
HAL Id: hal-00190184
https://telearn.hal.science/hal-00190184

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Object-Oriented Programming
Ola Berge, Richard Edvin Borge, Annita Fjuk, Jens Kaasbøll, Terje Samuelsen

To cite this version:
Ola Berge, Richard Edvin Borge, Annita Fjuk, Jens Kaasbøll, Terje Samuelsen. Learning Object-
Oriented Programming. Norsk informatikkonferanse 2003, 2003, Oslo, Norway. 11 p. �hal-00190184�

https://telearn.hal.science/hal-00190184
https://hal.archives-ouvertes.fr

Learning Object-Oriented Programming
Ola Berge2 Richard Edvin Borge1 Annita Fjuk2 Jens Kaasbøll1 Terje Samuelsen1

1) University of Oslo, P.O.Box 1080 Blindern, N – 0316 Oslo, Norway. Tel: +47 22 85 24 10

{richared, jensj, terjesam}@ifi.uio.no
2) InterMedia, P.O.Box 1161, N – 0318 Oslo, Norway. Tel: +47 22 84 07 00

{ola.berge, annita.fjuk}@intermedia.uio.no

ABSTRACT
Loud discussions concerning various ways of teaching object-orientation have taken place without much
empirical evidence for any position. This paper reports qualitative observations of learning of object-ori-
ented programming in an introductory course. The students were found to cope reasonably well with the
object-oriented concepts, and they had learnt procedural programming first. However, they modeled the
real world domain to be represented in the program by imagination and through coding. Their problems
may be attributed to the high complexity generated by having to relate to four – six areas of attention.
Three ways of improving teaching are suggested, making the areas of attention and the ways to relate
them more explicit for the students, forcing modeling by means of a tool, and reducing complexity by
means of programming environments that visualize objects and their behavior.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]

General Terms
Human Factors

Keywords
Learning, teaching, phenomenographic, pedagogy

INTRODUCTION
Teaching programming and modeling by means of object-oriented methods has become a common
mode of introductory computer science training during the last ten years. Research indicates that learn-
ing object-orientation is more difficult than coming to grips with other paradigms [9], while a more re-
cent study of programming learning showed no significant difference between procedural and OO learn-
ers [10]. Repeated discussions on e-mail lists reveal many frustrated teachers (SIGCSE.MEMBERS),
and high drop out and failure rates in introductory programming at universities world wide also add to
the impression of a subject difficult to teach and learn.
Previous studies of novices learning programming have investigated students learning procedural [8]
and logic programming [3]. They conclude that after an introductory period, most students have learnt
the syntax and semantics of the programming language, but they struggle with composing their pro-
grams. This would imply that courses which go beyond the simplest programs will constitute a much
larger challenge to the students, regardless of the programming paradigm and the sequence of instruc-
tion.
When learning object-oriented programming, the language has more concepts than previously used lan-
guages, which could imply that learning this paradigm becomes more difficult. On the other hand, the

object-oriented language have the class concept, which is supposed to ease design and structuring of
programs. So in courses with larger programming assignments, object-orientation should be an advan-
tage.
This study aims at finding out how the students come to grips with the object-oriented concepts, how
their understanding influence the their learning of programming, and point to issues that students are
struggling with.

BACKGROUND
The students who are studied attend an introductory course in object-oriented programming with Java.
The sequence of instruction is variables, control structures, methods, arrays, file operations, graphical
interfaces, classes, objects and pointers, object-sets, inheritance, sub- and superclasses, abstract classes
and exception handling.
The course is scheduled to 50% workload during a semester, with four hours of lecture, two hours of
classroom problem solving and two hours of closed labs per week. The students are given five manda-
tory exercises during the semester.
Only a minority of the students has any prior programming experience.

METHOD
Since little is known concerning learning of programming, devising categories that lend themselves to
quantitative studies are difficult, so a qualitative approach was selected. In order to elicit how the stu-
dents understand programming, their conversations and programming were observed. Observation has
long been used for studying learning of a diverse set of subjects, logic programming included (Marton
and Booth, 1997). The method is called phenomenographic, since it aims at describing people’s experi-
ence of the world.
The students were observed for eight hours in the lectures. A request for permission to observe the stu-
dents in the classrooms and the labs was sent to the instructors, Three out of 11 instructors were positive,
and the students in these groups were observed for a total of 20 hours, 18 of which were done in the lab.
During the observations, the observers also asked the students some questions, mostly concerning what
they experienced as most difficult.
Notes were taken during the observations. Audio tape recording was not considered giving sufficient
added value, since much of the conversation was concerned with code on the computer screen, and un-
derstanding the recording without the programs being discussed would be difficult. Recording the pro-
gram code with video was considered impractical due to the small fonts and flickering screen on the
computer terminals.
On some occasions, the observers also guided the students, taking over the role of the instructor. This
happened when there were more students requesting assistance than the instructors could handle. Acting
as an instructor provided opportunities for getting the students to talk about their programs, but the in-
teraction implied that fewer comments from the students were noted down.

