectives and with many 
research questions in mind, when analysis was limited to considering just the questions of 
immediate relevance to this research, the data proved less than complete. It was only teachers’ 
comments, for instance, that provided the insight that the students did not necessarily connect 
the end results of trial-and-error, simplification, factorisation, crossing the x-axis and numerical 
methods. The relationship between consideration of equations and the theories used to handle 
equation-related problems was simply not uncovered by the interviews. Moreover, the evidence 
did not seem to support the view that students had a well-established and consistent perception 
of an equation. Students also found it difficult to recall clearly improvements in their own 
knowledge and to relate them coherently to potential causes of improvement. These negative 
results seem to suggest that the proper context for examining algebraic understanding should be 
that of tackling algebraic problems rather than that of recollecting past experience. Students’ 
theories are, it has been argued, far more accessible through observing their active strategy-
making than through relying chiefly on their rather faltering and often contradictory responses to 
interview questions about the meanings of words 
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Nevertheless, some of the interview questions were adapted for use in interviews with students 
before and after using EQUATION. But rather than seeking stable images that could “explain” 
or “underpin” understanding, these later interviews sought theories about equations primarily as 
insights into concerns. The intention was not to find out how and why “students’ views about 
what sort of thing an equation is” change, linking up with mathematician’s views about what sort 
of thing mathematics is, and educators’ views of what education is; but to identify the concerns 
that such views address, and their relationship to the strategic theories that enable participation in 
mathematical activities. 

On the other hand, this work demonstrated that relatively unstructured audio-taped interviews - 
of around half an hour - with pairs of students on decontextualised issues of consideration can 
reveal some features not only of theories about algebraic objects, but also of algebraic concerns. 
For example: none of the students even referred to terms, operations or expressions. Only one 
student used the word “solve” to refer to equations, despite the interviewer’s unregulated use of 
the word. No-one referred to defining, assigning, equating or expressing. Proving only arose 
when initiated by the interviewer, and one teacher (there were two formal interviews with the 
students’ teachers) suggested that students tend to be unconcerned about the proofs they are 
shown. Expectations of the usefulness of equations appear to be generally low: other than 
seeking “formulas” in investigations or coefficients for standard curves in Physics experiments, 
students did not seem concerned to pose problems solvable using equations or to form 
equations. A teacher ventured that students say they have never made up equations because they 
see investigations as describing a pre-existing rule. As she put it, the students “just want to get the 
right answer” and lack a “need to want to know”. On the other hand, students were not observed 
in situations where their control over the problem agenda would have been sufficient to allow 
them to demonstrate such concerns. 

Moreover, since the need to get beyond clichés and truisms into “underlying” views of what the 
students “really” thought an equation to be was no longer quite so pressing, the obligation on the 
part of the interviewer to be proactive in helping the students’ towards introspection (yet without 
unnecessarily initiating ideas) decreased; so that it was eventually possible to countenance a 
written questionnaire that might obtain data from a less narrow range of students, although data 
of admittedly less richness. Questionnaires were trialled with the A-Level students. As expected, 
the richness of the answers was reduced, but much of the diversity and commonality seemed to 
be still apparent. These questions were refined in the light of the questionnaire; and several 
questions were discarded or combined because vital questions were missed out when the 
interviews overran. The interview questions were simplified for the Year 6 students at School C; 
while the questionnaire was simplified and shortened for Schools D and E. More in-depth 
interviews with some students during the later fieldwork allowed distinctions to be made such as 
that about “method” - a method for finding answers in a practical situation, a method for solving 
an equation, a method as a set of arithmetic operations on numbers or letters standing for 
numbers, etc. As will be suggested below, however, interviews and questionnaires are not perhaps 
very informative when given to students who have had little explicit algebra teaching. 
Nevertheless, subsequent changes after using EQUATION can be interesting. 
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5.5 Data Collection 

5.5.1 School A 

Because the point of operating on an equation - making solution easier - often seemed to be lost 
in the struggle to remember algebraic rules and deal with arithmetic, the early pilot work for this 
research asked: what “images” do reasonably successful equation-solvers have of an equation that 
enable them to make sense of algebra? It might then be possible to provide a variety of 
experiences to suit these different images. It was expected that “balance” would be one image, 
perhaps “function machine”, “graph” and “statement” would be others. 

The earliest study involved interviewing A-Level students at an 11-18 comprehensive in a town in 
Oxfordshire, and observing their lessons. The 4 pairs of students were chosen by their teachers as 
exhibiting a variety of approaches to learning. The interviews were followed by observation of 
two Year 12 classes. The students undertook coursework over three to four weeks into numerical 
methods for solving equations. They used graphics calculators (to explore graphs, and produce 
tables of values), Excel (to speed up calculations in the various methods) and Derive (to 
differentiate functions and draw cobweb diagrams), including worksheets and suggestions. I sat in 
on the lessons, talking to students about their work, helping them with any technological 
problems, recording their conversations about equations and related topics, and taking notes. 
Video-recording was briefly considered as an option, but would perhaps have added little, and 
may have acted as a distraction over such a small time-scale. Audio-recording of interviews was 
used, but proved to be of limited value in the classroom. The teachers gave brief comments 
about individuals’ progress after each lesson. There were then brief post-interviews with students, 
and longer teacher interviews. 

However, the results suggested that although a case could be made that the anticipated images 
(and some others) were “there” in some sense, they did not seem to play the expected role of 
underpinning thought processes. It seemed perfectly possible to be unable to explain clearly what 
sort of thing an equation is, or to rationalise experiences using incommensurable images, and yet 
still be able to do all the mathematical things with equations that one might expect from 
somebody with “understanding”. When even quite reflective and eloquent adult mathematicians 
were unable to match up to the exacting standards apparently required for “relational 
understanding”, it was realised that such images were not after all pivotal in knowledge or 
learning. If learning could not be portrayed in terms of the grasping of images, there would be 
fewer cognitive insights into struggling beginners gained from observing A-Level students using 
technology for numerical methods than from observing Year 8 students learning about equations 
for the first time. 

Moreover, it would be important to gain insight from students’ talk as they worked on problems, 
otherwise there would be little evidence of success with regard to detecting improvements in 
theories and concerns. It would be important for both teachers and researcher to tell students 
less, and instead discuss with them what is being asked, and what they might do. Steps would be 
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taken to promote more individual problem-solving, without lengthy introductions from the 
teacher - hence the development of a specific activity. Observation might also perhaps have 
gained greater insight into exactly how, when and why theories change by continuously recording 
the interactions between selected individuals, rather than attempting an observation of the whole 
class. 

5.5.2 School B 

So when EQUATION was trialled at School B, the data collection was of this style. The students 
worked in pairs, and their talk while solving the problems was audio-recorded; but the computers 
were sited in the library, and the silence of the room may have intimidated them somewhat. They 
were more communicative when there was background noise, but the recorder consequently 
failed to pick up this discussion. It may be preferable, therefore, to have the students work on the 
problems in their normal surroundings, and use personal microphones. An atmosphere of 
informality in other trials of EQUATION seemed conducive to discussion. The 4 pairs of School 
B students (one pair from Year 8, two from Year 7, one from Year 6) were selected by their 
teachers without negotiation - probably on the basis that they were seen as able students, 
although it would have been preferable to have a wider range of students. 

5.5.3 School C 

The first substantial study was at School C in June 1997. As with Schools A and B, this primary 
school in a town in Oxfordshire was chosen purely because it was local, taught children of the 
appropriate age, and had enthusiastic teachers who wished to make better use of computer 
facilities. 

The study involved just two Year 6 students, selected by their teacher as likely to appreciate the 
greater challenges that EQUATION might afford them over and above their work in class. After 
pre-interviews, they used the program for about an hour a week for 4 weeks. They were then re-
interviewed to find out how their views and responses to specific items had changed. They were 
given items to do by hand, and also with the aid of the computer. 

This was the first opportunity for the log file to be used. The idea of the computer recording in a 
log file all the students’ interactions with EQUATION was a valuable data collection technique. 
It meant firstly that there was at least some indication of every student’s experiences, no matter 
how many students were in the class; secondly that detailed observational notes did not have to 
made on what was visible on the screen at a particular time; thirdly that the study was not limited 
by the number of observers, audio-recorders or video-recorders; and fourthly that it was possible 
to replay, at any speed (including real-time or in synchronisation with a tape counter), the puzzles 
faced by a student or pair, the actions they took, and what they saw on the screen. Jumping to any 
level, puzzle, step, time or counter value is allowed, as is searching for particular actions or types 
of problem. Other tools allow the creation of a “script” that summarises these interactions at 
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various degrees of detail and also gives the times, a chart for showing how long each puzzle took, 
and a chart for showing how long each level took. 

Of course there are disadvantages of such arrangements. The impression might be gained that 
only what is logged is of interest; whereas the discussions, mutterings, glances and gestures that 
are not logged may be very valuable in conjecturing the status of the problems being addressed. 
Although the discussions and mutterings of the two students at School C would have been 
picked up on the audio-recorder, video might well have been seen as intrusive (in a way that the 
audio-recorder was not), and so glances and gestures were observed by the researcher. However, 
inconspicuous, unthreatening note-taking turned out to be difficult to do, while at the same time 
attempting to keep up with the almost continuous banter of conjecturing. Video would have 
allowed repeated viewing. 

The data, then, consists of logfiles and audio-recordings of the two students working at the 
computer, audio-recordings of pre- and post-interviews, and field-notes of observations and 
items attempted. 

5.5.4 School D 

The second substantial study was at School D - a 13-18 comprehensive in a large town in 
Oxfordshire. This school was chosen because a particular teacher working there was already 
collaborating on a number of other research projects, and had expressed a particular interest in 
helping his students with algebra. 

The study involved two classes of Year 10 students. One class was to use EQUATION, the 
other would act as a control group that would do no algebra at all. This was because it was 
suspected (and later confirmed) that some items on the test would show improvement merely 
because of a repeat sitting. Moreover, the questionnaire results may have been affected by the 
sitting of the test. However, because of the difficulty of obtaining two “parallel” groups able to 
be part of the study, at a time convenient for observation, the control group was taught by a 
different teacher. 

Having two groups does not solve any of the “internal validity” problems of Campbell and 
Stanley (1963), but it does enable one to be a little more circumspect about such issues as history 
and maturation. Nevertheless, given the variety of different activities available in the research 
literature, and the flexibility that the theories-concerns instrument provides in comparing learning 
outcomes, it is a task for further research to compare directly the EQUATION group with 
groups using different activities - either activities studied in the literature or the algebraic 
introductory activities that a class would usually have. It is only once a prima facie case of 
improvement has been made that such a task would be appropriate. 

Two friendship pairs of students were selected from the EQUATION group by their teacher, on 
the basis that they offered “interesting ways of thinking” but were also able to articulate their 
thinking. They were interviewed for about half an hour; the first part of which centred on 
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selected consideration questions; the second part on selected test items. Both classes then 
completed the questionnaire, followed by the test. This order was so that anxiety induced by the 
test did not place undue influence on questionnaire responses. Certain students were also given 
the second test (see above) if they had completed as much as they could do of the first test, if 
they asked for it, and if the teacher considered this a serious request. 

The EQUATION group used the program for two lessons; the control group tackled questions 
from past GCSE papers that did not involve any algebra, and were mostly to do with the “shape 
and space” part of the syllabus. The students in the EQUATION group were encouraged to 
work in the same pairs for each lesson. The four selected students were audio-taped working at 
the computer, and encouraged to talk about their thinking; while all the students were logged. 
The researcher and teacher observed a self-imposed restriction that they would give minimal 
specific help to the students, beyond asking the same questions back, or (as a last resort) pointing 
out buttons or sentences on the screen that may have been overlooked. This ordinance broke 
down somewhat in the first lesson, when it was found necessary to intervene to point out that 
fractions could be entered, and when the students came across negative solutions and it was then 
decided to ask “What could you do now?” if they were faced with equations like 3x + 12 = 0. 
The ordinance also broke down in the second lesson for three types of events: when some 
students had to be directed to work through an entire level rather than continuing to try to find 
an equation that could be entered to get them past level 12; when some students were redirected 
back to level 13 to work out how the Model button worked (see above); and when a complete 
impasse was reached on problems on Level 15 or 16. 

The selected students were then re-interviewed, also drawing on their responses in the pre-
interviews where there appeared to be change. Both classes then sat the post-test, some two 
weeks after the pre-test, in order to identify improvements in strategic theories and concerns. The 
questionnaire was not given because it was thought too soon after the last one to make any long-
term difference, and to avoid overloading the students. Instead, the questionnaire and a delayed 
post-test (which was the same test as for the pre-test) were given 6 months later. However, this 
decision was reconsidered for School E, as it was realised that so many other things may have 
gone on in the meantime that it would be difficult to ascribe differences to EQUATION. 
Moreover, the EQUATION classwork took place in June, the delayed tests were in December, 
but the students had a change of teacher in September. The conditions for the delayed test were 
far from ideal, owing to an error in counting the number of tests required. The delayed test 
results were therefore not used in any statistical analysis, although they are quoted in the 
qualitative analysis where relevant, and with the appropriate caveats. 

Although on the network at School D the program could save the log file in the user’s directory 
(which makes identifying the students easier), it was noted after the fieldwork, that absenteeism 
on one of the days would mean that it could not be guaranteed that the same pairs were working 
together, or using the same user ID as previously, and so the identity of the other member of the 
pair would be in doubt. It may not also be immediately apparent when use of the program has 
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been by students in other classes. The program was therefore adapted to ask in future for the 
class and student’s name. 

Some of the students in the EQUATION group also made use of the OurQuestions Internet 
project to compare students’ concern to pose and critique problems solvable using algebra. 

The data for School D, then, consists of logfiles of around 25 students working in pairs at the 
computer for two one-hour lessons; audio-recordings of two pairs of students working at the 
computer; audio-recordings and field-notes of pre-post interviews with those two pairs, of a post-
interview with one other student, and of a post-interview with the teacher; pre-post written tests 
and questionnaires for each student in the class; a supplementary written test attempted by about 
ten students; a delayed post-test for most of the class; and problems posed by seven students. 

5.5.5 School E 

The third substantial study was at School E - another 11-18 Oxfordshire comprehensive in 
March 1998. The study involved two classes of Year 7 students, taught by the same teacher. 
There were no formal interviews or audio-taping for this study, because the aim was to see 
whether the remarkable test findings with the School D Year 10 class would be replicated with a 
younger age group. 

After the questionnaire was handed out, some of the students in the control group revealed that 
they had never come across the word “equation” before. Rather than leave this as the 
questionnaire response, a decision was made to indicate to the students to what the word might 
refer, given that they may have come across equations without calling them that. Arithmetic 
identities were put on the board as an example e.g. 2 × 3 = 5 + 1; followed by equations with one 
unknown, e.g. 4x + 6 = 18; and an example of an equation with letters, e.g. y = mx + c. Some 
students expressed realisation that they now knew to what the word might be referring. The 
questionnaire then took about 10 minutes to complete. Several other words in the questionnaire 
caused difficulties, including “confident” and “statement”. The pre-test was tackled in the 
remaining time (45 minutes). Nearly all the students had completed as much as they could well 
before the end of the time available. When the EQUATION group was asked how many had 
come across equations before, there was a similar lack of avowal, and so identical examples were 
given. As at School D, the students were allowed to use calculators, but they were strongly 
encouraged to show how they worked out their answers. They were also told that there would be 
quite a few problems that they had not been taught how to solve, but that they should have a go 
anyway. The word “algebra” was never used, not only so that any method of obtaining an answer 
was seen as valid, but also so that those who had not done any algebra would not worry unduly 
about a topic which is sometimes trailed as “very difficult” by older siblings or parents. 

The EQUATION group used the program for three lessons; while the control group also used 
computers for their lessons, but to do non-algebraic work on databases. The classwork was 
followed by the same questionnaire and then a post-test. 
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The data for School E, then, consists of logfiles of around 25 students working in pairs at the 
computer for three one-hour lessons; field-notes from observations in class and interviews with 
the teacher; and pre-post written tests and questionnaires for each student in the class. 
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Chapter 6 
Analysis 

6.1 Introduction 
This chapter analyses the fieldwork in basic terms, giving interpretations of what happened 
during the classwork and in the pre-post testing. The agenda for the first part is to identify from 
the classwork what contextual equation strategies might have improved, and to provide some 
clues as to when and why. The agenda for the second part is to identify from the testing and 
interviewing some algebraic problems in which there may have been improvements. The final 
chapter will attempt to use the analysis presented here to reconcile these two parts, to discuss 
implications for objections to the balance model and hence perhaps to illustrate the Popperian 
psychological perspective. 

6.2 What strategies improved during the 
classwork? 

In order to analyse the learning that took place during the activity, annotated logs are provided in 
this section, on the left-hand side of the page. The logs relate to a pair of students, working 
together - Rebecca and Nicola in the Year 10 class using EQUATION (10EQ). This pair was one 
of those whose conversations were audio-taped, and who were interviewed. In the analysis that 
follows, the text on the right-hand side of the page provides details about the level, an 
interpretation of the students’ actions shown in the log, and supplementary evidence from the 
audio-recorded conversations. The audio-recording (still less its transcript) makes little sense 
without a simultaneous presentation of the puzzles being tackled. The puzzles are numbered for 
ease of reference; and the times taken to accomplish each action are given in seconds. 

6.2.1 Simplifying Balance Puzzles 

Levels 1-7 of EQUATION are all balance puzzles, and aim to promote the use of a 
simplification strategy. 



Level 1: Balance Puzzles E + b = F   &   Kb = E 

The simple Level 1 balance puzzles are of the form 
E + b = F and Kb = E, where “E” means a weight 
- anything up to about 20kg at this level; “b” means 
one barrel; and “Kb” means a number of barrels - 
up to four at this level. These puzzles have integer 
answers <20. So arithmetically there is only a single 
calculation to do (either F − E or E ÷ K); although 
of course “counting on”, recall of number facts and 
matching of objects are among the many informal 
strategies that might be used. 

Rebecca & Nicola 
# Time  Puzzle 
    
1 32  2 + b = 20 
 23   Guess: 18 
 9   Continue 
    
2 21  18 = 2b 
 16   Guess: 9 
 5   Continue 
    
3 10  5b = 15 
 8   Guess: 3 
 2  

Rebecca and Nicola work out very quickly that the 
problem is to find the weight of the barrel; begin to 
solve the puzzles with little difficulty; and are 
therefore quickly promoted to Level 2. From the 
tape it appears that Rebecca is doing all the work - 
she’s describing the operations and saying the 
answers; Nicola agrees or seeks clarification, but 
does not initiate solution. On the other hand, the 
microphone is attached to Rebecca and does not 
pick up Nicola’s voice very well. 

 Continue 
    
4 13  3 + b = 13 
 12   Guess: 10 
 1 
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Another pair - Rajiv and Seb - note after four Level 1 puzzles that “we’re good at this”. After 
five, Rajiv comments “not very hard, is it?”. They solve balance puzzles like 3b = 15 by finding 
the arithmetic calculation, which here would be 15 ÷ 3. 

Level 2: Balance Puzzles E + Kb = F   &   E + Kb = (K + 1)b 

Puzzle #7 requires two arithmetical steps, and so it is not 
surprising that it takes them a little longer; but further puzzles 
at this level are found quickly. It is perhaps a little surprising 
that the puzzles with barrels on both sides are solved as easily 
as the puzzles with weights on both sides, but maybe this 
reflects the accessibility of the context. 

At the moment the puzzles are accessible to informal 
strategies such as guessing, cover-up, matching or part-
reasoning. There is little indication which strategies Rebecca 
and Nicola are using, which is unsurprising given that all 
these strategies are intuitive and mental. Other than barely 
audible mutterings, the same is true of the other 10EQ and 
7EQ students. Of course had there not been a requirement 

Rebecca & Nicola 
# Time  Puzzle 
    
7 29  19 = 1 + 2b 
 27   Guess: 9 
 2   Continue 
    
8 15  15 = 7 + 2b 
 13   Guess: 4 
 2   Continue 
    
9 20  2 + b = 2b 
 17   Guess: 2 
 3   Continue 
    
10 14  6 + 2b = 3b 
 12   Guess: 6 
 2   Continue 

  Continue 
    
5 11  10 = 5b 
 9   Guess: 2 
 2   Continue 
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of the research to avoid as far as possible drawing explicit attention to method, it would have 
been possible to ask them how they solved particular puzzles. Nevertheless, the existence of 
these informal strategies is not in doubt - and several were revealed in the pilot work for this 
research. 

The two buttons labelled Take off weights and Take off barrels appear on this level, but most 
students ignore them for the moment because they are having little difficulty with the puzzles. 
Rajiv, for example, says “Take off weights” when the first Level 2 puzzle appears; but does not 
use this button until Level 5 - the subtractions are easy enough for mental calculation until then. 
However, the first puzzle they face with barrels on both sides (2b = 8 + b) causes them to use the 
Take off barrels button; which they continue to use thereafter. It is to be expected that the more 
successful the informal strategy, the later the regular use of the Take off… buttons. All but two 
10EQ students start to use both buttons by Level 5. Debbie and Liam (working separately) use 
the Take off weights button on Level 3, but do not use the Take off barrels button in any 
sustained way. Liam uses  −  to subtract barrels on Level 8; and Debbie uses  −  to subtract 
unknowns on Level 9. Harry, on the other hand, uses both buttons from Level 2 onwards. 



Level 3: Balance Puzzles E + Kb = F + (K+1)b 

Chapter 6 - Analysis 170 

This is the first level with barrels and weights on both 
sides. 

The first puzzle presents difficulties - two minutes is 
spent on it. They successfully take off a barrel, without 
apparently realising the benefit of taking off any more. 
They then consider taking off weights but Rebecca 
points out “No, you’ve got to take it off of the same 
side that, one on each side, haven’t you?”. They guess 9 
for no apparent reason, although the fact that the 
answers to the previous two puzzles have both been 
(coincidentally) the same as the weights on one side 
may be the inspiration for this. When this fails they 
decide to take off one barrel (Rebecca says she wants 
to take off two) but Nicola selects Guess by mistake. 
So when she enters “1”, they find the correct answer 
by accident. Theory development has therefore stalled 
on this puzzle (a fact which they recognise: “Oh 
well...”) and so will not assist them on the next puzzle, 
which is of identical form but again takes over 2 
minutes. 

