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Abstract 
The purpose of this study was (a) to assess the effects of 
learner-generated domain representations on understanding 
combinatorics and probability theory and (b) to investigate 
the effects of the format (graphical, arithmetical, or 
textual) in which learners create their domain 
representation. A pretest-posttest design was applied in 
which four conditions were compared: three experimental 
conditions in which learners constructed a personal 
representation of the domain in a graphical, arithmetical, 
or textual format, and a control condition in which 
learners did not have to construct a representation. It was 
found that the construction of a domain representation 
significantly increases learning outcomes. Furthermore, it 
was found that the format in which learners express their 
knowledge does not directly affect learning outcomes or the 
quality of the created domain representations. However, the 
arithmetical format prevents most learners from engaging 
and succeeding in externalizing their knowledge. 

 

Introduction 
The domain of combinatorics and probability theory is hard to grasp for 
many learners. Some of the reasons for this have to do with mathematics or 
science domains in general but others have to do with specific 
characteristics of the domain of combinatorics. 

One of the more general reasons for students’ problems with science 
and mathematics problems is that novices often have a tendency to focus on 
superficial details rather than on understanding the principles and rules 
underlying a science or mathematics domain (Chi, Feltovich, & Glaser, 1981; 
de Jong & Ferguson-Hessler, 1986; Reiser, 2004). Science and mathematics 
problems require learners to go beyond the superficial details in order to 
recognize the concepts and structures that underlie the problem and to 
decide which operations need to be performed to solve it (e.g., Fuchs et 
al., 2004). In the case of probability instruction, the approach that needs 
to be taken to solve a problem is very dependent on the correct 
classification of the problem (Lipson, Kokonis, & Francis, 2003). 

A second reason for students’ difficulties is that the abstract and 
formal nature of often used arithmetical representations does not show the  
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underlying principles or concepts as explicitly as pictorial and textual 
representations. Most learners tend to view mathematical symbols (e.g., 
multiplication signs) purely as indicators of which operations need to be 
performed on adjacent numbers, rather than reflections of principles and 
concepts underlying these procedures (Atkinson, Catrambone, & Merrill, 
2003; Cheng, 1999; Greenes, 1995; Nathan, Kintsch, & Young, 1992; Niemi, 
1996; Ohlsson & Rees, 1991). Therefore, they easily lose sight of the 
meaning of their actions. In this case, processing formal notations becomes 
an end in itself (Cheng, 1999). Learning of arithmetical procedures without 
conceptual understanding tends to be error prone, easily forgotten, and not 
readily transferable (Ohlsson & Rees, 1991). 

Third, the formal, abstract way in which subject matter is 
represented makes it hard for learners to relate the subject matter to 
everyday life experiences. Fuson, Kalchman, and Bransford (2005) argue that 
the knowledge learners bring into the classroom is often put aside in 
mathematics instruction and replaced by procedures that disconnect problem 
solving from meaning making. In the case of probability and combinatorics 
the integration of theory and everyday life experience is particularly 
important, because probability ideas often appear to conflict with 
students’ experiences and how they view the world (Garfield & Ahlgren, 
1988; Kapadia, 1985). The conflicts arise because probabilities do not 
always fit learners’ conceptions and intuitions (e.g., Batanero & Sanchez, 
2005; Fischbein, 1975; Greer, 2001). An example of a misconception is the 
gambler’s fallacy, that is, the belief that the outcome of a random event 
can be affected by (and therefore predicted from) the outcomes of previous 
events. 

These reasons are by no means exhaustive, but summarize some of the 
main problems encountered in the instruction of combinatorics and 
probability theory. Learners end up with a knowledge base that is biased 
towards procedural knowledge, which means that they know how to perform 
arithmetical operations but hardly understand the underlying principles, or 
the conditions under which the procedures are applicable. Moreover, they 
fail to relate their knowledge to everyday life situations. Instructional 
approaches therefore need to concentrate on ways to focus the learners’ 
attention to the principles and rules underlying the domain rather than to 
superficial details and operations, while using representational formats 
that are most beneficial for understanding, preferably in a way that 
relates theoretical mathematical knowledge to everyday life experiences. 

