
HAL Id: hal-00190096
https://telearn.hal.science/hal-00190096

Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Imagine... a new generation of Logo : programmable
pictures

Ivan Kalas, Andrej Blaho

To cite this version:
Ivan Kalas, Andrej Blaho. Imagine... a new generation of Logo : programmable pictures. Proceedings
of the IFIP WCC 2000, 2000, Beijing, China. pp.427 - 430. �hal-00190096�

https://telearn.hal.science/hal-00190096
https://hal.archives-ouvertes.fr

427

Imagine… a new generation of Logo: programmable pictures
Ivan Kalas & Andrej Blaho

Comenius University
Bratislava, Slovak Republic

E-mail: kalas@fmph.uniba.sk

Abstract
In 2000 we completed the development of a new
generation of Logo environments containing a radical
combination of the direct manipulation interface and
rich interactive programming language. The
“Imagine” environment will be released by Pearson
Education, see http://www.logo.com.

In [1] we presented a brief overview of the conception
of “Imagine” from the viewpoint of the user of
SuperLogo. In this paper we characterise in depth one
of its innovative concepts – programmable pictures,
that is, pictures (shapes of turtles) specified in the
Logo language itself. We give a brief overview of the
history of the concept of shapes of Logo turtles. We
present a sequence of topics to illustrate the power of
this concept for educational applications: both for
beginners and advanced users. We argue that
“Imagine” provides a tool for facilitating the learning
process.

Keywords
Imagine, Logo, programmable pictures

Introduction
In [1] we introduced “Imagine” as a new generation of
Logo, with object-oriented structure merged into
traditional Logo philosophy, with empowered
animation, open hierarchy of graphic screens and
panes, hierarchy of objects and behaviours, parallel
independent processes, direct painting tools, extended
direct manipulation interface, tools for publishing for
the Web, rich Logo language and other characteristics.
When developing this educational environment we
had in mind a learner who wants to access a very
broad palette of activities, from painting and
animating to Web authoring, doing traditional Logo,
creating multimedia, using speech input and output,
modelling, constructing domain-specific learning
frameworks, communicating ideas, building
presentations, developing projects and microworlds
for numeracy, literacy or science, working with data…
Our goal has been to provide students, teachers and
developers with a challenging general tool for
learning.

When we started developing SuperLogo at the
beginning of the 1990s, see [2, 6], we decided to
retain as a principle the original philosophy of Logo.
At that time we decided to develop Logo within the
Environment for Environments Metaphor, see [2].
That is, in harmony with [3] and [4] we tried to
empower the Logo environment so that it could serve
children, students, teachers, and the developers of
educational domain-specific applications. We decided
to make Logo a strong tool for learning, programming
and developing all in one.

Shapes of turtles
Probably the most important “discovery” during our
development of SuperLogo was the approach to the
shapes of turtles, see [5]. We managed to find very
natural, intuitive, and yet powerful solutions that
opened broad new fields of topics for users' projects
and activities. Let us briefly overview the history of
turtles' shapes in older versions of Logo.

Initially, the shape was an outline of a small turtle or a
triangle, which had several rotations, built in the core
to display the actual heading of the turtle.

Later the Logo community realised that it was not
always the drawing on the screen itself which was the
real result of doing Logo. Sometimes it could be a
kind of composition of Logo drawing and the turtle
itself. Then, however, it would be more appropriate if
the turtle looked like a ship, an animal, a rocket etc.,
or even better: several ships, animals, rockets… Thus,
a fixed number of turtles (4 or 16 etc.) could have
been involved, together with the possibility of
choosing their shapes from a fixed library of black-
and-white shapes of fixed size. Those shapes,
however, did not display the actual heading in any
way.

From there the step was to offer a kind of shapes'
editor to open a shape from the library and either
modify it or clear it and create a new one. Then the
restriction of the fixed size was removed.

428

Newer versions have become more powerful and
attractive by allowing the user to set any picture as a
turtle's shape. New pictures have either been loaded
from a file or taken as a picture from the screen
(which made it possible to draw them in a Logo way
by the turtle, then take a snapshot of them) and set the
result to the turtle as its new shape.

In SuperLogo we have introduced a new data object
called image, see [5]. The decision to work with
images in exactly the same way as with words and
lists proved to be very powerful: similar to words
consisting of characters, images consist of frames. An
image is a sequence of frames, which can be
interpreted by the turtle in two different ways:
• For a traditional turtle, frames of its shape serve to

display its actual heading. There is an automatic
mechanism in SuperLogo to choose and display
the corresponding frame for the actual heading.

• If the user declares a turtle to be an animation
one, the connection between frames and actual
heading is broken and it is up to the user to
decide when the turtle will display which frame.
In this way it is possible to create the illusion of a
movement, see Figure 1.