Rebecca starts puzzle #12 confidently “I reckon you 
take off barrels until you get one each”, and Nicola 
interprets this as meaning that they should take off a 
barrel. Rebecca then says “Yeah, but in equations 
you’ve got to do the same on each side, haven’t you?”. 
Nicola takes off a barrel and Rebecca concludes “Yeah, 
it’s done it the same on each side.”. She tells Nicola to 
take another off, which she does, and then they take 
off another. At this point the picture is 
19 + b = 12 + 2b. Instead of taking off the final barrel, 
Rebecca now wants to know “What’s 38 ÷ 2?”. This 

fits however with her theory “take off barrels until [you] get one each”. Nicola asks where she 
gets 38 from, and Rebecca replies “Dunno”. A boy passes by and says “Take off one barrel.”. 
“Yeah”, says Rebecca in confident tones “take off one barrel.”. There’s a pause and then she asks 
him “What... have you done this one before?”. This suggests that Rebecca still doesn’t appreciate 
the need for the barrel to go. But when she sees the new picture (19 = 12 + b) she exclaims “Ah 
that’s obvious now… One barrel’s 7”. They both cheer when “Correct” is shown. The question 
is now - will Rebecca continue to take off barrels piecemeal, or will she modify the strategy to 
take off in one go as many barrels as there are on the side with the smaller number of barrels? In 

Rebecca & Nicola 
# Time  Puzzle 
   
11 123  10 + 3b = 9 + 4b 
 18  Take off barrels: 1 
 18  Take off weights: ESC
 53  Guess: 9 
 23  Guess: 1 
 10  Continue 
    
12 141  19 + 4b = 12 + 5b 
 26  Take off barrels: 1 
 12  Take off barrels: 1 
 17  Take off barrels: 1 
 56  Take off barrels: 1 
 25  Guess: 7 
 4  Continue 
   
13 37  13 + 4b = 11 + 5b 
 8  Take off barrels: 3 
 10  Take off barrels: 1 
 11  Guess: 2 
 8  Continue 
   
14 32  12 + 2b = 14 + b 
 14  Take off barrels: 1 
 16  Guess: 2 
 2  Continue 
   
15 57  5 + 3b = 14 + 2b 
 6  Take off barrels: 2 
 17  Guess: 7 
 16  Guess: 8 
 16  Guess: 9 
 2  Continue 
   
16 33  9 + 4b = 6 + 5b 
 13  Take off barrels: 4 
 14  Guess: 3 
 6  Continue 



fact she then says “Just take off barrels until you get there.”, which might be interpreted as 
something like this theory. 

For puzzle #13, Rebecca says “Take off 3 barrels”, followed by “Take off 1 barrel”. In other 
words, she has the theory “take off as many barrels as you can rather than “take off as many 
barrels as there are on the side with the smaller number of barrels”. Nicola’s “Why?” when 
Rebecca gets the correct answer indicates that she has not yet grasped the same theory. When 
faced with 9 + 4b = 6 + 5b (puzzle #16) Rebecca says “Take off fo... four barr... three barrels... 
no four. Four barrels.”. Thereafter the more efficient theory seems to be preferred. 

Rebecca and Nicola are typical in demonstrating such strategic improvements. Rajiv and Seb, for 
example, faced with their first puzzle on Level 3 (18 + 5b = 19 + 4b), choose to take off only 1 
barrel (at Rajiv’s suggestion). Seb then notices that 19 + 3 = 22 and 18 + 4 = 22, so the answer 
must be 1kg. But he remarks to Rajiv after the answer is checked, “You weren’t sure about that 
were you?”. On the next puzzle with more than one barrel on each side (1 + 4b = 18 + 3b), they 
take first 2 barrels and then one more. Thereafter they always take off the maximum number of 
barrels in one go, with just one slip - on Level 5, when they attempt to take off the larger number 
of barrels. 

Level 4: Balance Puzzles E + Kb = F + (K+2)b 
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The maximum number of barrels increases to 15 and 
the answer can now be less than 50. There is also a 
two-barrel difference between the sides - there are 
therefore three arithmetical steps involved. 

Rebecca & Nicola 
# Time  Puzzle 

   
56  24 + 14b = 50 + 12b 17 

Take off barrels: 13 11   
Take off barrels: 11 15   

Difficulties with Level 4 seem to stem from counting 
and arithmetic, although it might be possible that 
Rebecca is still using some sort of “1 less than” rule 
to determine the maximum number of barrels that 
can be subtracted. Having to subtract the weights, 
notice the two-barrel difference, and divide by two 
does not appear to hold Rebecca up at all. Nicola, 
however, is still struggling to grasp Rebecca’s strategy. 
For example, faced with puzzle #18, Rebecca has no 
hesitation in taking off 13 barrels and doing 
(49 − 19) ÷ 2; but Nicola asks “How do you do 
that?”. Rebecca’s initial explanation may or may not 
be useful to her: 

Take off barrels: 1 8   
Guess: 13 20   
Continue 2   

   
60  49 + 13b = 19 + 15b 18 

Take off barrels: 13 12   
Guess: 15 45   
Continue 3   

   
32  36 + 9b = 46 + 7b 19 

Take off barrels: 7 7   
Guess: 5 21   
Continue 4   

   
37  8 + 5b = 36 + 3b 20 

Take off barrels: 3 5   
Guess: 16 17   
Guess: 14 13  Rebecca: OK, look. Here is 49, right?  
Continue 2   Nicola: Yeah. 

   
21 18  7 + 7b = 5 + 9b Rebecca: So you minus 10 off 49. 

Nicola: 39 Take off barrels: 7 7   
Guess: 19
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Rebecca: 5... 
Nicola: (giggles, nervously) 
Rebecca: 9, OK? 9 off 30... 
Nicola: Umm... Thir... (giggles) This isn’t... 
Rebecca: ...is 30. 
Nicola: Yeah... 
Rebecca: So it’s balanced out, we’ve taken all that off... and 30 off there. So it’s only, um, it’s 
only 30 left. 

But then Nicola asks the question that has really been bothering her, and thereby reveals that it is 
the simplification strategy (as opposed to the arithmetic strategy) that she is trying to grasp. 

Nicola: Why are you minusing it? 
Rebecca: (pause) Because then you get it a balanced equation and then you just divide it by the 
last two barrels left. ... 15. 

So even though Rebecca has a good strategy for solving the puzzle, her rationale makes no 
mention at all of the idea of simplifying a situation to make it easier. In any case, Nicola is quite 
happy using subtraction on the very next puzzle - further evidence that grasping a strategic theory 
does not always depend on having a coherent rationale for it. “It’s well easy, isn’t it?” says 
Rebecca. 

Meanwhile Seb, having simplified a puzzle down to 25 = 1 + 2b, attempts to convince Rajiv that 
the answer is 12 by saying “twice 12 plus 1 is 25”. 



Level 5: Balance Puzzles E + Kb = F + Lb 
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Again it appears to be the size of the numbers 
involved that causes Rebecca and Nicola most 
difficulty. They start to use the coloured weight 
pictures to help them in the subtraction 323 − 295 in 
the first puzzle. But Rebecca eventually concedes 
defeat as far as the mental arithmetic is concerned - 
“Need some paper. Can’t think like this.”. They seek 
confirmation from their teacher that they are allowed 
to use paper. About 3 minutes is spent working on 
this one subtraction, via possible answers such as 18 
and 172 (95 − 23 + 100). At this point, I intervened 
to check what they were doing and to point out the 
Take Off Weights button that had so far been 
unused and could be a way of saving some effort. 
Rebecca initially suggests taking off 300 but then sees 
that “you haven’t got 300” and so starts by taking off 
200. A prompt from me that “you can take off more 
if you like” was probably unnecessary, but Rebecca 
then takes off 50 rather than 95, which would be the 
obvious choice if she had grasped the idea that one 
could take off (analogously to the barrels) as much 
weight as on the side with the smallest number of kg 
displayed. In other words, the theory for barrels does 
not automatically get employed for weights. She then 
suggests taking off 40, before realising that 45 can be 
taken off. By the next puzzle she has generated the 
more efficient weight strategy. 

They were also shown at this point that “210/10” 
was an acceptable answer to the computer. They use 
both Take Off… buttons on the next puzzle and 
enter their answer as “209/11”. The bypassing of 
arithmetic seems to be appreciated by Rebecca & 

Nicola, who might otherwise have missed the point of the simplification strategy because of their 
fear and loathing of arithmetic. Nicola says “We’re so thick. We could have done this so much 
quicker”. They attempt to take off the larger number of kg on the next puzzle, and it is Nicola 
who points out the mistake. Their speed on the remaining puzzles on level 5 shows their 
confidence in using the strategy. 

Rebecca & Nicola 
# Time  Puzzle 

   
338  323 + 5b = 295 + 9b 22 

Take off barrels: 5 7   
Guess:  169   
Guess: 18 76   
Guess: ESC 38   
Take off weights: 200 13   
Take off weights: 50 8   
Take off weights: 45 13   
Guess:  8   
Guess: 7 3   
Continue 3   

   
57  297 + 5b = 87 + 15b 23 

Take off barrels: 5 9   
Take off weights: 87 16   
Guess: 210/10 29   
Continue 3   

   
32  338 + 3b = 129 + 14b 24 

Take off barrels: 3 6   
Take off weights: 129 8   
Guess: 209/11 15   
Continue 3   

   
39  130 + 9b = 202 + b 25 

Take off barrels: 1 5   
Take off weights: 202 4   
Take off weights: 130 11   
Guess: 72/8 15   
Continue 4   

   
43  321 = 27 + 6b 26 

Guess:  10   
Guess:  1   
Take off weights: 27 6   
Guess: 294/6 23   
Continue3

Some 10EQ students (such as Harry, Jack and Jane) take off the maximum number virtually from 
the start; others (such as Debbie, Tracy and Cedric) seem to struggle a little more before 
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appreciating the value of simplifying as much as possible. For many students, Level 5 appears to 
be a watershed - the requirements to subtract barrels, subtract large weights and divide unfriendly 
numbers by the end of this level have led to nearly all students exploiting the Take Off… 
buttons. 

Rajiv and Seb have a rather different experience to that of Rebecca and Nicola. Their first Level 5 
puzzle is 457 = 377 + 4b. Rajiv initially wants to take off weights, but changes his mind. Is this 
because (like some of the adults in the pilot study) he prefers to test his mental arithmetic, rather 
than use the Take Off Weights button? Unfortunately they appear to have difficulty in keeping 
both the large numbers in mind simultaneously. Despite correctly adding up the weights on each 
side, their similarity leads them to misremember 377 as 357, and so they conclude there is a 100kg 
difference rather than 80kg. When they discover their mistake, they have to keep adding up the 
weights on each side to remind themselves of the calculation they have to do. They resort to a 
calculator; and soon after they use the Take Off Weights button, and are shown how to enter 
fractions. But as for Rebecca and Nicola, when Rajiv and Seb use the Take Off Weights button, 
they do not automatically take off the maximum number in one go, as they have been doing for 
barrels. This does not mean, of course, that they do not realise that this is the more efficient 
strategy in terms of actions - they might reason that adding up all the weights on each side takes 
time, and so it may be more efficient in terms of time to take off obviously matching weights 
first. For example, for 321 = 202 + 7b, they take off 200kg; for 406 + b = 66 + 11b, they take off 
only 6kg (there are no other matching weights). However, even after they reach the single-weight 
pictures of Level 7, they continue to take off weights piecemeal. It is only on the symbolic levels 
that they begin to take off the maximum in one go. 

Oddly in the latter puzzle, when they are left with 400 = 60 + 10b their initial guess is 400 ÷ 60. 
This is despite their earlier success, and despite Seb saying “400 divided by 10” before he is 
overruled by Rajiv. They then guess 0.666, and when this fails Rajiv suggests taking off weights. 
Seb is reluctant and then guesses 46, saying “400 and 60, divided by 10”. Somehow the talk about 
division has diverted them from their previously robust strategy. Rajiv then says “No, wait. 400… 
and we need 400 there…” and then enters 34. Seb asks “How did you get that?”. Rajiv says “You 
minus 60.”. So this looks like a version of the cover-up strategy: 400 balances some weights and 
some barrels; the weights are 60; so the barrels must be 340; 10 barrels, so 1 barrel is 34. 

Their next puzzle is 7 + 8b = 497 + b, but the two 2kg of the 497kg has disappeared off the top 
of the screen. Rajiv begins by yet again (for the fourth time) asking to use the Take Off Weights 
button. Seb this time agrees, but insists that they should “take away 40”, even after Rajiv has 
asked “Are you sure?”. Once they have taken off one barrel and 7kg however, they quickly get 
the answer; and by the end of Level 5, they seem to have a more coherent simplification strategy 
worked out. 



Level 6: Balance Puzzles with simple decimal answers 

Up until now the weight of the barrel has been a whole 
number. Level 6 involves fractional answers. 

Rebecca & Nicola 
# Time  Puzzle 

   
23  48 = 6 + 10b Each puzzle on this level takes Rebecca and Nicola 

around half a minute to solve, the refined strategy now 
consisting off: take off maximum barrels, take off 
maximum weight (always in that order) and enter the 
answer “Remaining weight ÷ Number of remaining 
barrels”. Nicola seems able to carry out the strategy 
without prompting from Rebecca, and can be heard on 
the tape saying the relevant numbers. Puzzles like 
48 = 6 + 10b (#27) - in which taking off barrels is 
inappropriate - or like 15b = 49 + 10b (#30) - in which 
taking off weights is inappropriate - do not cause 
difficulties. In the latter puzzle, Rebecca says “OK 
then, 15... Oh no, we take it off both the sides.” before 
taking off 10 barrels. 

27 
Take off weights: 6 8   
Guess: 42/10 12   
Continue 3   

   
32  2 + 14b = 45 + 10b 28 

Take off barrels: 10 11   
Take off weights: 2 8   
Guess: 43/4 10   
Continue 3   

   
23  42 + 2b = 7 + 12b 29 

Guess:  4   
Take off barrels: 2 3   
Take off weights: 7 5   
Guess: 35/10 9   
Continue 2   

   
23  15b = 49 + 10b 30 

Take off barrels: 10 11   
Guess: 49/5 10   
Continue 2   
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Level 7: Balance Puzzles with fractional answers and a single weight 
picture 

Many students have realised by this level that the 
visible weight pictures are not as important as the total. 
For example, the strategy and speed of Rebecca & 
Nicola are unaffected by the replacement of the multi-
coloured weight pictures by a single grey weight picture 
(and similarly for Rajiv and Seb); which might not have 
been the case had they been continuing to use the 
pictures to help them subtract. In fact at one point 
Rebecca says “This is so tedious”. The excitement of 
strategy development that was so evident on level 5 
and before has now been replaced by boredom with 
executing the same strategy again and again. Curiosity 
about what might be different on the next level is 
perhaps the only source of interest. On the second 
puzzle Rebecca attempts to take 40 from 40 = 1 + 10b, 
and Nicola divides by 22 instead of 12 on the third 
puzzle, but these are probably just momentary slips. 

Rebecca & Nicola 
# Time  Puzzle 

    
28  44 + 7b = 25 + 10b 31 
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Rajiv has a habit of saying, in equations like 49 = 2 + 12b, “49 ÷ 2” rather than “49 − 2”. Once or 
twice he attempts to go ahead with the division, then realises that subtraction is necessary, and 
finally remembers to involve the 12. However, more often, Seb corrects his “49 ÷ 2” with 
“49 − 2” so the error is not followed through. 

 15   Take off barrels: 7 
 5   Take off weights: 25 
 6   Guess: 19/3 
 2   Continue 

    
26  40 = 1 + 10b 32 

 9   Take off weights: 40 
 5   Take off weights: 1 
 10   Guess: 39/10 
 2   Continue 

    
27  47 = 1 + 12b 33 

 8   Take off weights: 1 
 8   Guess: 46/22 
 9   Guess: 46/12 
 2   Continue 



 

6.2.2 Simplifying Balance-Like Equations 

Levels 8-10 introduce algebraic notation. They aim to transfer the simplification strategy to 
equations that could represent balance puzzles. 

Level 8: Balance Puzzles with  −  

On Level 8, the barrels are labelled with the letter ‘b’, 
and the two “Take Off” buttons are replaced by a single 
 −  button. All the students soon work out how to use 
it. Up until this point Rajiv and Seb have been referring 
to “taking off” weights and barrels; as the calculations 
became harder they started (around Level 5) talking 
about “taking away”. The few times they used the word 
“subtract” were when they were talking about a specific 
arithmetical calculation which always involved 
subtracting the total weight on one side from the total 
weight on the other; but there was no hint of removing 
objects on these occasions. However, as soon as the  −  
button appears they say things like “minus 106kg” 
(meaning, in context, “remove 106kg from the 
balance”); and “minus 16b” (meaning “remove those 16 
barrels from the balance by clicking the  −  button and 
entering ‘16b’.”). They continue to refer to “taking 
away” and “taking off”, but since they are now taking 
off maximum weights and barrels, they no longer need 
to refer to “subtracting”. 

Rebecca & Nicola 
# Time  Puzzle 

   
54  269 + 6b = 129 + 26b 34 

Guess:  12   
Guess:  1   
Subtract: 6b 21   
Subtract: 129 9   
Guess: 140/20 9   
Continue 2   

   
49  34 + 24b = 233 + 12b 35 

Guess:   5   
Subtract: 233 8   
Subtract: 34 15   
Subtract: 12b 8   
Guess: 199/12 11   
Continue 2   

   
42  7 + 31b = 30 + 14b 36 

Guess:   5   
Subtract: 7 6   
Subtract: 14b 11   
Guess: 23/17 18   
Continue 2   

   
42  71 + 30b = 209 + 16b 37 

Guess:   4   
Subtract: 71 6   
Subtract: 16 9   
Subtract: 16b 9   
Guess: 138/14 13   
Continue 1   
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Level 9: Balance Equations 
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On Levels 9 and 10, the balance pictures are replaced by 
symbolic notation. The move from pictures to symbols 
does not cause comment from Rebecca & Nicola; Seb just 
says “hmmm”; and they all continue with the existing 
strategy. 

When the first equation is simplified to 10b = 40 Nicola’s 
comment “Er... 4, maybe?” is in a tone that suggests that 
this is rather an easy problem. Of course the whole point 
of the program is that the problem didn’t appear at all easy 
at first glance - it was only the use of the strategy that 
made it easy. Similarly, Rajiv sees 12 = 6b and says “That’s 
2… 6 two’s are 12.”. Is his pre-existing algebraic 
knowledge coming into play, or is he noting that if 6 
barrels weigh 12 then each barrel is 2? We shall see below 
that breaking with the balance model causes ructions, 
which suggests that the knowledge being used has been 

generated during the activity. Moreover, there are no attempts by anyone to re-arrange equations 
by dragging, or to solve them on paper, or to use inverse operations. And the strategies continue 
just as before. In fact, the students are even quicker than with the pictures because they no longer 
have to count barrels. The following graph illustrates this remarkable result: 

Rebecca & Nicola 
# Time  Puzzle 

   
30  11 + 25b = 51 + 15b38 

Subtract:    11 14   
Subtract: 15b 8   
Guess: 4 7   
Continue 1   

   
18  37 + 9b = 87 + 4b 39 

Subtract: 4b 8   
Subtract: 37 5   
Guess: 10 4   
Continue 1   

   
19  37 + 15b = 13 + 18b40 

Subtract: 15b 5   
Subtract: 13 2   
Guess: 8 11   
Continue 1   
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Note the improvement in strategies occurring over the course of each level up to 8, in response 
to changes in the nature of the problem at the start of the level; yet the times for Level 9 continue 
the downward descent of Level 8. After solving the next equation at speed, Seb again says “We’re 
good at this”. 



This pattern for Rebecca and Nicola is typical of other students: 
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(The figure for each level includes only students who completed that level)
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The figures here treat each pair of students as one. Each pair tackled in excess of 50 puzzles in 
total. 

Level 10: Balance Equations with fractional answers 
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Solving the first equation of Level 10 goes well until it 
gets to 14b = 7. Rebecca confidently answers 2. This 
isn’t shown as correct. “What?!” she says, and then after 
a pause guesses 1. “Why can’t you do it?” she asks 
plaintively. Nicola says “Maybe it’s minus 2.”. This 
doesn’t work either, so Nicola suggests entering 14 ÷ 7. 
This suggestion provides the clue that it should be 
7 ÷ 14. Now they have happily solved, on Levels 7 and 
8, balance pictures of the form several barrels = weight, and 
with non-integer solutions. However, this is the first 
time the answer is less than one. Nicola and Rebecca 
could therefore be using the strategy “Divide the larger 
number by the smaller number” rather than “Divide the 
constant by the number of unknowns”. Interestingly, 
none of the other Year 10 students make this 
“larger ÷ smaller” error. However, Rebecca and Nicola 
are unusual in not having met an answer less than 1 on 
Levels 7 or 8, in which the error would involve dividing 
the number of barrels by the weight (rather than vice-
versa). 

This equation has taken a minute to solve, but the next 
two equations are as quick as Level 9 (around 20s). 

However, it is interesting that when they are faced with 50 = 5b they answer “50/5” rather than 

Rebecca & Nicola 
# Time  Puzzle 

   
51  176 + 20b = 183 + 6b 41 

Subtract: 6b 4   
Subtract:  5   
Subtract: 176 7   
Guess: 2 3   
Guess: 1 7   
Guess: -2 13   
Guess: 7/14 10   
Continue 2   

   
22  77 + 14b = 27 + 19b 42 

Subtract: 14b 5   
Subtract:  1   
Subtract: 27  4   
Guess:  4   
Guess: 5 1   
Guess: 50/5 6   
Continue 1   

   
22  162 + 13b = 269 + 8b 43 

Subtract: 8b 6   
Subtract: 162 5   
Guess: 107/5 10   
Continue 1   
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“10”. More equations with answers less than 1 would perhaps be advisable if the strategy is to be 
reinforced. It would not be surprising if such an equation causes difficulties later. 