Using externalization activities to foster understanding 
Gaining a full understanding of a domain requires learners to combine 
conceptual, procedural, and situational knowledge into meaningful schemata. 
These schemata can be acquired by performing cognitive activities such as 
selecting, organizing, and integrating information (Mayer, 2003, 2004; 
Shuell, 1986, 1988; Sternberg, 1984). Selecting involves recognizing which 
information is relevant and which is not. Organizing involves combining 
pieces of information into a coherent and internally connected structure 
(e.g., a mental representation). Integrating refers to relating newly 
acquired knowledge to already existing knowledge structures (prior 
knowledge). Many learners do not engage in these cognitive activities, 
unless prompted to do so (Pressley et al., 1992). A promising way of 
prompting is to stimulate learners to externalize their domain knowledge. 
Cox (1999), for example, argues that the externalization of knowledge may 
elicit self-explanation effects and that the process of externalization 
consists of dynamic iterations and interactions between external models and 
mental models and therefore helps learners to refine and disambiguate their 
knowledge of the domain.  
 
There are many ways to stimulate learners to externalize their domain 
knowledge. Frequently used instructions include asking the learners to 
write summaries (Foos, 1995; Hidi & Anderson, 1986; Spurlin, Dansereau, 
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O'Donnell, & Brooks, 1988), or to create drawings (Van Meter, Aleksic, 
Schwartz, & Garner, 2006; Van Meter & Garner, 2005) of the subject matter. 
A less well-known technique is letting learners build their own runnable 
computer model (Löhner, Van Joolingen, & Savelsbergh, 2003; Manlove, 
Lazonder, & de Jong, 2006; van Joolingen, de Jong, Lazonder, Savelsbergh, & 
Manlove, 2005). In this approach, learners construct a dynamic simulation 
of their own mental model. They can observe the model they created and draw 
conclusions based on the model output. Another example of externalization 
is asking the learners to construct a concept map during or after learning 
(Gijlers, 2005; Nesbit & Adesope, 2006; Novak, 1990, 2002; O'Donnell, 
Dansereau, & Hall, 2002). A learner-generated concept map can give insight 
into which concepts are thought to be relevant or important and how the 
learner thinks the concepts are related to each other, and thus shows where 
gaps or misconceptions occur. 
 
The type of externalization is related to the representational format in 
which learners are expected to express their knowledge. Representational 
format is known to play a critical role in learning and understanding 
(Ainsworth & Loizou, 2003; Cheng, 1999; Zhang, 1997). The properties of 
representations are assumed to influence which information is attended to 
and how people tend to organize, interpret, and remember the information 
(e.g., Larkin & Simon, 1987). With regard to learner-generated 
externalizations of knowledge in the domain of combinatorics and 
probability theory, it has been found that learners avoid using 
conventional ways of representing the probability of events (i.e., using 
ratios or odds, or formal numerical probabilities) and prefer to use 
alternative forms of representation, ranging from textual statements to 
conventional numerical representations (Tarr & Lannin, 2005). This finding 
indicates that all formats may not equally suitable for learners trying to 
express their knowledge. 

Research questions 
The aim of the current study was to find out whether externalizing 
knowledge leads in general to better understanding in the domain of 
combinatorics and probability, and in particular, whether the 
representational format in which learners externalize their knowledge has a 
differential effect on understanding in this domain. Three formats in which 
learners could externalize their knowledge were compared: (a) a graphical 
format (i.e., concept maps), (b) an arithmetical format, and (c) a textual 
format. Externalization is assumed to focus the learners’ attention more on 
conceptual and situational aspects of the domain, resulting in a knowledge 
base that contains conceptual knowledge, procedural knowledge, and 
situational knowledge instead of a one-sided focus on procedural knowledge. 
Externalization in the graphical format is hypothesized to stimulate 
conceptual knowledge in particular, because of the primary focus on the 
identification of concepts and their mutual relationships (Nesbit & 
Adesope, 2006). Although expressing knowledge in an arithmetical format is 
supposed to draw the learners’ attention primarily to operational aspects, 
externalizing is still thought to improve conceptual and situational 
knowledge as compared to learners who do not externalize at all. 
Externalizations of a textual nature are assumed to direct the learners’ 
attention to conceptual and situational aspects, although the conceptual 
issues might not be as strongly stressed as for learners who construct a 
concept map. 

Method 

Participants 
In total, 133 third-grade pre-university education students, 65 boys and 62 
girls (six participants did not indicate their gender), participated. The 
average age of the participants was 14.63 years (SD =.62). The participants 
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had no prior knowledge of combinatorics and probability theory. They 
attended the experiment during regular school time; therefore, 
participation was obligatory. Participants received a mark based on their 
post-test performance. 