“Imagine” has made a step in two different directions:
1. We decided to remove the distinction between

traditional and animation turtles. We generalised
the concept of image in the following way: each
image is a sequence of frames, which are
interpreted as different pictures for displaying
different headings of turtles. Each frame may
consist of one or several frame items, which
perform like an animated GIF. If the frame
consists of one frame item, the shape is static. If it
consists of several items, “Imagine” will
automatically alternate them. Thus the engine
automatically creates and controls the illusion of
animation.

2. The second direction is also quite pioneering. To
define the shape of a turtle, you can use the Logo
language itself, see below.

Figure 1: Frame of SuperLogo

Introducing animation turtles into SuperLogo has
increased its power because it made it easy to create
animated compositions and stories, where the goal is
the process itself. In spite of that, we have always felt
that there have been two disadvantages in connection

with animations. The first of these has disappeared by
moving from SuperLogo to “Imagine”, the other has
not:
1. The user had to define his/her own main

animation control loop. This is not needed in
“Imagine” because an independent process does
this. The generalised structure of images shifted
the task of controlling animations from user to the
engine itself.

2. To place the animated turtles into your
composition requires that you either create
corresponding images or get them from
somewhere else. Both ways are difficult and too
demanding; users are forced to rely on libraries of
professional ready-made images.

Pictures described by Logo language
When working with children we have often felt that
there is a wide gap between introductory Logo
activities and any kind of possible continuation – a
kind of threshold which prevents many young users
(and their teachers!) from doing the second step. In
[6] we illustrated how to overcome it and fill this gap
with using Logo data structures in challenging
combinations with turtle geometry.

In “Imagine” we decided to try yet another approach.
When Logo beginners learn how to type in a sequence
of instructions, or define simple drawing procedures
(like house, tree, boy…), let us show them a way to
create new shapes for turtles using Logo instructions
and simple procedures for drawing. At the moment
they are able to draw a square (for example in a thick
red pen) by saying:
? setPC "red setPW 8
? repeat 4 [fd 60 rt 90]

They can use the same piece of program to specify a
square shape for the turtle. They simply enclose their
piece of program into square brackets (thus creating
the drawing list) and use it as the input to setShape:
? setShape

[setPC "red setPW 8 repeat 4 [fd 60 rt 90]]

The square will become the turtle's new shape. It will
not be drawn in the background picture, it is a turtle
that lives above the background. What makes the
difference between the two squares created above?
1. The second square is a turtle; that is, it is prepared

to be moved by simple turtle commands fd and
bk. It can also be moved by the direct
manipulation tools. The teacher or students can
define a class of turtles (for example, myTurtle)

429

with only one setting of the Turtle modified: let
the value of autoDrag be set to true. Thus, each
turtle created as an instance of myTurtle class
can be dragged by the mouse along the screen
with no extra programming work:
newClass "Turtle "myTurtle [autoDrag
true]

2. If the turtle's shape is specified by a drawing list,
it can automatically be rotated. If you say rt 10
it will react quite intuitively – the shape will be
redrawn in a new heading. If, for example, it is a
tree, you can easily make it bend from one side
to another by lt and rt commands.

Topics based on automatic rotations
Let us develop a procedure to draw a sail of the
traditional Dutch windmill. It may be:
to propeller
 setPW 2 setFC "taupe5
 repeat 4
 [fd 53 bk 43 polygon
 [repeat 2 [fd 40 rt 90
 fd 10 rt 90]]
 bk 10 rt 90]
end

Figure 2: Windmill

Click the New Turtle button of the Main Bar, then
click in the graphics screen, thus creating the second
turtle (named by default t2). Let its shape be similar
to the windmill house that supports the sail, see Figure
2. We may now combine this pair of turtles and make
the sail rotate. The bottom part will be static (t2); the
rotating part (t1) will get its shape by inserting
setShape command into sail command. Let us
make the sail rotate by saying repeat 360 [rt 1
wait 20]. Such a solution, however, has two
drawbacks: (1) the sail will rotate only for a while,
then stop (2) while it is rotating, the command line
will be blocked.

Let us therefore use another approach: we will define
an endless parallel process for the sail t1. It will
independently keep the sail rotating forever:
? t1'forever [rt 1 wait 20]

This instruction launches the parallel process, then
terminates. Thus the command line is blocked for a
very short period only.

Figure 3: Compositions of turtles – pieces

Compositions of several turtles
Many creative activities are based on building
compositions of small coloured pieces of different
basic geometrical shapes – like squares, sticks, circles
and half circles, various triangles etc. The goal of such
activity is to build objects like flowers, cars etc.; to
find basic geometrical shapes in a real picture
displayed as a background of the page and cover them
by the pieces; to complete partly constructed scenery
by adding other pieces; to create geometrical
compositions with repeating patterns… and many
others.