AREAS OF ATTENTION
The tasks in the education studied concerned developing applications for domains that the students
should be somewhat familiar with, eg, spectators in a movie theatre. When developing object-oriented
applications, the students have to consider several domains. First, the students have to consider the real
world domain that the application is supposed to serve, eg, the movies, the theatre with its rows and
seats and the audience. Second, the students have to consider the objects that the program will generate
during run-time, and these objects of the classes “customer,” “movie” and “seat” have to represent the
actual customers, movies and seats. People can imagine that these objects exist in the computer during

program execution, but they do not lend themselves to experience. Third, the interaction with the run-
ning program catches the students’ attention when running a program that is void of syntax errors, and
they can experience the windows on the screen the input they type. Fourth, the code with its class de-
scriptions has to be written and discussed, and this area tends to be in the focus of the students’ attention
during their labs. The classes constitute the prescriptors of the objects, the descriptors of the real world
concepts, and the organizing units for the user interface.

Keeping these four areas in mind when programming may be trivial for the experienced programmer,
who may consciously choose to disregard interface and objects for periods, and only concentrate on con-
structing class descriptions that represent real world phenomena. But some of the students observed did
not have any clear conceptions of objects during program execution, so they stored every change of the
program on file. Another student struggled for two hours with obtaining consistency between the data

entered at the user interface and what her program stored on file (JK 03.04.03)1. She could specify how
the file should look like, but she was incapable of sketching the objects generated during program exe-

cution and the pointers, which kept the objects coherent. The five areas that the students should consider
are illustrated in

Figure 1.

Code
Visible
Class Food{
String name;
Int price;
void beOrdered()

}
Class Guest {

Program execution
Cannot be experienced

Screen display and typing
Direct experience

The real world domain
To be represented in the
program execution

Guest no: 14
Food: Shrimps
Drink: Wine

Food
Name Shrimp
Price 100

beOrdered

Guest
No 14
Total 130

Order

dishes

Permanent data file
Visible
Shrimps 73
Salmon 34

Figure 1. Areas that the programmer should keep attention to when constructing an object-oriented

program

Three of these areas are visible for the programmer, the code, the file, and the user input. The student
has to recall the real world domain from her memory, which is probably trivial when the student is fa-
miliar with it. She can also refer to the problem specification. The program execution with its objects is
something that the student has to imagine, and the teachers advice the students to draw sketches like
those depicted in the upper right corner of Figure 1
When the novices have to grapple with five areas and the 10 relations that we can consider between
them, finding that most students do not master these relations should not come as a surprise.

1 Observer initials and date of observation.

The student who struggled with getting the correct data on file was talking about her program in the
following way: “the program reads from the keyboard and writes on the file,” indicating that she re-
garded the world as “input → processing in program → output,” see Figure 2, and not as a set of inter-
linked objects that represent an area in the world. We would say that this student had a procedural and
not an object-oriented conception when programming.

Figure 2. One student's conception of her program.

Most students had developed a more comprehensive framework of understanding for their program-
ming. During conversations about the cinema program, the students referred to a “show” of a specific
movie at a specific time as the object in the program execution, while never discussing the actual cinema
that the program was supposed to manage. The instructor (I) reinforced this understanding in her con-
versation with the students (S) (JK 20.03.03):

I: … similarities between shows … they contain a theatre. So we make an object for each show.
Each show has a theatre, in a way, or our seats.
(The instructor draws object structures)
I: Such a one which controls whether we have this one already.
S: And that is the HashMap?
I: Yes

If they were talking about the real world cinema, they would hardly speak of a show as something that
contains a theatre, but rather about a theatre that hosts a show. Assuming that all students are familiar
with going to the movies, they probably use this experience as a frame of reference when discussing the
objects, even if their conversations do not mention the real world domain. Their framework of under-
standing can therefore be illustrated as in Figure 3.

Code
Visible
Class Food{
String name;
Int price;
void beOrdered()

}
Class Guest {

Program execution
Cannot be experienced

The real world domain
To be represented in the
program execution Food

Name Shrimp
Price 100

beOrdered

Guest
No 14
Total 130

Order

dishes

Lecturer’s code
Visible
Class Commodity{
String name;
Int price;

Modelling by
imagination

Modelling by
coding

Design by
copying

Figure 3. The students’ areas of attention and directions of inference. The Program execution is dotted
due to the students’ habits of only imagining this area.