Design 
The experiment employed a between-subjects design with the representational 
format (graphical, arithmetical, textual) in which learners had to express 
their knowledge as the independent variable. Participants in a control 
condition were provided with the same learning environment, assignments, 
and tests as participants in the experimental conditions. The only 
difference was that participants in the control condition were not required 
to externalize their knowledge. Participants were assigned randomly to 
conditions. Twelve participants were excluded from the analyses; seven of 
them did not attend one or more experimental sessions, and five were 
excluded because their post-test scores deviated more than 2 SDs from the 
mean scores within their condition. The distribution of the remaining 121 
participants across conditions is displayed in Table 1.  
 

Table 1  
Number of participants per condition 
  Condition 
  Graphical  Arithmetical  Textual  Control 
Number of participants  31  28  30  32 

Domain 
The domain of instruction was combinatorics and probability theory. An 
example of a problem in this domain is: what is the probability that a 
thief will guess the 4-digit PIN-code of your credit card correctly in one 
go? The essence of combinatorics is determining how many different 
combinations can be made with a certain set or subset of elements. In order 
to determine the number of possible combinations, one also needs to know 1) 
whether elements may occur repeatedly in a combination (replacement) and 2) 
whether the order of elements in a combination is of interest (order). On 
basis of these two criteria, four so-called problem categories can be 
distinguished (for an overview, see Figure 1).  
 

  ORDER IMPORTANT? 
  Yes No 

No 
Category 1: 

No replacement; 
Order important 

Category 2: 
No replacement; 

Order not important REPLACEMENT? 

Yes 
Category 3: 

Replacement; 
Order important 

Category 4: 
Replacement; 

Order not important 
Figure 1. Problem categories within the domain of combinatorics 

 
The PIN-code example matches category 3 (replacement; order important). 
When the number of possible combinations is known, the probability that one 
or more combinations will occur in a random experiment can be determined. 

Externalization tools 
Participants in the experimental conditions were asked to construct a 
representation of the domain that would be meaningful to themselves and a 
fictitious fellow learner. This representation was to reflect the relevant 
principles underlying the domain, the variables playing a role in the 
domain, and their mutual relationships. Learners had to create their 
representations on an electronic on-screen externalization tool. There were 
three types of externalization tool, one for each experimental condition: 
(a) a graphical externalization tool (i.e., a concept mapping tool), (b) an 
arithmetical externalization tool, and (c) a textual externalization tool.  
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In the graphical externalization tool, learners were supposed to create 
concept maps of the domain. Learners could draw circles representing domain 
concepts and variables. Keywords could be entered in the circles. The 
circles could be connected to each other by arrows indicating relations 
between concepts and variables. The nature of these relations could be 
specified by attaching labels to the arrows. In the arithmetical 
externalization tool, learners could use variable names (N, K, and P), 
numerical data, and mathematical operators (division signs, equation signs, 
multiplication signs, and so on) in order to express their knowledge. 
Finally, the textual externalization tool resembled simple word processing 
software, allowing textual and numerical input. The contents of the 
externalization tools were stored automatically. 

Learning environment 
The instructional approach used in this study is based on inquiry learning 
(de Jong, 2005, 2006). Computer-based simulation is a technology that is 
particularly suited for inquiry learning. Computer-based simulations 
contain a model of a system or a process. By manipulating the input 
variables and observing the resulting changes in output values the learner 
is enabled to induce the concepts and principles underlying the model (de 
Jong & van Joolingen, 1998). 

The learning environment used in the current study, called Probe-XMT, 
was created with SIMQUEST authoring software (van Joolingen & de Jong, 
2003). Probe-XMT consisted of five sections. Four of these sections were 
devoted to each of the four problem categories within the domain of 
combinatorics. The fifth section aimed at integrating these four problem 
categories. Each section used a different cover story, that is, an everyday 
life example of a situation in which combinatorics and probability played a 
role. Each cover story exemplified the problem category treated in that 
section. In the fifth (integration) section, the cover story applied to all 
problem categories. 

Each of the five sections contained a series of questions (both open-
ended and multiple-choice items), all based on the cover story for that 
particular section. These questions involved determining which problem 
category matched the given cover story (situational knowledge), calculating 
the probability in a given situation (procedural knowledge), and selecting 
a description that matched the relation between variables most accurately 
(conceptual knowledge). In the case of the multiple-choice items, the 
learners received feedback from the system about the correctness of their 
answer. If the answer was wrong, the system offered hints about what was 
wrong with the answer. Learners then had the opportunity to select another 
answer. In the case of the open-ended questions, learners received the 
correct answer after completing and closing the question. 