This delay makes Rebecca and Nicola untypical with regard to Level 10: even though Level 9 has 
integer answers, and Level 10 does not, nearly all the students are faster on Level 10 than on 
Level 9. This would fit with the typical strategy being one of simplification rather than informal, 
number-specific methods. Those few slower on Level 10 (e.g. Tracy and Jocelyn) were often 
unaware of the facility for entering fractions. The single exception is Craig, who did not attempt 
to use the  −  button on Levels 8 or 9, even though he had been removing weights and barrels on 
earlier levels. However, he was not especially slow at these levels, at least in part because he did 
not spend time, like the other students, working out how to use the button until Level 10. 

Some students attempt to solve equations like 42 = 9b by entering 42/9b. Unfortunately the 
version of the program used with 10EQ allowed this as an answer, thus possibly permitting a new 
error to flourish.  



 

6.2.3 Simplifying Equations that are Unlike Balances 

Levels 11 and 12 break with the balance model by introducing negative answers and negative 
signs. They aim to expand the strategy of simplifying a situation by removing items into a strategy 
of operating on an equation. 

Level 11: Linear Equations with negative answers 

Having simplified the first equation down to 39 + 3b = 0 
Rebecca & Nicola are stuck - “You can’t do that can 
you?” says Rebecca. They attempt to take off a further 
15b without result. They select “Give Up”, and this takes 
them back to a Level 10 equation which they solve 
without difficulty. 

Chapter 6 - Analysis 181 

During the class, there were many requests for assistance 
as students came onto this level and faced an apparently 
“impossible” balance. Even though they should have 
been reasonably familiar with negative numbers, many 
did not catch on until there was an explicit negative sign. 
For example, Rebecca and Nicola simplify equation #46 
to 0 = 6 + 21b, from which they then subtract 6 and 
only then guess -6/21. This is a very common strategy; 
although Jocelyn gives up on 6 equations before success. 
The fact that someone like Debbie fails to see the 
“obvious” solution to 0 = 20 + 10b - or that Craig is so 
unbelieving that the answer to 39 + 13b = 0 is not 3 that 
he has to also guess 39/13 and 0.3 just to be on the safe 
side - must mean that many students are still thinking in 
terms of positive rather than signed numbers. 

Rajiv and Seb, on the other hand, do not hesitate to take 
off 85 from 85 + 20b = 45, rather than the 45 that the 
“Take off the smaller constant term” strategy might 
suggest, and that they consider very briefly. Are they 
guided here by a pre-existing “Get the unknown by 
itself” rule, or are they simply noting that they need the 
standard form Kb = E that has been a feature of 
virtually every puzzle since Level 4? They are rare in not 
taking the 45 off first, followed by the 40. 

Cedric provides another interesting example: having 
simplified his first Level 11 equation down to 31 + 15b = 0, he guesses 31/15, attempts to 
subtract 0, guesses 15b/31, subtracts 31, guesses 15/-31, and finally guesses -31/15b. Thereafter 

Rebecca & Nicola 
# Time  Puzzle 

    
66  72 + 18b = 33 + 15b 44 

 7   Subtract: 15b  
 3   Subtract: 33 
 11   Subtract: 15b 
 5   Subtract:   
 13   Subtract: ESC 
 25   Guess: ESC 
 2   Give up 

    
Level 10 

25  176 + 30b = 329 + 13b45 
 12   Subtract: 13b 
 4   Subtract: 176 
 8   Guess: 153/17 
 1   Continue 

    
39  44 + 11b = 50 + 32b 46 

 7   Subtract: 40 
 8   Subtract: 11b 
 4   Subtract: 4 
 4   Subtract: 6 
 14   Guess: -6/21 
 2   Continue 

    
22  36 + 27b = 16 + 7b 47 

 5   Subtract: 16 
 4   Subtract: 7b 
 5   Subtract: 20 
 7   Guess: -20/20 
 1   Continue 

    
27  55 + 7b = 20 + 2b 48 

 5   Subtract: 2b 
 4   Subtract: 20   
 3   Subtract: 35 
 14   Guess: -35/5 
 1   Continue 
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he has no difficulties with this level. Dick similarly inverts the division when dividing the constant 
by the coefficient of b fails (because the negative sign is omitted). Does this indicate a deep-
rooted worry about which way to divide? 

Note how in Rebecca and Nicola’s equation #47, the answer to 20b = −20 is given as −20/20 
rather than −1, suggesting that the strategy developed for positive answers is continuing to be 
followed, without paying any attention to the numerical answer. Many other students do the 
same; which would suggest at one extreme that they do not see the simple numerical answer, and 
at the other that they see no reason to look for simpler answers in this context. 

Rebecca and Nicola solve the final two equations on this level almost as fast as the balance 
puzzles on Level 2, a fact which provides evidence that they are as confident about executing the 
simplification strategy as they are about solving simple balance puzzles. Of course whether this 
grasping of the simplification strategy remains a reliable member of their theoretical tool-kit 
remains to be seen. 

For example, Jocelyn was the only student to complete Level 11 in the first lesson, but did so 
only after giving up on 6 occasions. Having then apparently worked out that negative numbers 
were required - he successfully solved three Level 11 equations - one might imagine that he 
would have few difficulties in the second lesson. Yet at the start of the second lesson he again 
struggles with Level 11 equations, giving up on 6 more occasions. The nature of his difficulty is 
the same each time: he is able to subtract constants and unknowns so that he is left with 
something like 3b = -7; but cannot then enter the answer -7/3. He seems convinced that the 
answer should be -21. Even 5 = -5b is beyond him: he guesses -25. When the coefficient of b is 1, 
there is no difficulty. Yet he is able to solve every Level 10 equation, such as 4b = 108. 
Interestingly, faced with equations such as 9b = 18 or 17b = 17, he always enters the numerical 
answer - unlike many other others who enter 18/9 or 17/17. Finally, after 25 minutes of giving 
up and retrying on Level 11, he is presented with five Level 10 equations in a row, and then gives 
the correct answer to -43 = 8b. He is then able to solve the rest of Level 11 and 12 quickly. 



Level 12: Linear Equations with negative signs and +  

Rebecca & Nicola have difficulties with the first equation 
on Level 12 that are probably more connected with having 
failed to noticed that the appearance of the  +  button 
means that the shortcut keys they have been using to enter 
an answer or to subtract no longer work as they intend. 
There will always be a question (whether using audio-tape 
logs, direct observation or video) as to whether it was the 
choice of operation or the selection of the button that was 
at fault. One must be careful in equating what was done 
with what was intended. 

Rebecca & Nicola 
# Time  Puzzle 

    
107  -27 + 24b = -22 + 7b49 
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For equation #51, Rebecca and Nicola initially select  +  
(by mistake again?), and then cancel the input. They then 
subtract 12 (ignoring the negative sign?). They then subtract 
4b. Nicola now realises that one must use  +  rather than 
 −  to eliminate the constant: 

Nicola: You should’ve plussed 12. (pause) Should be plus 24. 
‘cos you want to get rid of it, so you want to get it to 
nought, so you plus it. 

Rebecca: Do you? 

Nicola: Yeah. 

Rebecca: Oh yeah. 

If Rebecca was previously using a purely object-based 
strategic theory (subtracting 17 to get rid of the object ‘17’ 
or subtracting -8 to get rid of the object ‘-8’) then it would 
appear to have been superseded by the arithmetic strategy 
of adding. They add 10, and then select  +  again before 
realising that they can now enter an answer because this is a 
form they recognise. Their guess −18/10 suggests that they 
are still unsure about the correct order of the division. 

Note how the feedback to Action 1 allows them to debug 
their strategy. Nicola says “You should’ve plussed 12.”; but 
Rebecca isn’t convinced, until she tries it. 

One might think that the theory that  +  can be used to 
eliminate subtracted quantities is now grasped. Not at all - 
equation #52 raises more questions: Action 1 (suggested by 

 5   Add: 7b 
 3   Add: 22 
 5   Add: 14b 
 8   Add: 28b 
 13   Add: -56 
 9   Subtract: 56 
 7   Subtract: -112 
 5   Subtract: 56b 
 6   Subtract: -5 
 9   Subtract: 5/17 
 16   Subtract:  
 1   Subtract:  
 18   Guess: 5/17 

    
43  -18 = 5 + 3b 50 

 11   Add:  
 3   Add:  
 5   Subtract: 5 
 4   Subtract:  
 18   Guess: -23/3 

    
72  -22 -14b = -12 + 4b 51 

 5   Add: ESC 
 6   Subtract: 12 
 10   Subtract: 4b 
 11   Add: 24 
 11   Add: 10 
 5   Add:  
 14   Guess: -18/10 
 9   Guess: 10/-18 

    
93  -1 -24b = 8 -7b 52 

 6   Add:  1 
 7   Subtract: 7 
 6   Subtract: 7 
 5   Subtract: 2 
 5   Add: 16 
 5   Add: 7 
 5   Add:  
 6   Subtract: 7 
 5   Subtract: 7b 
 5   Subtract: 9 
 4   Subtract:  
 4   Add: 9 
 5   Add: 14b 
 3   Add:  

Guess: 9/-1720
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Nicola) seems entirely reasonable, but what about Action 2 (from Rebecca alone)? It is difficult to 
see, if we assume (given their experiences so far) that they appreciate by now that the 7 and the b 
are wedded to each other more firmly than subtraction can sunder, what might be the intention 
of subtracting 7. So we have to try to guess what simple, accidental, forgetful slip has been made. 
Perhaps she meant to subtract 7b, in which case they might have the theory that the minus sign 
“goes with” the 8 rather than the 7b; she might not have noticed the minus sign, or not 
considered it important; she might think that adding to get eliminate subtracted quantities applies 
only to constants and not to unknowns. 

Perhaps she meant to subtract -7b; or to add 7b. But these latter two scenarios require two slips 
and, moreover, the very next action is exactly the same: “Subtract 7”. It could be then, that she 
has forgotten the requirement to include the b. Alternatively, it might be the 7 on the left-hand 
side of the new equation that is now the object of attention. There are many possibilities, and 
Action 4 is especially difficult to explain. 

One scenario is that Rebecca carries out Action 1 without really appreciating why it is done. She 
then subtracts 7 (Action 2) to try to eliminate the 7b, not noticing the minus sign and forgetting 
to put the b. Nicola says “It was minus 7.”, pointing out to Rebecca therefore that there is a 
minus sign in front of the 7b, and so subtraction was not appropriate. Rebecca replies 
“Whoops!”. However, she interprets the comment as referring either to a wrongly entered minus 
sign in the input box; i.e. “You put a minus in front of the 7 when you shouldn’t have.”; or to the 
desired operation not being carried out; i.e. “We wanted minus (subtract) 7, but you entered add 
7 instead.”. In either case Action 3 (Subtract 7) could be seen as undoing the effect of the first. 
Alternatively, in subtracting 7 for the second time, Rebecca could be responding to the new 
equation rather than to Nicola’s comment - she might be attempting to get rid of the -7 by 
subtraction, forgetting the minus sign as before. Just as Rebecca is carrying out Action 3, Nicola 
says “Then subtract 2.”; but at that moment Rebecca presses Enter and the new equation 
appears: -14 − 24b = -5 − 7b. Responding to the new equation, Nicola says “and then add 14.”. 
However, Rebecca concentrating on subtracting 7, has only just heard “Add 2”; so this is what 
she does (Action 4). There are other possible interpretations throughout this - for example 
Rebecca might have looked at the screen after Action 2, decided she wanted to subtract 7b and 2, 
left off the b when subtracting 7b in Action 3, and not looked at the resulting equation until after 
subtracting 2 in Action 4. In Action 6, it is surely 7b that was intended rather than 7 - but when 
this has been undone (by subtracting 7) it is subtract 7b that is entered. Attention now turns to the 
sole remaining constant - the 9 on the right-hand side. This is subtracted off only to be added on 
again when this is seen not to help. Finally, 14b is added on to reduce the equation to a known 
form. 

But we are interested not so much in producing a definitive version of Rebecca’s cognitive 
history, as in seeing - in Actions 1, 5, 6, 12 and 13 - the gradual development of strategies for 
dealing with negative signs in equations. The final equation on this level shows the new strategies 
in action: 



There are many examples of students struggling to develop 
such strategies. Rajiv and Seb’s first equation on this level, 
for example, is -4 − 8b = -4 − 29b, which they manage to 
“simplify” to 128 − 128b = 128 − 149b along the way to 
discovering that b = 0. Their next equation takes almost 20 
actions, as they work out the effect of adding negative 
numbers to positive numbers, subtracting positive numbers 
from negative numbers, and so on. By the last equation they 
can solve them in 3 actions, but there have to be doubts 
about the extent to which they will remember the strategies 

they have developed here given the number of permutations. 

Rebecca & Nicola 
46  -35 -11b = 3 + 8b 53 

Add:  10   
Subtract: 3 4   
Subtract: 8b 5   
Subtract:  5   
Subtract:  3   
Add: 38 4   
Guess: 38/-19 14   
Continue 1   

For example, when there is a negative sign in front of the unknown term, Lisa tends to attempt 
to subtract rather than add: she tackles 37 + 13b = 6 − 3b with “subtract 3b”. She corrects this 
strategy, but it recurs: in particular when tackling the first equation of the second lesson. Many 
students have to remind themselves of what happens to the equation according to the sign of the 
terms in the equation, whether the operation is add or subtract, and the sign of the number being 
added or subtracted. 
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6.2.4 Posing Linear Equations 

Although 80% of 10EQ reached Level 13 during their first lesson, details of that work will be 
included in the next section on modelling word problems. At the beginning of the second lesson, 
however, students were encouraged to enter their own equations to get back up to the higher 
levels. 

Rebecca and Nicola entered the following equations, and received certain messages from the 
program: 

Equation entered Message 

x2 + 25 = y + 100 This program cannot handle more than one letter 
x2 + 25 = 2x + 5 Left-hand side is not linear 
x2 + 25 = x Left-hand side is not linear 
x2 + 25 = x = 5 An equation must have only one equations sign 
x2 + 25 = x + 5 Left-hand side is not linear 
x + 48 − 22 = 12 − 49  
They then successfully solved the latter equation (which had been automatically simplified to 
26 + x = -37), but gave the answer -63/x, then 63, and finally -63. They then successfully 
completed Level 12. 

Billy was more ambitious, in trying to find complicated equations that the program either could 
not handle or dramatically simplified. He posed (x × 2.89) − (y/342) = (z + 34)/(x × 99), and 
then (x × 2.89) − (x/342) = 32. A wide variety of equations were posed to get to as high a level as 
possible - some tried to arrange for negative answers; others quickly discovered that a negative 
sign was the best indicator of a high level. 

Rajiv and Seb, meanwhile, posed the equations 876b = 45/56 + 2, 34 + 17b = 56 + 12, 
32 + 78b = 67/65b, 32 + 78b = 67 + 76b and 23b + -15 = 18b + 30. In the post-interview, Rajiv 
and Seb said they enjoyed the equation-posing part of the activity, and would like more - perhaps 
also posing equations for others to try to solve. 



 

6.2.5 Modelling Word Problems 

Level 13: Word Problems with balances 

On Level 13, each problem is a description of a 
balance puzzle. For Rebecca & Nicola, the script 
for the modelling puzzles does not look 
promising. Faced with the orange problem, their 
initial “guess” of 4 + 227 = 9, apparently shows 
little awareness of the relevance of unknowns or 
that such an expression cannot constitute an 
answer to the problem. But in each puzzle on 
Level 13 they obtain a correct answer and the 
first and the third are in the fractional form that 
one might expect had they solved an equation. 
The tape reveals that, after the abortive attempt 
to represent the first problem situation as an 
equation, Rebecca says “Take 4 oranges off each 
side.”. It appears, then, as though Rebecca is 
using a simplification strategy based on the 
objects in the balance situation rather than the 
unknowns in an equation. She then says “Take 
17 off each side.”. Note the form of words: if 
she were using a typical arithmetic strategy she 
might say something like “If 4 oranges plus 227g 
weighs the same as 9 oranges plus 17g, then 5 
oranges weights 227 − 17.”, but instead she says 
“Take... off each side”. 

Rebecca & Nicola 
# Time  Puzzle 

    
121  
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Rose also entered an equation like 4 + 227 = 9 + 17, but found another way to solve the Level 13 
balance problems. Another common formulation amongst students for the Level 13 balance 
problems is something like 4 + 227g = 9 + 17g, which suggests that the point of using a letter to 
stand for an unknown number has been lost. It is interesting that several students were able to 
get the correct answer using this equation - their grasp on the strategy for solving 210g = 5 not 
being very strong perhaps. 

Of course having appreciated from the earlier balance puzzles that dividing the weight difference 
between the sides by the difference in number of objects gives the answer, and being confident in 
one’s arithmetic (or having a calculator) one may not attempt to be tempted to solve the problem 
using algebra. Indeed, several students did just that. For example, Tracy solved the Level 13 
balance problems and Level 14 seesaw problems without using the Model button. However, 
some students who do this then attempted to find by trial-and-error the sequence of operations 
that would solve problems on higher levels. This strategy very rarely worked, and so they were re-

54 
   

4 oranges plus 227g weighs 
the same as 9 oranges plus 
17g. What is the weight of an 
orange? 

 29   Guess: 4+227=9 
 36   Guess: 4+227=9+17 
 53   Guess: 210/5 
 2   Continue 

    
61  55 

   
   

12 cups plus 417g weighs the 
same as 18 cups plus 129g. 
What is the weight of a cup?

 58   Guess: 48 
 3   Continue 

    
91  56 

   
'17 pencils plus 390g weighs 
the same as 23 pencils plus 
132g. What is the weight of a 
pencil?' 

 90   Guess: 258/6 
 1   Continue 

Quit19



directed back by the teacher or researcher to Level 13 to find a way of using the Model button to 
solve the problem. 

However, several students worked out effective ways of modelling. Seb, for example, happily 
entered an appropriate equation to solve their Level 13 problems, using the letter a or x in each 
case, whatever the objects in the problem. Jack, Harry, Kirsty, Lisa, Mike, Dick, Jane and Debbie 
successfully solved the Level 13 balance problems using the Model button. On one problem, 
Harry omits one of the unknowns, but when his answer is rejected re-enters the equation 
correctly. 

Level 14: Word Problems with subtractions 
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Some of these problems started to cause problems for 
those who had met early success using a strategy of 
treating expressions as combinations of objects. A 
slow-down in students’ success rate and enjoyment 
was noted in all classes who worked this far. This 
would tend to support the proposal to challenge the 
letter-as-object strategy prior to modelling. 

Jack’s first Level 14 problem is interesting (see left). 
He is among several students who algebraically 
translate the TOAN phrase “subtracts the result 
from” as “subtracts”, but then re-models the equation 
when the answer is not correct. He then successfully 
uses models the remaining Level 14 problems, 
although he initially attempts to model the seesaw 
problem by using 4 variables - two for the people’s 
weights and two for the bricks’ weights - and two 

equations. He again attempts simultaneous equations for the tickets problem, before creating an 
accurate single equation. 

Jack 
Charlotte has a secret number. If she 
multiplies it by 5 and subtracts the 
result from 155, she gets 240. What is 
her number? 

Time  Action 

For the Level 14 CD problem, Rose divided the difference in price by the difference in number 
of CDs. For the Level 14 seesaw problem, she entered the equation 48n − 5n = 39n − 2n. 

Craig obtained correct answers for Level 13 without using the Model button; attempted to model 
the Level 14 seesaw problems without negative signs - a fairly common strategy - but found the 
answer another way; successfully modelled (and solved) the Level 14 TOAN problems; and 
successfully modelled (and solved) a Level 15 cinema problem. Grace was similar in not using 
Model until TOAN. Lisa initially attempted to model the Level 14 CD problem without negative 
signs, but thereafter has no difficulties with that level. 

58  Model: (5x)-155=240 
9  Subtract: 240 

11  Add: 10 
7  Subtract: ESC 
8  Add: 385 
7  Guess: 395/5 

11  Guess: 395/5 
10  Guess: 395/5x 
8  Guess: 5/395 

61  Model: 155-(5x)=240 
12  Subtract: 155 
13  Guess: 85/-5 
1  Continue 
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Level 15 & 17: Word Problems with ratios 

As noted earlier, in the version of the program used with Year 10, this level did not discriminate 
between problems in which the quantity requested happened to be the obvious choice for x and 
problems in which the quantity requested was not the obvious choice for x. When the (correct) 
solution to the equation was rejected as a solution to the problem, many students attempted to 
re-formulate the equation rather than carry out the simple calculation using the equation’s 
solution that would have obtained the correct solution to the problem. 

On the other hand, when Dick successfully modelled Levels 13 to 15, the only difficulty was the 
first Level 15 cinema problem, which took him 6 minutes to find an appropriate equation; and it 
took only another minute to deal with the “hard x” obstacle. 

Level 16 & 18: Word Problems with expressions 

Again, in retrospect, the word problems could have been graduated better - being asked to find a 
quantity that was not the obvious choice to be represented by a letter was a bigger hurdle than 
anticipated. However, much of the frustration felt by students at this stage could have been 
avoided simply by introducing this subtlety in an already familiar word problem. The value of this 
frustration is debatable. Nevertheless, it was amazing not so much that students chose to 
formulate their own equations and that they were able to; but that once the equation appeared on 
the screen, students said things like “Ah, now I can do it!” and “It’s easy now!”. In other words, 
the equation had become for them a powerful problem-solving tool that they were confident 
about using. Enjoyment in using algebra was, for many of the students in the study, a new 
experience. 

6.3 Which problems improved according 
to pre-post testing? 

This section uses evidence obtained before and after the activity to attempt to identify the 
problems in which there were improvements attributable to EQUATION. Evidence obtained 
during the activity will not be considered here, because the task of objectively identifying 
improvements that are unexpected from other theoretical perspectives (a task for which the most 
appropriate research instruments are perhaps those that do not depend on the specific activity; 
for example - with regards to strategic theories - the written test, interviews and problem-posing) 
must not to be conflated with the task of relating any such improvements to particular aspects of 
the specific activity (a task which of course relies heavily on evidence from the activity). 



