Standard-compliant Scenario Building with Theoretical Justification in a Theory-aware Authoring Tool
Yusuke Hayashi, Jacqueline Bourdeau, Riichiro Mizoguchi

To cite this version:
Yusuke Hayashi, Jacqueline Bourdeau, Riichiro Mizoguchi. Standard-compliant Scenario Building with Theoretical Justification in a Theory-aware Authoring Tool. 2007. hal-00190037

HAL Id: hal-00190037
https://telelearn.hal.science/hal-00190037
Submitted on 23 Nov 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Standard-compliant Scenario Building with Theoretical Justification in a Theory-aware Authoring Tool

Yusuke HAYASHI\(^a\), Jacqueline BOURDEAU\(^b\), Riichiro MIZOGUCHI\(^a\)
\(^a\) ISIR, Osaka University, \(^b\) LICEF, Télé-université
\(^a\) 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 Japan
\(^b\) 100 Sherbrooke W., Montréal, (QC) H2X 3P2 Canada

Abstract. Nowadays standard technologies play important roles in enhancing sharability, reusability and interoperability of learning contents. However, there is a lack of pedagogical justification of the contents implemented with the standards. This paper discusses the standard-compliance of our ontology-based modeling framework and how the framework gives theoretical justification to standard-compliant learning/instructional scenarios in a theory-aware authoring tool.

Introduction

Nowadays standard technologies play important roles in enhancing sharability, reusability and interoperability of learning contents. However, it is pointed out that there is a lack of pedagogical justification of the contents implemented with the standards [5].

In this study we take an ontological engineering approach to organize educational theories in a formal and computer-understandable way [4]. Through this approach we have proposed a comprehensive ontology\(^1\) that covers different theories and paradigms, and have developed a modeling framework of learning/instructional scenarios based on the ontology [1][2]. This paper discusses the standard-compliance of our modeling framework and how the framework gives theoretical justification to standard-compliant learning/instructional scenarios in a theory-aware authoring tool.

1. Standard-compliant scenario building on an ontological modeling framework

In our framework, a scenario can be modeled as a hierarchical structure of “Instructional_Leaning (I_L) event”, which are composed of instructional and learning actions for achieving a certain change of a learner state [1]. We call the model an “I_L event decomposition tree”. The basic idea of the model is to relate a macro-I_L event to the lower (micro) ones that collectively achieve the upper (macro) I_L event in terms of a learner state (The relation is referred to as “WAY” in this study). Currently, we have organized about 100 pieces of WAY based on some theories [2]. Such WAYs are called WAY-knowledge.

---

\(^1\) The ontology is opened to the public on our OMUNIBUS project web page (http://edont.qee.jp/omnibus/).
have mapped I_L event decomposition tree onto IMS LD specifications. Briefly speaking, each unit of decomposition in an I_L event decomposition tree can be converted to two activity-structures for learner and instructor in an IMS LD description as shown in Fig. 1.

In IMS LD, only top and leaf activities have the description of the objective while the others do not have. Therefore only a part of the design intention can be converted to the IMS LD description although it keeps sharability and executability of learning/instructional scenarios. On the other hand, an I_L event decomposition tree keeps the whole design intention together with theoretical justification of it. For these reasons, IMS LD and our modeling approach are complementary to each other.

2. Generation mechanism of theoretical scenario explanation

This study aims at building a theory-aware authoring tool based on our comprehensive ontology and modeling framework. One of the characteristics of such an authoring tool is its ability to interpret and explain learning/instructional scenarios in terms of theories. A descriptive concept (I_L event) and a prescriptive concept (WAY-knowledge) in our comprehensive ontology enable information systems to give explanations and suggestions about scenarios described as an I_L event decomposition tree.

In order to generate scenario explanation we made message templates whose vocabulary comes from the ontology and whose structure is partly based on an I_L event decomposition tree. Table 1 summarizes the classification of the templates. If a scenario is described based on a piece of WAY-knowledge, an interpretative explanation gives a theoretical justification. On the other hand a scenario is described only in the terms defined our ontology, a suggestive explanation offers suggestions for improvements in the scenario in terms of theories.

Table 1 A classification of explanation types and cases (not exhaustive)

<table>
<thead>
<tr>
<th>Cases</th>
<th>Interpretative</th>
<th>Suggestive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical justification</td>
<td>(Notes: Explaining interpretation of relation among events in a scenario in terms of a theory)</td>
<td>(Notes: It seems learners can not achieve the goal because necessary (sub) goal is insufficient in the scenario.)</td>
</tr>
<tr>
<td>Theory description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scenario comprehension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insufficiency of necessary goals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insufficiency of supplementary goals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excess of goals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disproportion in process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inconsistency of principle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsustained state</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
It is likely that the goal of the whole scenario “Understand level” state will not succeed because the intermediate goal “Prepared” state is supposed not to be achieved. Gagne and Briggs’s nine events of instruction proposes to make the learner be in “Motivated” state in order to achieve to be in “Prepared” state.

(b) A scenario model
(c) A definition of a piece of WAY-knowledge

Fig. 2 An example of suggestive explanation

We are currently developing the explanation function in our prototype system named “Smarties”. Fig 2 illustrates an example of suggestive explanation. Fig 2 (d) shows an example of generated messages about Insufficiency of necessary goals. This message is generated by the message template (Fig. 2 (a)) and the scenario interpretation based on WAY-knowledge. Italic words in the message are specified with the scenario model (Fig. 2 (b)) and a definition of a piece of WAY-knowledge (Fig. 2 (c)) in the ontology. Such a message can be generated if the scenario is described in the terms defined in the ontology.

3. Conclusion

We have discussed a functionality of theory-awareness of an ontology-based authoring tool and its compliance with standard technologies, especially focused on IMS LD specifications. Conceptual understanding of scenarios based on the theory-awareness enables an authoring tool to explain scenarios theoretically and to record them in a sharable format with theoretical justification.

References