Most of the questions were accompanied by simulations that could be 
used to explore the relations between variables within the problem 
category. In the simulations, learners could manipulate variables and 
observe the effects of their manipulations on other variables. The 
simulations used a combination of textual and arithmetical representations.  

The learning environment automatically registered user actions. User 
actions that were logged included measures like user path through the 
learning environment (which parts of the learning environment were opened, 
when, for how long, and in what sequence) and the number and nature of 
manipulations carried out in the simulations (how many experiments were 
carried out and the input values of each experiment). 

Knowledge measures 
Two knowledge tests were used in this experiment,: a pre-test and a post-
test. These tests contained 12 and 26 items respectively. An overview of 
the test items and underlying knowledge types is presented in Table 2. 
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Table 2   
Overview of test items 

 Knowledge type Description Number and type 
of items 

Pretest   
 Conceptual Items about relations between variables 4 mc 
 Procedural Solving combinatorial problems 4 open and 4 mc 

Post-test   
 Conceptual Items about relations between variables 13 mc 
 Procedural Solving combinatorial problems 9 open  
 Situational Analyzing, identifying, and classifying problems 4 mc 

 
In cases where learners had to calculate the outcome of an item, a 
calculator was provided on-screen. Both tests were administered via the 
internet. The questions were presented screen-by-screen without the 
possibility of skipping questions or turning back to previous questions. 
Learner responses on both multiple-choice and open-ended items were 
collected and recorded electronically. 

Procedure 
The experiment was carried out in a real school setting in three sessions, 
each separated by a one-week interval. Learners worked individually and 
they were told that they could work at their own pace. The first session 
started with some background information with regard to the experiment 
(general purpose of the research, the domain of interest, learning goals, 
etcetera). This was followed by the pre-test. It was announced that the 
post-test would contain more items of greater difficulty than the pre-test, 
but that the pre-test items nonetheless would give an indication of what 
kind of items to expect on the post-test. At the end of the pre-test the 
learners received a printed introductory text in which the domain was 
introduced. The duration of the first session was limited to 50 minutes. 
During the last 15 minutes of the session, the experimenter demonstrated 
the use of the learning environment and the externalization tools. 

During the second session, learners were working with the learning 
environment, whereby learners in the experimental conditions had to 
construct a domain representation while working with the learning 
environment. The duration of this session was set at 70 minutes. Despite 
the possibility of following a non-linear path through the learning 
environment, learners were advised to keep to the order of sections because 
they build upon each other. 

The third session was set at 50 minutes. First, learners were allowed 
to use the learning environment for 10 minutes in order to refresh their 
memories with regard to the domain. Then all learners had to close their 
domain representations and learning environments, and had to complete the 
post-test. When learners finished the test they were allowed to leave the 
classroom. 

Data preparation 
The domain representations constructed by the learners were scored by means 
of a scoring protocol. This protocol revolved around the principle that 
scoring of the domain representation should not be biased by the 
representational format of the externalization tool, that is, all types of 
representations should be scored on the basis of exactly the same criteria. 
The protocol was used to assess the extent to which domain representations 
reflected the concepts of replacement and order, presented calculations, 
referred to the concept of probability, indicated the effect of size of 
(sub)sets on probability, and the effects of replacement and order on 
probability. The maximum number of points that could be assigned on the 
basis of the protocol was 8 points. The scoring protocol is displayed in 
Appendix I. 
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Results 

Knowledge measures 
Two measures of knowledge were obtained: prior knowledge (pre-test score), 
and post-test score. The reliability, Cronbach’s α, was α = .56 for the 
pre-test and α = .79 for the post-test. The scores on the knowledge 
measures are displayed in Table 3. 
 

Table 3 
Knowledge measures 
   Condition 
   Graphical 

(n=31) 
 Arithmetical 

(n=28) 
 Textual 

(n=30) 
 Control 

(n=32) 
  M SD  M SD  M SD  M SD 
Pre-test score  5.71 1.40  5.46 1.92  5.23 1.59  5.47 1.95 
Post-test score  16.97 3.76  16.57 3.84  16.13 3.48  15.44 4.68 

 
One-way analyses of variance (ANOVA) showed that there were no differences 
between conditions with regard to pre-test score, F(3,120) = 0.39, ns, and 
post-test score, F(3,120) = 0.85, ns. These results suggest that the 
externalization of knowledge and the representational format in which 
learners externalize do not affect learning outcomes. However, it turned 
out that not all participants in the experimental conditions externalized 
their knowledge. This issue will be addressed in the next section after, 
which a re-analysis of the data will be presented. 