6.3.1 All Tested Algebraic Problems 

Class n Pre Post Imp Wor p 

7EQ 26 11 14 72 / 992 43 / 126 0.012

7CON 21 10 12 43 / 815 25 / 88

10EQ 22 50 58 149 / 470 79 / 476 0.006

10CON 24 50 53 153 / 518 121 / 514

NB “7EQ” and “10EQ” refer to the Year 7 and Year 10 classes (respectively) using 
EQUATION. “7CON” and “10CON” refer to the control classes - i.e. those not using 
EQUATION. “n” refers to the number of students. “Pre” and “Post” refer to the mean test 
percentage scores. “Imp” refers to the number of items that improved, compared to the number 
of items where improvement was possible. “Wor” refers to the number of items that worsened, 
compared to the number of items where worsening was possible. “p” refers to the p-value of the 
t-test with matched samples, i.e. the significance of the change from pre-test to post-test for that 
particular class. Recall that the EQUATION groups and control groups are not matched. 

The test results suggest that at least some problems were improved by the use of EQUATION. 
Even though there were a large number of items in the test that were not expected to show 
improvements, both EQUATION groups showed small but significant increases for the test as a 
whole. There were small increases for the control groups, but these were not significant. 

10EQ Student Scores
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Even allowing for enthusiasm generated by being involved in research, this apparent success 
disguises the fact that, as will be seen, some facilities improved and some worsened. Looking at 
both Year 10 groups, approximately a third of the items where improvement was possible did 
improve; and a fifth of the items where decline was possible did decline. The situation for Year 7 
was very different. Only around one in twenty items where improvement was possible did 
improve; and a third of the items where decline was possible did decline. The differences in 
scores between years were much larger than between the EQUATION and control groups. 
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Facilities for Year 10 exceeded those for Year 7 in virtually every item (and the exceptions were 
trivial). 

One particularly unfortunate occurrence with the Year 10 students for which there is some 
evidence (a cluster of “unusual” answers from adjacent students) is of copying, although this 
mostly applies to the control group. So what with this and the small samples (22 in 10EQ, 24 in 
10CON, 26 in 7EQ, 21 in 7CON), any statistical analysis here has to be treated with some 
scepticism. Even with these provisos, it seems reasonable to suggest that EQUATION does not 
by any means provide a panacea for algebra - the post-test results for the EQUATION groups 
are not significantly higher than those of the control groups, for the whole test and for the 
individual sections. Moreover, because gains tended to be on a continuum, it is difficult to clearly 
identify students who particularly gained from use of the program. 

The highest mark in 7EQ was 44% (Basil on the post-test), with the next mark being 26% 
(Melissa on the post-test); while the vast majority scored under 20% (for either test), and one 
student scored 0 both times. Many of the students increased their score on the post-test by small 
amounts, the only serious exception being Joe (from 23% to 14%); the best improvements were 
made by Margaret, Melissa, Jessica, Basil, Catherine and Eddie. Success in modelling, representation 
and transformation for the class as a whole remained minimal (below 10% correct). 

The range in marks for 10EQ was 84% (Dick on the post-test) to 23% (Grace on the post-test), 
but there are no large gaps in the scores. Nearly all the students increased their score on the post-
test; with Grace (down from 44% to 23%), Judy and Arthur (both dropping about 10%) being 
the only serious exceptions; the best improvements were made by Bruce, Rajiv, Dick, Cedric, 
Debbie, and May (all up about 20%). The extent of change for each student does not bear much 
relation to the pre-test score. As for 7EQ, the number of improved items for 10EQ was almost 
double the number of declined items. 

The control groups were fairly similar to the EQUATION groups on the pre-test, as can be seen 
from the following charts: 

Year 10 Pre-Test Facility
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The highest mark in 7CON was 60% (Deirdre), with the next mark being 30% (Stephen); over 
half the students scored under 5%. Over a third of the total number of improvements (43) were 
obtained by Deirdre; and she did not decline in any items. The other students were fairly evenly 
divided between those who improved their score, those who stayed the same, and those who 
declined; but the size of change was small. 
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The range in marks for 10CON was 74% (Robin on the post-test; Elizabeth on the pre-test) to 
9% (Thomas on the post-test). There were roughly equal numbers of students increasing and 
decreasing with their score; the extent of change for each student is largest for those with the 
smallest pre-test score. The largest increase was for Reuben (up from 23% to 58%); while the 
largest decrease was for Thomas (down from 33% to 9%). 

For both control groups, the number of item improvements is only slightly higher than the 
number of item declines; and, taking both control groups together, if the three most improving 
students are removed as outliers, these two indicators are virtually identical. If the same is done 
for the EQUATION groups, however, the number of improvements is still some 60% higher 
than the number of declines. 
 



 

6.3.2 Comparison of the Problem Types 

 
Representation 

The results suggest that representation 
scores were improved by the use of 
EQUATION. The improvement in 
representation items for 7EQ was 
significant; while 10EQ increased by 
about 10%; neither control group 
increased significantly. 

Class Pre Post Imp Wor p 

7EQ 3 8 22 / 304 4 / 8 0.002

7CON 7 9 5 / 234 1 / 18

10EQ 48 57 45 / 137 22 / 127 0.017

10CON 45 50 49 / 157 37 / 131

 
 Transformation 
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The results also suggest that using 
EQUATION improved transformation 
scores for 10EQ students; but not for 
7EQ. The control groups’ scores each 
increased by about 3%, but this was not 
significant. 

Class Pre Post Imp Wor p 

7EQ 5 5 16 / 521 15 / 25

7CON 2 5 16 / 433 4 / 8 

10EQ 45 52 66 / 253 37 / 209 0.016

10CON 45 48 71 / 275 57 / 229

 
 

Modelling 
Neither of the Year 7 groups improved 
their modelling score significantly; 
whereas both the Year 10 groups did so, 
the average facility moving from about a 
quarter to about half. 

Class Pre Post Imp Wor p 

7EQ 6 8 6 / 73 5 / 5 

7CON 13 17 6 / 55 3 / 8 

10EQ 26 52 21 / 49 4 / 17 <0.001

10CON 28 50 16 / 52 0 / 20 <0.001
 

 
 Patterns 

Class Pre Post Imp Wor p The improvement in the EQUATION 
groups’ patterns scores was not 
statistically significant; while both 
control groups declined slightly. 

7EQ 48 53 28 / 94 19 / 88

7CON 37 36 16 / 93 17 / 54

10EQ 80 81 17 / 31 16 / 123

10CON 80 74 17 / 34 27 / 134
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Caution is required in comparing pre- and post-tests for Year 10, with particular regard to 
transformation, as some students appeared to run out of time before reaching some questions in 
that section. Some students were also given the option by their teachers during the pre-test of 
attempting additional (harder) questions, which may have distracted them from the problem 
types under discussion here. 

The following chart shows the proportion of those students who improved compared to those 
who could improve; and the proportion of those students who worsened compared to those who 
could worsen. 
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It is interesting to note that there seems to be little correlation between score in one problem type 
and score in another; and that the same seems to be the case for improvement in score. On the 
other hand, patterns and modelling consist of fewer items than representation and transformation. It 
would be difficult, in any case, to conclude much about strategic improvements without looking 
at the individual problems being tackled, unless one had a conjecture about strategies that work at 
the level of problem types. The following sections attempt to identify problems for which there is 
prima facie evidence (from any source, but mostly from the written test) of improvement as a 
result of using EQUATION. 

Chapter 6 - Analysis 194 



Chapter 6 - Analysis 195 

6.3.3 Patterns Problems 

For the patterns section of the test, the overall change in facility, the changes in facility for each 
item, and the numbers of students improving or worsening suggest little change for any class. 
However, there are four anomalous changes for 7CON at the 5% level. (Facilities for each item 
are in the Appendix.) Nevertheless, there are roughly equal numbers of improvements and 
declines for this class, and a quarter of the declines are by Deirdre. Although there were slightly 
more improvements than declines for 7EQ, a quarter of the improvements are by Hugh and 
Tony. For 10EQ, there are again roughly equal numbers of improvements and declines; while for 
10CON there are more declines than improvements, but over a third of the declines are by 
Christine, Thomas and Isabelle. 

Moreover, looking at the individual scripts, there is little evidence of systematic strategic change, 
for any group. One exception resulted from the fact that the usually used rule for A1 in the pre-
test was 3n + 1; whereas in the post-test there were two: 4n − 1 and 4(n - 1) + 3. (Josh in 10EQ, 
for example). One student used the post-test rule 3n + (n − 1). Rajiv in 10EQ used a distinctive 
(but unknown) strategy to get an answer on the pre-test; but divided by 4 on the post-test and 
rounded up. Quite a few students were able to get the correct answer by dividing and then 
checking, rather than subtracting (or adding) and then dividing. A couple of students solved A1(i) 
in the pre-test by using the pile number and by using the pile difference in the post-test. The 
most important result for strategies is a negative one: nobody used algebra to tackle A1(iii) in 
either test. 

In A2(iv), it is odd that all 14 10CON females were correct in the pre-test and then 6 declined, 
whereas 7 of the 10 males were correct on the pre-test and the other three then improved on the 
post-test (one declined). 

6.3.4 Modelling 

Although neither Year 7 group improved in the modelling section, it is clear from the fact that both 
Year 10 groups improved their scores significantly that attempting the pre-test can assist in the 
post-test (assuming that 10CON did not do anything between the tests that could have 
contributed to this improvement). Why this should be - and just for the modelling section - is 
interesting, and will require a closer look at the strategies used for individual items. 

Note that attribution of an algebraic strategy requires more than just the presence of letters - 
there must be evidence of an attempt to represent the situation using some sort of notation. 

6.3.5 B1: The Field Problem 

Many students divided the perimeter by six, and we are given no further clue as to how they 
arrived at this calculation; although whole-parts reasoning can be conjectured. Harriet in 10CON, 
for example, wrote “2-length, 2-width; 4-length, 2-width = 6” to get the correct answer. Bruce in 
10EQ divided by 3 in the pre-test (the two widths are equivalent to one length, perhaps?) to get 
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the correct answer. The simplicity of the problem worked against much elucidation of strategy; so 
for example Debbie in 10EQ divided the perimeter by 4 in the pre-test, but changed this to 6 in 
the post-test, but no indication is given why. A popular strategy was to divide the perimeter by 4, 
and then add this number onto half itself. Letters did not appear to play any role in solution for 
10CON, and only for a few students in 10EQ. 

For 10CON, 9 out of 14 females were correct on the pre-test, compared with only 2 (out of 10) 
males. 1 female and 3 males improved in the post-test. What advantage did these four students 
gain? One tried trial-and-improvement rather than the “divide by 4, and add half on as much 
again” strategy; and one started by dividing by 6 rather than by 4; and two showed no working.  

Potential strategic improvement for 10EQ is perhaps best exemplified by Darren, who used the 
“divide by 4 and add half on as much again” strategy in the pre-test; but on the post-test there is 
not only evidence of an initial attempt to divide the perimeter by 4, but also a calculation 
involving halving the perimeter, dividing this number by 3, and then doubling. Beside this are 
two sketches of the field: the first with the width marked as x and the length as 2x; the second 
with the width marked (correctly) as 19 and the length as 38. Of course one interpretation of his 
script is that he was just playing with whole-number combinations in an attempt to find a number 
which worked. But there is a checksum on the post-test that these numbers produce the required 
perimeter; but not on the pre-test. Were the letters in the diagram standing in for “parts”? Did 
the diagram help him realise that half the perimeter would be 3x? Is that why he halved (to find 
3x), divided by 3 (to find x) and then multiplied by 2 (to get 2x)? His delayed-test is almost 
identical to the post-test, but without the sketches. This scripts might indicate that the x was 
being used to assist in the execution of a whole-part strategy. If so, such a use of algebra would 
be a remarkable product of using the program. In Lins’ terminology, Darren would be showing 
evidence of a whole-part, non-internal, but analytical approach. 

However, there is also evidence to suggest that EQUATION hindered students’ use of algebra to 
represent situations. For example, Judy used the equation 102 = x + 2x in the pre-test (forgetting 
that four sides make up the perimeter, and so obtaining an answer twice as big as the correct 
one); but in the pre-test she wrote the equation 114 = x × 2, which does not suggest a good grasp 
of why algebra might be useful here. Jack did exactly the same as Judy on both tests. Jane, who 
correctly used a whole-part strategy in the pre-test, used the unhelpful equation L = 2p in the 
post-test. Yet all three students scored above average for the class on the test as a whole, and 
(apart from Judy’s confusion between area and perimeter in C2 on the post-test) were reasonably 
successful in the representation section. Evidence from Jack’s script from the advanced pre-test 
also shows that he is a competent equation-solver of simple linear equations in one unknown, 
with or without negative signs. 

The only really successful use of literal algebra on this item (in any class) was by Liam in 10EQ, 
who left the question blank on the pre-test, but apparently made use of the equation 
2a + 2(2a) = 114 on the post-test, after having first attempted to divide by 8. However, the 
mechanism by which the equation provides the answer is not clear: this equation is followed by 
“= a + 2a = 114” on the same line, and then 3a = 114 below, which would provide the length 
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correctly as a = 38 (which he then checks produces the required perimeter). But how was 
a + 2a = 114 obtained? One interpretation would be that he realised that he could replace 2a by a 
in the equation if a were chosen to represent the length rather than the width. Unfortunately, the 
symbols −a appear below the 2a and 2(2a) terms in the first equation, suggesting that he found 
the second equation by subtracting a from each of the two terms on the LHS of the equation 
without altering the RHS. On the other hand, this interpretation would require that when he 
starts to check that a width of 38 produces the required perimeter, he discovers that it is too large 
to be the width, and so decides it is the length. There is no evidence for this, and it may be that 
the −a indicates the replacing of the 2a by a rather than the subtraction of a from both sides of 
the equation. Whatever the interpretation, it is clear that Liam is attempting to use an equation to 
help him solve the problem - he seems to have an algebraic strategy that was not there before, 
albeit his use of algebra is non-standard. His delayed-test does not provide much further insight: 
the initial equation is written as 2(2w)w + 2w = 102, but it is simplified to 4w(1) + 2w = 102, then 
6w = 102, which is then solved correctly. 

In contrast to Year 10, there is not only little evidence that Year 7 improved strategies for this 
item, but there are also no indications of algebraic activity. Three students in 7EQ were correct 
on the pre-test (Margaret, Charlotte & Basil). Three different students were correct on the post-
test (Melissa, Mickey & Eva). Margaret’s method on the pre-test was “I kept try new numbers”; 
whereas she divided the perimeter by 4 on the post-test, labelled each side of a diagram of the 
field with this figure (28.5), then drew another diagram with the sides labelled 57, 28.5, 57, 28.5, 
and answered 57m. Melissa left the item blank on the pre-test, and just wrote down the answer 
on the post-test. Charlotte gave no working on the pre-test, and used an unknown strategy on the 
post-test. Mickey showed no working on either test. Basil used an unknown strategy on the pre-
test; and on the post-test appeared to use the perimeter divided by 8 as the width (14.25) and 
then found the length by subtracting twice the width from the perimeter and dividing by 2, 
without noticing that the length was therefore 3 times the width, rather than twice the width. Eva 
left the item blank on the pre-test, and divided the perimeter by 6 on the post-test to find the 
width. There were similarly few indications of strategic improvement for 7CON. 

6.3.6 B2: The 4× Seesaw Problem 

Lins (1992) found a facility for this item of 22%. The overall pre-test facility here was 15%. But 
there are important differences in the experimental arrangements: the most significant being that 
Lins’s students had to tackle a very much smaller number and range of problems. So they 
probably felt they had more time not only to spend on the items, but to elaborate their reasoning. 
However, his research did not take account of possible improvements on subsequent occasions, 
which is relevant here because for 10EQ at least, B2 is the item with the most improvements. 

Rebecca in 10EQ provides an interesting before-and-after case, in that there are examples of at 
least 4 different strategies in the pre-test, which are given here in the conjectured order. 
(1) “Difference ÷ 4” - Calculation of the difference in weight between the sides; and then division 
by 4. This she checked by finding the final weight on each side, and she concluded that the 
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strategy didn’t work (“no”). 
(2) “Difference ÷ 2 − 2” - Calculation of the difference between the sides, and then assignment to 
George of 4kg more than Sam. Although she wrote down the principle of this strategy (“George 
has to get rid of 4kg + the amount Sam throws away”) she quickly realised that this wasn’t going 
to balance the seesaw. 
(3) Solution of the equation 189 − x = 273 − 4x. Unfortunately, when adding x onto the equation 
she thought that it should be 5x (instead of 3x) on the RHS. She checked this solution and 
concluded “wrong doesn’t fit”. 
(4) Trial-and-error - repeated trials based on the checking process (“tried other numbers in my 
book”) before finding the correct answer. 

In the post-test Rebecca used only one strategy - the solution of the equation, which this time she 
carries out successfully ( − 4x + x becomes −3x) and then checks (“144 4”). Hence we appear to 
have prima facie evidence of strategic improvement. Incidentally, in the delayed test six months 
later she again goes straight for an algebraic strategy, which is again carried out accurately without 
the -4x + x = -5x error. 

Rebecca was the only student who attempted the equation strategy in the pre-test; but there were 
14 students (3 from 7EQ, the rest from 10EQ) who used the equation strategy in the post-test. 7 
of these (May, Melvyn, Jack, Dick, Jane, Judy and Harry) who had in the pre-test either left the 
question blank or used difference division, successfully used the equation strategy in the post-test. 
However Judy wrote down how much Pat threw away rather than Sarah; while Harry accidentally 
transposed 248 to 284. Jocelyn wrote “can’t do it” in the pre-test, and used the equation strategy 
in the post-test; but he made a slip ( −B + 4B becoming 4B rather than 3B). The choice of letter is 
interesting - is it B for “weight of bricks” or B for “bricks” or B because that’s what 
EQUATION used (for barrels)? Liam and Melissa did virtually the same as Jocelyn. Grace used 
trial-and-error in the pre-test; and the equation strategy in the post-test; but she made a slip 
connected with negative numbers. Jennifer and Mickey both started to represent the situation, 
but gave up after finding it difficult to write down the right-hand-side of the equation. 

For the control groups, on the other hand, only 1 student attempted (half-heartedly) an algebraic 
strategy, with the others evenly divided between trial-and-error, “Difference ÷ 4 or 5” (variants of 
which featured in Lins’ study), unknown strategy or blank. All the correct answers with 
identifiable strategies were obtained by trial-and-error. Trial-and-error was a far more popular 
strategy that in Lins’s groups. 

Interestingly, there is a marked difference between the males and females on this item for Year 
10. Only one male (out of 13) got it correct in the pre-test, and 7 in the post-test. The females 
improved from 4 (out of 9) to 6. For 10CON, only two males (out of 10) were correct for each 
test; whereas the females improved from 5 (out of 14) to 8. 
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B2 10EQ  B2 10CON 

 Pre Post   Pre Post 

Name /  Strategy / Strategy  Name / Strategy / Strategy 

Debbie  -  D  Christopher  D  D 
Rebecca  T  A  Duncan  -  - 
Judy  -  A  Fatima  D  D 
Arthur  ?  ?  George  D  - 
Samuel  ?  -  Chelsea  D  ? 
Jocelyn  -  A  Ashleigh  D  T 
Liam  -  A  Guy  D  O 
Harry  D  A  Robin  ?  T 
Bruce  T  ?  Reuben  -  - 
Darren  D  ?  Harriet  T  T 
Tracy  ?  ?  Heather  -  ? 
Josh  D  ?  Rhiannon  ?  T 
May  -  A  Helen  T  T 
Rajiv  -  ?  Mathew  ?  T 
Dick  D  A  Jerry  ?  A 
Cedric  -  ?  Nick  D  - 
Jane  D  A  Lauren  T  ? 
Grace  T  A  Christine  ?  ? 
Joanna  ?  ?  Elizabeth  ?  T 
Jack  -  A  Isabelle  T  T 
Rose  D  T  Maria  ?  - 
Melvyn  -  A  Thomas  -  - 
      Hannah  -  - 
      Alice  D  D 
Strategies: A = algebraic strategy, T = trial-and-error, D = difference division, ? = unknown strategy, O = other 
strategy, - = item left blank,  = answer correct,  = answer incorrect 

It seems reasonable to suggest, then, that for about half the Year 10 students, EQUATION 
encouraged the development of an algebraic strategy for the seesaw puzzle; and that about half of 
these had difficulties with some aspect of executing the strategy. Year 7 were not generally helped 
to develop an algebraic strategy. 

6.3.7 B3: Secret Number (2x + 6 = 3x − 70) 

On the pre-test, 10EQ mostly either left the question blank (9) or tried an algebraic approach (8, 
of which 3 successful); 3 used an unknown strategy (2 successful); and 2 tried trial-and-error (0 
successful). Interestingly, half the females and none of the males were correct.  

On the post-test, those in 10EQ who had tried an algebraic approach on the pre-test tried it again 
on the post-test, with the exception of two who left the item blank; and 6 more students tried it. 
Those who were successful before were successful again; and two who were unsuccessful with 
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the algebraic strategy the first time corrected their errors the second time. However, half of the 
12 in total who used an algebraic strategy were unsuccessful. There were 5 unknown strategies (all 
but one successful), 1 trial-and-error (successful), and 4 blanks. Errors in the algebraic strategy 
centred around difficulties with the negative sign. 5 males improved, and only 1 female; yet 
proportionally 2/3 of the females were correct and just over 1/3 of the males. 

B3 10EQ  B3 10CON 
 Pre Post     Pre Post   

Name /  Strategy / Strategy  Name / Strategy / Strategy 

Debbie  -  -  Christopher  -  ? 
Rebecca  A  A  Duncan  -  - 
Judy  -  A  Fatima  -  ? 
Arthur  -  ?  George  -  T 
Samuel  -  A  Chelsea  -  - 
Jocelyn  A  A  Ashleigh  -  - 
Liam  A  A  Guy  A  A 
Harry  ?  A  Robin  -  - 
Bruce  T  T  Reuben  -  - 
Darren  A  -  Harriet  T  T 
Tracy  ?  ?  Heather  A  ? 
Josh  A  -  Rhiannon  T  T 
May  -  ?  Helen  O  T 
Rajiv  -  ?  Mathew  ?  T 
Dick  A  A  Jerry  A  A 
Cedric  -  -  Nick  -  - 
Jane  A  A  Lauren  T  ? 
Grace  T  A  Christine  A  A 
Joanna  ?  ?  Elizabeth  T  - 
Jack  -  A  Isabelle  A  ? 
Rose  A  A  Maria  ?  ? 
Melvyn  -  A  Thomas  -  ? 
      Hannah  ?  ? 
      Alice  -  T 
A = Algebraic strategy, T = Trial-and-error, ? = unknown strategy, O = Other strategy, - = question left 
blank 

5 students in 10CON, meanwhile, used an algebraic strategy on the pre-test (one of whom was 
successful); and only 3 used one on the post-test (none of whom were successful). Trial-and-error 
appeared to be effective, however there were 6 who were successful with unknown strategies. 
This made B3 the most improved item for that class. Although there was no male-female 
discrepancy in the pre-test, 7 females improved (out of a possible 13), compared with only 2 
males (out of a possible 9). 