RELATING THE AREAS
The movies task studied was the students’ first assignment of size more than a page of code and a
somewhat complex domain, so they had to learn two new skills. The first is modelling the reality by
means of object-oriented concepts, and we will refer to this activity as “modelling.” The other activity
that they have to learn is to structure their object-oriented program by means of classes and methods for
file handling, user interface, etc., and we call this process “program design.”
The concepts that the students had available for modelling were objects, pointers, arrays, and HashMaps.
These concepts were clearly implementation oriented, and no analysis concepts like associations and
cardinalities, were known to the students. The observation that the students made design models rather
than models of the real world domain, is therefore not surprising.
Moreover, only occasionally did the students draw models on paper, and even if they did, these models
disappeared under other papers, or the students were not able to translate them into code. Their conver-
sations about arrays and pointers were not anchored in these drawings, but rather in the visible code on
the computer screens. Referring to Figure 3, they imagined the two upper areas rather than visualizing
them, so we can call their modelling activity “modelling by imagination.”
A typical situation arouse when the students modelled by imagination was that the student asked the in-
structor for assistance. She replied by drawing what she perceived as the student’s model, and com-
mented upon it, e.g. (TS 27.03.03):

I: Isn’t it easier to put the seat into the theatre class instead of 100 seat objects?
Those students who were unable to code based on the drawn model could only work in the upward di-
rection from Code to Program execution in Figure 3, so we will call this activity “modelling by coding.”
The opposite direction, which the more advanced students could handle, would be “coding the model.”
The students arrived at their program design by copying a program made by the lecturer and modifying
it, we call it “design by copying.” [3],p.207] observed that students use the same strategy when writing
their first program.

Some students also reported uncertainty with the imported structure (TS 27.03.03):
S: We are sure about what to do, but we don’t know where.

This statement indicates that they have a certain mastery of the details without a complete understanding
of the big picture.

STRUCTURING THE PROGRAM
Being novices, the students needed lots of assistance in structuring their program, e.g. (JK 20.03.03):

S: Is this OK?
I: What are you gonna make? Have you thought about how you will structure your program? I don’t
think that I would have had that HashMap there. It is correct the way you have made it, but I would
have had it another place. Smart to think about how you will structure your program.
(The instructor draws in the student’s book)
S: No, I don’t know what I thought.

Again, the student is modelling by imagination, and the instructor provides visualisation, forcing the
student to rethink his design.
The students were not familiar with the power of pointers, objects, arrays and HashMaps, e.g., the in-
structor comments upon a student’s array for pointing to seat objects in the theatre (JK 20.03.03):

I: But it is three-dimensional!
Even though the students struggled with putting the pieces together, they all tried to use the set-concepts
when storing many objects of a kind and never when creating only one object. Also, no students were
reported mixing up Class with Array or HashMap.
When designing by copying, the students were told to use a Database class and a Control class, but these
classes were frequently misunderstood (RB 24.03.03). Since the students had no intuition concerning
them, they merely followed the lecturers’ examples, hence there is ample room for misunderstanding.

OBJECT-ORIENTED CONCEPTS
Personal experience shows that the students’ speed of learning in programming courses differ vastly.
One example of the slow learners was a student who should program a class that took care of customer
information, and he made his program generate a new customer-object for every piece of information for
each customer (RB 31.03.03). Most of the students observed had a more sophisticated understanding of
objects. They knew that many objects could be generated for a class, that each customer should have one
object. Further, they knew how to declare private variables and public methods in the classes. Some stu-
dents also demonstrated a good understanding of the difference between object and class (static)
variables. Their task given was to make two Rectangle objects, the first with height equal 2, width 3 and
colour red; the second 4, 6 and yellow. After having made the two rectangles, the program shall display
this information for each rectangle.
The code is:

class Rectangle
{
 private double heigth;
 private double width;
 private static String colour;

 Rectangle(double h, double w, String c)
 {
 heigth = h;
 width = w;

 colour = c;
 }
...
}

The students were asked what would be displayed, and they said (RB 31.03.03):
S1: 3, 4 and yellow. And the other 4, 6 and yellow
I: Any other suggestions?
S2: Red and then yellow
I: Any other?
S3: Yellow and yellow.
I: Why
S: The colour is static
I: Yes, static means that the colour is the same for all the objects of this class.