Externalizers vs non-externalizers 
Not all learners who were required to externalize their knowledge did so, 
and some only entered nonsense input (i.e., input that was not domain 
related and that could not be considered a serious attempt to create a 
domain representation; e.g., a drawing of a smiling face). Therefore, a 
distinction will be made between the group of learners who did externalize 
their knowledge (henceforth called “externalizers”), and the group of 
learners who did not externalize although required to (henceforth called 
“non-externalizers”). The numbers of externalizers and non-externalizers 
for each condition are displayed in Table 4. 
 

Table 4 
Numbers of externalizers and non-externalizers 
   Representational format 
  Graphical  Arithmetical  Textual 
Total number of participants  31  28  30 
Number of non-externalizers  15  23  16 
Number of externalizers  16  5  14 
Percentage of externalizers  51.6  17.9  46.7 

 
The numbers of externalizers and non-externalizers differed significantly 
between conditions, χ2(5, N = 89)= 11.25, p < .05. In the Arithmetical 
condition there were significantly fewer externalizers than in both the 
Graphical condition, χ2(1, N = 21)= 5.76, p < .05, and the Textual 
condition, χ2(1, N = 19)= 4.26, p < .05. 

Knowledge measures revisited 
The scores on the knowledge measures were reanalyzed, this time taking into 
account the distinction between externalizers and non-externalizers. Before 
reanalyzing, the comparability of the different groups with regard to prior 
knowledge (pre-test score) was established (see Table 5). 
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Table 5 
Prior knowledge measure 
   Group 
   Externalizers 

(n=35) 
 Non-Externalizers 

(n=54) 
 Control 

(n=32) 
  M SD  M SD  M SD 
Pre-test score  5.74 1.54  5.30 1.68  5.47 1.95 

 
A one-way ANOVA showed no difference between groups with regard to pre-test 
scores, F(2,120) = 0.72, ns.  

The post-test scores, including the measures of the different 
knowledge types, were analyzed by applying one-way ANOVAs. The post-test 
measures for each group are displayed in Table 6. 
 

Table 6 
Post-test measures for each group 
   Group 
   Externalizers 

(n=35) 
 Non-Externalizers 

(n=54) 
 Control 

(n=32) 
Knowledge type  M SD  M SD  M SD 
Conceptual knowledge  10.06 1.14  9.35 1.54  9.06 1.90 
Procedural knowledge  4.77 2.20  3.54 2.23  3.75 2.57 
Situational knowledge  3.46 0.85  2.56 1.33  2.63 1.36 
Post-test overall score  18.29 3.07  15.44 3.62  15.44 4.68 

 
With regard to the post-test overall score, a significant difference was 
found between groups, F(2,118) = 7.01, p < .01. A post-hoc LSD analysis 
showed that the externalizers outperformed both the non-externalizers (p < 
.001) and the control group (p < .01). The post-test distinguished between 
three types of knowledge. One-way ANOVA’s revealed significant differences 
between conditions with regard to conceptual knowledge, F(2,118) = 3.79, p 
< .05, procedural knowledge, F(2,118) = 3.19, p < .05, and situational 
knowledge, F(2,118) = 6.45, p < .01. Post-hoc LSD analyses showed that with 
regard to conceptual knowledge the externalizers outperformed the non-
externalizers (p < .05) and the control group (p < .01). With regard to 
procedural knowledge the externalizers outperformed the non-externalizers 
(p < .05) but not the control group. Finally, the average scores of 
externalizers on situational knowledge were also significantly higher 
compared to non-externalizers (p < .001) and the control group (p < .01). 
 
In order to find the answer to our second research question (does the 
representational format in which learners externalize their knowledge have 
a differential effect on understanding?) we now focus on the 
externalization group. The post-test scores of externalizers using 
different representational formats are displayed in Table 7. 
 