There is little evidence of Year 7 improving their strategies. The Year 6 students, meanwhile, 
were unable to solve word problems outside the context of EQUATION. 
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For B3, as for B2, there is a marked difference between the males and females on this item for 
Year 10. None of the 13 males were correct in the pre-test, and 5 were correct in the post-test. 
The females improved from 5 (out of 9) to 6. For 10CON, only 1 male (out of 10) was correct in 
the pre-test, and 3 in the post-test; whereas the females improved from 1 (out of 14) to 8. Putting 
the scores for B2 and B3 together, it can be seen that the 10EQ males (from 1 to 12, out of 
26)and 10CON females (from 6 to 16, out of 28) appeared to gain most by repeating the test; 
whereas the 10EQ females (from 9 to 12, out of 18) and 10CON males (from 3 to 5, out of 20) 
improved only slightly. Nevertheless, for virtually every class on each sitting, females 
outperformed males on the word problems as a whole. 

Comparing B2 and B3 for 10EQ, it can be seen that those who attempted an algebraic strategy 
on the post-test of B2 mostly also tried one on B3. Moreover, B3 seemed to induce more 
algebraic strategies than B2, on both tests. It is striking that nobody in 7CON apparently 
attempted an algebraic strategy for any of the modelling items, and well over half failed to get any 
correct answers at all. For 7EQ, there were only three apparent attempts at an algebraic strategy 
(all unsuccessful), and over three-quarters failed to get any correct answers at all. 

6.3.8 Posing Word Problems 

Because the students were not asked to pose their own algebraic problems at the start of the 
research, it would be presumptuous to claim that the problems posed at the end were as a direct 
result of using EQUATION. Nevertheless, it is possible to use the problem-posing evidence to 
place limits on students’ prima facie ability to devise problem situations in which an algebraic 
strategy might be an effective way of solving the problem. For example, Kirsty and May posed a 
TOAN puzzle, which might involve the use of bracketed expressions: 

“I think of a number and double it then I add 6, I then halve it and minus 3. I end up with 80, so 
what was my original number?” 

Yet in their solution, they suggested a non-algebraic reversal strategy: “To get the answer you 
have to plus 3, then multiply by 2, minus 6 and then halve it.”. In their own critique of the 
problem, they acknowledged the lack of challenge, but failed to recognise the value of taking 
steps to ensure unknowns on both sides of the equation - they did not go beyond suggesting that 
a “harder formula” be used. Nor did they note the ambiguity of the second “it”. 

Dick posed a problem which is reminiscent of the album sale, but which is typical of introductory 
examples for simultaneous equations (which did not appear in EQUATION): 

“John buys 4 tapes and 3 CDs for £60. Alfonz buys 1 tape and 2 CDs for £35. How much does (a) a 
CD and (b) a tape cost?” 

Rajiv and Seb similarly adopted the language of an EQUATION problem, but without managing 
to pose a problem for which algebra would be appropriate: 

“Sarah and Claire are sitting on a seesaw and Sarah is carrying 195lb and Claire is carrying 390lb and 
they are not balanced at all. If they both throw away ¼ of their weight, find the ratio of the weight 
they are carrying compared to each other.” 
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Nor (it is clear from their solution) did they realise that the existence of the seesaw or the 
throwing away of ¼ of the weight do not affect the ratio, even given the potential ambiguities of 
the problem wording. They suggested that the problem is “complicated”; and even though there 
are “not enough variables”, the mathematics is “about right”. 

Similarly, there is rather less to Samuel’s problem than the age problems in EQUATION 
(presumably his father is always 30 years older): 

“My father was 30 years older than me 3 years ago, and I will be 16 in 2 years. How old is my father?” 

Lisa, meanwhile, posed a more elaborate problem which uses algebraic notation explicitly yet 
somewhat artificially, and fails to avoid ambiguities that may be responsible for the problem 
being insoluble: 

“My dad owns a car, a Rover 3600 made in 1967. It cost £1500 when new. Now it is worth my dad's 
age times 80. My dad was born 1500 add 22 minus 1482 years ago. My dad also says I can drive it 
when I am seventeen. At the present moment I am x divided by 2 minus 140 add 5 years old. x is the 
cost of the car in 1967 minus the present value, divided by 10, times 2 and minus 40. 

a)How much is my dad's car worth now? 

b)How old is my dad? 

c)How old am I at the moment? 

d)What is x?” 

But then there are problems like Debbie’s, that are creative improvements on problems in 
EQUATION, and that are sufficiently challenging for algebra to be useful: 

“If you take my age and triple it, it is my father’s age. My mother is my father’s age divided by two, 
multiplied by three and you then subtract 25. My mother’s age is twice mine plus 10. What are our 
ages?” 

In item C4 of the written test, the students were asked to find a situation in which x = 4c might 
help. Although this is not a direct request to pose a word problem (which it perhaps might have 
more profitably have been), it does demand the ability to recall or create a situation in which 
modelling might be useful. 7 students in 10EQ improved on this item; while 10CON declined. 

6.3.9 Representation 

As the chart below shows, 10EQ and 10CON are similar for most representation items. 
However, there is clearly some discrepancy on C4, but it is not really a representation problem 
(see above). The reasons for differences on items C2(i) and (ii) - which require the finding of a 
perimeter - are not so clear. One popular 10CON answer for C2(i) was 4h × t, so maybe 
confusion over perimeter is to blame. 
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The following chart shows the changes in these items: 
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C1(ii), C1(iii), C2(iii), and C5 showed improvement for both classes. Yet overall for the 
representation items, 10EQ made significant progress whereas 10CON did not. The 
interpretation item C4 shows a large divergence: 10EQ improved from 9% to 36%; 10CON 
declined from 58% to 38%; both are statistically significant. C1(iii) is a test aberration (see the 
previous chapter), but explaining the other 10CON improvements is difficult. C1(ii) on the pre-
test required the area of 5 × (e + 2) rectangle; while the post-test involved a 7 × (k + 3) rectangle; 
this seems to be an innocuous enough difference. Wrong answers on the pre-test included the 
obvious 5 × e + 2, but also 5e + 2, 5e + 4, 5 × e + 4, 5 × e, 5 × e5, and 5 × e × 2. It is possible 
(though perhaps implausible) that the reason for improvement is that D7 on the pre-test assisted 
C1(ii) on the post-test. The same argument might then apply for D8 and C2(iii). To add to the 
puzzle, the males remained fairly static for C1(ii) (around half correct); whereas the females 
improved from 2 correct (out of 14) to 9. Meanwhile, all 5 of the males who got C2(iii) wrong on 
the pre-test were correct on the post-test, compared with 3 out of the 6 females (one decline for 
each). In any case, as for modelling, the value of having a control group is again demonstrated by 
these unexpected improvements, as a caution against hasty interpretation of the experimental 
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group’s results. In particular, Hart et al. (1981) found a facility of 24% for Year 8, rising to 41% 
for Year 10. The results here would suggest that minimal algebraic experience (such as for these 
Year 7 classes) makes this a virtually impossible item; while although the pre-test facility for Year 
10 corroborates the CSMS result, merely giving the test again can apparently result in a quarter of 
the students improving. Similar considerations apply to D1(ii) below. 

It is difficult to identify strategies from the items in this section, because there is little need for 
intermediate written steps between question and answer. However, some error analysis of the 
student-professor problem and penny-dime problem is possible for 10EQ: 

 10EQ C6 C7 
 Name Pre Post Pre Post
 Debbie e e
 Rebecca r r e e
 Judy - e
 Arthur r r o o
 Samuel - r -
 Jocelyn r r e
 Liam e e
 Harry r r e e
 Bruce r o e
 Darren o r
 Tracy o o o
 Josh o r r
 May r - e
 Rajiv r r e
 Dick r r
 Cedric o e r
 Jane r r r r
 Grace r r e e
 Joanna o e o
 Jack r r
 Rose r r e
 Melvyn e e

 = correct (e.g. S = 15T for C6, P = 5F for C7), r = reversal error (e.g. 15S = T for C6, F = 5P for C7),-
 = item left blank, e = equality (e.g. P = F), o = other error 

C6 is unusual in that around half of Year 10 changed their answer on the post-test; it is one of 
the most volatile items on the test. 

C8 is odd in that none of the 9 females in 10EQ got it correct in either test; yet 5 out of 13 males 
were correct on the pre-test, 3 improved on the post-test, and 2 declined. 

Comparing performance on problems C6-C8 with problem A2 reveals a rather interesting result. 
In A2 students were given two simply-related sequences of numbers, and asked to predict a 
number in one sequence given the corresponding number in the other sequence. The facility for 
algebraic representation was around 90% for Year 10, even though they had to find the relation 
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before they could represent it. Yet when, in C6-C8, they were given a relation in words, the 
facility for algebraic representation was no better than 45%. 

One major reason for carrying out the Year 7 fieldwork was to provide corroboration for the 
(potentially astonishing) improvement in representation problems. The Year 7 results do indeed 
provide this corroboration to some extent; however, the facilities are much smaller, and the 
number of items showing improvement is also smaller. Only 4 (out of 26) students in 7EQ got 
any representation items correct in the pre-test (Basil 4, Joe 2, Melissa 1 and Eva 1). There were 
hints that the difficulty lay in understanding what was being asked. For example, Jordan asked “Is 
there an alphabet of numbers?”; Margaret gave numerical answers to C1 to C3; while Hugh 
effectively offered numerical answers in the guise of algebraic expressions for C5 (“4r and 13b”), 
C6 (“6T 90S”) and C7 (“4F 20P”). However, Scott and Kevin did at least manage to provide a 
reversed equation in C6. In the post-test, 12 got at least one item correct; and the number of 
correct items went up from 8 to 26. The most improved item was C3 (from 3 students correct to 
10), followed by C6 (from 1 student correct to 7). No other item was correctly answered by more 
than 2 students. There was little indication of improvement in C2(ii) or C2(iii) - the only items 
featuring just one letter - only Basil improved in these two. There were still responses to C3 such 
as “J = 10, P = 16, 26 marbles altogether” (Anna and Tony); but even those who failed to make 
much improvement in score seemed from their responses to have a better grasp of what sort of 
answer would be appropriate. For example, Susan did at least abandon numerical answers: 

Item Pre Post 

C3  J + P = m 

C5 b = 6  R = 10  

C6 S =  15 × S ÷ T 

C7 P = 30  F = 30 F/P =  

Similarly, Jessica on C6 moved from “T = 15  S = 225” to “S = T × 15”. Meanwhile, Eva 
recognised in C6 the need for equations (S ÷ 15 = T on the post-test) rather than expressions 
(15S × T on the pre-test). 

For 7CON, on the other hand, not only did the number of students getting at least one item 
correct move up by only 1 (from 7), but there were only 5 improvements (and 1 decline), of 
which Deirdre accounted for 3. Most of the responses here are numerical, but show little 
consistency with the pre-test. 

The two Year 6 students from School C similarly showed little improvement in representing the 
perimeter of a shape labelled with letters and numbers - their expectation appeared to be that the 
answer should be a number (as opposed to an expression). Ways of achieving this including 
assuming “standard” values for letters (e.g. a = 1, b = 2, etc.), assuming symmetry or attributing 
an arbitrary role to a letter (e.g. 3n means multiply 3 by itself). If a letter appears more than once 
in a diagram, it can stand for something different in each case. 



6.3.10 Transformation 

The following chart shows the facility of the 21 transformation items. 

Year 10 Pre-Test Facility

0

20

40

60

80

100

D1 (i) D1 (ii) D2 D3 (i) D3 (ii) D4 (i) D4 (ii) D4
(iii)

D4
(iv)

D4 (v) D4
(vi)

D4
(vii)

D4
(viii)

D5 D6 D7 D8 D9 D10 D11 D12

Transformation Items

%

10EQ 10CON

 

It is clear that there are pre-test differences between 10EQ and 10CON. 10CON seem to be 
better in items D9, D1(ii), D12, D5 and D11. 10EQ seem to be better in items D1(i), D4(iii), D6, 
D4(vi) and D3(ii). Although these correspond to small differences in frequency (around 3 
students), it is interesting that 10CON seem to do better on items requiring substitution and 
10EQ seem to do better on items for which treating letters as objects (as in Küchemann, 1981) 
can help get a right answer. It is puzzling that while all the females in 10EQ were correct in 
D4(ii), around the half the males were incorrect. 

The post-test changes are interesting: 
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As can be seen, change in many of the items was fairly small. Of the equation-solving items, 
D3(ii) improved for 10EQ quite dramatically (8 students improving, 2 declining); while D3(i) 
moved up only slightly given that the facility was already quite high. There are dramatic changes 

Chapter 6 - Analysis 206 



Chapter 6 - Analysis 207 

for D5; and the overall change in the representation section is significant for 10EQ even if D3 is 
excluded from consideration. 

The facilities hide changes in D9. For the EQ groups there were 8 improvements and 5 declines 
in total; whereas for the control groups, there were 6 improvements and 2 declines. Also hidden 
is the fact that for 10EQ, the facility of D12 for the 13 males improved from 4 to 7; whereas the 
9 females declined from 2 to 1. These results also raise questions about the validity of the CSMS 
item D1(ii) - see C2(iii) above - although of course such a tiny sample size (100 compared to 
3000) mitigates against further conclusions in this regard. 

For 10EQ, one student (Bruce) improved on 8 items; while another (Dick) improved on 7, 
although he declined on 3 others; Darren improved in 6 and declined in 1; Grace declined in 6 
without improvement. However, it is difficult to claim that these resulted from the use of 
EQUATION: 4 students in 10CON improved in between 6 and 8 items. 

Similarly to the representation section, transformation strategies are difficult to detect in the 
scripts. However, in D1(ii) the simplification 4 + 3n = 7n is evident: 

 10EQ D1(ii) D5 
 Name Pre Post Pre Post
 Debbie 7 7 - S
 Rebecca N N
 Judy O - - S
 Arthur 7 7 S S
 Samuel - 7 A N
 Jocelyn S S
 Liam S S
 Harry O S S
 Bruce O - N
 Darren O N S
 Tracy O - N
 Josh 7 - N
 May - -
 Rajiv - S
 Dick - S
 Cedric 7 7 N -
 Jane S S
 Grace 7 - N N
 Joanna 7 N N
 Jack - - S
 Rose S S
 Melvyn - S
D1(ii):  = correct (e.g. 4 = 3n), - = question left blank, 7 = 7n written, O = other error 
D5: A = Always, S = Sometimes, N = Never 



When is L + M + N = L + P + N true?

Item left blank

Never

SometimesAlways

Pre Post
 

Reasons given for “Never” include “Because both sides of the equation don’t equal the same”, 
“Because N isn’t in the first equation on the LHS”, “Can’t have all different letters = same 
thing”, “P would have to be M”. Darren ticked Never on the pre-test because “it’s not balanced” 
and Sometimes on the post-test because “I don’t know what L, P, N equal”. However, his reason 
changed to “if P = M” on the delayed-test. 

Even though there were only two equations to be solved in the standard test, the post-test 
facilities clearly demonstrate severe limitations on Year 10’s skills in this regard. Although over 
80% could solve D3(i) 3x + 5 = 17, fewer than 50% in 10EQ could solve D3(ii) 
3x + 6 = 2x − 30 (an equation with a negative sign, a letter on each side, and a negative answer); 
and below 10% for 10CON. The advanced pre-test and the interviews provide a little more 
detail, showing that students cannot be easily categorised by the type of equations that they can 
solve. Cedric, for example, was able to solve equations with a letter on each side, even though he 
could not solve D3(ii). Darren was able to solve equations in which the negative signs could be 
eradicated on each side independently, but ran into difficulties with equations involving brackets, 
and similarly with all the other items containing brackets - D1(ii), D4(iii), D4(vi) and D7. Bruce 
continued in the post-interview to treat the minus sign as applying to the term to the left of it, 
rather than to the right of it. For example, he solved 8 − x = 2x + 5 by adding 8, and getting 
x = 2x + 13. Jocelyn failed to solve D3(ii) on both pre and post-tests because of (different) 
difficulties with negative signs, but he was able to solve 5y − 11 = 2y + 1 and 63 − 5n = 28 
because those particular difficulties were not applicable to these equations. Judy, on the other 
hand, had difficulty with any of the equations involving a negative sign, and there was an 
apparent knock-on effect for those without negative signs: 5x + 12 = 3x + 24 was simplified to 
8x = 36. Lisa, meanwhile, simplified it to 8x = 12, and appeared to have a policy of always adding 
the unknowns. Yet she was also able to solve with ease 561/x = 22, equations with brackets, and 
simultaneous equations. 

As in previous sections, success for Year 7 was rare. Over a third of 7EQ failed to get a single 
transformation item correct; Kevin got 4 (out of 21), the rest got 1 or 2. Some pre-test answers 
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showed a classic lack of understanding of the questions being posed. For example, both Kevin 
and Scott thought that 2a + 7b could be written more simply as 7c. To D8 (“Which is larger, 2n 
or n + 2?”), Shannon wrote “I'm not sure as the 2n could be a two figure number. Whereas n+2 
may not be.”. Susan illustrated this with a numerical example: “2n because 2 + 8 = 10 but you 
could have 28”. Margaret, on the other hand wrote “Neither there the same!!!!”. Dylan replied to 
D6 that 7w + 22 = 109 and 7n + 22 = 109 sometimes have different solutions, “because the 
numbers aren’t usually the same letter”. 

On the post-test for 7EQ, no items showed significant improvement, and a similar proportion of 
students scored nothing. D1(i) and D5 remained the easiest items. Basil got 5 items correct; and 
Catherine got 4. There was actually a decline in D3(i): 3 of the 4 students who got D3(i) correct 
on the pre-test got it wrong on the post-test. Catherine responded to this item (which asked “If 
3x + 5 = 17 then what is x?”) with “x is a symbol to signify a thing”. On D8 she wrote that 3n 
and n + 3 are the same because “if you add n + 3 you get 3n”. Melissa thought they were the 
same for a different reason: “they use the same numbers and letters”. Basil, meanwhile thought 
that “3n means 3 × n which is more than 3 + n”. Jordan wrote that 7w + 22 = 109 and 
7n + 22 = 109 always have different solutions because “they have different letters”. Kevin’s 
answers to D4 are interesting: 7a − 3a simplifies to 7 + 3 = 10a; (a + b) + a simplifies to 
a + b + a = p; a + a + a × 2 = 2c; (a − b) + b = c; 5a − b + a = n; 4a − 2 + 7a + 1 = x. Charlotte 
responded quite reasonably - given C6, that is - to D11 (“What can you say about r if r = s + t 
and r + s + t = 40?”) with “t × 15=s”. The only apparent ray of hope was in the responses of 
Jennifer and Shannon, whose pre-test answers to D1-2 were numerical, but whose post-test 
answers were at least expressions. 

The pre-test scores and responses of 7CON were similar to those of 7EQ. However, on the 
post-test, although both groups had 16 improvements, 7EQ had 15 declines and 7CON had 4 
declines. For 7CON, Deirdre accounted for 8 of these improvements, and Stuart accounted for 
3. The obvious implication would be that Deirdre received some sort of tuition between the tests. 
She wrote, however, that a + b + c = a + f + c was never true (D5) because “f doesn’t = b”; and 
that 3n is larger than 3 + n because “multiplying makes things bigger than adding does”. Graham 
though that if e + f = 8 (D10) then e + f + g is 5 + 6 + 7. 

The two Year 6 students were able to solve mentally equations with whole number solutions (e.g. 
5x + 6 = 21) with greater speed. But other equations caused difficulties - for example when the 
equation was changed to 5x + 6 = 20, the students re-interpreted 5x as 5 + x in order to allow 
the possibility of a whole number solution, because it was recognised that otherwise the answer 
would be “2 point something”. Jacob suggested that if he had the computer he would take 5 away 
- and when the equation was turned into a balance picture, he realised that 6 should be 
subtracted. They were unable to solve such equations outside the context of EQUATION. 

6.3.11 Meta-algebraic Aspects 

One striking fact about the questionnaire results is that while the students in both groups 
produced a wide variety of responses, what each student in the control group wrote in December 
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is remarkably similar to what he or she wrote in June. This is in spite of a change of mathematics 
teacher in September, and also, presumably, more focus on exam technique than understanding. 
These would have constituted good reasons for scepticism about ascribing any changes to a 
particular intervention. Yet when the EQUATION students were asked why they thought some 
people found equations difficult, there was a shift from operational reasons such as “because they 
do not understand how to do them” to more structural reasons such as “the use of letters to stand 
for numbers confuses people”. From around half the students emphasising structure in June, 
almost three-quarters did so in December (the control group remained at 40%). 

When they were asked how they would describe equations to others in their own words, there 
was a richer set of responses from the EQUATION group, as they tried to cover not just the 
syntactical and operational aspects in their answers, but also the semantic and purposive aspects. 

For example “numbers put together like a sum” seems to be (if we’re generous), trying to capture 
the objects, structure and operations of an equation, and so addressing the syntactic aspect. But it 
does not emphasise a sense of equality (the semantic aspect), because, in “sums”, if the equals sign is 
not completely bypassed using the notation of standard algorithms, as was noted by Behr et al. 
(1976), it nearly always means “makes” rather than “is the same value as”. Nor does “numbers 
put together like a sum” appear to attempt to give either an idea for the sort of ways in which one 
might deal with an equation (the operational aspect) or a rationale for being concerned with equations 
(the purposive aspect). 