In such microworlds a palette of pieces is usually
provided, from which you can choose and take a copy
of a piece (from an endless supply). In “Imagine” we
can implement such microworlds, for example, by
defining a simple class of objects named Piece. An
instance of this class will be a turtle with its pen up,
with the autoDrag attribute set to true and with its
shape specified by a simple piece of Logo program –
a drawing list – chosen from a list of alternatives:

[setFC "blue polygon [4 [50 90]]]
[setFC "yellow filledCircle 30]
[setFC "red polygon [2 [50 90 100 90]]]
[setFC "red
 polygon [0 -90 3 [25 120 25 0]]]

These are drawing lists corresponding to pieces in
Figure 3. What are the advantages of this approach?
• It is easy to modify the list of accepted shapes.
• The problem with multiple layers of objects in the

composition turns trivial.
• Dragging all pieces-turtles is trivial.
• It is easy to create a copy of a piece, for example,

by using the clone command.
• It is easy to rotate any piece by any angle (simply

by right and left commands).

Planar geometry
Another strong motivation for us to offer drawing
lists in “Imagine” has come from planar geometry,
where basic elements are circles, lines and points. A
short drawing list can easily define any of them. For
example, a line can be realised as a long segment:
t1'setShape [fd 1000 pu bk 2000 pd fd 1000]

Let us define the new class Circle as a sub-class of
Turtle; each instance will have its pen up, will have
a default shape of a circle with diameter 40 and a red
point on its circumference. Next to the point there will
be the name of the object (see onCreate event):

430

? newClass "Turtle "Circle
 [pen pu font [Fixedsys [10 400 0 0 0
238]]
 heading 90 shown false Radius 20]

Figure 4: Turtles as
circles and lines

Figure 5: Two drawing
lists

Let us define three events for Circle, namely
onCreate, onLeftDown and onDrag. The onCreate
event inserts the name of a new object into the label
part of the drawing list. The onLeftDown event
analyses whether you clicked a black circumference
of a circle or its “handle” – a small red point. Based
on the result, the onDrag event will either drag the
whole circle (if you clicked the black circumference)
or resize the circle otherwise.

Now each call of new "Circle […] will create a new
circle as an instance of the class Circle. Similar to
Circle we can define the Point and Line classes
and further develop this microworld, so that each
object is aware of other objects in the plane.

Animated programmable pictures
Another powerful extension liberates the user from
technical details. In “Imagine” you can use an image
with several frames to create an animated actor
without any additional effort – the engine itself will
control the animation. Similar mechanisms work also
for the drawing lists: if you set a list of several
drawing lists to a turtle as its shape, the items will
automatically be alternated. Thus, an illusion of
animation based on a sequence of programmable
pictures will be created. Figure 5 illustrates how two
drawing lists can represent a figure of Pacman. In this
way, the overall problem to be solved is divided into
several well defined independent sub-problems.

Drawing lists for developers
Drawing lists prove to be a strong tool, because they
allow very complex shapes, polygons or splines to be
created without considerable demands on memory
space. Note that the language used in drawing lists
consists of a powerful, yet restricted, subset of Logo.
Drawing list may, for example, contain a text
specified by the label command. If we use a vector

font, the text will rotate together with the picture.
Sometimes, however, we can on purpose choose a
non-vector font. This may sound reasonable if we
have to create a library of geometric shapes, points,
circles etc., see Figure 4.

Note also that if an item of a drawing list is a word
prefixed by a colon : (a variable) or if it is enclosed in
brackets (…) (an expression to be run), it will be the
first we evaluated by “Imagine”. Only then will the
drawing list be built and use procedures as their input.
In that way the actual appearance of the drawing list
may be continually recomputed by a running process.

Conclusion
There are several other ways in “Imagine” to exploit
drawing lists. We believe that the idea of specifying
the shape of an a turtle through Logo language
extends the applicability of our tool for developing
complex projects with less effort spent on solving
technical questions. We believe that features like
programmable pictures make “Imagine” an
appealing powerful educational software environment.

Reference
1. Blaho, A., Kalas, I. & Tomcsanyi, P. (1999) Open

Logo – A New Implementation Of Logo.
Proceedings of EuroLogo 99, Sofia.

2. Blaho, A., Kalas, I. & Matusova, M. (1994)
Environment For Environments: A New
Metaphore For Logo. In Wright, J. & Benzie, D.
(eds.) Exploring A New Partnership: Children,
Teachers And Technology. IFIP North-Holland.

3. Turcsanyi-Szabo, M. (2000) Subject Oriented
Microworld Extendible Environment For
Learning and Tailoring Educational Tools.

4. Sendova, E. & Ivanov, I. (2000) Lifting the hood
to see how something works. ICEUT-2000.

5. Blaho, A. & Kalas, I. (1995) Playing, Developing
and Computing With Images in Comenius Logo.
Proceedings of EuroLogo 95, Birmingham.

6. Blaho, A. & Kalas, I. (1997) I Beg Your Pardon
Turtles: Don't Forget About Data Structures.
Proceedings of EuroLogo 97, Budapest.

Biography
Andrej Blaho and Ivan Kalas are senior lecturers at
Comenius University, Bratislava. They are the authors
of SuperLogo.