Table 7 
Post-test measures of externalizers 
   Representational format 
   Graphical 

(n=16) 
 Arithmetical 

(n=5) 
 Textual 

(n=14) 
Knowledge type  M SD  M SD  M SD 
Conceptual knowledge  10.06 1.12  10.20 0.84  10.00 1.30 
Procedural knowledge  5.13 2.03  5.60 3.36  4.07 1.86 
Situational knowledge  3.56 0.81  3.60 0.89  3.29 0.91 
Post-test overall score  18.75 3.04  19.40 4.22  17.36 2.62 

 
No differences were found between representational formats with regard to 
post-test measures. The F(2,32) values for conceptual, procedural, 
situational, and post-test overall scores are 0.05, 1.30, 0.46, and 1.16 
respectively. Therefore, the format in which learners expressed their 
knowledge did not influence post-test scores. 
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The quality of domain externalizations 
The domain representations created by the externalizers show large 
differences. The quality of the domain representations is determined by the 
extent to which the externalization properly represents the domain and 
contains all relevant concepts and relations. The quality of the created 
domain representations was determined on the basis of the coding scheme 
presented earlier in this paper (see also Appendix I). The resulting 
quality scores are displayed in Table 8. 
 

Table 8 
Quality scores of learner-generated domain representations (externalizations) 

  Representational format 
  Graphical  Arithmetical  Textual 
  M SD Min Max  M SD Min Max  M SD Min Max 

Score  2.38 1.20 1 5  3.40 1.67 2 6  2.57 1.40 1 5 
 
A one-way ANOVA showed that there were no differences between 
representational formats with regard to quality scores, F(2,34) = 1.10, ns. 

Discussion and Conclusion 
The aim of the current study was to find out whether externalizing 
knowledge leads to better understanding of the domain and in particular 
whether representational format has a differential effect on this. The 
results show that the externalization of knowledge significantly enhances 
conceptual knowledge, procedural knowledge, situational knowledge and 
overall post-test performance. Therefore, externalization leads to better 
understanding of the principles that govern the domain and of the 
interrelations between units of knowledge in the domain (conceptual 
knowledge), enhanced ability to execute action sequences to solve problems 
(procedural knowledge), and to analyze, identify, and classify problems, to 
recognize the concepts that underlie the problem, and to decide which 
operations need to be performed to solve the problem (situational 
knowledge). Moreover, earners who externalized their knowledge did not 
differ from other learners with regard to time-on-task. Therefore, the 
effects cannot be attributed to the time the learners spent on their 
learning process. Externalization appears to be an effective method to 
enhance learning results, without requiring the investment of much time. 
 
The second research question concerned the different representational 
formats in which learners could externalize their knowledge. It was 
hypothesized that externalization in the graphical format would lead to 
more conceptual knowledge, that externalization in the arithmetical format 
was supposed to draw the learners’ attention primarily to operational 
aspects, although externalizing still was thought to improve conceptual and 
situational knowledge as compared to learners who do not externalize at 
all. Externalization in the textual format was assumed to lead to more 
conceptual and situational knowledge, although the focus on conceptual 
aspects would not be as marked as in the case of the graphical format. 
Results show that the hypotheses were not confirmed. No differential 
effects on post-test scores were found between representational formats. 
Furthermore, it turned out that the representational format in which 
learners created a domain representation did not affect the quality of 
these domain representations. 
 
Although representational format did not have a direct effect on knowledge 
measures and quality of domain representations, it turned out that format 
did play an important, although indirect role. The format determined to a 
large extent the likelihood that learners engaged (and succeeded) in 
externalizing their knowledge. The graphical and textual formats appear to 
equally foster the externalization of knowledge. Having learners express 
their knowledge in an arithmetical format is not recommended, because this 
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format prevented most learners from engaging and succeeding in 
externalizing their knowledge. The low number of learners who succeeded in 
constructing a domain representation by using the arithmetical format 
suggests that this format is not very helpful for externalizing knowledge. 
This finding corroborates the observation that learners apparently 
experience difficulties with using standard mathematical representations. 
If learners have the choice, they prefer to use other types of 
representations (Tarr & Lannin, 2005). Still, the finding that learners 
apparently consider the arithmetical format too difficult for externalizing 
their knowledge is interesting. In an earlier study, Kolloffel, de Jong, 
and Eysink (2005) found that in learning from (pre-constructed) 
representations, the best results were obtained with arithmetical 
representations. This suggests that arithmetical representations are very 
well suited for learning, but not for expressing knowledge. 
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Appendix I 
 
 REPRESENTED? CONCEPT MAP MATH EDITOR TEXT EDITOR PNT 
A The concept of 

“Replacement” 
 

-Literally, or descriptive  
 
Examples: 
-“Replacement” (Abstract) 
-“Category 1: without 
replacement; order important” 
(Abstract)  

-...[Runners, BK]... then you 
have to do 1/7 x 1/6 x 1/5 
because each time there is one 
runner fewer” (Concrete) 

 