On the other hand, “... like a set of balancing weighing scales and you have to eliminate parts to 
find the anonymous value” seems not to be concerned so much with syntax as with a metaphor 
for equality and with what operational procedures might be appropriate. 

“... something that helps you solve a problem” clearly does not specify very much that is unique 
to algebra, but it does at least acknowledge the question of why one might be concerned about 
equations. 

A formulation that involves syntax, operation and purpose is: “An arrangement of numbers and 
letters that can be simplified to work out a problem. The letters in the equation replace 
numbers.”. But this does not address the semantic aspect. 

In explaining equations to others, syntax continued to be viewed as significant, but awareness of 
operational factors grew. The control group did not show the greater richness of responses 
between June and December that the EQUATION group showed. 

When the students were asked to select from given descriptions, there was an increase in 
agreement with “statement” as a description for 10EQ, whereas 10CON remain static. 
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The diversity of responses is similar to that obtained when A-Level students were interviewed, 
and said things like “[An equation is] sort of a way of finding unknowns”, “a rule that 
determines”, “Balance, because each side is equal, so it’s balanced”, “Creates a picture if you draw 
it.”, “Thing with x’s in.”, “It’s more to me as a formula… because you’ve got something that is 
equal to something else. And you could put values in to find out what other values are going to 
be. … The formula has to balance, doesn’t it? For it to be a formula.”. Again, for the Year 6 
students: “Stuff like 4x…”, “sometimes they have another question underneath [an equation] that 
you have to work out the answer”. But note the lack of statement-related comments. Moreover, 
the value of equations was seen either in terms of schoolwork or science-related occupations. 

For 10EQ, confidence about algebra remained roughly the same. Although 6 people indicated 
higher confidence in EQUATION, compared with only two in the control group, this is hardly 
indicative of any sea-change in attitudes. This is in sharp contrast with the comments made after 
the first EQUATION lesson, and, to a lesser extent, the second lesson. Comments such as “It’s 
really good.”, “It makes things really easy.”, “I get it now.”, and “It really helps you understand.” 
suggested that a more positive attitude to algebra might ensue. However, both the teacher and 
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researcher noted that the second lesson was more frustrating for some students, as they struggled 
to create equations to model the word problems; and the work in the summer term on 
inequalities and in the autumn term on quadratics and simultaneous equations will have reminded 
students that there is more to algebra than formulating and solving simple linear equations. 
Moreover, this question of confidence is surely more prone than most to feelings about the last 
piece of algebra work attempted. 
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Chapter 7 
Conclusions 

7.1 Introduction 
The previous chapter identified some student strategies that are conjectured to have improved 
while using EQUATION in class, and some problems in the pre-post testing for which there 
appear to have been improvements. In this final chapter, these improvements are first discussed 
in order to elucidate coherently the main empirical claims. Then the analysis is used in three ways: 

1. to reconcile the classwork and pre-post testing; 
2. to challenge claims about the balance model; 
3. to compare EQUATION with other initiatives. 

The thesis concludes with some suggestions for further research. 

7.2 Discussion: Classwork 
Improvements 

7.2.1 Simplifying Balance Puzzles 

The logs of student usage recorded by the program appear to show the active creation and 
improvement of strategies. This is especially convincing when listening to the audio-tape of the 
students’ conversations while the program replays on the screen what the students saw and did. 
Many of their strategies are clear - some are more obscure - but students developed for 
themselves a simplification strategy for the balance puzzles. There is no evidence that they used 
prior algebraic knowledge at all; and although some students (such as Rebecca and one of the 
Year 8 students at School B) perhaps saw parallels with simplification of equations, there is no 
evidence that they appreciated any implications. 

The graphs of times per puzzle and times per level for each student suggest that the strategies 
were developed piecemeal, in response to changes in the objective problem situation that the 
students faced - mostly at the start of each level. The developed strategies replaced informal 
strategies, at varying points in the program for different students. This strategy development in 
response to critical situations constitutes an indication that the concern to find an unknown 
number in a situation was well formed. Students’ “images” or rationales for strategies seemed to 
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play a minimal role in this improvement, however. Moreover, the strategies had the character of 
expectations about what aspects of the problem situation were important, and how they might 
need changing. Recall “I reckon you take off barrels until you get one each.”, “Yeah, it’s done it 
the same on each side.” and “Why can’t you do it?”. 

The strategies developed include: 

• Match barrels and weights [possible source of error: counting and subtraction]. 

• If a certain weight plus an unknown weight weigh the same as another known 
weight, subtract knowns to find the unknown [possible source of error: 
larger − smaller]. 

• If a certain number of barrels weighs a certain amount, divide the amount by the 
number to find the weight of each barrel [possible source of error: larger ÷ smaller]. 

• Remove weights and barrels from both sides to simplify a situation [possible source 
of error: forgetting to remove from both sides]. 

• Take off as many barrels and weights as you can. 

• Take off as many barrels as there are on the side with the smaller number of barrels. 

• Take off as much weight as there is on the side with the smaller known weight. 

• The particular visible weight pictures can be ignored - it is the total weight that 
determines the answer. 

However, were the students just subtracting objects, or were they also subtracting quantities? The 
move to single weight pictures on Level 7 may have made object-subtraction less amenable, but it 
is difficult to tell much more without moving away from the concrete situation. Nevertheless, 
there is some evidence that the bypassing of arithmetic was crucial in enabling students to focus 
on simplification decisions. 

7.2.2 Simplifying Balance-Like Equations 

I suggest that what we have seen here from Level 9 onwards is the continued application of the 
simplification strategy. It is, of course, possible that students used their pre-existing algebraic 
knowledge to solve these equations, or that they developed strategies anew without reference to 
the balance puzzles. But there is no evidence for either of these scenarios. Moreover, the fact that 
the strategies continued just as before (even a little faster), and that the later break with the 
balance model caused ructions, suggests that the strategies developed during the balance puzzles 
were transferred to the balance-like equations. 

Although this means that concern to find an unknown number survived the transfer to 
symbolism, it also means that the balance pictures are not far from the surface: at one extreme, 5b 
means “5 barrels”, rather than “5 multiplied by the number that b represents”. One way of 
breaking with the balance model at this point - if one were not exploring the limitations of the 
balance model - would have been to introduce a new problem situation (such as TOAN) so that 
students can realise that their simplification strategy does not need objects to work. 
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7.2.3 Simplifying Equations that are Unlike Balances 

It is claimed that the break with the balance model (in this case, equations with negative numbers 
and negative signs) caused the extension of the strategies developed earlier for balances to 
equations that are unlike balances. 

For Rebecca & Nicola, the break with the balance model on Levels 11 and 12 was less traumatic 
than might be the case with paper-and-pencil exercises. I suggest this is because a very limited 
range of transformation strategies was involved, because this range was increased only gradually, 
and because they were able to develop strategies for coping with negative answers and negative 
signs by exploring algebraic form. With paper-and-pencil, students not only have to choose the 
operations to perform, but they also have to carry them out correctly. With EQUATION they 
have the opportunity to experiment with algebra, to try hunches and make mistakes that do not 
lead to having to start again. 

The role of feedback here is crucial with respect to an important theory that has not hitherto 
been discussed. Rebecca and Nicola seem to be well aware that the choice of an unhelpful 
operation is not fatal to the solution process, because it can be undone - the solution will be 
unaffected because the operations are carried out on both sides of the equation. Recall “You 
should’ve plussed 12… Should be plus 24. ‘cos you want to get rid of it, so you want to get it to 
nought, so you plus it.”. Of course a degree of feedback can be provided by a teacher, a textbook 
or a fellow student; but EQUATION has a speed advantage, which makes it less likely that the 
student will lose the thread. 

However, the graph of puzzle times suggests that Rebecca and Nicola needed more practice in 
equations with negative signs, to consolidate the variety of possible permutations. Moreover, the 
transfer from EQUATION-based solution to paper-and-pencil should not be taken for granted. 
The de facto separation of operation decision from operation execution obviates the need for an 
initial requirement for accurate strategies for operations on expressions; but 100% error-free 
execution without EQUATION is hardly likely. 

The evident satisfaction derived from the program kept classes on task for an hour’s lesson; but 
this apparent enthusiasm for solving the equations should not be assumed to be maintained away 
from EQUATION, the classroom or a research project. 

There is no classwork evidence that students improved their strategies in manipulating 
expressions and variables, other than learning about the effects of adding and subtracting terms 
like 7 and 7x. There is also no evidence that such manipulation became a concern; nor, in fact, 
that simplifying an equation became a concern in itself (as opposed to for finding an unknown 
number). 

The classwork differences between students appear small. No groups of students - other than 
those who missed lessons - stood out as being especially fast, slow, inspired or bored. There was 
a tendency for speed to increase with age, but this should not be interpreted as indicating 



Chapter 7 - Conclusions 216 

“cognitive maturation”. Rather, as indicated especially by the research at School B, and also by 
comparing Year 7 with Year 10, the number of strategies needing development tended to be 
higher for younger children. This would be an obvious consequence of differential experience 
with certain types of problem situation. 

7.2.4 Modelling Word Problems 

The scripts show an increase in effective usage of the Model button. Early attempts to represent 
the situation either fail to show awareness of the relevance of unknowns, or bypass the Model 
button in favour of numerical trial-and-improvement or operational trial-and-error. This 
difficulty in formulating equations in order to represent particular situations is in spite of 
students’ success in posing their own linear equations in order to get to a high level. 

The TOAN word problems made another break with the strategy of thinking in terms of 
combinations of objects rather than operations on unknown numbers; yet it is equations rather 
than inversing that students appeared to use. Also, the equals sign was used repeatedly as an 
equivalence relation, rather than purely to indicate a result. However this does not mean that 
students were necessarily first seeking a relationship in the situation which they could then 
represent algebraically - they could also have been seeking operations in the situation which could 
be represented algebraically and legitimately linked by an equals sign. 

An equation did not represent an endpoint for students - success was only indicated onscreen 
when the correct numerical answer was obtained; but comments such as “Ah, now I can do it!” 
when the equation they entered was automatically simplified suggest that algebra had become for 
them a problem-solving tool. There is no evidence that algebra was seen as a generalisation of 
arithmetic; nor that students could express generality using algebra. No indication was given as to 
whether students could represent situations using equations away from EQUATION; nor that 
they would want to. On the other hand, there were no comments to the effect of “Why are we 
doing this?” which might be expected were handling the notation seen as ritualistic. 

7.3 Discussion: Pre-Post Improvements 
The Year 10 class had already been taught much algebra - including simplifying expressions, 
solving linear, quadratic and simultaneous equations, and functions. Yet the tests showed that 
many of the students struggled with algebra, and the questionnaires suggested that many saw 
algebra as a pointless ritual. Most of the Year 7 class, on the other hand, had been taught no 
literal algebra. 

This section focuses on the problems identified in the last chapter for which there is clear post hoc 
evidence of improvement attributable to EQUATION, to try to identify the strategies that may 
be responsible for improvement. 
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Firstly, of course, equation-solving generally improved; but Year 10 students made uneven 
progress with various types of linear equation; and younger students made little progress at all. 
Robitaille (1989) reported that only a quarter of UK 14-15 year-olds students could solve 
5x + 4 = 4x − 31. 10EQ moved from 18% to 45%. 

Similarly, Year 10 tended to adopt algebraic strategies for some word problems (but not all); 
while younger students did not. Lins (1992) suggested that “for the Brazilian 7th graders the 
‘default’ approach is non-algebraic, and for the 8th graders it is an algebraic one, namely the use of 
equations.” (p. 199); while there were only 3 successful attempts at using an algebraic strategy by 
the English students in his study. This led him to suggest that “the development of algebraic 
thinking is a process much more akin to cultural processes than to age-related stages of intellectual 
development.” (p. 228-9). It is interesting here, then, that very few students from any group 
appeared to use an algebraic strategy on the pre-test; yet, for 10EQ on the post-test, equation 
usage was promoted over trial-and-improvement, whole-parts reasoning, and guessed direct 
calculations. There was also evidence of improvement in the posing of word problems. 

Turning to representation and transformation, there are clear improvements for all ages. There 
are, however, few indications what particular strategies might be improving on many items, 
particularly as it is difficult to find plausible explanations for some Year 7 responses. For 
example, Rajiv wrote for D4(i) that 7a − 3a simplifies to a2 = 7 − 3 = 5a2; Darren wrote for D1(ii) 
that 4 added to 3n becomes 16n; and Scott wrote for D8 that 3 + n is larger than 3n because “if n 
is nose it would be nose + 3” (at least this perhaps fits with his simplification of 7a + 2b to “7 
apples + 2 bananas”). 

Note also that comparison with the original CSMS results is not necessarily helpful, because the 
curriculum has changed a great deal in the last twenty years, and because there were 
demonstration items given in the original CSMS items that were not given in the test used here. 
For example: it was explained that n multiplied by 4 could be written as 4n, and that a + 3a could 
be simplified to 4a. Examples of perimeters were also given. 

But we can conjecture firstly that younger students began to appreciate that answers need not be 
numerical: Year 7 answers, for example, start to involve expressions and equations (there are, 
incidentally, few indications of the oft-noted phenomenon of students assuming that all algebraic 
expressions should be equations). 

Secondly, the idea that the plus sign joining two letters is optional starts to be questioned 
(particularly for items C3, C8, D1(ii), D7 and D8). For example, Debbie in 10EQ wrote for D8 
on the pre-test that 2n and n + 2 “are the same because 2n is simplifying n + 2”; whereas on the 
post-test she indicated that 3n means 3 × n. However, Judy, May and Jack - also in 10EQ - gave 
the answer “JP” for C3 on both tests. Jocelyn even gave the “simplification”, in his post-test 
answer, of “J + P = JP”. On the other hand, For “Add 4 onto 3n” (D1(ii)), 10EQ obtained 45% 
on the pre-test - much the same as CSMS - yet improved to 68% on the post-test. 
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Merely repeating the test caused around half the Year 10 students to reconsider their answer to 
the student-professor problem C6. So although an overall facility of 30% on both tests appears to 
corroborate Philipp’s (1992) study of high school students - compared with 40% for Kaput and 
Clement’s (1979) older social science students and 60% for Rosnick’s (1981) engineering students 
- this figure hides substantial changes between the tests. It also hides the fact that a quarter of 
7EQ improved, without any declines, compared with no change for 7CON. 

It is difficult to conjecture what an improved strategy might be for the equation-truth problem 
D5 (“When is L + M + N = L + P + N true?”), because the Year 10 improvement mostly comes 
from 6 students who left the item blank the first time. However, the improvement could indicate 
a new concern: “When is the equation true?”. So although the pre-test facilities (about 15% for 
Year 7; 35% for Year 10) appear to roughly correspond to Hart’s (1981) finding of 11% for Year 
8 and 27% for Year 10, the fact that 10EQ improved by over a third on the post-test may raise 
doubts about the role of some sort of cognitive maturation. On the other hand, 7EQ showed 
little change. 

The item with blue and red pencils (C5) saw 10EQ improving from 9% to 27%. This compares 
with CSMS Year 10 obtaining 13%. This result directly contradicts the claim of Herscovics (1989) 
that working with equations in one unknown does not assist in constructing equations in two 
variables (p. 63). The CSMS team suggested that answers such as b + r = 90, b + r, 
6b + 10r = 90 and so on indicate treating letters as objects. No students in the EQUATION 
groups made any additional errors on this item in the post-test. On the other hand, no Year 7 
students got it right. The CSMS team also suggested that certain errors in D2 and the C1(ii) are 
likely to be caused by students ignoring letters. There is no evidence of these errors for the 
EQUATION groups appearing in the post-test. However, both Year 10 classes improved on 
C1(ii) and there is little evidence of improvement in D2. 

The CSMS analysis suggested that errors in D10, C2(iii) and D11 could result from evaluating 
letters. There is no evidence that EQUATION groups made notably greater errors on the post-
test for any of these items. 

CSMS items with a danger of “premature closure” include C2(i), C2(ii), D4(ii), D4(iv), D5, D8 
and D12. There is evidence of improvement in D4(iv) and D5, but not the others. There is little 
evidence of decline. 

Finally, with regards to meta-algebraic aspects, EQUATION students placed greater emphasis on 
the structural and semantic aspects, and showed greater awareness of the role of an equation as a 
statement. 

In discussing all these improvements however, it ought to be pointed out that various provisos 
were pointed out in the previous chapter; that sustainability of improvements is not claimed; and, 
moreover, that the conjecture that such improvements are more widely replicable has to be tested 
further. It should also be noted that there is no evidence of improvement in appreciating 
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algebraic variation - there was little change in items D8 (“Which is larger, 3n or n + 3?”) and D12 
(“What can you say about c if c + d = 8 and c is less that d?”). 

7.4 Can the classwork and pre-post 
testing be reconciled? 

7.4.1 The conundrums 

Equation-solving: If the analysis is sound, then it can be claimed that the classwork results show 
students developing for themselves strategies for simplifying and solving balance puzzles; the 
transfer of these strategies to balance-like equations; the extension of these strategies to equations 
that are unlike balances; and the development of the theory that unhelpful operations can be 
undone. There was no paper-and-pencil work during the classwork, yet the pre-post testing 
suggests progress in simplifying and solving linear equations using paper-and-pencil. The main 
differences between students in the classwork seem to be linked to the number of pre-existing 
informal strategies, yet the pre-post testing shows that success varies from student to student and 
equation to equation. The use of the balance permits the possibility of metaphor confusions, yet 
little pre-post evidence has been found that the metaphor confusions are crucial obstacles to 
learning. 

Modelling: The classwork results would appear to show the development of strategies for 
representing situations using equations. There was no paper-and-pencil work during the 
classwork, yet the pre-post testing suggests progress with older students in using equations as a 
technique for solving word problems. The main classwork differences between students are 
linked to prior experience of representing operations on numbers algebraically; but the pre-post 
testing shows that success is dependent on the student and on the type of problem. There is also 
some progress in posing word problems. 

Representation and transformation: The classwork shows no evidence of development of skills in 
manipulating variables, or in representing situations involving more than one letter. Yet the pre-
post testing suggests some progress in transformation and representation items that require 
dealing with variables, in particular the student-professor problem and the equation-truth 
problem. There is also some progress with younger students in appreciating that expressions and 
equations may be required as answers to representation and transformation items, and that the 
plus sign joining two letters cannot be omitted. On some levels of the program, letters can be 
treated as objects or as representing concrete objects, as opposed to representing numbers. Yet 
the dangers of interpreting letters as objects only seem to have been exhibited by a very small 
number of students. 
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Meta-algebraic aspects: The classwork shows no evidence of reflection on the nature of equations. 
Yet the pre-post testing suggests some progress in considering the structural, semantic and 
purposive aspects of equations. 

How then can the classwork and pre-post testing be reconciled? 

7.4.2 Note: Distinguishing strategic theories and concerns 

One important point should be made before addressing these conundrums. Concerns are 
intimately associated with strategic theories; this is a natural consequence of the recursive nature 
of understanding. For example, a concern to use algebra is, from observing classroom behaviour in 
this study, very often indistinguishable in practice from a strategy of using algebra. So although 
neither the theoretical work nor the empirical analysis are possible without the distinction 
between strategic theories and concerns, no great play has been made here of the distinction 
between them with respect to classwork outcomes. Of course further studies could be set up to dissect 
the recursion between strategic theories and concerns more precisely; but such an aim would 
have to be central to the research, because it would entail rather different experimental 
arrangements. In particular, there would have to be greater opportunities for students to select 
the problems they wanted to solve, and to justify their choice. This would consequently lessen the 
extent to which it would be possible to explore the limitations of the balance model - an aim that 
is central to this research. 

7.4.3 Equation-Solving 

From the Popperian psychological perspective, the rationale for EQUATION already anticipated 
improvements in simplification and solution. However, some elaboration may be helpful. 

The students’ simplification and solution strategies constitute theories. When these are developed 
in response to the concerns raised in EQUATION, they coexist with a varying number of 
informal strategies of varying scope - hence the variations in time before the target strategic 
theories are developed, which are especially significant when comparing Year 7 and Year 10. 
However, other classwork differences between students are small because the target strategic 
theories are sharply circumscribed and immediately effective. When the students tackle the post-
test equations, many recognise that the strategic theories they developed are applicable. Some 
students however failed to develop theories for the requested simplifications that EQUATION 
executed - or they cannot recall the theories. Time spent on Level 12 (negative signs) would be 
particularly relevant here, as this is a level on which such theories are most important. Of the 
10EQ students for whom the appropriate data is available, none of the four who spent most time 
on Level 12 and none of the four who spent least time on Level 12 got D3(ii) correct on the 
post-test. All but one of the remaining nine students got the item correct. The lack of post-test 
success for 7EQ in equation-solving could be attributed partly to forgetting theories for 
simplification and solution (which students without prior experience of algebra may not have 
attributed importance to remembering); partly perhaps to the reversal on the test of 
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EQUATION’s fixed E + Kb order (which students without prior experience of algebra may not 
have appreciated was equivalent to Kb + E) and partly to forgetting or never having developed 
theories for the requested simplifications that EQUATION executed (again which students 
without prior experience of algebra may not have attributed importance to remembering; but also 
which were developed in response to Level 12 - a level on which many 7EQ students turned out 
not to have spent much time). 

It should be noted, nevertheless, that the range of equations that students end up solving as a 
result of using EQUATION is limited. Limitations include: the restriction on term order, the lack 
of brackets, the single constant term on each side, the single unknown term on each side, and the 
lack of multiplication or division within the equation. In principle, though, there is nothing to 
prevent expansion of the program to encompass these features; and then direct comparison with, 
for example, Payne & Squibb (1990) would then be possible. 

There is no evidence of any “didactic cut” here (Filloy & Rojano, 1989; Herscovics & Linchevski, 
1991 & 1994). This raises questions about the claim of Sfard & Linchevski (1994) that the cut is 
the inevitable consequence of a demarcation between operational and structural conceptions 
(p. 106). Or does this indicate that the balance model has “structural tendencies” (Boulton-Lewis 
et al., 1997)? 