Subclasses were introduced in the lectures during the time of observations, but most of the students had
not started to use them in the programs. Questions during the lecture indicated a good understanding
among some of the students (OB,AF,RB 31.03.03)

S: Do you need a constructor in the sub-class?
I: Well, yes, we do so here, due to the parameter

However, other students had not grasped the idea (TS 04.04.03):
S: Do all variables have to be declared twice in sub-classes?
Students also seemed to have grasped the generality of the class concept, e.g. (JK 20.03.03)
S1: Arrays are actually objects, see
S2: So what applies there applies here as well
S1: Yes

Pointers were also problematic in some instances. The students knew that they should create a pointer
and assign it to the new object when created, but pointer assignments in general was more difficult
(TS 27.03.03):

I: Why do you say (while pointing at the code, which was like):
Seat S = new Seat();
Seat T = new Seat();
S = T;

The student was not aware that the first Seat object would be lost.
Questions concerning most of the concepts in Java were also raised by the students. However there were
few syntax related ones, and none of the observers overheard any questions concerning the basics of
variables, if and while. While teachers have reported that parameters are on the top of the list of difficult
to learn programming concepts, parameters were not mentioned more frequently than other concepts by
the students observed.

DISCUSSION
Previous studies of learning procedural and logic programming [8], [3] have pointed to that most stu-
dents learn syntax and semantics within reasonable time, and thereafter they struggle with learning how
to design their programs. This study shows a similar pattern when learning object-oriented program-
ming. However the students had learnt the basics of procedure oriented programming first, so a certain

correspondence with the previous findings should be expected. A study of students who learn the object-
oriented concepts first is needed in order to find out whether the pattern also applies in the pure object-
oriented case.
Widenbeck, and Ramalingam [10] distinguish between what they call program model and domain
model in their study of novice OO programmers. The program model covers the elementary operations
and the control flow, while the domain model concerns to the problem situation referred to in the pro-
gram, specified as data flow and function information. In addition, they have studied students’ under-
standing of program state. Their elementary operations seem to correspond to what is regarded as code
here, while control flow, data flow and state are aspects of the program execution. Their functions are
abstractions of input/output, referring to the screen display and typing in the areas presented here. There
is no specific mentioning of issues of the real world domain in [10], which may be due to the fact that
the categories used in [10] were based on previous studies of procedural programming. A basic OO per-
spective of the real world domain described in code and represented in the program execution constitute
a perspective that does not easily apply to the procedural approach. The procedural bias of the study is
shown in its view of how programs work: “The transformation of data from an input state to a desired
output state is the fundamental purpose of a program…” [10]
Classes and objects pose two challenges in learning program design. First, the students have to learn
how to make a model of reality that their objects are going to represent, and second, they have to learn
how to design the other components of the program, like user interface and file handling, and how these
components should be linked to the reality model. The students studied were working on their first as-
signment where both kinds of structuring were necessary.
Concerning the modelling process, they worked with mapping implementation concepts like HashMap
to the program execution that they imagined, hence we called this process “designing by imagination.”
Few signs of explicit checking against reality were performed. A possible way of strengthening the
learning of modelling would be to introduce modelling of reality explicitly by means of object diagrams
that illustrate cardinalities. An additional modelling step may, however, also be counterproductive to
student learning since it entails more to be learnt.
A study of professionals doing ER modelling showed that they did not consider the ER diagrams as a
conceptual model of reality but as database design [5]. If professional modellers do not separate between
analysis and design models, there is no point in introducing this notion in introductory courses. How-
ever, the professionals consistently checked their model with the reality, while the students seemed to
have their attention mostly at the code and the program execution.
When structuring the rest of their programs, the students copied solutions presented by the teachers or
found in the course material. Copying and modifying is a well known first step in learning program-
ming, and it seems to work in this setting also. Therefore, the program design that the teachers preach
should be tuned to the students’ tasks at the novice level, being general enough to a large set of tasks,
without bringing in unnecessary sophistication. The concrete model-view-control pattern that was ap-
plied in the course seemed to fit the students’ tasks.
The students demonstrated a seemingly hazardous programming development by ignoring reality
checking and by coding without visual models. While the instructors repeatedly assisted the students in
drawing models, the students did not take up this habit, something that might have happened because
they were unable to base their coding on the models. This inability may stem from the way of teaching,
or novices may in any case find it easier to code based on an example and their conception of the do-
main of the program rather than on models. Explicit teaching of the areas of attention and the ways pro-
grammers think when making inferences from one area to the other, see

, might strengthen the students’ abilities to use models more actively.