Two formulas or calculations in 
which “replacement” varies 
 
Examples: 
-“(1/n) x (1/n) x (1/n) = P 
(1/n) x (1/(n-1)) x (1/(n-
2))= P” 

-“1/5 x 1/4 x 1/3 
1/5 x 1/5 x 1/5”  

-“p = 1/10 x 1/10 x 1/10 
p = 1/5 x 1/4 x 1/3” 

 

-Literally, or descriptive  
 
Examples: 
-“Replacement” (Abstract) 
-“Category 1: without 
replacement; order important” 
(Abstract)  

-“...If there are 7 runners, 
then the chance is 1 out of 7 
(1/7), if that runner passes 
the finish, then there are 6 
runners left, then there is a 
chance of 1 out of 6 (1/6), 
and so on. (Concrete) 

 

1 

B The concept of 
“Order” 
 

-Literally, or descriptive  
 
Examples: 
-“Order” (Abstract) 
-“Category 1: without 
replacement; order important” 
(Abstract)  

-“...If there are 7 runners and 
you predict the top 3 without 
specifying the positions of 
specific runners in the top 
3...” (Concrete) 

 

Two formulas or calculations in 
which “order” varies 
 
Examples: 
-“(1/n) x (1/n) x (1/n) 
(k/n) x ((k-1)/n) x ((k-
2)/n)” 

-“1/5 x 1/4 x 1/3 
3/5 x 2/4 x 1/3” 

 

-Literally, or descriptive  
 
Examples: 
-“Order” (Abstract) 
-“Category 1: without 
replacement; order important” 
(Abstract)  

-“...At a game of Bingo, order 
is not important” (Concrete) 

 

1 

C Calculation -Formal, literally, 
descriptive, or a concrete 
calculation 
 
Examples: 
-p = acceptable outcomes/ 
possible outcomes (Abstract) 

- 1/5 x 1/4 x 1/3 (Procedural) 
-... when you also bet ont he 
order in which the marbles 
will be selected, your chance 

Formal (formula) or a concrete 
calculation 
 
Examples: 
-“(1/n) x (1/n) x (1/n)” 
-“1/5 x 1/4 x 1/3” 
 

-Formal, literally, 
descriptive, or a concrete 
calculation 
 
Examples: 
-p = acceptable outcomes/ 
possible outcomes (Abstract) 

- 1/5 x 1/4 x 1/3 (Procedural) 
-... when you also bet ont he 
order in which the marbles 
will be selected, your chance 

1 
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is: 1/5 and 1/4 is 1/20...” 
(Concrete) 

 

is: 1/5 and 1/4 is 1/20...” 
(Concrete) 

 
D Probability -Literal reference to the term 

“probability”/p, or a 
description of the concept 
-Expression of a concrete 
probability (e.g. a fraction), 
but then it need to be made 
clear in the context (e.g. by a 
calculation) where the 
probability comes from  
 
Examples: 
-“In order to calculate 'p' the 
chances need to be 
multiplied.” (Abstract) 

-p= 1/5 x 1/4 x 1/3 
(Procedural) 

-“...In that case [learner 
refers to a situation outlined 
earlier], the probability is 
1/10” (Concrete) 

 

-Literal reference to the term 
“p” 
-Expression of the outcome of a 
calculation  
 
Examples: 
-“p = (1/n) x (1/n) x (1/n)” 
-“p = 1/5 x 1/4 x 1/3” 
-“1/5 x 1/4 x 1/3 = 1/60” 
 

-Literal reference to the term 
“probability”/p, or a 
description of the concept 
-Expression of a concrete 
probability (e.g. a fraction), 
but then it need to be made 
clear in the context (e.g. by a 
calculation) where the 
probability comes from  
 
Examples: 
-“In order to calculate 'p' the 
chances need to be 
multiplied.” (Abstract) 

-p= 1/5 x 1/4 x 1/3 
(Procedural) 

-“...In that case [learner 
refers to a situation outlined 
earlier], the probability is 
1/10” (Concrete) 

 

1 

E Effect of n on 
probability 

-Descriptive or on basis of 
calculations showing the effect 
(in the latter case, k needs to 
be constant) 
 
Examples: 
-“fewer options = higher 
chance” (Abstract) 

-“If fewer runners attend the 
race, the chance your 
prediction is correct will 
increase” (Concrete) 

 

A formula or a series of 
calculations showing the effect 
(in the latter case, k needs to 
be constant) 
 
Examples: 
-“(1/n) x (1/n) x (1/n)=1/n3” 
-“1/5 x 1/4 x 1/3 = 1/60 
1/6 x 1/5 x 1/4 = 1/120” 