Of course this empirical improvement in equation-solving does not at all “refute” alternative 
psychological perspectives. It is also explicable from the point of view that characterises students’ 
understanding as sense-making rather than strategic theories and concerns; or as imagining; or as 
re-enactment. It is claimed, however, that the characterisation of “understanding as problem-
solving” enabled a coherent argument to be made for EQUATION in the first place, using 
concerns as a learning force; and that it is unlikely that the program would have been developed 
in quite this way if one had had meanings, images, empathy, decontextualised cognitive structures 
or modes of thought as goals rather than strategic theories. 

7.4.4 Modelling 

Just as for equation-solving, from the Popperian psychological perspective the rationale for 
EQUATION already anticipated improvements in formulation. But some of the links between 
classwork and pre-post results can be elaborated. 

The transfer from balance puzzles to balance-like equations meant that some students developed 
the initial theory that equations were abbreviations for balance puzzles. So, for example, Year 6 
students asked in interview what 4 + 2b = 3 + 5b might mean started talking in terms of weights 
and barrels rather than numbers and unknowns. Of course the older students would also be 
aware that such symbols also have a more abstract interpretation, but such a contextualised 
interpretation would not be in contradiction. Thus many students were being introduced (albeit 
fairly surreptitiously) to a standardised way of representing a pictorial balance puzzle. So when on 
Level 13 the idea arose to represent a verbal balance puzzle, a “natural” way to do this was to 
adopt the standardised symbolism. Indeed the Model button did not allow much variation from 
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this. Therefore students had moved from seeing how balance puzzles could be represented to 
choosing to represent them in this way. We thus have the beginnings of an algebraic modelling 
strategy, and the potential for the posing of problems for which an algebraic strategy is 
appropriate, even though only one lesson was spent working on such problems. Of course 
transferring this strategy to paper-and-pencil relies not only on confidence in recalling 
conventional syntax and confidence in executing solution strategies, but also on recognition of 
problems for which an algebraic strategy is appropriate. The post-test items B2 and B3 are very 
similar in wording to problems found in EQUATION; whereas A1(iii) and B1 are not; and this 
may be why algebra was not attempted in these latter items. This supports the results of Berger & 
Wilde (1987). For the younger students, algebra may not have been used in B2 or B3 because of 
the issues of confidence, given that they had more simplification and solution strategies to 
develop than the older students. For Rebecca in 10EQ, however, it would appear that 
EQUATION helped her firstly to debug her equation solving method; and secondly to conclude 
that using an equation would be the best way to solve the problem. 

Note also that the evidence from 10CON that a second attempt on certain problems can lead to 
a significant improvement vindicates the questioning of the attribution of algebraic knowledge to 
the influence of a “mode of thinking” that is in some sense “underlying” knowledge and 
difficulties. For example, Lins found a facility for B2 of 22%, which is similar to 23% for 10EQ 
and 29% for 10CON. Yet on the post-test, 10EQ rose to 59% and 10CON rose to 42%. There 
are also dramatic rises for both classes for B3, but a direct comparison with Lins’ study is difficult 
because he gave the rule governing the secret number in syncopated form. That errors centred on 
the negative sign supports the teacher’s suspicion that not enough time had been spent 
consolidating this aspect of the strategy, and emphasises the significance of EQUATION 
executing the operations. 

7.4.5 Representation and Transformation 

The thesis is that promoting simplification and utilisation can provide a purpose for algebraic 
symbols. If this were correct, then it would be expected that there might be improvements in 
transformation and representation problems. These results corroborate the inference. 

EQUATION does not instruct students in tackling representation or transformation problems - 
it does not give examples, explain things, probe their understanding, assign them activities 
appropriate to their current knowledge, or provide any of the other learning experiences that one 
might expect from being instructed. It pays no attention to identities, multiple letters or variables, 
and seems to positively encourage the “b for barrel” misconception.  

Yet the pre-post testing suggests that 10EQ made widespread improvements across a range of 
items; that 7EQ started to achieve Collis’ so-called “acceptance of lack of closure”; that the 
“letter as object” interpretation played little role; and that there were significant improvements in 
the student-professor and equation-truth problems - considered by some to border on the 
intractable. So what would appear to be happening is, as conjectured a priori, that EQUATION’s 
easing of the algebraic strategy of simplification of a situation - combined with practice in 
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tackling word problems - has led to prima facie evidence of improved theories for representation 
and transformation. In other words, the results are consistent with transference from utilisation 
to representation and transformation. 

A greater tendency to treat letters as objects would lead to improvement on the items C2(i), 
C2(ii), C5 and D4(i); and there is little evidence of this. Therefore, it seems reasonable to suggest 
that at least some of the significant improvements made by students on representation items 
result from the grasping of the theory that treating letters as numbers can often help solve a 
problem. 

Of course it is not an entirely black-and-white issue - there are items where there is conflicting 
evidence of manipulation of expressions, and confusion over letters as objects. There is little 
evidence of progress in the Patterns items. Not all students progressed equally. Moreover, 
EQUATION could not possibly ever be expected to provide all the manipulation skills with 
which to handle variables. 

Yet there are a number of viewpoints discussed in chapter 3 from which there would be no 
reason to expect any improvement in these items: among them, the view from the neo-Piagetian 
perspective, the view that it is only practice in transformation that can improve transformation 
skills; the view that a fundamental lack of understanding of the notion of variable lies at the heart 
of manipulation difficulties; and the view that “letter as object” constitutes an underlying 
cognitive conception. On the other hand, the idea that some sort of algebraic “mode of thought” 
has been developed that can now be applied relatively unproblematically in other algebraic items 
is a viable explanation of these improvements, albeit one that this research rejects for reasons 
given in chapter 2. From the Popperian psychological perspective, the context-specific nature of 
knowledge overrides such general thinking, and so this transfer has to be explained in other ways. 
The arguments in Chapters 4 and 5 outline how the strategic theories developed when using the 
program are robust enough for use in other contexts. 

But if transfer needs to be explained, so does lack of transfer. Perhaps the fewer improvements 
for Year 7 shows that those with already greater knowledge have a better chance of using 
EQUATION to improve their strategic theories. There are also a larger number of more subtle 
theories that perhaps younger students are having to develop in the time: for example that 4 + 3n 
cannot be simplified unless one knows what n stands for; or that there can be two letters in an 
equation; or that the same letter can represent different numbers in different contexts; or that 
different letters can represent the same number; or that every time a letter appears in an equation 
it stands for the same number. 

If Stacey & MacGregor (1993) are right that word-order matching is not a complete explanation 
for the reversal error (and such a strategy would, in any case, obtain the correct answer in C8), 
none of Clement’s (1982) strategies seem to be able to explain the discrepancy between item A2 
(facility around 90% for Year 10) and items C6-C8 (facility less than 45%). “Operative pattern” 
and “substitution followed by operative” should get the right answer in C6-C8 - just as they 
would in A2; and “static comparison” - although not perhaps applicable in C7 - would gain as 
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many wrong answers in A2 as C6. But an analysis of students’ mathematical knowledge in terms 
of theories and concerns can provide an explanation. 

A2 is designed in such a way as to encourage the student to seek an operation. The very giving of 
a table prompts pattern-seekers to find operations obtaining one number from another before this 
is expressed as a symbolic relation; A2(i) and A2(ii) reinforce this prompt; and then A2(iii) puts 
this prompt explicitly: “Describe in words how you would find Q if you were told what L is” 
(emphasis added). When it comes to writing an algebraic rule, what is being represented (I would 
suggest) is an operation, not a relation. Therefore, the problem expectation (i.e. concern) is to tell 
someone else how to calculate one quantity from another. But in C6-C8 the wording of the 
questions is such that students conjecture that they are to represent the given relation. However, 
without the prompts to find an operation, a concern to ensure that the representation conforms 
to arithmetic conventions (as opposed to ratio conventions) does not arise. Hence we have at 
best a reversal, and at worst an idiosyncratic representation. Here is a hypothesis to act as a test of 
this explanation: change the wording of C6 from “Write an equation to represent the statement: 
‘At this school there are 15 times as many students as teachers.’. Use S for the number of 
students and T for the number of teachers.” to “At this school there are 15 times as many 
students as teachers. Use algebra to describe how to find the number of students from the 
number of teachers. Use S for the number of students and T for the number of teachers.” and I 
predict the facility should shoot up. 

If this is correct, it could be that a way of curing the reversal error is to encourage the seeking of 
an operation (rather than a relation). In EQUATION this was largely done by Level 15 problems 
such as “At a cinema there are 7.1 times as many cheap seats as expensive seats. Altogether there 
are 810 seats. How many expensive seats are there?”; and such problems might be expected to 
lead to the use of something like “7.1e” to represent the number of cheap seats. However, many 
students in 10EQ struggled with level 15 (often because the quantity asked for was not always the 
quantity represented by a letter), and few progressed beyond these problems without assistance. 
It would be interesting to see if longer time spent with these multiplicative-relation problems 
could assist further with the student-professor problem. Similarly, although there was no sign of 
progress at all in relation to the penny-dimes problem, and the use of letters in EQUATION was 
restricted to one letter (not two) and unknowns (not variables), I believe it would be still worth 
testing whether prolonged interaction with Level 15 problems made a difference to this item. 

7.4.6 Meta-algebraic aspects 

If students now have a purpose for algebraic symbols, it is inevitable that this purpose will be 
reflected in their views of the nature of equations (as opposed to their views of the nature of 
equations “underpinning” their understanding). Having “played a game” with equations, they 
then used them to represent situations. In everyday language, statements tell us something about 
situations. That is not to say, of course, that an equation is not also a group of symbols, a balance 
(an equality and capable of representing a balance), a method (because it constitutes two sets of 
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operations, because it can be used as a way of solving word problems, and because it is subject to 
solution techniques), a formula and a problem. 

Initial reasons for finding equations difficult almost inevitably (for Year 10) focused on the 
tactical operations that one has to learn. Yet those using EQUATION quickly realised that also 
of great importance is the relationship between the symbolism and whatever is being represented 
- and hence they have concerns with more structural aspects. In describing an equation to others, 
then, the idea of equality has to be emphasised. 

For the reasons given in the last chapter, not too much should be read into the anecdotal 
examples of more positive attitudes towards equations. But I would certainly want to suggest that 
in the long-run, valuing equations as tools rather than obstacles would lead to greater confidence 
about algebra. 

7.5 How are claims about the balance 
model affected? 

We have seen earlier that the balance model had advantages, as a non-symbolic example of 
equality; as a concrete experience for promoting simplification; and as a solid metaphor for an 
equation. Yet there were severe limitations, some of which the empirical analysis suggests 
EQUATION may go some way to overcome: 

Physical limitations: By leaving the balance model behind, Levels 11 and 12 were able to introduce 
negative signs and negative solutions. These breaks with the model were noted by many students, 
yet having done so they then seemed happy to accept the situation. There was no evidence of the 
“major cognitive difficulties” that Linchevski & Herscovics (1996) found could result from 
physical limitations. Decimal coefficients were introduced on the modelling levels, but could 
easily have been introduced earlier to address Lins’ recognition that different equations within the 
same algebraic form can be treated in very different ways. Little was also done here to address the 
need for division and multiplication, as demanded by Herscovics and Kieran (1980). Even so, I 
suggest that these deficiencies could be corrected to demonstrate that the balance model can 
naturally lead onto decimal coefficients, multiplication and division. In any case, it would be 
difficult now to maintain that the use of a balance model actively conspires against algebraic 
strategies. 

Ineffectiveness in promoting an algebraic strategy: The analysis has suggested this is no longer a valid 
objection. It is true that the research corroborates the finding of Schliemann et al. (1992) that 
children rarely use a spontaneous cancellation strategy. Yet although there was minimal teacher 
intervention, no issuing of Leibniz, transposition or expression rules, and no encouragement for 
substitution or flowchart methods, students were encouraged to develop a cancellation strategy 
by means of the Take off… buttons, and a careful graduating of puzzles such that informal 
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strategies progressively break down. This cancellation strategy led naturally onto formal 
operations for solving simple linear equations. This result overturns the findings of Dickson 
(1989) with respect to the balance model. Moreover, the examples found by Filloy & Rojano 
(1989) of the semantics of the balance model delaying construction of an algebraic syntax would 
not appear to be applicable in EQUATION, because use of a conventional algebraic syntax for 
modelling was encouraged. Similar considerations apply to Booth’s (1987) warnings about 
students failing to appreciate the connections between concrete or ideographic approaches and 
formal procedures.  

Metaphor confusions: As noted earlier, little evidence has been found that the metaphor confusions 
are crucial obstacles to learning, although students’ rationales were sometimes incoherent. 

Misleading letter interpretations: Similarly, the judgement of Dickson (1989) and Booker (1987) that 
letters tend to label objects rather than unknown numbers has been seen as less dire than might 
be expected. 

Unknowns not variables: The above analysis also raises doubts about Booker’s demand (along with 
Arcavi, 1994) for generalised arithmetic to come prior to any other encounter with algebraic 
symbols. Indeed, I would argue that EQUATION itself has “established the need for and power 
of algebraic symbols” (p. 279), but independently of generalised arithmetic. Of course generality 
is important, and EQUATION is limited in what it can promote in this respect; but would it still 
be fair to conclude with Kaput (1987) that “the inherent particularity of [concrete] models... runs 
entirely opposite to the inherent generality and abstractness of algebraic statements.”? 

However, there is one further objection that, in the light of this research, could be usefully added: 

Ineffectiveness in promoting equality principles: The analysis suggests that the computerised balance 
model enabled many students to develop theories such as “Taking the same number (known or 
unknown) off each side of an equation can make it easier to work out an unknown number.” and 
“If you perform the same operation on each side of an equation, the answer is still the same.”. 
Nevertheless, some subtly different theories that were not targeted may not have been grasped. 
For example: “If from two equal things the same quantity be taken away, the things will remain 
equal”, “In a balance, if the sides weigh the same as each other, there will be no tilting”, “In a 
balance, if there is no tilting, the sides weigh the same as each other.” and “In a balance or an 
equation, what you do to one side, you have to do to the other, otherwise equality will not be 
maintained.”. There is no doubt that these theories appear important principles; but even so, the 
extent to which they actively affect practical strategies is debatable.  

In conclusion, this study suggests that the same objections that might be applied to a physical 
balance or a balance picture in a textbook do not necessarily apply to the interactive, game-like, 
computer-based balance model in EQUATION. 
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7.6 How does EQUATION compare with 
other activities? 

7.6.1 Priority Claims 

There are a number of views outlined in Chapters 3 and 4 that would suggest that EQUATION 
could not improve representation and transformation items because it does not incorporate 
certain activities that are deemed by some to be essential for learning in algebra. The empirical 
results would therefore raise questions about the priority of activities such as using letters to 
represent generalised numbers, expressing mathematical relationships in natural language prior to 
algebraic symbolism, making explicit the transition from procedural to structural conceptions and 
emphasising conservation of equation. 

Nevertheless, it could be argued perhaps that EQUATION indirectly encourages formalisation of 
method, construction of meaning or imagery, and production of unclosed expressions as 
legitimate answers. What would follow, though, would be the rejection of the idea that such 
activities are essential, and perhaps that making them more explicit would improve EQUATION’s 
efficacy. Even so, the hypothesis that those who struggle with algorithms require explicit 
consideration of meaning in a variable-centred approach to algebra would appear to be 
challenged by the apparently greater understanding of the role of algebraic representation 
demonstrated by these students. The claim that students’ algebraic difficulties centre on deficient 
“construction of meaning” for algebraic objects and processes is not perhaps the truism that 
might be assumed. 

However, test conditions, students’ informal discussions between the tests, and the excitement of 
being involved in research might prove to be better explanations for statistical significance than 
EQUATION itself. Moreover, there are no guarantees that these are long-term improvements. 
Therefore, given that this empirical work was primarily to illustrate a theoretical analysis of 
learning processes, rather than to achieve a large, rigidly controlled experiment with random 
sampling and allocation, further research is required to substantiate such priority claims. 

Moreover, although the results are consistent with the conjecture that transformation, 
representation and interpretation problems are less accessible than word problems, there has 
been little testing of this conjecture. Even if “the central feature of algebra is that it is an ideal 
medium through which one can see and express general statements” (Mason et al., 1985, p. 1), we 
have seen that tackling word problems can lead to concerns for representation, interpretation and 
transformation. But little has been found out about the converse. 

Note that this research has not attempted directly to compare the computerised balance model 
empirically with other activities for promoting operations on equations and representation as an 
equation. Rather, the empirical work has focused on exploring whether there is prima facie 
evidence of at least some improvement. The analysis then used this evidence to explore whether 
that improvement can be related to the classwork, to explore proposed limitations of the balance 



Chapter 7 - Conclusions 228 

model, and (below) to investigate connections between the improvements with EQUATION and 
improvements with other activities reported in the research literature. Given that this prima facie 
evidence exists, the next step would be to conduct such comparative research. 

7.6.2 Usual Curriculum 

The Year 7 students’ usual introduction to algebra that would normally consist (in Year 8) largely 
of practice in transformation problems (including substitution), followed by a small selection of 
representation and word problems. Flowcharts and inverse operations would be used to 
introduce operations on equations. Informal strategies like the cover-up method and trial-and-
improvement substitution may also be taught. 

The expert opinion of the Year 7 teacher was that EQUATION was a useful addition to the 
range of algebraic experiences her classes could have. Enjoyment of algebra, having a purpose for 
the symbolism, and confidence with operating on equations were all characteristics that she 
identified from the three lessons that would usefully supplement the curriculum. The higher 
modelling levels she considered to be an ideal way of practising formulation of equations from 
the beginning of Year 9, once the initial practice in transformation items is complete. 

The focus for the Year 10 students returned, prior to using the program, to transformation items 
- this time involving multiple variables, quadratic terms, brackets and inequality symbols, and 
representation items involving graphs. Memorising formal operational, transposition and 
expression rules and the conventions of algebra would play a large role in this. 

The Year 10 teacher noted that this memorisation was easier for some students than others; and 
that EQUATION not only made the Leibniz method more accessible for students struggling 
with memorisation, but it also motivated all students towards seeing algebra as something more 
than school exercises. He considered the modelling levels to be an excellent way of extending to 
algebra his pedagogic strategy of asking students to pose their own mathematical problems. 
Although this strategy was possible without the program, many students were usually so 
unconfident about their equation solution strategies, that they were loathe to spend any more 
time than the absolute minimum considering the form of the equation that might model a 
situation. The students were attracted by the idea that “good problems” might be incorporated in 
future versions of the program. 

7.6.3 Other initiatives 

EQUATION tends to compare rather unfavourably with other initiatives if all the items in the 
pre-post test are considered. This seems a slightly unfair comparison, given that the test was 
intended to cover a range of algebraic items, even ones for which there was no expectation of 
improvement. There is also no doubt that virtually all other studies allowed students considerably 
more than the two hours that most students had for EQUATION. Hunter et al. (1995), for 
example, involved three weeks’ worth of lessons, and Booth (1984) about two weeks’ worth. 
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Moreover, given the evident learning displayed (for example) by Year 7 that failed to be 
recognised in the relatively decontextualised environment of a paper-and-pencil test, there must 
be doubt about the extent to which pre-post testing can be used alone to compare studies. Some 
of the interview episodes reported in Sutherland (1995), for example, are remarkably similar to 
those in this research, in that students who started out with little idea what the question “If John 
has J marbles and Peter has P marbles, what could you write for the number of marbles they have 
altogether?” might be asking (unless J is 10 and P is 16 because A = 1, B = 2, etc.) ended up 
being able to talk about J + P being “any number”. 

Unfortunately none of the substitution studies carried out by Thomas and Tall into how 
substitution and programming can improve performance on CSMS items lists both the pre and 
post facilities of individual items for either control or experimental groups; the experimental and 
control groups for the substitution studies were matched, whereas they were not in the 
EQUATION study; the control groups in the substitution studies were usually taught by 
“traditional methods”, whereas the control groups in the EQUATION study did no algebra; the 
substitution studies took place over 3 weeks, whereas the EQUATION study took place over 
less than one. 

So direct quantitative comparison is not possible. However, if one compares experimental and 
control post-tests for the L + M + N = L + P + N item in the published figures from Graham & 
Thomas (1997), Tall & Thomas (1991) and Thomas & Tall (1988), they at best indicate an 
improvement of 15% for using graphic calculators, which compares with an improvement of 
over double this for 10EQ. By these same measures, the substitution and EQUATION studies 
produced similar results for the remaining items in common. On the other hand, 7EQ showed 
little change in these items. 

In comparison with the “arithmetic identities” of Kieran & Herscovics (1980), there is a 
commonality in the fact that students could give examples of equation with operations on both 
sides only after the respective initiatives. It can be argued that in both studies, students’ 
knowledge was “transformed gradually so that they can build for themselves the notion of an 
algebraic equation.” (p. 573), albeit in very different ways. However, the students in the 
EQUATION study were able to solve such equations using formal methods, rather than having 
to rely on recall or trial-and-error. Also, by tackling the highest level of word problems, 10EQ 
students were able to make a start on developing strategies for dealing with issues of brackets and 
order of operations. 

7.7 Suggestions for Further Research 
EQUATION allowed students to develop strategies and concerns for solving and formulating 
equations; and it consequently provided a purpose for algebraic symbols that resulted in 
improved theories for representation, transformation and consideration. Yet the program was not 
intended as an ideal learning resource, but as a focused research tool to examine the claimed 



Chapter 7 - Conclusions 230 

priority of certain activities, to question the pedagogical trend to focus on variables as the 
expense of unknowns, and to explore the limitations of the balance model. Nevertheless, in the 
light of the critique of the program in chapter 5, and the conclusions in this chapter, a number of 
improvements to EQUATION could be made, to better address the algebraic needs of students. 

Interspersed Levels: The following new levels, interspersed among the existing levels, would 
diminish the reliance of strategic theories on particularities of the given balance situation, without 
fundamental changes to the program: 

• variation of order of barrels and weights, unknowns and constants; 

• simple decimal weights, constants and coefficients of the unknown; 

• letters other than “b”. 

New Symbolic Levels: The following levels, added to the end of the symbolic levels, would augment 
existing algebraic strategic theories, without fundamental changes to the program: 

• fractional coefficients, requiring the use of multiplication; 

• a “lowest terms” constraint on fractions (to emphasise that answers are numerical) 
requiring the use of division; 

• large parameters, so that answers involving fractions would not fit in the space 
provided, requiring the use of division; 

• equations without numbers, requiring rearrangement. 