Code
Visible
Class Food{
String name;
Int price;
void beOrdered()
}
Class Guest {

Program execution
Cannot be experienced

The real world domain
To be represented in the
program execution Food

Name Shrimp
Price 100

beOrdered

Guest
No 14
Total 130

Order

dishes

Lecturer’s code
Visible
Class Commodity{
String name;
Int price;

Modelling

Adjusting the
model

Design by
copying

Coding
the model

Reality checking

Figure 4. Areas of attention and ways of programming

The empirical study made by Widenbeck and Ramalingam [10] shows that the worst performing OO
novices make more errors on operation and control flow, while the procedural learners fail more on data
flow and function. More advanced beginners do not exhibit these differences. They conclude that learn-
ers need both domain and program knowledge in order to boost their comprehension. Although they use
basically procedural categories of analysis, pointing to that students need to understand relations be-
tween several ways of regarding a program fits well with our observations of OO learners.
An alternative approach is to reduce the number of areas of attention from the four in figure 4, and pos-
sibly six when bringing in user interface and files like in Figure 1, to only two, by means of special pro-
gramming environments.
Karel J Robot [1], Robocode and Alice [4] are programming environments where the objects generated
in the programs become visible, such that the students do not have to imagine objects that are supposed
to exist inside the computer. Also, the students do not have to consider relations between phenomena
outside the computer and the objects inside, thereby reducing the number of areas of attention to two
only, see Figure 5.
The students studied here learnt procedural programming first, which may can provide some indication
as to whether starting with the procedural paradigm has had any effect of the students’ understanding of
the object-oriented paradigm.

Code
Visible
Duck dolly = new Duck(3);
Cat pussy = new Cat();
for (i=1, 1, 10) new Fish();
Dolly.swim(left);
pussy.moveCloser(dolly);

Screen display and typing
Direct experience

Figure 5. Areas of attention in special programming environments.

One student regarded the operation of her program as an input-transformation-output sequence, see
Figure 2. This sequence corresponds to the procedural view and contradicts the object-oriented para-
digm. No other student seemed to have such a conception, however, so teaching the procedural way first
did not seem to have much impact in this respect.
Another interpretation of the students’ poor performance of modelling is that modelling is not encour-
aged in procedural programming, so that they have learnt coding first. Instead of modelling being help-
ful for programming, it becomes an additional burden that has to be learnt together with the object-ori-
ented concepts.
There are also programming environments that force modelling, and at the same time generate code
skeletons from the models drawn [2]. Such environments may also be useful for students who have
started out with procedural programming, since they may turn “modelling by imagination” into model-
ling and “Modelling by coding into “Coding the model.”

References
[1] Bergin, J.; Stehlik, Mark; R., and Pattis, R. (2003) Karel J. Robot: A Gentle Introduction to the Art

of Object-Oriented Programming in Java.
http://www.csis.pace.edu/~bergin/KarelJava2ed/Karel++JavaEdition.html

[2] BlueJ: The Interactive Java Environment. (2003) http://www.bluej.org/
[3] Booth, S. (1992) Learning to program. A phenomenographic perspective. ACTA Univ. Gothenburg

studies in educational science 89
[4] Cooper, S.; Dann, W. and Pausch, R. (2003) Teaching Objects-first In Introductory Computer

Science. SIGCSE Bulletin 35, 1, 191-195

http://www.csis.pace.edu/~bergin/KarelJava2ed/Karel++JavaEdition.html
http://www.bluej.org/

[5] Hitchman, S. (2003) An interpretive study of how practitioners use entity-relationship modelling in a
ternary relationship situation. Communications of the Association for Information Systems, 11, 451-
485

[6] Marton, F. and Booth, S. (1997) Learning and awareness. Mahwah, N.J: Lawrence Erlbaum,
[7] Robocode. (2003) http://robocode.alphaworks.ibm.com/home/home.html
[8] Spohrer, J.C. and Soloway, E. (1986) Novice Mistakes: Are the Folk Wisdoms Correct?

Communications of the ACM. 29,7, 624-632
[9] Vessey, I. and Conger, S.A. (1994) Requirements Specification: Learning Object, Process, and Data

Methodologies. Communications of the ACM. 37, 5, 102-113
[10] Widenbeck, S. and Ramalingam, V. (1999) Novice comprehension of small programs written in the

procedural and object-oriented styles. Int. J. Human-Computer Studies. 51, 71-87

	ABSTRACT
	INTRODUCTION
	BACKGROUND
	METHOD
	AREAS OF ATTENTION
	RELATING THE AREAS
	STRUCTURING THE PROGRAM
	OBJECT-ORIENTED CONCEPTS
	DISCUSSION
	References