 

-Descriptive or on basis of 
calculations showing the effect 
(in the latter case, k needs to 
be constant) 
 
Examples: 
-“If the number of elements you 
can choose from increases, the 
chance will be smaller that 
you will select a specific 
element” (Abstract) 

-“If fewer runners attend the 
race, the chance your 
prediction is correct will 
increase” (Concrete) 

 

1 

F Effect of k on 
probability 

-Descriptive or on basis of 
calculations showing the effect 
(in the latter case, n needs to 
be constant) 

A formula or a series of 
calculations showing the effect 
(in the latter case, k needs to 
be constant) 

-Descriptive or on basis of 
calculations showing the effect 
(in the latter case, n needs to 
be constant) 
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Examples: 
-“with 1 choice →1/possible 
outcomes; with more choices 
→number of choices/possible 
outcomes” (Abstract) 

-“If you only predict who will 
win the race and not the top 
3, then the chance is greater 
that your prediction will be 
correct” (Concrete) 

 

 
Examples: 
-“(1/n) x (1/n) = 1/n2

(1/n) x (1/n) x (1/n) = 1/n3” 
-“1/5 x 1/4 = 1/20 
1/5 x 1/4 x 1/3 = 1/60” 

 

 
Examples: 
-“When your prediction is less 
elaborate, the probability 
that your prediction will be 
correct increases” (Abstract) 

-“If you only predict who will 
win the race and not the top 
3, then the chance is greater 
that your prediction will be 
correct” (Concrete) 

 
G Effect of replacement 

on probability 
 

-Descriptive or on basis of 
calculations showing the effect 
(in the latter case, n and k 
need to be constant) 
 
Examples: 
-“If it is a matter of 
replacement, your chances will 
decrease” (Abstract) 

-“...if you have 10 different 
cell phones and you need to 
select one, your chance will 
be 1 out of 10, if you put the 
phone back your chance will be 
1 out of 10 again, but if you 
leave it out your chance will 
increase that you will select 
the next phone as predicted” 
(Concrete) 

 

A series of formulas or 
calculations showing the 
effect, but the outcome (p) 
needs to be represented as well 
and n and k need to be constant 
 
Examples: 
-“(1/n) x (1/n) = 1/n2

(1/n) x (1/(n-1)) = 1/(n2-n)” 
-“1/5 x 1/4 x 1/3 = 1/60 

1/5 x 1/5 x 1/5 = 1/125” 
 

-Descriptive or on basis of 
calculations showing the effect 
(in the latter case, n and k 
need to be constant) 
 
Examples: 
-“If it is a matter of 
replacement, your chances will 
decrease” (Abstract) 

-“...if you have 10 different 
cell phones and you need to 
select one, your chance will 
be 1 out of 10, if you put the 
phone back your chance will be 
1 out of 10 again, but if you 
leave it out your chance will 
increase that you will select 
the next phone as predicted” 
(Concrete) 

 

1 

H Effect of order on 
probability 
 

-Descriptive or on basis of 
calculations showing the effect 
(in the latter case, n and k 
need to be constant) 
 
Examples: 
-“ If order is important, the 
chance your prediction will be 
right will decrease” 
(Abstract) 

-“...If there are 7 runners and 
you predict the top 3, then 

A series of formulas or 
calculations showing the 
effect, but the outcome (p) 
needs to be represented as well 
and n and k need to be constant 
 
Examples: 
-“(1/n) x (1/n) = 1/n2

(k/n) x ((k-1)/n) = (k2-k)/n2” 
-“1/5 x 1/4 x 1/3 = 1/60 
3/5 x 2/4 x 1/3 = 6/60” 

 

-Descriptive or on basis of 
calculations showing the effect 
(in the latter case, n and k 
need to be constant) 
 
Examples: 
-“ If order is important, the 
chance your prediction will be 
right will decrease” 
(Abstract) 

-“...If there are 7 runners and 
you predict the top 3, then 
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the probability is 1/7 x 1/6 x 
1/5 = 1/210, but without 
specifying the positions of 
specific runners in the top 3 
the probability is 3/7 x 2/6 x 
1/5 = 6/210...” (Concrete) 

 

the probability is 1/7 x 1/6 x 
1/5 = 1/210, but without 
specifying the positions of 
specific runners in the top 3 
the probability is 3/7 x 2/6 x 
1/5 = 6/210...” (Concrete) 

 
MAXIMUM NUMBER OF POINTS 8 
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