Balance Puzzle Variants: The following are variants of the existing balance model, and could lead 
onto different strategic theories for equation transformation. They would require both balance 
levels and symbolic levels, and so could be placed prior to the existing symbolic levels. However, 
they do not fit easily into the existing structure of the program, in that they may interfere in the 
process of transition of simplification strategic theories from pictures to symbols, and in the 
process of transition of representation strategic theories from pictures to word problems. The 
variants might therefore be best implemented by placing them after the initial transitions. 

• a tilting balance, which could lead onto decimal search, quadratics, square roots, 
indices, logarithms, etc.; 

• dragging of objects, which could lead onto transposition; 

• grouping of barrels, which could lead onto expansion of brackets, factorising and 
identities; 

• two sorts of barrels, which could lead onto simultaneous equations. 

Other Pre-Symbolic Scenarios: The following are alternatives to the balance model, and could not 
only lead onto different strategic theories for equation representation and transformation, but 
may in some cases also provide different scenarios through which to construct some of the same 
theories as in the balance scenario. Again, although they could be interspersed among the existing 
levels, placing these scenarios after the completion of the balance scenario could avoid 
interference with the existing transition processes. 

• Cups & Beans 
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• Areas 

• Think of a Number 

• Flowcharts 

• Line Graphs 

• Arithmetic Identities 

• Number Patterns 

Other Features: 

• a save option; 

• audible puzzles (for those with reading or sight difficulties); 

• a trace (when more complicated operations are involved); 

• easier entry of students’ own word problems; 

• a gradual diminution of automatic simplification. 

Now that there is prima facie evidence for the claim that EQUATION can promote a range of 
representation and transformation strategic theories, a direct empirical comparison between 
EQUATION and other initiatives would be desirable. The strengths and weaknesses, similarities 
and differences of the various initiatives could be explored in detail, qualitatively and 
quantitatively. The result that certain items can improve merely on repetition, for specific reasons, 
will assist in the design of future research instruments.  

Moreover, although some of the CSMS items used here would suggest that EQUATION helped 
students in the transformation and representation of variables, it is to be expected that students 
are still likely to lack a dynamic appreciation of variables. As English & Halford (1995) point out: 
“It is all too easy to assume that students have a grasp of variables when they solve generalized 
arithmetic tasks. Frequently, these can be solved without an understanding of variables, that is, 
without considering the degree to which one set of values varies as a result of changes in another 
set.” (p. 226). Further research is needed into what further aspects of understanding variables 
need to be promoted, and into how these aspects can be identified. 

It is also not possible to tell clearly on the basis of this research if students’ knowledge of 
equivalence of equations is affected in any way by EQUATION. It would be worthwhile 
repeating the study of Steinberg, Sleeman and Ktorza (1991) to see what happens - in particular 
for the third of the students using computed solutions as a primary strategy, and the high 
proportion using faulty reasoning. 

Moreover, these results are not necessarily applicable to all students of algebra. Since this research 
was aiming to illustrate the Popperian approach in detail rather than to test the generalisability of 
claims about learning, the samples chosen were small and with little regard to the 
representativeness of students. Now that a number of items have been developed for identifying 
potential learning gains, a larger number of students could be involved. Further research with a 
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larger sample could also usefully try to determine who gains, and what characterises the prior 
strategic theories and concerns of those who do not gain. 

Another important point is that this research has focused on the individual student’s encounter 
with World 3 with respect to introductory symbolic algebra, and primarily through interaction 
with a computer and with a fellow student, over a small time-scale. It has not chosen to examine 
the roles of the teacher, of textbooks, of the classroom, and of the wider social environment in 
shaping the longer-term encounter. There is nothing in the Popperian perspective that would 
preclude such an extended investigation. 

In addition, there is no suggestion that what has been learned over two or three lessons is 
necessarily remembered and plays a significant part in future algebraic learning. In particular, this 
research has not linked all aspects of student’s classwork, test and questionnaire responses to 
prior experiences. Longitudinal data would allow more scope to attempt this, and the analysis of 
such data might allow a greater mapping of algebraic knowledge using the theoretical tools 
developed here. Moreover, the research instruments here included a wide range of algebraic 
items, in order to test the hypothesis that improvement would occur only in certain problems. In-
depth interviews in later research would be able to probe in much greater detail just those items 
where improvement is expected. 

Finally, another strand of research should focus on the Popperian psychological perspective that 
has been developed here. This perspective has been used to combine the results of a number of 
research studies, to develop arguments for and against features of a computerised balance model, 
and to elucidate learning mechanisms. If the perspective is to be of any use, it clearly requires 
further critical scrutiny, both theoretical and empirical. 
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Glossary 
algebraic knowledge (in World 2) the theories and concerns relating to algebra 

algebraic thinking a hypothetical specific mode of thought involving, for example, 
“thinking arithmetically, thinking internally and thinking analytically” 
(Lins, 1992); or “handling the as-yet-unknown, inverting and reversing 
operations, seeing the general in the particular.” (Love, 1986) 

balance model of an 

equation 

the use of balance scales (physically, pictorially, or metaphorically) to 
teach about equations 

balance-like 

equations 

equations that could represent a simple balance scale 

BVSR Blind Variation and Selective Retention - a World 2 Darwinian process 
of creative learning involving the generation and checking of thought-
trials under selection pressures 

concerns problems of special interest to an individual; more precisely - any 
World 2 construction that exerts a selection pressure on the formation 
of theories; concerns include desires, motivations and fears; a concern 
incorporates background theories; concern to use a theory may vary 

conjectural 

knowledge 

refers to the view that knowledge growth occurs through error-
elimination rather than through derivation from foundational 
knowledge 

context the problem situation 

didactic cut a hypothetical cognitive jump required when unknowns on both sides 
are introduced into linear equations 

error-elimination the critical scrutiny of theories, using logical arguments or empirical 
testing; also includes the putting of theories into forms so that they can 
be more easily scrutinised 

fallibilism the view that all knowledge is open to critical scrutiny, because certainty 
can never be attained 

intersubjectivity the testing of theories by a research community 

intuition prior theories applied in a new problem situation (as opposed to 
“immediate” knowledge) 

learning the growth of knowledge; learning occurs through trial-and-
improvement of theories in response to concerns, rather than through 
the development of context-free modes of thought 
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Leibniz strategic 

theory 

operating on both sides of an equality in order to simplify 

meta-algebraic 

theories 

theories about algebraic theories, strategies and concerns; in particular 
the theoretical consequences of attempts to consider the nature of 
World 2 or World 3 algebraic objects, properties, relationships and 
processes, or to rationalise practices 

objective knowledge refers to the view that some knowledge can have a degree of autonomy 
from the people who generated it; it is “real” in the sense of being able 
to conflict with other knowledge 

objectivity the scientific ideal that knowledge is open to criticism by anybody 

Popperian 

epistemology 

a theory of fallibilist, conjectural, objective knowledge, dependent on 
intersubjective error-elimination 

Popperian 

psychology 

a conjectural, fallibilist theory of subjective knowledge, dependent on 
the BVSR of theories in response to concerns, in which 
“understanding” is viewed as problem-solving, and in which 
recontextualised meta-algebraic theories are preferred to slowly 
maturing “underlying” algebraic cognitive structures 

recontextualisation the process of separating a theory from its originating concerns, often 
so as to examine the properties and relationships of a theory 

rigour the warranting of knowledge by systematic error-elimination 

strategy a plan for solving a problem 

theory a construction of reality - can be objective or subjective; some theories 
are strategic 

transfer the adaptation of theories generated in one problem situation to 
another 

understanding problem-solving (rather than sense-making, imagining or re-enactment); 
understanding a theory is understanding the problem it solves, and why 
other theories do not solve the problem; understanding a problem is 
understanding something of its background theories and why it might 
be a problem 

World 1 the physical world 

World 2 the subjective, mental world of conscious experiences 

World 3 the theoretical world of objective contents of thought, especially of 
scientific and poetic thoughts and of works of art 
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Appendix A: Written Test 

TC (written) J. C. Aczel, May 1997

Name: _____________________________________ Class:___________
Solve each problem any way you can, but explain how you did it. Calculators allowed.

Section A: Patterns

1. Here are some piles of matches:

and so on…
Pile 1 Pile 2 Pile 3

(i) One of the piles contains 922 matches. How many matches are in the pile after?

Answer:

(ii) How many matches are in the 100th pile?

Answer:

(iii) What is the number of the pile which has 568 matches in it?

Answer:

2. The results of an experiment that measured two quantities L and Q were:
L 3 5 9 21
Q 9 15 27 63

(i) What would you expect Q to be when L is 30? ___________________________

(ii) What would L be when Q is 99? ______________________________________

(iii) Describe in words how you would find Q if you were told what L is:

(iv) Use algebra to write a rule connecting L and Q:
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TC (written) J. C. Aczel, May 1997

Section B: Modelling to find an unknown

1. The perimeter of a field is 102m. The length is twice the width. What is the length?

Answer:

2. 

George and his bricks
weigh 273 kg

Sam and his bricks
weigh 189 kg

Sam throws away some
bricks and George throws
away four times as many.
Now they are balanced.
How much weight did
Sam throw away?

Answer:

3. Charlotte thinks of a number. If she doubles it and adds 6, she gets the same result
as if she multiplies it by three and subtracts 70. What was her number?

Answer:
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TC (written) J. C. Aczel, May 1997

Section C: Representation

1. Find the area of each rectangle:
(i)

m

n

Area =

(ii)

2

5

e
Area =

(iii)

4b

3b

Area =

2. Find the perimeter of each shape:
(i)

h

t

h

hh (ii)

5

6

5

uu (iii)

2

2 2 2 This shape has
n sides, each of
length 2, but
only a part of it
has been drawn.

Perimeter = Perimeter = Perimeter =

3. If John has J marbles and Peter has P marbles, what could you write for the number
of marbles they have altogether?

4. Describe a situation in which x = 4c could help you or tell you something.

5. Blue pencils cost 5p each and red pencils cost 6p each. I buy some blue and some
red pencils and altogether it costs me 90p. If b is the number of blue pencils bought
and r is the number of red pencils bought, what can you write down about b and r?

6. Write an equation to represent the statement:
‘At this school there are 15 times as many students as teachers.’

Use S for the number of students and T for the number of teachers.

7. You have a pile of pennies and a pile of five pence pieces. The value of the pile of
pennies is the same as the value of the pile of fives. Write this as an equation, using
P for the number of pennies and F for the number of fives.

8. I have £x and you have £y. I have £6
more than you. Which of the following
equations must be true? Tick every one
you think is correct:

�  x = 6y

� 6x = y

� x = 6 + y

� 6 + x = y

� x = 6 − y

�None correct
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TC (written) J. C. Aczel, May 1997

Section D: Transformation

1. (i) Multiply 3n by 4 (ii) Add 4 onto 3n

2. Multiply n + 5 by 4

3. (i) If 2x + 4 = 10 then what is x? (ii) Solve 5x + 4 = 4x − 31

4. Write these
more simply,
where possible:

(i)  5a − 2a _______________

(ii)  2a + 5b _______________

(iii)  (a + b) + a ____________

(iv)  2a + 5b + a

(v)  a + a + a × 2____________

(vi)  (a – b) + b _____________  

(vii)  3a − b + a_____________

(viii)  4 2 7 1a a− + +

5. L + M + N = L + P + N is true…
 A lways  S ometimes  N ever (Tick one)

Why?

6. 7w + 22 = 109 and 7n + 22 = 109 have different solutions…
 A lways  S ometimes  N ever (Tick one)

Why?

7. Which of these can you write for
         e + 2 multiplied by 3?
Tick every one you think is correct:

� e + 6

� 3 × (e + 2)

� 3 × e2

� 3(e + 2)

� 3e + 6

� e + 2 × 3

8. Which is larger, 2n or n + 2? Explain.

9. What can you say about u if u = v + 3 and v = 1?

10. If e + f = 8, what is e + f + g ?

11. What can you say about r if r = s + t and r + s + t = 30?

12. What can you say about c if c + d = 10 and c is less than d?
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Appendix B: Questionnaire 

TC (written) J. C. Aczel, May 1997

Name: _____________________________________ Class:___________
Equations

1. Why do you think some people find equations difficult?

2. If you had to explain to somebody younger what sort of thing an equation is, how
would you describe it?

3. Have you ever made up an equation? When and why?

4. How confident are you about algebra?
 Not at all  Not very often  Sometimes  Mostly  Always

Why? (Tick one)

5. How good are these descriptions of an equation?
strongly
disagree

disagree no opinion agree strongly
agree

group of symbols
method
statement
balance
formula
problem

6. How useful do you think calculators or computers are in learning about equations?
 Not at all  Not much  A little bit  Very

Why? (Tick one)
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Appendix C: Year 10 Facilities 
  10EQ 10CON 

 Item Pre Post Imp Wor p Pre Post Imp Wor p 

 A1 (i) 100 86 0 / 0 3 / 22 96 83 1 / 1 4 / 23 
 A1 (ii) 45 55 5 / 12 3 / 10 54 71 7 / 11 3 / 13 
 A1 (iii) 50 50 5 / 11 5 / 11 54 46 2 / 11 4 / 13 
 A2 (i) 95 100 1 / 1 0 / 21 96 92 0 / 1 1 / 23 
 A2 (ii) 91 95 2 / 2 1 / 20 96 83 0 / 1 3 / 23 
 A2 (iii) 86 91 2 / 3 1 / 19 75 71 4 / 6 5 / 18 
 A2 (iv) 91 86 2 / 2 3 / 20 88 71 3 / 3 7 / 21 
 B1 32 45 5 / 15 2 / 7 46 63 4 / 13 0 / 11 0.021
 B2 23 59 10 / 17 2 / 5 0.009 29 42 3 / 17 0 / 7 
 B3 23 50 6 / 17 0 / 5 0.005 8 46 9 / 22 0 / 2 0.001
 C1 (i) 82 86 2 / 4 1 / 18 92 96 2 / 2 1 / 22 
 C1 (ii) 36 55 6 / 14 2 / 8 25 58 9 / 18 1 / 6 0.004
 C1 (iii) 55 73 5 / 10 1 / 12 58 79 8 / 10 3 / 14 
 C2 (i) 91 86 2 / 2 3 / 20 58 54 4 / 10 5 / 14 
 C2 (ii) 91 82 1 / 2 3 / 20 50 50 5 / 12 5 / 12 
 C2 (iii) 50 77 8 / 11 2 / 11 0.028 50 67 6 / 12 2 / 12 
 C3 82 73 0 / 4 2 / 18 88 88 2 / 3 2 / 21 
 C4 9 36 7 / 20 1 / 2 0.015 58 38 2 / 10 7 / 14 
 C5 9 27 4 / 20 0 / 2 0.021 0 8 2 / 24 0 / 0 
 C6 45 55 6 / 12 4 / 10 38 33 6 / 15 7 / 9 
 C7 5 5 1 / 21 1 / 1 0 0 0 / 24 0 / 0 
 C8 23 27 3 / 17 2 / 5 29 25 3 / 17 4 / 7 
 D1 (i) 68 55 2 / 7 5 / 15 54 63 4 / 11 2 / 13 
 D1 (ii) 45 68 6 / 12 1 / 10 0.028 58 67 5 / 10 3 / 14 
 D2 45 50 4 / 12 3 / 10 42 58 5 / 14 1 / 10 
 D3 (i) 86 95 3 / 3 1 / 19 79 88 3 / 5 1 / 19 
 D3 (ii) 18 45 8 / 18 2 / 4 0.028 4 8 2 / 23 1 / 1 
 D4 (i) 77 68 0 / 5 2 / 17 71 75 4 / 7 3 / 17 
 D4 (ii) 73 86 4 / 6 1 / 16 75 79 5 / 6 4 / 18 
 D4 (iii) 64 77 4 / 8 1 / 14 46 54 5 / 13 3 / 11 
 D4 (iv) 77 91 3 / 5 0 / 17 83 79 3 / 4 4 / 20 
 D4 (v) 0 0 0 / 22 0 / 0 0 0 0 / 24 0 / 0 
 D4 (vi) 45 32 0 / 12 3 / 10 29 38 4 / 17 2 / 7 
 D4 (vii) 68 77 3 / 7 1 / 15 63 67 5 / 9 4 / 15 
 D4 (viii) 45 36 1 / 12 3 / 10 54 42 3 / 11 6 / 13 
 D5 27 59 7 / 16 0 / 6 0.003 42 50 5 / 14 3 / 10 
 D6 55 50 2 / 10 3 / 12 38 21 1 / 15 5 / 9 
 D7 0 5 1 / 22 0 / 0 0 0 0 / 24 0 / 0 
 D8 18 14 1 / 18 2 / 4 21 21 1 / 19 1 / 5 
 D9 59 68 5 / 9 3 / 13 75 83 3 / 6 1 / 18 
 D10 41 45 3 / 13 2 / 9 42 42 4 / 14 4 / 10 
 D11 9 23 5 / 20 2 / 2 29 38 5 / 17 3 / 7 
 D12 27 36 4 / 16 2 / 6 50 42 4 / 12 6 / 12 

“10EQ” - Year 10 EQUATION group; “10CON” - Year 10 Control group; 
“Pre” and “Post” - mean percentage score for the pre-test and post-test respectively; 
“Imp” - number of items that improved, compared to the number of items where improvement was possible; 
“Wor” - number of items that worsened, compared to the number of items where worsening was possible; 
p” - p-value of t-test with matched samples, for change from pre-test to post-test for a particular class “ 
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Appendix D: Year 7 Facilities 
  7EQ 7CON 

 Item Pre Post Imp Wor p Pre Post Imp Wor p 

 A1 (i) 77 85 4 / 6 2 / 20 81 67 1 / 4 4 / 17 
 A1 (ii) 15 31 5 / 22 1 / 4 48 19 1 / 11 7 / 10 0.015
 A1 (iii) 15 23 4 / 22 2 / 4 29 10 0 / 15 4 / 6 
 A2 (i) 69 65 2 / 8 3 / 18 33 38 2 / 14 1 / 7 
 A2 (ii) 65 65 3 / 9 3 / 17 24 48 5 / 16 0 / 5 0.011
 A2 (iii) 62 62 4 / 10 4 / 16 24 38 4 / 16 1 / 5 
 A2 (iv) 35 42 6 / 17 4 / 9 19 33 3 / 17 0 / 4 
 B1 12 12 3 / 23 3 / 3 38 33 2 / 13 3 / 8 
 B2 8 8 2 / 24 2 / 2 0 14 3 / 21 0 / 0 0.041
 B3 0 4 1 / 26 0 / 0 0 5 1 / 21 0 / 0 
 C1 (i) 8 4 0 / 24 1 / 2 0 5 1 / 21 0 / 0 
 C1 (ii) 0 0 0 / 26 0 / 0 0 5 1 / 21 0 / 0 
 C1 (iii) 0 8 2 / 26 0 / 0 0 5 1 / 21 0 / 0 
 C2 (i) 0 4 1 / 26 0 / 0 5 5 0 / 20 0 / 1 
 C2 (ii) 0 4 1 / 26 0 / 0 5 5 0 / 20 0 / 1 
 C2 (iii) 0 4 1 / 26 0 / 0 5 5 0 / 20 0 / 1 
 C3 12 38 8 / 23 1 / 3 0.008 24 33 2 / 16 0 / 5 
 C4 4 0 0 / 25 1 / 1 5 0 0 / 20 1 / 1 
 C5 0 0 0 / 26 0 / 0 0 0 0 / 21 0 / 0 
 C6 4 27 6 / 25 0 / 1 0.006 24 24 0 / 16 0 / 5 
 C7 0 4 1 / 26 0 / 0 5 5 0 / 20 0 / 1 
 C8 4 8 2 / 25 1 / 1 14 14 0 / 18 0 / 3 
 D1 (i) 19 31 5 / 21 2 / 5 0 10 2 / 21 0 / 0 
 D1 (ii) 0 0 0 / 26 0 / 0 0 0 0 / 21 0 / 0 
 D2 0 0 0 / 26 0 / 0 0 0 0 / 21 0 / 0 
 D3 (i) 15 4 0 / 22 3 / 4 14 5 0 / 18 2 / 3 
 D3 (ii) 0 0 0 / 26 0 / 0 0 0 0 / 21 0 / 0 
 D4 (i) 12 4 1 / 23 3 / 3 0 5 1 / 21 0 / 0 
 D4 (ii) 0 0 0 / 26 0 / 0 0 5 1 / 21 0 / 0 
 D4 (iii) 0 4 1 / 26 0 / 0 0 10 2 / 21 0 / 0 
 D4 (iv) 0 0 0 / 26 0 / 0 0 5 1 / 21 0 / 0 
 D4 (v) 0 0 0 / 26 0 / 0 0 0 0 / 21 0 / 0 
 D4 (vi) 0 0 0 / 26 0 / 0 5 10 1 / 20 0 / 1 
 D4 (vii) 0 0 0 / 26 0 / 0 0 5 1 / 21 0 / 0 
 D4 (viii) 0 0 0 / 26 0 / 0 0 5 1 / 21 0 / 0 
 D5 23 23 3 / 20 3 / 6 5 10 1 / 20 0 / 1 
 D6 12 8 1 / 23 2 / 3 0 0 0 / 21 0 / 0 
 D7 0 0 0 / 26 0 / 0 0 0 0 / 21 0 / 0 
 D8 0 0 0 / 26 0 / 0 0 0 0 / 21 0 / 0 
 D9 12 15 3 / 23 2 / 3 10 19 3 / 19 1 / 2 
 D10 0 4 1 / 26 0 / 0 0 0 0 / 21 0 / 0 
 D11 4 4 0 / 25 0 / 1 5 5 1 / 20 1 / 1 
 D12 0 4 1 / 26 0 / 0 0 5 1 / 21 0 / 0 

“7EQ” - Year 7 EQUATION group; “7CON” - Year 7 Control group; 
“Pre” and “Post” - mean percentage score for the pre-test and post-test respectively; 
“Imp” - number of items that improved, compared to the number of items where improvement was possible; 
“Wor” - number of items that worsened, compared to the number of items where worsening was possible; 
“p” - p-value of t-test with matched samples, for change from pre-test to post-test for a particular class 
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